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Vertebrate eye formation is a multistep process requiring

coordinated inductive interactions between neural and non-

neural ectoderm and underlying mesendoderm. The induction

and shaping of the eyes involves an elaborate cellular

choreography characterized by precise changes in cell shape

coupled with complex cellular and epithelial movements.

Consequently, the forming eye is an excellent model to study

the cellular mechanisms underlying complex tissue

morphogenesis. Using examples largely drawn from recent

studies of optic vesicle formation in zebrafish and in cultured

embryonic stem cells, in this short review, we highlight some

recent advances in our understanding of the events that shape

the vertebrate eye.
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Introduction
Cells destined to form the eye occupy a single neuroec-

todermal domain, the eye field, which is specified within

the anterior neural plate (ANP) through the action of a

variety of signalling pathways that regionalize the forming

CNS along its anterior to posterior and dorsal to ventral

axes [1–3]. Eye field specification is determined by a

conserved set of eye field transcription factors (EFTFs)

[4] that promote eye identity, at least in part, by local

repression of inductive signals that promote alternative

ANP fates [2], and by regulating the changes in cell

polarity, shape and movements that accompany eye for-

mation [5��]. Indeed, the remarkable capacity of Pax6,

one of the EFTFs, to promote eye formation across the

animal kingdom helped to define the idea of the ‘Master

Regulator’ [6]. While it is now clear that it is rarely true

that a single gene can impart all aspects of cellular
www.sciencedirect.com 
identity, it does seem likely that a relatively small number

of EFTFs are sufficient to trigger neuroepithelial cells to

form eyes.

Subsequent to eye field specification, shaping of the eye

begins with the evagination of the optic vesicles. Upon

contact with the overlying surface ectoderm the optic

vesicle invaginates to form a double-layered optic cup with

the internal neural retina and external retinal pigment

epithelium (RPE) [7]. Further invagination of the optic

cup forms a transient ventral opening, the choroid fissure

[8]. Remarkably, many aspects of eye morphogenesis can

be recapitulated in vitro, where three-dimensional embry-

onic stem (ES) cell cultures can be coaxed to self-organize

into optic cups [9��,10]. This suggests that EFTF-specified

properties intrinsic to the eye tissue are sufficient to drive

the epithelial movement and folding events that shape the

optic cup. However, the bilateral evagination that splits

the eye field in vivo, as well as formation and subsequent

fusion of the choroid fissure are dependent on tissue-tissue

interactions [7,11–13], indicating that the environment

does modulate the morphogenetic programme that gen-

erates functional eyes.

The eye field specification programme
initiates eye morphogenesis and segregates
eye fated cells from adjacent neural plate
territories
The eye field undergoes a programme of morphogenesis

that is distinct from adjacent neural plate domains. Conse-

quently, establishing robust boundaries between the eye-

field and adjacent forebrain domains is likely to be

important to maintain sharp boundaries of EFTF gene

expression and prevent eye field cells from mixing with

surrounding cells, despite the extensive cell reorganization

within the ANP (Figure 1) [5��,14�,15,16]. Thus, one role

for the EFTFs may be to regulate expression of genes that

ensure the eye field remains discrete from adjacent terri-

tories. Indeed this seems to be the case for Rx3, a tran-

scription factor essential for eye formation across

vertebrates [17–20].

Among the genes mis-regulated in absence of rx3 func-

tion in zebrafish are members of the Eph and ephrin

families, which control the segregation of eye field cells

from other ANP domains [15�,21]. Ephs and ephrins en-

code transmembrane proteins involved in adhesion and

repulsion processes upon direct cell–cell contact during

development [22]. Rx3 contributes to establishing the

complementary expression patterns of Eph and ephrin
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Figure 1
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Eye field cells have different behaviours to, and do not intermix with, cells in adjacent neural plate domains. Left: Schematic representation of

prospective forebrain territories at neural plate stage highlighting the eye field-telencephalon boundary. Eye field cells start to evaginate laterally (small

green arrows) at the same time that most anterior neural plate cells are still converging towards the midline (large green arrows). The inset highlights

the eye field-telencephalon boundary: Rx3 regulates genes that influence cell behaviours in the eye field. For instance, it restricts the expression of at

least two eph genes to neural plate territories surrounding the eye and Eph/ephrin signalling subsequently maintains segregation between eye field

cells and adjacent neural plate territories. Rx3 also controls the expression of genes that mediate discrete cell behaviours in the eye field.
within the ANP, and abrogation of Eph/ephrin signalling

leads to eye cells inappropriately intermixing with other

neural plate cells, without affecting eye field specification

(Figure 1) [15�]. These observations suggest that Eph/

Ephrin pathway activation takes place at the border

between the eye field and adjacent ANP domains. At

inter-rhombomeric boundaries, Eph/ephrin signalling

regulates the actomyosin cytoskeleton to establish me-

chanical barriers [23], and as accumulation of actomyosin

cables is observed at the margins of the eye field [15�], this

mechanism may also contribute to segregation of the eye

field from adjacent ANP domains.

