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Abstract

The physical and electronic structure of graphite lend it a huge amount of functional

flexibility. Through charge doping of its layers by intercalation or dimensional constric-

tion diverse electronic phenomena can be observed. This thesis constitutes the study of

two aspects of the excitations of graphite in two extremes: electron-phonon coupling in

the strongly doped bulk and electronic transport in the semi-metallic sub-micron regime.

Measurements of the heat capacity of the graphite intercalation compounds CaC6, SrC6

and BaC6 have been performed between 300K and 390mK. The onset anomoly of

a charge density wave state recently detected in CaC6 at 78K has not been observed

signifying a transition temperature above 300K. The superconducting phase of CaC6

has been characterised as BCS-like with intermediate coupling and mild gap anisotropy,

while the inaccuracy of predictions of the superconducting heat capacity anomoly has

been suggested as due to Fermi surface competition with the charge density wave state.

The electron-phonon coupling strength has been found to be in agreement with predic-

tions for CaC6 and SrC6, while for BaC6 it is measured as half the predicited value,

explaining the failure of previous experiments to observe superconductivity at the pre-

dicted TC ∼ 230mK. Micron-sized graphitic devices created by focused ion beam

micro-machining have been found to exhibit ballistic transport behaviour up to∼ 250K.

Below 40K a Coulomb-like pseudogap has been observed in agreement with previous

devices, suggested as due to electron-electron interactions within the device. Below

10K further complex conductance features have been observed with unknown cause.
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Chapter 1

Introduction

1.1 Graphitic Systems

Graphite has a layered structure which gives it highly anisotropic electronic properties;

e.g. the ratio of the in-plane to the interplane electrical conductivities can reach ∼ 104

in highly crystalline samples [47]. It is a metallic conductor but with a very small band

overlap which yields a correspondingly low density of carriers [48]. The mean free paths

of its carriers have been found to be on the order of 1000 times those of normal metals

[49]. The structural anisotropy also gives highly anisotropic vibrational properties due to

strong in-plane bonding but very weak interplane bonding [48].

The physical structure of graphite makes its electronic and vibrational properties and be-

haviours easily altered and tuned [2]. The weak bonding between the layers in graphite

allows the easy accommodation of foreign species (’intercalants’) which alter its elec-

tronic and vibrational properties, the resulting compounds being termed graphite inter-

calation compounds [50]. Graphite is an amphoteric substance, meaning that it can act

as either a donor or an acceptor of charge so that intercalants can increase or reduce

the occupation of the graphitic bands, as well as introduce new bands [48]. The pres-

ence of intercalates also alters interlayer interactions and introduces new vibrational

modes [48]. In the mid-1960s it was discovered that these modified electronic and

vibrational spectra could result in superconductivity [51] and since then many super-

conducting graphite intercalation compounds have been discovered. Most recently the

alkali earth metal graphite intercalation compounds CaC6 and SrC6 have been seen to

superconduct [52, 22], while theoretical studies have also predicted superconductivity

23
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in another group II graphite intercalation compound, BaC6 [53, 11].

Due to its mean free path electrical transport in graphite is very sensitive to system size.

The very long mean free path means that low-dimensional phenomena usually only

seen in metals at nanometre sizes and liquid helium temperatures can become evident

in graphitic systems with micro- and even macroscopic dimensions and at temperatures

up to room temperature [54, 4]. Electrical transport in micron-sized graphitic systems

created by advanced microfabrication techniques has been observed to stop behaving

Ohmically and instead exhibit ballistic characteristics [49, 55].

1.2 Aims, objectives and motivation

This doctoral work began as the study of the potential applications of graphitic mi-

crostructures to electrical engineering, both in their raw and Ca intercalated, super-

conducting forms. Micro-size graphitic cone structures thought to be single crystals

were to be studied as potential FETs, while graphitic fibres with a herringbone-type

internal structure had potential wiring applications. The particular interest in these ma-

terials stems from their intrinsic, ’ready made’ micro and nano dimensions, as well as

their potential to exhibit properties similar to those of graphene. The normal and su-

perconducting states of both types of structure would be studied using low temperature

electrical transport measurements, with contact made using FIB-deposited metals.

