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Abstract  

We present the results of a statistical analysis of lightning characteristics in mainland 

Australia for the period from approximately 1988 to 2012, based on monthly lightning flash 

count (LFC) series obtained from a network of 19 CIGRE-500 sensors. The temporal 

structures of the series are examined in terms of detecting and characterizing seasonal cycles, 

long-term trends and changes in seasonality over time. A generalized additive modeling 

approach is used to ensure that the estimated structures are determined by the data, rather 

than by the constraints of any assumed mathematical form for the trends and seasonal cycle. 

Results indicate strong seasonality at all sites, the presence of long-term trends at 16 sites, 

and interactions between trend and seasonality (corresponding to changes in seasonality over 

time) at 13 sites. The most systematic change corresponds to a progressive deepening of the 

seasonal cycle (i.e. an ongoing decline in winter lightning flash counts), and is most 

noticeable across southern Australia (south of 30° S). These results are consistent with 

previous analyses that have detected decreasing atmospheric instability during the austral 

winter since the mid 1970s. This is associated with increasing mean sea level pressure and 

declining rainfall.  
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Key Points  
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1. Introduction  

Lightning is a weather phenomenon that is episodic and highly variable in space and time. 

It causes the ignition of wildfires, disruptions to electric power transmission and distribution, 

disruption to communication systems, infrastructure damage, injury and death to humans and 

livestock, and increases in airline operation costs and passenger delays [see, e.g. Mackerras, 

1991; Coates et al., 1993; Elsom, 1993; Curran et al., 2000; Uman, 2010]. Lightning flashes 

can be grouped into two broad categories: those that do not strike the ground (so-called 

“cloud flashes”) and those that do (“cloud-to-ground flashes”). Most lightning is generated in 

summer thunderstorms with each cloud-to-ground flash consisting of one or more return 

strokes. These strokes have typically short durations of some tens of microseconds and are 

separated by time intervals of some tens to hundreds of milliseconds [Cummins and Murphy, 

2009]. Instruments for measuring lightning activity include space-based sensors, ground-

based lightning flash counters, and lightning location systems (LLSs) [Kuleshov et al., 2009; 

Schulz et al., 2005; Cecil et al., 2014]. 

The analysis of lightning activity data is a broad area of research with many previous 

studies focusing on different aspects of lightning activity: summary statistics; mean annual, 

seasonal and diurnal climatologies; and relationships between lightning and severe weather, 

aerosols, indices of convection and modes of climate variability [see, e.g., Sheridan et al., 

1997; Petersen and Rutledge, 1998; Kuleshov and Jayaratne, 2004; Dai et al., 2009; 

Ranalkar and Chaudhari, 2009; Tinmaker et al., 2009; Darden et al., 2010; Schultz et al., 

2011; Bovalo et al., 2012; Chronis, 2012; Yuan et al., 2012; Dowdy and Kuleshov, 2014]. A 

subject that has received far less attention is the quantitative analysis of seasonality and 

trends in lightning series [Collier et al., 2013; Villarini and Smith, 2013].  

Our area of interest is the detection and characterization of any long-term trends in 

lightning activity data and temporal changes in the seasonal cycle. The time series considered 



herein are monthly lightning flash counts (LFCs). Statistically, the analysis of such data is 

challenging because their probability distribution is discrete rather than continuous, limited to 

non-negative integer values, usually positively skewed with a high number of zeros, and the 

variance of the data can greatly exceed the mean as is the case herein (section 4). Therefore, 

the use of either conventional linear and Poisson regression [Faraway, 2005, 2006] is not 

appropriate since the data violate the assumptions that underpin these methods. Moreover, 

there are no guarantees that: (1) the seasonal cycle will be well described by one or more 

sinusoids [cf. Collier et al., 2013]; (2) the underlying trend will be monotonic [cf. Villarini 

and Smith, 2013]; or (3) the observations are independent, a requirement of classical 

nonparametric tests for trend [see, e.g., Chandler and Scott, 2011, Sec. 2.4]. Consequently we 

have adopted a flexible nonparametric approach which imposes minimal assumptions on the 

functional forms of the seasonal cycle and trend function and hence allows the data to “speak 

for themselves” as far as possible. Such an approach is particularly useful for characterizing 

nonlinearity and non-monotonicity in time series data.  

In this paper we use monthly LFC series for 19 sites across Australia for the period 

approximately from 1988 to 2012. In the next section we briefly describe the instruments and 

data used. Section 3 explains the methodology and the results of our analyses are presented in 

section 4. A discussion and our conclusions are given in sections 5 and 6, respectively. 