Rx3 also regulates the region-specific morphogenetic

programme that causes eye field cells to bulge out lat-

erally instead of converging towards the midline as other

ANP cells do. Live imaging studies have shown that rx3-

expressing cells exhibit slower midline convergence com-

pared to neighbouring telencephalic and diencephalic

cells [18]. This eye field-specific motile behaviour is

influenced by Nlcam, a member of the immunoglobu-

lin-superfamily of cell adhesion molecules. Rx3 maintains

low levels of nlcam expression in the eye field compared to

the adjacent ANP domains and this appears to be neces-

sary for normal evagination (Figure 1) [24]. How Nlcam

modulates migratory behaviours of eye field and ANP

cells is not known.

Gene expression profiling studies have identified addi-

tional genes regulated by rx3 [25,26], including mab21l2
and cxcr4a, which influence proliferation and cohesion of

eye field cells, respectively (Figure 1) [14�,24,27]. As

when Eph/ephrin signalling is disrupted, cxcr4a mutants
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show intermixing of eyefield and telencephalic cells [14�]
and it will be of interest to resolve if these two pathways

interact. Given the relatively small number of known

Rx3 targets, more work is needed to identify other EFTF

effectors regulating eye field specification, segregation

and morphogenesis. Indeed, recent work in zebrafish has

linked the Semaphorin/Plexin pathway to eye morpho-

genesis [28]. This signalling pathway, well characterized

in cell migration and axon guidance, regulates a tissue-

autonomous mechanism for cell cohesion within the

optic vesicle. As for the Eph/ephrin pathway, disruption

of Semaphorin/Plexin signalling does not impair eye field

specification, suggesting that this pathway is another

morphogenetic effector of the eye field transcriptional

network.

While live imaging has proven central to understanding

the cell behaviours regulated by the EFTFs to drive early

eye morphogenesis in fish [15�,18], mammalian embryos

are not easily amenable to such imaging techniques.

Recently, ES cell aggregates forming eye organoids have

emerged as an appealing system to dissect cellular events

accompanying eye specification and morphogenesis

[9��,10]. Such cultures should be amenable to imaging

and offer the potential for using ES cells carrying genetic

lesions to elucidate the contribution of the EFTFs in

regulating mammalian eye morphogenesis.

Basal lamina-dependent coordination of
epithelial apico-basal polarity contributes to
eye morphogenesis
In zebrafish, the early steps in formation of the CNS, such

as convergence of neural plate cells towards the midline
www.sciencedirect.com
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and anterior–posterior extension, occur prior to full epi-

thelialization of the neural plate [29]. Indeed, full acqui-

sition of apico-basal polarity usually occurs only after cells

converge and undergo a midline crossing division [30].

The contemporaneous processes of tissue morphogenesis

and acquisition of epithelial character may be related to

the rapid speed at which teleost embryos develop; it is

assumed that in amniotes, the neural plate is fully epithe-

lialized prior to undergoing the morphogenetic move-

ments that form the neural tube [31].

Recent work has shown that the eye field in zebrafish

displays precocious epithelialization compared to other

domains of the neural plate [5��]. Consequently for some

time, genetic programmes regulating apico-basal polari-

zation and epithelial remodelling may be active in the eye

field but not in adjacent neural plate domains (Figure 2).

Indeed Laminin-1 is accumulated around the nascent

optic vesicles before being detected elsewhere and there

is spatially restricted expression in the eye field of other

regulators of morphogenesis such as pard6gb, which

encodes an apical polarity protein. Precocious pard6gb
expression in the eye field is lost in rx3 mutants [5��],
suggesting that Rx3 activity may advance the develop-

mental timer that initiates acquisition of apicobasal po-

larity in the neural plate [32].

Although all eye field cells express apicobasal polarity

markers, it is only those cells at the leading surface of the

outpocketing optic vesicles that coordinate their polarity

and form a coherent neuroepithelial sheet [5��]. This

suggests that epithelialization may be a prerequisite for

the cell movements that accompany evagination. Coordi-

nation of apico-basal polarity between cells in the forming

optic vesicle is dependent upon the underlying Laminin-

1-rich basal lamina (Figure 2) [5��] as it is in other regions
Figure 2
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of the CNS [33]. Consequently, when Laminin-1 is

absent, most neuroepithelial cells still polarize but fail

to elongate and align with their neighbours with some

showing completely reversed orientation of polarity [5��].
This appears to be a highly conserved role for the basal

lamina in various other developmental contexts [34,35].

