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Abstract 

A long-standing dichotomy in neuroscience pits automatic or reflexive drivers of 

behaviour against deliberate or reflective processes. In this thesis I explore how 

this concept applies to two stages of action control: decision-making and 

response inhibition. 

The first part of this thesis examines the decision-making process itself during 

which actions need to be selected that maximise rewards. Decisions arise 

through influences from model-free stimulus-response associations as well as 

model-based, goal-directed thought. Using a task that quantifies their respective 

contributions, I describe three studies that manipulate the balance of control 

between these two systems. I find that a pharmacological manipulation with 

levodopa increases model-based control without affecting model-free function; 

disruption of dorsolateral prefrontal cortex via magnetic stimulation disrupts 

model-based control; and direct current stimulation to the same prefrontal 

region has no effect on decision-making. I then examine how the intricate 

anatomy of frontostriatal circuits subserves reinforcement learning using 

functional, structural and diffusion magnetic resonance imaging (MRI). 

A second stage of action control discussed in this thesis is post-decision 

monitoring and adjustment of action. Specifically, I develop a response 

inhibition task that dissociates reactive, bottom-up inhibitory control from 

proactive, top-down forms of inhibition. Using functional MRI I show that, unlike 

the strong neural segregation in decision-making systems, neural mechanisms 

of reactive and proactive response inhibition overlap to a great extent in their 

frontostriatal circuitry. This leads to the hypothesis that neural decline, for 
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example in the context of ageing, might affect reactive and proactive control 

similarly. I test this in a large population study administered through a 

smartphone app. This shows that, against my prediction, reactive control 

reliably declines with age but proactive control shows no such decline. 

Furthermore, in line with data on gender differences in age-related neural 

degradation, reactive control in men declines faster with age than that of 

women. 
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1.1 Conceptual overview  

This thesis addresses how the human brain supports reward learning, decision-

making and action control. It builds on a large body of work describing 

behavioural models of action control and the functional neuroanatomy of 

decision-making when rewards and punishments are at stake. In this chapter I 

will provide an outline of the work, define the key terms that will be used 

throughout this thesis and present an overview of the chapters.  

Human decisions are shaped by countless factors. We often deliberate on our 

choices, agonizing over the possible consequences of our actions by weighing 

the risks against the gains. This process plays out over seconds, minutes or 

many days. Thankfully we do not need to invest such mental effort for each 

action we take, as the limited capacity of our brain suggests we would grind to a 

halt just making breakfast in the morning. Instead we automate many of our 

decisions, making it unnecessary or even impossible for deliberate thought to 

intervene. A prominent example is addiction, whereby a once deliberate choice 

to take drugs, try gambling or go shopping becomes so engrained in our 

decision-making machinery that no amount of consideration of likely negative 

consequences prevent these maladaptive behaviours from expressing 

themselves.  

The first aim of the work in this thesis is to better understand what neural factors 

determine the extent to which humans use more complex or simple strategies in 

our decisions. I will explore how to directly manipulate the use of these 

strategies through dopamine and brain stimulation. Using neuroimaging I will 

ask how these value-based decisions are implemented in subcortical structures 

such as the basal ganglia. The second aim is to understand how, after a 



Introduction 
Chapter 1 

 

11 
 

decision has been made, we exert rapid self-control to alter these decisions in 

response to changing circumstances. Most of this work focuses on the role of 

preparation in the execution of rapid self-control. 

1.2 Definitions 

1.2.1 Rewards, values, models and decisions 

Many terms in the field of learning and decision-making have intuitive 

meanings; nevertheless we should define them more precisely. A fundamental 

concept is that of reward, which is operationalised as the ‘intrinsic desirability of 

a state’ (Sutton and Barto, 1998). More broadly it is whatever an organism tries 

to maximise over the long run, and can be further classified: unconditioned 

reinforcers are desirable in and of themselves possible by virtue of the engine of 

evolution, manifest in the desirability of water, food and sex; conditioned 

reinforcers are desirable only by virtue of their association with other 

reinforcers, as in the case of money which can buy all three rewards mentioned 

above. The maximization of reward is achieved by calculating values at each 

decision point. The value function describes, for each available action or state, 

how much reward it will yield in the long run. For example, the immediate 

reward of being in an airport might be considered low, but the value of that 

same state is high if airports predict holidays and conferences in the near 

future. Typically, we try to understand an organism’s value function by 

examining how it is expressed in choice.  

The field of reinforcement learning is, to a large extent, concerned with efficient 

ways of calculating values. Two such ways, model-based and model-free, play 

a prominent role throughout this thesis, and are discussed in-depth in section 

2.2. It is worth briefly discussing the notion of a model: it refers to any 
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representation that mimics the behaviour of the environment, for example a set 

of rooms in a building and the way they are connected. These models can be 

used for planning and calculating the value function on-line. This differs critically 

from what has been defined as model-free algorithms, which lack such a model 

of the environment and use more primitive methods of approximating value.  

At this point we have discussed rewards, values and models. What are 

‘decisions’ in this framework? Decisions are often taken to involve some 

conscious, deliberative effort by the organism. But decades of psychological 

research has  shown that many actions are reflexive, model-free or habitual, i.e. 

driven without any deliberation. Here I consider any action derived from a value 

function to be a decision, therefore including both model-free and model-based 

actions. Although the definition of the terms as presented here comes from the 

field of reinforcement learning, these notions pervade psychology, cognitive 

neuroscience and economics.  

1.2.2 Self-control 

We can think of decision-making as a fallible process that needs both time and, 

now and then, post-decision adjustment. A failure to do so leads to what is 

varyingly called impulsivity or a lack of self-control. These are multifactorial 

concepts (Evenden, 1999), though always defined in the context of poor actions 

leading to undesirable outcomes. In chapters 9 and 10 I will specifically 

consider post-decision inhibitory self-control, or more plainly, the ability to 

prevent an action as it is about to be executed. Although this type of self-control 

should be considered distinct from self-control at the time of choice, its 

impairment can be observed just the same in, for example, addiction (Ersche et 

al., 2012). One promising avenue in the study of self-control is how we prepare 
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for situations that will challenge our ability to inhibit our actions. For example, a 

recovering drug addict might resolve not to approach a dealer on the street, 

rather than rely on their immediate ability to stop themselves in case the 

situation arises. Such proactive control, then, is intimately linked with goal-

directed choice, and is similarly thought to rely on working memory, 

maintenance of future goals and top-down control originating in frontal cortex 

(Aron, 2011; Braver, 2012; Schall and Godlove, 2012). 

1.3 Outline of thesis 

I will start by reviewing the literature on reinforcement learning and the central 

role it occupies in the psychology and neuroscience of reward learning and 

decision-making. In particular, I will discuss recent advances in understanding 

how multiple reinforcement learning systems in the brain trade off and compete 

with one another. This will be followed by an overview of the literature on 

inhibitory self-control, focusing on notions of proactive and selective inhibition 

and their neural correlates. Chapter 3 provides a background on the 

methodology used in the subsequent chapters.  

The empirical work in this thesis is divided into two parts. Chapters 5, 6 and 7 

present work on model-free and model-based reinforcement learning. In chapter 

5 I employed a systemic manipulation of dopamine levels. This is known to 

affect both model-free and model-based control separately, but I provide novel 

insights into its effects when both types of control are allowed to compete. In an 

effort to pin down the anatomy of this trade-off, chapters 6 and 7 examine 

prefrontal roles in reinforcement learning by applying a transient functional 

lesion or supposed gain-of-function through neurostimulation, respectively. 

Together, these three chapters provide novel insights into direct alterations of 
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decision-making strategies. I then ask how action values and rewards from 

reinforcement learning models are represented in the anatomy of the basal 

ganglia and its recurrent loops with the cortex, using a combination of structural, 

diffusion-weighted and functional imaging.  

The second half of the empirical work centres on a paradigm for investigating 

the role of preparation in selective inhibitory control of action. Chapter 9 

presents a novel characterization of behaviour on this task, before examining 

how preparation is implemented in neural structures known to be involved in 

outright inhibition. In brief, the task allows simultaneous measurement of the 

speed and selectivity of inhibition, and I ask how this trade-off is reflected in 

neural structures. Chapter 10 then applies this same paradigm on a much larger 

scale by means of a smartphone experiment. This allowed us to map the 

demographics of proactive self-control. 

Finally, the discussion (chapter 11) I will discuss the implications of this work, 

drawing together insights from the chapters to examine the link between 

decision-making and self-control. 
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2 Literature review 
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2.1 Overview 

The work described in this thesis encompasses learning, decision-making and 

action control. In this chapter I start with an overview of reinforcement learning, 

describing its history in animal learning as well as in artificial intelligence, the 

underlying algorithms and its neural implementations. A distinction will be made 

between different solutions to the problem of reward maximization, and how an 

organism might arbitrate between distinct strategies.  

In a continually changing environment adaptive behaviour does not end with a 

value-based decision. Examining adjustments to ongoing actions provides a 

window into prefrontal and subcortical control mechanisms that are, 

fundamentally, rapid decision-making systems. I will review the concepts and 

models underlying the field of inhibitory self-control in section 2.3, and more 

recent work in the field examining how preparation and expectation shape self-

control. I end each section by explaining how outstanding questions in the field 

are addressed by the work that makes up the core of this thesis.  

2.2 Reinforcement learning 

2.2.1 Multiple solutions to the same problem 

If the long-term goal is survival and reproduction, the apparently trivial decisions 

we make throughout the day are what determine success. Understanding the 

building blocks of such adaptive behaviour in a complex and uncertain 

environment can be guided by models from artificial intelligence, decision 

frameworks in economics, and heuristics, biases and cognitive strategies in 

psychology. As we shall see in this review of the literature, the class of models I 

focus on reside in reinforcement learning. Its algorithms not only accurately 
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describe value-based learning and choice in humans; but also provide 

suggestions for their efficient implementation in neural systems.  

Dual process theories, based on the notion that a problem can be solved in 

multiple ways, are ubiquitous in psychology and artificial intelligence. Within 

decision-making, the first of two such processes has been called System 1 

(Kahneman, 2011), unconscious, habitual (Dickinson, 1985), direct (Sutton and 

Barto, 1998), or model-free (Daw et al., 2005); the second process referred to 

as System 2 is conscious, goal-directed, indirect, or model-based, respectively. 

Here I adopt the nomenclature of model-free and model-based control, as the 

algorithms I implement are borrowed from reinforcement learning theory rather 

than psychology or economics. In Figure 2.1 I present characteristics of these 

two modes of control. A major trade-off concerns statistical efficiency and 

computational power. A model-based system can use sparse data to make 

predictions about never-seen-before situations, but at a cost of computationally 

expensive forward planning and calculation. In contrast, a model-free system 

can only rely on previous experience without extrapolation to novel situations, 

and in doing so is computationally lean and fast. Critically, this suggests that an 

organism needs to determine what controller to employ for any given problem, 

and this in turn depends on the statistics of the environment (Simon and Daw, 

2011). After discussing model-free and model-based reinforcement learning in 

sections 2.2.2 and 2.2.3, I will turn to the question of trade-off between these 

control strategies in section 2.2.4.  
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Figure 2.1: Model-free and model-based decision strategies and their 

characteristics. A similar set of contrasting properties can be used for many 

other dual-process theories of decision-making. 

2.2.2 Model-free RL 

2.2.2.1 Model-free control in animal and human psychology 

Attempts to understand animal behaviour started in earnest with Thorndike in 

the late 19th century (Thorndike, 1898). He introduced the intuitive Law of Effect, 

noting that actions that are followed by pleasant consequences are likely to be 

repeated, whereas behaviour followed by unpleasant feedback is likely to be 

avoided (Thorndike, 1911). He thus placed concepts of action, reward and 

learning within the same context. This behaviourist perspective involving error-

driven learning was further pursued by Skinner using operant conditioning 

paradigms (Skinner, 1938). It is important to establish at this stage that this 

thesis is concerned with instrumental learning—that is, learning what actions to 

perform and what actions to avoid. This is distinct from classical conditioning 

illustrated by Ivan Pavlov’s work (Pavlov, 1906), whereby associations are 

learned between unconditioned reinforcers (e.g. a bell) and conditioned 
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reinforcers (e.g. food), with no action by the animal itself. Models of 

conditioning, such as the Rescorla-Wagner update rule (Rescorla and Wagner, 

1972; Wagner and Rescorla, 1972), partially share the mechanics of error-

driven updating with some instrumental learning models discussed in this thesis 

(though Rescorla has updated his view and considered Pavlovian learning to be 

equivalent to learning a model of the environment; Rescorla, 1988). 

Nonetheless, I will restrict my discussion to action learning and refer to 

published works for more background on conditioning (Pavlov and Anrep, 1960; 

Rescorla and Wagner, 1972; Pavlov, 2003; Gazzaniga, 2004). 

More directly relevant to a current understanding of model-free reinforcement 

learning is the work by Anthony Dickinson and colleagues. They developed the 

gold standard for assessing model-free (‘habitual’) behaviour in the form of the 

devaluation paradigm (Dickinson et al., 1983; Dickinson, 1985; Balleine and 

Dickinson, 1998). In this paradigm an animal is trained to press a lever to obtain 

food, and the food is subsequently devalued by lacing it with lithium or satiating 

the animal on that specific food. When placed back into the operant chamber, 

the rat will continue or stop pressing the lever depending on whether the 

learning phase was long or short, respectively. Given that the test phase is in 

extinction, i.e. without feedback, in order to refrain from obtaining the now 

devalued food the rat must have a representation of the consequences of its 

action. This is termed goal-directed or model-based control. In contrast, once 

the lever pressing has been engrained as a model-free habit the mere 

presentation of the lever stimulus triggers a response without consideration of 

its consequences. This stimulus-response behaviour is also called habitual or, 

as described throughout this thesis, model-free control. As we will see in section 
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2.2.2.4.3 this paradigm has been widely used to map the neural substrates of 

model-free control. 

Although the devaluation paradigm has been applied to humans to test for 

model-free control (Valentin et al., 2007; Tricomi et al., 2009), in chapters 5, 6 

and 7 I used a different assay that captures any expression of model-free 

control rather than habitual actions that have been ‘stamped in’ during over 

extended training sessions (Wise, 2004). 

2.2.2.2 Model-free control in artificial intelligence 

Most would agree that a robot pre-programmed to execute a set of tasks or 

movements, such as those found in 19th-century factories, is not intelligent. 

Slightly more complex are those machines whose actions depend, through pre-

set rules, on measurement of the environment—a thermostat or a movement-

activated lamp, for example. Yet more interesting are entities that can adapt 

and learn from their environment, where behaviour is not fixed but is now 

programmed to adapt. The field of artificial intelligence, and in particular 

reinforcement learning, has endeavoured to build such algorithms for the past 

sixty years. The goal is to find efficient ways of choosing actions that maximise 

reward. In the introduction to this thesis I introduced concepts like reward and 

value functions, and here I will briefly elaborate on specific examples of such 

algorithms. It has proven useful to think of (artificial) behaviour in terms of 

Markov Decision Processes (MDPs; Bellman, 1956; Howard, 1960; Markov, 

1971). In this framework the agent transitions through discrete states, and 

probabilistic transitions are governed by the choices of the agent. Rewards are 

available in some states, and the goal of the agent is to choose actions so as to 

maximise rewards in the long run. This framework can encompass both model-
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free agents, as described shortly, as well as model-based agents (Figure 2.2A). 

Although MDPs are widely used, there is a mismatch between its discrete 

states and the continuous nature of the world. An alternative way of evaluating 

these problems is through an estimation of some value quantity at each time 

step, whereby changes in this quantity represent good or bad actions (Minsky, 

1954). This is captured in temporal difference learning algorithms, a firmly 

established method for modelling reinforcement learning agents (Witten, 1977; 

Sutton and Barto, 1981; Barto and Sutton, 1982). Expectations are built into this 

framework by value transferring from the inherently rewarding stimuli to 

predictors of those stimuli, as the predictors themselves come to increase the 

current estimate of long-run reward.  

One framework I describe here is that of Q-learning (Watkins, 1989; Watkins 

and Dayan, 1992), which brings together various aspects of MDPs and 

temporal difference models to estimate state-action values (Q-values). Critically, 

Q-learning does not require a model of the environment unlike methods such as 

dynamic programming (section 2.2.3.2); it can update estimates incrementally 

without having to wait for a sequence to be finished, as is the case for Monte 

Carlo methods; it is often referred to as an off-policy method, meaning that it is 

guaranteed to acquire the optimal policy even when allowed to explore and 

choose suboptimal actions (Watkins and Dayan, 1992). This distinguished it 

from u Sarsa methods which are on-policy (Rummery and Niranjan, 1994). Put 

simply, an optimal policy can be learned faster under Q-learning despite the 

presence of exploration (Sutton and Barto, 1998). Nonetheless, in chapter 4 

onwards I also used Sarsa, a slight modification on Q-learning that is only 

relevant to multi-step problems. It has been suggested that learning signals in 
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animals resemble Sarsa rather than Q-learning approaches (Morris et al., 

2006). 

 

Figure 2.2: Schematics of two reinforcement learning strategies. (A) A model-

free agent takes the experience or feedback from actions and directly updates 

the policy without an intervening model. Model-based control has an added 

complexity whereby a policy arises from an evaluation of a model, which itself 

has been learned through experience. (B) Examining model-free learning more 

closely, action values are updated through a reward prediction error. Figure A is 

based on figure 9.2 in Sutton and Barto (1981). 

Having discussed developments in animal learning theory as well as in artificial 

intelligence, these two strands of research converged with work in the 1990s 

showing dopamine signals can be described in terms of reinforcement learning 

signals (Houk et al., 1995; Montague et al., 1996; Schultz et al., 1997). Finally, 

Daw et al. (2005) explicitly framed animal and human temporal difference 

learning as model-free control. In the next two sections I will describe the 

algorithm of Q-learning as used throughout this thesis, followed by an overview 

of the neural correlates of a model-free system in the rodent and primate brain.  

2.2.2.3 Algorithms 
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I will briefly describe the basics of Q-learning, an algorithm that describes how 

an agent without an explicit model of its environment might learn what actions to 

take and what actions to avoid (i.e. learn an optimal policy). The equations are 

adapted from Sutton and Barto (1998) and described in their one-step form, that 

is, without an eligibility trace that allows for action values more than a single 

action back in the past to be updated. The implementation of a two-step 

eligibility trace is described in section 4.4. 

Q-learning attempts to learn the value of state-action pairs in an MDP 

environment. The MDP consists of states 𝑠 ∈ 𝑆 where actions 𝑎 ∈ 𝐴(𝑠) are 

available. The agent tries to obtain 𝑄∗, which is the optimal action-value 

function. This function is approximated by, at each time 𝑡, computing the 

following (Equation 6.6 in Sutton and Barto, 1998): 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

Where 𝑟𝑡 is the immediate reward at time 𝑡, 𝛾 is a fixed discount factor for future 

value, and max𝑎 𝑄(𝑠𝑡+1, 𝑎) represents the action value of the best action in the 

state the agent ends up in after action 𝑎𝑡 from 𝑠𝑡. Critically, it does not depend 

on what action is actually chosen in 𝑠(𝑡+1). This is the only difference between 

Q-learning and Sarsa, which rather than the argmax uses the actual chosen 

option on the next state (in boldface, and as used in chapter 4; Rummery and 

Niranjan, 1994; Sutton and Barto, 1998):  

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑸(𝒔𝒕+𝟏, 𝒂𝒕+𝟏) − 𝑄(𝑠𝑡, 𝑎𝑡)]  

Central to the function of this agent is the learning rate 𝛼, which describes the 

weighting function of past experiences, and the notion of reward prediction error 
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(RPE), which is the term multiplied by 𝛼. A low 𝛼 means that the Q-values are 

updated slowly, such that even events far in the past still influence the current 

estimate. A learning rate of 1 means only the current event is used to estimate 

the Q-value through the RPE. Although beyond the scope of this discussion, in 

static or variably volatile environments a fixed learning rate is suboptimal (Yu 

and Dayan, 2005; Courville et al., 2006; Simon and Daw, 2011). Variable 

learning rates have been implemented in Bayesian frameworks and here 

correlates were also observed in the brain (Behrens et al., 2007a; Behrens et 

al., 2008). As I did not manipulate volatility in the learning experiments I used a 

more conventional fixed learning rate approach (Daw, 2011). 

Once the state-action values are known, an action is selected through some 

policy, for example by selecting the best action except on a random set of trials 

where an agent chooses randomly with probability 𝜀 (hence the policy’s name—

ε-greedy; e.g. Daw et al., 2006). Throughout this thesis I used a softmax rule, 

which assigns a probability to each of 𝑛 actions in a state: 

𝑝(𝑎𝑖) =
𝑒𝛽∗𝑄𝑎𝑖

∑ 𝑒𝛽∗𝑄𝑎𝑏𝑛
𝑏=1

 

where 𝛽 is the inverse temperature. A low inverse temperature means all choice 

options are almost equiprobable, irrespective of their Q-value. High inverse 

temperatures pushes choices towards the option with the highest Q-value, 

irrespective of how small the difference might be. As such, this parameter is 

linked to the exploration/exploitation trade-off (Daw et al., 2006), though equally 

it captures the unpredictability (noise) in the agent’s choices. I added various 

parameters to these models in chapters 4-8 though these merely add a bias, 
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extra learning rate or eligibility trace, without affecting the fundamental 

characteristics of a temporal difference model. I will now turn to the remarkable 

similarities between physiological signals and components of the algorithms 

described above, which is the real reason reinforcement learning has played 

such a central role in the neuroscience of learning and decision-making for the 

past 20 years.  

2.2.2.4 Neural correlates of model-free learning 

2.2.2.4.1 Dopamine signalling a prediction error 

No paper more clearly signalled the fusion of empirical neuroscience and 

computational neuroscience than Schultz et al. (1997), who showed that the 

firing of cells in the dopaminergic midbrain resembles an update signal from 

temporal difference models. Previous work had already shown that dopamine 

neurons fire in response not only to rewards but also to stimuli predicting 

rewards (Romo and Schultz, 1990; Schultz et al., 1993) as well as to 

unexpected rewards (Mirenowicz and Schultz, 1994). In parallel, work from 

Dayan, Houk et al. (1995) and Montague et al. (1996) developed theoretical 

frameworks which led to the critical insight that DA neuron firing is most 

parsimoniously explained in terms of TD learning (Schultz et al., 1997). 

Corroborating results have been found using various techniques, including fMRI 

of the midbrain (D'Ardenne et al., 2008; Duzel et al., 2009), human single-unit 

recordings (Zaghloul et al., 2009) and, perhaps most critically, in a rodent model 

whereby individual neurons in the midbrain were identified as dopaminergic or 

GABAergic (Cohen et al., 2012). In this pivotal study it was shown that 

dopamine cells indeed signal a reward prediction error, whereas GABAergic 

interneurons provide the expected value signal (Figure 2.3; Cohen et al., 2012). 
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Further evidence from optogenetic stimulation showed this pattern had causal 

properties in that phasic firing of DA neurons led to behavioural conditioning 

(Tsai et al., 2009). Lastly, it seems the RPE signalled by dopamine is derived 

from a Sarsa model rather than Q-learning (Morris et al., 2006). Over the past 

20 years, then, the dopamine system has been firmly embedded in model-free 

error-driven learning. However, we will see in chapter 11 that this signal might 

also reflect updates from more complex value systems such as model-based 

control (Daw et al., 2011).  
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Figure 2.3: Firing rates for identified dopaminergic and GABAergic cells in the 

ventral tegmental area. Dopaminergic cells increase their firing rate in response 

to an odour cue that has been learned to signal a big reward, in line with a 

theory for dopamine signalling a temporal difference reward prediction error. 

GABAergic cells had a markedly different response profile—a sustained rather 

than transient pattern of firing that scaled with expected value. This suggests 

these units provide the subtractive component to reward prediction error. 

Figures reproduced from Cohen et al. (2012). 

2.2.2.4.2 The anatomy of the basal ganglia 

If we accept that dopaminergic cells in the midbrain signal a reward prediction 

error to update action values, where might these values themselves be updated 

and stored? Ascending dopaminergic projections arise along roughly eight 

different pathways, of which the mesolimbic and nigrostriatal projections are the 

strongest (Steiner and Tseng, 2010). Both these pathways project to the 

striatum: the mesolimbic projections enter the nucleus accumbens, the most 

rostroventral part of the striatum; the nigrostriatal pathway terminates all across 

the putamen and caudate nucleus (Fallon and Moore, 1978; Beckstead et al., 

1993; Haber et al., 2000).  

The anatomy and structural connectivity of the striatum continue to provide 

inspiration for empiricists and theorists. In chapter 8 I explore the relationship 

between this anatomy and how it relates to function, and in chapter 9 I study its 

function in proactive inhibitory control, so I will take some time here to make 

clear some of the anatomical features of the basal ganglia.  

Starting at the macro-anatomical level, almost all of cortex projects to the 

striatum, which is the primary input region of the basal ganglia (Alexander et al., 

1986; Alexander and Crutcher, 1990; DeLong, 1990; Haber et al., 2000; Haber, 
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2003). These pathways then continue through the pallidum, subthalamic 

nucleus, substantia nigra and thalamus before reaching cortex again, giving rise 

to the term cortico-basal ganglia-thalamo-cortical ‘loop’ (Alexander et al., 1986). 

This was initially speculated to subserve motor control by funnelling diverse 

inputs directly into motor cortex via the thalamus (Kemp and Powell, 1971). 

Further work revealed that despite a strong convergence of inputs, cortical 

topography is maintained throughout, such that thalamo-cortical projections 

reach most parts of cortex that provided the initial inputs. These pathways have 

been divided in many different ways, each with its own naming convention and 

grouping criteria (Alexander et al., 1986; Alexander and Crutcher, 1990; Haber, 

2003), a testament to the inherently continuous nature of any topographically 

organised network (Figure 2.4A; Haber and Behrens, 2014). Crudely, these 

pathways encompass limbic, associative and motor loops, covering the entire 

frontal cortex as well as motor regions (Haber, 2010).  

A microscopic level analysis of the striatum shows glutamatergic projections 

from cortex arriving on dendrites of GABAergic medium spiny projection 

neurons (MSNs; Somogyi et al., 1981), which make up about 95% of cells in the 

striatum (Kemp and Powell, 1971). They are distributed homogeneously 

throughout the striatum and come in two equally numerous types: so-called 

‘direct pathway’ MSNs project to the internal segment of the globus pallidus 

(GPi) or substantia nigra (SN), whereas ‘indirect pathway’ MSNs project to the 

external segment of the globus pallidus (GPe; Loopuijt and Van der Kooy, 1985; 

Kawaguchi et al., 1990). Alternative naming for these two pathways are 

striatonigral and striatopallidal or Go and Nogo, respectively (Figure 2.4B). 

Although there are reports that the two pathways do not receive identical inputs 



Literature review 
Chapter 2 

 

29 
 

from cortex (Lei et al., 2004; Reiner et al., 2010; Wall et al., 2013), their 

dominant feature reflects each loop consisting a direct and indirect component 

that receives similar input from cortex. Activation of the direct pathway leads to 

GABAergic inhibition of the GPi, which in turns disinhibits the thalamus and 

cortex. Conversely, activation of the indirect pathway leads to a triple negative 

by adding inhibitory projections from the GPe, leading to inhibition of cortex 

(Figure 2.4B). This architecture in principle allows for interesting computations 

and functions, such as selection of cortical representations and a gating of 

actions, as I discuss in the next section.  

 

Figure 2.4: Levels of organization in the basal ganglia. (A) The entire frontal 

cortex has topographically organised projections to the striatum. In this 

schematic it is emphasised that projections are partially overlapping. (B) The 

input from cortex is processed through a direct and indirect pathway. Activity in 

these pathways has an excitatory and inhibitory effect on cortex, respectively. 

Note that dopaminergic input has opposite effects on these two pathways. 

Figure A is reproduced from Haber and Behrens (2014), Figure B from Purves 

et al. (2001). 
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As introduced at the start of this section, nigrostriatal projections can alter 

synaptic transmission throughout the striatum. Dopamine acts as a 

neuromodulator and is primarily released around the neck of dendritic spines 

(Freund et al., 1984). This dopamine diffuses to affect D1 receptors up to 2 μm 

and D2 receptors up to 7 μm from the synapse before being removed from the 

extracellular space via dopamine reuptake (Cragg and Rice, 2004). The 

difference in effective radius is due to the higher affinity of D2 compared to D1 

receptors (Richfield et al., 1989). Critically, these two receptors have opposing 

effects on MSN excitability (Hartman and Civelli, 1997) and (although initially 

contested, Surmeier et al., 1993; Aizman et al., 2000; Gerfen and Bolam, 2010) 

are now known to neatly differentiate direct from indirect pathway MSNs 

(Gerfen et al., 1990). That is, direct pathway MSNs express depolarizing D1 

receptors, and indirect pathway MSNs express hyperpolarizing D2 receptors 

(Figure 2.4B). Dopamine can thus modulate the balance of activity between 

these pathways by activating the direct and inhibiting the indirect pathway 

(Gerfen and Surmeier, 2011).  

To summarise, the basal ganglia receives strongly converging inputs from 

cortex and is structured along parallel, possibly interacting, loops. It has direct 

and indirect pathways passing through pallidum, subthalamic nucleus and 

thalamus to modulate limbic, associative and motor representations in cortex.  

I now discuss studies in animal models and humans examining the function of 

the basal ganglia system in model-free reinforcement learning.  

2.2.2.4.3 Function of the basal ganglia in model-free reinforcement learning 
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Although the anatomy and microcircuitry of the basal ganglia have been 

carefully mapped, it has proven more difficult to study the function of each of its 

components. This is partly due to extensive overlap of the direct and indirect 

pathway, and their indiscriminability in classical electrophysiological recordings. 

In this section I will briefly discuss foundational lesion work before highlighting 

electrophysiological recordings and recent optogenetics studies of the basal 

ganglia circuitry in the context of choice and learning. Human work on the 

characteristics of the striatum during reinforcement learning is plentiful, but it is 

often as crude as lesion studies in terms of understanding fine microcircuitry. 

Nonetheless key insights from animal studies have helped inform the role of the 

basal ganglia in higher cognitive function. Lastly I will highlight some of the 

more influential computational models that place reinforcement learning in 

frontostriatal circuits as they usefully highlight the relationships between key 

components of the network. 

2.2.2.4.3.1 Animal work on habits in the basal ganglia 

In section 2.2.2.1 I briefly discussed the work of Anthony Dickinson and 

colleagues on habitual behaviour. Habits are also known as stimulus-response 

(S-R) associations that have been ‘stamped in’ through reinforcement 

(Thorndike, 1898; Landauer, 1969). Early work suggested a critical role for the 

basal ganglia in habit formation (e.g. Mishkin et al., 1984; Salmon and Butters, 

1995), and a strong body of work in rodents now shows that such stamping in 

occurs in the dorsolateral striatum, also known as the putamen in primates. 

Using a devaluation test (Dickinson et al., 1983), it was shown that muscimol-

induced deactivation or destructive lesions of the dorsolateral striatum made the 

animal perpetually sensitive to devaluation, suggesting its effect was to impair 
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an ability to form habits (Featherstone and McDonald, 2004; Yin et al., 2004; 

Yin et al., 2005; Yin and Knowlton, 2006). Other work suggested that the 

formation of these model-free S-R associations relies heavily on dopamine 

(Wise and Bozarth, 1987; Faure et al., 2005; Wickens et al., 2007), which is 

known to modulate the plasticity in corticostriatal synapses (Kötter, 1994; 

Calabresi et al., 2007). Together, this work provides some clues regarding the 

role of dopamine and corticostriatal loops in habits, a quintessential form of 

model-free control.  

2.2.2.4.3.2 Animal work on model-free RL in striatum 

I now return to the question posed at the start of this section, namely how does 

the striatal system encode cached, model-free, action values that are updated 

by dopaminergic reward prediction errors as described in section 2.2.2.4.1. 

Electrophysiological recordings showed that in the period before a value-based 

choice, up to a third of striatal neurons code an action-specific value derived 

from a reinforcement model (Samejima et al., 2005; Samejima and Doya, 2007; 

Lau and Glimcher, 2008; Kim et al., 2009; Nakamura et al., 2012). Reward 

prediction errors, despite their being signalled through diffuse dopaminergic 

projections (Fallon and Moore, 1978), also show action-specificity in the dorsal 

striatum (Stalnaker et al., 2012). In an oculomotor task neurons in the caudate 

could be segregated into two groups that separately code action and outcome 

(Lau and Glimcher, 2007). In a delay discounting task neurons in the caudate 

coded temporally discounted action values (Cai et al., 2011b). Taken together, 

these data suggest the dorsal striatum exhibits both action coding and action 

value coding, providing a necessary neural substrate for dopaminergic 

prediction errors to update action values after feedback (Samejima and Doya, 
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2007; O’Doherty, 2014). However, none of these studies were able to determine 

whether the neurons were part of the direct or indirect pathway, leaving critical 

questions about the mechanics of this microcircuitry unanswered.  

Novel techniques such as optogenetic perturbation of MSNs have provided long 

sought-after evidence for theories on direct and indirect pathway function. First, 

stimulation of direct and indirect MSNs led to behavioural activation and 

inhibition, respectively (Kravitz et al., 2010; Kravitz et al., 2012), and 

coordinated co-activation of both pathways is necessary for basic movements 

(Cui et al., 2013; Jin et al., 2014). Critical to model-free reinforcement learning 

is the evidence that optogenetic stimulation of direct pathway MSNs acts as 

persistent, long-lasting reinforcement, whereas stimulation of indirect pathway 

MSNs acts as transient punishment (Kravitz et al., 2012). These manipulations 

worked even in the presence of D1 and D2 receptor antagonists, suggesting 

dopamine-independent activation of these pathways is sufficient to generate, in 

this specific instance, place preference learning (Kravitz et al., 2012; Paton and 

Louie, 2012). 

In summary, this work supports the view that reinforcement learning in rodents 

is subserved by dopaminergic prediction errors modulating action values stored 

in corticostriatal pathways. When faced with a stimulus, the direct pathway 

action channel of the basal ganglia most strongly associated with the stimulus 

(through previous reinforcement) will be the strongest candidates for 

expression. Next I will consider what evidence we have in humans for such a 

mechanism of model-free RL.  

2.2.2.4.3.3 Human striatum in model-free RL 
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Only with the advent of optogenetics and viral Ca2+ indicators could 

neuroscience begin to directly measure the direct and indirect pathway (Kravitz 

and Kreitzer, 2011; Cui et al., 2013). In humans, then, it is unclear how to 

understand striatal function given that we currently lack the tools to study these 

same pathways in great detail. An outstanding challenge is to functionally and 

structurally delineate the presence of a direct and indirect pathway in humans. 

Functional MRI has been the dominant approach to studying striatal function, 

mostly driven by necessity as non-invasive electrophysiological methods cannot 

(yet) measure signals deep in the brain. FMRI studies have shown model-free 

reinforcement learning signals across the striatum. An early influential paper 

suggested the caudate is the ‘actor’, representing action values during 

instrumental choice and RPEs during instrumental (but not Pavlovian) learning 

(O'Doherty et al., 2004). The dorsal striatum seems to only care for value when 

actions are involved (Tricomi et al., 2004; Guitart-Masip et al., 2011; Guitart-

Masip et al., 2014). Many studies since have described model-free action and 

learning signals in human fMRI (for reviews see Balleine and O'Doherty, 2010; 

Dolan and Dayan, 2013; Haber and Behrens, 2014). A recurring theme in this 

thesis is the dichotomy between model-based and model-free values. However, 

the studies cited above did not employ tasks that can dissociate value signals 

from these two controllers. Recent work has shown that when these two 

controllers are contrasted, model-free values are observed specifically in the 

putamen and not caudate (Wunderlich et al., 2012b; Lee et al., 2014), 

corroborating animal work that finds dorsolateral, but not dorsomedial, striatum 

to be critical for model-free (habit) learning (see section 2.2.2.1). Together, 

these studies show the dorsal striatum is a prime candidate for both the 
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selection of actions as well as learning about these actions based on feedback 

(Jessup and O'Doherty, 2011). 

2.2.2.4.3.4 Basal ganglia models of model-free RL 

The exquisite architecture of the basal ganglia as described above has led to 

many models of its function relating to (value-based) action selection and action 

learning (Houk and Wise, 1995; Mink, 1996; Doya, 1999; Gurney et al., 2001; 

Frank, 2005; Bogacz and Gurney, 2007; Hong and Hikosaka, 2011), working 

memory (Frank and O'Reilly, 2006; Hazy et al., 2006) and incentive salience 

(Berridge, 2007), as well as many other functions such as speech (e.g. Civier et 

al., 2013). The computational function most commonly ascribed to the basal 

ganglia can be summarised as ‘selection’—be it items in working memory or 

actions being represented in cortex. As such, the striatum can be thought of as 

being in a loop necessary for selection, where learning, feedback and selection 

all co-occur in the same brain region (Jessup and O'Doherty, 2011). 

As an exemplar model of instrumental learning I use that of Frank et al. (2004) 

(Figure 2.5). At the heart of this model are a number of action channels (e.g. for 

right- vs left-handed response) that are duplicated for a direct and indirect 

pathway. Their relative activity determines which action reaches threshold in 

premotor cortex for execution. The direct and indirect pathways are activated 

through inputs from cortex, serving as the ‘stimulus’ that triggers a response in 

S-R learning. On the first trial an action is randomly selected (through noise) 

and the resulting positive or negative feedback leads to an increase or decrease 

in dopamine release from the midbrain. This critical step induces long-term 

potentiation (LTP) in the direct pathway for positive feedback, and in the indirect 

pathway for negative feedback. As such, the direct pathway action channel for 
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an action that led to reward will undergo LTP, leading to stronger activation with 

the next occurrence of the same stimulus (‘stamping in’; Thorndike, 1898). 

Conversely, an action that leads to low rewards will have its indirect pathway 

channel strengthened and is less likely to be selected on the next occurrence of 

the stimulus. Over multiple trials, then, the network learns S-R associations that 

are most likely to lead to reward. This simple but elegant coalescence of stimuli, 

actions, selection and learning reflects much of our thinking about basal ganglia 

function in health as well as disease (Tekin and Cummings, 2002; Maia and 

Frank, 2011; Dichter et al., 2012). Nonetheless, novel techniques for measuring 

and manipulating direct and indirect pathways are continuously inspiring altered 

models (Calabresi et al., 2014). As we will see in chapter 5 another potentially 

fruitful pursuit could be to understand the role of striatal pathways and 

dopamine in model-based control (Daw et al., 2011). 

Having discussed the algorithms, anatomy and functional correlates of model-

free reinforcement learning, I now turn to a (shorter) treatise of model-based 

control before addressing the relationship between both controllers. 
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Figure 2.5: An exemplar computational model of cortico-basal ganglia function. 