2. Instruments and Data  

The data used in this study were collected from a ground-based lightning detection 

network installed and operated by the Australian Bureau of Meteorology with the assistance 

of electricity supply authorities. The sensor used is the CIGRE-500 (Comité Internationale 

des Grands Réseaux Electriques, 500 Hz peak transmission filter circuit). Although the sensor 

was designed specifically to detect cloud-to-ground flashes, it can also respond to cloud 

flashes with about 68% of the lightning flash counts due to cloud-to-ground flashes 



[Kuleshov and Jayaratne, 2004]. Estimates of the effective horizontal ranges of the sensor 

areas are 30 km for cloud-to-ground flashes and 15 km for cloud flashes. Consequently, we 

analyzed total lightning flash counts rather than flash densities (flashes km-2) or flash rates 

(flashes km-2 mo-1

While the CIGRE-500 network has consisted of about 40 sites scattered widely across the 

Australian mainland during its operational life, there are only 19 sites that have at least 200 

complete monthly observations during the period from the late 1980s to the end of available 

record (Figure 1 and Table 1). For 17 out of the 19 sites, monthly LFC records are available 

from January 1988, whereas existing records for Townsville and Eucla commence during 

August 1989 and March 1995, respectively. In recent years, there has been a shift away from 

) since the flash count is the original unit of measurement, and the portion 

of cloud-to-ground flashes and estimates of the effective range of the sensor are subject to 

uncertainty. The number of flashes is registered by an electromechanical counter, and 

multiple strokes within a flash are eliminated by a one-second dead time interval after the 

first stroke. The counters are read manually each day between 0800 and 0900 hours local 

time and the records sent to the Bureau of Meteorology at the end of each month. The sensors 

have been maintained throughout their operational life. Observers routinely perform test 

counts at times when there is no lightning activity. During these tests, a test button is pressed 

and the counter is expected to advance by about one count per second. The daily logs for each 

site reveal the timing and the number of test counts. The tests are performed on a weekly to 

monthly basis. Any fault in a sensor is noted and dated in the records, as is the 

recommissioning date. Data from periods where an instrument malfunctioned have been 

coded as ‘missing values’ in our analysis, thus ensuring that the remaining record is 

homogeneous with respect to the ability to detect LFCs when they occur. Further details can 

be found in Kuleshov and Jayaratne [2004], Jayaratne and Kuleshov [2006] and Kuleshov et 

al. [2009].  



maintaining the CIGRE-500 network in favor of investment in the use of lightning location 

systems (LLSs) due to their greater spatial coverage. Nevertheless, we prefer to use the 

CIGRE-500 data for reasons discussed in section 5.  

< Insert Figure 1 and Table 1 about here > 

The lightning climatology of Australia varies considerably in both space and time. 

Previous analyses of the annual distribution of lightning occurrence data obtained from the 

CIGRE-500 network have identified a strong seasonal cycle [Jayaratne and Kuleshov, 2006; 

Kuleshov et al., 2009]. The occurrence frequency of thunderstorms varies somewhat with 

latitude. They are most frequent in the north and generally decrease in frequency southward. 

In the northern half of Australia, the development of thunderstorms is enhanced by low 

surface pressure and high boundary-layer moisture levels in the wet season (October to 

April). During the dry season the sub-tropical high pressure belt lies over the continent 

bringing clear skies and dry, stable conditions. At higher latitudes the annual distribution of 

lightning activity is somewhat more uniform since it can occur in cooler months (May to 

September) due to frontal systems associated with Southern Ocean depressions. There is, 

however, a maximum of lightning activity in the Australian region during the cooler months 

that occurs near the central east coast [Dowdy and Kuleshov, 2014]. This local maximum in 

lightning activity could potentially relate to a number of phenomena, including the warm East 

Australian Current as a potential source of latent heat flux into the cool wintertime boundary 

layer, as well as the occurrence of cold fronts or extratropical cyclones in the region (known 

as East Coast Lows). The central east coast of Australia is a favored region for East Coast 

Lows to occur [Dowdy et al., 2013], and thunderstorm observations have been associated 

with East Coast Lows occurrence [Chambers et al., 2014]. 