At the same time, other members of the UCL Carbon Physics group were performing

STM experiments showing a charge density wave state in CaC6 at liquid nitrogen tem-

peratures. This discovery was of particular import as it was the first such reporting of

a charge density wave in a graphitic material. It was decided to apply the skills and

techniques gained with the handling, intercalating, contacting and testing of the micro-

structures in experiments to study the new charge density wave state. Following the

work of Latyshev et al FIB milling would be applied to CaC6 samples to create micro-

sized devices, contacted using the remaining, unmilled sample. Electrical transport

measurements would then be performed over a wide temperature range to observe the

charge density wave gap, the superconducting gap and their temperature dependence.

Additionally, heat capacity measurements would be performed on macro samples of

CaC6 to further describe the new charge density wave state, as well as to verify previ-

ous findings on the superconducting state.

For both the planned electrical transport experiments and heat capacity experiments on

CaC6 equivalent studies of raw graphite and other MC6 GICs were to be used to gener-
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ate a more complete picture and further substatiate results. Additionally, this approach

would allow us to connect to the wider body of work in this area in two particular ways.

Firstly, in the case of superconductivity in MC6 GICs, it would allow us to contribute to

discussion on the predicted but as yet unobserved superconducting state of BaC6 and

verify recently observed supeconductivity in SrC6. Secondly, in the case of electrical

transport in graphitic micro-structures, it would allow us to repeat and potentially verify

the pseudogap observations of Latyshev et al in graphite.

1.3 Form of the Dissertation

The thesis begins with a common, background theory section on the materials before

dividing into two to address firstly superconductivity and charge density wave heat ca-

pacity studies, and secondly pseudogap electrical transport studies, before coming back

together for a joint conclusion:

Chapter 2 introduces graphite and graphite intercalation compounds and details their

main structural, vibrational and electronic properties.

Chapter 3 presents heat capacity studies of the superconducting states of CaC6, SrC6

and BaC6, as well as a charge density wave state in CaC6. Initially, the theoretical

basis of the heat capacity is described and an experimental perspective of the super-

conducting and charge density wave states and their competition is given. By way of

specific introduction previous work studying superconductivity in MC6 graphite interca-

lation compounds is discussed and a recent paper which discovered a charge density

wave state in CaC6 is described. Sample preparation and quality are detailed preceding

a description of the experimental setup and presentation of the heat capacity measure-

ment results. For each of CaC6, SrC6 and BaC6 the low temperature heat capacity is

described by a Debye model with an additional low energy intercalant mode. The fitted

electronic coefficients yield calculations of the electron-phonon coupling for comparison

with theory for each of the three studied compounds. Attempts to observe the charge

density wave onset in the high temperature heat capacity of CaC6 are presented, and

the nature of the compound’s superconductivity is discussed in the context of anisotropy

of the order parameter and competition with the charge density wave state.

Chapter 4 presents electrical transport studies of a micro-machined graphite system.

As background, the theoretical basis of electrical transport in a number of systems

is outlined before the electrical resistance of graphites is examined and the previous

use of microfabrication techniques to create similar test systems is detailed. Specific
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processing and experimental setup details are then given and electrical transport results

presented. Resistance measurements as a function of temperature are described by

ballistic transport through a constriction, while an observed pseudogap is analysed in

the context of Coulomb interactions. The use of micro-devices to study the conductivity

mechanisms of ideal graphite is also discussed.

Chapter 5 concludes across both pieces, providing a summary of the findings of this

work against its aims and next steps.



Chapter 2

Materials

2.1 Graphite

2.1.1 Structural Properties

Graphite consists of layered sheets of graphene - 2D planes of hexagonally arranged

carbon atoms - with an AB stacking order, as shown in figure 2.1. Within the planes

atoms are connected by strong covalent bonds (7 eV/atom binding energy), whereas

between planes bonding is by weak van der Waals forces (0.02 eV/atom) [56, 57].

Each graphene sheet lies in the ab plane, while the interplane direction is the c-axis.

The planes are separated by a distance dc = 3.35 Å along the c-axis, more than twice

the intralayer nearest-neighbour distance aNN = 1.42 Å [1]. This arrangement makes

graphite highly anisotropic; e.g. it has extremely high thermal conductivity, strength and

stiffness along the planes but it is a bad thermal conductor across the planes and is

easily cleaved.

