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Constructivist philosophy and Hasok Chang’s active scientific realism are used to argue that the idea of “truth”

in cluster analysis depends on the context and the clustering aims. Different characteristics of clusterings are

required in different situations. Researchers should be explicit about on what requirements and what idea

of “true clusters” their research is based, because clustering becomes scientific not through uniqueness but

through transparent and open communication. The idea of “natural kinds” is a human construct, but it high-

lights the human experience that the reality outside the observer’s control seems to make certain distinctions

between categories inevitable. Various desirable characteristics of clusterings and various approaches to de-

fine a context-dependent truth are listed, and I discuss what impact these ideas can have on the comparison

of clustering methods, and the choice of a clustering methods and related decisions in practice.
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. Introduction

Cluster analysis is about finding groups in a set of objects. Cluster

nalysis is used in many different areas with many different aims

see Section 3 for examples). Researchers who apply cluster analysis

n practice often want to know whether the clusters that they find are

ruly meaningful in the sense that they correspond to a real underlying

rouping. Researchers in the field of cluster analysis are interested in

hether and which methods are better at finding the true clusters

orrectly. In most cluster analysis literature, however, explanations of

hat “true” or “real” clusters are, are rather hand-waving. It is widely

cknowledged that there is no agreed definition of what a cluster is,

nd in the majority of papers in which new cluster analysis methods

re proposed, the authors do not give a general and formal definition

f what the “true clusters” are that their method is supposed to find.

The aim of this paper is to offer a philosophically informed at-

itude toward the problem of choosing, assessing and interpreting

luster analysis methods and clusterings. Section 2 gives an overview

f thoughts in philosophy and cognitive science regarding clustering

nd categorization. Afterward the paper turns to considerations and

mplications that are directly related to the theory and practice of

ata-based cluster analysis.

The groups that cluster analysis sets out to find are character-

zed by data that can take various forms such as values of variables,
✩ This paper has been recommended for acceptance by Marcello Pelillo.
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issimilarities or weighted edges in a graph. The groups may form

partition of the object set, but they may also be overlapping or

on-exhaustive. Group memberships may be crisp or fuzzy. Some of

he discussion here was written with crisp partitions in mind, some

pply to Euclidean space or a given dissimilarity measure, but most

houghts are more general.

There is a good reason why there is no generally accepted unique

efinition of true clusters. In different applications, cluster analysis is

sed with different aims, and the researchers have different ideas of

hat should make the objects belong together that are in the same

luster. The term “cluster” does not mean the same to all researchers

n all situations. This is acknowledged in general overviews and books

bout cluster analysis, but seems to be ignored by many authors of

pecialist work who try to convince readers that a certain method

s best for finding the “true/natural/real” clusters. Even where it is

cknowledged, this often takes the form of a “general health warn-

ng”, and consequences regarding the selection and comparison of

ethods and the interpretation of results are rarely spelled out. Is it

ossible to escape the alternative to either make the hardly justifi-

ble assumption that there is a unique “true/natural/real” clustering

gainst which the quality of cluster analysis methods can be objec-

ively assessed, or to think that cluster analysis is somehow arbitrary

nd “more of an art than a science” [1]?

My perspective is that of a statistician with expertise in clus-

er analysis and a strong interest in the philosophical background

f statistics and data analysis. A key idea of this paper is that,

iven that it depends on the context and clustering aim what a

good” clustering is, researchers need to characterize what kind of

lusters are required for a given real clustering problem, and what
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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kind of clusters the different clustering methods are good at finding,

or in other words, what problem-specific “truth” researchers are in-

terested in. Similar ideas have recently been discussed in [2] and [1].

The present paper can be seen as contributing to the research program

sketched in those papers, but also as enrichening their perspective by

adding further philosophical and statistical considerations.

In Section 2 I will sketch the philosophical basis of the present

paper, which complements constructivism with Hasok Chang’s plu-

ralist active scientific realism, and I will discuss the concepts of “nat-

ural kinds” and “categorization”. Section 3 lists and discusses various

context-dependent clustering aims. Section 4 is about how “true”

clusters could be defined in statistical or data analytic terms so that

they can be used for comparing and assessing different clustering

methods. Section 5 discusses some practical consequences, particu-

larly regarding choice and comparison of cluster analysis methods,

and rationales for certain methodological decisions such as dimen-

sion reduction.

2. Philosophical background

2.1. Constructivism and science

In the present paper I focus on the question what clusters are

“true” and/or “real”. Truth and reality, and to what extent they can be

observed, are controversial issues in philosophy. My starting point in

this respect is my constructivist philosophy of mathematical model-

ing as outlined in [3], which is connected to radical constructivism [4]

and social constructionism [5]. Radical constructivism is based on the

idea that the perception and world-view of human beings can be in-

terpreted as a construction by the body and the brain of the individual,

which is seen as a self-organizing system. Social constructionism fo-

cuses on the construction of a common world-view of social systems

by means of communication. “Construction” refers to the activity of

the body, the brain, and communicative activity within social sys-

tems, setting up perceptions and world-views. Construction is largely

unconscious or semi-conscious, and is not arbitrary but subject to

constraints. It is not claimed that individuals or social systems are

free to construct any arbitrary perception or world-view. Experience

tells us that perception is rather severely constrained and shaped by

what we perceive to be a reality outside of ourselves.

I distinguish observer-independent reality, personal reality and

social reality. The observer-independent reality is only accessible to

humans by observation, which means that there is no way to make

sure which of its features are really observer-independent, but it is

usually perceived as the source of constraints for personal and so-

cial constructs. The perceptions of individuals, together with their

thoughts and feelings, make up their personal reality. Part of most

personal and social realities is the belief that much personal per-

ception represents or reflects the observer-independent reality. This

belief is normally based on the experience of consistency between

different sensory perceptions, at different times and from different

positions, and on the confirmation of the existence of many of the

perceived items by communication with others. It is therefore the

result of active accommodation of perceptions.

Social reality is made up by communication between individuals.