We readily concede that the spatial coverage of the CIGRE-500 network in Australia is 

very sparse, particularly when it is compared to those of modern ground-based lightning 



location systems (LLSs) and the gridded climatologies of total lightning flash rates observed 

by NASA’s spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor 

(LIS) [Boccippio et al., 2002; Christian et al., 2003; Dowdy and Kuleshov, 2014]. However 

there are several reasons why we chose to use the CIGRE-500 dataset. It has been found that 

the LFC registrations are more accurate than Australian LLS data for distances less than 30 

km [Kuleshov et al., 2009]. Moreover, there have been long-term changes in detection rates 

associated with changes in the density of sensors for the LLS and changes in the methods 

used for signal processing. These changes could compromise the interpretation of the results 

of our trend analysis. This together with the relatively short length of record (about 15 years) 

means that the data obtained by the LLS sensors are not ideal for our type of investigation. At 

the time of writing (September 2014), the merged LIS–OTD gridded climatology products 

cover the period from May 1995 to December 2012. For time series analysis purposes, Cecil 

et al. [2014] recommend the use of the monthly flash rate dataset on a 2.5° × 2.5° grid, but 

note that the data prior to 1998 (i.e. the period when the LIS data were unavailable) should be 

treated with caution. Thus the spatial resolution of the LIS-OTD dataset is some 20 times 

coarser than that of the CIGRE-500 counters, and the length of reliable record (156 months) 

is noticeably smaller than the number of observations obtained from most of the CIGRE-500 

counters considered herein (209 to 298 months, see Table 1). 

3. Methods  

3.1. Generalized Additive Modeling  

We used generalized additive models (GAMs) [Wood, 2006] to disentangle the individual 

and joint effects of seasonality and long-term trend in monthly LFC series. GAMs permit the 

seasonal cycle to be irregular and not perfectly harmonic, the long-term trend to be nonlinear 

and non-monotonic, and any two-dimensional dependency between seasonality and long-term 

trend to be assayed without the imposition of a rigid functional form. In this framework, time 



(month, date) is modeled as a smooth function of seasonality (month = 1, …, 12) and date = 

year + month/12 – 1/24 where year denotes the calendar year (1988, for example). The 

fraction 1/24 corresponds to half a month and ensures that calculated values of date 

correspond to the mid-points of the respective values of month. This ensures, for example, 

that observations and model predictions are properly aligned in time series plots. For an 

individual monthly LFC series 1, , nY Y Y=  , the GAMs considered herein specify a 

distribution for iY  with mean iµ , linked to one or more vectors of covariates via an equation 

of one of the following forms  

 

 0 1( ) ( )i ig f monthµ β= +   (1) 

 

 0 1 2( ) ( ) ( )i i ig f month f dateµ β= + +   (2) 

 

 0 3( ) ( , )i i ig f month dateµ β= +   (3) 

 

where: ( )i iE Yµ ≡  in which ( )E ⋅  is the expectation operator; ( )g ⋅  is some monotonic 

function known as the link function; 0β  is the intercept term; and 1( )f ⋅ , 2 ( )f ⋅  and 3( )f ⋅  are 

centered smooth functions of the covariates (i.e. they are constrained to sum to zero over the 

data). The smooth (potentially non-monotonic) functions are estimated using penalized 

maximum likelihood, where a penalty term is added to the usual log-likelihood criterion in 

order to avoid overfitting the data with functions that are too ‘wiggly’. The size of the penalty 

is controlled via a smoothing parameter that is chosen using leave-one-out cross-validation; 

larger values of the smoothing parameter produce smoother estimates. Discussion of the 

choice of distribution and link function is deferred until later in the paper. Throughout the 



study, we used a range of diagnostics to check the fit of our GAMs; for details of these 

diagnostics, see Wood [2006, Chap. 5].  

The model defined by (1) presumes that the distribution of observed LFCs is dependent on 

the seasonal cycle alone. Model (2) is the traditional long-term trend plus seasonality model 

where the dependence on the seasonal cycle is assumed to remain unchanged throughout the 

period of observation. Model (3) is a bivariate model that allows the seasonal cycle to change 

through time along with the overall mean. All of these models were fitted using the mgcv 

package in the R programming environment [Wood, 2006; R Development Core Team, 2014]. 

This package represents the smooth functions in the models using flexible collections of 

spline bases, and also reports the estimated degrees of freedom EDF (or effective number of 

parameters) as a measure of model complexity. We used cyclic penalized cubic regression 

splines for 1( )f ⋅  as they connect the beginning and end points of the seasonal cycle, penalized 

cubic regression splines for 2 ( )f ⋅ , and tensor product smooths for 3( )f ⋅ . The tensor product 

smooths use bivariate splines constructed from the individual basis functions for each 

variable, analogous to the technique described in Chandler [2005, Sec. 4.3]. Further details 

can be found in Wood [2006].  