The graphite unit cell (marked in figure 2.1) contains four atoms: two atoms for each

graphitic plane and two planes per cell. It has dimensions: c0 = 6.708 Å and a0 =

2.456 Å [48]. The corresponding Brillouin zone in the reciprocal lattice is shown in

figure 2.2.

Macroscopic samples of graphite with the ideal structure don’t exist in nature. Crys-

tal boundaries, defects, impurites and stacking faults combine in varying quantities to

disrupt the perfect structure in real graphites such as kish, natural and highly-oriented

27
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Figure 2.1: Crystalline structure of hexagonal graphite. The dimensions of the unit cell,
represented by dotted-dashed lines, are a0 = 2.456 Å and c0 = 6.708 Å. aNN =
1.42 Å is the distance between nearest neighbours. In the c-direction the graphene
sheets are registered in an AB stacking order and are separated by dc = 3.35 Å.
Figure adapted from [1].

Figure 2.2: Brillouin zone of graphite, showing several high-symmetry points and a
schematic version of the graphite electron and hole Fermi surfaces located along the
H −K axes. Symmetric points are labelled with Bouckaert-Smoluchowski-Wigner no-
tation (ΓAHKLM ). The direction Γ − A is perpendicular to the graphene sheets;
Γ−K is parallel to the graphene sheets. Figure taken from [2].
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Figure 2.3: Rocking curve of [002] x-ray diffraction peak (theta-theta scan). Left:
300µm thick kish graphite (KG) flake and 500µm thick HOPG sample. Right: A differ-
ent kish graphite sample at 300µm thick and cleaved to 40µm thick. Figure adapted
from [3].

pyrolytic graphites (HOPG). Their differing properties are detailed below, with structure

described first for each and then purity.

Kish graphite is typically a byproduct of the steel-making process, formed as crystalline

flakes of graphite precipitated from a carbon-rich iron melt [58]. It is more highly crys-

talline than HOPG but less so than natural single crystal graphite [36]. The flakes con-

tain either one crystallite or a series of fairly well aligned crystallites. In-plane crystallite

sizes are typically several hundreds of microns and can be up to ∼ 1000µm, as shown

by electron channeling contrast imaging (ECCI) in the upper panel of figure 2.4 [3].

Electron channeling patterns (ECP) also show single-crystal patterns over large areas.

c-axis crystallite sizes are typically on the order of ∼ 100nm [59]. X-ray diffraction

studies of the [002] (c-axis) reflection of kish graphite flakes tend to show a broad peak

composed of many narrow peaks arising due to its highly crystalline polycrystal compo-

sition (figure 2.3). Typical flakes are ∼ 300µm thick and have a full-width at half max-

imum (’mosaic spread’) ∼ 3.5 o, showing the considerable variation in the orientation

of the c-axis between crystallites. Flakes of thickness ∼ 40µm, achieved by cleaving

show a single, narrow peak with width . 0.5 o (figure 2.3, right panel), indicating a far

smaller number of crystallites but with the same high crystallinity [3].
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Figure 2.4: Upper: ECCI image of a kish graphite surface. The lack of contrast indicates
that the crystallite size is greater than the field of vision of the image. Lower: ECCI
image of an HOPG surface showing the typical extent of the in-plane crystallites as
∼ 60µm. This sample has a mosaic spread of 0.9 o. Figure adapted from [3].
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Figure 2.5: TEM image of an HOPG sample (mosaic spread 0.4 o) taken parallel to
the graphene layers. The c-axis is perpendicular to the clearly observable stripes of
different grey colours, each representing a crystalline region with a different orientation.
Typical c-axis crystallite sizes are 60± 20nm. Figure adapted from [4].

Within crystallites kish graphite has a much higher concentration of crystal defects than

either natural graphite or HOPG [3] (this point is discussed further in section 4.3.1 for

each of kish, natural and HOPG graphites).

Natural graphite is mined in countries such as China, Brazil, Madagascar, Russia and

Sri Lanka. It is formed in metamorphic and igneous environments under high temper-

ature and pressure. In terms of crystallinity it is very similar to kish graphite, although

with a much lower crystal defect concentration [3].