For instance, ES cell organoids require Laminin rich

extracellular matrix (Matrigel) to form epithelialized op-

tic vesicles and other CNS structures [9��,36,37]. Similar-

ly, the basal lamina coordinates polarization of epiblast

cells as they form rosette-like structures during an early

phase of mouse development [38].

One possible mechanism regulating the establishment of

apicobasal polarity upon contact with the ECM was

recently uncovered in cells forming epithelial hollow

cysts when cultured in Laminin-rich matrigel [39�]. At

the ECM-abutting plasma membrane, integrin–ECM

interactions trigger local RhoA inactivation and protein

kinase C (PKC)-dependent phosphorylation. This leads

to transcytosis of Podocalyxin complexes to the apical

membrane initiation site at the central core of the group of

cells, thus initiating apical lumen formation [39�]. Con-

sequently, the ECM could trigger a similar molecular

mechanism for orienting polarity during development.

As cells at the margin of the eye field epithelialize, those

located at its core remain mesenchymal in morphology

[5��], presumably because they have yet not encountered

a basal lamina. As evagination proceeds, these core cells

undergo behaviours akin to a mesenchymal to epithelial

transition in which they intercalate into the epithelialized

marginal domain of the forming optic vesicle (Figure 2).

The role of these cells in driving evagination is not

known. Indeed, we have yet to make any significant

insights into the driving forces that shape the forming
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. Left schematic is a frontal view of the brain showing the evaginating

pace within the optic vesicles and orange dots indicate abundant

ginating optic vesicles. Cells at the margin of the eye field (pale green)

minin-1 enriched basal lamina. Core cells (yellow) intercalate into the

larized neighbours during this process. Based on Ivanovitch et al. [5��].
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optic vesicles. Although individual cell migration has

been proposed to drive optic vesicle evagination in medaka

[18], an alternative interpretation is that these migratory

cells are equivalent to the core cells described in zebrafish

that contribute to, but do not lead, evagination. Although

tissue growth contributes to shape epithelia [40], blocking

cell proliferation during eye development in Xenopus and

zebrafish does not overtly affect morphogenesis [41,42].

Consequently it is important to determine the biomechan-

ical forces that contribute to optic vesicle formation to

elucidate how this process is developmentally regulated,

potentially using tools for visualizing and measuring such

forces in vivo [43–46].

Modifying the relative size of the apical, lateral and basal

domains of epithelial cells can lead to both evagination

and invagination of epithelial tissues [47]; this process

seems to be critical for the invagination accompanying the

transition from optic vesicle to optic cup. Ojoplano mutant

medaka fish exhibit severe invagination defects due to

mis-regulation of Integrin trafficking that normally main-

tains a small basal domain in prospective neural retinal

cells undergoing invagination (Figure 3) [48]. Ojoplano
encodes a transmembrane protein that localizes basally in

the retinal neuroepithelium, and antagonizes the Numb/

Numbl pathway-mediated endocytosis of Integrin [49�].
As a consequence, ojoplano mutants display increased

integrin-b1 internalization, which is proposed to affect

transmission of cortical tension and cell shape changes

across the retinal epithelium. Inwardly directed epithelial

folding also requires Integrin-mediated activity during
Figure 3
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optic cup morphogenesis in self-organizing ES cell orga-

noids [10].

One implication of the observation that core cells inter-

calate widely throughout the evaginating optic vesicle

[5��] is that although eye field cells are committed to form

eyes, there is unlikely to be any fate restriction with

respect to which parts of the eye they form. At early

stages of eye field formation, there is no evidence of

spatially restricted expression of markers of prospective

regional fates within the optic vesicle such as RPE and

optic stalk. Indeed, there is a remarkable degree of

movement of cells between different domains of the

forming eyes. For instance cells positioned in the outer

layer of the optic cup continue to migrate around the

marginal rim of the cup into the neural retina until late

stages of development [42,50,51�] and similarly, cells

move from the optic stalk into ventral neural retina [52].

Coincident with these morphogenetic movements, cells

are exposed to different environments and signals that

influence their identity. For instance, cells that eventually

form the nasal neural retina are influenced by Fgf signals

coming from telencephalon, olfactory placode and parts of

the optic vesicle itself at different stages during the mor-

phogenesis process [51�]. Such observations suggest that

morphogenesis and regional patterning are inherently

linked to each other so that an eye field cell’s eventual

fate is the result of its trajectory and encounters during the

process of optic cup morphogenesis. One caveat is that

although fate determination is likely to occur concomitant-

ly with the morphogenetic regionalization of the eye, there
E
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have not been experiments to directly test if there is any

fate restriction among eye field cells in fish. Surprisingly,

such restrictions may indeed be present in Xenopus as

there do appear to be biases in the retinal neuron cell types

derived from different blastomeres [53–55]. This suggests

that eye field cells may not be a homogenous population in

amphibia; whether there are biases in the ability of such

cells to contribute to optic stalk, neural retina and RPE (as

apposed to different neuron classes in the neural retina) has

not been tested.