3.2. Inference  

A formal comparison of models (1) to (3) can be undertaken by noting that Model (1) is a 

special case of Model (2) in which 2 ( )f ⋅  is set to zero, and Model (2) is itself a special case of 

Model (3). One could also contemplate a “null” model containing only an intercept. If the 

models are successively fitted in order of decreasing complexity, the (penalized) log-

likelihood should decrease at each stage providing the amount of smoothing is not allowed to 

decrease (a smaller smoothing parameter could allow a simpler model to fit the data better by 

being more wiggly). The magnitudes of these log-likelihood decreases provide a means of 



comparing the model fits by testing, for each successive pair of models, the null hypothesis 

that the data conform to the simpler of them. A comparison of Models (1) and (2), for 

example, is a formal test of the hypothesis that the series contains no time trend; a 

comparison of Models (2) and (3) is a test of the hypothesis that the seasonal cycle is constant 

through time. The procedure, which also takes account of differences in model complexity as 

measured by the EDF values for the competing models, is known as the analysis of deviance. 

In the work reported below, Model (3) was fitted first, followed by Model (2) and then Model 

(1). At each stage, the estimated smoothing parameter for the more complex model was used 

as a lower bound in a search for the optimal smoothing parameter in the simpler model.  

In the mgcv library used for our modelling, the calculation of p-values for deviance tests is 

based on large sample approximations that are most accurate for GAMs based on normal 

distributions, with an identity link function ( ) ( )i ig E Yµ =  and when the smoothing parameter 

is fixed rather than being estimated from the data. In the present context, the LFC series have 

highly non-normal distributions; moreover, in the work reported below we used a log link 

function to ensure that the estimated means { }iµ  of the LFC distributions are all positive, and 

we used cross-validation to select smoothing parameters. As a check on the accuracy of the 

approximate p-values for testing Model (1) against Model (2) therefore, we compared them 

with the p-values obtained from a permutation test which is a nonparametric approach for 

computing the sampling distribution for any test statistic [Faraway, 2005, Sec. 3.3].  In this 

study it involves copying the dataset many times and then, for each copy, randomly shuffling 

the observed values of date (without replacement), refitting Model (2) and calculating the 

deviance statistic (note that the fit for Model (1) is always the same as for the original dataset 

because the month variable is not shuffled). The result is a large number of simulated 

deviance statistics for datasets in which there is no time trend because the dates have been 

randomly permuted, but that are otherwise identical to the observed data. A p-value for the 



test can then be calculated as the proportion of these that exceed the observed deviance 

statistic. We used 10000 realizations for each test so that the resulting p-value is accurate to 

two decimal places [Chandler and Scott, 2011, Sec. 3.6]. A procedure for carrying out 

permutation tests for the Model (3) versus Model (2) comparisons is less clear as it would 

require shuffling the data in such a way that date and month are in the right order taken 

individually but the combination of the two is not. This was not attempted in this study.  

The highly skewed and overdispersed nature of the LFC count distributions suggests that a 

negative binomial distribution may be an appropriate choice within the GAM framework 

(section 4). A further complication here is that the negative binomial family requires the 

estimation of a shape parameter that must be held fixed for the approximate p-values to be 

valid [Venables and Ripley, 2002, pp. 207]. To identify an appropriate choice of shape 

parameter at each site, initial estimates were obtained separately for each of Models (1), (2) 

and (3), and then the models were refitted with the shape parameter fixed at the mean of these 

three initial estimates. Additional tests were carried out to assess whether the findings were 

robust to plausible alternative parameter values. 