It is carried by social systems, which may overlap and may partly

lack clear borderlines, although some social systems such as formal

mathematics are rather clearly delimited. Personal and social realities

influence each other. According to the point of view taken here, sci-

ence is a social attempt to construct a consensual and stable view of

the world, which can be shared by everyone and is open to criticism

and scrutiny in free exchange. In this sense, science aims at a view that

is as independent as possible of the individual observer, and is there-

fore connected to a traditional realist view, according to which science

aims at finding out the truth about observer-independent reality. But

constructivists are pessimistic regarding an observer-independent
Please cite this article as: C. Hennig, What are th
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ccess to reality, and assess the success of science based on stability,

greement and pragmatic use instead of referring to objective truth.

scientific world-view with which constructivists can agree needs to

cknowledge the existence and legitimacy of diverse personal and so-

ial realities and is therefore inherently pluralist. A tension between

drive for unification and general agreement and a necessity to allow

pace for diverse realities in order to allow for criticism and creative

rogress is an essential implication of the scientific idea. Central tools

f science are mathematics, which aims at setting up and exploring

oncepts that are clear and well defined independently of the dif-

erent personal and social points of view and at statements about

hich absolute agreement is possible, and measurement, which uni-

es observations of reality in a way that they can be processed by

athematical means.

Constructivism is often accused of denying the existence of the

bserver-independent reality altogether by calling it “a construct”,

ut actually, being as stable and ubiquitous a construct as the

bserver-independent reality seems to be in most personal and social

ealities, it is as real as anything can get in constructivism.

.2. Active scientific realism

Although constructivism is often interpreted as anti-realist, I com-

lement my constructivist view here by the “active scientific realism”

ntroduced by Hasok Chang [6]. In the abstract of his Chapter 4, Chang

rites: “I take reality as whatever is not subject to ones will, and knowl-

dge as an ability to act without being frustrated by resistance from

eality. This perspective allows an optimistic rendition of the pessimistic

nduction, which celebrates the fact that we can be successful in science

ithout even knowing the truth. The standard realist argument from

uccess to truth is shown to be ill-defined and flawed. I also reconsider

hat it means for science to be “mature”, and identify humility rather

han hubris as the proper basis of maturity. The active realist ideal is not

ruth or certainty, but a continual and pluralistic pursuit of knowledge.”

hang’s use of the term “reality” refers to what is vital for the success

f the scientific idea, namely to confront scientific work continually

ith the observed realities that individuals and social systems expe-

ience as outside their control. In agreement with my constructivist

iew, active scientific realism values a plurality of perspectives. The

erm “truth” is constructivist used in both Chang [6] and the construc-

ivist literature as a relative concept “internal to systems of practice”.

or example, within the mathematical formal system, “truth” is a

ather unproblematic concept due to the clear rules by which it can

e ensured, whereas the truth-value of the statement “the German

emocratic Republic was a democracy” depends on which character-

stics of a political system are taken as essential for being a democracy,

hich differs between social systems.

The emphasis of the strong role of communication and language

s an aspect that constructivism adds to active scientific realism. In

his respect I follow Fleck [7], a pioneer work regarding the role of

ommunication and social systems (“thought collectives”) for scien-

ific knowledge. Fleck showed how scientific facts are shaped by the

pecific way how collectives of scientists conceptualize their field.

.3. Natural kinds

“Natural kinds” in philosophy refer to the idea that there are some

naturally” separated classes in observer-independent reality, which,

or traditional realists, correspond to “true clusters”. For example, bi-

logical species and chemical elements are considered as candidates

or being natural kinds [8]. There is much controversy about what

onstitutes natural kinds (e.g., common properties, behaving homo-

eneously according to natural laws). The concept runs counter to the

onstructivist view that what is perceived as “kinds” is constructed

y human activity and language and depends on the conditions of ob-

ervation and practice of living of the observers. For such reasons, for
e true clusters? Pattern Recognition Letters (2015),
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“Real structure” is often understood as the existence of an unobserved
xample Goodman [9] rejected the term “natural” for kinds. Hacking

10] argued that “natural kinds” should refer to kinds that are con-

ected to human activity and utility, which allows for non-uniform

nd more pluralist kinds. According to him, the concept links a nom-

nalist inclination with a traditional realist view of “nature”. He also

uggested that many classes that can be seen as natural in some sense

re not “natural kinds”, and that this term may be reserved for a few

ery special kinds.

I agree with Goodman that the term “natural” is not helpful, at

east if it is used in order to suggest that some categorizations have

special authority by matching observer-independent reality. What

s valuable about the concept of “natural kinds” is that it describes

human experience that certain categorizations seem impossible to

scape when confronted with Chang’s “reality outside our control”.

uch an experience always has to be framed by the make-up of the

ersonal and social realities that are involved, it may change, and

ontroversy persists even about central candidates for natural kinds

uch as biological species [11] and chemical elements [6]. Still, it high-

ights that when following an active scientific realist agenda, phenom-

na should not be lumped arbitrarily into classes, but that scientific

bservation should be used to guide classification in a stable way

hat should aim at general agreement; by which I mean agreement

bout the legitimacy and use of the classification as opposed to its

niqueness.

.4. Categorization

From the constructivist point of view, although we experience

reality outside our control”, the categorization of its phenomena

s a constructive human activity, and any idea of “true” or “really

eaningful” categories is located in personal and social reality. In

rder to understand such an idea it therefore seems promising to

ook at work in cognitive science about human categorization. Van

echelen et al. [12] review cognitive theories of categorization with

view to connecting them to inductive data analysis including clus-

ering. Although no explicitly pluralist position is taken in that book,

he various presented theories seem to apply to different kinds of

ategories used by human beings in different circumstances. Many of

hese theories correspond to formal approaches to cluster analysis,

or example that categorization can be based on defining features,

rototypes and exemplars, or family resemblance (similarity). From a

onstructivist perspective, von Foerster [13] saw “objects” in human

erception as eigenvalues (fixed points) of recursive coordinations

f actions, which has a reflection in self-organizing clustering algo-

ithms. Because of the exchange between cognitive science and artifi-

ial intelligence research, this should not be surprising. However, for-

al and algorithmic views of categories have strong limitations, and

t has been pointed out that in order to understand human categoriza-

ion, context such as the conditions of the human body, a metaphor-

cal or theoretical framework in which a category is embedded [14],

hapter 7 of [12] and the ever-changing social and communicative

nvironment [5] need to be taken into account.