Action channels are represented as columns in each region. Once activity in 

preSMA reaches a certain threshold an action is triggered. To reach this 

threshold, activity propagates from other cortical areas (‘Input’) through the 

direct and indirect pathways of the basal ganglia. These pathways are termed 

Go and NoGo here, respectively. Dopaminergic modulatory signals from the 

substantia nigra pars compacta (SNc) govern the relative activity and learning in 

the two pathways. The figure is reproduced from Maia and Frank (2011). 

2.2.3 Model-based RL  

2.2.3.1 Brief history of model-based RL—animal learning and psychology 

Whereas model-free S-R learning started in the final years of the 19th century 

with Thorndike’s work, it took three decades to mount an offensive against a 



Literature review 
Chapter 2 

 

38 
 

purely S-R account of animal behaviour. Tolman’s work suggested a 

fundamentally different view of behavioural control—one in which cognitive 

maps of the environment are learned as S-S associations and guide decisions 

through a mental search of these maps (Tolman, 1932; Tolman, 1948). Such 

cognitive maps have since been shown to exist in cell assemblies in the 

hippocampus (Keefe and Nadel, 1978). This idea of prospection and 

representations of future decisions and outcomes was operationalised by 

Dickinson and colleagues as goal-directed control—the antipode of habitual 

control (Adams and Dickinson, 1981; Dickinson et al., 1983; Balleine and 

Dickinson, 1998). As explained in section 2.2.2.1, an animal that does not 

pursue actions known to lead to a devalued outcome must have a response-

outcome (R-O) association whose desirability is assessed at the time of choice. 

Conceptually identical devaluation paradigms were used in humans to measure 

goal-directed control successfully (Valentin et al., 2007).  

However, outcome devaluation leaves the human neuroscientist with precious 

few trials to study behaviour and its neural correlates, as humans are able to 

rapidly adjust to novel situations. Spurred along by the fact that the definition 

and operationalization of goal-directed control had become thoroughly 

entrenched in the devaluation paradigm, a new terminology was introduced to 

capture more broadly decision strategies that rely on prospection, models of the 

environment and mental simulation: model-based control (Doya, 1999; Doya et 

al., 2002; Daw et al., 2005). This shift in nomenclature has turned the spotlight 

onto the computations underlying this type of control, such as the complexity of 

performing mental searches in environments more complex than Skinner boxes 

(Huys et al., 2012). In-depth reviews on the history of goal-directed and model-
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based control can be found elsewhere (Balleine and Dickinson, 1998; Rangel et 

al., 2008; Doll et al., 2012; Dolan and Dayan, 2013). Before describing some of 

the recent work on the behavioural and neural correlates of model-based 

control in section 2.2.3.4, I will first touch upon the origin of model-based control 

in artificial intelligence and the basic algorithms that can describe such an 

agent.  

2.2.3.2 Brief history of model-based RL—artificial intelligence 

Whereas model-free control need only keep track of cached state-action values, 

model-based control requires on-the-fly calculation of optimal decisions based, 

in the most extreme case, on an evaluation of all possible future states. As in 

model-free RL (section 2.2.2), this challenge was approached as a Markov 

Decision Process (MDP) with discrete states, actions and probabilistic 

transitions between states. Nonetheless, planning even a few steps ahead in a 

relatively contained situation, such as chess for example, leads to a 

combinatorial explosion of possible states and actions that would require 

evaluation—the ‘curse of dimensionality’ (Bellman, 1956). A computational 

framework to formally address this forward search was first described by 

Bellman (1956) in what is now called the Bellman equation (section 2.2.3.3). It 

generally requires complete knowledge of the system such that it can be 

evaluated all the way through to an end state. In the following decades much 

work went into finding shortcuts and efficient ways of approximating the optimal 

solution, an endeavour particularly interesting given that the brain’s model of the 

world is inherently incomplete and neural resources are a valuable commodity. 

For an in-depth review of this work I refer the reader to established works 

(Bryson Jr, 1996; Sutton and Barto, 1998) . 
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2.2.3.3 Algorithms 

The Bellman optimality equation for the optimal policy 𝑄∗ is as follows (after 

equation 4.2 in Sutton and Barto, 1998) 

𝑄∗(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)

𝑠′

]  

where 𝑃𝑠𝑠′
𝑎  denotes the transition probability going from 𝑠 to 𝑠′ given action 𝑎, 

𝑅𝑠𝑠′
𝑎  the immediate reward available if that transition indeed happens, and 𝛾 

denotes a discount factor for future value. Its formulation is remarkably simple: 

the value of an action equals the sum over the value of each possible 

consequent state multiplied by their probability of occurring, with each 

consequent state evaluated by searching all its consequent states. In this sense 

it is equal to the expected or Pascalian value as used in behavioural economics, 

for 𝛾 = 1. Note also that the algorithm assumes that in each future state the 

agent will choose the best available action, and therefore does not account for 

possible lapses or exploratory choices. Lastly, this type of model is a distribution 

model, in that it assesses the entire distribution of possible outcomes. We now 

turn to the brain and discuss some of the neural instantiations of model-based 

control.  
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Figure 2.6: Example model-based tree search for deterministic transitions. The 

decision-maker is currently at the top (or root) of the tree and is prospecting to 

calculate the value of 8 possible outcomes. Model-based planning assumes 

perfect knowledge regarding the values and transitions at each state. This 

figure is reproduced from Huys et al. (2012), who observed that planners prefer 

routes that do not involve a large loss given equal final outcomes. This suggests 

that humans have developed methods of pruning the decision problem to save 

computational expense. 

2.2.3.4 Neural mechanisms of MB RL, ubiquity of substrates 

The complexity of computation in a model-based system is reflected in its 

neural underpinnings. Unlike the relatively straightforward neural instantiation of 

model-free RL in the striatum, model-based control is much more loosely 

defined and components of its computations have been found across cortex, 

striatum and hippocampus. Indeed, one might couch many things, including 

planning, processing of fictive feedback, learning a model, and revaluation as 

model-based control of some sort simply because it cannot be done model-free. 

In this short review I focus primarily on studies related to value-based choice in 

a learning environment. Others have dealt with related topics such as decisions 
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in the framework of neuroeconomics (Rangel et al., 2008; Glimcher and Fehr, 

2013), working memory (Curtis and Lee, 2010; Baddeley, 2012) and planning 

(Owen, 2005; Tanji et al., 2007). 

Along with studies showing a critical role for dorsolateral striatum in model-free 

control (section 2.2.2.4.3.1) it was shown in animal experiments that 

dorsomedial striatum and prelimbic cortex are critical for goal-directed control 

(Balleine and Dickinson, 1998; Corbit and Balleine, 2003; Killcross and 

Coutureau, 2003), in particular its acquisition (Ostlund and Balleine, 2005). 

Prefrontal and striatal correlates have also been found in humans on numerous 

occasions. For example, activity in the ventral orbitofrontal cortex is reduced for 

devalued compared to non-devalued stimuli, suggesting this region represents 

prospective rather than cached values (Valentin et al., 2007). In a planning task 

without learning it was found that the caudate nucleus represents both end-

state and intermediate values, as would be expected from a model-based 

system (Figure 2.7A; Wunderlich et al., 2012b). Others have focused on how 

we might build models of our environment to use in planning: Gläscher et al. 

(2010) translated the latent learning experiment by Tolman and Honzik (1930) 

to an fMRI study whereby the participant is exposed to an environment in the 

absence of reward, triggering latent learning of the transition probabilities 𝑃𝑠𝑠′
𝑎  

from section 2.2.3.3. Upon the introduction of reward the participant then uses 

this model to obtain rewards in an efficient manner. Critically, during the latent 

learning period participants showed ‘state prediction errors’ that could facilitate 

model learning in the dorsolateral prefrontal cortex (Figure 2.7B; Gläscher et al., 

2010). Other prefrontal regions are also implicated in learning model-based 

associations, including orbitofrontal cortex for cognitive maps (Wilson et al., 
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2014) and stimulus-outcome associations (Klein-Flugge et al., 2013). Indeed, 

much of cortex and sub-cortical structures are involved in model-based control 

one way or another, a phenomenon described as ‘the ubiquity of model-based 

RL’ (Doll et al., 2012). The latter authors noted that even regions traditionally 

presumed to be purely involved in model-free control appear to show model-

based influences, hinting at interactions between these two systems. This is the 

topic of the next section, where we begin to understand how two seemingly 

disparate controllers might successfully cohabitate in the brain to generate 

adaptive behaviour.  

 

Figure 2.7: Neural correlates of model-based components. (A) In a decision 

task that involved both planned and extensively trained values, the caudate 

represents the planned values, whereas the putamen represents extensively 

trained values. This is independent of what values was eventually chosen, as 

would be expected from two systems that compete with one another. The 

functional anatomy is in line with rodent work showing goal-directed function in 

dorsomedial striatum and habitual function in dorsolateral striatum. (B) Learning 

a model of the world can conceivably occur through state prediction errors, 
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which signal unexpected state-state transitions. This figure shows BOLD activity 

scaling with state prediction errors in dorsolateral prefrontal cortex. In chapter 6 

I transiently disrupt this region of the brain using transcranial magnetic 

stimulation to determine its necessary role in model-based control. Figure A is 

reproduced from Wunderlich et al. (2012b), Figure B is reproduced from 

Gläscher et al. (2010). 

2.2.4 Balance between MF and MB 

2.2.4.1 Rationale of two systems 

Why invest in both a model-based and model-free controller if they are 

designed to achieve the same goal—that is, to maximise rewards? The current 

line of thinking is that both systems come with their own strengths and 

weaknesses, such that together they can deal with the statistics and dynamics 

of our environment. The model-free system, although very efficient in terms of 

only having to store individual cached values, requires many repetitions (or 

repeated experience) to approach the true value function. This in itself can be 

expensive or even life-threatening if the action to be learned is, say, whether to 

run towards or away from a lion. However, model-free learning can be highly 

efficient for predictable, repetitive tasks or for motor skill learning—for example, 

when forming habits. Conversely, the model-based system requires a huge 

amount of resources in terms of attention, working memory and time but it is 

statistically efficient and generates decisions from a limited number of samples. 

Together, this is the computational efficiency versus statistical efficiency trade-

off (Sutton and Barto, 1998; Daw et al., 2005; Dolan and Dayan, 2013). In 

simulation and human behaviour Simon and Daw (2011) showed that the 

statistics of the environment—the rate of change of the probability (‘volatility’) 

and noisiness of reward—differentially favour model-based or model-free 
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control. For example, in a noisy, low-volatility environment a model-free 

controller performs well as its incremental learning leads to a smoothing out of 

the noise. Conversely, a low noise, high-volatility environment favours a model-

based system as it can more efficiently track rapid changes in the environment 

without fear of over-fitting the noise (Simon and Daw, 2011). Taken together, 

organisms with only a single controller might fare well in a restricted set of 

environments, but will not thrive in the real world, in which the environmental 

statistics vary widely.  

2.2.4.2 Deciding how to decide 

If we accept that there are multiple control structures, then what ‘controls the 

controller’? I should note at this point that the shorthand of ‘two systems’ I have 

been using so far is merely a convenient way of talking about the different 

forces that act on behaviour. In fact the reality is that these two systems are 

embedded in the same brain, and can be seen to describe the extremes of 

behavioural control that in reality is more likely to be on a continuum (Dolan and 

Dayan, 2013). In the general discussion I will outline some recent ideas about 

how these types of control might be intertwined, but for convenience assume 

two distinct systems and ask how their relative levels of control might be 

governed. 

he prevailing hypothesis is that, in true Bayesian fashion, each system exerts 

control over behaviour dependent on its precision or uncertainty (Daw et al., 

2005). Uncertainty in the model-free system arises from the inaccurate, lagged 

cached values, whereas uncertainty in the model-based system is a product of 

the computational complexity. A study examining the neural correlates of 

planned versus cached values found that during choice, the medial prefrontal 
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cortex is functionally coupled with the caudate nucleus—representing planned 

values—and the putamen—representing model-free values (Wunderlich et al., 

2012b). The medial PFC, then, represented the chosen value irrespective of 

what controller was used to drive that decision. These results suggest two 

systems that are engaged in parallel. A more detailed study on the competition 

itself tested directly the notion that uncertainty determines the relative influence 

of these values (Lee et al., 2014). The latter authors manipulated uncertainty in 

a model-based system by making the transition probabilities more or less 

deterministic. In their model, parallel model-based and model-free controllers 

reported on their reliability through state- and reward prediction errors, 

respectively (cf. Gläscher et al., 2010). The relative reliabilities then governed 

the weighting of values contributing to a single integrated Q value. Both these 

reliability signals, and their maximum, were observed in inferior lateral prefrontal 

cortex and frontopolar cortex, in line with a role for this region as an arbitrator. 

Furthermore, they observed that when the arbitrator favoured model-based 

control, the frontal regions were more negatively coupled to striatal regions 

known to be involved in model-free control (Lee et al., 2014). This should not be 

mistaken as evidence for an inhibition of the model-free system by a frontal 

arbitrator—nor is this argued by Lee et al. (2014)—as their connectivity analysis 

is ambiguous with respect to directionality and sign. Nonetheless, it provides the 

first thorough test of arbitration through uncertainty, and future work could help 

understand the origin of the reliability signals themselves.  

An alternative account for the competition between systems has been put 

forward by Keramati et al. (2011). They suggest that the additional time required 

for a model-based calculation presents an opportunity cost, that is, time that 



Literature review 
Chapter 2 

 

47 
 

could have been spent on gathering more rewards. A decision to engage in this 

calculation then depends on the added value it provides over a model-free 

prediction. For example, if the model-free system is already confident about the 

best option, then there is no need to engage in an expensive forward search. 

This provides an intuitive yet quantitative approach to understanding what 

factors might drive an investment of mental effort into a problem. Future studies 

that test the effects of reward rate (and thus opportunity cost) on the trade-off 

between model-based and model-free choice could provide a test for this 

model.  

2.2.4.3 Shifting the balance of control 

It has been suggested that an imbalance in control between a model-based and 

model-free controller might be implicated in various disorders such as 

Parkinson’s disease (Redgrave et al., 2010; de Wit et al., 2011); addictions 

(Everitt and Robbins, 2005) including alcohol dependence (Sebold et al., 2014), 

food and methamphetamine (Voon et al., 2014); and obsessive-compulsive 

disorder (Voon et al., 2014). Finding ways of manipulating this balance provides 

both insights into healthy function and potential avenues for treatment. Figure 

2.8 summarises some of the work that has manipulated the extent of control by 

each system, including through lesions, drugs, disease or cognitive 

manipulations. Critically, this work shows that disabling one system can reveal 

behavioural influences of the other system that would otherwise be hidden. As 

noted before it suggests these systems work in parallel, with model-free 

learning occurring in the background even if a model-based system is currently 

in control (Wassum et al., 2009). Conversely, even when a model-free system 

has the reins a model-based system can swoop in if the situation calls for it 
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(Isoda and Hikosaka, 2007, 2011). The work in chapters 5-7 further explores 

how the balance in control can be manipulated using non-invasive methods 

applicable in healthy humans.  

 

Figure 2.8: A non-exhaustive list of work that tilted the balance between model-

based and model-free control one way or another. 1 Tran-Tu-Yen et al. (2009), 2 

Killcross and Coutureau (2003), 3 Yin et al. (2005), 4 Otto et al. (2013), 5 

Schwabe and Wolf (2009), 6 Schwabe and Wolf (2011), 7 de Wit et al. (2012b), 8 

de Wit et al. (2011), 9 Yin et al. (2004), 10 Balleine and O'Doherty (2010), 11 

Hitchcott et al. (2007) 

2.2.5 Thesis work addressing reinforcement learning 

The first part of this thesis focuses on reinforcement learning behaviour and its 

neural correlates. This section has highlighted the importance of multiple driving 

forces of behaviour, and in a series of experiments I will describe how we can 

and cannot shift their balance through neurostimulation and pharmacology 



Literature review 
Chapter 2 

 

49 
 

(chapters 5 to 7). I then ask how the value representations in corticostriatal 

loops, as described in section 2.2.2.4.3.3, can be derived from anatomical 

measurement of corticostriatal white matter connectivity in healthy humans 

(chapter 8).  
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2.3 Response inhibition 

2.3.1 General overview 

In the previous section I touched on various decision-making strategies an 

animal might take to maximise its rewards. This approach assumes a fixed 

decision point after which consequences unfold irrevocably. In reality, an 

abstract decision is followed by motor preparation, action initiation and 

continuous monitoring and adjustment. Given an uncertain environment, this 

allows for radical changes to behaviour when conditions suddenly change. For 

example, the onset of a green light at a crossing might evoke a decision to start 

walking. But the sound of police sirens fast approaching can just at the last 

moment trigger a complete reprogramming of the action, even if it was already 

initiated.  

In the second part of this thesis I explore how the brain rapidly inhibits actions 

when required by changes in the environment. I will specifically address the role 

of uncertainty and prior expectation on the behavioural and neural expression of 

inhibition. Deficiencies in inhibitory control have been implicated in neurological 

and psychiatric disorders (Verbruggen and Logan, 2008; Aron, 2011), perhaps 

most famously in attention-deficit/hyperactivity disorder (Barkley, 1997) and 

addiction (Ersche et al., 2012).  

Inhibitory control is part of a broader field of self-control and impulsivity, which 

has been studied across many disciplines. Indeed, impulsivity is a catch-all for a 

wide range of behavioural phenomena in economics, psychology and 

psychiatry, each with its own tasks and models. For authoritative reviews I refer 

the reader elsewhere (Logan et al., 1997; Evenden, 1999; Whiteside and 

Lynam, 2001; Madden and Bickel, 2010; Bari and Robbins, 2013; Moeller et al., 
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2014). In this section I go into some background regarding one facet of 

impulsivity, namely the ability to withhold one’s action after an intention has 

been formed, and how proactive control for this type of inhibition alters its 

execution. 

2.3.2 Reactive response inhibition 

2.3.2.1 The stop-signal task 

Response inhibition tasks are among the most common in cognitive science, 

stretching back as far as the go/no-go task developed by Donders (1868). In 

this task, most trials consisted of a go cue requiring a button press; the other 

trials contain a no-go cue indicating nothing should be done. The simple 

expectation that a response is required will lead to errors of commission on no-

go trials, indicating a failure of inhibition (Bari and Robbins, 2013). A more 

challenging version of this task is the stop-signal task (Lappin and Eriksen, 

1966). As popularised by Logan et al. (1984), every trial contains a go cue, but 

on a subset of trials this cue is quickly followed by a stop cue—the 

psychologist’s equivalent of a police siren just before stepping out onto the 

road. By adjusting the delay between go and stop signal (stop-signal delay, 

SSD) to approximate successful inhibition on 50% of trials, a simple calculation 

yields the stop-signal reaction time (SSRT, Figure 2.9; Logan, 1994; Band et al., 

2003; Verbruggen and Logan, 2009b). This measure is used to reflect the 

number of milliseconds it takes to stop an action after onset of the stop signal; 

much like a reaction time indicates the number of milliseconds it takes to 

respond to the onset of a cue. Its intuitive interpretation, ease of administration 

and calculation has made it a staple in inhibition research. In chapters 9 and 10 
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I go into more detail regarding some basic predictions made by this model, and 

show that data from the modified stop-signal tasks satisfies these predictions. 

An aim in this thesis is to understand how an inhibitory ability changes with 

uncertainty about the environment. I manipulated this by adding components of 

selectivity and preparation to the task, which are attributes of response 

inhibition that have come to the fore only in the past decade (Vink et al., 2005; 

Coxon et al., 2007; Chikazoe et al., 2009). I will review recent behavioural work 

on proactive, selective inhibition and discuss its potential neural correlates. 

 

Figure 2.9: Rationale behind the stop-signal reaction time. The independent 

horse race model assumes the inhibitory process is of fixed duration; if it is 

initiated early enough (short SSD) and the go response happens to be slow on 

that trial (long RT), the inhibition can catch up with the go process and prevent 

the action from occurring. I will call this a ‘stopSuccess’ trial. In contrast, if the 

inhibitory process is started late or the go response happens to be fast, the 

action will be executed before it can be inhibited, resulting in a ‘stopFail’ trial. 

The duration of the SSRT is estimated by subtracting the mean SSD from the 

RT at the intersection of stopSuccess and stopFail trials, set such that the area-

under-curve for stopSuccess is equivalent to the actual proportion of 

stopSuccess trials. 

2.3.3 Extending the framework: proactive and selective inhibition 

2.3.3.1 Selectivity of inhibition 
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The classic stop-signal task involves only a single button press. This leaves little 

room to study whether inhibition is an action-specific process or a ‘global’ stop 

signal that temporarily shuts down all motor action—or in the example of 

stepping out onto the road, does sudden inhibition of walking also inhibit 

unrelated actions such as speaking or typing on a phone? Strictly selective 

action inhibition is an ability to stop a single action without interfering with other 

ongoing actions (Aron, 2011). Unfortunately selectivity comes at a cost: it is 

slower compared to stopping all responses (Coxon et al., 2007) and creates 

interference with ongoing actions (Coxon et al., 2007, 2009; Greenhouse et al., 

2012). One explanation for the interference effect is that upon inhibition, the 

subthalamic nucleus (STN) drives the entire motor loop of the GPi, in turn 

driving widespread inhibition across motor cortex (Schall and Godlove, 2012; 

Schmidt et al., 2013). Some of the most convincing evidence for this notion of 

global inhibition comes from studies showing that inhibition of a single finger 

response reduces the excitability of leg areas of motor cortex (as measured by 

motor-evoked potentials; Badry et al., 2009; Greenhouse et al., 2012). 

Intriguingly, another study showed reduced leg suppression when the 

participant is warned about which specific response might require inhibition, 

suggesting that preparation might play a critical role in selective targeting of 

actions in motor cortex (Majid et al., 2012). I therefore now turn to the topic of 

proactive inhibition, or the role of expectation and preparation in action control.  

2.3.3.2 Proactive inhibition 

Prediction and expectation play a central role in neuroscience (e.g. Rao and 

Ballard, 1999; Friston et al., 2006), and certainly so in inhibitory action control. 

Many studies have manipulated expectations by changing the stop-signal 
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probability, most commonly by cueing people about the relative probability a 

stop-signal might occur on a given trial (Chikazoe et al., 2009; Verbruggen and 

Logan, 2009a; Jahfari et al., 2010; Swann et al., 2011; Zandbelt et al., 2012). 

This manipulation reliably leads to a slowing of go RT for higher stop 

probabilities, suggesting a strategic adjustment to increase chances of stopping 

successfully. The evidence for effects of stop-signal probability on the actual 

speed of the inhibitory process after correcting for this slowing—the SSRT—is 

more ambiguous: although one study observed faster SSRT in the high-

probability condition (Chikazoe et al., 2009), this has not held up in further 

studies (Jahfari et al., 2012; Zandbelt et al., 2012). A component of the slowing 

of responses seems to be suppression of the corresponding motor 

representation in motor cortex, measured as a reduction in motor-evoked 

potential magnitude after cueing and before action execution (Claffey et al., 

2010; Cai et al., 2011a). This in itself seems to be driven by proactive 

recruitment of the entire fronto-basal ganglia network as well as parietal cortex, 

a set of regions also involved in outright response inhibition (Chikazoe et al., 

2009; Zandbelt and Vink, 2010; Jahfari et al., 2011; Jahfari et al., 2012; 

Zandbelt et al., 2012). 

2.3.3.3 Preparing for selective inhibition 

From the previous sections it should be clear that the response inhibition field 

has slowly but surely inched towards more ecologically interesting forms of self-

control. It is not often that a drastic, unprepared inhibition of all motor action is 

required, and it could be argued that more subtle forms of self-control are more 

closely related to disorders of inhibition (Aron, 2011; Schall and Godlove, 2012). 

For example, withholding oneself from reaching out to the cookie jar upon 
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passing by surely does not involve widespread and global inhibition—if it did we 

would freeze in place on every occasion. More likely this falls in a scenario 

whereby, even before seeing the cookie jar, there is selective suppression of 

the specific action of reaching out for the jar. When considered this way, the 

process of proactive control is not dissimilar to decision making, as both involve 

the control over actions so as to optimise the long-run benefit. Perhaps 

unsurprisingly, the first forays into this topic have suggested that proactive 

inhibitory control engages many structures we know from decision making: a 

frontostriatal circuit that involves both the associative and motor loops (Aron, 

2011; Majid et al., 2013). In particular the action channels in the basal ganglia 

described in section 2.2.2.4.2 are hypothesised to serve as an efficient 

substrate for selective inhibition, compared to global inhibition via the cortico-

subthalamic nucleus hyperdirect pathway (Aron, 2011).  

2.3.4 Thesis work addressing open questions in inhibitory action control 

In chapters 9 and 10 I use a selective stop-signal task and manipulate the 

amount of information that is available for proactive control. This allows the 

examination at the behavioural level how preparation affects both the speed 

and selectivity of inhibition; at the neural level, I can ask what prefrontal and 

sub-cortical brain regions mediate the improvements in behaviour seen with 

preparation. In a second study I modify the same task to work on a smartphone, 

allowing the collection of data from tens of thousands of participants. The key 

question here is to understand how ageing, which has a particularly pronounced 

detrimental effect in the frontal cortex, affects the ability to exert reactive and 

proactive control.  
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3 Methods 
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3.1 Physics of MRI 

3.1.1 Protons in a magnetic field 

The single proton present in a hydrogen atom has a quantum property called 

spin (Figure 3.1). Moving any such proton into a magnetic field, such as the 

Earth’s field or the field of a magnetic resonance imaging (MRI) scanner, 

causes a proportion of the spins to align to the field in one of two states with 

splitting energy ∆𝐸: a low energy spin-up state (parallel to the field), or a high 

energy spin-down state (anti-parallel to the field). Depending on the strength of 

the field 𝐵0 and the magnetic moment of the atom, a slight majority of spins will 

be in the spin-up state. In addition to the net magnetization parallel to the field 

the hydrogen protons ‘wobble’ or precess around the field direction at a speed 

termed the Larmor frequency 𝜔. These concepts relate to each other following 

according to the following equations: 

∆𝐸 = ħ
𝜔

2𝜋
 

𝜔 =
𝛾

2𝜋
𝐵0 

Where ħ is the reduced Planck constant (in J s) and 
𝛾

2𝜋
 the gyromagnetic ratio 

(in Hz T-1) determined by the composition of the nucleus. Fortunately, the 

abundant 1H protons have a relatively large gyromagnetic ratio of 42.576 MHz 

T-1, leading to a slight majority of 50.000013% of protons aligning parallel to the 

field at 3 T and 37 °C (Huettel et al., 2004).  

𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑃𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
= 𝑒

∆𝐸
𝑘𝐵𝑇 
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It is this majority that allows us to perform MRI, as I will describe shortly. It is 

also this principle that has driven people to use stronger B0 fields so as to 

increase the ratio of spin-up to spin-down protons. All studies reported in this 

thesis used 3 T.  

 

Figure 3.1: Magnetization of H+ in H2O as a function of magnetic fields. (A) In 

the absence of a strong magnetic field the spin of protons is randomly oriented. 

(B) The application of an external field B0, as applied in MRI to protons in the 

brain, causes spins to align spin-up or spin-down. (C) As a slight majority of 

protons aligns itself spin-up, but none of the precessions are in phase, the net 

magnetization of protons is aligned straight along the B0 field. (D) The additional 

energy delivered through a B1 pulse at the Larmor frequency flips some spin-up 

protons in spin-down state, removing or even inverting the longitudinal 

magnetization. At the same time, this pulse brings the precession into phase, 

yielding transverse magnetization. This can be picked up by sensors around the 

head. (E) The transverse magnetization is quickly lost due to field 
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inhomogeneities and spin-spin interactions, whereas the longitudinal 

magnetization decays only slowly due to spin-lattice interactions. 

3.1.2 Manipulating net magnetization 

This 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 > 𝑃𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 state can be described by a net magnetization 

vector along the z-axis in three-dimensional Cartesian space, where the z-axis 

is aligned with the main magnetic field 𝐵0 of the system (Figure 3.1). The net 

magnetization vector can be manipulated though radio-frequency (RF, also 

called B1 field) pulses that match the Larmor frequency and applied orthogonal 

to the B0 field. The pulse firstly brings the spins into phase, leading to 

transverse magnetization in the x-y plane, and secondly reduces the 

longitudinal magnetization along the z-axis by exciting spins into the anti-

parallel state. The duration of the RF pulse determines the flip angle of this 

vector away from the Z-axis, which in all experiments reported here was 90 

degrees. The signal that is measured by magnetic resonance imaging is either 

the transverse magnetization, which decays in a matter of tens milliseconds 

following the RF pulse with a time constant termed T2*, or the longitudinal (z-

axis) magnetization which recovers in a matter of hundreds of milliseconds with 

a time constant termed T1. Crucially, the T2* signal depends on the speed of 

dephasing of the spins. In fMRI for example it is possible to observe slower 

dephasing (i.e. an increase in T2* signal) due to a decrease in concentration of 

paramagnetic deoxyhaemoglobin (further discussed in section 3.2.1). In 

contrast, the T1 signal is determined by the spin-lattice interactions and can for 

example be used to distinguish tissue types such as grey and white matter. By 

adjusting the echo time (TE; readout time following the RF pulse) and repetition 
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time (TR; time between two RF pulses on the same voxel) the signal becomes 

dominated by T1 and T2* contributions.  

3.1.3 Building a 3-dimensional image 

How can these physical concepts be exploited to obtain an image of the human 

brain? Whereas nuclear magnetic resonance (NMR) has been used since late 

1940 to measure non-spatial properties of molecules in a solution, it was in 

1976 that Paul Lauterbur and Sir Peter Mansfield independently realised that a 

sample, such as the brain, could be spatially dissected into slices and ultimately 

voxels (3-dimensional volumes arranged in a grid) using magnetic gradients on 

top of the static B0 field (Figure 3.2A; Lauterbur, 1973; Mansfield, 1977). When 

the gradients are applied along the direction of the B0 field, for example, the 

Larmor frequency of protons in superior parts of the brain (e.g. motor cortex) will 

be different from those in inferior parts of the brain (e.g. temporal lobe). A 

narrow-band RF pulse will then only excite the slice of the brain that matches 

the frequency of the RF pulse (Figure 3.2B). After excitation of the slice, an 

additional ‘frequency-encoding’ gradient can shift the Larmor frequency along 

one dimension of the slice, such that a Fourier decomposition of the signal is 

equivalent to a spatial decomposition. A further phase-encoding gradient allows 

for the second dimension of the slice to be isolated (Figure 3.2C). As such, a 3D 

volume is usually constructed from sequentially acquired 2D slices. In chapters 

8 and 9 I used a more recent form of imaging for my functional acquisitions, 

acquiring data across 3 dimensions simultaneously (Pykett et al., 1982; 

Papanikolaou and Karampekios, 2008). The benefit of this approach is faster 

acquisition of high-resolution data and a higher signal-to-noise ratio per unit of 
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time (Lutti et al., 2013). These sequences were implemented on Siemens 

Magnetom TIM Trio hardware (Siemens Healthcare, Erlangen, Germany) 

 

 

Figure 3.2: Using MRI to build a 3D volume of tissue. (A) An MRI scanner 

contains a permanent B0 field. As tissue is moved into the scanner, the protons 

align into spin-up and spin-down states. (B) The Larmor frequency is 

approximately homogenous across the scanner, such that a B1 pulse would 

excite all the protons. A slice-selecting gradient is applied at the time of the B1 

pulse to briefly differentiate the Larmor frequencies across the gradient. Only 

protons within the slab of tissue with the precession frequency of B1 are excited. 

(C) Signal from within the selected slab of tissue is further divided into voxels 

using frequency and phase encoding. Note that in 3D imaging this process is 

slightly different, as slices are not measures sequentially but rather 

simultaneously. 
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3.2 Functional MRI 

3.2.1 Basis of the BOLD signal 

Functional magnetic resonance imaging (fMRI) provides a measure of neural 

activity in the brain. The three main currencies of neural activity are action 

potentials passed down axons of neurons, post-synaptic potentials across 

dendrites of neurons, and molecular signals that bind the former two across 

synapses. The fMRI signal is most closely associated with activity at the 

synapse and in particular the resulting post-synaptic potentials, which generate 

changes in blood flow measurable in fMRI. I will discuss first the effect of neural 

activity on blood flow, and secondly how such a change in flow is measured in 

fMRI.  

The brain is permeated by capillaries and arterioles that supply blood strictly 

based on demand: neurons and supporting astrocytes regulate local blood flow 

according to the energetic demands of the cells (Attwell et al., 2010). 

Specifically, over 80% of change in blood flow originates from pericytes 

contracting and relaxing around capillaries in response to chemical signals from 

nearby neural tissue (Hall et al., 2014). These signals are mediated by ions and 

small molecules such as nitric oxide, K+, adenosine, CO2
 and arachidonic acid 

metabolites, all by-products of metabolism around the synapse, as well as glial-

mediated feedforward signals that increase blood flow before metabolites reach 

the vascular system (Attwell and Iadecola, 2002; Haydon and Carmignoto, 

2006; Iadecola and Nedergaard, 2007), and can result from glutamatergic 

signalling in both cortex and sub-cortex (Sloan et al., 2010). Taken together, 

neural activity leads to an ‘opening of the gates’ which floods the local tissue 

with oxygenated blood, washing away deoxyhaemoglobin (Hb-dO2). 
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Simultaneous recordings have shown that the dominant driver of such changes 

in blood flow is post-synaptic activity (i.e. incoming information) rather than 

action potentials (i.e. outgoing information) (Mathiesen et al., 1998; Logothetis 

et al., 2001). 

Why are changes in blood flow in response to neural activity important? An 

increase in blood flow results in a decrease in Hb-dO2 and an increase in Hb-

O2. It is the former that has an effect on the T2* signal observable in fMRI. The 

unbound Fe2+ in Hb-dO2 is paramagnetic, causing strong local distortions in the 

B0 field, and serves as a natural contrast agent (Ogawa et al., 1990; Ogawa et 

al., 1992). Any H+ protons in H2O near the Hb-dO2 will thus precess at a 

different frequency than other protons, causing them to rapidly go out of phase. 

This speeds up the loss of transverse magnetization, i.e. T2* is shortened. 

Together, this suggests that neural activity, through an increase in blood flow 

and decrease in Hb-dO2, will remove these local field distortions and thus 

increase the T2*-weighted signal. Hence the signal is named Blood Oxygen 

Level-Dependent (BOLD). It is worth noting that in response to neural activity 

there are two additional processes that both push Hb-dO2 concentrations up: a 

relaxation of pericytes causes an increase in blood volume (increasing the 

quantity of Hb-dO2), and an increase in oxygen use leads to more rapid 

dissociation of O2 from Hb-dO2. However, both these components are weaker 

than the effect of blood flow changes, leading to a net increase in T2* signal in 

response to neural activity. 

3.2.2 Haemodynamic response function 

I thus measure neural activity indirectly through the BOLD signal, so it is 

pertinent to understand how the two are linked in time and amplitude 



Methods 
Chapter 3 

 

64 
 

(Logothetis, 2008). If I were to flash a bright light in the eyes of a participant 

being scanned in fMRI, causing strong glutamatergic firing in primary visual 

cortex 25 to 30 ms after (Schroeder et al., 1998), the idealised BOLD signal in 

V1 would evolve as described in Figure 3.3A (for empirical BOLD response see 

Logothetis et al., 2001). This is called the haemodynamic response function 

(HRF, Figure 3.3A). Three points are worth noting: firstly, it takes approximately 

5 s for the BOLD signal to achieve its maximum intensity, and 12 to 20 s to 

return to baseline; secondly, if there are multiple instances of neuronal activity 

before BOLD has returned to baseline, they can be assumed to add linearly 

(Figure 3.3B; Boynton et al., 1996); thirdly, one can go back and forth between 

neural activity and BOLD signal by (de)convolving with the HRF, and this 

principle underpins statistical analysis of the BOLD signal (Boynton et al., 

1996).  

To summarise, fMRI exploits the fact that neural activity is tightly coupled to an 

increase in blood flow. This reduces the concentration of Hb-dO2 which in turn 

increases T2* signal. This fortunate situation allows the indirect measurement of 

neural activity simultaneously across the whole brain with high (0.5 mm or 

higher) spatial resolution, albeit at the cost of poor temporal resolution. For the 

fMRI work presented in this thesis it was particularly important that fMRI 

provides access to subcortical structures such as the basal ganglia, an ability 

not afforded by techniques such as electroencephalography (EEG) or 

stimulation techniques (see section 3.6). 
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Figure 3.3: Neurovascular coupling leads to canonical blood flow response. (A) 

Canonical response in blood oxygenation level-dependent (BOLD) signal in 

response to a burst of neural input into a region at t = 0 s, as used in this thesis 

to predict fMRI signal. The signal peaks after approximately 5 seconds and 

returns to baseline over the course of 12 to 20 s. (B) Multiple events that 

happen before the signal has returned to baseline are assumed to simply add 

together. 

3.2.3 fMRI preprocessing 

The primary goal of preprocessing in fMRI is to transform individual volumes of 

BOLD signal such that a voxel at coordinates (𝑥, 𝑦, 𝑧) in a single participant 

refers to the same piece of tissue across all volumes, and to the homologous 

part of the brain across participants. The only step that does not directly relate 

to the issue of localization is bias correction, which corrects for receiver coil 

properties affecting the intensity of the signal. For all fMRI preprocessing in this 

thesis I used the Statistical Parametric Mapping (SPM) software developed at 

the Wellcome Trust Centre for Neuroimaging, UCL, implemented in MatLab 

R2012a (The MathWorks, Inc.). All analyses were performed in SPM version 8 

unless noted otherwise.  
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There are a number of potential issues with BOLD images as they come from 

the scanner which are alleviated in preprocessing: voxels closer to the receiver 

coil have a stronger signal than those further away from the receiver coils (bias 

correction); participants inevitably move their heads during e.g. 40 min of 

scanning (motion correction); the B0 field is not perfectly homogenous due to 

the mechanics of the scanner and susceptibility gradients inside the head, 

leading to spatial misattribution of the signal during Fourier decomposition 

(unwarping); there are individual differences in the shape of the brain and 

location of the head in the field of view (coregistration, normalization and 

smoothing).  

I note here that I did not perform slice time correction, a common step whereby 

the sequential acquisition of slices across the duration of the TR is corrected 

for. The fMRI data presented in chapters 8 and 9 were acquired through 3D 

imaging, which involves acquiring slices in K-space (spatial frequency space) 

rather than real space. As such, high spatial frequencies were acquired at the 

start and end of the TR, whereas low spatial frequencies were acquired around 

the centre of the TR. In other words, at any point in the TR information 

pertaining to the entire volume was being collected, and slice time correction 

cannot meaningfully be applied under these conditions. 