HOPG is a synthetic graphite formed by heat treatment of pyrolytic carbon at high tem-

peratures (∼ 3600 oC) and under pressure. It is less highly crystallised than both kish

and natural graphites with ECP studies showing a superposition of distorted patterns

demonstrating its polycrystalline nature [3]. ECCI shows a typical in-plane crystallite

size of ∼ 60µm, as shown in the lower panel of figure 2.4, although it has been noted

that these crystallites may actually consist of slightly misaligned smaller crystallites with

dimensions∼ 6µm [46]. Crystal defect concentrations are higher than natural graphite

but considerably lower than in kish graphite.

Figure 2.5 shows a transmission electron microscopy (TEM) image of an HOPG sample

showing typical c-axis crystallite sizes of 60± 20nm [4]. X-ray diffraction studies of the

[002] reflection show a single, gaussian peak with mosaic spread 0.4 − 3.5 o (figure

2.3, left panel), indicating that its graphene planes can be very well aligned along the

c-axis. However, the ECP and ECCI studies show that the orientation of the crystallites
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in-plane is random.

Due to the method by which it is formed the concentrations of impurities in raw kish

graphites are much greater than those of natural and HOPG graphites [60]. These

impurities are mainly of two forms: non-metallic and metallic particles. The former

consist of calcium, silicon and iron oxides; the latter iron particles. These particles

are adhered to the outer surface of the flakes and so can be removed by washing

or cleaving. Very small amounts of iron particles can become trapped in the foliated

structure, with concentrations typically estimated at a maximum of ∼few ppm [61, 31].

Natural graphites can also contain appreciable concentrations of impurities though of a

different composition to kish, being predominantly Ca, Fe, Al and Mg - a comprehen-

sive list and discussion are given in [32] - while HOPG is generally considered to have

the highest purity due to its formation process. However, a recent study of the mag-

netic impurities of kish, natural and HOPG graphites found a great deal of variation in

impurity concentrations, not only across graphite types but also within each type [42].

Table 2.1 reproduces some of the findings showing the wide range of impurity concen-

trations observed. The work suggests that impurity concentrations cannot be inferred

from graphite type.

2.1.2 Vibrational Properties

The layered structure of graphite gives rise to strongly anisotropic lattice dynamics [2].

The strong intralayer, covalent bonds and the low mass of the carbon atom yield high

frequency/energy intralayer modes, while the significantly weaker interlayer interaction

gives low frequency modes. These are shown schematically in figure 2.6.

Phonons are the quasi-particles that describe the quantized lattice vibrations of a crys-

tal. A crystal possesses 3N phonon branches where N is the number of atoms in

the unit cell. Since the graphite unit cell consists of four atoms this gives 12 phonon

branches although it is commonly approximated by that of graphene where the two

atom unit cell gives six branches, as most of the phonon branches of graphite are nearly

doubly degenerate. The phonon dispersion relation is shown in figure 2.7.
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Figure 2.6: Schematic diagram of the layer lattice dynamics of graphite. The lattice dy-
namics are characterised by high-frequency intralayer modes and low frequency inter-
layer modes, the latter separated into layer breathing, layer shear and bending modes.
The intralayer modes occur at energies above ∼ 125meV , while the interlayer modes
occur at lower energies as shown in figure 2.7. Figure adapted from [5].

Figure 2.7: Phonon dispersion of graphite from inelastic x-ray scattering (symbols).
Solid lines are force-constant calculations for graphene. The dashed line is a quadratic
extrapolation of the data. The phonon branches are specified as following: out-of-plane
acoustic (ZA), transverse acoustic (TA), longitudinal acoustic (LA), out-of-plane optical
(ZO), transverse optical (TO) and longitudinal optical (LO). The vertical lines are denoted
by their symmetry representation. Figure adapted from [6].
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2.1.3 Electronic Properties

In a single graphene sheet the carbon 2s, 2px and 2py orbitals are hybridized, form-

ing the strongly coupled trigonal bonding and antibonding orbitals [2]. These trigonal

orbitals give rise to three bonding and three antibonding σ−bands, yielding covalent

bonds between the carbon atoms in-plane. The remaining pz orbitals form a single

bonding π−band and a single antibonding π∗−band; the valence and conduction bands

respectively. These bands are degenerate at the six equivalent Brillouin zone K point

corners through which the Fermi level passes - shown in figure 2.8. As such graphene

is modelled as a zero-gap semiconductor.