Another line of research concerns intuitive clustering by humans

f two dimensional point clouds, regardless of the meaning of the

oints, see [15,16], with mixed results in the sense that there are

redominant strategies such as looking for high density areas and

or shapes of similar kinds (“model fitting”), but there is also consid-

rable variation, although Lewis et al. [17] argue that humans and

articularly experts are more consistent in assessing clusterings than

xisting cluster validation indexes.

Overall, categorization seems to work in rather pluralist and

ontext-dependent ways, as is also acknowledged in more recent

ublications on categorization [18,19]. It may be controversial to what

xtent cluster analysis methods are meant to reflect human catego-

ization. One could argue that “true clusters” should have a more

cientific and well-defined character than the concepts that humans
Please cite this article as: C. Hennig, What are th
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ormally use. Furthermore, clustering often aims at finding categories

hat are thought of as determined by unobserved features, which dif-

ers from forming categories from what is observed. The theories

iscussed in this section are relevant in artificial intelligence appli-

ations where the aim is to simulate human categorization, and they

an also inspire methodological ideas in clustering, but their potential

o define “true clusters” as targets for data analysis is limited.

. Clustering aims and cluster concepts

.1. A list of aims of clustering

That there is no generally accepted definition of a cluster is not

urprising, given the many different aims for which clusterings are

sed. Here are some examples:

• delimitation of species of plants or animals in biology,
• medical classification of diseases,
• discovery and segmentation of settlements and periods in

archeology,
• image segmentation and object recognition,
• social stratification,
• market segmentation,
• efficient organization of data bases for search queries.

There are also quite general tasks for which clustering is applied

n many subject areas:

• exploratory data analysis looking for “interesting patterns” with-

out prescribing any specific interpretation, potentially creating

new research questions and hypotheses,
• information reduction and structuring of sets of entities from any

subject area for simplification, effective communication, or effec-

tive access/action such as complexity reduction for further data

analysis, or classification systems,
• investigating the correspondence of a clustering in specific data

with other groupings or characteristics, either hypothesized or

derived from other data.

Depending on the application, it may differ a lot what is meant by a

cluster”, and cluster definition and methodology have to be adapted

o the specific aim of clustering in the application of interest.

.2. Realist and constructive aims of clustering

A key distinction can be made between “realist” and “construc-

ive” aims of clustering. Realist aims concern the discovery of some

eaningful real structure (referring to what is experienced as “real-

ty outside our control”, see Section 2). Constructive aims refer to the

esearchers’ intention to split up the data into clusters for pragmatic

easons, regardless of whether there is some essential real difference

etween the resulting groups. The connection between “realist” and

constructive” clustering aims and realist and constructivist philoso-

hy is not straightforward. Nothing stops a realist from being inter-

sted in data compression and from therefore having a constructive

lustering aim. On the other hand, a constructivist can legitimately

e interested in realist clustering aims, although she would maintain

hat the idea of clusters that are real and meaningful in the observer-

ndependent reality is a personal and social construct.

The distinction between realist and constructive clustering aims

s not clear cut. As follows from Section 2, researchers with realist

lustering aims should not hope that the data alone reveal real struc-

ure; constructive impact of the researchers is needed to decide what

ounts as real.

The key issue in realist clustering is how the real structure the

esearchers are interested in is connected to the available data. This

equires subject matter knowledge and decisions by the researchers.
e true clusters? Pattern Recognition Letters (2015),
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categorical variable, the values of which define the “true” clusters.

But neither can it be taken for granted that the categories of such a

variable are the only existing ones that could qualify as “real clus-

ters”, nor do such categories necessarily correspond to data analytic

clusters. For example, male/female is a meaningful categorization of

human beings, but there may not be a significant difference between

men and women regarding the results of a certain attitude survey,

let alone separated clusters corresponding to sex. Usually the objects

represented in a dataset can be partitioned into real categories in

many ways. Also, different cluster analysis methods will produce dif-

ferent clusterings, which may correspond to patterns seen as “real” in

potentially different ways. This means that in order to decide about

appropriate cluster analysis methodology, researchers need to think

about what data analytic characteristics the clusters they are aiming

at are supposed to have. I call this the “cluster concept” of interest in

a study.

The real patterns of interest may be more or less closely connected

to the available data. For example, in biological species delimitation,

the concept of a species is often defined in terms of interbreeding

(there is some controversy, see [11]). But interbreeding patterns are

not usually available as data. Species are nowadays usually delimited

by use of genetic data, but in the past, and occasionally in the present

in exploratory analyses, species were seen as the source of a grouping

in phenotype data. In any case, the researchers need an idea about

how true distinctions between species are connected to patterns in

the data. Regarding genetic data, knowledge needs to be used about

what kind of similarity arises from persistent genetic exchange inside

a species, and what kind of separation arises between distinct species.

There may be subgroups of individuals in a species between which

there is little actual interbreeding (potential interbreeding suffices for

forming a species), e.g., geographically separated groups, and conse-

quently not as much genetic similarity as one would naively expect.

Furthermore there are various levels of classification in biology, such

as families and genii above and subspecies below the level of species,

so that data analytic clusters may be found at several levels, and the

researchers may need to specify more precisely how much similarity

within and separation between clusters is required for species.

Such knowledge needs to be reflected in choice of the cluster anal-

ysis method. E.g., species may be very heterogeneous regarding geo-

graphical distribution and size, and therefore a clustering method that

penalizes large within-cluster distances too heavily such as k-means

or complete linkage is inappropriate.