3.2.3.1 Bias correction 

BOLD-weighted images acquired on a 32-channel head coil from a 3 T scanner 

might look like Figure 3.4A, which shows an axial slice at 1.5 mm isotropic 

resolution with a restricted field of view. An artefact is readily observed whereby 

the edge of the brain has a stronger signal than the internal parts of the brain 

due to signal drop-off proportional to the distance from the sensors in the head 
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coil (Figure 3.4A). This bias need not be corrected for statistical purposes as the 

mean of the signal is modelled independently for each voxel. Instead it aids 

subsequent preprocessing steps that rely on alignment and coregistration of 

volumes (e.g. normalization). The field is assumed to be smooth (60 mm full-

width at half-maximum, FWHM), estimated for the first image in the series 

(Figure 3.4B), and subtracted from all images (Ashburner and Friston, 2005).  

3.2.3.2 Motion correction 

To correct for participant movement during the course of scanning I used the 

first image as reference scan, and for each subsequent image I estimated a 6 

degrees-of-freedom (df) rigid-body transformation that minimises the 

discrepancy between images (Figure 3.4C; Andersson et al., 2001). The images 

were then resliced to obtain the aligned images and the transformation 

parameters recorded to enter into the statistical analysis as nuisance variables 

(Figure 3.4C, bottom; see section 3.2.4).  

3.2.3.3 B0 inhomogeneity correction 

There exists a spatial inhomogeneity in the B0 field due to imperfections in the 

magnets generating the field and due to air-tissue boundaries that generate 

local magnetic susceptibility artefacts. The latter primarily affects the inferior 

frontal lobe (due to air in the paranasal sinuses) and in the inferior temporal 

areas (due to air in the ear canal). This inhomogeneity can be measured using 

a ‘fieldmap’ estimated from the phase difference between the signal at a short 

and long TE (Andersson et al., 2001). All motion-corrected functional images 

are spatially ‘unwarped’ using the fieldmap (Figure 3.4D). 

3.2.3.4 Coregistration of functional volumes to structural volume 
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The images corrected for B0 inhomogeneities can be entered into a statistical 

model. However, it is often useful to first coregister the functional images to the 

structural image of the participant allowing for two analysis pathways both used 

in this thesis: firstly, the functional images can be brought into some standard 

space shared across participants to examine group-level effects (e.g. as in 

chapters 8 and 9), secondly the signal can be analysed in the space of the 

participant based on participant-specific regions of interest (ROIs) or diffusion 

data without the additional error introduced by normalization and smoothing. I 

performed coregistration by estimating a 6 df (rigid body) affine transformation 

matrix from the first functional scan to the magnetization transfer-weighted (MT) 

image of the same participant (Figure 3.4E). The affine transformation only 

involves translations and rotations as there is no need for scaling or shearing 

within-participant. I used the MT image here as well as during normalization 

because it has a higher contrast between white and grey matter, especially in 

subcortical structures. The transformation involved the maximization of 

normalised mutual information, measured as the sharpness of the 2D joint 

histogram of the transformed functional and structural image (Ashburner and 

Friston, 2005). A sharp histogram indicates that components of the signal in one 

image (e.g. the white matter component) can be predicted from the other, be it 

through a positive or negative relationship of any magnitude (see Figure 3.4E, 

bottom, for example of joint histogram before and after coregistration of two 

volumes; note that sharper edges after coregistration). The obtained 

transformation matrix is then applied to all B0-corrected images. 

3.2.3.5 Normalization of functional images 
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Every brain has its own characteristic folding of sulci and gyri, thickness of grey 

matter, size of subcortical nuclei, and any other number of morphological 

idiosyncrasies. Furthermore, every participant is placed in a slightly different 

location in the scanner and in the field of view of the image. In order to make 

inferences about the population from which the participants were drawn it is 

necessary to average functional signals from anatomically homologous brain 

regions across participants. One way to do this is by moving, rotating, scaling, 

shearing and warping the brain of a single participant to optimally fit a standard 

template. Using a standard rather than a group template has the additional 

advantage that a signal at coordinate (𝑥, 𝑦, 𝑧) can be compared to coordinates 

from any other study that used the same standard space. This is particularly 

relevant for meta-analyses and the use of anatomical atlases such as the 

Anatomical Automatic Labeling (AAL) atlas used in chapter 9. The work 

presented in chapters 8 and 9 used Montreal Neurological Institute (MNI) space 

based on their ICBM152 maps (Mazziotta et al., 2001). The details of the 

normalization procedure are described in section 3.3.2 on preprocessing of 

structural images. The transformation parameters obtained through 

normalization of the MT image were then applied to all the functional images 

(Figure 3.4F). 

3.2.3.6 Smoothing 

At first thought smoothing functional images seems a waste of spatial resolution 

that physicists worked so hard to achieve. However, it is a necessary evil mainly 

for three reasons: firstly, part of the noise is independent across voxels, 

whereas the signal is mostly spread out over contiguous voxels, such that 

smoothing improves the signal-to-noise ratio by averaging out noise; secondly, 
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the same information processing function might be located in a slightly different 

anatomical location in one participant compared to the other, such that even if 

normalization were perfect the signal would not overlap across participants; and 

thirdly, correcting for the multiple comparisons problem by Random Field 

Theory (RFT; see 3.2.4.2) requires a smoothness greater than that of 

unsmoothed fMRI data, such that not smoothing would lead to an excessively 

strict threshold for significance and a corresponding high false negative rate. 

Smoothing is applied using a 3D smoothing kernel with a full width at half 

maximum (FWHM) of 10 mm (chapter 9) or 6 mm (chapter 8; see Figure 3.4G). 

Ideally the size of the smoothing kernel is matched to the spatial extent of the 

hypothesised activation; in practice it is a function of the trade-off between 

spatial specificity and statistical power needed to overcome the stringent 

multiple comparisons correction associated with small smoothing kernels. That 

is, a well-powered study will be able to detect more focal signals albeit within 

the constraints of functio-anatomical heterogeneity across participants.  
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Figure 3.4: Preprocessing steps for fMRI data to prepare for statistical analysis. 

(A) Raw data shows a marked bias whereby the outer parts of the brain have 

greater signal amplitude compared to inner parts of the brain. This particular 

slice was from a single participant in chapter 8, which acquired data over a 

restricted volume. (B) Bias correction estimated a smooth bias field and 

generates a more homogenous signal intensity. (C) Realignment adjusts for 

participant movement, and the estimated movement parameters (bottom) are 

used in the statistics as described in section 3.2.4. (D) Fieldmaps, which 

estimate the imperfections in the static B0 field, can correct distortions. (E) The 

functional data is coregistered to the participant’s structural data by maximizing 

the normalised mutual information (bottom). (F) The structural volume is 
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normalised to the ICBM152 template using both linear and non-linear 

transformations. (G) The normalised functional images are smoothed to account 

for small errors during preprocessing as well as inter-individual differences in 

the precise location of functional anatomy. This image was smoothed at 6 mm 

full width at half maximum (FWHM). 

3.2.4 Statistical analysis of fMRI images 

3.2.4.1 General linear model 

The goal of fMRI as used in chapters 8 and 9 was to associate aspects of 

cognition or action—such as action values or proactive inhibition—to changes in 

the BOLD signal. This is most commonly achieved through a mass univariate 

approach where each of the 100,000+ voxels is treated (at first) as an 

independent measurement. I use the general linear model (GLM) described as 

𝑦 =  𝑥𝛽 + 𝜀 

where 𝑦 is a vector containing the BOLD signal in a single voxel across all 

acquired volumes and 𝑥 is the design matrix describing hypothesised causes of 

changes in 𝑦 (Friston et al., 1994). A set of regression coefficients 𝛽 is 

estimated using restricted maximum likelihood (ReML) to account for structure 

in the residual error 𝜀 (Glaser and Friston, 2004). This violation of independent 

and identically distributed errors arises from the sluggishness of the BOLD 

signal (Figure 3.3) and of cognition, such that the signal in volume 𝑛 and 𝑛 + 1 

are not independent. After estimating a single whitening matrix across all 

voxels, the set of coefficients 𝛽 is estimated for each voxel separately, 

generating a statistical parametric map (SPM) for each regressor in 𝑥. Although 

in many studies there will only be a small number of regressors of interest, the 

design matrix contains many more regressors to account for as much variance 



Methods 
Chapter 3 

 

73 
 

in the signal as possible. Firstly, the design matrix contains regressors 

describing on-off events such as button presses, the appearance of a Go cue 

on the screen, or the onset of feedback. Secondly, optional parametric 

modulators on these events describe graded effects, such as reaction times on 

the button press, visual intensity of the Go cue, or the expected value at time of 

feedback. Thirdly, nuisance variables capture unwanted variance in the BOLD 

signal as well as possible confounds of the regressors of interest, such as head 

movements, breathing and heartrate. Lastly, dummy regressors account for 

baseline signal differences across volumes acquired over multiple runs. The 

scope here is limited to fast event-related designs as opposed to block designs 

(Friston et al., 1998), as I only used the former in the studies presented here. 

The main regressors and parametric modulators are convolved by the 

haemodynamic response function (HRF), which links the hypothesised neural 

events in 𝑥 to the BOLD signal in 𝑦 (see Figure 3.3). Note that 𝑥 remains 

identical across all voxels, which leads to the implicit assumption that the HRF 

is identical across all regions of the brain (but see e.g. Handwerker et al., 2004). 

The 𝛽 at each voxel can be transformed into a 𝑡 (or 𝑝) value to examine 

whether there is a significant relationship between the regressor and the BOLD 

signal at a particular voxel: 

𝑡 =
𝑐𝛽

𝑐𝑆𝐸𝛽
 

where 𝑐 is a contrast vector selecting specific regressors of interest from 𝛽. In 

addition to estimating SPMs for individual regressors across the brain (e.g. 

𝑐 = [1 0] or 𝑐 = [0 1]), contrast vectors can also be used to look for differences 

between regressors by adding and subtracting them (e.g. 𝑐 = [1 − 1]).  
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3.2.4.2 Multiple comparisons problem 

Most often we are not interested in SPMs of individuals, but rather in combining 

SPMs across individuals to describe the population at large where the 

participants were drawn from. In chapters 8 and 9 I created SPMs for contrasts 

of interest for each participant and performed one-sample 𝑡-tests over the 𝛽-

maps from all participants. But how do we then decide what voxels show a 

significant response to the manipulation? This question continues to provide 

fertile grounds for debate across the neuroimaging community. The multiple 

comparisons problem arises from performing one 𝑡-test at every voxel, leading 

to many false positives if the false positive rate 𝛼 is set to 0.05. We must 

therefore use a stricter 𝛼. However, as the SPMs arise from smoothed data, the 

𝑡-tests are not independent and we should guard ourselves against an 

excessive false negative rate due to an insurmountable (e.g. Bonferroni-

corrected) 𝛼. The solution used here and as implemented in SPM8 is Random 

Field Theory (RFT; Worsley and Friston, 1995). It uses an estimate of the 

smoothness of the data to calculate the expected Euler Characteristic (EC) for 

different thresholds. The EC is directly related to the number of clusters that 

would exceed threshold under the null hypothesis. If we want at most 5% of the 

SPMs to contain one or more false positive clusters we can set the threshold 

such that the EC is equal to 0.05. This properly controls for false positives while 

minimising false negatives within a single SPM. It should be clear that this 

approach does not correct for examining multiple SPMs originating from 

different contrasts, subsets of participants, pre-processing pipelines, design 

matrices, and other explorations of the data. Such practices would, and 

probably have (Button et al., 2013), lead to an abundance of false positives in 
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the literature. It should thus be noted that multiple comparisons correction in 

fMRI is only useful insofar it is combined with sensible hypotheses and 

responsible analysis pipelines.  

3.2.4.3 Regions of interest 

A different way of alleviating the multiple comparisons problem is to use a priori 

regions of interest (ROIs). Rather than examining the entire brain, analysis is 

restricted to specific anatomically or functionally defined regions. In chapter 9 I 

averaged β-values from anatomical regions defined in Montreal Neurological 

Institute (MNI) space by the Automatic Anatomical Labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002), and from probabilistic atlases available in the 

community (e.g. Keuken et al., 2014). I also used functional ROIs defined by 

clusters from contrasts. In chapter 8 I used anatomical ROIs that were defined 

in the native space of the participant rather than in standard space by means of 

automatic segmentation with FIRST as implemented in FSL 5.05 (Smith et al., 

2004; Patenaude et al., 2011) and manual segmentation using ITK-SNAP 3.0 

(Yushkevich et al., 2006). Participant-specific ROIs improve spatial specificity 

by accounting for inter-participant anatomical variability and obviating the need 

for normalization, which is inherently imperfect.  

3.3 Multi-parameter mapping 

3.3.1 Quantitative structural images 

For each participant in chapters 8 and 9 I acquired structural multi-parameter 

maps (MPMs). In addition to the commonly used T1-weighted scans, the 

acquired volumes also include T2*-, proton density- and magnetization transfer-

weighted volumes (Weiskopf and Helms, 2008). The MPM sequence and 

processing pipeline aspires to provide quantitative maps, meaning the signal 
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describes some property of the tissue in the voxel independent of scanner type, 

head coil, and other extraneous factors (Weiskopf et al., 2013). This would 

allow meaningful aggregation of data across studies and research centres, be it 

through meta-analyses of the literature or more direct data-sharing. The work 

reported in this thesis does not leverage the quantitative property of the maps, 

so I refer the interested reader to other studies that examined this topic more 

closely (Draganski et al., 2011; Weiskopf et al., 2013; Callaghan et al., 2014). 

The goal in collecting the MPMs was to have magnetization transfer (MT) 

images with exceptional grey/white-matter contrast for normalization and sub-

cortical segmentation, as well as T2* images for visualization of the internal and 

external parts of the globus pallidus, substantia nigra, and subthalamic nucleus 

during manual segmentation.  

Acquisition of the MPMs involves B1 mapping (i.e. mapping the RF field, Lutti et 

al., 2012), B0 mapping identical to field maps used with functional scans (see 

section 3.2.3.3), and the acquisition of multiple echoes for each of a T1-

weighted volume, a MT volume and a proton density (PD) weighted volume 

(Helms et al., 2008a; Helms and Dechent, 2009). All volumes were 

simultaneously processed in the voxel-based quantification (VBQ) toolbox 

implemented in SPM8, which models the tissue properties and outputs the 

quantitative maps (Callaghan et al., 2014). 

3.3.2 Normalization 

In order to make inferences at the population level it is often necessary to 

normalise functional images to some standard space. Although the functional 

images could be directly normalised to a standard template, it is more accurate 

to do so via a high-resolution structural image of the participant (Ashburner and 
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Friston, 2005). In chapters 8 and 9 I use Montreal Neurological Institute (MNI) 

space to normalise the MT images. The normalization procedure, as 

implemented in SPM8 (Ashburner and Friston, 2005), segments the MT image 

into grey matter, white matter and cerebrospinal fluid based on a set of tissue 

probability maps (TPMs) in MNI space. During this process a set of non-linear 

distortions as well as a full affine (12 df) transformation matrix is estimated that 

optimally fits the TPMs to the MT image. This mapping is then applied to the 

functional images to bring them into a common space. 

3.4 Semi-automated segmentation of subcortical structures 

An alternative to performing normalization to allow population-level inference is 

to produce summary statistics for each participant in their own space. For 

example, in chapter 9 I use regions of interest (ROIs) defined in the structural 

space of the participant to summarise functional activation in a particular region, 

and 𝑡-tests over these average activations are used to test for significant 

effects. The critical difference between working in standard space versus 

structural space is the automated versus manual identification of anatomical 

structures, respectively. That is, during normalization we relinquish 

responsibility for matching the idiosyncrasies of an individual brain to a template 

to an algorithm that warps each brain into standard space (see section 3.3.2); 

when using ROIs in the participant’s structural space we define the ROIs by 

hand, or semi-automatically by having an algorithm make a first best guess 

which can then be checked and manually refined. Therefore, if algorithms 

existed that almost perfectly normalised images into structural space there 

would be no need for manual segmentation of regions, but such reliable 

automated identification is as of yet impossible for structures like the substantia 
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nigra, subthalamic nucleus and internal and external parts of the globus 

pallidus. As these regions were of interest in chapter 8, I used a combination of 

automated and manual segmentation to obtain ROIs for each participant in their 

structural space.  

The definition of the ROIs followed three steps. First, I used the toolbox FIRST 

as implemented in FMRIB Software Library (FSL) 5.0.5 to generate ROIs of the 

putamen, caudate, pallidum and nucleus accumbens for each participant in their 

structural space (Patenaude et al., 2011). Second, I loaded these 

segmentations into ITK-SNAP 3.0 (www.itksnap.org, Yushkevich et al., 2006) 

visualised onto the participant’s MT and R2* image (Figure 3.5). I adjusted 

inaccuracies in the FIRST-based segmentations by hand. The combination of 

MT and R2* images allowed us to manually delineate the internal and external 

parts of the globus pallidus based on the medial medullary lamina visible on 

both the MT and R2* image (Figure 3.5A); the substantia nigra based on a 

strong contrast in the MT image with the surrounding tissue in the brain stem 

(Figure 3.5B); and the subthalamic nucleus based on a strong R2* contrast and 

a MT signal that differs from the adjacent substantia nigra (Figure 3.5B; 

Forstmann et al., 2012; Lambert et al., 2012). I further delineated the red 

nucleus to aid identification of the substantia nigra and subthalamic nucleus. In 

a last step I calculated the volume of each ROI and plotted a range of 

histograms (including volumes of single regions, right/left ratios, and between-

ROI volume ratios, all across participants) to detect outliers. These were re-

examined in ITK-SNAP and adjusted if necessary. The observed values were 

further compared to the literature, which showed that the volumes were within 

the expected range. Lastly, to visualise the segmented structures at the group 
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level, I normalised the structures to MNI space and generated group probability 

maps by taking the mean at each voxel across participants for each mask. 

These were thresholded at 0.26 such that only voxels positive for 7 or more 

participants were retained in the mask. These normalised masks were not used 

for analysis, but rather for visualization.  

 

Figure 3.5: A single participant example of the use of magnetization transfer 

(MT) and R2* maps for automated and manual segmentation. (A) FSL FIRST 

segmented putamen, thalamus, hippocampus, caudate and pallidum from the 

T1w image. I then overlaid these segmentations onto the MT and R2* image in 

ITK-SNAP to, as a first step, split the pallidum into the internal and external part. 

The demarcation is the medial medullary lamina, indicated at the tip of the red 

arrows. On this slice the lamina is particularly well visible on the R2*, whereas 

on other slices the MT image showed a clear contrast. (B) On the sagittal view 

the substantia nigra can easily be visualised based on its dark colour in the MT 

image. The subthalamic nucleus is more challenging, and can be identified by 

its identical R2* intensity as the substantia nigra, but increased signal in the MT 

image. This border is indicated by the red arrow. 1: right putamen. 2: right GPe. 

3: right GPi. 4: right thalamus. 5: right amygdala. 6: left thalamus. 7: left GPi. 8: 

left GPe. 9: left putamen. 10: left amygdala. 11: left subthalamic nucleus. 12: left 
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caudate nucleus. 13: right caudate nucleus. 14: left red nucleus. 15: left 

substantia nigra. 16: left nucleus accumbens.  
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3.5 Diffusion MRI 

3.5.1 Basis of the diffusion signal 

Axons, the part of a neuron that carries spike trains towards synapses, bundle 

together to transfer information between parts of the central and peripheral 

nervous system. Where enough axons bundle together, the otherwise Brownian 

motion of water molecules is restricted orthogonal to the direction of the bundle, 

such that displacement along the principal direction of the bundle is, on 

average, larger than displacement orthogonal to it. In 1985 it was discovered 

such restrictions of random motion of water molecules are sufficiently large to 

pick up the direction of fibre bundles in vivo (Le Bihan and Breton, 1985; Le 

Bihan et al., 1986).  

Diffusion-weighted imaging (DWI) fundamentally measures the loss of signal 

due to the movement of water molecules along a magnetic field gradient. This is 

perhaps best illustrated by an example: imagine a narrow tube filled with water, 

much like an axon bundle in the brain, in an MRI scanner. We can use an RF 

pulse combined with a slice-selecting gradient to excite a particular slice of the 

tube. Between the time of the RF pulse and readout of the transverse 

magnetization we could apply one of two magnetic gradients: one along the 

length of the tube, or one at a 90-degree angle to the tube. In the former case, 

water molecules will freely drift along the length of the tube, experiencing a 

varying magnetic field and thus de-phasing rapidly. This would result in a weak 

transverse magnetization signal at the time of readout. In the alternative case, 

with the gradient applied orthogonal to the direction of the tube, the water 

molecules are unable to diffuse along the direction of the gradient and will thus 

all experience the same magnetic field, leading to little de-phasing and a strong 
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signal at readout time. If all we measure, then, is a weak signal for one gradient 

direction and a strong signal for another, we know that there is non-isotropy (i.e. 

non-uniformity across diffusion directions) in the sample. If we now tested 

another, say, 100 directions, we could more accurately estimate the orientation 

of the tube based on when the signal is strong and weak (Jones et al., 2013). In 

addition to the number of directions we can also vary the duration and strength 

of the gradient, together summarised by a ‘b’-value, which further helps model 

the diffusion characteristics of the sample. We can then estimate the diffusion 

along a particular direction as described in the following equation: 

𝑆𝑑

𝑆0
= 𝑒−𝑏𝐷 

where 𝑆𝑑 is the signal measured with the diffusion gradient turned on; 𝑆0 the 

signal without the diffusion gradient (i.e. 𝑆0 > 𝑆𝑑); 𝑏 is the combined strength 

and duration of the diffusion gradient in s mm-2; and D is the variable of interest 

defined as the diffusion coefficient, representing the strength of diffusion. As 𝑆𝑑 

decreases with no changes in 𝑆0 and 𝑏, 𝐷 must therefore increase. That is, the 

loss of signal in the diffusion scan relative to the non-diffusion (‘b0’) scan is 

inversely proportional to the log of the diffusion strength.  

In chapter 8 I used a sequence modelled after the Human Connectome Project 

(HCP; Van Essen et al., 2013). I sampled across 100 gradient directions 

distributed over a sphere across three b-values (also called ‘shells’; 900, 1800 

and 2700 s mm-2), along both right-left and left-right phase-encoding (PE) 

directions. The acquisition of both PE directions, also called ‘blips’, is necessary 

to correct for the strong distortions commonly observed in DWI. In chapter 8 I 

further acquired b0 images along the posterior-anterior and anterior-posterior 
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PE directions to inform the reconstruction of the original signal from the PE-

distorted images. 

3.5.2 Preprocessing of diffusion images 

I analysed the raw diffusion data (Figure 3.6A) using FSL’s diffusion toolbox to 

1) estimate the distortion along the phase-encoding dimension from b0 images 

(Figure 3.6B), 2) apply the corrections for these distortions and simultaneously 

correct for eddy currents and movement (Figure 3.6C), 3) estimate the diffusion 

tensors for each voxel to acquire fractional anisotropy maps (Figure 3.6D), and 

4) estimate the distribution of diffusion parameters (Figure 3.6E) at each voxel 

to allow for probabilistic tractography (Figure 3.6F).  

3.5.2.1 Correcting for phase-encoding distortions 

The spin-echo sequence used in DWI is highly sensitive to off-resonance 

effects, such as magnetic susceptibility gradients caused by air in the ear canal 

or sinuses. Especially at higher echo times (TEs), as used in chapter 8, the 

signal around the inferior parts of the brain gets stretched and compressed 

along the PE direction due to these off-resonance effects (Figure 3.6A). 

Fortunately, flipping the PE direction also inverts the distortions, such that signal 

that was stretched along one PE direction is compressed along the opposing 

PE direction and vice versa (see Figure 3.6). FSL’s TOPUP function maximises 

the similarity between unwarped images by estimating the distortion field 

(Figure 3.6B), using the sum-of-squared differences between the unwarped 

images as goodness of fit.  

3.5.2.2 Correcting for eddy currents and motion 

The rapid switching of gradients in diffusion imaging leads to the induction of 

electric currents in components of the MR scanner, such as the headcoil. These 
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currents themselves create small magnetic fields that affect the Larmor 

frequency of protons in the brain, in turn distorting the spatial reconstruction of 

the MR signal. The eddy currents become larger as we move from weaker to 

stronger gradients, e.g. from b=1000 s mm-2 to b=3000 s mm-2. The artefacts 

are visible as contractions, shifts and shears, and additionally depend on the 

direction of the gradient. We thus need to model the distortions based on 

knowledge of the strength (b-value) and direction of the field. Additionally, head 

motion interacts with eddy currents, such that simple realignment of the head as 

done for functional MR images would not take into account the variable effect of 

eddy currents dependent on head location in the coil. I used FSL’s function 

EDDY which uses a single model that incorporates TOPUP’s field coefficients, 

motion, eddy currents, gradient strengths and gradient directions to correct 

each individual volume (Figure 3.6C).  

3.5.3 Estimating the diffusion tensors 

We can estimate a diffusion tensor D for each voxel that is described by 6 

unique elements 

𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

] 

where 𝐷𝑥𝑥, 𝐷𝑦𝑦 and 𝐷𝑧𝑧 are the diffusion coefficients in the scanner’s frame of 

reference, and 𝐷𝑥𝑦, 𝐷𝑥𝑧 and 𝐷𝑦𝑧 reflect the correlations in displacement along 

the dimensions. These 6 elements can be estimated independently for each 

voxel by regressing the signal attenuation 𝐴 in volume 𝑖 on the strength and 

direction of the diffusion gradient associated with the same volume (Basser et 

al., 1994; Le Bihan et al., 2001): 
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ln(𝐴) = −[𝐷𝑥𝑥 𝐷𝑦𝑦 𝐷𝑧𝑧] [

𝑏𝑥𝑥

𝑏𝑦𝑦

𝑏𝑧𝑧

] − 2[𝐷𝑥𝑦 𝐷𝑥𝑧 𝐷𝑦𝑧] [

𝑏𝑥𝑦

𝑏𝑥𝑧

𝑏𝑦𝑧

] 

ln (𝐴) = −𝑏𝑥𝑥𝐷𝑥𝑥 − 𝑏𝑦𝑦𝐷𝑦𝑦 − 𝑏𝑧𝑧𝐷𝑧𝑧 − 2𝑏𝑥𝑦𝐷𝑥𝑦 − 2𝑏𝑥𝑧𝐷𝑥𝑧 − 2𝑏𝑦𝑧𝐷𝑦𝑧 

Matrix D can be diagonalised, which yields eigenvalues λ and eigenvectors. The 

latter describes the three principal directions of diffusion, and λ describes the 

diffusivity for each direction independent of the other directions. The fractional 

anisotropy then quantifies the degree to which diffusion is different along 𝑥, 𝑦 

and 𝑧: 

𝐹𝐴 = √
1

2
∗

√(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 − 𝜆1)2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

Note that if 𝜆1 = 𝜆2 = 𝜆3 then the numerator and therefore FA equals zero, 

indicating there is no anisotropy. In the converse, e.g. 𝜆1 ≫ 𝜆2 = 𝜆3, the FA will 

approach one, indicating all diffusion occurs along the direction described by 

the first eigenvector. Typical values for FA in grey matter are between 0 and 

0.1, whereas FA in white matter can reach as high as 0.9 (Figure 3.6D). I used 

FSL’s dtifit function to estimate the diffusion tensor. 

3.5.4 Generating distributions for the diffusion parameters 

Although FA maps are widely used to compare diffusion properties of tissue 

across individuals, the diffusion tensor cannot be used for probabilistic 

tractography. The reason is that the tensor characterises the principal diffusion 

direction, but does not contain a measure of the confidence that can be placed 

in this direction, i.e. it returns a point estimate rather than a distribution. 

However, probabilistic tractography as implemented in FSL works by sampling 

this distribution of principal diffusion directions. I used FSL’s bedpostx to 
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generate, using Markov Chain Monte Carlo sampling, the distributions of up to 

three principal directions per voxel (Behrens et al., 2003b; Behrens et al., 

2007b; Sotiropoulos et al., 2011; Jbabdi et al., 2012). The peak of this 

distribution is shown for each of the three fibres in Figure 3.6E. These estimates 

are then used for probabilistic tractography (e.g. from the putamen, Figure 

3.6F). 

 

Figure 3.6: diffusion data preprocessing pipeline. (A) The raw data, here shown 

in the absence of a diffusion signal for best signal-to-noise ratio, shows 

distortions along the phase encoding direction (x) especially in ventral parts of 

the brain. (B) TOPUP estimates these distortions, generating a map of field 

coefficients. Note the black areas indicating strong distortion, as can be seen in 

A. (C) EDDY combines information from TOPUP with estimate of eddy currents 

and movement into a single model. The same slice as in A is shown here, but 

after correction by EDDY. Note the alleviated distortion in the ventral parts of 

the brain. (D) Using function dtifit I estimated the diffusion tensors that best 
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explained the data, without an estimate of the uncertainty. This yields fractional 

anisotropy (FA) and mean diffusivity (MD) maps, amongst others. (E) The eddy-

corrected data also allows estimation of the distributions of fibre directions as 

implemented in bedpostx. Shown here are the peaks of these distributions, but 

critically, the entire distribution is estimated to allow for probabilistic 

tractography. (F) An example of probabilistic tractography, seeded from every 

voxel in the right putamen. Hotter colours indicate more streamlines passing 

through. 

3.5.5 Probabilistic tractography 

3.5.5.1 Rationale 

The anatomical connectivity of the brain provides a blueprint for its function. 

Prior to the 21st century the only way of studying these connections was through 

post-mortem dissection and vivisection (as in ancient Greece by Herophilus, the 

first known anatomist; Bay and Bay, 2010) or white matter lesions and tracing 

studies in model organisms (Mesulam, 1978). None of these techniques can be 

used to study the relationship between anatomy and function in healthy 

humans. Furthermore, single-neuron tracing studies in non-human primates are 

painstaking (Markov et al., 2012), although recent developments promise more 

efficient tracing (Brainbow; Livet et al., 2007) 

The development of diffusion MRI paved the way for in vivo tractography. By 

knowing the direction of fibres in each voxel of the brain it becomes possible to 

estimate what the likely white matter pathways are across multiple voxels. The 

characteristics of these pathways can then be linked to function to provide 

support for the widely assumed notion that connectivity underpins function in 

the central nervous system (Johansen-Berg et al., 2005; Neubert et al., 2010; 

Coxon et al., 2012; Saygin et al., 2012; e.g. Chowdhury et al., 2013). 
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3.5.5.2 Method 

The first methods for constructing white matter pathways from diffusion data 

took a deterministic approach, reconstructing a single best guess based on the 

data (Mori et al., 1999; Basser et al., 2000). However, this approach did not 

reflect the often considerable uncertainty in the direction of fibres, leading to the 

introduction of probabilistic tractography (Behrens et al., 2003b). Here, 

thousands of ‘streamlines’ are drawn for each seed voxel, sampling from the 

fibre distribution from bedpostx at each subsequent step. Over many 

streamlines this builds up a map of the brain quantifying the number of 

streamlines that pass through each voxel. Further development of this method 

achieved more accurate tractography for multi-shell data (Behrens et al., 

2007b). This approach has been validated against non-human primate data 

(Croxson et al., 2005; Jbabdi et al., 2013), suggesting that a reconstruction of 

white matter pathways in this stochastic framework can accurately capture even 

detailed characteristics of the anatomy. 

3.5.5.3 Limitations 

“It seems strange, therefore, that the connectivity of the brain depends on the 

parameters of the MR experiment.” Derek K. Jones, 2013 

An initial excitement with in vivo tractography has led, in some cases, to an 

over-interpretation of the data (Jones et al., 2013). There are many ways in 

which (probabilistic) tractography can run into problems and yield misleading 

results. For example, crossing white matter fibres often look isotropic, i.e. 

lacking directional diffusion, despite the underlying pathways. Solving this has 

been a major focus of developments in tractography from the start (Basser et 

al., 2000; Behrens et al., 2003b; Behrens et al., 2007b; Wedeen et al., 2008) 
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and is still ongoing (Sotiropoulos et al., 2013). Another issue, also present in 

data in chapter 8, is strong distortion with longer acquisition times at high 

resolution along the phase encoding direction (Van Essen et al., 2012; Glasser 

et al., 2013). This can be particularly severe in ventral areas of the brain. Lastly, 

the probabilistic nature of the reconstruction makes it particularly hard to 

reconstruct long fibres. Taken together, the measurement of connectivity 

between two voxels directly depends on the quality and quantity of the MR data. 

For this reason, these values cannot directly represent connection probability or 

fibre density (Jones et al., 2013). However, by using the same MR sequence for 

each participant as well as relative measures of connectivity (e.g. compared to 

some participant-specific baseline, which accounts for MR quality) it is possible 

to get informative estimates of how reliably two regions are connected. Such 

estimates can then be related to individual differences in behaviour and 

functional data (chapter 8).  

3.6 Neurostimulation techniques 

In most of cognitive neuroscience our only way of manipulating neural activity is 

through the sensory channels. For example, we can cause a change in BOLD 

signal in occipital cortex by flashing a checkerboard pattern in the participant’s 

eyes, or in S1 by tactile stimulation of the skin. This contrasts with 

neurostimulation, as noted by Bestmann et al. (2008): “[Neurostimulation] can 

bypass the sensory pathways that provide the conventional alternative source 

of causal inputs.” By directly stimulating regions of interest we can study the 

necessary role for those regions in information processing, which is impossible 

in fMRI. Neurostimulation has been used in humans for over a century 

(Thompson, 1910), but especially the last three decades (Merton and Morton, 
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1980; Barker et al., 1985) have seen major advances in the protocols 

(Hoogendam et al., 2010) and widespread adoption in research and clinic 

(Kolbinger et al., 1995; Pascual-Leone et al., 2005; Rossi et al., 2009; Freitas et 

al., 2011). Here I used transcranial magnetic stimulation (TMS) to disrupt 

processing in a cortical area for tens of minutes (chapter 6; Huang et al., 2005) 

as well as transcranial direct current stimulation (tDCS) to increase excitability 

of the same region of cortex for a similar amount of time (chapter 7; Nitsche and 

Paulus, 2001; Nitsche et al., 2008). It remains largely unknown how these 

neurostimulation techniques exert their effects (though see Stagg and Nitsche, 

2011; Stagg et al., 2013) and their efficacy is primarily based on changes in 

excitability of motor cortex as measured by motor-evoked potentials (MEPs, e.g. 

Penfield and Boldrey, 1937; Nitsche and Paulus, 2000). Indeed, a meta-

analysis published recently suggests tDCS does not have any effect on 

cognition (Horvath et al., 2015). Additional methodological details regarding 

positioning, stimulation parameters and blinding can be found in chapters 6 and 

7.  

3.7 Oral levodopa to alter dopamine levels 

Levodopa (L-DOPA) is transformed into the neuromodulator dopamine by 

decarboxylation inside dopaminergic cells. Critically, the carboxylic acid on L-

DOPA allows it to cross the blood-brain barrier, unlike its derivative dopamine. 

Much of the development of this molecule as a drug was due to its remarkable 

benefit to Parkinson’s disease patients (Cotzias et al., 1969). In chapter 5 I used 

a modern version of the drug, which is co-administered with the peripheral 

decarboxylation inhibitor benserazide, to increase dopamine levels across all 

dopaminergic neurons in the brain (Everett and Borcherding, 1970). This has 



Methods 
Chapter 3 

 

91 
 

particularly pronounced effects in the striatum (Lloyd et al., 1975), but also 

directly or indirectly affects prefrontal function (Cools et al., 2002). The half-life 

of L-DOPA/benserazide is approximately 1.5 hours (Fabbrini et al., 1987), its 

concentration in the blood plasma peaking approximately 1 hour after oral 

administration, though it depends on factors such as last meal ingestion time 

(Baruzzi et al., 1987). The experiment in chapter 5 was performed double-blind 

with counterbalanced administration of placebo. 
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4 Empirical studies on model-based and model-free 

control 
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4.1 Introduction 

An overarching view of adaptive behaviour is that humans and animals act to 

maximise reward and minimise punishment as a consequence of their choices. 

There are multiple ways this can be realised (see section 2.2) and mounting 

evidence indicates model-based and model-free forms of reinforcement learning 

(RL) contribute to behavioural control (Doya, 1999; Daw et al., 2005; Balleine 

and O'Doherty, 2010; Redgrave et al., 2010; Boureau and Dayan, 2011; 

Wunderlich et al., 2012b).  

To study these two forms of control I used a task first developed by Daw et al. 

(2011). The defining feature of the task is that it has an associative structure 

that can be exploited by a model-based, but not a model-free, controller. The 

extent to which participants use this structure during choice is used as a 

measure of model-based control; conversely, the extent to which they ignore 

the structure during value updating is used as a measure of model-free control. 

Here I describe the task and analysis methods used in 3 experiments involving 

an L-DOPA manipulation (chapter 5), transcranial magnetic stimulation (chapter 

6) and transcranial direct current stimulation (chapter 7).  

4.2 Task 

Each trial consisted of two stages, both requiring a choice between two stimuli. 

Each choice option was represented by a fractal in a coloured box on a black 

background (Figure 4.1). At every choice, participants had to respond within two 

seconds using the left/right cursor keys or the trial was aborted. Participants 

rarely missed a trial (e.g. in chapter 5, mean proportion of missed trials: 0.4%, 

SD: 1.5%), and those missed trials were omitted from analysis. Choice at the 

first stage always involved the same two stimuli left/right randomised. After 
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participants made their response the rejected stimulus disappeared from the 

screen and the chosen stimulus moved to the top of the screen. After a delay 

(see Table 4.1 for experiment-specific settings) one of two second stage 

stimulus pairs appeared, with the transition from first to second stage following 

fixed transition probabilities. Each first stage option is more strongly (with a 70% 

transition probability) associated with one of the two second stage pairs, a 

crucial factor in allowing the dissociation of model-free from model-based 

behaviour. After the second choice, the chosen option remains on the screen, 

together with a reward symbol (a pound coin) or a ‘no reward’ symbol (a red 

cross). Each of the four stimuli in stage 2 had a reward probability between 0.2 

and 0.8. Those reward probabilities drifted slowly and independently for each of 

the four second stage options in every trial through a diffusion process with 

Gaussian noise (mean 0, SD 0.025). The walks were not truly random as I 

selected a number of walks that would ensure that participants needed to keep 

learning and switching their preference for second-stage cues throughout the 

experiment (see section 4.5 for validation of these walks). For experiment-

specific settings see Table 4.1. 