In the vicinity of each K point the energy is proportional to the magnitude of the

wavevector k for both the π− and π∗−bands, in contrast to the parabolic energy dis-

persion in free electron systems. The density of states (DOS) g(E) derived from the

electronic dispersion is proportional to the energy E, decreasing linearly as the energy

approaches the Fermi level for both the π− and π∗−bands giving a characteristic ’V’

shape. g(E) for graphene is shown schematically in the left panel of figure 2.9.

In graphite the electronic structure of the graphene sheet is modified by the presence

of the adjacent graphene sheets. The graphite unit cell containing four carbon atoms

has double the number of π-bands (marked in orange in figure 2.10). These bands are

subject to a weak interlayer interaction that causes a small band overlap of ∼ 40meV

at the Fermi level, yielding one electron and two hole pockets between the K and H

points (figure 2.2). This overlap gives rise to a low carrier concentration at the Fermi

level of∼ 1018 cm−3 [48] (vs∼ 1023 cm−3 in a metal) and the semi-metallic behaviour

of graphite. The derived electronic DOS is shown schematically in the right panel of

figure 2.9. In addition, the interlayer interaction yields a free-electron-like, parabolic

band above the Fermi level, distributed in the space between the graphene sheets. This

is the interlayer band, marked in blue in figure 2.10.

The full band structure of graphite may be calculated using the semi-phenomenological

Slonczewski-Weiss-McClure (SWMcC) model [62, 63]. A thorough discussion of the

band structure of graphite is contained in the extensive review by Dresselhaus [2].
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Figure 2.8: Left: Band structure of graphene. The π−band is completely filled in the
ground state and touches the empty π∗−band at the K point where both bands have
conical shape. Right: Zoom-in of the energy bands close to one of the Dirac points.
Figure taken from [7].

Figure 2.9: The electronic structures shown schematically of (left) graphene and (right)
graphite, where g(E) is the DOS as a function of energy and EF is the Fermi energy.
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Figure 2.10: Density functional theory (DFT), local density approximation (LDA) calcu-
lated electronic band structure of graphite along high-symmetry directions in the Bril-
louin zone. Band types are colour-coded as: π orange; σ green; interlayer blue. π−
and σ−bands are below the Fermi level, π∗− and σ∗−bands are above the Fermi level.
Figure adapted from [8].
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2.2 MC6 Graphite Intercalation Compounds

2.2.1 Structural Properties

Graphite intercalation compounds (GICs) are layered compounds consisting of graphene

sheets with guest elements or molecules in the galleries between them. In GICs the in-

plane C-C bond length varies from that of graphite by less than 1 % [64] but the c-axis

spacing can change by up to 200 % upon intercalation [2].

Along the c-axis GICs exhibit a unique ordering called ’staging’. On intercalation the

intercalant fills some galleries preferentially in an ordered way, giving complete layers of

intercalant between graphene sheets. A stage n GIC has n graphene sheets between

successive intercalant layers.

The stacking of the graphene layers in GICs is sheared from theAB stacking of graphite

such that each graphene layer has identical registry: AA stacking. The intercalant

species in between can have a stacking sequence as simple as αα as in LiC6 or as

complex as αβγδ as in KC8. The subjects of this work are the stage-1 GICs CaC6

with stacking AαAβAγ and BaC6 and SrC6 both with stacking order AαAβ. These

structures are shown in figures 2.11 and 2.12, respectively, and further detailed in table

2.2.

Material Structure aNN (Å) dc (Å)

Graphite / C6 AB P6/mmc 1.420 3.350
LiC6 Aα P6/mmm 1.435 3.706
KC8 AαAβAγAδ Fddd 1.432 5.320

RbC8 AαAβAγAδ Fddd 1.431 5.618
CsC8 AαAβAγ P62 1.431 5.928
CaC6 AαAβAγ R3m 1.430 4.520
SrC6 AαAβ P6/mmc 1.439 4.940
BaC6 AαAβ P6/mmc 1.434 5.250
EuC6 AαAβ P6/mmc 1.438 4.870
SmC6 AαAβ P6/mmc 1.437 4.580
YbC6 AαAβ P6/mmc 1.440 4.570

Table 2.2: Structural parameters of stage-1 donor-GICs, with the subjects of this thesis
highlighted. Data taken from [43, 44] .