In some cases, the data are more directly connected to the cluster

definition. In species delimitation, there may be interbreeding data,

in which case researchers can specify the requirements of a cluster-

ing more directly. This may imply graph theoretic clustering methods

and a specification of how much connectedness is required within

clusters, although such decisions can often not be made precise be-

cause of missing information arising from sampling of individuals,

missing data, etc. On the other hand, the connection between the

cluster definition and the data may be less close, as in the case of

phenotype data used for delimiting species, in which case some spec-

ulation is needed in order to decide what kind of clustering method

may produce something useful.

In many situations different groupings can be interpreted as real,

depending on the focus of the researchers. E.g., social classes can be

defined in various ways. Marx made ownership of means of produc-

tion the major defining characteristic of different classes, but social

classes can also be defined by looking at patterns of contact, or occu-

pation, or education, or wealth, or by a mixture of these [20]. In this

case, a major issue for data clustering is the selection of the appropri-

ate variables and measurements, which implicitly defines what kinds

of social classes can be found.

The example of social stratification illustrates that there is a grad-

ual transition rather than a clear cut between realist and constructive

clustering aims. According to some views (such as the Marxist one)
Please cite this article as: C. Hennig, What are th
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ocial classes are an essential and real characteristic of society, but

ccording to other views, in many societies there is no clear delimi-

ation between supposedly “real” social classes, despite the existence

f real inequality. Social classes can then still be used as a convenient

ool for structuring the inequality.

Regarding constructive clustering aims, it is obvious that re-

earchers need to decide about the desired “cluster concept”, i.e.,

bout the characteristics that their clusters should have. This needs

o be connected to the practical use that is intended to be made of the

lusters.

Where the primary clustering aim is constructive, realist cluster-

ng may still be of interest. If indeed some real grouping structure is

anifest in the data, many constructive aims will be served well by

aving this structure reflected in the clustering. E.g., market segmen-

ation may be useful regardless of whether there are really meaning-

ully separated groups in the data, but it is relevant to find them if

hey exist.

.3. Desirable characteristics of clusters

Here is a list of potential characteristics of clusters that may be

esired, and that can be checked using the available data. Several of

hese are related with the “formal categorization principles” listed in

ection 14.2.2.1 of [12].

1. Within-cluster dissimilarities should be small.

2. Between-cluster dissimilarities should be large.

3. Clusters should be fitted well by certain homogeneous probability

models such as the Gaussian or a uniform distribution on a convex

set, or by linear, time series or spatial process models.

4. Members of a cluster should be well represented by its centroid.

5. The dissimilarity matrix of the data should be well represented by

the clustering (i.e., by the ultrametric induced by a dendrogram, or

by defining a binary metric “in same cluster/in different clusters”).

6. Clusters should be stable.

7. Clusters should correspond to connected areas in data space with

high density.

8. The areas in data space corresponding to clusters should have

certain characteristics (such as being convex or linear).

9. It should be possible to characterize the clusters using a small

number of variables.

0. Clusters should correspond well to an externally given partition or

values of one or more variables that were not used for computing

the clustering.

1. Features should be approximately independent within clusters.

2. All clusters should have roughly the same size.

3. The number of clusters should be low.

When trying to measure these characteristics, they have to be

ade more precise, and in some cases it matters a lot how exactly

hey are defined. Take no. 1, for example. This may mean that all

ithin-cluster dissimilarities should be small (i.e., their maximum,

s required by complete linkage clustering), or their average, or a

igh quantile of them. These requirements may look similar at first

ight but are very different, e.g., regarding the integration of outliers in

lusters. Having large between-cluster dissimilarities may emphasize

aps by looking at the smallest dissimilarities between two clusters,

r it may rather mean that the cluster centroids are well distributed in

ata space. As another example, stability can refer to sampling other

ata from the same population (this may play a privileged role in

ypothesis driven repeated experiments aiming at reproducible re-

ults, which is often identified with the scientific method; see [21] for

ome results and critical remarks), to adding “noise”, or to comparing

esults from different clustering algorithms.

Some of these characteristics conflict with others in some

atasets. E.g., connected areas with high density may include

ery large distances, and may have shapes that are undesired in
e true clusters? Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.04.009
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pecific applications (e.g., non-convex). Representing objects by cen-

roids well may require some clusters with little or no gap between

hem. Stability is often easier to achieve with few clusters; but more

lusters may be required in situations where clusters need to be very

omogeneous.

Deciding about such characteristics is the key to linking the clus-

ering aim to an appropriate clustering method. E.g., if a database of

mages should be clustered so that users can be shown a single image

o represent a cluster, centroid representation is most important. Use-

ul market segments need to be addressed by non-statisticians and

hould therefore normally be represented by few variables, on which

issimilarities between members should be low. Section 5 outlines

ow the listed characteristics can help with the selection of a cluster-

ng method in practice.

The idea of listing potentially desirable characteristics of cluster-

ngs for helping with the selection of clustering methods is central

lso to [2], but the axiomatic characteristics listed there are strikingly

ifferent from the present list. As necessary for the theoretical analy-

is, the characteristics in [2] are formal. One reason for the differences

ay be that the aim of the authors was to prove general theorems,

nd therefore they went for characteristics that make such theorems

ossible. Ackerman et al. [22] and [23] investigated cluster analysis

pproaches with respect to further formal characteristics, which are

elated to some of the characteristics listed above. Ultimately, char-

cteristics need to be formalized to be used in practical analyses, in

hich case at least some of them (distance to centroids, quality of

epresentation of the data and fit by probability models) also serve

o measure information loss through clustering. Similar considera-

ions can be found in [1], which are closer to the present approach,

ut somewhat less detailed. Ultimately, the characteristics listed here

eed to be formalized, too, to be used in practical analyses.

. Definitions of true clusters

There is no agreed definition of what true clusters are in reality,

ut mathematical formalism allows to give a clear definition (a math-

matical model) of true clusters based on mathematical objects. In

ifferent situations, different kinds of clusters are of interest, and a

athematical definition of true clusters cannot be unique. It is neces-

arily idealized and abstract, and discrepancies between such a def-

nition and the more complex and informal ideas that researchers

ave about reality should not be suppressed just (see [3]).