4. Results 

When studying data consisting of counts, it is natural to consider models based on the 

Poisson distribution in the first instance. However, time series plots of the monthly LFC data 

revealed that their means are much smaller than their variances (see, e.g., Figure 2a). For 

each CIGRE-500 site, Table 1 lists the sample mean of the monthly LFC data (Y ) and the 

dispersion index 2
YD s Y=  where 2

Ys  denotes the sample variance. The index values lie in the 

interval 279 3730D≤ ≤  which means that the data are highly overdispersed relative to the 

Poisson distribution ( 1)D = . There are two standard options for use in such situations: the 

first is a direct adjustment of the Poisson model to incorporate an adjustment for the 



overdispersion (this is usually called ‘quasi-Poisson’ modelling – see, e.g., Faraway [2006, 

Sec. 7.4]) and the second is the use of a negative binomial distribution in place of the 

Poisson. A key difference between these two choices is the implied relationship between the 

mean and variance of the LFCs in different, roughly homogeneous, subsets of the data: a 

quasi-Poisson model implies that the variance is proportional to the mean, whereas a negative 

binomial implies that the variance is a quadratic function of the mean. By calculating, for 

example, the mean and variance of the counts within each calendar month therefore, it is 

possible to determine which of the two approaches is more suitable for the data. For 13 out of 

the 19 LFC series, there is a distinct quadratic relationship between mean and variance (see, 

e.g., Figure 2b), suggesting the use of a negative binomial distribution. The evidence of 

curvature was less compelling in the corresponding plots for Meekatharra, Port Headland, 

Tennant Creek and Ceduna. Although this suggests that quasi-Poisson regression may be 

justified for these sites, it does not preclude the use of a negative binomial model. For 

consistency across sites therefore, we used the negative binomial distribution with the log 

link function to model each LFC series. 

Specimen results are given in Figures 2c and 2d, which display the estimated smooth 

functions of date and month in Model (2) for the Melbourne LFC series. The plots include so-

called variability bands indicating the size of two standard errors above and below the 

estimated functions. Visual inspection suggests that a long-term trend is present in this 

instance, which is linear on the logarithmic scale of the link function; and that the seasonal 

cycle is particularly strong. Note that the apparent linearity of the fitted trend is determined 

by the data via the estimated smoothing parameter; in this case, the width of the variability 

band shrinks to zero in the centre of the plot because the smooth terms in GAMs are 

constrained to sum to zero as described above.  

 



< Insert Figure 2 about here > 

Figure 3 displays a panel of plots of the estimated smooth functions of date in Model (2). 

The plots are configured to roughly represent the geographical locations of the CIGRE-500 

network sensors. While the estimated smooth functions exhibit a variety of forms (linear, 

nonlinear, non-monotonic), the strength of evidence against the null hypothesis of no trend 

appears to be weak for the Port Headland, Darwin, Tennant Creek, Coffs Harbour, 

Kalgoorlie, and Ceduna series. A cursory visual inspection of the remaining plots suggests 

there has been a general decline in the remaining LFC series. Comparison of Figures 1 and 3 

reveals another interesting feature. There are several examples where the forms of the 

estimated smooth functions for sites that are close (in relative terms) and within roughly the 

same latitudinal band are reasonably similar. These include: Port Hedland, Darwin and 

Tennant Creek; Mount Isa and Townsville; Geraldton, Meekatharra, Moora, Perth, Kalgoorlie 

and Ceduna; Cobar and Coffs Harbour; Albany and Eucla; and Ballarat, Melbourne and 

Whitlands. Notable exceptions: are Ceduna and Port Augusta; and Eucla and Ceduna. 

Overall, these features suggest inter-regional differences and in many cases temporal changes 

in regional and local meteorological forcing variables. This will be the subject of future 

research.   

< Insert Figure 3 about here > 

Tables 2 and 3 summarize the results of fitting GAMs to the monthly LFC series. Table 2 

lists the EDF, the residual deviance and the deviance explained (i.e. the proportion of the 

variability in the data set that is accounted for by the statistical model) when the shape 

parameter for the negative binomial distribution is held fixed for each data set. The deviance 

explained ranges from low to moderate values (4.53 to 58.5% for Model 1, 13 to 72.5% for 

Model 2 and 14.2 to 74% for Model 3) which reflect the variability in the underlying data 

(e.g. Figure 2a). Table 3 reports the analysis of deviance results. Entries are p-values 



indicating the approximate significance of the smooth terms. It is apparent that there is 

overwhelming evidence against the null hypothesis of no seasonality for all datasets 

(approximate p-values range from <2 × 10-16

< Insert Table 2 about here > 

 to 0.0011). Comparisons of Models (3) and (2) 

suggest that the additive structure can be safely rejected in eight cases (approximate p-value < 

0.01). These results indicate the presence of a very strong interaction between month and date 

(i.e. that the seasonal cycle has changed over time) for Albany, Meekatharra, Port Hedland, 

Port Augusta, Mount Isa, Townsville, Melbourne and Whitlands. There is strong evidence 

against the simpler additive structure for Eucla, Moora, Perth, Darwin and Coffs Harbour 

(0.01 < approximate p-value < 0.05), and little to no evidence for Geraldton, Kalgoorlie, 

Ceduna, and Ballarat. Comparison of Models (1) and (2) reveals evidence against the 

hypothesis of no trend in all but six cases (Kalgoorlie, Port Hedland, Darwin, Tennant Creek, 

Ceduna, and Coffs Harbour).  