Prior to the experiment participants were given explicit information about the 

task structure; namely that for each stimulus on the first stage one of the two 

transition probabilities was higher than the other, and that these transition 

probabilities remained constant throughout the experiment. Participants were 

also told that reward probabilities on the second stage were independent of 

each other and would change slowly over time. Before starting the testing 

session, participants practiced 50 trials with different stimuli and outcome 

probabilities. 
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Figure 4.1: Two-step task design (A) On each trial a choice between two stimuli 

led probabilistically to one of two further pairs of stimuli, which then demanded 

another choice followed by reward or no-reward according to the p(reward) of 

the chosen second-stage stimulus that fluctuated over time. Importantly, 

participants could learn that each first-stage stimulus led more often (70/30%) to 

one of the pairs; this task structure could then be exploited by a model-based, 

but not by a model-free controller. (B) Model-based and model-free strategies 

for reinforcement learning predict differences in feedback processing 

particularly after uncommon transitions. If choices were exclusively model-free, 

then a reward would increase the likelihood of staying with the same stimulus 

on the next trial, regardless of the type of transition (left). Alternatively, if 

choices were driven by a model-based system, the impact of reward would 

interact with the transition type (middle). As shown previously behaviour in 

healthy participants resembles a hybrid of model-based and model-free control 

(right; Daw et al., 2011). I can thus quantify model-free control by estimating the 
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main effect of reward, and model-based control by estimating the reward-by-

transition interaction. 
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Table 4.1: Experiment-specific settings. The timings in the TMS and tDCS experiment were faster to allow for more choices per unit time 

in the experiment. ITI = inter-trial interval; L-DOPA = levodopa; TMS = transcranial magnetic stimulation; tDCS = transcranial direct 

current stimulation; 𝑈(1,3) = uniform distribution between 1 and 3; nRewards = total number of rewarded trials in the session. 

Study Sessions different 
sets of 
walks  

double 
blind 

settings per session 

performance-
based pay-out (£) 

trials # 
break

s 

ITI (s) time for 
choices 

(s) 

transition 
time (s) 

reward 
duration 

(s) 

L-DOPA 
(Ch. 5) 

2 (on/off) 2 yes 0.25*(nRewards - 
85) 

201 2 𝑈(1,3) 2.0 1.5 2.0 

TMS  
(Ch. 6) 

3 (vertex, 
left/right 
dlPFC) 

3 no 0.25*(nRewards - 
85) 

201 2 𝑈(1,2) 2.0 0.5 1.5 

tDCS 
(Ch. 7) 

2 
(sham/active) 

3 yes 0.2*(nRewards - 
170) 

350 4 𝑈(1,2) 2.0 0.5 1.5 
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4.3 Basic analysis of behaviour 

The logic of the task is based on the fact that a dependence on model-based or 

model-free strategies predicts different patterns through which feedback 

obtained after the second stage should impact future first stage choices (Daw et 

al., 2011). A model-free reinforcement learning strategy predicts a main effect of 

reward on stay probability. This is because model-free choice works without 

considering structure in the environment; hence rewarded choices are more 

likely to be repeated, regardless of whether that reward followed a common or 

rare transition. A reward after an uncommon transition would therefore 

adversely increase the value of the chosen first stage cue without updating the 

value of the unchosen cue. In contrast, under a model-based strategy I expect a 

crossover interaction between the two factors, because a rare transition inverts 

the effect of a subsequent reward (Figure 4.1). Under model-based control, 

receiving a reward after an uncommon transition increases the propensity to 

switch. This is because the rewarded second stage stimulus can be more 

reliably accessed by choosing the rejected first stage cue than by choosing the 

same cue again.  

Thus, the influence of the controllers can be inferred in terms of the main effect 

of reward (model-free) and the interaction between reward and transition 

likelihood (model-based) on the probability of staying with the same first-stage 

stimulus on the next trial (as in Daw et al., 2011; Figure 4.1). This “1 trial back” 

analysis can be performed using a simple ANOVA over p(stay|reward,transition) 

with factors reward, transition and manipulation (e.g. L-DOPA or placebo in 

chapter 5), or in a logistic regression as in chapters 6 and 7. In the latter, the 

dependent variable is stay (1) or switch (0), and I used the Linear Mixed Effects 
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4 toolbox for R (R Development Core Team, 2008; R Core Team, 2011; Bates 

et al., 2012) to estimate population coefficients for each regressor. I could then 

use the esticon function in package “doBy” (Højsgaard, 2012) to test contrasts 

of interest. In chapter 7 I further extended this framework to examine influences 

of both controllers extending more than 1 trial back, by coding the dependent 

variable as “Chose A” (1) or “Chose B” (0), where A and B are the two first-

stage stimuli. The regressors code for whether a model-free or model-based 

agent, based on the first-stage choice, reward and transition in trials prior to the 

choice, would promote choosing A (1) or B (-1; see Table 6.1 for a list of all 

regressors).  

4.4 Reinforcement learning models 

In the following I denote the model-free value 𝑄𝑠1
𝑀𝐹 and the model-based value 

𝑄𝑠1
𝑀𝐵 for first stage stimuli 𝑠1 ∈ {1,2}. The hybrid model computes the actual 

value 𝑄𝑠1
𝐻𝑦𝑏𝑟𝑖𝑑

 used in determining choice as weighted linear combination  

𝑄𝑠1
𝐻𝑦𝑏𝑟𝑖𝑑

= 𝜔 ∗ 𝑄𝑠1
𝑀𝐵 + (1 − 𝜔) ∗ 𝑄𝑠1

𝑀𝐹 

where 𝜔 ∈ [0,1] quantifies the extent of model-based and model-free control. 

Values for the four stimuli at the second stage (stimuli 𝑠2 ∈ {3,4,5,6}) are 

updated identically for both controllers according to reward prediction errors 

(Watkins, 1989):  

𝑄𝑠2(𝑡 + 1) = 𝑄𝑠2(𝑡) + 𝛼2 ∗ (𝑟 − 𝑄𝑠2(𝑡)) 

Where 𝛼2 ∈ [0,1] is the learning rate, and 𝑟 ∈ {0,1} the absence or presence of 

a reward on trial 𝑡. At the first stage, model-free ‘cached’ values are updated 
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according to on-policy temporal difference learning with reward prediction errors 

and eligibility traces (Rummery and Niranjan, 1994):  

𝑄𝑠1
𝑀𝐹(𝑡 + 1) = 𝑄𝑠1

𝑀𝐹(𝑡) + 𝛼1 ∗ (𝑄𝑠2 𝑐ℎ𝑜𝑠𝑒𝑛(𝑡) − 𝑄𝑠1
𝑀𝐹(𝑡)) + 𝜆 ∗ 𝛼1 ∗ (𝑟 − 𝑄𝑠2

𝑀𝐹(𝑡)) 

Here 𝛼1 ∈ [0,1] is the learning rate for the first stage, and 𝜆 ∈ [0, +∞) is a gain 

parameter representing the eligibility trace. 

Model-based values are calculated anew for each and every trial in a forward 

looking manner by multiplying the state values of the better option at the second 

stage with the state transition probabilities:  

𝑄1
𝑀𝐵 = 0.7 ∗ max(𝑄3, 𝑄4) + 0.3 ∗ max(𝑄5, 𝑄6) 

𝑄2
𝑀𝐵 = 0.3 ∗ max (𝑄3, 𝑄4) + 0.7 ∗ max (𝑄5, 𝑄6) 

Based on simulations by the authors of the original task I likewise simplified 

model-based learning under the premise that learning of state transitions 

quickly converges to stable values and hence transition probabilities were not 

updated by explicitly modelling state prediction errors (see supplemental 

material in Daw et al., 2011).  

I computed the probability 𝑃 of choosing stimulus 1 (in a choice between 

stimulus 1 with value 𝑄1 and stimulus 2 with value 𝑄2) at stage 1 according to a 

softmax choice rule, which depends on the relative stimulus values and choice 

in the previous trial (C = 1 if s1 was chosen on the previous trial, -1 if s2 was 

chosen) 

𝑃(𝑠1) =
1

1 + e−β1∗(Q1−Q2)−π∗C 
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and similarly in stage 2, e.g. when observing the s3-s4 pair: 

𝑃(𝑠3) =
1

1 + e−β2∗(Q3−Q4) 
 

The model thus includes 7 possible parameters to optimise over: two inverse 

temperatures β1 and β2, two learning rates 1 and α2, an eligibility trace λ, 

perseverance , and a parameter  for the relative degree of model-based 

versus model-free control. The learning rate  captures the extent to which new 

information at outcome is used for learning, i.e. the learning speed;  measures 

the discriminability between two options, with a larger value pertaining to more 

predictable choices (i.e. a more predictable link between values and choices); 

the persistency  is an index of the tendency to choose the same option as in 

the previous trial regardless of value (Lau and Glimcher, 2005; Kable and 

Glimcher, 2007), and parameter  represents the extent to which one or other 

system drives a participant’s behaviour. Reduced versions of the model were 

compared using model comparison techniques in chapter 5, and a 5-parameter 

model was used in section 4.5 to simulate data from the task 

I applied logistic or exponential transformations before fitting parameters to 

transform bounded parameters into transformed space which spanned 

[−∞, +∞] to accommodate maximum likelihood (ML) and expectation 

maximization (EM) estimation. I transformed  and  using the logistic function 

𝛼𝑏𝑜𝑢𝑛𝑑𝑒𝑑 =
1

1 + 𝑒−𝛼𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑
 

𝜔𝑏𝑜𝑢𝑛𝑑𝑒𝑑 =
1

1 + 𝑒−𝜔𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑
 



Empirical studies on model-based and model-free control 
Chapter 4 

 

102 
 

and  and λ using the exponential function 

𝛽𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = 𝑒𝛽𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 

𝜆𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = 𝑒𝜆𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑  

4.5 Validation of random walks 

A purely model-free agent can, under restricted circumstances, generate data 

that contains a reward-by-transition interaction in the 1-back analysis described 

above (p(stay) analysis). This confound arises when the second-stage reward 

probabilities are relatively static, because the participant might settle on the best 

first-stage stimulus rather than switch between the two first-stage stimuli on a 

regular basis. This would then lead to a situation where most common 

transitions are rewarded, and most uncommon transitions are unrewarded, 

when choosing the best stimulus. In both cases, the participant likely stays with 

the same first-stage stimulus on the first trial, even if the participant is 

completely model-free, thus leading to a reward-by-transition interaction that is 

inferred as model-based control. This confound is quickly alleviated when the 

second-stage reward probabilities become less static, or indeed truly random. In 

chapter 6 I used 3 random walks randomly assigned to sessions. To confirm 

that these walks (and by extension the walks from my other studies, which were 

generated with similar levels of drift) are not confounded I generated data from 

a model-free agent playing on these random walks and examined the inferred 

levels of model-based and model-free control. The prediction was that data from 

a model-free agent should not show model-based characteristics. 

First, I generated choices on the three walks using a reinforcement learning 

model identical to that used by Otto et al. (2013), which has 5 parameters: a 
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model-free learning rate shared between the first and second stage (α), inverse 

temperature for the softmax choice rule (β), eligibility trace which carries the 

second-stage prediction error over to the first-stage stimuli (λ), a weighting 

parameter between model-based and model-free control (ω) and a 

perseverance parameter which accounts for a propensity to stay regardless of 

previous events (π). For details of the model see Otto et al. (2013). I selected 

representative values for all but α: β = 4, λ = 0.6, ω = 0 (i.e. purely model-free), 

π = 0.1 (Daw et al., 2011). As the potential confound can depend on α, I 

generated data for α between 0.001 and 0.600 in steps of 0.001, simulating 

3000 datasets of 201 trials for each configuration of parameters. I then 

calculated p(stay) for each of the four reward/transition conditions and 

calculated the magnitude of the main effect of reward, and reward-by-transition 

interaction from these p(stay) values. Note this is a different approach from the 

hierarchical analysis, but along identical lines of reasoning. Crucially, I predicted 

that a model-free agent should not show any reward-by-transition interaction in 

any of the walks, as that would indicate a potential confound in the walks. As 

expected, these walks did not show such a confound (Figure 4.2), such that the 

level of model-based control was close to zero for all learning rates. 

Interestingly, the level of inferred model-free control scaled close to linear with 

learning rate. In conclusion, in the random walks used in this thesis the 

estimation of model-based control is not confounded by model-free influences 

on behaviour. 
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Figure 4.2: inferred level of model-based and model-free control in a purely 

model-free agent as a function of learning rate of this agent. I simulated 3000 

agents playing the 2-step task for every learning rate to verify that the analysis 

method would not infer model-based control even though the underlying 

generative model was purely model-free. For all three walks used in chapter 6, 

the analysis correctly estimated model-based control to be around zero 

irrespective of the learning rate. Random walks in the other experiments had 

similar generative settings. 
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5 Dopamine enhances model-based over model-free 

choice behaviour 
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5.1 Abstract 

Dopamine has been implicated in virtually all aspects of reward-guided learning 

and choice, including reward prediction errors, motivation and planning. Here, 

rather than studying the role of dopamine in one specific process, I asked how a 

dopaminergic challenge could alter the extent to which model-based and model-

free decision-making strategies are used. I used the two-stage Markov decision 

task, as outlined in the introduction to these chapters, to quantify model-based 

and model-free control. I found that administration of L-DOPA promoted model-

based over model-free choice, specifically by strengthening model-based 

control in response to the absence of reward. In contrast, I observed no effect of 

L-DOPA on model-free control.  

5.2 Introduction 

Previous research had focused on the role of dopamine in model-free learning, 

and value updating via reward prediction errors. For example, phasic firing of 

dopaminergic VTA neurons encodes reward prediction errors in reinforcement 

learning (Schultz et al., 1997; Hollerman and Schultz, 1998), and in humans, 

drugs enhancing dopaminergic function (e.g. L-DOPA) augment a striatal signal 

that expresses reward prediction errors during instrumental learning 

(Pessiglione et al., 2006). In so doing, L-DOPA increases the likelihood of 

choosing stimuli associated with greater monetary gains (Frank et al., 2004; 

Pessiglione et al., 2006; Bodi et al., 2009). However, dopamine’s role in model-

based choice remains poorly understood, most likely due to its widespread 

rather than isolated effects. For example, it is unknown if and how it impacts on 

performance in model-based decisions, and on the arbitration between model-

based and model-free controllers. This is the question I addressed in the 
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present study where I formally tested whether dopamine influences the degree 

to which behaviour is governed by either control system.  

5.3 Methods 

5.3.1 Participants 

18 healthy males (mean age: 23.3 (SD: 3.4)) participated in two separate 

sessions. Data from two additional participants were not included in the analysis 

as those participants misunderstood instructions and performed at chance level. 

The UCL Ethics committee approved the study and participants gave written 

informed consent before both sessions.  

5.3.2 Dopamine drug manipulation 

Participants were tested in a double-blind, fully counterbalanced, repeated 

measures setting on L-DOPA (150 mg L-3,4-dihydroxyphenylalanine / 37,5 mg 

benserazide; Madopar®, Roche UK), and on placebo (500mg calcium 

carbonate; Calcit®, Procter and Gamble) dispersed in orange squash (see 

section 3.7 for a description of levodopa). The task was administered 55.0 (SD: 

4.7) minutes after drug administration. Session 1 and 2 were approximately one 

week apart (at least 4, but no more than 14 days) with both sessions at the 

same time of day. All participants except one participated in the morning to 

minimise time-of-day effects. I assessed drug effects on self-reported mental 

state using a computerised visual analogue scale immediately before starting 

the task (Bond and Lader, 1974) 

5.3.3 Task & Analysis 

I used the task and analysis strategies as described in chapter 4. 

5.4 Results 



Dopamine enhances model-based over model-free choice behaviour 
Chapter 5 

 

108 
 

Using repeated measures ANOVA I examined the probability of staying at the 

first stage dependent on drug state (L-DOPA or placebo), reward on previous 

trial (reward or no-reward), and transition type on previous trial (common or 

uncommon) (Figure 4.1). A significant main effect of reward, F(1,17) = 23.3, p < 

0.001, demonstrated a model-free component in behaviour (i.e. reward 

increases stay probability regardless of the transition type). A significant 

interaction between reward and transition, F(1,17) = 9.75, p = 0.006, revealed a 

model-based component (i.e. participants also take the task structure into 

account). These results show both a direct reinforcement effect (model-free) 

and an effect of task structure (model-based) and replicate previous findings 

(Daw et al., 2011). 

The key analyses here concerned whether L-DOPA modulated choice 

propensities. Critically, I observed a significant drug*reward*transition 

interaction, F(1,17) = 9.86, p=0.006, reflecting increased model-based 

behaviour under L-DOPA treatment. I also observed a main effect of drug, 

F(1,17) = 7.04, p = 0.017, showing that participants were less perseverative 

under L-DOPA treatment. Interactions between drug and transition, F(1,17) = 

4.09, p = 0.06, or drug and reward (which would indicate a drug-induced 

change in model-free control), F(1,17) = 1.10, p = 0.31, were not significant.  
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Figure 5.1: (A) Participants’ task behaviour showed characteristics of both 

model-free and model-based influences, demonstrating that participants 

combined both strategies in the task. The reward*transition interaction (a 

measure of the extent to which participants consider the task structure) was 

significantly larger in L-DOPA compared to placebo, indicating stronger model-

based behaviour. (B) Difference in stay probability between L-DOPA and 

placebo condition, corrected for the main effect of drug. The observed 

interaction indicates a shift towards model-based choice (see F) while there is 
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no resemblance to any of the three effects implicating the model-free system 

(see C-E). (C-F) Illustration of expected differences in stay probability for 

hypothetical drug effects. See Figure 5.2 and Table 5.1 for validation of these 

hypotheses. (C) Trials after uncommon transitions (2nd and 4th bar) are 

discriminatory between model-free and model-based choice, whereas both 

models make equal predictions for trials after common transitions (cf. Figure 

4.1). A shift towards model-free control would be indicated by an increased 

propensity to stay with the chosen pattern after uncommon rewarded trials and 

an increase in switching after uncommon unrewarded trials. (D) Stronger or 

faster model-free learning would increase the reward-dependent effect and be 

expressed as general increase to stay after rewarded trials, and general 

decrease to stay after unrewarded trials. (E) A selective enhancement of 

positive updating paired with impairment in negative updating might not change 

mean-corrected stay probabilities. This is because enhanced positive updating 

leads to a stronger propensity to stay after rewarded trials, while impaired 

updating of unrewarded trials decreases the propensity to switch after such 

trials. (F) Opposite to C, a shift towards model-based control is expressed by 

enhanced sensitivity to the task structure. 

Figure 5.1B shows the difference in stay probability between drug states 

corrected for a main effect of drug. Note that dopamine treatment particularly 

affected choices after unrewarded trials and a post-hoc contrast, testing for a 

differential drug effect after unrewarded compared to rewarded trials, confirmed 

this was significant, F(1,17) = 12.68, p = 0.002. Figure 5.1C-F illustrate how a 

number of hypothesised effects of L-DOPA might manifest itself in a stay-switch 

analysis (see Figure 5.2 for a validation of these hypotheses using simulations). 

Qualitatively, the data in Figure 5.1B resemble a shift towards model-based 

control, most notable after unrewarded trials. In contrast, my results do not 

resemble any of the putative model hypotheses that invoke modulation of a 

model-free system.  
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To confirm that the winning model can capture key behavioural findings (i.e. the 

drug*reward*transition interaction on stay-switch behaviour) I generated data for 

500 virtual participants on this task using representative parameters from the 

hybrid reinforcement learning model from section 4.4. These data were then 

subjected to a stay-switch analysis. I found an identical pattern of effects in 

these generated data as observed empirically in the participants (Figure 5.2A). 

Most importantly, the data generated by the model showed a significant 3-way 

interaction, indicating that the model indeed captures key components of the 

data (see Table 5.1). Note that, as expected, the model did not replicate the 

asymmetry in rewarded versus unrewarded trials shown in Figure 5.1B.  

The idealised hypotheses put forward for the stay-switch analysis in Figure 

5.1C-F were based on ideas derived from previous literature. To validate these 

hypotheses I generated choices for virtual participants, but now with 

adjustments to parameters based on specific hypotheses (Figure 5.2B-D). The 

key hypotheses are fully supported by these simulations, showing that the 

computational models capture the key behavioural signatures of model-free and 

model-based behaviour. The data generated by this model was subjected to the 

same ANOVA as the participant data, showing the same effects as found in 

participants, most notably the three-way interaction that supports the claim that 

L-DOPA enhances model-based behaviour. The model thus provides a 

reasonable account of the data. Identical patterns exist between the two 

datasets, given the statistical model used. 
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Figure 5.2: (A) Mean-corrected P(stay)ON - P(stay)OFF for 18 participants 

reported in the study (left) and 500 virtual participants using representative 

parameters for the reinforcement learning model (right). (B) Modulation of the 

model-free learning rate α. A change in learning rate alters stay probability after 

rewarded versus unrewarded trials, but does not interact with transition. This is 

equivalent to Figure 5.1D. (C) Model-based (ω = 1) versus model-free agent (ω 

= 0) shows a stronger reward*transition interaction. This is equivalent to Figure 

2F. (D) Increase in positive learning rate and decrease in negative learning rate 

does not change relative stay probabilities, similar to the prediction in Figure 

5.1E. 

Table 5.1: statistical comparison of model-generated versus participant data 

(related to Figure 5.2) 

Effect 18 participants 500 virtual 
participants 

 F(1,17) p F(1,499) p 

drug 7.04 = .02 83.00 < .001 

reward 23.30 < .001 6.01 = .02 

transition < 1 ~ < 1 ~ 

drug x reward 1.10 = .31 < 1 ~ 

drug x transition 4.09 = .06 < 1 ~ 

reward x transition 9.75 = .006 561.79 < .001 

drug x reward x transition 9.86 = .006 16.62 < .001 
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There was no evidence for differences in drowsiness or general alertness (Bond 

and Lader, 1974) between sessions (paired t-tests over each score; smallest p 

> 0.1) or in average response times between drug states (first stage RTL-DOPA = 

593ms, RTPlacebo = 586ms; paired t-test, p = 0.70).  

Finally, I tested for order effects by repeating the analyses with session instead 

of drug as factor. There were no significant differences in stay-switch behaviour 

(repeated measures ANOVA: main effect of session F(1,17) < 1; 

session*reward, F(1,17) < 1; session*(reward*transition), F(1,17) = 1.37, p = 

0.26). Thus these results provide compelling evidence for an increase in the 

relative degree of model-based behavioural control under conditions of elevated 

dopamine. 

5.5 Discussion 

It is widely believed that both model-free and model-based mechanisms 

contribute to human choice behaviour. In this study I investigated a modulatory 

role of dopamine in the arbitration between these two systems and provide the 

first evidence that L-DOPA increases the relative degree of model-based over 

model-free behavioural control. 

The use of systemic L-DOPA combined with a purely behavioural approach 

precludes strong conclusions about the precise anatomical location of 

physiological changes that led to the observed shift to model-based control. 

Nevertheless, I provide a number of possible explanations for how this effect 

might be mediated in the brain that could guide further studies. First, increased 

dopamine levels may improve performance of component processes of a 

model-based system. Dopamine has previously been associated with an 
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enhancement of prefrontal cognitive functions such as reasoning, rule learning, 

set shifting, planning and working memory (Cools et al., 2002; Lewis et al., 

2005; Mehta et al., 2005; Clatworthy et al., 2009; Cools, 2011), and these 

processes are most likely co-opted during model-based decisions. Previous 

theoretical considerations link a system’s performance to its relative impact on 

behavioural control, such that the degree of model-based versus model-free 

control depends directly on the relative certainties of both systems (Daw et al., 

2005). Increased processing capacity might enhance certainty in the model-

based system and would thus predict the observed shift in behavioural control 

that I detail here.  

Second, a more conventional account is that increased dopamine exerts its 

effect through an impact on a model-free system. According to this view, 

excessive dopamine disrupts model-free reinforcement learning, which is then 

compensated for by increased model-based control. Specifically, elevated tonic 

dopamine levels may reduce the effectiveness of negative prediction errors 

(Frank et al., 2004; Voon et al., 2010). However, this explanation fails to 

account for the results presented here. Firstly, a disruption of negative 

prediction errors under L-DOPA would change stay probabilities independent of 

transition type (Figure 5.1E), which is incompatible with the reward*transition 

interaction observed here (Figure 5.1B). This argues against the idea that L-

DOPA in this study enhanced the relative degree of model-based behaviour 

through a disruption of the model-free system. 

Finally, dopamine could facilitate switching from one type of control to the other 

akin to the way it decreases behavioural persistence (Cools et al., 2003). It is 

known that over the course of instrumental learning the habitual system 
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assumes control from the goal-directed system (Adams and Dickinson, 1981; 

Yin et al., 2004), but the goal-directed system can quickly regain control in 

unforeseen situations (Norman and Shallice, 1986; Isoda and Hikosaka, 2011). 

This could explain why I observed a stronger switch to model-based behaviour 

following unrewarded trials: the lack of rewarding feedback may prompt the 

need to re-evaluate available options and invest more energy to prevent 

another non-rewarding event by switching to model-based control. Note that it is 

possible and indeed likely that a facilitation of control switching under L-DOPA 

works in concert with an enhancement of the model-based system itself. 

The predominant view in computational and systems neuroscience holds that 

phasic dopamine underlies model-free behaviour by encoding reward prediction 

errors. On the other hand, animal and cognitive approaches emphasise a role 

for dopamine in model-based behaviour such as planning and reasoning 

(Berridge, 2007; Robbins and Everitt, 2007; Clatworthy et al., 2009; Cools, 

2011). Contrasting with interest in the model-free and model-based system 

separately is the lack of data on the arbitration between these two behavioural 

controllers. Our experiment fills this gap by pitting model-free and model-based 

control against each other in the same task and in so doing provides strong 

evidence for an involvement of dopamine in the arbitration between model-free 

and model-based control over behaviour. 

Our findings advocate an effect of L-DOPA on the arbitration between model-

based and model-free control, without a modulation of the model-free system 

itself. Note that the majority of studies reporting enhanced or impaired learning 

under dopaminergic drugs used either Parkinson’s disease (PD) patients (Frank 

et al., 2004; Voon et al., 2010) or involved agents that primarily act at D2 
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receptors (Cools, 2006; Frank and O'Reilly, 2006). In contrast with these 

studies, I did not find evidence for any modulation by L-DOPA of model-free 

learning or indeed evidence of impaired model-free choices. These deviations 

might partly be explained by PD patients’ more severely reduced dopamine 

availability off their dopamine replacement therapy (in contrast to the placebo 

condition), and the much higher doses of medication involved in PD treatment. 

Consistent with this explanation is that the effect of L-DOPA on instrumental 

learning in healthy volunteers was found to be significant only when compared 

to an inhibition of the dopamine system (via haloperidol) but not when 

compared to placebo (Pessiglione et al., 2006). 

Dopamine itself is a precursor to norepinephrine and epinephrine, potentially 

contributing to the observed effects. However, L-DOPA administration causes a 

linear increase in dopamine levels in the brain without affecting norepinephrine 

levels (Everett and Borcherding, 1970). Another possibility would be that L-

DOPA exerts effects through interactions with the serotonin system. Such an 

interaction, between dopamine and serotonin, is known to play a role in a range 

of higher-level cognitive functions (Boureau and Dayan, 2011). 

These data open the door to further experiments aimed at elucidating the 

precise neural mechanisms underlying the arbitration between both controllers. 

In the following chapters 6 and 7 I focused in on the dorsolateral prefrontal 

cortex as one such neural mechanism of model-based control specifically. 

  



Disruption of dorsolateral prefrontal cortex impairs model-based control 
Chapter 6 

 

117 
 

6 Disruption of dorsolateral prefrontal cortex impairs 

model-based control 
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6.1 Abstract 

In chapter 6 I hypothesised that L-DOPA might increase model-based control 

through a modulation of prefrontal cortex. Here I set out to test whether I could 

achieve the opposite effect, whereby a disruption of prefrontal cortex might 

impair model-based but not model-free control. I specifically focused on 

dorsolateral prefrontal cortex (dlPFC), and show it is possible to reduce model-

based control by disruption of right dlPFC via transcranial magnetic stimulus 

(TMS). In contrast, disruption of left dlPFC impaired model-based performance 

only in those participants with low working memory capacity. Neither left nor 

right dlPFC disruption had an effect on the level of model-free control, in line 

with the notion of dissociable neural circuits supporting model-based and 

model-free control.  

6.2 Introduction  

In this study the goal was to manipulate the relative balance between model-

based and model-free control in human participants. I focused on the 

dorsolateral prefrontal cortex (dlPFC) as a substrate for model-based processes 

based on previous evidence for its role in the construction and use of 

associative models (Gläscher et al., 2010; Wunderlich et al., 2012b; Xue et al., 

2012) and the coding of hypothetical outcomes (Abe and Lee, 2011).  

In addition I took into account work from studies in non-human primates which 

also implicated the dlPFC as a site for convergence of reward and contextual 

information (Lee and Seo, 2007), while lesions of rat prelimbic region—argued 

by some to be equivalent to primate dlPFC (Uylings et al., 2003; Fuster, 

2008)—abolish flexible decision-making (Killcross and Coutureau, 2003). 



Disruption of dorsolateral prefrontal cortex impairs model-based control 
Chapter 6 

 

119 
 

Therefore, while the literature suggests a crucial role for this region in model-

based control at the time of the study there was no evidence for a necessary 

role that might support this hypothesis. Here I used a transient lesion model, as 

engendered by theta burst transcranial magnetic stimulation (TBS), to provide 

evidence for a necessary role of dlPFC in model-based behaviour. 

6.3 Methods 

6.3.1 Participants 

I recruited 25 human participants (mean age (SD): 24.2 (4.0) years; 15 females) 

to perform the two-step task (see chapter 4 and Daw et al., 2011). All 

participants had normal or corrected-to-normal vision, and without a history of 

psychiatric or neurological disorder. All participants provided written informed 

consent prior to start of the experiment, which was approved by the Research 

Ethics Committee at University College London (UK). No participants were 

excluded over the course of the experiment.  

6.3.2 Theta burst stimulation 

Participants received TBS (see methods section 3.6) over the right dlPFC, left 

dlPFC, and vertex on three separate occasions, with site order counterbalanced 

across 24 participants, and the 25th participant received a randomly selected 

session order. I identified stimulation sites as follows: the MNI coordinates for 

the right dlPFC (x = 37, y = 36, z = 34) were taken from a previous study that 

used a combination of individual anatomy and fMRI results to pinpoint the 

dlPFC (Feredoes et al., 2011). For the left dlPFC (x = -37, y = 36, z = 34) I took 

the negative of the right dlPFC x-coordinate. These MNI coordinates were 

transformed to coordinates in native space by taking the inverse normalization 

parameters from unified segmentation of a previously acquired T1w structural 
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image as implemented in SPM8 (Wellcome Trust Centre for Neuroimaging, 

UCL, UK). I visually confirmed that the coordinates in native space 

corresponded to middle frontal gyrus (as in Feredoes et al., 2011). These 

coordinates were then entered as targets into Visor2 (ANT B.V.), which uses a 

3D camera to guide the stimulation coil (Magstim) to the target coordinate. The 

vertex was set to the Cz of the 10-20 system. To mimic the stimulation 

experience for the participant, I entered the vertex coordinates into Visor2 and 

used 3D navigation to target the stimulation coil. 

I administered stimulation in 5 Hz bursts of 3 pulses set 20 ms apart, for 40 s, 

amounting to a total of 600 pulses. Stimulation intensity was set for each 

individual participant as 90% of active motor threshold (AMT). AMT was defined 

as the lowest stimulation intensity, expressed as % of max output of the 

Magstim equipment that reliably (3/5 times) yielded a visible muscle twitch in 

the hand when stimulating the hand area of the contralateral motor cortex with a 

single pulse. During this procedure participants held (lightly) an item in the hand 

contralateral to the stimulation site. For technical and safety reasons, the 

maximum stimulation intensity was set to 51% of maximum output; as such, any 

participant with an AMT > 56% received TBS at 51% of maximum output. Note 

that such reduced stimulation will make it less likely to find significant effects of 

TMS. The average stimulation intensity was 49% (range: 40 - 51%) of maximum 

output. 

6.3.3 Task & analysis 

I used the task and analysis strategies that are described in the introduction to 

this thesis in chapter 4. 

6.3.4 Baseline working memory capacity 
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On the first session, before any TBS or practice on the main task, participants 

performed a 7-minute task to establish visuospatial working memory capacity. 

In short, participants had to remember the location of 5 simultaneously 

presented dots in a circular array of 16 positions. After a delay the participant 

was asked whether, for one of the 16 locations, a red dot was presented. From 

these data I calculated a K-value, reflecting the amount of information that the 

participant can store in working memory. For details of the task and analysis, 

see McNab and Klingberg (2008). 

6.4 Results 

Participants’ first-stage choices for all three TBS conditions qualitatively 

reflected a hybrid of model-based and model-free control (Figure 6.1, cf. Figure 

4.1). I estimated the main effect of reward and the reward-by-transition 

interaction for each TBS site using hierarchical logistic regression, with all 

coefficients taken as random effects across participants (see Table 6.1 for list of 

regressors, and section 4.3 for a description of the regression analysis).   
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Table 6.1: Regressors for hierarchical logistic regression on stay (coded as 1) 

or switch (coded as 0) for each first-stage choice. Reward is coded as 1 and -1 

for presence and absence, respectively; transition is coded as 1 and -1 for 

common and uncommon, respectively. The main effect of vertex is subsumed in 

the intercept. 

Intercept 

left dlPFC 

right dlPFC 

left dlPFC * reward 

right dlPFC * reward 

vertex * reward 

left dlPFC * transition 

right dlPFC * transition 

vertex * transition 

left dlPFC * reward * transition 

right dlPFC * reward * transition 

vertex * reward * transition 

 

I observed positive coefficients for the reward and reward-by-transition 

regressors for all three TBS sites (all p < .006), confirming that behaviour 

comprised a hybrid of model-free and model-based control. Levels of model-

based and model-free control after left and right dlPFC TBS were then 

contrasted with vertex (Figure 6.1B). I observed that TBS to either left (p = .52) 

or right (p = .20) dlPFC did not significantly change model-free control 

compared to vertex. By contrast, model-based control was disrupted following 

TBS to right (p = .01) but not left (p = .89) dlPFC compared to vertex. I observed 

no difference in model-based control between left and right dlPFC (p = .13). 
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Figure 6.1: (A) The probability of repeating the same first-stage choice is shown 

as a function of reward and transition experienced on the previous trial. The 

pattern of choices qualitatively resembles influences of both model-based and 

model-free control for all three stimulation sites (cf. Figure 4.1). (B) I quantified 



Disruption of dorsolateral prefrontal cortex impairs model-based control 
Chapter 6 

 

124 
 

model-free and model-based control as the main effect of reward and the 

reward-by-transition interaction, respectively, in a hierarchical logistic regression 

on stay/switch behaviour on each trial. Disruption of right dlPFC reduced model-

based control compared to vertex. TBS did not significantly affect model-free 

control. (C) The relative balance between the controllers was calculated as 

βmodel-based – βmodel-free. The balance significantly shifted towards model-free 

control after disruption of right, but not left, dlPFC compared to vertex. Error 

bars indicate SEM. 

I also computed a measure of the relative balance between these two systems 

as βmodel-based - βmodel-free (Figure 6.1C). This showed a significant shift towards 

model-free control caused by TBS to right (p = .01) but not left (p = .63) dlPFC 

compared to vertex. I observed no difference between left and right dlPFC (p = 

.11). Together these results provide evidence that right dlPFC exerts a causal 

role in model-based control, and show that the balance between model-based 

and model-free control can be manipulated through prefrontal disruption via 

TBS.  

I then repeated these analyses to examine order effects. In pairwise session 

comparisons I found no effect of session on model-free or model-based control, 

or on the balance between model-based and model-free control (all p > .14), 

except for an increase in model-free control in session 3 compared to session 1 

(p = .04). 

Model-based control is thought to depend on a number of processes including 

prefrontal working memory (WM) capacity. Given that studies of WM report 

lateralised functionality (e.g. Mull and Seyal, 2001) I asked whether the 

magnitude of a TBS effect might be related to WM capacity. To examine such 

inter-individual differences I could not use the population parameter estimates 
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obtained through the regression. Instead, I extracted the numerical magnitude 

of the main effect of reward, the reward-by-transition interaction and the 

difference between the two from each participant’s average stay probability in 

each of the four reward/transition conditions in each stimulation condition.  

 

Figure 6.2: Working memory capacity interacts with stimulation in left dlPFC. 

Working memory (WM) capacity did not predict the balance between model-

based and model-free control after disruption of vertex (left) or right dlPFC 

(right). In contrast, higher WM was associated with relatively stronger model-

based control after disruption of left dlPFC (middle) with the correlation being 

significantly more positive than for right dlPFC (permutation test, p = .009) or 

vertex (p = .06). 

I first asked whether model-free or model-based control independently 

correlated with WM in any of the 3 stimulation conditions. Only the magnitude of 

the reward-by-transition interaction, inferred as model-based control, correlated 

with WM following disruption to left dlPFC (r = .45, p = .02; all other p > .10). I 

then correlated the balance between the two systems in all stimulation 

conditions with WM. Strikingly, only behaviour after disruption of left dlPFC was 

WM-dependent (Figure 6.2; vertex, r = .09, p = .68; left dlPFC r = .53, p = .006; 

right dlPFC, r = -.05, p = .80). Pairwise permutation tests revealed the 

correlation was significantly more positive in left compared to right dlPFC (105 
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permutations, p = .009), marginally more positive in left dlPFC compared to 

vertex (p = .06), and not significantly different between right dlPFC and vertex 

(p = .52). Taken together, these data show that the effect of left dlPFC 

disruption on the balance between model-based and model-free control 

depends on WM capacity, with high WM participants retaining more model-

based control compared to those with low WM. 

Whereas first-stage choices allowed me to dissociate model-based from model-

free control, both types of control make equivalent predictions for second-stage 

choices as there is no task structure to exploit. It has, however, been shown 

that TBS to left, but not right, dlPFC modulates probabilistic instrumental reward 

learning (Ott et al., 2011). I therefore sought to explore the effects of TBS on 1-

step reward learning here as well (Figure 6.3). I examined second-stage 

choices using hierarchical logistic regression similar to the analysis of first-stage 

choices: stay-switch behaviour was regressed against reward received on the 

most recent trial involving that second-stage pair. Transition was not included 

as a factor because second-stage choices are assumed to be independent of 

the transition type that led to the state. I observed that TBS to left dlPFC 

affected second-stage choices by making them more perseverative (p = .02) 

and more sensitive to reward (p = .006) compared to vertex (see Figure 6.3). No 

such effect was found for right dlPFC (p = .11 and p = .10, respectively). There 

was no difference between left and right dlPFC (perseveration: p = .35, effect of 

reward: p = .20).  
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Figure 6.3: analysis of second-stage choices. The main effect of each 

stimulation site (left) captures the propensity to stay with the same stimulus 

irrespective of reward, relative to the vertex condition. Participants become 

more perseverative after left dlPFC TBS compared to vertex (p = .02) on 

second-stage choices. Note that the main effect of vertex is subsumed in the 

intercept of the regression, such that a coefficient significantly different from 

zero indicates a significant deviation from vertex. The main effect of reward in 

each stimulation condition (right) indicated participants tended to stay with a 

rewarded stimulus more than with an unrewarded stimulus (all p < .001), but 

this propensity was stronger after left dlPFC TBS compared to vertex (p = .006). 