Still, an explicit formal definition of true clusters has important

enefits. It communicates the cluster concept in a specific setup in

clear way, and it provides a transparent framework for comparing

ethods. It may also stimulate the development of new methodology.

n the literature on clustering methods, clear definitions of the specific

lustering problem to be solved are often missing, probably because

uthors feel that such definitions could not properly cover the clus-

ering problem in general. But this means that a chance is missed to

larify the understanding of what kind of problem a method is good

r not so good for.

For every formal definition there need to be arguments why it

ormalizes a reasonable cluster concept researchers could be inter-

sted in, so it needs to be related to desirable characteristics of clus-

ers. Definitions of true clusters can be based on the data, which are

easurements that therefore “live” in the system of mathematical

ormalism. This is only appropriate if what makes a certain subset

f the data a true cluster according to the researchers can indeed be

efined from the data alone. For realist clustering aims, true clus-

ers need to be defined based on a certain truth “behind” the data.

here are two possibilities for doing this. Firstly, one could assume

hat in the “mathematical world” there is true clustering information

or all observations, which is available in principle but not used by

he clustering method. Secondly, one could assume that the data are
Please cite this article as: C. Hennig, What are th
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enerated by a true probability model, and then define the truth in

erms of this model.

.1. Definitions based on the data alone

Let x1, . . . , xn be n observations in R
p. k-means clustering is de-

ned by choosing k cluster mean vectors a1, . . . , ak and a cluster

ssignment function γ : {1, . . . , n}�→{1, . . . , k} so that
∑n

i=1 ‖xi −
γ (i)‖2 is minimized. The solution of this problem could be called

the true clustering”.

Is this appropriate? It could be, namely if the real aim is to find a

lustering with k clusters in which all observations are represented

ptimally (in the sense of averaging the squared Euclidean distance)

y the centroid of the cluster to which they are assigned. On the other

and, if in the situation of interest clusters should rather correspond

o high-density regions, clusters defined as “true” by k-means can be

nappropriate, see Fig. 2 for an example. Note also that for defining

rue clusters according to the k-means criterion, k has to be assumed

o be known.

Is such a definition helpful? If the k-means objective function is

sed to define the true clusters, obviously k-means clustering is the

est clustering method, and this may look tautological, although it is

till of interest to investigate to what extent different algorithms are

uccessful for minimizing the objective function.

In principle, if the objective function that defines a clustering

ethod corresponds exactly to the loss function of the practical prob-

em for which a clustering is required, there is no point to look for

ther clustering methods. The same holds for methods that are not

efined by optimizing an objective function but, e.g., are stable states

eached by an algorithm, as long as this is for solving a practical prob-

em properly formalized by the algorithm. In this sense, most clus-

ering methods implicitly define their own truth. A practical implica-

ion is that the definition of a clustering method often gives strong

nformation about what kind of clustering problem the method is

ood for.

However, in most clustering applications the aims of clustering

o not directly translate into a specific cluster analysis method, be

t through matching the practical “loss” with the method’s objective

unction or otherwise. In general, the choice of the practical “loss” and

herefore the objective function or more generally the clustering prin-

iple needs to be supported by validation techniques and background

nformation.

In some other situations it is possible to define a clustering prob-

em based on the data alone without corresponding directly to any

vailable clustering method. An example for this is the optimal ap-

roximation of the distance matrix of the data by an ultrametric in-

uced by a dendrogram produced by a hierarchical clustering method.

nother approach would be the definition of an aim-dependent clus-

er quality index as a weighted mean of appropriately scaled statistics

easuring cluster characteristics as listed in Section 3.3 (in [1] there

s a related discussion of measuring and optimizing “usefulness” of

lusters). In an implicit manner, internal cluster validation indexes

24] such as the average silhouette width attempt to aggregate de-

irable features of clusterings, and “true clusters” could be defined

y optimizing them, although such criteria are usually designed with

he aim of defining a too general notion of cluster quality, which

oes not take into account the differences between clustering aims in

ractice.

If “truth/quality” is defined in such a way, one could try to op-

imize the cluster quality index directly. This is often not compu-

ationally feasible, and also in some cases desirable characteristics

eed to be combined in other ways than just averaging them (for

xample, one may be interested in constrained optima of objective

unctions, putting an upper bound on within-cluster distances). So

here is still a place for clustering methods that do not directly opti-

ize a quality index. Also, clustering applications in which the idea
e true clusters? Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.04.009
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of truth refers to the observed data alone are probably a small mi-

nority; particularly it implies that the data cover all objects of inter-

est and are not only a sample from which the researchers want to

generalize.

Some other work explores notions of “clusterability” of data [25].

Ackerman and Ben-David [26] reveal that there are several reasonable

notions that contradict each other in many situations.

4.2. Definitions based on external information

In comparisons of cluster analysis methods in the literature, au-

thors often use datasets for which there is a given “true classification”.

Often these are standard examples for supervised classification such

as Fisher’s famous Iris dataset in which there are measurements on

150 Iris plants from three different subspecies. Clustering methods

can generate clusterings ignoring the true classification to which they

then can be compared.

This is an artificial situation. In reality cluster analysis is applied

to find clusters that are not yet known. The appeal of this approach

is that realistic datasets can be used and that it is usually easy to

argue that the true given classes are meaningful. But often measuring

the performance of clustering methods on datasets with given true

classes is not very informative. How informative it is depends on to

what extent the true classes in such cases are good models for the true

clusters the researcher wants to find in a new dataset with unknown

truth. This is hardly ever discussed. Usually, it is not investigated to

what extent the true given classes have the desired characteristics

of clusters in the situation of interest. There is no guarantee that

true classes from supervised classification problems qualify as “data

analytic clusters” (in the sense of the previous subsection), and it may

not be reasonable to expect a good clustering method to find them.

