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Clutter has a complex effect on radio propagation, and limits the effect-
iveness of deterministic methods in wireless indoor positioning. In
contrast, a Gaussian process (GP) can be used to learn the spatially
correlated measurement error directly from training samples, and build
a representation from which a position can be inferred. A method of
exploiting GP inference to obtain measurement predictions from
within a pose graph optimisation framework is presented. However,
GP inference has a run-time complexity ofO(N3) in the number of train-
ing samples N, which precludes it from being called in each optimiser
iteration. The novel contributions of this work are a method for building
an approximate GP inference map and an O(1) bi-cubic interpolation
strategy for sampling this map during optimisation. Using inertial,
magnetic, signal strength and time-of-flight measurements between
four anchors and a single mobile sensor, it is shown empirically that
the presented approach leads to decimetre precision indoor pedestrian
localisation.
Introduction: It is currently possible to localise pedestrians outdoors to
decimetre precision using mass-market raw global satellite navigation
system receivers. However, localising pedestrians indoors to a similar
accuracy is not yet possible, despite it being a key requirement for
many applications including augmented reality, advertising and assisted
navigation. The fundamental reasons are that environmental clutter
causes complex absorption, multi-path and non-line-of-sight radio
errors [1], and that dead reckoning systems drift with time.

A variety of different indoor localisation systems have been
described, some of which are based on multi-sensor fusion [2] and the
application of supervised machine learning techniques to train localis-
ation models [3]. Given measurements [4], many approaches use
sequential Monte Carlo methods to find a likely candidate position,
but these methods suffer from scaling problems when more sensors
are added to the system. Since efficient pose graph methods are com-
monly used in visual localisation [5], we apply this type of method, in
combination with GraphSLAM implementation [6], to solve a range-
based localisation problem.

Our approach casts localisation as a pose graph optimisation problem,
where gradient descent is used iteratively to solve for the sensor’s
unknown trajectory by maximising the measurement likelihood – the
weighted difference between a prediction from a measurement model
and an observation. Gaussian process (GP) regression is used to build
measurement models that capture the spatial correlation of magnetic
field strength, as well as anchor-specific radio signal strength and
time-of-flight measurements. Inertial measurements are passed through
a step and heading system (SHS) to produce bearing and distance
pseudo-measurements that associate sequential state values.

Performing GP inference in each iteration of pose graph optimisation
is computationally infeasible, as it has a complexity of O(N3), where N
is the number of training samples. Our contribution is an approximation
strategy that assumes that there is no meaningful spatial variation in
measurement values beyond a fixed resolution. We can therefore pre-
compute a fixed-resolution GP inference map once, before the pose
graph optimiser is called. During optimisation, bi-cubic interpolation –
with an O(1) complexity – is used to sample a measurement prediction
by fusing the 16 nearest map cells. We show that our approach yields
approximation errors of <0.001% for a 20 cm grid size.

Proposed method: Consider a localisation system that includes m static
anchors ai = [xi, yi]

T, i = 1, 2, …, m, and one mobile sensor p = [x, y]T.
The target carries a 6-degree-of-freedom inertial sensor, a triaxial mag-
netometer and a packet radio that not only supports communication but
also provides signal strength and time-of-flight measurements. The
localisation problem can be represented by Fig. 1.

The objective of localisation is to estimate values for all ‘unknown’
sensor positions x1…xn, given the ‘predicted’ initial states x0,
‘unknown’ anchor positions a1, …, am, ‘processes’ f(·) that relate two
sequential sensor positions, and ‘corrections’ g(·) that relate a sensor’s
position to a subset of anchors through magnetic and radio measurements.