It is perhaps surprising that CaC6 should have a different structure to SrC6 and BaC6.

However, its AαAβAγ structure and R3m̄ space group can be described by using
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Figure 2.11: Layered structure of stage-1 CaC6 displaying AαAβAγ stacking order.

either a hexagonal or rhombohedral basis. Use of the hexagonal representation aids

comparison with other GICs and graphite, while the rhombohedral representation is

more commonly used by theoretical groups. The reciprocal space Brillouin zones cor-

responding to each representation are shown for comparison in figure 2.13. In the

hexagonal basis the Γ− A direction is perpendicular to the graphene sheets, whereas

for the rhombohedral basis the equivalent direction is the Γ−L. The directions parallel

to the graphene sheets are Γ−K and Γ− χ−X , respectively.

2.2.2 Vibrational Properties

The lattice vibrations of GICs have a basis similar to those of graphite but modified

by the presence of the intercalant atoms. The graphitic modes consist of the high-

frequency intralayer modes and low frequency interlayer modes, as well as the very soft

bending or ’ripple’ modes, as detailed above and shown in figure 2.6. In addition to

these there are modes specific to the intercalant atoms or molecules. These are simple

longitudinal and transverse modes for monoatomic intercalate layers or more complex
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Figure 2.12: Layered structure of stage-1 SrC6/BaC6 displaying AαAβ stacking order.

intramolecular modes for molecular intercalates.

The DFT calculated phonon dispersion of CaC6 is shown in figure 2.14 [10] - measure-

ments by neutron [65], inelastic x-ray [66, 67] and Raman [68, 69, 70] scattering show

reasonable quantitative agreement with the DFT predictions (left panel of figure 2.15).

In CaC6 the Ca atoms are much heavier and more weakly bonded than the C atoms

so the Ca-related phonons occur at the lowest energies (. 40meV as seen in the

figure). The strong planar bonding of the graphene sheets means that the out-of-plane

Cz modes fall between 40 − 80meV while the in-plane Cxy modes are higher energy

and dominate the spectrum from 100− 180meV .

The similarity of the structures of MC6 GICs means that their phonon dispersions are

broadly the same as that of CaC6 as detailed above [11]. However, some differences

are observed. The greater mass of the intercalant atoms in the cases of SrC6 and

BaC6 shifts the energy of the intercalant modes down. The graphene Cz modes are

softened by increased occupation of the π∗−band, which correlates with decreased

interlayer spacing dc (see table 2.2). This effect is due to the anti-bonding nature of

the π∗−band, meaning that greater filling of the band causes the destabilisation of the

graphene bonds [64, 68].

The right panel of figure 2.15 shows the phonon dispersion of BaC6 as measured by

inelastic x-ray scattering. The agreement between the experimental measurements
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Figure 2.13: Left: The hexagonal Brillouin zone. The direction Γ−A is perpendicular to
the graphene sheets; Γ−K is parallel to the graphene sheets. Right: The rhombohedral
Brillouin zone, in which the hexagonal K-point is refolded at Γ. The direction Γ − L is
perpendicular to the graphene sheets; Γ − χ − X is parallel to the graphene sheets.
Figure taken from [9].

Figure 2.14: DFT calculated phonon dispersion of CaC6. The amount of Ca vibration is
represented by the size of •, of Cz by the size of ◦, and of Cxy by the size of ♦. Figure
taken from [10].
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Figure 2.15: Phonon dispersion of CaC6 (left) and BaC6 (right) (00l) measured using
inelastic x-ray scattering at 5K (squares), 50K (triangles) and 300K (circles). Empty
symbols denote Mz phonon intensity, full symbols label Mxy phonon intensity. The
theoretical dispersion of the Mz and Mxy phonons are plotted with solid lines and
dashed lines respectively. A guide to the eye is plotted showing the dispersion of the
experimental Mz phonons at 300K (thick solid line). The symmetry point L (CaC6) is
located at q = 0.694A−1. The symmetry point A (BaC6) is located at q = 0.299A−1.
The crosses mark the phonon energies calculated at Γ using the experimental lattice
parameters and space group of BaC6. Figures taken from [9].
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and the DFT predicted dispersion is significantly less good than for CaC6 (left panel).