Furthermore, there is no guarantee that the given true classes are

the only categorical variable that qualifies for defining true classes;

there could be further (unobserved) variables defining alternative

true classes.

Although such real datasets with given true classes can contribute

to the comparison of clustering methods, the approach seems to be

overused in the literature, and where it is used, more care is required

for exploring what can be learned for other datasets without known

classes from the “success” of certain methods to recover known true

classes.

The same applies to the presentation of datasets for which authors

refer to some “truth” without a formal definition, just appealing to the

reader’s (usually Euclidean) intuition. E.g., data distributed on a ball

about the origin together with data distributed around a much wider

circle about the origin with a hole in the middle that separates it

from the central ball are often presented as an illustration that “k-

means does not work”, not reproducing the clustering the authors

declare to be true by fiat. This clustering is based on separation, but

the biggest distances in the dataset occur within a cluster, namely

the wider circle, so this qualifies as “true cluster” in some respects

but not others. Euclidean intuition is irrelevant in a large number of

clustering problems (e.g., with categorical variables or non-Euclidean

dissimilarities) and should not be overrated as reliable indicator of

“truth” in Euclidean setups either. Again, such data can be used in a

constructive way for evaluating clustering methods, but reference to

the specific characteristics of the given true clustering needs to be

made.

External information can also be used in other ways to define clus-

ter quality (and therefore implicitly the “true clusters” by optimizing

quality). In applications where clustering is used instrumentally for

some other aims of data analysis, for example for data compression

in order to predict an external variable, different clusterings can be

compared according to quality measures related to the final aim, e.g.,

prediction quality.
Please cite this article as: C. Hennig, What are th
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.3. Definitions based on probability models

Assuming that data are generated from probability models is the

tandard technique for defining true underlying but unobserved clus-

ers. It can then be investigated by (asymptotic) theory or system-

tic simulation whether cluster analysis methods find such clusters.

here are various approaches to define true clusters based on prob-

bility models. Most straightforward are mixture models of the form

(x) = ∑k
j=1 πj fθj

(x), where data x are assumed to be i.i.d. generated

rom a distribution with density f with is a mixture of parametric

ensities fθj
. This models that x is generated from mixture compo-

ent fθj
with probability π j, and data can be simulated by simulating

he true component memberships first. The usual interpretation is

hat the true clusters correspond to the mixture components. Clus-

erings computed from the data x1, . . . , xn can be compared to the

rue component memberships for simulated data.

Although such a definition gives researchers a much clearer idea

f the involved cluster concept than using a given true class for real

ata, there are several issues with this approach.

Firstly, the family of mixtures of distributions of the form fθ needs

o be identifiable, i.e., no two sets of parameters {(π1, θ1), . . . , (π k,

k)} should generate the same probability measure. This is fulfilled

or most popular mixture models including Gaussian mixtures. If

ixtures are considered in full generality of the concept, however,

dentifiability cannot be taken for granted. Uniform distributions on

onnected sets can be pieced together from uniform distributions on

ubsets in different ways. Gaussian mixtures can be written down

s mixtures of truncated Gaussians, which are no longer identifiable.

his indicates that parametric families that generate identifiable mix-

ures are chosen rather for technical reasons than because they would

e particularly qualified for representing a clustering “truth” in reality.

Secondly, identifying clusters with mixture components may in-

uitively not be justified. The parametric family needs to be chosen in

uch a way that the fθ can indeed be interpreted as “cluster shaped”,

s prototypical models for clusters of interest. But two parameters θ1

nd θ2 may be so close to each other that the mixture of distribu-

ions π1 fθ1
+ π2 fθ2

may be unimodal, and may look so homogeneous

hat it would be inappropriate to split it up into two clusters in a

eal application. Fig. 1 shows a density contour of a Gaussian mix-

ure with five components but only four modes, two of which are not

eparated by a deep density valley. Fig. 2 shows some data generated

rom this mixture. It strongly depends on the application whether it is

ppropriate to interpret this distribution as generating five clusters.

ote that there are very large distances within some of the mixture

omponents, and it is hard to argue that the points from component

“belong together”. One may wonder whether mixtures of homoge-

eous distributions such as the Gaussian should be interpreted as sin-

le clusters if their mixture is homogeneous enough, which allows for

ore flexible cluster shapes, but violates identifiability and requires

he researcher to define under what conditions mixture components

hould be merged [27].

Thirdly, statisticians do not believe that parametric probability

odels hold precisely in reality, but true clusters as mixture compo-

ents are only well defined if the mixture model holds precisely. This

roblem is worse for mixture models than elsewhere in parametric

tatistics, because if data come from a distribution with a density g

hat is slightly different than f = ∑k
j=1 πj fθj

with a certain k, g can (un-

er weak assumptions) be approximated arbitrarily well by a mixture
+ of distributions of the form fθ with k+ > k mixture components,

hich means that g can be approximated by a distribution with more

nd potentially quite different true clusters, despite being so close to

that it would require a very large dataset to tell f and g apart.

Despite such problems, defining true clusters as mixture com-

onents at least communicates a clear idea of a “cluster prototype

odel”, and allows tests whether clustering methods recover the true
e true clusters? Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.04.009
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Fig. 1. Density contour of a mixture of five Gaussian distributions (mean vectors are

(0, 0), (0, 5), (40, 2.5), (70, 2.5); there are two components centered at (70, 2.5) with

different covariance matrices). Below: optimal 5-means partition and mean vectors

(asterisks).
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Fig. 2. Data generated from model in Fig. 1, above: mixture components from which

observations were generated, below: 5-means clustering.
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lusters in such mixtures. Such tests can be expected to favor cluster-

ng methods that are based on parameter estimators (e.g., maximum

ikelihood, ML). A more comprehensive evaluation needs to consider

odels that are approximately but not precisely equal to such mix-

ures, and cases in which the interpretation of single mixture com-

onents as clusters breaks down, e.g., because mixtures of several

omponents are homogeneous in some sense.