Error bars indicate SEM.  

6.5 Discussion 

The balance between model-based and model-free control is often framed as a 

competition between a flexible, forward-looking, system and a simpler 

retrospective stimulus-response-based system (Daw et al., 2005). These results 
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show that the balance between these two systems can be causally manipulated 

in the human brain by a disruption of prefrontal cortex. The data suggest that 

TBS to right dlPFC impairs a key node in a network that underpins model-based 

control (cf. Killcross and Coutureau, 2003; Gläscher et al., 2010). I further show 

an involvement of left dlPFC in model-based control that is related to individual 

differences in working memory, suggesting differential roles for left and right 

dlPFC in the functional architecture underlying deliberative choice.  

Animal lesion and human imaging work suggest that sectors of prefrontal cortex 

are involved in high-level cognition and decision-making (Miller and Cohen, 

2001). These studies have shown correlates of model-based control in 

ventromedial prefrontal cortex and dlPFC as well as outside the prefrontal 

cortex, e.g. dorsomedial striatum (Gallagher et al., 1999; Killcross and 

Coutureau, 2003; Hikosaka, 2007; Boorman et al., 2009; de Wit et al., 2009; 

Gläscher et al., 2010; Liljeholm and O'Doherty, 2012; Wunderlich et al., 2012b; 

Xue et al., 2012). In contrast, model-free control is most strongly associated 

with the dorsolateral striatum and infralimbic cortex (Yin et al., 2004; Balleine 

and O'Doherty, 2010; Wunderlich et al., 2012b). Furthermore, a strong 

dependence of model-based control on prefrontal systems is hinted by a finding 

that its dominance can be abolished during dual-task performance (Otto et al., 

2013). However, up to now the key human evidence for dlPFC involvement in 

model-based control has been based on correlational evidence using functional 

imaging (fMRI). Here I show that model-based control is impaired by a transient 

disruption of the right dlPFC, providing causal evidence for its involvement in 

complex, flexible, decision-making. I note this effect was significant only when 

compared to the vertex, the control site, but not when compared to left dlPFC. I 
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speculate this might be due to individual variation in the role of the left dlPFC in 

model-based control, or in the strategies employed by the participants to solve 

the task.  

An influential hypothesis about the balance between model-based and model-

free control states that their individual influence over behaviour is governed by 

their respective uncertainties (Daw et al., 2005). Within this framework, my 

results can be interpreted as emerging out of a disruption to a key component 

process of model-based control (e.g. the utilization of associative models, 

Gläscher et al., 2010). This would lessen the certainties of model based 

predictions leading to an attenuated dominance over behaviour—similar to that 

observed when participants are distracted by a dual task (Otto et al., 2013). 

However, whereas disruption of right dlPFC led to an unambiguous impairment 

of model-based control, the effect of TBS on the left dlPFC was dependent on 

baseline WM capacity. Specifically, higher WM capacity conferred a degree of 

protection against a shift towards model-free control upon disruption of left 

dlPFC, whereas participants with low WM capacity appear to require an 

uncompromised left dlPFC for the exercise of model-based control. I 

acknowledge uncertainty as to what precise factors might explain this finding.  

An increase in perseveration might be caused by a reduction in striatal 

dopamine after left TBS (Ko et al., 2008), which is known to affect behavioural 

flexibility and perseverance (Cools et al., 2006). It is, however, unclear why 

such a reduction in striatal dopamine would be associated with improved reward 

learning. However, this finding replicates a previous study that found improved 

reward learning after left, but not right, TBS (Ott et al., 2011). Arguing against a 

role for dopamine in this increase in reward sensitivity is a null effect of 
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dopamine administration on second-stage choices shown previously 

(Wunderlich et al., 2012a). 

The effect of TBS on sub-cortical dopamine might also play a role in first-stage 

choices. The reduction in dopamine might interact with baseline dopamine 

levels that are known to co-vary with WM capacity (Cools et al., 2008), such 

that high WM participants are more resilient against TBS-induced decreases in 

dopamine than low WM participants. I, with colleagues, previously showed that 

dopamine levels modulate the balance between model-based and model-free 

control (de Wit et al., 2011; de Wit et al., 2012b; Wunderlich et al., 2012a), and 

a TBS-induced depletion in low WM (i.e. low dopamine) individuals might have 

a more pronounced effect than a similar depletion in high WM (i.e. high 

dopamine) individuals. However, given that I did not directly measure dopamine 

levels, future work could usefully explore potential interactions between WM 

and model-based control to fully understand the effect reported here. 

The findings speak to the literature on goal-directed and habitual behaviours 

(Balleine and O'Doherty, 2010). Although model-based/model-free and goal-

directed/habitual control are not synonymous, the former provides a 

computational framework that can encompass key features of goal-directed and 

habitual control (for a review, see Dayan and Niv, 2008). I would predict a 

disruption of right dlPFC would also impair goal-directed behaviour in 

devaluation and contingency degradation tests in humans, as has been shown 

in rats (Balleine and O'Doherty, 2010). 

In summary, I provide evidence for a necessary role of the right dlPFC in 

flexible, model-based decision-making. Our findings invite the question as to 
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whether naturally occurring variation in dlPFC function and connectivity is a 

marker for predisposition towards model-free as opposed to model-based 

control, and whether an enhancement of dlPFC function (e.g. through other 

stimulation protocols) might improve rather than impair model-based control. I 

set out to test whether a putative improvement of right dlPFC would indeed lead 

to stronger model-based control in the next chapter.  
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7 Transcranial direct current stimulation does not affect 

model-based control 
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7.1 Abstract 

There is broad consensus that the prefrontal cortex supports goal-directed, 

model-based decision-making. Consistent with this I showed in chapter 6 that 

model-based control can be impaired through transcranial magnetic stimulation 

of right dorsolateral prefrontal cortex in humans. Here I tested the hypothesis 

that an enhancement of model-based control could be achieved by anodal 

transcranial direct current stimulation of the same region. I tested 22 healthy 

adult human participants in a within-participant, double-blind design in which 

participants were given Active or Sham stimulation over two sessions. I show 

active stimulation had no effect on model-based or on model-free control 

compared to Sham stimulation. I also introduced a novel regression analysis 

that examines model-based and model-free influences multiple trials into the 

past, which also showed no effect of stimulation. These null effects are 

substantiated by a power analysis, which suggests that the study had at least 

60% power to detect a true effect, as well as a Bayesian model comparison, 

which favours a model of the data that assumes stimulation had no effect over 

models that assume stimulation had an effect on behavioural control. Although I 

cannot entirely exclude more trivial explanations for the null effect, for example 

related to (faults in) the experimental setup, these data suggest that anodal 

transcranial direct current stimulation over right dorsolateral prefrontal cortex 

does not improve model-based control, despite existing evidence that 

transcranial magnetic stimulation can disrupt such control in the same brain 

region. 

7.2 Introduction 
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Electrical stimulation of the human brain has received widespread attention over 

recent years. It has been used to study the function of healthy cortex (Marshall 

et al., 2004), connectivity between regions (Mars et al., 2009), as an avenue for 

treatment in disorders such as depression, Parkinson’s disease and stroke 

(Fregni et al., 2005b; Boggio et al., 2006; Boggio et al., 2008; Baker et al., 

2010a), and to improve normal function such as in skill learning (Nitsche et al., 

2003; Reis et al., 2009). 

Here I used transcranial direct current stimulation (tDCS), a technique whereby 

two electrodes are placed on the skull and a fixed current level is applied (also 

see Methods chapter, and Nitsche and Paulus, 2001). This technique is 

reported to increase and decrease the excitability of the neural tissue underlying 

the anodal and cathodal electrode respectively (Nitsche and Paulus, 2001; 

Nitsche et al., 2003). A number of studies have suggested that high-level 

cognition can be improved by anodal stimulation of the prefrontal cortex. 

Specifically, stimulation of the dorsolateral prefrontal cortex (dlPFC) has been 

shown to decrease risk-taking (Fecteau et al., 2007a), improve working memory 

(Fregni et al., 2005a; Mulquiney et al., 2011) and improve classification learning 

(Kincses et al., 2004).  

I focused on the right dlPFC based on evidence for its role in model-based 

processes such as the construction and use of associative models (Gläscher et 

al., 2010; Wunderlich et al., 2012b; Xue et al., 2012) and the coding of 

hypothetical outcomes (Abe and Lee, 2011). Work on non-human primates also 

implicates the dlPFC as a site for convergence of reward and contextual 

information (Lee and Seo, 2007). Furthermore, in chapter 6 I showed that right, 

but not left, dlPFC is necessary for model-based control, evidenced by a 
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reduction in model-based control after disruptive theta-burst transcranial 

magnetic stimulation to the right dlPFC (Smittenaar et al., 2013b). Here, to 

complement these previous findings, I sought to enhance, rather than disrupt, 

model-based control through anodal stimulation. I used a task which has been 

shown to quantify model-based and model-free control (Daw et al., 2011; 

Wunderlich et al., 2012a; Otto et al., 2013) and tested participants undergoing 

anodal or Sham tDCS stimulation to the right dlPFC in a double-blind, 

counterbalanced design. I hypothesised that anodal stimulation would improve 

model-based control without affecting model-free control, an effect driven by an 

enhancement of a component process of model-based control subserved by the 

right dlPFC.  

7.3 Methods 

I recruited 23 healthy participants to participate in an experiment over 2 

sessions. All participants had normal or corrected-to-normal vision and no 

history of psychiatric or neurological disorders. One participant was excluded 

from analysis due to failed stimulation after an increase in resistance from 

drying electrodes, leaving 22 participants (11 female, mean age ± SD: 22.5 ± 

5.3 years, all participants were at least 18 years of age at the time of consent) 

for analysis. Written informed consent was obtained from all participants prior to 

the experiment and the UCL Research Ethics Committee approved the study 

(project number 3450/003).  

7.3.1 Setup of experiment and double-blinding procedure 

Participants were tested on 2 occasions between 3 and 8 days apart, going 

through the same procedure on each day: after obtaining informed consent I 

determined the electrode locations, explained the task, guided participants 
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through a short practice session, placed the electrodes on the scalp, turned on 

stimulation, and started the task. The experiment was double-blind, with both 

experimenter and participant unaware of the stimulation condition (Active or 

Sham). This was achieved through a system of blinding codes embedded in the 

stimulation machine (NeuroConn, Germany). First, researcher GP selected 24 

pairs of 5-digit codes, each pair containing one code associated with Active and 

one code associated with Sham stimulation as programmed into the stimulation 

machine. These were then permuted such that half the pairs had Active 

stimulation on session 1 and Sham stimulation on session 2, whereas the other 

half of pairs had the reversed order. GP kept the unblinded version of the codes 

and handed the permuted set to PS, who acquired the data. Each participant 

was assigned a pair in order of testing date. When the participant was prepped 

for stimulation, their session-specific code was entered into the stimulation 

machine, which then administered the corresponding Active or Sham protocol 

without any indication as to the stimulation condition. I tested the participant’s 

awareness of the stimulation condition at the end of the experiment (see below). 

PS was deblinded after acquisition of all 23 datasets.  

7.3.2 Task & analysis 

Whereas in previous chapters I examined only influences from 1 trial back using 

regressions, here I expanded on this approach to examine model-based and 

model-free influences that go up to 3 trials in the past. This provides a more 

fine-grained dissection of the influences of each system on behaviour. The 

dependent variable for trial t was 1 when stimulus A was chosen and 0 when 

stimulus B was chosen in the first stage. Each regressor then described 

whether events on trial t-1, t-2, and t-3 would increase (coded as +1) or 
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decrease (coded as -1) the likelihood of choosing A according to a model-based 

or model-free system. If a trial contained a common transition the model-based 

and model-free system would make identical predictions, whereas on trials with 

uncommon transitions these predictions would be inverted. I additionally 

modelled the main effect of transition type (common as +1, uncommon as -1) 

on trial t-1, t-2 and t-3, which I predicted would have no effect on the propensity 

to choose stimulus A. I also tested 3 alternative models that used 1) one set of 

model-based regressors for both conditions, 2) one set of model-free regressors 

for both conditions and 3) one set of model-based and one set of model-free 

regressors for both conditions (‘null model’). These models allowed me to test 

whether the additional complexity of having separate regressors for the 

stimulation conditions was appropriate. These models were compared using the 

BIC and AIC values provided by the lme4 package. 

I performed contrasts over the population coefficients to test for differences 

between conditions in model-free and model-based control. All p-values 

reported in the manuscript that pertain to the logistic regression were estimated 

using the “esticon” procedure in the “doBy” package which relies on the chi-

square distribution (Højsgaard, 2012). Power analyses were performed using 

the Matlab 7.12.0 ‘sampsizepwr’ function and G*Power 3.1.7 (Faul et al., 2007; 

Faul et al., 2009). Other tests were performed in SPSS 17.0. 

7.3.3 Stimulation 

On both sessions the anodal electrode was placed over right dlPFC and the 

cathodal electrode over the inion. The inion was chosen for cathodal electrode 

placement in order to maximise current flow through the dlPFC. The right dlPFC 

was located using the 10/20 system, which is appropriate given the limited level 
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of spatial resolution of tDCS (Herwig et al., 2003). In brief, I first located Fpz, Fz 

and Oz as 10%, 30% and 90% of the nasion-inion distance, measured from the 

nasion. I then located F8 as 30% of the distance between Fpz and Oz, 

measured from Fpz passing over the ears. Electrode F4, commonly used for the 

right dlPFC (Herwig et al., 2003), was then determined as 50% of the distance 

between F8 and Fz. I used conductive rubber electrodes inserted in a sponge 

cover measuring 7.5 by 6 cm, secured to the head using a bandage. I placed 

the electrode along the gyrus, i.e. the electrode was placed in superior-medial 

to inferior-lateral direction.  

I used a DC-stimulator system (NeuroConn, Germany). In the Active condition a 

2 mA current was delivered for 25 minutes with 15 s ramping-up and ramping-

down. In the Sham condition the current ramped up then down over 15 s, and 

then performed continuous impedance testing. This manipulation made it very 

hard for the participant to tell which type of stimulation was given at what time. I 

confirmed this by giving a 2-alternative forced-choice at the very end of the 

experiment asking which session contained the Active stimulation. This test 

showed that participants as a group were not significantly different from chance 

at determining the session that contained Active stimulation (10 out of 22 

participants guessed correctly, binomial test, p = .83). I employed a number of 

post-hoc checks to safeguard against experimental error. Firstly, I monitored the 

resistance reported by the DC-stimulator throughout the experiment, rejecting 

one participant for whom stimulation was stopped after a strong increase in 

resistance (>55 kΩ). Secondly, after the experiment I confirmed for a random 

set of 4 sham and 4 active codes that they were correctly linked to the sham or 

active stimulation procedure by examining the current with an amperometer. 
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This was the case for all 8 codes. Thirdly, I note that of the 100,000 possible 

codes that can be entered into the DC-stimulator only 200 are allowed, 

minimizing the possibility of erroneously entered codes. 

After turning on stimulation the participant waited for 10 minutes before starting 

the task in order to ensure the effects of stimulation were fully established 

(Nitsche and Paulus, 2001). Altogether participants received 25 minutes of 

stimulation at 2 mA. It is known that cortical excitability changes outlast such 

stimulation durations by over an hour (Nitsche and Paulus (2001), though see 

Stagg et al. (2013)). The window of stimulation therefore need not fully overlap 

with the task, and in the design stimulation ended approximately halfway 

through the task. It should be noted that choices for stimulation parameters are 

based on studies of motor cortex stimulation. It is possible that these 

parameters, when used on frontal areas, have different effects. To my 

knowledge there is no published data on this, though I note this protocol is 

similar to that of other studies using tDCS on dlPFC (Kincses et al., 2004; 

Fecteau et al., 2007a). 

7.4 Results 

Participants earned £8.25 ± 2.56 during Active stimulation and £8.30 ± 2.39 

during Sham stimulation (no difference in paired samples t-test, t(21) < 1). 

Participants missed 0.10 ± 0.37% of trials during Active stimulation and 0.09 ± 

0.18% of trials during Sham stimulation (no difference in paired sampled t-test, 

t(21) < 1).  

For comparison to previous studies using this task I plotted the stay probabilities 

based on reward/no-reward and common/uncommon transition on the previous 
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trial (Figure 7.1). Qualitatively the pattern in both the Active and Sham condition 

resembles that of a hybrid controller (Figure 4.1, right) in which choices are 

influenced both by model-based and model-free control.  

 

Figure 7.1: Stay probabilities as a function of reward and transition on previous 

trial. Participants showed a pattern of stay probabilities characteristic of hybrid 

model-based/model-free control during both Sham and Active stimulation of 

dlPFC. Error bars indicate SEM. 
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To quantify these influences and examine effects of trials that extend beyond 

the previous (lag-1) trial, I performed a hierarchical regression analysis (see 

Table 7.1 for regressors).  

Table 7.1: Regressors in the full model for first-stage choices. MF = model-free; 

MB = model-based; SE = standard error. Lag denotes the effect of time. Bold-

face indicates p < .05 uncorrected for multiple comparisons. 

regressor 
estimate SE 

z-
value p 

intercept 0.25 0.03 7.81 <0.0001 

Active -264.18 194.46 -1.36 0.1743 

Active MF Lag-1 287.02 62.06 4.63 <0.0001 

Active MF Lag-2 293.64 50.73 5.79 <0.0001 

Active MF Lag-3 172.87 51.73 3.34 0.0008 

Active MB Lag-1 244.48 72.35 3.38 0.0007 

Active MB Lag-2 180.58 66.90 2.70 0.0069 

Active MB Lag-3 200.76 44.92 4.47 <0.0001 

Sham MF Lag-1 374.51 51.11 7.33 <0.0001 

Sham MF Lag-2 287.55 54.85 5.24 <0.0001 

Sham MF Lag-3 246.79 59.53 4.15 <0.0001 

Sham MB Lag-1 226.13 64.93 3.48 0.0005 

Sham MB Lag-2 207.15 77.43 2.68 0.0075 

Sham MB Lag-3 170.37 60.91 2.80 0.0052 

Active transition 
Lag -1 -4.62 36.24 -0.13 0.8985 

Active transition 
Lag -2 9.20 32.34 0.28 0.7760 

Active transition 
Lag -3 -19.03 34.09 -0.56 0.5767 

Sham transition 
Lag -1 -6.61 42.27 -0.16 0.8758 

Sham transition 
Lag -2 15.68 33.42 0.47 0.6389 

Sham transition 
Lag -3 -2.77 36.88 -0.08 0.9400 

 

This revealed that all model-based and model-free regressors were significantly 

larger than zero, meaning both systems rely on events at least 3 trials into the 

past (Figure 7.2; see Table 7.1 for statistics).  
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Table 7.2: Contrasts performed on the full model. MF = model-free; MB = 

model-based; SE = standard error; χ2 = chi-square distribution; df = degrees of 

freedom; Lag denotes the effect of time. Bold-face indicates p < .05 uncorrected 

for multiple comparisons. 

contrast  
estimate SE 

χ2 (1 
df) p 

MF Active > Sham -155.32 119.50 1.69 0.1937 

MB Active > Sham 22.17 131.42 0.03 0.8661 

MF/MB x 
Active/Sham -177.49 192.33 0.85 0.3561 

MF Lag-1 Active > 
Sham -87.49 55.46 2.49 0.1146 

MF Lag-2 Active > 
Sham 6.09 54.82 0.01 0.9115 

MF Lag-3 Active > 
Sham -73.93 50.87 2.11 0.1461 

MB Lag-1 Active > 
Sham 18.35 59.86 0.09 0.7592 

MB Lag-2 Active > 
Sham -26.57 60.15 0.20 0.6587 

MB Lag-3 Active > 
Sham 30.39 54.31 0.31 0.5758 

Lag MF Active 114.16 55.61 4.21 0.0401 

Lag MF Sham 127.72 45.43 7.90 0.0049 

Lag MB Active 43.72 60.32 0.53 0.4686 

Lag MB Sham 55.76 45.04 1.53 0.2157 

Lag MF > MB 142.40 124.64 1.31 0.2532 

Lag MF Active > 
Sham -13.57 65.62 0.04 0.8362 

Lag MB Active > 
Sham -12.04 70.89 0.03 0.8651 

Lag MF/MB x 
Active/Sham -1.53 102.76 0.00 0.9882 

 

Contrary to my hypothesis I did not find a difference between the Active and 

Sham stimulation conditions in any of the contrasts (Table 7.2). I therefore 

report the absence of evidence for an effect of anodal tDCS to right dlPFC on 

model-free or model-based control. In subsequent analyses I explored whether 

this null effect was due to a lack of power in the experiment or due to an inability 

of tDCS to right dlPFC to modulate model-based or model-free control. 
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Figure 7.2: Model-based and model-free influences on choice. I estimated the 

dependence of a choice at trial t on reward and transition events in trials t-1 up 

to t-3. These regression coefficients can be interpreted as model-based and 

model-free influences on choice, and larger coefficients indicate a stronger 

influence over choice. Firstly, all regression coefficients in the plot are 

significantly larger than zero, suggesting that model-based and model-free 

systems did not just rely on events on the previous trial but rather on events as 

far as 3 trials in the past. I did not observe any difference between Active and 

Sham conditions. Error bars indicate SEM. 

To estimate the power in the experiment I gathered effect size estimates in the 

published literature for manipulations involving the 2-step task (Wunderlich et 

al., 2012a) and for two tDCS experiments on dlPFC: an enhancement of 
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working memory (Fregni et al., 2005a) and a reduction in risk-taking (Fecteau et 

al., 2007a). I was unable to extract effect size estimates from three other tDCS 

studies on the dlPFC (Kincses et al., 2004; Boggio et al., 2007; Fecteau et al., 

2007b). For purposes of the power analyses I assumed that a tDCS effect on 

model-based control has an effect size, expressed in Cohen’s d, similar to these 

studies. Our power to detect this effect, given a two-tailed alpha of 0.05 and 

sample size of 22, was then at least 0.60 (Figure 7.3). Although this is not as 

high as the normative power of 0.80, it is considerably higher than many studies 

in cognitive neuroscience (Button et al., 2013). However, to support my claim 

that tDCS to right dlPFC does not affect model-based and model-free control I 

formally tested this hypothesis in a model comparison. 
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Figure 7.3: Statistical power to detect true effects. I estimated statistical power 

in the study based on effect size estimates taken from the published literature. I 

could then compute the power in the study based on 22 participants and a false 

positive rate of 0.05 (two-sided alpha). Assuming any true effect of tDCS would 

have a similar magnitude as the studies shown in the figure, the current study 

had a power of 50-80%. 

The analyses presented above rely on a frequentist approach and hence are 

framed in terms of null hypothesis testing, which precludes strong conclusions 

being drawn about the absence of an experimental effect. Hence, based on the 

preceding analyses I cannot decisively conclude that the null model is more 

likely compared to the full model that allows for differences in model-free or 

model-based control in Active versus Sham conditions. Bayesian statistics, by 

contrast, allow inferences to be made about the absence of experimental 

effects, and I thus exploited this approach to further probe the results. Thus, I fit 

three models to the data that were identical to the full model, except that the 

model-free and/or model-based regressors were assumed identical between 

stimulation conditions. The first model contained a single set of model-free 

regressors for both stimulation conditions; the second contained a single set of 

model-based regressors for both stimulation conditions; and the third (‘null’) 

contained a single set of model-based and a single set of model-free regressors 

for both stimulation conditions (see Table 7.3 for the regressors in the null 

model).  

Table 7.3: Regressors in the null model which contains the same MB and MF 

regressors for the Active and Sham stimulation conditions. MF = model-free; 

MB = model-based; SE = standard error. Lag denotes the effect of time. Bold-

face indicates p < .05 uncorrected for multiple comparisons. 
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regressor 
estimate SE 

z-
value p 

intercept 0.24 0.03 7.78 <0.0001 
Active -269.68 179.42 -1.50 0.1328 
MF Lag-1 332.27 48.71 6.82 <0.0001 
MF Lag-2 285.59 43.58 6.55 <0.0001 
MF Lag-3 208.50 48.78 4.27 <0.0001 
MB Lag-1 234.64 61.35 3.82 0.0001 
MB Lag-2 194.46 64.68 3.01 0.0026 
MB Lag-3 180.81 45.37 3.99 0.0001 
Active transition 
Lag -1 -11.12 35.88 -0.31 0.7566 
Active transition 
Lag -2 7.89 31.01 0.25 0.7993 
Active transition 
Lag -3 -20.15 33.11 -0.61 0.5428 
Sham transition 
Lag -1 0.98 40.73 0.02 0.9809 
Sham transition 
Lag -2 15.32 32.40 0.47 0.6365 
Sham transition 
Lag -3 2.99 35.05 0.09 0.9320 

 

I then performed Bayesian model selection using the Bayesian Information 

Criterion (BIC) and Aikaike Information Criterion (AIC) that are returned by the 

lme4 package for each model (Table 7.4). Although derived within different 

frameworks, both the BIC and AIC can be thought of as approximations to the 

true model evidence (Penny, 2012), both containing a term reflecting the 

likelihood of the model given the data (the ‘accuracy’ term) and a penalization 

term reflecting the number of parameters in the model (the ‘complexity’ term). 

As such, the difference in the values of the Information Criteria between models 

approximates the log Bayes factor, which is the ratio of probabilities of the 

model given the data. The BIC difference was 900 in favour of the null model 

when compared to the full model that contains a separate set of model-based 

and model-free regressors for the Active and Sham condition. This indicates the 
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null model was e900 times more likely than the full model. The AIC, which 

penalises model complexity less harshly than the BIC, was 100 in favour of the 

null model compared to the full model, i.e. the null model was e100 times more 

likely. I found a similar pattern of results for the model-free clamped and model-

based clamped models which were >e29 and >e44 less likely than the null model, 

respectively. Therefore I can conclude that it is significantly more likely that 

tDCS had no effect on model-based or model-free control than that it did.  

Table 7.4: Model comparison between a null model (one set of model-based 

and model-free regressors for both stimulation conditions) and more complex 

models that allow for an effect of tDCS on model-based control, model-free 

control, or both, which shows the null model is significantly more plausible than 

any of the models that allow for an effect of tDCS on behavioural control. The 

second column refers to the number of regressors in the hierarchical regression 

at the individual participant level (cf. Table 7.1 and Table 7.3). BIC: Bayesian 

Information Criterion; AIC: Aikaike’s Information Criterion. 

model No. of 
regressors 
per 
participant 

BIC ΔBIC AIC ΔAIC Bayes 
factor in 
favour of 
null model 
based on 
AIC 

null model 13 18553 0 17752 0 - 

separate 
model-free 
regressors for 
Active and 
Sham 

16 18962 409 17796 44 1.3 x 1019 

separate 
model-based 
regressors for 
Active and 
Sham 

16 18947 394 17781 29 3.9 x 1012 

full model 19 19453 900 17852 100 2.7 x 1043 

 



Transcranial direct current stimulation does not affect model-based control 
Chapter 7 

 

148 
 

To test for session effects I performed a hierarchical logistic regression with 

identical regressors as those described in Table 7.1, but instead of Active and 

Sham I coded the regressors as session 1 and 2, respectively. The equivalent 

contrasts to Table 2 were all p > .15 except effect for Lag on MF in session 1, p 

= .003, and session 2, p = .06. This suggests that model-based and model-free 

control do not change with additional exposure to the task, which replicates 

previous chapters (Wunderlich et al., 2012a; Smittenaar et al., 2013b).  

Both model-based and model-free control make equivalent predictions for 

second-stage choices as there is no task structure to exploit. I nevertheless 

explored the effects of stimulation on 1-step reward learning. I examined 

second-stage choices using hierarchical logistic regression similar to the 

analysis of first-stage choices: stay-switch behaviour was regressed against 

reward received on the most recent trial involving that second-stage pair (i.e. 

lag-1 only). Transition was not included as a factor because second-stage 

choices are assumed to be independent of the transition type that led to the 

state. I observed that in both stimulation conditions there was a main effect of 

reward, such that if a particular stimulus was rewarded in the most recent 

encounter with that second-stage pair it was more likely to be chosen again 

(Active, mean ± SE = 0.96 ± 0.13, p = 9.4 x 10-13; Sham, mean ± SE = 0.82 ± 

0.11, p = 5.46 x 10-13). There was a trend-level effect of stimulation-by-reward 

suggesting a stronger influence of reward under Active stimulation (mean ± SE 

difference = 0.14 ± 0.08; p = .07), but given the large amount of statistical tests 

performed I do not further consider this marginal effect. Together, these results 

suggest stimulation had no effect on second-stage choices.  

7.5 Discussion 
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Here I provide evidence that tDCS to right dlPFC does not affect model-based 

or model-free control in an established behavioural paradigm. In a double-blind 

design I confirmed that participants used both model-free and model-based 

strategies to solve the task, and I could quantify the extent to which either 

strategy was used. A putative enhancement of right dlPFC activity through 

Active compared to Sham anodal tDCS stimulation did not significantly change 

the level of model-based or model-free control. Formally testing this null effect, I 

provide evidence that a null model predicting no effect of stimulation performed 

significantly better than more complex models predicting an effect of stimulation 

on model-based control, model-free control, or both.  

I hypothesised that an enhancement of right dlPFC would improve model-based 

control, similar to beneficial tDCS effects observed on risk taking (Fecteau et 

al., 2007a), probabilistic learning (Kincses et al., 2004) and working memory 

(Fregni et al., 2005a). Based on published tDCS studies and studies of model-

based control, I estimated this study had more than 60% statistical power to 

detect such an effect were it to exist. Although the power was potentially lower 

than the often cited 80% power standard (e.g. Cohen, 1992), it was 

considerably higher than >75% of neuroscience studies as determined recently 

in a meta-analysis (Button et al., 2013). Despite this, I observed a null effect of 

tDCS on model-based control. However, frequentist statistics do not allow me to 

conclude the null hypothesis was a significantly better explanation than the 

alternatives in which stimulation does have an effect. I therefore performed a 

complementary model comparison using information-theoretic measures to 

formally show this (Stephens et al., 2005). Together, these analyses support the 
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conclusion that tDCS to right dlPFC has no effect on model-based or model-free 

control. 

There is a modest literature on improvement in cognition through tDCS of the 

right dlPFC, and this begs the question why no effect was found in this 

experiment. This is even more surprising because the dlPFC is implicated in 

model-based processes (Lee and Seo, 2007; Gläscher et al., 2010; Abe and 

Lee, 2011; Wunderlich et al., 2012b; Xue et al., 2012) and when the region is 

transiently disrupted using transcranial magnetic stimulation, model-based 

control is selectively impaired (Smittenaar et al., 2013b). Here I speculate that 

the null result is most likely due to an inability of tDCS to improve the specific 

component processes of model-based control subserved by the dlPFC.  

Firstly, little is known about the physiological effects of tDCS in prefrontal cortex 

(Stagg and Nitsche, 2011), though this is a rapidly developing field (Stagg et al., 

2013). While there is evidence that anodal stimulation over M1 increases the 

motor evoked potential (MEP) size elicited by TMS (Nitsche and Paulus, 2000), 

it is not clear how the cellular physiology of the dlPFC is changed following 

anodal stimulation, nor what the physiological underpinnings of model-based 

control in the dlPFC are. Despite these unknowns, I suggest here that the 

neural mechanisms for model-based control in right dlPFC are not amenable to 

improvement through anodal tDCS.  

Secondly, I used a task to assess model-based control that has previously been 

shown to be susceptible to manipulation (Wunderlich et al., 2012a; Otto et al., 

2013; Smittenaar et al., 2013b). I used a set of stimulation parameters that are 

widely used in the tDCS community (Nitsche et al., 2008), and replicated 
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previous observations of dual control by model-based and model-free systems. 

Together, this suggests the null result is not due to the introduction of uncertain 

elements (e.g. novel task or novel stimulation parameters) into the study design. 

Despite the use of established methods, I cannot exclude methodological 

issues as the cause of the null effect altogether. Although I am confident the null 

effect is not due to faulty equipment or errors in the double-blinding procedure 

(see Methods), potential other issues might include inaccurate electrode 

placement, a problem that can be alleviated by stereotactic navigation using 

anatomical scans as commonly used in transcranial magnetic stimulation, and 

unpredictable current flow based on electrode placement, which might be 

alleviated by computational models of current flow (Wagner et al., 2007).  

I was particularly careful to employ a double-blinded design to eliminate any 

stimulation-dependent influence from the experimenter on task performance. 

The task used here requires relatively extensive involvement of the 

experimenter in the task instructions. In a double-blinded design, these effects 

can be most reliably attributed to the experimental manipulation of interest 

rather than to unintended information biases (Schulz and Grimes, 2002). I note 

that no published work has manipulated the instruction of the 2-step task to 

examine its influence on model-based and model-free performance. 

In conclusion, I provide evidence that anodal stimulation of the right dlPFC by 

tDCS does not alter model-based or model-free control in the paradigm. This 

observation was made in the context of extensive and causal evidence for a 

role of right dlPFC in model-based control in humans. As such, my results 

should not be interpreted as providing evidence that the right dlPFC is not 
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involved in model-based control; rather, my main finding is that anodal 

stimulation does not necessarily enhance this function. An open question is 

whether tDCS might improve performance on tasks that are more taxing on the 

model-based system (e.g. Huys et al., 2012).  
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8 Predicting striatal reward signals from corticostriatal 

connectivity 
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8.1 Abstract 

A defining feature of the basal ganglia structures are their anatomical 

organization into multiple corticostriatal loops, which themselves subdivide into 

direct and indirect pathways in the basal ganglia. A central tenet of this 

framework is that local striatal function is determined by its connectivity with 

cortex, which creates the functional topography that is mirrored within cortex 

and striatum. In this chapter I formally test this notion by asking whether it is 

possible to leverage the information contained in corticostriatal anatomical 

connectivity to predict local function of the striatum in a reinforcement learning 

task. Using high-resolution functional and diffusion MRI, combined with leave-

one-out cross-validation methods, I show that connectivity profiles can indeed 

predict reward and action value signals in the caudate nucleus. I then describe 

the cortical regions that contribute most strongly to this prediction. Future work 

can explore in more detail the precise mechanisms by which structural 

connectivity between the striatum and specific cortical regions predict functional 

activity, including studying functional representations across the corticostriatal 

network.  

8.2 Introduction 

In chapter 2 I went into some detail explaining the anatomical layout of the 

basal ganglia, including the remarkable parallel corticostriatal loops that 

comprise its defining structural and functional feature at the macro-scale 

(Alexander et al., 1986; Haber, 2003). We can take a more abstract view of the 

brain and consider that the function of any neural region, and indeed any 

neuron, is to a large extent governed by its inputs. This has led to the prediction 

that knowledge of the ‘connectivity fingerprint’ of the brain is sufficient to predict 
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its ‘functional fingerprint’  (Passingham et al., 2002). This notion was most 

directly tested in a combined fMRI/DTI study by Saygin et al. (2012). The 

authors predicted functional responses to face stimuli for individual voxels in the 

fusiform gyrus from connectivity fingerprints of these same voxels. Critically, 

functional responses for an individual participant were better predicted by a 

connectivity fingerprint than by the average functional response of the group. 

Although this approach has been extended to other functions of the visual 

system (Osher et al., 2015), it has not been applied to higher cognitive functions 

or subcortical structures. 

In this chapter I ask whether functional responses across the striatum during 

value-based learning show a reliable relationship with anatomical inputs from 

cortex (Haber and Behrens, 2014). The striatum has been suggested to serve 

as a focal point for associative, reward and motor information, though with each 

input defining only partially overlapping functional regions (Haber et al., 2006). 

Instrumental learning is widely accepted to engage the striatum both in animal 

models (Samejima et al., 2005; e.g. Lau and Glimcher, 2007; Samejima and 

Doya, 2007) and human studies (e.g. O'Doherty et al., 2004; Wunderlich et al., 

2012b). However, the relationship between function and structural connectivity 

has not been explored in detail in humans, instead there has been a relatively 

exclusive focus on purely structural connectivity of the corticostriatal network 

(e.g. Leh et al., 2007), or between-participant correlations of structure and 

function (e.g. corticostriatal connectivity predicts habitual versus goal-directed 

control; de Wit et al., 2012a). In this chapter I use a method applied between-

voxels that attempts to understand what makes some parts of the striatum 

respond differently from other parts based on structural connectivity fingerprints. 
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I predicted that reward signals associated with action values during choice as 

well as rewards and expected value at the time of outcome can be predicted 

from cortical connectivity fingerprints for voxels in the caudate nucleus.  

8.3 Methods 

8.3.1 Participants 

Twenty-four adults participated in the experiment (14 female; age range 18-36 

years; mean ± SD = 22.5 ± 4.5 years). All participants were right hand 

dominant, had no history of psychiatric or neurological disorder, were not taking 

any medication known to affect neural or cognitive function, had normal or 

corrected-to-normal vision and passed the safety requirements to enter a MRI 

scanner. All participants provided written informed consent prior to the start of 

the experiment, which was approved by the Research Ethics Committee at 

University College London (UK). One further participant was excluded due to 

excessive movement (images could not be realigned successfully). 

8.3.2 Overview of the approach 

The goal of the experiment was to test the notion that corticostriatal input 

governs representations of action values, reward and expected value in the 

striatum. To understand the link between the anatomical pathways and their 

contribution to reinforcement learning I estimated for each voxel in the striatum 

its functional response to reward and expected values. These same voxels 

were characterised in terms of their structural connectivity to 148 cortical 

regions through diffusion imaging techniques. This allowed a prediction of 

functional activation from structural connectivity with the cortex. All these 

analyses were performed in participant space, with only summary statistics for 
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each participant taken to the group level (see Figure 8.1 for overview of study 

design).  

 

Figure 8.1: overview of the acquired data and processing steps central to this 

chapter. Each of these steps is further expounded in the methods section. 

8.3.3 Task 

The task required a participant to track stimulus-specific action values in order 

to probe how these action values are represented and updated in neural 

structures during choice and feedback (Figure 8.2A). Participants had to learn 

two separate two-armed bandits which were distinguished by their colour (red or 

blue; see Figure 8.2A). On each trial, one of these two slot machines was 

presented to the participant, requiring a response using either right index finger 

or right ball of the foot. Binomial feedback was then presented which indicated a 

reward or no-reward. The probability of reward given a bandit s and action a, 
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𝑝(𝑟 |𝑠𝑖, 𝑎𝑗) where 𝑖 ∈ {1,2} and 𝑗 ∈ {1,2}, changed slowly over trials, forcing 

participants to keep exploring throughout the experiment in order to maximise 

the number of rewards obtained.  