Table 3 also lists the p-values obtained from the permutation test (shown in parentheses) 

and those from the analysis of deviance to test the significance of date in Model (2). 

Recalling that the p-value from an analysis of deviance is approximate in our modeling 

context, there is only one noticeable discrepancy between the sets of p-values and that is for 

Townsville (0.08 versus <0.001). For this case, further investigation revealed that the p-value 

for the permutation test was highly sensitive to variations in the mean of the shape parameter 

( 0.234)θ = . For example, variations from 0.1θ −  to 0.1θ + , which encompass the range of 

the shape parameter estimates for Models (1) to (3), led to p-values ranging from about 10-4

 

 

to 0.64.  Nevertheless, the results for the 18 remaining sites indicate that the approximate p-

values from the analysis of deviance tests are reasonably reliable and the p-values for the 

permutation tests were far less sensitive than that for the Townsville series.    



< Insert Table 3 about here > 

Figure 4 displays a panel of plots of the logarithms of the modeled means µ for the years 

1990, 1999 and 2009, obtained from Model (3). These plots reveal four key features. First, 

marked changes in the amplitude and shape of the seasonal cycle of the LFC series are 

evident for Port Hedland, Geraldton, Meekatharra, Cobar, Perth, Port Augusta, Albany, 

Ballarat, Melbourne and Whitlands. For these series there is a decline in LFCs in the winter 

months with some exhibiting changes in the timing of the trough in the seasonal cycle (e.g., 

Port Hedland, Cobar, Perth, Port Augusta, Albany and Whitlands). The change in the 

seasonal cycle of the Albany series is intriguing in this regard because the 1990 time slice has 

an apparently anomalous winter maximum which is absent in the time slices for 1999 and 

2009. Inspection of the station metadata did not reveal any inhomogeneities in the LFC series 

and there is very little change in the results if the outlying value of 2372 for June 1991 is 

excluded from the analysis. We are therefore confident that these results provide a faithful 

representation of lightning activity at Albany in the early 1990s. It is relevant to note that the 

changes for sites south of 30° S are consistent with major changes in the large-scale winter 

circulation of the Southern Hemisphere since the early 1970s. Previous analyses of changes 

in baroclinic instability on the hemispheric scale have revealed a 20% reduction in the 

strength of the subtropical jet over Australia, a sizeable warming of the atmosphere south of 

30° S and an associated reduction in the likelihood of unstable synoptic disturbances 

[Frederiksen and Frederiksen, 2007, 2011]. This has been associated with increasing mean 

sea level pressure and declining rainfall in the austral winter. Second, LFCs at Ballarat and 

Whitlands have decreased over time throughout the year. Although the amplitude of the 

seasonal cycle for the Ballarat series has increased, the shape has remained reasonably 

constant. This is consistent with the analysis of deviance results for this site, which suggest 

that the increased complexity of Model (3) is not warranted here. The time slices of the tensor 



product smooth for Whitlands indicate a marked decline in LFCs for spring as well as winter, 

and a relatively smaller decline in summer and autumn. Third, the changes in the seasonal 

cycle of the LFC series for Mount Isa and Townsville are somewhat more complex. Visual 

inspection suggests that their seasonal cycles changed slightly during the first half of the 

period of record but have returned somewhat to their previous levels during the second half. 

Fourth, apart from Ballarat and Whitlands the changes in the monthly LFCs for the austral 

summer have been relatively slight. The more pronounced changes for these two sites need 

further investigation, particularly in view of the fact that they seem dissimilar from the 

changes at nearby Melbourne which is consistent with the remaining stations. In the 

meantime we note that Melbourne is likely to have a different lightning climatology to that of 

Ballarat and Whitlands due to its greater proximity to the ocean, noting that thunderstorm 

occurrence can be related to strong temperature gradients that can occur in coastal regions 

particularly during summer. 