Alternatively, true clusters could be defined as high density level

ets or attraction areas of density modes of distributions. This requires

nly the weaker nonparametric assumption that a density exists. Al-

hough this is more general than the mixture approach and allows

or more flexible cluster shapes (which may or may not be desired),

t does not solve all the problems connected to the mixture approach.

or every distribution P with a density and k modes there are distribu-

ions without an existing density and distributions with an arbitrarily
Please cite this article as: C. Hennig, What are th

http://dx.doi.org/10.1016/j.patrec.2015.04.009
igher number of density modes that are so similar to P that they

annot be distinguished by an arbitrarily large amount of data [28].

s the mixture model approach, the density-based approach does not

eneralize to a full neighborhood of P.

A third approach is to define true clusters through statistical

unctionals of distributions. This allows, for example, to generalize

he definition of k-means to distributions P, defining true underly-

ng (unobserved) k-means-type clusters, by defining a1, . . . , ak and

: R
p �→ {1, . . . , k} as minimizers of �‖x − aγ (x)‖2dP(x). For some

ther clustering methods (including ML estimation for mixtures)

orresponding notions of truth can be defined in similar ways; see

ection 4.1 for comments on adapting the cluster definition to a cer-

ain method. The formalization using probability models allows the

nvestigation of the asymptotic properties of the methods. E.g., Pollard

29] proved the consistency of k-means applied to data as estimator

or the k-means functional. Such functionals can in principle be de-

ned for any distribution; a density is not required, but in case of the
e true clusters? Pattern Recognition Letters (2015),
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k-means functional existence of second moments is necessary. The

k-means functional can still vanish or change rapidly in the neighbor-

hood of any distribution P. Davies [30] argued (for linear regression)

that statisticians should be interested in estimating globally defined

and continuous functionals of distributions, because only such func-

tionals cannot change arbitrarily in the neighborhood of a distribu-

tion. The clustering problem, though, is inherently discontinuous in

borderline situations where a cluster splits, where the number of

clusters changes or is misspecified (as far as I know, all currently ex-

isting functional-type definitions of true clusters require the number

of clusters to be fixed).

These different approaches to define the truth illustrate that the

clustering problem does not boil down to estimating the underlying

distribution. Genuinely different true clusterings can be defined for

the same distribution. The distribution showed in Fig. 1 is a mixture of

five Gaussian components, has four density modes and (with appro-

priate level set cutoff is) three high density level-sets. The right side

shows the true 5-means-type functional partition of the distribution.

This may look counter-intuitive, and it is important to argue that any

definition of true clusters based on a distribution formalizes a cluster-

ing that has certain desirable characteristics. But in the specific case

that researchers want to find cluster centroids so that observations

can be represented optimally by the centroids in the k-means sense,

even such a counter-intuitive partition can be seen as “true”.

4.4. Limitations of formal definitions

All the definitions listed above have shortcomings. Definitions

based on the data alone do not reflect the idea of an unobservable

underlying truth and of generalization of results to entities that were

not observed. An external true clustering is usually not available in re-

ality. Using it for assessment of clustering quality where it exists may

not help much to clarify the characteristics of the clustering meth-

ods. Known “true” classes in datasets where they exist may deviate

systematically from unknown classes of interest in real clustering

problems. Definitions based on probability models suffer from insta-

bility. Sometimes a researcher may have a loss function in mind that

formalizes the practical problem, but often this involves an unob-

servable truth and cannot be directly computed on the data alone,

in which case it relies on model assumptions and the comments in

Section 4.3 apply.

In any case, researchers may have a more complex informal idea

of a cluster in mind than what can be captured by a formal definition.

The definitions of true clusters should be taken as helpful constructs

that support clarification and transparent comparison of methods, but

they should not be taken as the ultimate clustering truth. Researchers

may also complement formal definitions by less formal descriptions

of more general cluster shapes they are interested in, for example

“our method should find elliptical clusters with light tails that can

reasonably be approximated by Gaussian distributions but are sepa-

rated well enough that there is a density valley (depth to be defined)

between them”. Methods can then be compared by distributions that

fit this description. Despite all the shortcomings, it would be a strong

progress for scientific communication to accompany the introduction

of new clustering methods regularly with an explicit definition of the

clustering problem.

5. Implications for cluster analysis research and practice

5.1. Choice of a clustering method in practice

If researchers want to find true or real clusters, they have to specify

what kind of truth they are interested in and what should constitute a

“real” cluster. An appropriate clustering method can be found by con-

necting the characteristics of the clustering method to what is desired

according to the researchers’ cluster concept. Some methods optimize
Please cite this article as: C. Hennig, What are th

http://dx.doi.org/10.1016/j.patrec.2015.04.009
ertain characteristics directly (such as k-means for representing clus-

er members by centroids), and in further cases experience and re-

earch suggest typical behavior (k-means tends to produce clusters

f roughly equal size and spherical shape, whereas methods look-

ng for high-density areas may produce clusters of very variable size

nd shape). Other characteristics such as stability are not involved in

he definition of most clustering methods, but can be used to validate

lusterings and to compare clusterings from different methods by use

f resampling techniques [31]. Realist clustering aims can often be re-

ated to desirable characteristics that can be computed from the data.

more direct approach to method choice for realist clustering aims

s possible if the researchers can specify a probability model and a

ormal definition of truth for the problem under study. Methods with

ood statistical properties for estimating this truth qualify for being

hosen, preferably if they can still do a good job if the model assump-

ions are slightly violated. Even realist clustering is a constructive act

n the sense that the researchers need to construct their concept of

real/true” clusters, and in the interest of scientific communication it

s desirable to make this explicit.

The task of choosing a clustering method is made harder by the fact

hat in many applications more than one of the listed characteristics

s relevant. Clusterings may be used for several purposes, and desired

haracteristics may not be well defined, e.g., in exploratory data anal-

sis, or in cases where the connection between the interpretation of

he clusters and the data is rather loose.