We use GP models to describe spatially correlated radio and magnetic
error. Let z = {zi, i = 1, …, N} be a set of observed measurements drawn
from a noisy process and let X = {xi, i = 1, …, N} be a set of
positionLtd, Salisbury
corresponding coordinates. Each observation zi can be related to a trans-
formation function f(xi) through a Gaussian noise model as zi = f (xi) + ei,
where zi is the measurement at position xi, and {e}Ni=1 � N (0, s2

n) is the
measurement noise which is assumed to be Gaussian. A GP model re-
presents a function as a non-parametric distribution specified by a set
of labelled training samples and a kernel function. It requires that all
function values of f are jointly Gaussian with covariance matrix K. A
commonly used covariance matrix is a squared exponential covariance

matrix, defined as k(xp, xq) = s2
f exp −(1/2l2) xp − xq

∣∣ ∣∣2( )
, where s2

f

is the signal variance and l is the length scale of the covariance function.
s2
f , l and s2

n are the hyperparameters of a GP model. They control the
smoothness of distribution and can be learned with a standard optimi-
sation procedure by maximising the likelihood of the training data
with respect to their values, using a conjugate gradient descent.
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Fig. 1 Localisation problem expressed as connected graph

Circles xi and ai represent unknown sensor and landmark positions. Edges g(·) as
corrections represent radio and magnetic measurements as well as GP predictions,
while edges f (·) as processes, represent SHS pedometry. Initial states for all circles
are represented as vector x0

The main structure of our proposed localisation model is an example
of a robustified, nonlinear least-squares problem of the form

min
x

1

2

∑
i

ri ‖fi xi1 , . . . , xik
( )‖2( )

(1)

The expression ri ‖fi xi1 , ..., xik
( )‖2( )

in (1) is known as a ‘residual
block’, where fi(·) is a ‘cost function’ that depends on the parameter
blocks xi1 , . . . , xik

[ ]
. Function ρi represents a ‘loss function’. We have

chosen the Cauchy loss function defined as ρi(s) = a
2log(1 + (s/a2)),

where a is a scale factor that controls influence of the loss function. The
proposed loss function is a scalar function that is used to reduce the influ-
ence of outliers (e.g. multi-path) on the solution of nonlinear least squares
problems. The use of a loss function is very important where many outliers
are to be expected in the system, in order to prevent the solution from being
pulled away from the optimal due to erroneous measurement.

Let x eRn be an n-dimensional vector of variables, and
F(x) = f1(x), . . . , fm(x)

[ ]`
be an m-dimensional function of x. Then,

the general nonlinear optimisation problem that needs to be solved
can be defined as arg minx (1/2)‖F(x)‖2. Finally, to solve the full local-
isation problem, we define an objective function as shown in (2)

�X = argmin
X

∑
i[M

zi − hi(X )
( )

R−1
i zi − hi(X )
( )

(2)

where X = {xi, i = 1,…, N} contains all unknown sensor positions, zi are
observations, hi(·) is the measurement model and Ri is the measurement
noise covariance. The processes f (·), as a two-dimensional displacement
vector calculated from constant stride length multiplied with a bearing
obtained by attitude and heading reference system, and the corrections
g(·) are bundled into a set of measurements M. The measurement
model hi(·) for the ith measurement extracts the relevant states from X
to ‘predict’ the measurement value. A residual is then calculated using
the observation zi and measurement noise covariance Ri. Corrections g
represent weighted errors between predicted value d̃ at position xt and
the estimated value from the pre-computed map
rGP(t) =

∑M
i=0 (d̃i −map(xt))s−1

GP(xt) for GP predicted magnetic and
radio estimates, and rRB(t) =

∑M
i=0 (d̃i − et)s−1

RB for raw radio measure-
ments. Raw measurements are used on areas inadequately mapped with
GP, to provide a weak estimate of the absolute reference frame.

Localisation is carried out by assigning values to X in such a way that
the sum of the weighted square residuals is minimised. The GP predictions
from the radio and magnetic models are approximated from pre-computed
maps, since the fundamental computational complexity of GP inference is
O(N3), which prevents GP predictions from being made inside of a solver
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with millions of requested calls. Moreover, the solving strategy requires
that x be updated using x← x + Δx, where Δx may be an infinitesimally
small quantity. We addressed this problem by performing bi-cubic inter-
polation (3) on the pre-computed map, defined as

p(x, y) =
∑4
i=1

∑4
j=1

aijx
iyj (3)

where p(x, y) is the interpolated value at an arbitrary position (x, y),
depending on the 16 nearest cells in the map. With this procedure, the
runtime complexity of GP prediction decreases from O(N3) to the O(1)
operation required to interpolate a value from the pre-computed map.