< Insert Figure 4 about here > 

5. Conclusions  

We have analyzed 25 years, approximately, of monthly lightning flash count (LFC) data 

for 19 sites across mainland Australia. We have used the generalized additive modeling 

approach to detect and characterize the presence of long-term trends, seasonal cycles and 

their interactions. Our study has several strengths including: it adds to the small volume of 

literature on the quantitative analysis of seasonality and long-term trends in lightning activity 

series; the lengths of the LFC series used are longer than those commonly reported in the 

lightning literature; the models used do not impose any parametric form on the fitted curve or 

surface and allow the analyst to discover the appropriate shape for the covariate effects; and it 

involves a detailed evaluation of changes in the temporal structure of monthly LFC series. 

Our main findings can be summarized as follows.  



1. There are marked long-term trends in 16 out of 19 cases examined. Although the 

functional forms of these trends vary (linear, nonlinear, non-monotonic) there is a general 

impression of a decline in LFCs over the common period of record (approximately 1988 to 

2012).  

2. There are pronounced changes in seasonality over time in 13 cases. This indicates 

that the seasonal cycle is non-stationary at these sites, and is expressed in terms of changes 

in amplitude and shape. The locations of the six remaining sites show no spatial 

organization that would point to common meteorological conditions.    

3. For sites south of 30° S there is a distinct reduction in LFCs during the austral 

winter. This phenomenon is consistent with the reduction in atmospheric instability that 

has occurred at these latitudes since the mid 1970s [Frederiksen and Frederiksen, 2007, 

2011].  

4. There is a need to identify and understand the local and regional meteorological 

factors leading to the observed changes in the temporal structure of the LFC series. This 

will inform our interpretation of the causes of these changes, particular for the Albany 

case, and the apparent spatial distribution of the LFC trends. This subject will be the focus 

of future research.  
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Table 1. Station and data details for CIGRE-500 lightning flash counters  

   Number of Mean  

Site   Altitude Complete 
Monthly 

Monthly Dispersion 

No. Location (m) Observations LFC Index, D 

1 Albany 68 280 62.8 539 

2 Eucla 93 209 81.9 514 

3 Geraldton 33 269 60.7 335 

4 Kalgoorlie 365 282 278 770 

5 Meekatharra 517 298 358 1870 

6 Moora 203 280 81.8 638 

7 Perth 15 298 108 565 

8 Port 
Hedland 

6 292 300 1630 

9 Darwin 30 284 2100 3730 

10 Tennant 
Creek 

376 274 592 1690 

 
 
 
  



  

Table 1. continued  

   Number Mean  

Site    of Monthly Dispersion 

No. Location Altitude (m) Observations LFC Index, D 

11 Ceduna 15 282 105 343 

12 Port Augusta 7 279 259 1340 

13 Mount Isa 380 287 835 2130 

14 Townsville 4 255 253 1520 

15 Cobar 260 298 380 1740 

16 Coffs 
Harbour 

5 274 501 1350 

17 Ballarat 435 287 51.8 279 

18 Melbourne 113 298 265 600 

19 Whitlands 816 290 375 999 

 

 

 

  



  

Table 2. Summary of generalized additive models for monthly lightning flash count series 

  Model 1 Model 2 Model 3 

Site   Residual Deviance  Residual Deviance   Residual Deviance  

No. Location EDF Deviance Explained 
(%) 

EDF Deviance Explained 
(%) 

EDF Deviance Explained 
(%) 

1 Albany 4.914 392.71 4.53 7.338 327.74 20.3 15.53 283.66 31.0 

2 Eucla 4.873 204.13 11.9 6.072 202.93 14.5 10.754 198.25 18.3 

3 Geraldton 4.401 264.60 8.87 5.862 263.14 13.0 9.996 259.00 15.1 

4 Kalgoorlie 5.518 276.48 32.4 6.418 275.58 32.6 10.357 271.64 33.6 

5 Meekatharra 5.803 292.20 36.2 7.262 290.74 38.7 13.08 284.92 42.6 

6 Moora 5.041 274.96 22.0 6.882 273.12 23.4 13.32 266.68 27.3 

7 Perth 4.309 293.69 11.5 6.055 291.95  13.0 10.925   287.08 16.3 

8 Port Hedland 6.448 285.55 49.4 8.087 283.91 49.8 16.71 275.29 54.9 

9 Darwin 6.736 277.26  72.2 8.436 275.56 72.5 16.76 267.24 74.0 

10 Tennant 
Creek 

6.038 267.96 58.5 6.954 267.05  58.6 11.18 262.82 59.7 

 

  



  