The specification of a cluster concept that captures a researcher’s

nformal idea of true clusters is a hard problem, too. Often researchers

nly find out that their initial specification was not appropriate if

hey see what clustering this yields from their data. I have come

cross such situations often in advisory work. E.g., researchers may

ealize that the used methodology needs to enforce the connection

f their clustering to an external variable to which their clustering

hould be related, but which they did not specify initially because

hey believed that this would happen automatically. Or they realize

hat small clusters are useless for them only after finding out that

heir initially preferred method produces such small clusters in their

ata. This illustrates the value of active scientific realism as comple-

ent to constructivism (and the value of cluster validation); the re-

earcher’s constructs are required, but the researchers should be open

o change them responding to input from the reality outside their

ontrol.

.2. Comparison of clustering methods

Although in reality the choice of a clustering method needs to

epend on the context and the clustering aim, research comparing

lustering methods independently of specific applications is useful

ecause it adds to the understanding of the characteristics of the

lustering methods. However, as mentioned in Section 4.1 already, in

ost published comparisons of clustering methods the authors seem

o be far too keen to produce simple rankings of methods without

roviding any insight regarding what can be learned about the suit-

bility of different methods for different clustering aims. I have hardly

een any study in which different clusterings of the same data or of

ata from the same probability model have been treated as legiti-

ate and were used to tell the implicit cluster concepts of different

odels apart ([22,23,27] are examples where this is done). Charac-

eristics such as those listed in Section 3.3 could be used to evaluate

hat clustering methods do best according to various different char-

cteristics datasets without given truth, and they could also be used

o characterize the true classes in situations where these classes are

iven, which could help to understand more precisely what can be

earned from the performance in these cases. Mixture models with a

ange of true parameters and component distributions are occasion-

lly used in comparative studies in a slightly more pluralist way with

he result that different methods “win” different mixtures, although
e true clusters? Pattern Recognition Letters (2015),
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sually without questioning the idea that there is only one true clus-

ering for any fixed choice of mixture parameters. Looking at various

xed sets of parameters and distributions is more informative for un-

erstanding the methods in detail than aggregating simulations with

andomly chosen parameters, as some authors seem to prefer, prob-

bly because this approach can generate a single ranking of methods

ut of many different models.

.3. Context-driven vs. data-driven decision making

There are a number of other decisions that have to be made when

arrying out a cluster analysis, such as standardization and transfor-

ation of variables, definition of a dissimilarity measure etc. Similar

onsiderations as before apply regarding the idea that there is a single

best” way of doing this, and their dependence on the context and the

lustering aim. A number of these decisions is discussed in [20].

Here is an exemplary remark regarding variable selection and di-

ension reduction. Many methods are currently advertised for per-

orming this task automatically. Often they are motivated by their

erformance in probability models with a few truly informative and

ome further homogeneous “noise” variables (often following a Gaus-

ian or uniform distribution). These models capture the idea that in-

eed some variables are relevant for clustering and some others are

ot, abstracted from the meaning of these variables. But in real ap-

lications, in which the variables have a meaning that is of substan-

ial importance for the clustering task, choosing different variables

hanges the meaning of the resulting clustering. E.g., in a dataset of

tudents with marks on a number of courses and some standard socio-

emographic information, one may be interested for different reasons

n clusterings of the marks from science courses, those from human-

ties courses, all courses combined, the socio-demographic informa-

ion, or all information combined. It cannot be decided by automatic

echniques in which of these clusterings the researchers should be

nterested, and whether certain variables “do not cluster” and

hether they then should not be involved in the computation of the

lustering of interest depends on the context and the clustering aims.

Regarding the choice of a dissimilarity measure, consider again

he example of data on a central ball and data on a separated ring

round it. In Section 4.2 it was mentioned that 2-means (based on

uclidean data) partitions such a dataset in a way different from ball

s. ring. Assuming that ball vs. ring is the correct partition, one could

rgue that one should use a different, data driven, dissimilarity (e.g.,

path-based distance) for such data. But if both the Euclidean dis-

ance and the use of 2-means have a context-driven justification, it

s more appropriate to question the intuitive assumption about what

he correct partition is.

. Conclusions

It seems to me that a misguided desire for uniqueness and context-

ndependent objectivity makes many researchers reluctant to specify

esired characteristics and to choose a clustering method accordingly,

ecause they hope that there is a universally optimal method that

ill just produce “natural” clusters. Probably for such reasons there

s currently only very little research investigating the characteristics

f methods in terms of the various cluster characteristics that could

e of interest in different applications of clustering. Also probably

any researchers are worried about the fact that too strong subjective

mpact could bias analyses and conclusions and could violate the

rinciples of science because it will yield results that clearly depend

n the observer, see Section 2.1.

As pointed out before, there is a tension between the scientific

oal of general agreement and the acknowledgment of individual

ifferences and the unavoidable impact of the individual’s point of

iew. Indeed it is important that individual decisions and their ra-

ionale are made transparent, and that they are made in such a
Please cite this article as: C. Hennig, What are th

http://dx.doi.org/10.1016/j.patrec.2015.04.009
ay that the “reality outside our control” still can deliver its mes-

age. E.g., variables should be chosen, because they are relevant for

he research question of interest, and not because they produce a

pecific clustering that the researcher wants to promote for some

eason. There are a number of reasons to make decisions in a data

ependent manner, particularly if the initial analysis of the data

eveals that the researchers did not properly formalize their aims

see Section 5.1), in which case a confirmation on new data (or left

ut validation data) without making data dependent decisions will

ormally be required to convince the audience that the results are

eaningful.

The philosophical perspective presented here tries to explain how

luster analysis can at the same time be strongly dependent on con-

exts, aims and decisions of the researcher, but also scientific, trans-

arent and clear regarding its underlying concepts and aims, and open

o impact from Chang’s reality outside our control.

I think that the general philosophical considerations apply to

uch wider areas of statistics and data analysis; in cluster analy-

is the plurality of definitions, approaches and ideas of truth is par-

icularly striking and better visible than elsewhere, but believing in

unique “natural” truth has problematic implications elsewhere as

ell.
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