 

Figure 8.2: reinforcement learning task involving right hand and right foot 

responses. (A) A single trial consisted of the following sequence: a fixation 

cross (inter-trial interval) was presented for 750-1500 ms, drawn from a uniform 

distribution; either the red or blue slot machine was presented for 1250-3000 

ms, drawn from a uniform distribution; on half the trials (‘abort’ trials) the slot 

machine disappeared and the next trial started; on the other half (‘response’ 

trials) lights on the slot machine would turn green, serving as a Go signal; 

participants responded within 1500 ms by depressing force-sensitive buttons 

with either their right hand or foot, and upon reaching the force threshold the 

corresponding lever immediately became brighter until the 1500 ms were up; 
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feedback was then presented on the slot machine for 1000 ms, consisting of 

either “+ £2.00” in green, or “+ £0.00” in red. (B) The probability of obtaining the 

reward varies over time per response per slot machine. This meant participants 

were required to track 4 random walks that could go between 0.15 and 0.85. 

Participants performed 512 trials (approximately 42 minutes) consisting 128 

red-abort, red-response, blue-abort, and blue-response trials each (Figure 

8.2A). The order of these four trial types was randomly determined and only 

constrained such that no trial type occurred for more than 3 trials in a row.  

Participants came in 1 to 20 days before the scanning session to perform a full 

set of 512 trials (mean ± SD = 7 ± 4.4 days). A different set of reward 

probabilities was used each day but otherwise the parameters of the experiment 

were identical. Participants could also use the training session to get used to 

the foot and hand force buttons.  

8.3.3.1 Fixed reward walks 

The 𝑝(𝑟 |𝑠𝑖, 𝑎𝑗 , 𝑡), where t indicates trial number, was generated by a Gaussian 

random walk for each action a and stimulus s as follows:  

𝑝(𝑟 |𝑠𝑖, 𝑎𝑗 , 𝑡 + 1) = 𝑝(𝑟 |𝑠𝑖, 𝑎𝑗 , 𝑡) + 𝑁(0,0.01) 

where for the first trial the probability was randomly drawn from U(0.15,0.85). 

The walks were not generated anew for each participant—rather, one set of two 

pairs was used for each participant’s practice, and one set was used for each 

participant’s scanning session. However, the assignment of these two pairs to 

the red and blue slot machine was randomised, and the subsequent assignment 

of random walk to the two available actions was also randomised. This meant 

that volatility and availability of reward were matched between participants. The 
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walks were constrained in their upper (0.85) and lower (0.15) values and in their 

mean value (between 0.4 and 0.6; see Figure 8.2B). The highest correlation 

between any two of the four walks was 0.38, forcing participants to learn about 

the value of each option through trial-and-error rather than inferring the value of 

choice options based on a level of correlation between the walks. 

8.3.3.2 Cancelling half the trials 

Examining value representations in the BOLD signal at both choice and 

outcome phase can be challenging due to the sluggishness of the BOLD 

response (see section 3.2.2), and the resulting correlated regressors in the 

design matrix if the choice and feedback are presented close together in time. I 

considered two options to minimise this potential confound: a slow design 

where choice and feedback events are separated by at least 8 s (e.g. Behrens 

et al., 2008), and a fast design in which half the trials are cancelled at any point 

between choice and feedback phase (e.g. Guitart-Masip et al., 2011). Pilot data 

with both designs (data not shown) suggested participants were more accurate 

at learning reward probabilities in the fast design, possibly due to 

disengagement from the task when participants are faced with long pauses. 

Also, a slow design might lead to non-striatal learning mechanisms dominating 

behaviour, whereas I was specifically interested in such striatal mechanisms 

(Foerde et al., 2012). I thus opted for the fast design. 

8.3.4 Reinforcement learning models 

I used temporal difference (TD) reinforcement learning models as described in 

chapter 2 to model participants’ behaviour and estimate quantities that might be 

represented in the BOLD signal in the striatum, most notably rewards and 

action values. Each slot machine i defines a state si where two actions aj are 
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available. The reward r on trial t can be either 0 or 1. The value of action j in 

state i is updated after feedback by: 

𝑄𝑠𝑖,𝑎𝑗
(𝑡 + 1) =  𝑄𝑠𝑖,𝑎𝑗

(𝑡) + 𝛼 ∗ 𝜕(𝑡) 

where α = 0 for all states and actions that did not occur on trial t-1. As the 

reward probabilities change independently for each state and action, the 

participant only learns about the chosen action in the current state, rather than 

inferring changes in value for non-chosen state-action pairs in a ‘model-based’ 

way (except for value decay—see below). 𝜕(𝑡) represents the RPE at trial t, 

defined as 

𝜕(𝑡) = 𝑟(𝑡) −  𝑄𝑠𝑖,𝑎𝑗
(𝑡) 

The probability of each action given these cached values 𝑄 are then given by 

the softmax equation with inverse temperature β: 

𝑝(𝑎𝑗  | 𝑠𝑖) =  𝑒
𝛽∗𝑄𝑠𝑖,𝑎𝑗 ∑ 𝑒𝛽∗𝑄𝑠𝑖,𝑎𝑘

2

𝑘=1

⁄  

I used an expectation maximization (EM) approach as implemented in Guitart-

Masip et al. (2012) to simultaneously fit parameters at the level of participants 

and population.  

In addition to this basic model with a learning rate and inverse temperature I 

examined a number of more complex models that might provide a better 

explanation for the data. For each of these models I estimated the negative log-

likelihood and Bayesian Information Criterion (BIC) to select the model that 

optimally described the participant’s behaviour on this task. The additional 

parameters are described in Table 8.1. All parameter combinations were tested. 
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Table 8.1: additional parameters for the reinforcement learning model. 

Parameter 
name 

Description 

Negative 
learning rate 

Separate learning rate for negative and positive feedback 

Effector bias A fixed bias towards hand or foot responses 

Lapse rate A value that constrains the softmax between ε and 1-ε 
rather than 0 and 1 to account for occasional lapses 

Decay Implements the notion that unsampled actions do not 
maintain their value but decay back to 0.5. The parameter 
describes the time constant of exponential decay. 

Perseverance A tendency to stick with the same action for a given 
stimulus, irrespective of value. 

 

8.3.5 Magnetic resonance imaging 

For each participant I acquired 1.5 mm isotropic restricted volume echo-planar 

imaging (EPI) data during task performance, 0.8 mm isotropic whole-brain multi-

parameter maps (MPMs) consisting of a T1-, proton density- and magnetisation 

transfer-weighted volume, 1.5 mm isotropic whole-brain diffusion weighted 

images, 1.1 mm restricted volume diffusion weighted images, and B0 field maps 

to correct for field inhomogeneity for the EPI data. The parameters of these 

scans are detailed in Table 8.2. I also acquired a single whole-brain volume 

using otherwise identical settings for the EPI sequence. Cardiac rate was 

recorded using an MRI-compatible pulse oximeter (Model 8600 F0, Nonin 

Medical), and respiration was monitored using a pneumatic belt positioned 

around the abdomen. I processed these data as described in the literature 

(Hutton et al., 2011) and included them as regressors of no interest in the first-

level general linear models (see below). 
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Table 8.2: MRI acquisition parameters. 

Sequence Parameters 

B0 field map Double echo FLASH sequence (matrix size = 64 x 64; 64 
slices; spatial resolution = 3 x 3 x 3 mm3; gap = 1 mm; short 
TE = 10 ms; long TE = 12.46 ms; TR = 1020 ms) to correct 
EPI images for distortion in the B0 field (Weiskopf et al., 
2006). 

Functional, 
EPI 

Restricted volume, 44 slices (40 in slab with 10% 
oversampling), FoV read 192 mm, transverse slices tilted 20 
degrees, anterior-posterior phase encoding, 12% phase 
oversampling, 10% slice oversampling, 40 slices per slab, 
voxel size 1.5 mm isotropic, TR = 78 ms, TE = 37.3, 
GRAPPA2 along phase encoding (144 PE ref. lines, 44 3D 
ref. lines), 180-185 volumes per block depending on 
duration of block over 4 ~10 min blocks in total. 

Multi-
parameter 
maps 

Proton density (PD)-weighted, T1-weighted, and 
magnetization transfer (MT)-weighted images at 0.8 mm 
isotropic resolution for each participant using multi-echo 3D 
FLASH (Helms et al., 2008a). A B1-map was acquired using 
a 3D SE/STE EPI method (Lutti et al., 2012) to correct for 
the effects of inhomogeneous radio-frequency excitation on 
the quantitative maps. Total time of acquisition was ~40 min. 

Diffusion-
weighted, 
whole-brain 

Whole-brain 1.5x1.5x1.5 mm3 resolution diffusion-weighted 
images with settings similar to the Human Connectome 
Project (Van Essen et al., 2012; Sotiropoulos et al., 2013). 
Three shells (b=900/1800/2700) for both right-left and left-
right phase-encoding directions. Each of these 6 scans 
contained 10 images with no diffusion weighting (b=0) and 
100 directions spread out over a full sphere. I used 
multiband 3 but no further acceleration. Acquisition time was 
10 min 20 s for each of the 6 scans. No phase 
oversampling, 75 transverse slices, FoV read 192 mm, FoV 
phase 100%, slice thickness 1.5 mm with 0 distance 
between slices, TR 5440, TE 130 ms. I additionally acquired 
a single b0 image with identical settings, but phase encoding 
along anterior-posterior and along posterior-anterior. These 
additional phase encoding directions should aid in 
estimating distortions due to distortions along the phase 
encoding direction.  

Diffusion-
weighted, 
restricted 
volume 

These images were acquired but not further analysed in this 
chapter. 47 slices, distance factor 10%, transverse 
orientation, anterior-posterior phase-encoding, 35% phase 
oversampling, FoV read 156 mm, FoV phase 40.8 %, 1.1 
mm slice thickness, TR = 7200 ms, TE = 87.6 mm, b = 900, 
100 directions over full sphere, 10 b0 images interspersed, 
acquisition time 13 min 19s per scan, two averages 
acquired. Additional single b0 image acquired with posterior-
anterior phase encoding to correct for distortions along the 
phase-encoding direction, otherwise identical parameters.  
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8.3.5.1 Multi-parameter maps processing 

Fully quantitative maps of the MR parameters MT, R1, PD and R2* were 

extracted from the acquired data as described previously (Helms et al., 2008a). 

I extracted a brain mask in structural space from the T1w image using BET 

implemented in FSL (Smith, 2002).  

8.3.5.2 Semi-automatic segmentation of basal ganglia substructures 

Whereas the striatum can be reasonably defined using automated algorithms, 

other parts of the basal ganglia require manual segmentation. These were the 

globus pallidus pars interna (GPi) and externa (GPe), subthalamic nucleus 

(STN) and substantia nigra and ventral tegmental area (SN/VTA). I used FSL 

FIRST to automatically segment the bilateral caudate and putamen (Patenaude 

et al., 2011), and ITK-SNAP to segment the remaining regions (Yushkevich et 

al.). Note that segmentation was performed bilaterally for each participant as it 

is unclear to what extent basal ganglia function is lateralised (e.g. Scholz et al., 

2000).  

8.3.5.3 Automatic segmentation of cortex using FreeSurfer 

To obtain cortical targets for tractography I used FreeSurfer’s RECON-ALL 

pipeline to generate 148 cortical labels in structural (participant) space following 

the Destrieux atlas (Destrieux et al., 2010; Fischl, 2012). These were 

transformed into volumetric ROIs. Two participants lacked 1 and 3 labels, 

respectively, so these were added as empty ROIs for tractography (see below). 

The FreeSurfer segmentation pipeline has been described in detail elsewhere 

(Fischl et al., 2004).  
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8.3.5.4 FMRI preprocessing 

I analysed the fMRI data in SPM8 (Wellcome Trust Centre for Neuroimaging, 

UCL, London; www.fil.ion.ucl.ac.uk/spm). The images were corrected for signal 

bias at low spatial frequencies, realigned to the first functional image and 

distortion corrected using the B0 field maps. The first functional image was 

coregistered to the MT image for its superior subcortical performance in white- 

and grey-matter segmentation compared to T1-weighted images (Helms et al., 

2009) and these transformation parameters were then applied to all restricted-

volume functional images to bring them into structural space. Notably, SPM’s 

coregistration of the restricted-volume EPI to the MT image worked well, 

obviating the need for an intermediate step involving the whole-brain EPI 

images. For additional analyses of group-level responses I applied 

normalization parameters to the functional images to bring them into MNI space 

and applied a 6 mm full-width-half-maximum (FWHM) smoothing kernel. All 

participant-level statistics were performed on voxels within an explicit mask 

(rather than the more commonly used implicit mask) to prevent brain voxels with 

low signal from being excluded. The explicit mask for structural (i.e. native) 

space was constructed by restricting the whole-brain mask (see multi-parameter 

maps) to the volume of the EPI sequence using SPM’s IMCALC.  

8.3.5.5 FMRI general linear model 

The preprocessed images were analysed in an event-related design using a 

general linear model (GLM). The first model contained 8 explanatory variables 

of interest (EVs) defined at the onset of the visual stimulus (2 identical EVs), the 

‘go’ cue when choosing hand (1 EV) or foot (1 EV), the onset of feedback after 

choosing hand (2 identical EVs), and the onset of feedback after choosing foot 
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(2 identical EVs). A number of identical EVs were entered to be able to add 

multiple, non-orthogonalised parametric modulators to specific events. These 

parametric modulators were the Q-value for the hand and foot at visual 

stimulus; the Q-value for the hand and foot on the respective response EVs, 

and whether reward was received for the respective feedback EVs. 

I added the following nuisance regressors: 1 regressor for trials where no 

response was recorded in the 1500 ms response window, 1 regressor when the 

trial was aborted, 6 movement regressors produced by the realignment 

procedure, 14 physiological regressors for cardiac and respiratory variables 

(Hutton et al., 2011), and 3 block regressors covering run 1 to 3, respectively. 

The 4th block was subsumed in the constant of the design matrix. The GLM was 

estimated separately for each participant. All EVs (but not physiological 

regressors) were convolved with a canonical haemodynamic response function 

(Friston et al., 1995). 

8.3.5.6 Diffusion weighted imaging preprocessing 

The diffusion data was preprocessed using FSL (Smith et al., 2004). I estimated 

the distortions along phase-encoding directions by entering 8 b0 images into 

TOPUP (1 from each of 2 blips * 3 shells + 1 AP + 1 PA blip; Andersson et al., 

2003). The field coefficients were then supplied to EDDY, which corrects for the 

phase-encoding distortion, movement, and eddy currents in all 660 volumes (3 

shells * 2 phase-encoding directions * 110 images each). The corrected b0 

volume from TOPUP was entered into BET to obtain a brain mask. I used 

DTIFIT to estimate fractional anisotropy (FA) maps and BEDPOSTX to estimate 

up to three fibres per voxel using custom settings for multishell data (Behrens et 

al.; Behrens et al., 2007b; Jbabdi et al., 2012). 
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8.3.5.7 Probabilistic tractography 

I used PROBTRACKX2 implemented in FSL to estimate connectivity profiles for 

each 0.8 mm isotropic voxel in the striatum. Each voxel was seeded with 10k 

streamlines and standard parameter settings. I then extracted connectivity 

profiles for voxels at coordinates specified by the anatomical masks. The 

locations of these voxels were recorded and used later to extract functional 

signals from identical locations.  

8.3.6 Relating structure to function  

For the left and right caudate I extracted functional signals for the reward, Q-

value at choice, and Q-value at outcome contrasts at voxel locations identical to 

the diffusion data. I then used a leave-one-out cross-validation (LOOCV) 

approach to predict functional activation in participant n based on the 

relationship between structure and function in participants n-1 (Figure 8.3). All 

functional data were smoothed at 6 mm FWHM and z-scored before entering 

the regression (though leaving the data unsmoothed does not drastically alter 

results, cf. Saygin et al., 2012). The design matrix for each participant contained 

149 columns (1 intercept and 148 target regions) and the number of rows 

corresponded to the number of voxels in the seed region. Each value indicated 

the number of samples that reached the target region, z-scored across voxels 

for each region separately. The dependent variable was each voxel’s functional 

response to a contrast, also z-scored. The regression coefficients for n-1 

participants were averaged and used to predict each voxel’s functional 

response in participant n based on its connectivity profile. Each voxel had some 

error in its predicted value, and the mean absolute error (MAE) was calculated 

for each participant (Saygin et al., 2012). This was used as a standardised 
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measure of predictive capacity. I also performed an identical analysis to the 

connectivity LOOCV approach, but instead randomly permuted the regression 

coefficients before estimating functional signals for the n-th participant. By doing 

this permutation 10k times I built up a null distribution for comparison against 

the true connectivity model. 
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Figure 8.3: overview of regression approach. The betas are estimated based on 

n-1 participants and used to predict the reward signals in participant n. The 

mean absolute error (MAE) of the prediction is recorded and the approach is 

repeated for every participant. In this example the reward response is predicted, 

and I also used this method on action values at the time of choice and expected 

values at the time of outcome. 

8.4 Results 

8.4.1.1 Reinforcement learning model 

The model comparison revealed that a separate learning rate for negative 

feedback and a decay parameter for unchosen values are consistently present 

in the best models (Table 8.3). Adding further parameters did not yield sufficient 

improvements to warrant additional complexity, such that the winning model 

was a four-parameter model including two learning rates, an inverse 
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temperature and a decay rate. Table 8.4 shows descriptive statistics for the 

parameters fit to the behavioural data from the scanning session.  

Table 8.3: model comparison results with only the five best models shown here. 

Each reinforcement learning model had a single learning rate and inverse 

temperature parameter. Added to this base model was perseverance, effector 

bias, separate learning rate for positive and negative feedback (‘neg α’), a lapse 

rate, and exponential decay for unchosen options back to 𝑄 = 0.5. The 

integrated Bayesian Information Criterion was estimated for 200k samples each 

from the practice and scanning session, and summed over both sessions and 

participants to arrive at final BICi. For details of this approach see Guitart-Masip 

et al. (2012). 

Additional parameters BICi δBICi 

neg α, decay 12393 0 

perseverance, neg α, decay 12400 +7 

lapse rate, neg α, decay 12427 +34 

perseverance, lapse rate, neg α, 
decay 

12435 +42 

 

Table 8.4: parameter estimates from winning model for the scanning session. 

Parameter 25th percentile median 75th percentile 

Positive learning rate 0.54 0.61 0.72 

Negative learning rate 0.20 0.32 0.38 

Inverse temperature 3.12 5.01 5.87 

Decay 0.36 0.55 0.73 

 

8.4.1.2 Semi-automated segmentation 

The volumes for the segmented basal ganglia structures are presented in Table 

8.5. These values are compared to values from the literature, which shows no 

discrepancies. Figure 8.4 shows, for illustration purposes, a thresholded 

probabilistic map of normalised ROIs. 

Table 8.5: Average region of interest volumes. Values indicate volume of each 

structure averaged over left and right, with 95% CI across participants. 1 
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Keuken et al. (2014), 2 approx. values from Lenglet et al. (2012), 3 average 

value between left and right from Ahsan et al. (2007). 

Structure volume (mm3) ± 95% CI volumes (mm3) from 
literature ± SD  

Caudate 3679 ± 153 
2 4.1e3, 3 4102 

Putamen 4796 ± 233 
2 4.5e3, 3 4615 

Accumbens 460 ± 33 3 341 

Globus pallidus pars 
externa 

1152 ± 42 1 918 ± 123, 2 1.2e3 

Globus pallidus pars 
interna 

532 ± 31 1 366 ± 60, 1 405 ± 68, 2 

0.7e3 

Subthalamic nucleus 81 ± 5 1 56 ±16 

substantia nigra & 
ventral tegmental area 

490 ± 24 3 373 

 

 

Figure 8.4: normalised ROIs thresholded at p = 0.27 viewed from caudal looking 

rostral. Cyan = caudate nucleus; pink = putamen; beige = accumbens; red = 

globus pallidus pars externa; green = globus pallidus pars interna; yellow = 

substantia nigra and ventral tegmental area; blue = subthalamic nucleus. 
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8.4.1.3 Functional results in ROIs 

The extracted contrast values from the anatomical ROIs in each participant’s 

native space showed a largely familiar pattern of reward and value signals 

(Figure 8.5). Action values at the time of choice (irrespective of actual choice), if 

represented, did not survive averaging across the ROI, with only the caudate 

showing a weak signal at p = .08. The reward prediction error is calculated as 

reward - expectation, and a region representing the RPE should thus show a 

positive effect of reward and negative effect of expectation. This was indeed the 

case in the putamen and caudate nucleus, whereas the accumbens only 

showed a reward signal but lacks an expected value signal. None of the other 

ROIs showed any significant effects, including a null effect for reward and 

expected value at outcome in the SNVTA (Figure 8.5). Together, this suggests 

the task was able to elicit value signals similar to those reported previously in 

the literature. 
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Figure 8.5: extracted betas for four reinforcement learning contrasts. Using 

anatomically defined regions of interest I extracted regression coefficients in 

participant space. The Q value at choice, which is the representation of the 

action value irrespective of choice, shows only a weak effect in the caudate. 

Significant activations are reward across the striatum and nucleus accumbens; 

negative expected value at outcome, but only in caudate nucleus and putamen; 

and reward prediction error again across the striatum and nucleus accumbens. 

The EV at outcome, which together with reward is what makes up the reward 

prediction error, is not observed in the accumbens. Reassuringly, the other 

regions of the basal ganglia show no value-related signals, despite e.g. the GPe 

bordering the putamen directly. This emphasises the specificity of these 

activations and potentially of the computations performed in these regions. Error 
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bars indicate 95% CI. Stars indicate p-values from 1-sample t-test against zero: 

* < .05, ** < .001, *** < .0001. 

8.4.1.4 Functional-DTI relationship 

The aim of this chapter was to predict functional signals in the striatum based 

on corticostriatal connectivity. As described in the methods I calculated the 

mean absolute error (MAE) for the connectivity model to compare against the 

null model from the permutation. The focus here is on the caudate as this 

structure is most likely to represent the variables of interest and is more 

amenable to tractography than the putamen due to its shape. As can be seen in 

Figure 8.6 the connectivity prediction was significantly more accurate than the 

permuted connectivity prediction (Cohen’s d = 0.46, 1.04 and 0.88 for action 

values, reward and EV outcome, respectively; all p < .003 in paired t-test). This 

provides evidence that at the level of a single participant, knowledge of 

structural connectivity contains information pertaining to the functional signals.  
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Figure 8.6: Using structural connectivity to predict functional activity. Functional 

signals in individual voxels related to action values at choice, reward, and 

expected value at outcome (‘EV outcome’) were predicted from corticostriatal 

connectivity in those same voxels. A 10k permutation test in which the 

regression weights were shuffled before calculating the prediction revealed 

significantly better predictions by connectivity compared to chance (all p < 

.003). 

I then examined what cortical regions contributed to the functional prediction by 

testing all regression coefficients against zero across participants. The cortical 

regions that significantly contributed to functional signals in the right caudate (at 

p < .05 uncorrected for illustration purposes) are shown in Table 8.6. This 

statistical test measures the magnitude and reliability of the structure-function 

relationship across participants. As an example, voxels in the right caudate that 

are more strongly connected, as measured by probabilistic tractography, to the 

left middle frontal gyrus have weaker reward responses (Table 8.6). Notably, 

each individual region contributes only weakly to the prediction as evidenced by 

none of the regions surviving Bonferroni correction. 
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Table 8.6: overview of regions most strongly contributing (in terms of absolute 

standardised coefficient magnitude) to the prediction of the functional contrast. 

In the LOOCV approach each region has a standardised regression coefficient, 

i.e. weight, in its prediction of functional activity for each contrast. Data shown 

here are for the right caudate only. rh = right hemisphere; lh = left hemisphere; 

G = gyrus; S = sulcus; CI = confidence interval across participants. 

Region Coefficient lower 95% 
CI 

upper 95% 
CI 

Action values 

rh G Ins lg and S cent ins 0.037 0.010 0.064 

lh G temp sup-Lateral 0.015 0.003 0.027 

rh S calcarine 0.058 0.012 0.105 

rh G temp sup-Plan tempo -0.040 -0.073 -0.006 

rh S front sup 0.047 0.006 0.087 

lh G front inf-Triangul 0.056 0.007 0.106 

lh Pole occipital 0.030 0.003 0.057 

rh S front inf -0.084 -0.161 -0.006 

rh G temporal middle -0.074 -0.144 -0.005 

lh G and S transv frontopol -0.037 -0.071 -0.002 

lh G and S cingul-Ant -0.039 -0.078 -0.001 

Reward 

rh G cingul-Post-ventral -0.087 -0.128 -0.045 

lh G front middle -0.105 -0.188 -0.023 

lh S intrapariet and P trans -0.024 -0.043 -0.005 

rh G and S frontomargin 0.157 0.028 0.286 

EV outcome 

rh S collat transv ant -0.096 -0.161 -0.030 

rh S temporal inf -0.045 -0.076 -0.014 

lh S oc sup and transversal 0.013 0.002 0.023 

rh G and S cingul-Mid-Ant 0.043 0.007 0.079 

lh S occipital ant -0.005 -0.009 -0.001 

lh S orbital med-olfact 0.058 0.007 0.108 

lh G front sup -0.074 -0.139 -0.009 

rh G oc-temp lat-fusifor 0.020 0.002 0.038 

rh G cingul-Post-ventral 0.047 0.003 0.091 

lh G temporal middle -0.013 -0.025 -0.001 

 

In Figure 8.7 to Figure 8.9 I show all 148 regression weights averaged across 

participants projected back into the 148 masks used for probabilistic 

tractography. These figures show the weights for the structure-function 

relationship in the right caudate. That is, positive values indicate that a voxel in 
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the right caudate has a relatively stronger response to the contrast if it is 

relatively stronger connected to that part of cortex. I note a number of 

observations: coefficients for action values at choice are particularly strong in 

right dorsolateral and bilateral ventromedial PFC; coefficients for reward signals 

are particularly large in right cingulate cortex and right anterior temporal lobe, 

and show a negative-to-positive gradient from motor to occipital cortex; and 

coefficients for EV at outcome are particularly large in ventromedial prefrontal 

and orbitofrontal cortex. Across all three contrasts connectivity to the dorsal 

regions of right parietal, sensory and motor cortex seem to show a strong 

predictive power—sometimes positive, sometimes negative (see slices with 

high z-coordinates).  
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Figure 8.7: regression weights averaged across participants predicting action 

values signals in the right caudate nucleus from structural connectivity. The 

regression from Figure 8.6 yields 1 regression coefficient for each of 148 

cortical regions. In this figure these weights are averaged across participants 

and projected onto a normalised set of 148 cortical ROIs, here overlaid onto the 

MNI152T1 template. Warm colours, such as those in ventral prefrontal and 

dorsolateral prefrontal cortex, indicate connectivity to these areas is associated 

with stronger action values responses in those caudate nucleus voxels. The 

units on the colour bar are standardised regression coefficients, the coordinates 

are z-coordinates in MNI space.  
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Figure 8.8: structural connectivity regression weights for reward signals in the 

right caudate. See Figure 8.7 for details. 
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Figure 8.9: structural connectivity regression weights for EV outcome signals in 

the right caudate. See Figure 8.7 for details. 
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8.5 Discussion 

In this chapter I used a reinforcement learning task to elicit BOLD responses in 

the striatum related to action values, rewards and expected values. The aim 

was to explain local variation in these responses based on local variation in the 

corticostriatal connectivity fingerprint. Focusing on the caudate nucleus, the 

results show that the connectivity fingerprint of a voxel can be used to predict its 

response to action values, reward and expected value better than chance. This 

result supports the widely held belief that partially distinct functional zones in the 

striatum are determined by inputs from cortex (Alexander et al., 1986; Haber, 

2003; Draganski et al., 2008; Averbeck et al., 2014; Haber and Behrens, 2014).  

Using an anatomical ROI approach I observed reinforcement learning-related 

signals in the striatum, replicating previous work (O'Doherty et al., 2004; Tricomi 

et al., 2004; Rutledge et al., 2009; Jessup and O'Doherty, 2011; Guitart-Masip 

et al., 2012). However, regions downstream of the striatum such as the internal 

and external globus pallidus, subthalamic nucleus and SN/VTA showed no such 

BOLD modulation by task variables. This can be considered surprising for 

various reasons: firstly, a basic view of brain function would assume that a 

change in neural activity in the striatum is propagated through the basal ganglia 

network to effect some change in cortical excitability (e.g. Mink, 1996). The lack 

of propagation as expressed through average BOLD signal suggests a more 

subtle mechanism of excitation/inhibition (Cui et al., 2013) or effects through 

oscillatory mechanism (Brown, 2003), both of which are virtually impossible to 

measure through fMRI. The second surprise is a lack of reward prediction error 

signals in the dopaminergic SN/VTA complex (D'Ardenne et al., 2008; Klein-

Flugge et al., 2011). It is unclear why the current study does not show such 
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signals though it might relate to the relative unreliability of BOLD in the midbrain 

(though see Duzel et al., 2009). In any case, the results from the current study 

suggest a strong dissociation between striatum and its downstream regions in 

their representation of reinforcement-related values.  

The main goal was to understand how these striatal functional signals arise 

from cortical inputs. The notion that anatomical connectivity determines function 

is pervasive in neuroscience, and in the striatum it is known that cell populations 

with projections along the direct and indirect pathway have distinct functional 

roles in movement (Kravitz et al., 2010; Cui et al., 2013) and reinforcement 

learning (Kravitz et al., 2012). In humans connectivity fingerprints have been 

used to segment individual brain structures with remarkable similarity to 

functional zones (Behrens et al., 2003a; Johansen-Berg et al., 2004; Lyness et 

al., 2014). This same technique has revealed anatomical parcellation of the 

striatum (Draganski et al., 2008; Georgiou-Karistianis et al., 2011; Verstynen et 

al., 2012; Tziortzi et al., 2014), but this has not been directly linked to functional 

activations.  

Saygin et al. (2012) and Osher et al. (2015) introduced a cross-validation 

technique to assess the predictive power that connectivity has over functional 

signals. In this chapter I applied this method to reward and value signals in the 

caudate nucleus. I show that spatial variance in reinforcement learning signals 

within this region can in part be explained by differences in corticostriatal 

connectivity. 

The predictions of functional activity arise from a linear regression model with 

weights attributed to each corticostriatal connection (Figure 8.6). The 
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distribution of these weights across the cortical surface provides a glimpse of 

what parts of cortex might be involved in driving activity in the striatum—or in 

this study, the right caudate nucleus. At a macro-anatomical level, the 

topography of cortex is maintained in striatal topography (Alexander and 

Crutcher, 1990; Haber, 2003), though at a finer scale there is also evidence for 

‘hot spots’ of convergence where widely separated cortical regions converge on 

a single striatal patch of tissue (Averbeck et al., 2014). At a microscopic scale it 

has been suggested direct and indirect pathway medium spiny neurons (MSNs) 

differentiate in their cortical inputs (Wall et al., 2013). They show that motor 

cortex projects more strongly to the indirect pathway, whereas somatosensory 

cortex projects more strongly to the direct pathway. Curiously, in the prediction 

of reward activity (Figure 8.8) a similar gradient can be observed along motor-

to-somatosensory cortex. The results further revealed various value-related 

prefrontal regions that might contribute to functional activity in the caudate 

nucleus (Rangel et al., 2008; Rangel and Hare, 2010; Haber and Behrens, 

2014). A careful study of the relationship between frontostriatal functional and 

anatomical connectivity could help understand what information is transferred 

between cortex and striatum along specific anatomical connections.  

There are a number of limitations of this study. Firstly, diffusion connectivity is 

not ideally placed to pick up on crossing connections, of which there may be 

many in the striatal system. This weakness was also discussed in chapter 2, but 

it is noted again here to acknowledge the difficulties in dissociating connectivity 

fingerprints of neighbouring voxels. That is, the nature of probabilistic 

tractography will contribute a certain spatial smoothness to connectivity 

fingerprints. Therefore, these results are agnostic regarding the spatial 
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frequency of the signal that is contributing to the predictive power of the 

connectivity model—it might be spread across multiple centimetres rather than 

among directly neighbouring voxels. The second limitation relates to chapters 4-

7. By using a simple reinforcement learning task it is impossible to tell whether 

behaviour is driven by model-based or model-free influences, or both. Despite 

the use of a model-free algorithm in this chapter I make no claim regarding the 

origin of these values in terms of model-based or model-free systems. After 

further development of the imaging approach in this chapter it would be useful 

to dissociate cortical contributions to model-free and model-based components 

of striatal function, respectively.  

  



Preparing for selective inhibition within frontostriatal loops 
Chapter 9 

 

185 
 

9 Preparing for selective inhibition within frontostriatal 

loops 
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9.1 Abstract 

In previous chapters I discussed mechanisms of adaptive action selection. A 

complementary component to selecting the right action is inhibiting the actions 

that are not appropriate to a situation. Here I examine the behavioural and 

neural basis of selective inhibition focusing on the role of preparation. In 18 

healthy human participants I manipulated the extent to which they could prepare 

for selective inhibition of specific actions by providing or withholding information 

on what actions might need to be stopped. I show that, on average, information 

improves both speed and selectivity of inhibition. BOLD data shows that 

preparation for selective inhibition engages the inferior frontal gyrus, 

supplementary motor area and striatum. Examining inter-individual differences, I 

find the benefit of proactive control to speed and selectivity of inhibition trade off 

against each other, such that an improvement in stopping speed leads to a 

deterioration of selectivity of inhibition, and vice versa. This trade-off is 

implemented through engagement of the dorsolateral prefrontal cortex and 

putamen. The results suggest proactive selective inhibition is implemented 

within frontostriatal structures, and I now provide evidence that a speed-

selectivity trade-off might underlie a range of findings reported previously. 

9.2 Introduction 

The prefrontal cortex is thought to represent goals that are subsequently 

imposed on the motor system (Koechlin et al., 2003). Such executive control 

also involves the inhibition of actions that are misaligned with current goals, for 

example when overriding habits or impulsive responses (Isoda and Hikosaka, 

2011). Failures of executive control, and in particular its expression during 
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inhibition, are thought to be common in disorders such as addiction (Ersche et 

al., 2012) and attention deficit hyperactivity disorder (Casey et al., 1997).  

Response inhibition is often studied using the stop-signal task (SST), which 

requires the inhibition of an action following an unpredictable stop signal (Logan 

et al., 1984). This type of inhibition has been referred to as ‘global’ because all 

actions are inhibited, and ‘reactive’ because no information is used to prepare 

for inhibition (Aron and Verbruggen, 2008). 

The antipodes of reactive and global inhibition are proactive and selective 

inhibition, respectively (Aron, 2011). ‘Proactive’ refers to the use of information 

from the environment that helps prepare an upcoming stop response. ‘Selective’ 

refers to the inhibition of only a subset of all ongoing actions. When selective 

inhibition is executed without preparation, i.e. reactively, it causes interference 

with all ongoing actions (Coxon et al., 2007; Aron and Verbruggen, 2008; Coxon 

et al., 2009). This suggests inhibition is implemented by a global ‘brake’ 

followed by re-initiation of the remaining action. One framework suggests such 

a global stop involves the subthalamic nucleus (STN) in the hyperdirect 

pathway, whereas selective inhibition engages a more action-specific indirect 

pathway of the basal ganglia (Aron, 2011). However, others have found the 

IFG, SMA/pre-SMA and entire basal ganglia are involved in preparing for global 

inhibition (Chikazoe et al., 2009; Jahfari et al., 2012; Zandbelt et al., 2012).  

Behavioural and transcranial magnetic stimulation studies have shown that 

preparation reduces interference between the inhibitory process and the 

remaining actions, potentially mediated by selective suppression of action 

representations in primary motor cortex (Aron and Verbruggen, 2008; Mars et 

al., 2009; Claffey et al., 2010; Neubert et al., 2010; Cai et al., 2011a; Majid et 
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al., 2012; Majid et al., 2013). However, there is to my knowledge no 

characterization of the full neural network underlying prepared versus 

unprepared selective inhibition. Such data might extend models of inhibition 

beyond a current emphasis on reactive global inhibition (Aron, 2011; Schall and 

Godlove, 2012). 

I investigated proactive selective inhibition in healthy human adults by 

manipulating the information provided about the potential stop target. I 

hypothesised that preparation would reduce interference caused by an 

inhibitory process upon the remaining response, and such an improvement in 

selectivity might lead to a deterioration in the speed of inhibition, essentially 

posing a speed-selectivity trade-off in inhibition (Aron and Verbruggen, 2008). 

An existing framework predicts such an improvement in selectivity, rather than 

speed, reflects greater engagement of an indirect relative to hyperdirect basal 

ganglia pathway, and involvement of dorsolateral prefrontal cortex (dlPFC) 

rather than rIFG (Aron, 2011). Thus, this model predicts that proactive selective 

inhibition will engage striatum and dlPFC, but not STN and rIFG (Aron, 2011). 

9.3 Methods 

9.3.1 Participants 

Nineteen healthy adults participated in the experiment. I excluded one 

participant because a brain mask could not be created for all functional scans 

due to movement in the scanner, leaving 18 participants for further analysis (11 

females; age range 19-25 years; mean = 21.2, SD = 2.1 years). Fifteen 

participants were classified as right-handed and three as ambidextrous 

(Oldfield, 1971). All participants had normal or corrected-to-normal vision, no 

history of psychiatric or neurological disorder, and provided written informed 
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consent for the experiment, which was approved by the Research Ethics 

Committee at University College London (UK). 

9.3.2 Experimental design 

I modified a task previously used to study prepared and unprepared selective 

action inhibition (Figure 9.1; Aron and Verbruggen, 2008). In brief, on each trial 

participants responded to a Go signal with either both middle or both index 

fingers, depending on whether the top or bottom circles displayed on a screen 

were filled, respectively. On some trials a red cross was presented over one of 

the two filled circles of the Go signal after a stop-signal delay (SSD). The stop 

signal indicated that the response with the corresponding finger should be 

withheld, whereas the other finger should still press down as fast as possible. 

 

Figure 9.1: Proactive selective inhibition task. The task was designed to study 

the influence of prior information about inhibition targets on behaviour and 

neural responses. Responses were made using both index or middle fingers, 

the four circles on the screen corresponding to fingers on a keypad as indicated 

by the lower left inset. At the start of each trial faded red crosses cued the 

participant about the potential locations of a stop signal. In the Prepared 

condition this would be either both the left or right circles (left or right hand, 

respectively); in the Unprepared condition the stop signal could appear over any 
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of the four circles; in the noStop condition there would never be a stop signal. 