Table 2. continued  

   Model 1   Model 2   Model 3  

Site   Residual Deviance  Residual Deviance   Residual Deviance  

No. Location EDF Deviance Explained 
(%) 

EDF Deviance Explained 
(%) 

EDF Deviance Explained 
(%) 

11 Ceduna 5.167 276.83 13.3 6.046 275.95 13.5 8.291 272.71 14.2 

12 Port 
Augusta 

5.477 273.52 12.9 8.753 270.25 22.1 20.94 258.06 30.6 

13 Mount Isa 5.99 281.01 46.1 11.838 275.16 51.0 40.07 246.93 61.7 

14 Townsville 5.56 249.44 31.5 10.268 244.73 39.5 27.63 227.37 50.2 

15 Cobar 5.05 292.95 30.0 6.045 291.95 31.0 9.461 288.54 32.5 

16 Coffs 
Harbour 

5.289 268.71 37.4 6.377 267.62 37.4 10.211 263.79 39.6 

17 Ballarat 4.106 282.89 10.4 5.499 281.50 31.3 8.197 278.80 32.4 

18 Melbourne 5.454 292.55 22.3 6.253 291.75 23.3 9.805 288.19 26.3 

19 Whitlands 4.53 285.47 11.3 5.5 284.50 29.1 8.231 281.77 31.5 

  



  

Table 3. Comparisons of fitted models to monthly lightning flash count series  

     

Site  Analysis Of Deviance 

No. Location Model (1) versus Null Model (2) versus Model 
(1) 

Model (3) versus Model (2) 

1 Albany 0.0011 <0.001 (<0.01) <0.001 

2 Eucla 2.8 × 10 0.009 (0.03) -7 0.046 

3 Geraldton 3.6 × 10 <0.001 (<0.01) -7 0.135 

4 Kalgoorlie <2 × 10 0.294 (0.30) -16 0.306 

5 Meekatharra <2 × 10 <0.001 (<0.01) -16 0.001 

6 Moora <2 × 10 0.062 (0.19) -16 0.043 

7 Perth 5.0 × 10 0.033 (0.10) -11 0.016 

8 Port Hedland <2 × 10 0.211 (0.64) -16 <0.001 

9 Darwin <2 × 10 0.136 (0.31) -16 0.033 

10 Tennant 
Creek 

<2 × 10 0.314 (0.49) -16 0.097 

 

 

  



  

Table 3. continued  

     

Site  Analysis Of Deviance 

No. Location Model (1) versus Null Model (2) versus Model (1) Model (3) versus Model (2) 

11 Ceduna 2.3 × 10 0.306 (0.34) -9 0.508 

12 Port Augusta 2.2 × 10 <0.001 (<0.01) -14 <0.001 

13 Mount Isa <2 × 10 <0.001 (<0.01) -16 <0.001 

14 Townsville <2 × 10 <0.001 (0.08) -16 <0.001 

15 Cobar <2 × 10 0.018 (0.03) -16 0.062 

16 Coffs Harbour <2 × 10 0.867 (0.97) -16 0.020 

17 Ballarat 9.4 × 10 <0.001 (<0.01) -9 0.248 

18 Melbourne <2 × 10 0.021 (0.03) -16 0.005 

19 Whitlands 8.5 × 10 <0.001 (<0.01)  -13 0.007 
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Figure 1. Locations of CIGRE-500 lightning flash counters. (Key to numerals is given in 

Table 1).  

  



  

 

Figure 2. Sample of results from analysis of the Melbourne monthly lightning flash count 

(LFC) data (a) raw time series (dashed horizontal line depicts the mean) (b) variance-mean 

relationship by month (solid curve is a quadratic regression fit) (c) contribution to the log link 

function [ ( ) log( )]g µ µ=  by penalized cubic regression spline fit to LFC versus date data for 

Model (2) with variability band (gray shading) (d) contribution to the log link function 

[ ( ) log( )]g µ µ=  by penalized cyclic cubic regression spline fit to LFC versus month data for 

Model (2) with variability band (gray shading). 

  



  

 

Figure 3. Contributions to log link functions [ ( ) log( )]g µ µ=  by penalized cubic regression 

spline fits to LFC versus date data for Model (2) with variability bands (gray shading).  

  



  

 

Figure 4. Logarithms of modeled means µ for the years 1990, 1999 and 2009, obtained from 

Model (3). Colored bands depict variability bands: red = 1990; cyan = 1999; purple = 2009.  
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