Tissue interactions are critical to make
functional eyes in vivo
In vertebrate embryos, coordinated interactions between

tissues influence eye morphogenesis and patterning to

ultimately generate a pair of functional eyes. Substantial

aspects of this process cannot, as yet, be recapitulated in
vitro, as environmental signals and constraints are absent.

For instance, whereas optic vesicle evagination in vivo is

bilateral and depends on signals from, and cell move-

ments within, the axial mesoderm and neural ectoderm to

split the eye field [56,57,69], each Rx positive domain in

ES cell organoids generates a single optic cup [9��].
Although the mechanisms that split the eye field are

not well understood, it is likely that mesodermal signals

influence cell fate rather than (or perhaps in addition to)

directly influencing movement of eye field cells. Indeed,

axial signals promote proximal, optic stalk gene expres-

sion, while repressing the distal, prospective retinal gene

expression [13,58,59]. Local modulation of axially derived

signals, such as Shh and Nodal in ES cell optic vesicle

organoids may provide a route to gain insights into the

cellular mechanisms driving bilateral evagination, as well

as proximo-distal patterning of the optic cup.

ES cells coaxed to form optic vesicles invaginate symmet-

rically to form a spherical optic cup whereas invagination in
vivo is asymmetric, presumably due to environmental

influences. Indeed, invagination progresses from the dorsal

and most distal part of the optic vesicle, which contacts the

lens forming ectoderm, ventrally and proximally along the

forming retina and optic stalk [12]. This results in the

formation of the choroid fissure, a transient opening along

the ventral optic cup/stalk that allows entry of blood vessels

and exit of retinal axons from the eye (Figure 3). The

ventro-nasal and ventro-temporal lips of the choroid fissure

subsequently fuse to close the globe of the eye and failure

of these events cause coloboma [12]. The only example of

symmetric invagination and absence of formation of a

choroid fissure in vivo that we are aware of is in mice

lacking BMP7 function [60]. It will be intriguing to resolve

if optic cup formation in these mutants is similar to that

seen in ES cell organoids that also lack choroid fissures.

Although a normal in vivo environment enables more

complex eye morphogenesis than occurs in organoid cul-

tures, abnormal in vivo environmental conditions can lead
www.sciencedirect.com 
to formation of optic cups far more developmentally com-

promised than those formed from ES cell aggregates

[9��,10], or from optic vesicles transplanted to ectopic

locations in the embryo [51�]. Consequently eye formation

in vivo is both promoted and constrained by the environ-

ment in which optic cup morphogenesis occurs. For

instance, Tfap2 is a transcription factor required for neu-

ral-crest dependent cranio-facial development [61,62] and

both fish and humans with compromised Tfap2 function

show variable, severe abnormalities of eye formation [63]. It

is presumed that this is due to disruption of the periocular

mesenchyme (POM), which surrounds the forming optic

cup (Figure 3). As optic cups can form in vitro in absence of

POM, it seems likely that the major ocular phenotypes seen

in vivo when Tfap2 is compromised are due to abnormal

environmental architecture or signalling rather than an

absolute requirement for POM in optic cup formation.

Given the complexity of contemporaneous developmental

events occurring in the vicinity of the forming eyes, there

must be precise coordination of morphogenetic/migratory

processes and signalling events and limited capability of

the forming eye to cope with environmental disruption.

Although POM may not be essential for optic cup forma-

tion, it may well contribute to those aspects of morpho-

genesis such as choroid fissure formation and closure that,

as yet, are not recapitulated in ES cell organoid cultures.

POM invades the choroid fissure as it forms and closes

and consequently POM cells are well positioned to con-

tribute to this aspect of eye morphogenesis. Indeed, it

appears that the fusion of the fissure is compromised

when retinoid signalling is disrupted either in the lips

of neural retina or in the surrounding POM [64–66]. What

role the POM may play in this process is not yet known

though one possibility would be in dissolution of the

extracellular matrix that must occur before fusion of

the two opposing neuroepithelial lips of the fissure.

One future avenue for investigation will be to ask if

morphogenetic processes such as splitting of the eye

field, choroid fissure formation and closure can be pro-

moted in ES cell-derived optic cups through the provision

of additional cell populations that influence eye formation

in vivo (such as POM, lens and ventral CNS). In other

contexts, organ cultures from ES cells can be facilitated

by inclusion of additional cell types [67,68]. If addition of

other relevant cell types is able to influence eye formation

from ES cells, then this may provide an excellent new

model to study subtle aspects of normal eye morphogen-

esis and to elucidate why eye formation can be severely

compromised in abnormal environments.
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