Since, in most cases, the measurement model hi(·) includes nonlinear
functions, we have to settle finding for a local minimum. The general
strategy of solving nonlinear optimisation problems is to solve a sequence
of approximations to the original problem. At each iteration, the approxi-
mation is solved to determine a correction Δx to the vector x. For nonlinear
least squares, an approximation can be constructed by using the first-
order linearisation F(x + Δx)≈ F(x) + J(x)Δx. The result of this approxi-
mation is that solvers are non-optimal and may therefore converge to
local minima. This effect can be mitigated by initialising the solver
with a reasonable approximation of the true state values.

Experimental results: A set of experiments was conducted in a 20 × 20m
office space containing several large pillars and other environmental
clutter. Four anchors were deployed at the corners of the space and
20 min worth of raw inertial and radio measurements were recorded
by a small bespoke mobile sensor. Both the sensors and the anchors
were based around an IEEE 802.15.4 compatible Freescale MC13224
microcontroller with a low-cost single chip InvenSense MPU-9150
IMU, and a nanoPAN radio module for time-of-flight measurements.
The sensor was carried on the waist of a pedestrian, who was simul-
taneously tracked by an electronic theodolite, to obtain
millimetre-accuracy ground truth.

The data set was then split into a training and a test set of 10 min each.
The training set was used to generate nine (one per anchor for radio and
one for magnetic measurements) GP approximation maps. An example
of one such map is shown in Fig. 2a. To evaluate how much error is
introduced by our bi-cubic interpolation approximation, we carried out
exact inference and approximations for 10 000 sample points. Table 1
shows the mean value of relative error. From this data, we chose a
grid step size of 0.2 m, for which the relative error drops below 0.001%.
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Fig. 2 GP ToF map of one anchor node and localisation solver result fusing
ALL sensors including GP over 10 min period

a GP ToF map of one anchor node
b Localisation solver result fusing ALL sensors

Table 1: LUTinterpolation error
Grid step size (m)
 0.05
 0.1
 0.2
 0.5
 1.0
 2.0
Error – GP value (%)
 1.7 × 10−5
 1.1 × 10−4
 7.8 × 10−4
 0.01
 0.1
 2.0
Error – GP variance (%)
 4.6 × 10−5
 1.3 × 10−4
 2.9 × 10−3
 0.05
 0.5
 5.7
The training set was also used to estimate measurement uncertainties.
Variances used in GP correction blocks are provided by the GP itself,
where constant variance for range-based measurements and for
process f was estimated by running the proposed solver on a test tra-
jectory included in the simulated annealing algorithm.

From the results shown in Fig. 3, where we fused together different
measurement sources with the main process f, it is evident that the
overall localisation accuracy is significantly improved, where GP pre-
dictions were included into the localisation solver.

Since it may not be possible to build GP maps for the entire area of an
environment, it is important to include raw (or filtered) range measure-
ments to prevent the solution from drifting away at unmapped areas.
Note that we used the same initial state x0 for all tests, to exclude pre-
liminary errors due to different initial conditions. Initial states were pre-
dicted by a multi-level algorithm including maximising measurement
likelihood of range measurements. In obtaining the full solver solution
on a 10 min test set that contains 20 000 unknown states, it takes 2 s
to predict initial states and 4 s to solve the localisation problem,
giving a 0.5 m mean localisation error. This is shown in Fig. 2b.
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Fig. 3Mean localisation error for different multi-sensor fusion combinations
(values inside boxes represent solving time in seconds)

Conclusion: In this Letter, we have shown how GP measurement
models can be integrated with pose graph optimisation in order to loca-
lise pedestrians indoors. Notably, we present a novel bi-cubic inter-
polation method for inference approximation, which enables solutions
to be calculated in reasonable time. We also show empirically that
this approximation does not add significant error, and that our system
enables decimetre tracking from inertial, radio and magnetic measure-
ments obtained from mass-market sensors.
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