After a jittered anticipation period a Go cue was presented, consisting of 4 

circles with either the top or bottom two filled. The fingers corresponding to the 

filled circles had to press down as fast as possible. In the Prepared and 

Unprepared condition a stop signal was presented on 30% of trials after a 

staircased stop signal delay. The location of the stop signal always followed the 

restrictions set by the cue (i.e. the cued side in Prepared condition, or either 

side in Unprepared condition). Participants had to stop the finger corresponding 

to the stop signal, but still go with the finger corresponding to the filled circle 

without the stop signal. No feedback was provided. 

To specifically study preparation for selective inhibition each Go signal was 

preceded by one of four cues showing the potential locations of the stop signal 

for that trial. In the Unprepared condition the cue indicated the stop signal could 

appear anywhere by showing faded red crosses over all four circles, precluding 

participants from setting up a selective inhibitory representation. In the Prepared 

condition the cue indicated that the stop signal could only appear on the left or 

only on the right by showing faded red crosses only over the left or right circles, 

respectively. Previous work has shown that participants use such cues to set up 

an inhibitory process specific to the actions that need to be inhibited (Claffey et 

al., 2010; Majid et al., 2012). In both Unprepared and Prepared conditions the 

overall probability of a stop signal occurring was 30%. To balance the factor of 

Information (with levels Unprepared and Prepared), 40% of trials were 

Unprepared, 20% of trials Prepared-left and 20% of trials Prepared-right. The 

remaining 20% of trials were noStop trials: the cue consisted of 4 filled white 

circles with no faded red crosses, indicating that no stop signal would be 

presented on that trial. This control condition can reveal strategic slowing 

(Jahfari et al., 2012), but was not used in the imaging analysis as their 



Preparing for selective inhibition within frontostriatal loops 
Chapter 9 

 

191 
 

frequency was not matched with the Information conditions. The design was 

fully counterbalanced over index and middle fingers.  

Trial timings took the following form: the cue was presented for 1 s, followed by 

1, 2 or 3 s of anticipation (intervals with probability 0.4, 0.2, and 0.4, 

respectively). The Go signal appeared on the screen for 1 s, and in 30% of trials 

was overlaid by a stop signal after a SSD. The Go stimulus remained on the 

screen for 1 s regardless of button presses, after which a 2 s ITI started. No 

feedback was provided. 

Participants completed 100 trials per block (10 minutes) in the scanner, for 4 

blocks during one session. Participants were then taken from the scanner and 

given 45 to 90 minutes of rest. During this time they were asked to wait in a 

waiting room and I provided no feedback on their performance. They then 

underwent another 4 blocks for a total of 800 trials per participant over 80 

minutes of functional imaging. This yields 96 stop trials in both the Unprepared 

and Prepared condition, in line with the number of stop trials in previous studies 

using the stop signal task (e.g. Aron and Poldrack, 2006; Li et al., 2006; 

Chikazoe et al., 2009). Trial order was randomised for every block. 

I used four independent SSD staircases, one for each of the cue-stop signal 

combinations (Unprepared left stop, Unprepared right stop, Prepared left stop, 

Prepared right stop). The SSD became longer after a successful stop, and 

shorter after a failed stop, in 50 ms steps. This tracking procedure yields a 

p(stopSuccess) of approximately 0.5, which is optimal for estimation of the stop-

signal reaction time (SSRT, see below; Verbruggen and Logan, 2009b; 

Congdon et al., 2012). The staircases started at values determined during a 

training session 1 to 7 days before the scanning session. 
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During that training session, the participant first learned how to respond to Go 

cues (10 trials) and stop signals (20 trials), and then performed 2 blocks of 100 

trials on the full task. Trial-by-trial feedback up until halfway through the first full 

training block aided instruction. Feedback consisted of success and error 

messages and a warning when the left and right buttons on Go trials were 

pressed more than 70 ms apart (asynchronous response). The 4 SSD 

staircases started off at 100 ms for the last full block, and the participant’s last 

SSD in each staircase became the starting SSD for the scanning session. I 

instructed participants to use the cue to prepare for the Go signal, and 

explained it would be impossible to stop every time the stop signal appeared. I 

also emphasised that responding fast would be more important than correctly 

stopping on every stop trial. These instructions aim to prevent a ‘waiting’ 

strategy which invalidates assumptions of the horse race model used to 

calculate the SSRT (Logan, 1994). 

This experiment was realised using Cogent 2000 developed by the Cogent 

2000 team at the Wellcome Trust Centre for Neuroimaging and the Institute of 

Cognitive Neuroscience, and John Romaya developed Cogent Graphics at the 

Laboratory of Neurobiology at the Wellcome Department of Imaging 

Neuroscience.  

9.3.3 Behavioural data analysis 

Our analyses followed recommendations from the literature (Logan, 1994; Band 

et al., 2003; Verbruggen and Logan, 2009b; Congdon et al., 2012). I excluded 

participants if: p(stop) for any of the 4 SSD staircases was lower than 0.25, or 

higher than 0.75; proportion of correct Go trials (cued fingers pressed down 

within 70 ms of each other) following any of the 4 cues was below 0.7. All 18 
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participants passed these criteria. I further computed, for each condition, 

measures of the Go distribution and number of errors. To validate assumptions 

of the independent race model I computed stopFail RT as a function of SSD, 

and z-scored relative finishing time (ZRFT) calculated as (Gomean – SSD – 

SSRT)/GoSD, evaluated at SSDs of 150-500 ms in 50 ms steps (Logan et al., 

1984; Verbruggen and Logan, 2009b).  

Two key behavioural measures characterizing stopping in this task are 1) the 

stop signal reaction time (SSRT), which represents the speed of inhibition, and 

2) interference, which represents the inverse selectivity of inhibition. I computed 

SSRT using the quantile method (Band et al., 2003; Congdon et al., 2012). For 

each condition (Prepared left, Prepared right, Unprepared) all Go RTs were 

arranged in descending order. The RT corresponding to the participant’s 

probability of successfully stopping in that condition was selected (e.g. for a 

p(stop) of 0.45 I selected the RT 45% down the ordered list), and I subtracted 

the mean SSD to yield the SSRT. SSRT in the Prepared condition was 

averaged across left and right cues as an estimate of the time it takes for the 

participant to inhibit an upcoming motor response after presentation of the stop 

signal.  

I calculated interference of inhibition, or inverse selectivity, as RT on 

stopSuccess trials minus RT on Go trials for each condition separately (Aron 

and Verbruggen, 2008). Recall that in all stop trials, participants had to stop one 

finger and still press down with the other as fast as possible. A positive value in 

this measure of interference indicates that responses were slower when the 

participant had to stop a finger compared to Go trials. Interference in the 

Prepared condition was averaged across left and right cues. I then compared 
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these values across conditions to observe changes in interference, i.e. 

selectivity, with experimental condition. 

I observed that the benefit of Information on SSRT and interference trade off, 

such that participants seem to focus on improving either speed or selectivity of 

inhibition, but not both. I therefore computed a measure of this trade-off as 

(SSRTUnprepared - SSRTPrepared) - (InterferenceUnprepared - InterferencePrepared). This 

means that a high trade-off represents a focus on improvement of SSRT with 

Information, whereas a low value represents a focus on improvement of 

interference (i.e. selectivity) with Information. Furthermore, I observed that the 

trade-off is not static over time (see Results: correlation between trade-off in 

first half versus second half of experiment, r = -10, p = .68), suggesting use of 

information to prepare selective inhibition is not necessarily homogenous across 

the entire duration of an experiment.  

In order to characterise the brain correlates of this fluctuating use of information 

for proactive selective inhibition I calculated the magnitude of the trade-off for 

each trial t and used it as a parametric modulator in the fMRI analysis. This trial-

by-trial trade-off estimate was calculated using a running average from RT data 

from trial t-75 to t+75 (i.e. sliding window of 150 trial width). For trial 1 to 75, the 

window spanned [1 t+75], and for trial 725 to 800 the window spanned [t-75 

800]. Although a smaller width would provide a more fine-grained estimate of 

the trade-off, this has to be balanced against the number of data points used to 

calculate the interference and SSRT. With a window size of 150 trials, each 

Information condition contains 18 stop trials in each window on average, which 

is sufficient for reliable estimation of the SSRT (Congdon et al., 2012). Using 
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this dynamic measure we could then interrogate neural signatures of this trade-

off as expressed during Go and Stop trials in the task.  

Behavioural analyses were performed in Matlab (The Mathworks Inc) and SPSS 

19 (IBM). I used two-tailed permutation tests with 104 draws for paired tests (or 

107 draws for p-values < .001), analysis of variance (ANOVA) to test for 

interactions, and 1-sample t-tests to compare outcomes to zero. 

9.3.4 MRI data acquisition and preprocessing  

I performed magnetic resonance imaging (MRI) on a 3-Tesla Siemens Trio 

magnetic resonance scanner (Siemens, Erlangen, Germany). Functional data 

were acquired over 8 runs, each run consisting of 208 whole-brain 3D EPI 

volumes with spatial resolution = 2.3 x 2.3 x 2.3 mm^3, 80 slices, echo time 

(TE) = 32.84 ms, volume repetition time (TR) = 2.96 s (Lutti et al., 2013). 

Parallel imaging (GRAPPA image reconstruction; Griswold et al., 2002), 

acceleration factor 2 along the partition-encoding direction) was used to speed-

up the acquisition of each image volume. Acquisition of dummy volumes to 

allow for longitudinal magnetization to reach steady-state and of the GRAPPA 

reconstruction kernel was implemented prior to the acquisition of image data. I 

acquired B0 field maps for each session using a double echo FLASH sequence 

(matrix size = 64 x 64; 64 slices; spatial resolution = 3 x 3 x 3 mm3; gap = 1 mm; 

short TE = 10 ms; long TE = 12.46 ms; TR = 1020 ms) to correct EPI images for 

distortion in the B0 field (Weiskopf et al., 2006). Field maps were estimated 

from the phase difference between the short and long TE using the FieldMap 

toolbox for SPM (Hutton et al., 2002). Cardiac rate was recorded using an MRI-

compatible pulse oximeter (Model 8600 F0, Nonin Medical), and respiration was 

monitored using a pneumatic belt positioned around the abdomen. I processed 
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these data as described in the literature (Hutton et al., 2011) and included them 

as regressors of no interest in all first level GLM models (see below). I acquired 

proton density (PD)-weighted, T1-weighted, and magnetization transfer (MT)-

weighted images at 1x1x1 mm3 resolution for each participant using multi-echo 

3D FLASH (Helms et al., 2008b). Fully quantitative maps of the MR parameters 

MT, R1, PD and R2* were extracted from the acquired data as described in the 

Methods (chapter 2, also see Helms et al., 2008b). A B1-map was acquired 

using a 3D SE/STE EPI method (Lutti et al., 2012) to correct for the effects of 

inhomogeneous radio-frequency excitation on the quantitative maps. 

I analysed the MRI data in SPM8 as described in chapter 2. Functional data 

were smoothed using either a 4 or 10 mm full width at half maximum Gaussian 

kernel. I used two smoothing levels to optimise sensitivity to widespread 

activations as well as focused sub-cortical activations in e.g. pallidum and STN.  

9.3.5 FMRI data analysis 

The preprocessed images were analysed in an event-related design using a 

general linear model (GLM) with 15 explanatory variables (EVs) of interest. I 

modelled 12 EVs as stick regressors at time of Information cue onset. Of these, 

four EVs described correct Go trials (Unprepared, Prepared left, Prepared right, 

noStop), and 8 EVs described stop trials, crossing information (Unprepared, 

Prepared), stop-signal side (left, right), and outcome (stopSuccess or stopFail). 

A further 3 regressors were added at time of the imperative cue (i.e. the go 

signal): one for all Go trials, one for all stopSuccess trials, and one for all 

stopFail trials. As all these imperative cues are identical between Information 

conditions, I did not separately model the information regressors at the 

imperative cue. As such, the 12 regressors modelled at the time of the precue 



Preparing for selective inhibition within frontostriatal loops 
Chapter 9 

 

197 
 

capture BOLD during both the anticipation epoch and the action execution 

epoch. I opted for a fast-event related design with a large number of trials, 

foregoing the opportunity to dissociate activity from these two epochs in each 

trial.  

As described I obtained a measure of the speed-selectivity trade-off, i.e. the 

extent to which the participant uses Information to improve the speed or 

selectivity of inhibition, for each trial. I hypothesised that a focus on speeded 

inhibition would result in a differential engagement of a stopping network 

compared to a focus on selective inhibition (Aron, 2011). I modelled the trade-

off as a parametric modulator on the stick events of each of the 12 regressors at 

the time of precue, allowing me to examine how each of these events was 

modulated by the speed-selectivity trade-off. I decided to test for effects of 

trade-off on Go trials as well as Stop trials in view of the fact that the trade-off is 

a dynamic state measure, such that participants focus relatively more on speed 

or selectivity across trials. Although such focus only manifests on stop trials, the 

participant cannot dissociate stop from go trials until the stop-signal is 

presented. Thus, it can be reasonably expected that changes in trade-off are 

also reflected in proactive control during Go trials. I added the following 

nuisance regressors: 2 regressors for error trials with or without a response, 

respectively, 6 movement regressors produced by the realignment procedure, 

14 physiological regressors for cardiac and respiratory variables (Hutton et al., 

2011), and 7 block regressors covering run 1 to 7, respectively. The 8th block 

was subsumed in the constant of the design matrix. The GLM thus contained a 

total of 57 regressors over 1664 volumes per participant, and each GLM was 

estimated separately for each participant for the 4 and 10 mm smoothed 
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images. All EVs (but not physiological regressors) were convolved with a 

canonical haemodynamic response function (Friston et al., 1995). 

My primary interest was a comparison of Go trials between Unprepared and 

Prepared conditions. Such a contrast elucidates the implementation of proactive 

control without contamination by the execution of stops as both conditions are 

equal in terms of motor execution. Furthermore these trials are matched for 

(violations of) expectations related to stop signal probability (Zandbelt et al., 

2012). To obtain group statistics each participant’s contrast image was entered 

into a second level random-effects analysis using one-sample t-tests across 

participants. I used 10 mm smoothed images for whole-brain analyses, and 

corrected for multiple comparisons with cluster-level correction at p < .05 (initial 

threshold at p < .001 uncorrected). I further used a region-of-interest (ROI) 

approach to examine four areas for which I had strong a priori hypotheses 

regarding their involvement in proactive selective control (Aron, 2011; Jahfari et 

al., 2012; Zandbelt et al., 2012): the right STN (unthresholded probabilistic ROI 

as created by Forstmann et al., 2012) and the right caudate, right putamen and 

right pallidum from the Automated Anatomical Labeling (AAL) atlas. I chose 

right-lateralised ROIs based on previous work (Jahfari et al., 2012). 

For analysis of the parametric modulators I used a similar approach. First I used 

a whole-brain analysis at cluster-level corrected p < .05 (initial threshold at p < 

.001 uncorrected). Second, I extracted parameter estimates from functional 

ROIs resulting from the Prepared > Unprepared Go contrast at 4 mm 

smoothing, thresholded at p < .01 uncorrected, and masked by anatomical 

ROIs. In addition to the anatomical ROIs described above, I also examined the 

right IFG (as defined by inferior operculum in the AAL atlas) and left SMA/pre-
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SMA from the AAL atlas (Tzourio-Mazoyer et al., 2002). These two regions 

were included based on their activation in Prepared versus Unprepared Go 

trials (Figure 9.5). In all cases where parameter estimates were extracted from 

ROIs I used MarsBar (Brett et al., 2002) on the 4 mm smoothed images to 

minimise inclusion of signal not originating from the ROI itself. 

9.4 Results 

9.4.1 Accuracy and SSD staircase procedure 

Go trials were matched between the Unprepared and Prepared condition for 

overall accuracy (mean (SD) proportion correct Go trials: Unprepared = .87 

(.01), Prepared = .86 (.01), noStop = .87 (.01); Unprepared versus Prepared, p 

= .39). The SSD staircase procedure ensured p(stop) remained close to 0.50 for 

both Information conditions. I observed a small, but significant, increase in 

p(stop) for the Prepared compared to Unprepared condition (mean (SD) p(stop): 

Unprepared = .52 (.01), Prepared = .53 (.01), p = .01). This suggests 

participants gradually slowed down responses in Go trials over the course of the 

experiment (Logan, 1994), marginally more so during Prepared compared to 

Unprepared trials. Note that this difference does not impact on the applicability 

of the race model (see below).  
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Figure 9.2: Reaction time data satisfies race model assumptions. (A) Reaction 

times were faster in stopFail trials compared to Go trials for both the 

Unprepared and Prepared condition. I further observed that noStop trials were 

faster than Go trials in both Information conditions, indicative of strategic 

slowing. (B) StopFail RT increased linearly with SSD, as predicted by the 

independent race model. (C) The z-scored relative finishing time (ZRFT) 

indicates the finishing time of a Stop and Go process, with higher values 

indicating a late finishing time for the stop process relative to the go process. 

Each participant is represented by a thin grey line. A cumulative Gaussian was 

fit for each participant, and the bold black lines were generated by averaging 

parameter fits over participants. Both Unprepared (left) and Prepared (right) 

conditions show that as ZRFT increases, the probability of stopFail increases. 

When the ZRFT is 0 the probability of stopSuccess and stopFail was close to 

0.5, as predicted by the independent race model. Error bars represent SEM. 
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Previous work has emphasised that participants show a general slowing (rather 

than slowing over time) when faced with a potential stop versus noStop 

(Chikazoe et al., 2009; Verbruggen and Logan, 2009a; Jahfari et al., 2010; 

Jahfari et al., 2012; Zandbelt et al., 2012). In keeping with this I observed a 

significantly higher RT compared to noStop for both the Unprepared (p = 8.9 x 

10-6) and Prepared (p = 5.4 x 10-6) Go conditions consistent with such strategic 

slowing, but at the same time I found no evidence for a difference between 

Information conditions (GoUnprepared versus GoPrepared, p = .24). Participants also 

committed more asynchronous (two fingers > 70ms apart) Go responses in the 

Prepared compared to Unprepared condition (mean (SD) proportion 

asynchronous Go: Unprepared = .03 (.005), Prepared = .05 (.006), noStop = 

.02 (.005); Unprepared versus Prepared, p = .02). An increase in asynchronous 

errors suggests a higher degree of lateral asymmetry in action preparation. To 

avoid contamination in other analyses, asynchronous responses were treated 

as errors and discarded from further analysis. For the remaining trials I 

computed the frequency of left responses leading right responses, and vice 

versa, for Prepared-left, Prepared-right, and Unprepared trials. I observed no 

difference in frequency of these events between Prepared-left and Unprepared 

(chi-squared test with Yates’ correction, χ2 (1) = 0.06, p = .81) or Prepared-right 

and Unprepared (χ2 (1) = .03, p = .86). This suggests excluding asynchronous 

trials successfully removed the asymmetry in action execution. 

9.4.2 Selective inhibition satisfies independent race model assumptions 

A dominant model in the inhibition literature is the independent race model 

(Logan et al., 1984). It is unclear, however, whether selective inhibition is 

accurately described by this class of model. It has been suggested that more 
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complex models such as an interactive race model are required when 

assumptions of the independent race model are not met (Boucher et al., 2007; 

Verbruggen and Logan, 2009b; Schall and Godlove, 2012). I show that in this 

task, selective inhibition conforms to all assumptions of the independent race 

model, both for the Prepared as well as the Unprepared conditions (Figure 9.2).  

Three basic conditions must be met for the independent race model to be valid. 

First, trials in which a stop signal occurs but the participant fails to stop 

(‘stopFail’) should represent the fast half of the RT distribution. Thus, stopFail 

RTs must be faster than Go RTs within the same condition. I observed that this 

was the case for both the Unprepared (p = 8.5 x 10-6) and Prepared (p = 9.3 x 

10-6) condition (Figure 9.2A). Furthermore this difference between stopFail and 

Go was not significantly different between Unprepared and Prepared conditions 

(repeated-measures ANOVA interaction: F(1, 17) = 1.1, p = .31). The second 

condition for the independent race model is that stopFail RTs should increase 

as the SSD increases due to the stop process finishing later. I observed such a 

linear increase in stopFail RT with SSD for both the Unprepared (Figure 9.2B; 

linear regression for each participant, mean (SD) over population: intercept = 

368 (74) ms, slope = 0.30 (0.25); 1-sample t-test on slope, t(17) = 5.0, p = 5.5 x 

10-5) and Prepared (intercept = 347 (86) ms, slope = 0.38 (0.32), t(17) = 5.2, p = 

3.6 x 10-5) condition. There was no difference between the Unprepared and 

Prepared condition in the intercept (p = .27) or slope (p = .21). Thus, stopFail 

RT significantly increased linearly with SSD, with no evidence for any difference 

between the Unprepared and Prepared condition. The third condition is that the 

p(stopFail) should predictably change with the z-scored relative finishing times 

(ZRFT) of the Stop and Go process (see Methods for calculation). A negative 
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ZRFT indicates that the stop process finished earlier than the Go process and 

the participant should thus have a low p(stopFail); a positive ZRFT indicates the 

Go process finished before the Stop process and the participant should be likely 

to erroneously respond, i.e. have a high p(stopFail). When the ZRFT is zero, the 

model predicts that both processes finished simultaneously and p(stopFail) 

should be 0.5.  

I plot p(stopFail) as a function of z-scored relative finishing time (ZRFT) and fit a 

cumulative Gaussian to each participant’s data individually. The bold curves in 

Figure 9.2C represent the average of each participant’s fits. The mean of either 

bold curve was not significantly different from zero (Unprepared: 1-sample t-

test, t(17) = 1.2, p = .25; Prepared: t(17) < 1), nor were the means significantly 

different between conditions (p = .14). The SD of the curve was larger in the 

Prepared than Unprepared condition (p = .02), indicating a significant decrease 

in the accuracy with which the ZRFT of the Stop and Go process predicts the 

outcome of the race in the Prepared compared to Unprepared condition. 

Nonetheless, the analyses presented here confirm that selective inhibition 

conforms to all assumptions of the independent race model regardless of 

proactive control. I can then use the race model to calculate parameters for 

further behavioural and fMRI analyses.  

9.4.3 Modulation of speed and selectivity of inhibition by preparation 

The previous analyses show that the Prepared and Unprepared condition are 

matched across a range of characteristics including accuracy, reaction times 

and strategic slowing, and that behaviour in this task can be modelled using the 

independent race model. From this model I derived the SSRT, and found that 

SSRT improved with prior knowledge of the hand that needs to be stopped, i.e. 
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when selective inhibition could be prepared (Figure 9.3A; Unprepared versus 

Prepared SSRT: p = .02). Preparation also improved interference, i.e. the 

selectivity of inhibition (Figure 9.3B; Unprepared versus prepared interference: 

p = .02). Thus, at the group level, both speed and selectivity of inhibition 

improved with preparation.  

 

Figure 9.3: Information improves the speed and selectivity of inhibition. (A) Stop 

signal reaction time (SSRT), representing the speed of inhibition, is faster in the 

Prepared compared to Unprepared condition. (B) The interference between the 

inhibition process and the remaining action is reduced in the Prepared 

compared to Unprepared condition. P-values are from permutation tests, and 

error bars represent SEM.  

This result contrasts with a previous report showing that preparation reduces 

interference but paradoxically lengthens the SSRT (Aron and Verbruggen, 

2008). As in the current study, the task used in the latter required participants 

respond to a stop signal by stopping one finger while at the same time pressing 

down with their other finger as fast as possible. Consequently, I asked whether 
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these two task requirements draw on some shared resource and trade off 

against each other. Specifically, when participants are provided with information 

they may prepare for a fast stop (i.e. improved SSRT), a fast remaining 

response (i.e. improved interference), or both. I show that at the group level 

preparation favours both speed and selectivity (Figure 9.3). However, when 

looking at inter-individual differences, I found preparation trades off speed 

against selectivity: the benefit of information to SSRT is negatively correlated 

with the benefit of information to interference (Figure 9.4A; r = -.70, p = .001). 

For example, some participants show SSRT improvements in the Prepared 

compared to Unprepared condition, but show no improvement in interference 

(Figure 9.4A, lower right). Other participants reduced their interference in the 

Prepared compared to Unprepared condition, but did not improve their stopping 

speed (Figure 9.4A, upper left). To quantify this trade-off I calculated a 

summary measure (SSRTUnprepared - SSRTPrepared) - (InterferenceUnprepared - 

InterferencePrepared) for each participant. This trade-off is high when preparation 

is used to improve speed, and low when preparation is used to improve 

selectivity (i.e. to reduce interference).  

A key observation in the study was that this trade-off measure based on the 

entire dataset (i.e. ~80 minutes of time on task) is not necessarily fully 

representative of a participant’s trade-off at any time point in the experiment, as 

shown by the lack of correlation between a participant’s trade-off calculated 

separately for the first compared to the second half of the experiment (Figure 

9.4B; r = -10, p = .68). However, when I examined how participants changed 

their behaviour from the first to the second half of the experiment, I again 

observed a speed-selectivity trade-off: those participants that improved on 
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SSRT from the first to second half deteriorated on interference, and vice versa 

(Figure 9.4C; r = -.75, p = .0003). These results suggest the speed-selectivity 

trade-off is dynamic, and that an estimate of the trade-off based on a 

participant’s entire dataset might not accurately describe the trade-off at any 

given point in the experiment. I therefore calculated a trade-off for each trial 

using a running average over RT data (see Methods for details; Figure 9.4D). 

This dynamic measure of the speed-selectivity trade-off was then used to 

interrogate the entire neuronal data on how proactive selective control is 

instantiated in the brain, providing the key test to identify regions that promote 

slow and selective versus fast and global inhibition.  

 

Figure 9.4: Preparation for selective inhibition trades off improvements in speed 

against selectivity. (A) Each black dot represents a participant. I observed a 

negative correlation between the effect of Information on SSRT and the effect of 
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Information on Interference: the more participants used the Prepared cue to 

stop fast, the less they used the Prepared cue to reduce interference, and vice 

versa. (B) I calculated a relative measure of speed-selectivity trade-off as 

(SSRTUnprepared - SSRTPrepared) - (InterferenceUnprepared - InterferencePrepared). 

However, there was no correlation between a participant’s trade-off in the 1st 

compared to 2nd session. This suggests that a single trade-off measure does 

not adequately describe a participant’s trade-off during the entire experiment. 

(C) Despite this instability over time, the way in which a participant’s behaviour 

changed over time was again governed by the speed-selectivity trade-off: 

participants that, from their 1st to 2nd session, increased use of the Prepared cue 

to stop fast decreased use of the Prepared cue to stop selectively. (D) To 

examine BOLD responses that might reflect this trade-off I calculated a trade-off 

measure for each trial based on RT data from a window around that trial. Each 

column represents a participant, each row represents a trial. A measure of 

trade-off over the entire experiment (top) ignores variance that is evident in trial-

by-trial estimates of the trade-off (bottom). 

9.4.4 BOLD responses in Unprepared versus Prepared Go trials 

I first compared BOLD responses between Unprepared and Prepared correct 

Go trials. Note any effects in this contrast can be attributed to anticipation and 

preparation for selective inhibition without being confounded by differences in 

the actual stopping process such as SSRT and interference. Moreover, 

behaviour was matched between these Go conditions in terms of motor 

demands, accuracy and RTs (see e.g. Figure 9.2).  

I observed a number of regions that responded more strongly to a Prepared 

compared to Unprepared cue (Figure 9.5), including the right IFG, left SMA/pre-

SMA, bilateral dorsal premotor cortex (PMd), and bilateral parietal cortex 

(Figure 9.5A; p < .05 cluster-level corrected). To complement this voxel-based 

analysis, and given the strong a priori hypothesis for involvement of the right 

basal ganglia in response inhibition (Zandbelt and Vink, 2010; Aron, 2011; 
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Jahfari et al., 2012), I also performed a hypothesis-driven anatomical ROI 

analysis (Figure 9.5B; alpha = .013, Bonferroni-corrected for 4 ROIs). This 

showed that right putamen had a greater BOLD response to the Prepared 

compared to the Unprepared cue (p = .005), with only weak evidence for 

involvement of the right pallidum (p = .02), and no significant effects observed 

for right STN (p = .08) or right caudate nucleus (p = .17) (Figure 9.5B). Together 

this suggests that proactive selective inhibition engages a set of regions also 

involved in global and reactive inhibition (Aron, 2011), with the notable 

exception of STN and caudate nucleus (cf. Majid et al., 2013) where I observed 

a null effect. I observed no clusters in the brain that responded more strongly 

during Unprepared compared to Prepared Go trials. 

 

Figure 9.5: Prepared > Unprepared Go trials. (A) I observed stronger BOLD 

response to Prepared compared to Unprepared Go trials in bilateral dorsal 

premotor cortex (PMd), left SMA/pre-SMA, right IFG, and bilateral parietal 

structures. All maps were thresholded at p < .001 uncorrected (shown here for 

illustration purposes) and statistical significance was assessed at p < .05 
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cluster-level corrected threshold. Results were projected on coronal slices of the 

MNI 152T1 template (left = left) using xjView (www.alivelearn.net/xjview). (B) I 

extracted beta coefficients for the Prepared and Unprepared Go regressors 

from four anatomical ROIs and performed pair-wise permutation tests. The 

putamen and pallidum showed significantly stronger responses during Prepared 

compared to Unprepared Go trials, whereas the STN and caudate showed no 

such effect. The coefficients are mean-centred for each participant for 

visualization purposes. The axial slice was taken from the ‘ch2’ template in 

MRIcron (Rorden and Brett, 2000). Error bars represent SEM. 

9.4.5 Speed-selectivity trade-off in frontostriatal regions 

To understand how the brain uses information to promote the speed or 

selectivity of stopping I used a metric of the dynamic trade-off (Figure 9.4D) as 

parametric modulator on each of the EVs of interest. Note that the trade-off is a 

relative measure, such that a low trade-off could be due to slower and more 

selective inhibition across Prepared trials, or conversely speeded and more 

non-selective inhibition across Unprepared trials. Thus, any brain region that 

promotes fast but non-selective inhibition would show a negative coefficient for 

Unprepared, or positive coefficient for Prepared stop trials. Vice versa, regions 

that promote selective but slow inhibition would show a positive coefficient for 

Unprepared, or negative coefficient for Prepared stop trials. Crucially, for either 

type of region, the coefficients should be different between Information 

conditions. Thus, a two-tailed contrast of parametric modulators Trade-

offUnprepared-stop versus Trade-offPrepared-stop identifies the regions that putatively 

modulate the speed versus selectivity of inhibition. Post-hoc t-tests can then 

confirm that the coefficients are significantly different from zero. I did not 

observe any such effect for the parametric modulator on Go trials (data not 

shown), and I therefore only report findings on Unprepared versus Prepared 
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Stop trials. I combined stopSuccess and stopFail trials in order to sample the 

entire distribution of responses; they comprise the fast and slow part of the Go 

distribution, respectively, such that the subset of trials that falls in either 

category is a function of SSRT, and thus of trade-off. By selecting all stop trials I 

prevent a confounding effect of general RT. 



Preparing for selective inhibition within frontostriatal loops 
Chapter 9 

 

211 
 

 

Figure 9.6: Expression of the speed-selectivity trade-off during stop trials. (A) 

The trade-off reflects a dynamic focus on speeded or selective inhibition in 

Prepared relative to Unprepared stop trials. I asked whether any regions 

modulated their activity to reflect this trade-off. Based on how I defined the 

trade-off (see Methods) one would predict that regions underlying speeded (but 

non-selective) inhibition have a negative coefficient in the Unprepared, or a 

positive coefficient in the Prepared condition. In a whole-brain analysis I 
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observed a cluster in the Trade-offPrepared-stop > Trade-offUnprepared-stop contrast 

corresponding to right dlPFC (left). Extraction of the coefficients showed that 

this cluster specifically promoted speeded (but non-selective) inhibition during 

Prepared, but not Unprepared, inhibition (right). Results visualised in MRIcron 

at p < .001 uncorrected. (B) The putamen, SMA/pre-SMA and STN showed the 

same effect as the cluster in Figure 9.6A, linking them to speeded inhibition. Of 

these, the SMA/pre-SMA and putamen mediated fast inhibition only in Prepared 

trials, whereas the STN mediated fast inhibition only in Unprepared trials. Error 

bars indicate SEM. 

I observed only one cluster that survived multiple comparison correction in the 

Trade-offPrepared-stop > Trade-offUnprepared-stop with a peak activation at MNI 

coordinates [34, 30, 24] (Figure 9.6A; p < .05 cluster-level corrected), a cluster 

that incorporates the middle frontal gyrus, i.e. dlPFC. I extracted parameter 

estimates from the significant cluster (defined at p < .001 uncorrected) to test 

whether the cluster’s activity reflects the speed-selectivity trade-off during 

Unprepared or Prepared inhibition, or both (Figure 9.6A, right). Whereas the 

trade-off did not modulate activity during Unprepared trials (1-sample t-test, 

t(17) < 1), the cluster was significantly positive in the Prepared condition (t(17) = 

3.63, p = .002) suggesting increased activity in this region leads to speeded but 

non-selective inhibition during Prepared trials.  

To further explore this effect I reasoned that the trade-off could be expressed 

within voxels sensitive to information in brain regions implicated in the 

implementation of stopping (i.e. rIFG, SMA/pre-SMA, caudate, putamen, 

pallidum, STN; Jahfari et al., 2011; Zandbelt et al., 2012). To test this 

hypothesis I built functional ROIs by thresholding the Prepared > Unprepared 

Go contrast at p < 0.01 and constraining these to an anatomical mask of each 

region (see Methods for details on ROI construction). As shown in Figure 9.6 I 
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found evidence for an effect of Information on the trade-off in the putamen (p = 

.006) when using Bonferroni correction for 6 tests (alpha = .008). A similar 

pattern, but only significant at uncorrected threshold of p < .05, was found in the 

right STN (p = .03) and left SMA/pre-SMA (p = .04). All three showed the 

signature of regions that promote speeded but non-selective inhibition. To 

understand in what condition each region contributed most strongly I tested the 

individual coefficients against zero (all 1-sample t-tests with 17 DOF) to reveal 

the putamen (Unprepared, t = 1.2, p = .25; Prepared, t = 2.1, p = .05) and 

SMA/pre-SMA (Unprepared, t < 1; Prepared, t = 2.0, p = .06) mediated speeded 

but non-selective inhibition which was most pronounced when information was 

available. In contrast, the STN promoted speeded but non-selective inhibition 

only in the Unprepared condition (Unprepared, t = 2.2, p = .05; Prepared, t < 1). 

I did not identify any regions that promoted selective but slow inhibition. 

Together, this provides tentative evidence that the speed-selectivity trade-off 

was driven by changes towards a focus on speed implemented by different 

neural structures depending on the availability of prior information: the dlPFC, 

the putamen, and the SMA/pre-SMA when information was available (proactive 

inhibition) and the STN when no information was provided (reactive inhibition). 

9.5 Discussion 

These data show that participants trade off speed and selectivity in stopping 

when performing proactive selective inhibition, an effect implemented through 

engagement of dorsolateral prefrontal cortex and striatum. These two regions, 

contrary to predictions, promote speeded rather than selective inhibition. 

Provision of information to prepare selective inhibition recruits a set of brain 
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regions implicated in the implementation of inhibition, including the SMA/pre-

SMA, IFG and putamen.  

A recent model of response inhibition describes action inhibition along two axes: 

global-selective (i.e. whether all or only a subset of actions are stopped) and 

reactive-proactive (i.e. the extent of preparation for inhibition; Aron, 2011). My 

task examined selective inhibition in a proactive versus reactive context by 

providing or withholding from participants specific information about the target of 

inhibition, respectively. This extends findings on global inhibition along a 

reactive-proactive scale (Verbruggen and Logan, 2009a; Jahfari et al., 2012; 

Zandbelt et al., 2012) and selective inhibition in the reactive domain (Coxon et 

al., 2007, 2009; Ko and Miller, 2013). In comparisons to these different types of 

inhibition one unresolved question is whether selective inhibition is sufficiently 

similar to global inhibition, such that it too can be analysed using the 

independent race model or might require a more elaborate interactive race 

model (Boucher et al., 2007; Verbruggen and Logan, 2009b; Schall and 

Godlove, 2012). Here I confirm that both proactive and reactive selective 

inhibition satisfy all assumptions of the independent race model. Given the 

current debate, however, it would be best to consider the validity of the 

independent race model on a study-by-study basis. 

Applying the race model to these data, I observed proactive control improved 

speed (i.e. SSRT) and selectivity (i.e. interference) of inhibition compared to 

reactive control. This partly contrasts with results from a recent series of 

behavioural and transcranial magnetic stimulation studies that show preparation 

reduces interference, as found here, but either leads to a deterioration (Aron 

and Verbruggen, 2008) or does not affect (Claffey et al., 2010; Majid et al., 
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2012) the SSRT. These seemingly contradictory results can potentially be 

explained by my finding that each participant is trading off SSRT with 

interference (i.e. speed and selectivity). To illustrate this point, this participant 

cohort contains subgroups that improve in selectivity but deteriorate in SSRT 

(as in Aron and Verbruggen, 2008; Figure 9.4A, left top quadrant); improve on 

both characteristics (Figure 9.4A, right top quadrant); and improve SSRT but 

deteriorate in selectivity (Figure 9.4A, right lower quadrant). Such a trade-off 

suggests that global inhibition is fast whereas selective inhibition is slow. 

Furthermore I show that the trade-off can change over time. It is an open 

question what exactly drives these changes in trade-off. Previous work has 

shown that participants can flexibly adjust their Go versus Stopping speed to 

optimise rewards (Leotti and Wager, 2010), and one might expect that 

participants can similarly adjust their trade-off when incentivised to do so. In 

addition to such top-down control, experimental factors are likely to influence 

the speed-selectivity trade-off, such as the probability of a stop-signal occurring, 

the dynamics of the SSD staircasing procedure, or the nature of the instructions 

and feedback provided to the participants. The results presented here show that 

this trade-off exists, and new experiments could usefully explore the factors that 

affect it. 

The imaging analysis tested a number of predictions from the action inhibition 

framework suggested by Aron (2011). Briefly, the model suggests that reactive 

selective inhibition engages the IFG whereas proactive selective inhibition 

engages the dlPFC in association with the indirect pathway of the basal ganglia 

(but excluding the STN). However, I observed that the IFG, but not dlPFC, is 

more active during proactive selective control. Additionally, this form of 
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anticipation engaged other regions previously implicated in reactive response 

inhibition itself, including SMA/pre-SMA and striatum. This is reminiscent of 

findings that stop-signal probability (a manipulator of proactive control) 

positively correlates with activity in this inhibition network (Jahfari et al., 2012). 

A notable difference with my study is that I find activity despite keeping the stop-

signal probability equal between Unprepared and Prepared conditions, thus 

preventing a confound where the rIFG responds to the violation of an 

expectation rather than the preparation for inhibition itself (Zandbelt et al., 

2012). As such, the increase in activity is likely to reflect additional processing 

required for proactive selective inhibition, which might involve for example 

attentional processes or the maintenance of inhibitory set, processes that can 

only be uncovered by targeted experimental designs that are not suitable to test 

my current hypothesis (e.g. Li et al., 2006; Zandbelt and Vink, 2010). A 

shortcoming of the fast event-related design was that the results remain 

inconclusive regarding the exact component processes that each of these areas 

subserves (see Ridderinkhof et al., 2004; Neubert et al., 2013), or how changes 

in activity in these areas relate to changes in performance. I also could not 

dissociate neural activity from the anticipation epoch from activity during the 

response epoch, such that the reported changes in neural activity might span 

either or both of these time windows. Despite these limitations my analysis 

shows that neural processing associated with prior information occurs within the 

known pathways of inhibition, which include IFG, SMA/pre-SMA and striatum, 

rather than in the dlPFC as suggested previously (Aron, 2011). Further research 

is required to ascertain the specific timing and cognitive processes implemented 

within the dlPFC during proactive inhibition. 
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The involvement of this ‘classic’ stopping network in proactive selective control 

contrasts with the absence of evidence for engagement of STN during proactive 

control, in line with a priori predictions (Aron, 2011). The STN has been widely 

implicated in the execution of global inhibition (e.g. Aron and Poldrack, 2006; 

Frank et al., 2007a; Eagle et al., 2008) and more recently, in the preparation for 

global inhibition (Jahfari et al., 2012). My results suggest that, at least with 

regards to preparation, the STN is not involved in selective inhibition. As noted 

earlier, selective inhibition might circumvent this pathway, and its associated 

global inhibitory effect, by inhibiting a specific motor command exclusively 

through the indirect pathway of the striatum (Baker et al., 2010b; Aron, 2011; 

Majid et al., 2013). I observed that the putamen is engaged in proactive 

selective control, whereas I observed a null effect for the STN in the same 

contrast (but note this null effect does not prove a lack of involvement). 

Regarding the striatum, I present evidence for involvement of the putamen, but 

not caudate nucleus, whereas I note other recent work has implicated both 

structures in proactive selective control (Majid et al., 2013). Given that the 

putamen, more so than the caudate, is a fundamental component of a basal 

ganglia motor loop (Alexander et al., 1986), I suggest that the putamen plays a 

pivotal role in implementing selective response inhibition. A closer inspection of 

the electrophysiology of the striatum might provide insights into the differential 

roles of putamen and caudate nucleus (as in Schmidt et al., 2013). 

Activation within right dlPFC and right putamen most strongly reflected a speed-

selectivity trade-off during stop trials: activations in these regions positively 

correlated with a focus on speeded rather than selective inhibition when 

information about which response to inhibit was available. This finding suggests 
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that the dlPFC, together with the striatum, process available information to 

prioritise and prepare the speed of inhibition for an action. This role of the 

dlPFC in setting and prioritizing among future action goals resonates with recent 

findings suggesting that speed-accuracy trade-off (SAT) often observed in 

perception and action (Schouten and Bekker, 1967) is resolved within fronto-

basal ganglia pathways (Forstmann et al., 2008; van Veen et al., 2008; Bogacz 

et al., 2010). Specifically, activity in the dlPFC and basal ganglia positively 

correlates with a focus on speeded rather than accurate responses. Note, 

however, these two types of trade-off are not identical: I find that Information 

affects the speed and selectivity of inhibition, but not the RT or accuracy of 

responses. However, similar to the SAT (van Veen et al., 2008) it might be a 

change in baseline firing rate that governs whether participants emphasise one 

or the other. These findings implicate dlPFC and striatum in selective inhibition 

as suggested by the Aron model, but it also suggests a refinement in which the 

putamen and dlPFC are more, rather than less, active when focusing on speed 

over selectivity. On the other hand, the data suggest that the STN is engaged 

when fast inhibition is prioritised over selectivity when no information is 

provided. In these circumstances selective stopping could not be prepared and 

had to be executed on line. These findings are compatible with the notion that 

the STN is engaged in fast but non-selective inhibition (Coxon et al., 2009).  

The finding that frontostriatal circuits mediate proactive control raises a number 

of questions. Firstly, activity in frontostriatal circuits associated with proactive 

control might reflect either targeted inhibition or enhancement of specific 

actions. For example, low interference in this task could be caused by inhibition 

of the action that needs to be stopped, or enhancement of the actions that still 
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need to be executed. These functions might be subserved by indirect and direct 

pathways respectively, but disentangling these different neuronal populations in 

human fMRI is a major challenge due to their likely anatomical overlap (Gerfen 

and Surmeier, 2011). In fact recent evidence indicates that the direct and 

indirect pathway are simultaneously active during action initiation thus 

suggesting their concurrent activation is required for an execution of a complex 

motor plan (Cui et al., 2013). Secondly, fMRI is not well suited to understanding 

the temporal dynamics of proactive control—a more suitable approach might be 

neurostimulation (Mars et al., 2009; Neubert et al., 2010) or electrophysiological 

recording (Isoda and Hikosaka, 2008, 2011). 

A recent surge of interest in response inhibition that goes beyond all-out, 

reactive stopping motivated us to examine the role of preparation in selective 

inhibition. My data reveal that the opportunity to prepare for inhibition poses a 

trade-off between either faster or more selective inhibition. This trade-off is 

expressed in frontostriatal structures commonly associated with the preparation 

for, and execution of, response inhibition and allows adjustments of behaviour 

mandated by current context. 
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10 Proactive and reactive response inhibition across the 

lifespan 
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10.1 Abstract 

In the previous chapter I described the neural mechanisms of preparatory 

inhibitory control, revealing a considerable overlap between prefrontal and 

striatal regions mediating outright response inhibition and preparation for 

response inhibition, including right inferior frontal gyrus (IFG), premotor areas 

and striatum. In this chapter I take a different approach and ask how reactive 

and proactive control change across demographics, including age, gender, 

education and also measures of depression. Specifically, if the neural structures 

underlying proactive and reactive control overlap, and these structures 

deteriorate with age, then this begs the question do reactive and proactive 

control decline similarly with age? To answer this I used an almost identical 

response inhibition task as before, but delivered using a smartphone-based 

platform that allowed me to test a very large community sample (n = 12,496). As 

in chapter 9 I examine proactive control as the change in stop-signal reaction 

time (SSRT) when participants are provided with advance information about the 

upcoming trial compared to when they are not, whereas reactive control is 

defined as the SSRT when no such advance information is provided. As 

predicted, reactive control declines with natural aging, and the rate of decline 

was greater in men than women (~10 ms versus ~8 ms per decade of adult life). 

Surprisingly, the benefit of preparation, i.e. proactive control, did not change 

over the lifespan and interestingly women showed greater proactive control at 

all ages compared to men. Together these results suggest that reactive and 

proactive inhibitory control at least partially rely on separate neural substrates 

that are differentially sensitive to age-related change. 

10.2 Introduction 
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Humans frequently need to exert rapid reactive control over their actions, such 

as stopping their car when an animal unexpectedly jumps on to the road. 

However, humans can also use informative cues and contexts to implement 

proactive control (Gollwitzer, 1999; Aron, 2011; Braver, 2012), as when keeping 

one’s foot close to the brake after passing a warning sign for a potential deer on 

the road. In chapter 2 I argued that proactive control provides a more 

ecologically interesting framework for understanding both everyday behaviour 

and impulse control disorders (Aron, 2011; Schall and Godlove, 2012). 

However, the dominant paradigm in the inhibition literature—the stop-signal 

task—only measures reactive control (Logan et al., 1984; Verbruggen and 

Logan, 2008). This task has provided a detailed understanding of how fronto-

basal ganglia loops subserve reactive control (Aron and Poldrack, 2006; 

Schmidt et al., 2013) and how age-related decline in these pathways is 

associated with impaired reactive control (Coxon et al., 2012).  

The neural basis of proactive control seems to show extensive overlap with that 

of reactive control as I noted in chapter 9 (and as observed by others, e.g. 

Jahfari et al., 2011; Majid et al., 2013), with perhaps a more prominent role for 

the striatum and dorsolateral prefrontal cortex in proactive control (chapter 9 

and Zandbelt et al., 2012). In this chapter I focus on age-related decline and ask 

whether the similarity in the neural substrates that underlie reactive and 

proactive control means that both types of inhibition will decline at a similar rate 

over the lifespan. Age-related volume reductions are particularly pronounced in 

frontal regions and occur at a more rapid rate in men than women (Gur et al., 

1991; Cowell et al., 1994; Murphy et al., 1996; Coffey et al., 1998). Men are 

also more likely to develop neurodegenerative disease early in life (Miech et al., 
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2002; Raber et al., 2004). I therefore hypothesised that age-related decline 

would be more pronounced in men than women for both reactive and proactive 

inhibitory control. 

To acquire a large and comprehensive sample I collected data through The 

Great Brain Experiment, a smartphone app with experiments presented under 

the cover of games (Brown et al., 2014). The app also recorded educational 

attainment and, for a subset of players, a measure of depressive symptoms. 

Although depression is not thought to be related to reactive inhibitory control 

(Lau et al., 2007; Lipszyc and Schachar, 2010; Sjoerds et al., 2014), these 

studies have relatively small numbers of participants and additionally did not 

test for a possible relationship between proactive control and depressive 

symptoms. Lastly, this chapter examines the reliability of response inhibition 

measures acquired through smartphones and establishes whether assumptions 

of the race model underlying the calculation of stop-signal reaction time (SSRT) 

hold for these data, as performed in chapter 9 (Logan et al., 1984; Verbruggen 

and Logan, 2009b; Congdon et al., 2012). 

10.3 Methods 

10.3.1 Participants 

All participants were recruited through The Great Brain Experiment 

(www.thegreatbrainexperiment.com, Brown et al., 2014), a smartphone 

application (app) that is freely available for download in the App Store on iTunes 

for iOS users, and Google Play for Android users. Between March 11th 2012 

and April 3rd 2014 a total of 29,740 participants of at least 18 years old 

submitted 71,981 datasets (‘plays’) for the game “Am I Impulsive?”. Upon 

starting the app for the first time participants provided informed consent. 
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Participants were asked for their age (<18, 18-24, 25-29, 30-39, 40-49, 50-51, 

60-69, 70+ years old), gender (male or female), location, education (GCSE or 

equivalent, a-level or equivalent, degree, post-graduate qualification), life 

satisfaction (0-10 in steps of 1). As players were only known by an anonymous 

unique identifier (UID) assigned upon consent no identifiable data were stored 

(e.g. no IP addresses, email addresses, initials, dates of birth, and so forth). 

Ethical approval for this experiment was obtained from the UCL Research 

Ethics Committee. Participants could uninstall the app at any time, stop 

submitting data, or could request their data to be deleted from the server. These 

requests were made through the app and preserved anonymity. 

10.3.2 Task 

The design of the task was highly similar to the task in chapter 9, and indeed I 

obtained the same SSRT measures from both tasks. A critical difference was 

that in the task reported in this chapter, the participants were not asked to 

respond as fast as possible to a Go cue; rather, they were asked to respond 

within a certain time window after onset of the trial (cf. Coxon et al., 2007). This 

has implications for the study of the speed-selectivity trade-off: by using a 

response window the remaining response after a successful stop is not to be 

executed as quickly as possible, and as such there is no trade-off any more. 

This is one of the reasons for focusing exclusively on SSRT (at the exclusion of 

selectivity) in this chapter.  
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Figure 10.1: Task design for each 2-minute game. (A) The game required 

participants to smash fruits as they passed over the grey circles. (B) On 37.5% 

of trials one of the fruits turned brown in mid-flight, prompting the participant to 

quickly withhold their response only on that side. On Unprepared trials either 

fruit could turn bad (the example in B shows the right fruit turning bad). On 

Prepared trials one of the fruits glowed, indicating that only that fruit could turn 

bad. (C) This information could be used to employ proactive control, and I 

quantified proactive control as the improvement in performance in Prepared 

over Unprepared trials. 

In this implementation of the task, participants tapped the left and right side of 

their smartphone or tablet screen to smash two falling fruits (Figure 10.1A). A 

single trial consisted of the fruits hanging at the top of the screen for 1-3 s 

(uniformly distributed), followed by the fruits falling down the vertical axis of the 

screen. When these passed over two circles indicating the response window, 

spanning 500 to 800 ms following onset of the fall, participants were required to 

tap both sides of the screen. Out of 32 trials in a single play of the game, a 
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random draw of 12 trials (37.5%) were ‘selective stop trials’ on which one of the 

fruits turned brown, indicating the corresponding side of the screen should not 

be tapped. On 16 out of 32 trials (‘Prepared’ condition) a glowing circle around 

one of the fruits indicated to the participant that this fruit alone might turn brown 

(which it would do in 6 out of 16 trials, i.e. 37.5%). On the other 16 trials 

(‘Unprepared’ condition) neither fruit glowed meaning either fruit might turn bad 

(Figure 10.1B). The stop trials were always ‘selective’, i.e. never did both fruits 

turn bad in the same trial. As in chapter 9, Prepared trials thus contained extra 

information concerning the action that might require stopping, allowing the 

participant to prepare and exert proactive control (Figure 10.1C). The number of 

ms between the start of the fall and the fruit turning brown is the stop signal 

delay (SSD). I used separate staircases for the SSD in Prepared and 

Unprepared stop trials. The staircases started at 300 ms, moved by 50 ms up or 

down following correct or incorrect stops, respectively, and were reset at each 

play of 32 trials. Taken together, there were 4 types of trials: Unprepared go, 

Unprepared stop, Prepared go, and Prepared stop (but no ‘No Stop’ trials as in 

the lab version of this task). Reactive control was calculated as the SSRT in the 

Unprepared condition, whereas proactive control was calculated as the 

difference in SSRT between Unprepared and Prepared trials (i.e. the 

improvement in SSRT with information; see below). All trials types were fully 

counterbalanced over events on the left and right side of the screen. The order 

of trials was randomised for each play. Feedback consisted of one of the 

following statements: ‘You touched too soon!’; ‘You touched too late!’; ‘Touch 

the fruit inside the circles!’ (in case no buttonpress was detected); ‘Don’t touch 
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the bad fruit!’. A single play of the game took approximately 2 minutes, and was 

preceded by a short instruction screen.  

10.3.3 Participant exclusion 

Only completed plays that were immediately sent to the server over an active 

internet connection were stored. I first discarded data from participants with no 

correct Go or Stop trials, no failed or successful stop trials in either Prepared or 

Unprepared trials, or an SSRT that was smaller than or equal to 0 (see below 

for SSRT estimation). This left us with 22,098 out of a total of 29,740 

participants (74%). Unless noted otherwise, I then performed all analyses on 

participants that submitted 2 plays or more to allow for reliable estimation of the 

SSRT (12,496 out of 22,098 participants played 2+ games, 57%; Congdon et 

al., 2012). Data collected over multiple plays by a single participant were 

concatenated. In all regressions I added the number of submitted games as a 

nuisance regressor. 

10.3.4 Beck Depression Inventory (BDI) 

The app contained a messaging system allowing researchers to contact 

participants through their UID alone. A link to an online version of the BDI-2 

(Beck et al., 1961; Beck et al., 1996) was sent to all participants. In addition to a 

standard set of 21 questions to measure current levels of depression, I asked 5 

optional questions about depression history, number of depressive episodes, 

duration of depression over lifespan, history of anti-depressant medications, 

and occurrence of depression in immediate family. These data were then 

matched to the task data based on their UID. In case of duplicate submissions 

only the first submitted questionnaire was analysed. In the sample of 

participants (>1 play) the response rate was 4% (509 participants). 
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10.3.5 Estimation of SSRT 

Using the same method as in chapter 9 I calculated SSRT for the Unprepared 

and Prepared condition separately. In this study, SSRT-Unprepared 

corresponds to reactive control, and the percentage improvement between 

Unprepared and Prepared, i.e. 100*(SSRT-Prepared - SSRT-

Unprepared)/SSRT-Unprepared, corresponds to proactive control. 

For the purpose of SSRT estimation, Go RTs were defined as the first detected 

button press in the trial (ignoring when the opposite side was pressed). All Go 

RTs, including those outside the correct response window, were arranged in 

descending order. I chose to include such trials to more accurately capture the 

true RT distribution. I excluded 18 participants whose proactive control was 

larger than 100% or smaller than -100%.  

10.3.6 Estimation of selectivity 

I estimated the selectivity of inhibition by calculating RTstopSuccess - RTGo. This 

represents the slowdown in the remaining response when executing a stop 

compared to when no stop is required. Although the race model predicts a 

positive value (because successful stop trials are assumed to represent slow 

response trials), individual variation can capture differences in selectivity of the 

inhibition process (Coxon et al., 2007, 2009). However, the reliability analysis 

(see Results) showed that this measure cannot be estimated accurately from 

the data, so in this chapter I focus on SSRT rather than selectivity. 

10.3.7 Statistical analysis 

To test the hypotheses I performed linear regressions in R (R Development 

Core Team, 2008; R Core Team, 2011). I regressed the various dependent 

variables against models that always included nuisance variables including the 

number of submitted games, proportion of correct Go trials (both location and 
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timing of press), and operating system (iOS or Android). As regressors of 

interest I used, across multiple models, scalar variables of age and BDI (both 

mean-centred; each participant’s age set to the centre of their age bin), and 

factors gender and education. For analyses that included education I excluded 

participants 18-24 years old as a large proportion might not yet have finished 

their education. I explicitly did not enter all variables and their interactions into a 

single large model, as this leads to many effects for which I had no hypotheses 

or likely interpretations. I used the R-package ‘doBy’ for post-hoc contrasts 

(Højsgaard, 2012). For reliability analysis and plotting I used MatLab R2012a 

(The MathWorks, Inc.). To calculate split-half reliability I always compared even 

to odd plays (as performed in Williams et al., 1999). Note that I report effect 

sizes and 95% confidence intervals in ms rather than p-values, as the large 

sample size makes p-values less informative (Kline and Association, 2004). 

10.4 Results 

10.4.1 Reliability of SSRT and selectivity estimates 

SSRT and selectivity have been used as markers of inhibitory control (e.g. Aron 

and Verbruggen, 2008; Smittenaar et al., 2013a). As these are summary 

measures derived for each participant, their reliability depends on the amount of 

available data. For example, 52% of participants submitted only a single play, 

which is about 2 minutes’ worth of data. Indeed, for participants who played 

more than once, the intra-class correlation between the first and second play is 

below 0.4 for both SSRT and selectivity, which is classified as ‘poor’ (see Figure 

10.2; Cicchetti, 2001). Including twice the number of trials leads to a ‘good’ 

reliability for SSRT-Unprepared and SSRT-Prepared, whereas the reliability of 

the selectivity measures remains poor (Figure 10.2). Given these results I 
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excluded those participants who only submitted a single game, and focused the 

analyses on SSRT rather than selectivity.  

 

Figure 10.2: Reliability of SSRT and selectivity depends on the number of 

available plays per participant. The SSRT represents the duration of the 

inhibitory process, i.e. the speed of inhibition (see Methods). Selectivity 

represents the slowing that occurs on the concurrent response when an action 

is inhibited. Both measures can be estimated for the Prepared and Unprepared 

conditions separately. Here I use the intra-class correlation (ICC) to quantify the 

reliability of these measures as a function of the number of trials that are used 

in the estimation. If SSRT and selectivity are estimated from the first game only 

and compared to the second game (# of plays = 1 in the figure), reliability is 

poor for all measures (following criteria from Cicchetti, 2001). As more games 

are used for estimation reliability increases, although reliable estimation of 

selectivity requires approximately 4 times as much data as reliable estimation of 

SSRT as shown by the rightward shift of the selectivity curves compared to 
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SSRT curves. Error bars represent 95% CI on the ICC, n = number of 

participants for whom sufficient plays were available. 

10.4.2 Applicability of the independent horse race model 

Despite good reliabilities, the relatively small number of trials included in the 

calculation of some of the SSRTs might make the independent horse race 

model unsuitable (Logan, 1994; Verbruggen and Logan, 2009b). Participants 

with 2 or more submitted plays had at least 12 stop trials and 20 go trials in the 

Prepared and Unprepared condition each. This is half the number of trials per 

condition that Congdon et al. (2012) showed were needed to yield a reliable 

estimate of SSRT. To ascertain the applicability of the horse race model to 

these data I checked a range of assumptions of the model (Figure 10.3). Firstly, 

on trials where the participant fails to stop, the RT tends to be faster than the 

average Go RT, in line with the prediction that failed stop trials represent the 

fast part of the Go RT distribution (Figure 10.3A-B; Prepared: mean RTGo - 

RTstopFail = 22.8 ± 0.6 ms; Unprepared: mean RTGo - RTstopFail = 25.3 ± 0.6 ms). 

Secondly, the later the stop-signal was presented, i.e. the longer the stop-signal 

delay, the lower the probability of stopping (Figure 10.3C) and the higher the 

reaction time on failed stop trials (Figure 10.3D). Together these results suggest 

an independent horse race model is applicable to data from both the 

Unprepared and Prepared conditions in participants with 2 or more submitted 

plays. 
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Figure 10.3: The Unprepared and Prepared condition satisfy assumptions of the 

race model used to calculate SSRT. The horse race model (Verbruggen and 

Logan, 2009b) assumes that a stopping process with fixed duration is set off as 

soon as the stop signal is presented. This process then catches up with the Go 

process only if the stop was initiated far enough in advance of the Go response, 

i.e. 1) if the Go process happened to be slow on that trial and/or 2) if the stop-

signal was presented early. Confirming the first prediction, in stopFail trials 

(where the participant erroneously responds and thus fails to stop) the reaction 

times are on average faster than in Go trials, in both the Unprepared (A) and 

Prepared (B) condition. Confirming the second prediction, the later the stop-

signal was presented (i.e. the later the fruit turned brown) the lower the chance 

of stopping successfully (C). Lastly, if the SSD is large the stop process cannot 

catch up even with slow Go responses; this predicts that the average stopFail 

RT will go up with larger SSDs, which is indeed the case (D). All RTs are shown 

relative to the centre of the response window, which was at 650 ms after the 

start of the fall. SSDs are relative to the start of the fall. Error bars indicate 95% 

confidence intervals. White dots in A and B indicate population means. 
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10.4.3 Preparation improves speed of inhibition 

As expected, preparation (proactive control) improved the SSRT (Unprepared - 

Prepared, 31.9 ± 1.1 ms improvement). To examine how the between-

participant factors affected inhibitory control I examined SSRT-Unprepared as a 

measure of reactive control, and the improvement from Unprepared to Prepared 

as a measure of proactive control.  

10.4.4 Demographics of proactive and reactive control 

In a regression of SSRT-Unprepared on age, gender, age-by-gender and three 

nuisance variables (see Methods), I observed 18-24 year old women are 9.97 ± 

1.99 ms slower than men. However, there is also a significant age-by-gender 

interaction on this measure of reactive control (Figure 10.4A, red lines). That is, 

whereas men on average deteriorate by 10.1 ± 1.22 ms per decade, women do 

so only at 8.2 ± 1.05 ms per decade (1.9 ± 1.57 ms per decade slower than 

men). Reactive inhibitory control thus declines more slowly in women than men. 

For proactive control (the difference between Unprepared and Prepared SSRT), 

18-24 year old women showed a larger improvement with preparation (Figure 

10.4B; 1.95 ± 0.57 % point difference). This effect of gender on proactive 

control, if anything, became stronger with older age (the gender difference 

increased by 0.46 ± 0.45 % point per decade). Although Figure 10.4B suggests 

a trend whereby proactive control increases with age, this was not significant (-

0.01 ± 0.03 ms) and therefore presumably captured by the nuisance regressors. 

Together, these results show that reactive, but not proactive, control 

deteriorates with age, but more so in men than women (Figure 10.4A). 

Furthermore, women experience greater benefits from proactive control across 

all ages (Figure 10.4B).  
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Figure 10.4: Demographics of proactive and reactive control. (A) SSRT-

Unprepared, which measures the speed of reactive control, increases with age. 

However, this age-related decline is more rapid in men than women. Proactive 

control is quantified as the difference between Unprepared and Prepared 

SSRT, i.e. the amount by which inhibition is improved through preparation 

(difference between red and blue line). (B) In proactive control strikingly 

different pattern is observed. Relative to performance in Unprepared trials, 

women improve more with preparation across all ages, with a slight increase in 

this improvement with age. Although the lines seem to have a negative slope, 

there was no evidence for an effect of age on proactive control. The y-axis 

represents the improvement in SSRT between Unprepared and Prepared as % 

of SSRT-Unprepared, such that more negative values indicate greater benefit of 

preparation on the speed of inhibition. (C) Higher attained education in 

participants aged 25 or over is not only associated with better reactive control 

(reduction in SSRT-Unprepared), but also with a better proactive control (larger 

difference between red and blue bar). (D) The BDI scores were distributed as 
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shown in the grey histogram. No relationship with SSRT-Unprepared or 

proactive control was apparent. All error bars indicate 95% CI. BDI = Beck 

Depression Inventory; GCSE = general certificate of secondary education; A-

level = general certificate of education advanced level. 

For education I also examined SSRT-Unprepared and the difference between 

SSRT-Unprepared and SSRT-Prepared to distinguish reactive versus proactive 

control, respectively (Figure 10.4C). Progressively higher levels of education 

were associated with better SSRT-Unprepared (compared to GCSE, in ms: a-

level, -4.8 ± 4.1; degree, -7.1 ± 3.7; postgrad, -8.4 ± 4.0). Similarly, proactive 

control increased with education (compared to GCSE, in % points: a-level, -1.6 

± 1.2; degree, -2.6 ± 1.1; postgrad, -3.3 ± 1.2). Together, this shows that a 

higher level of education is associated with better reactive as well as proactive 

control. 

Lastly I explored possible relationships between depression indices and SSRT 

(Figure 10.4D). In a regression identical to the age-by-gender regression above, 

but with BDI scores added as a predictor, I observed no relationship between 

the BDI score and SSRT-Unprepared (change in SSRT with every point on BDI 

scale, 0.05 ± 0.39 ms) or proactive control (0.04 ± 0.14 % points).  

10.5 Discussion 

This chapter describes a dataset acquired through smartphones in which I 

examined inhibitory control in a strongly heterogeneous group of participants in 

terms of their age, gender, education and depressive symptoms. I showed that 

these data conform to assumptions of the widely used independent horse race 

model, which was used to estimate the SSRT in the Prepared and Unprepared 

conditions. These measures can be reliably estimated from the data even with 
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only ~4 minutes of data (64 trials). I show that reactive control, operationalised 

as SSRT in the Unprepared condition, deteriorates with age, and this occurs 

faster in men than women. Proactive control, operationalised as the change in 

SSRT in the Prepared compared to the Unprepared condition, did not 

significantly change with age. Moreover, proactive control was stronger in 

women compared to men at all ages. Additionally, higher levels of education are 

associated with better reactive as well as proactive inhibitory control, whereas 

depression shows no relationship with either measure of inhibitory self-control. 

There are many benefits as well as limitations to the use of smartphones in 

cognitive science (Dufau et al., 2011). As in lab-based (Henrich et al., 2010) 

and online (Chandler et al., 2014) cognitive research a sampling bias is 

assumed which is compounded by the cross-sectional approach as in lab 

studies on aging (e.g. Salthouse, 2009). Broad sampling of the wider population 

is a first step to understanding how our models of cognition apply beyond the 

common context of Western university students. For example, another game 

from The Great Brain Experiment showed that a computational model of 

subjective well-being developed in the lab could be used to predict well-being in 

the broader population (Rutledge et al., 2014). Smartphones, given their 

ubiquity not only in the West but worldwide (Bicheno, 2012), provide a cost-

efficient and societally engaging way of achieving this goal. 

These results extend previous research on inhibition in multiple ways. I replicate 

the finding that reactive control deteriorates with age (Williams et al., 1999; 

Bedard et al., 2002; Coxon et al., 2012). Unlike these previous studies I 

observed an age-by-gender interaction. This adds to an existing controversy on 

differential cognitive decline in men and women, with some reports finding 
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faster decline in men (on a cognitive battery; Maylor et al., 2007), and others 

finding no differential decline (in spatial ability; Willis and Schaie, 1988; Driscoll 

et al., 2005), and yet others finding women decline faster (on simple and choice 

RT; Der and Deary, 2006). This cognitive heterogeneity is surprising given the 

more rapid age-related neural decline consistently found in men compared to 

women (Gur et al., 1991; Cowell et al., 1994; Murphy et al., 1996; Coffey et al., 

1998; Good et al., 2002), including in prefrontal regions critical for inhibitory 

control (chapter 9 and Majid et al., 2013). Future work, for example on white-

matter connectivity rather than brain volume (Coxon et al., 2012), might shed 

more light on the neural underpinnings of age- and gender-related decline and 

maintenance of cognitive function. It would be particularly relevant to 

understand how proactive control performance is maintained in the face of 

neural decline, and how this aligns with theories of proactive control in aging 

(Braver, 2012; Lindenberger and Mayr, 2014). 

In contrast to this gender-by-age effect on reactive control, proactive control 

was greater (i.e. SSRT improved more with preparation) in women compared to 

men at all ages. That is, whereas advance information benefits the speed of 

inhibition as observed previously (Aron and Verbruggen, 2008; Jahfari et al., 

2012; Smittenaar et al., 2013a), women improve more than men at all ages. 

This suggests that preparatory benefits are not simply a function of baseline 

performance whereby worse performers show larger improvements.  

Education is often controlled for (e.g. Monterosso et al., 2005) or measured but 

not reported on (e.g. Bedard et al., 2002; Rucklidge and Tannock, 2002) in the 

response inhibition literature. To the best of my knowledge there have been no 

previous reports showing education is associated with better reactive and 



Proactive and reactive response inhibition across the lifespan 
Chapter 10 

 

238 
 

proactive inhibitory control. Attention-deficit/hyperactivity disorder (ADHD) is 

characterised by impaired response inhibition (Casey et al., 1997) as well as 

poor educational attainment (Loe and Feldman, 2007). Even adults who show 

symptoms and/or behavioural indications of ADHD during early childhood, but 

who are never formally diagnosed, show poor education attainment (Lambert, 

1988). This suggests that impulsivity traits contribute to educational 

performance, in addition to potential effects whereby poor education leads to 

impaired self-control.  

The approach presented in this chapter shows the power of harnessing large-

scale public participation in psychology and academic research (Bonney et al., 

2014). By transforming often tedious laboratory tasks into engaging games (Kim 

et al., 2014), researchers can now engage the public in research at vast scales 

without compromising their experimental designs. 
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11 General discussion 
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This dissertation describes the use of computational modelling, 

neuromodulation and neuroimaging to investigate the neural and behavioural 

correlates of reward-guided and inhibitory action control.  

In chapter 2 I reviewed evidence that reinforcement learning can be parsed into 

model-free and model-based components. I went on to study how levodopa 

(chapter 5) and transcranial neurostimulation (chapters 6 and 7) can modulate 

these specific components of reinforcement learning. In chapter 8 I used high-

resolution imaging to investigate the functional neuroanatomy of frontostriatal 

reward learning networks.  

In the second part of this thesis I studied proactive and reactive inhibitory 

control which, like reward learning, requires adjustments to action based on 

uncertain information from the environment. In chapter 9 I studied the 

frontostriatal networks that subserve proactive control over response inhibition.  

In the final study of this thesis I studied proactive and reactive inhibitory control 

in a much larger and more diverse sample than is available for laboratory based 

studies through a smartphone application, revealing how inhibitory control 

varies by age and gender (chapter 10).  

Having discussed the conclusions and implications of each individual study in 

their respective chapters, in this final discussion I touch upon two issues that 

are of a more general nature; firstly whether model-based and model-free 

control can really be considered distinct and secondly; how recent advances in 

human neuroimaging might drive a more anatomically grounded view of striatal 

function. I examine these in light of previous studies in the field as well as my 

own work presented throughout this thesis. 
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11.1 How distinct are model-based and model-free control? 

Throughout this thesis I deliberately drew a clear-cut distinction between model-

based and model-free influences over behaviour. It is more likely, however, that 

these two forms of control represent opposite poles of a continuous spectrum. 

This continuous view of control is reflected in the many machine learning 

algorithms that borrow elements from both classes of model (Sutton, 1990; 

Sutton and Barto, 1998). Furthermore a range of recent findings in cognitive 

neuroscience support the notion of a spectrum of control (Daw et al., 2011; 

Gershman et al., 2014).  

For example, in chapter 2 I introduced dopaminergic and ventral striatal reward 

prediction errors as a fundamentally model-free, stimulus-response learning 

mechanism. Indeed, a purely model-based controller would have no use for 

stimulus-response reward prediction error in most naturalistic environments. It 

came as a surprise, then, when Daw et al. (2011) reported that ventral striatal 

BOLD responses can best be explained by modelling not only a model-free but 

also a model-based component to the reward prediction error (also see 

Deserno et al., 2015). Equally surprising was the finding that the lesions of the 

ventral striatum abolish model-based reward identity learning (McDannald et al., 

2011). A more formal departure from fully segregated systems is the Dyna 

algorithm (Sutton, 1990). Here, a model of the environment replays events and 

action sequences to train an instrumental learning mechanism, e.g. by replaying 

events through models of the environment represented in the hippocampus to 

generate reward learning signals in the striatum (as suggested by Johnson and 

Redish, 2005). Behavioural evidence of such model-based instruction of a 

model-free system has now been observed in humans (Gershman et al., 2014). 
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In their task a model-based and model-free system individually predicted that 

participants would make one choice, whereas a model-based system training a 

model-free actor would predict an alternative choice. The latter choices were 

indeed observed, a result that was replicated in follow up experiments 

(Gershman et al., 2014). 

Taken together, the above studies provide compelling evidence that model-

based and model-free control exist along a continuum. The question then is not 

if there are multiple forces driving behaviour, but rather at what point during a 

decision and across the timespan of learning do models of the world exert their 

influence. How does this literature on dual processes relate to the findings from 

this thesis?  

As I alluded to in the discussion of chapter 5, it seems that we need to re-

evaluate some historical work on instrumental learning. In a critical paper 

Collins and Frank (2012) showed that even simple, 1-step reinforcement 

learning problems such as the one in chapter 8 are now known to engage both 

model-free and model-based mechanisms. This means than when behaviour on 

such a task is altered by Parkinson’s disease (Frank et al., 2004; Bodi et al., 

2009), dopaminergic drugs (Pessiglione et al., 2006), psychosis (Murray et al., 

2008), schizophrenia (Koch et al., 2010), genetic traits (Frank et al., 2007b), 

ageing (Chowdhury et al., 2013), adolescent development (van den Bos et al., 

2012) or addiction (Redish, 2004) it is difficult to tell whether this is due to a 

change in a model-free or model-based component of choice, or indeed in their 

interaction. Chapter 5 showed the surprising result that levodopa in healthy 

participants had no effect whatsoever on model-free learning, but boosted 

model-based control. In a 1-step learning task such a dopamine-induced boost 
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in model-based control might well be expressed through faster learning rates in 

a (model-free) temporal difference reinforcement learning model, leading to 

potentially erroneous conclusions, for example that dopamine is impacting on 

model-free prediction errors.  

In conclusion, more work is needed to understand the intricate organization of 

decision-making, probably through the development of tasks that finely place 

behavioural control on a spectrum rather than categorise it into discrete forms. 

Until we have such an understanding, tasks that can provide more insightful and 

nuanced accounts of behaviour should be favoured over more basic tasks that 

until now have provided the foundation for our study of reinforcement learning. 

11.2 The specificity of ‘frontostriatal’ systems 

Corticostriatal systems are important for reward learning and decision-making, 

but also for virtually every other domain of cognitive neuroscience. Indeed, the 

study of frontostriatal systems has strong momentum at present —about 20% of 

all papers on the topic have been published in the last 2 years. But despite 

three decades of work on functionally segregated loops through the basal 

ganglia (Alexander et al., 1986; Averbeck et al., 2014), many functional studies 

in humans still refer to the striatum as a unitary structure. Indeed, given that the 

striatum to some extent represents a microcosm of the cortex, a study 

concluding that a task ‘activated the striatum’ is akin to stating a task ‘activated 

the cortex’ if further anatomical specificity is omitted.  

The remarkable topography of the striatum provides an opportunity to 

understand what specific corticostriatal loops are involved in cognitive and 

motor functions. As such, the anatomical rigour applied to, for example, 
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prefrontal cortex (Rushworth et al., 2011; Haber and Behrens, 2014) or the 

visual system (Lund, 1988; Zeki et al., 1991) could also be leveraged in the 

striatum. Studies that do divide the striatum into parts often limit these efforts to 

three areas: the ventral striatum, putamen and caudate (e.g. chapter 9 and 

O'Doherty et al., 2004). In reality, the functional and anatomical division is much 

more subtle (Graybiel and Ragsdale, 1978; Averbeck et al., 2014; van den Bos 

et al., 2014).  

In chapter 8 I took a data-driven approach to understanding how local 

differences in corticostriatal connectivity relate to local differences in functional 

responses. The underlying idea is that function in the striatum is not easily 

defined along anatomical landmarks, as might be the case in motor or visual 

cortex. Indeed, the border between nucleus accumbens, caudate and putamen 

is at best highly ambiguous. Using the connectivity fingerprint of individual 

voxels is a promising method to define functional zones within the striatum 

(Draganski et al., 2008; Saygin et al., 2012; Averbeck et al., 2014). As methods 

for diffusion imaging and probabilistic tractography improve (Glasser et al., 

2013; Sotiropoulos et al., 2013; Van Essen et al., 2013) we can expect to see 

more studies beginning to explain computations and representations across the 

brain in terms of anatomical connectivity. This promises to complement the 

large number of studies of functional connectivity (Fox and Raichle, 2007; 

Bullmore and Sporns, 2009; Fries, 2009; Friston and Dolan, 2010), such as 

resting state fMRI which has already been used to segment the striatum (Di 

Martino et al., 2008; Robinson et al., 2009; Barnes et al., 2010; Helmich et al., 

2010; Choi et al., 2012). Indeed, whereas functional connectivity has been 

convincingly used to study frontostriatal interactions in the competition between 
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model-based and model-free control (Wunderlich et al., 2012b; Lee et al., 

2014), a similarly rigorous approach using structural connectivity has to the best 

of my knowledge not been applied.  

In summary, the argument put forward is that not all striatal activations are 

created equal. By using a combination of functional and anatomical connectivity 

methods we will hopefully develop a finer scalpel to study the origin of 

corticostriatal activations and their role in cognition.  
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