Experimentally observed energies are seen to be up to 20 % above those predicted by

DFT calculations.

2.2.3 Electronic Properties

GICs are characterised as either donor or acceptor depending upon whether the inter-

calant donates charge to the graphene layers or removes it. This behaviour is described

most simply by the rigid band model [48, 71] as follows: Electrons transferred from donor

to graphene layer occupy the π∗−band in donor-GICs, shifting the Fermi level up above

the Dirac point, and creating an electron pocket in the π∗−band. The electronic DOS

corresponding to donor-GICs is shown in the left panel of figure 2.16. In acceptor GICs

the charge transfer from graphene layer to acceptor empties the top of the π−band,

shifting the Fermi level down (right panel of figure 2.16). This creates a hole pocket in

the π−band. The shifting of the Fermi level and the resulting carrier pockets around the

Fermi energy make GICs metallic in contrast to the semimetallic unintercalated graphite.

Figure 2.16: The electronic structures shown schematically of (left) donor-GICs and
(right) acceptor GICs, where g(E) is the DOS as a function of energy E and EF is the
Fermi energy. Filled states are shown in grey, empty states in white.

In GICs the intercalant species are accommodated between the graphene sheets in the

same region as the graphitic interlayer band and, for donor species, contribute additional

bands [72]. Where there is an overlap between the interlayer and the intercalate bands

the hybridization of the two gives interlayer-intercalate bands. These bands have a free-

electron-like, 3D nature and become occupied in donor-GICs with raised Fermi levels.

Figure 2.17 shows the DFT calculated electronic band structure of the three donor-GICs
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Figure 2.17: DFT calculated electronic band structures of CaC6, SrC6 and BaC6. The
zero energy corresponds to the Fermi energyEF . Bands are colour-coded as: graphite-
π orange; interlayer-intercalate (free-electron-like) blue. Figure adapted from [11].

studied here: CaC6, SrC6 and BaC6.

The band structures clearly show the metallic nature of each GIC, seen by the upward

shift of the Fermi level into the π∗−band, in contrast to its position between the π− and

π∗−bands in graphite (figure 2.10). In contrast to the simple rigid band model, in each

case there are three bands which cross the Fermi level; two graphitic π−bands and a

third interlayer-intercalate band. The degree of occupation of each band is similar in

each material.



Chapter 3

Superconductivity and Charge

Density Waves in MC6 Graphite

Intercalation Compounds

3.1 Abstract

The interaction of electrons and phonons is at the heart of many of the most interest-

ing phenomena in condensed matter physics. States such as superconductivity and

charge densty waves result directly from electron-phonon coupling in a wide variety of

systems. In order to examine these phenomena it is necessary to study the electronic

and vibrational properties of the systems where they exist.

Graphite intercalation compounds are one class of system which exhibits both of these

phenomena. Many graphite intercalation compounds are superconductors at low tem-

peratures, such as the MC6 compounds CaC6, YbC6 and SrC6 (TC = 11.5K , 6.5K

and 1.65K respectively). Another, BaC6, has been predicted to superconduct at 230mK,

although recent magnetisation measurements have refuted this. In addition, CaC6 has

very recently been seen to exhibit a charge density wave at 78K with an onset temper-

ature which is, as yet, unknown.

Measurements of the heat capacity of solids can provide considerable information about

the electronic and vibrational properties of materials. Heat capacity measurements,

45
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particularly when performed at low temperatures, directly probe the electronic energy

levels and phonon states of a material and hence allow comparisons between theory

and experiment. In addition they are sensitive to phase transitions such as those that

signify the onset of superconducting and charge density wave states.

In this work heat capacity measurements have been performed from 300K down to

∼ 390mK in order to study the electronic and vibrational properties of CaC6, SrC6

and BaC6 and their superconducting and charge density wave states. In CaC6 study

of the superconducting anomaly as a function of temperature and magnetic field has

confirmed an intermediate-coupling (λel−ph = 0.7), BCS-like state with deviations sug-

gested as due to a combination of moderate anisotropy and Fermi surface competition

with the charge density wave state. At higher temperatures, up to a maximum of 300K,

the charge density wave onset transition has not been observed, indicating that the

onset is above this temperature in line with other systems with similarly large charge

density wave gaps.

For CaC6, SrC6 and BaC6 low temperature heat capacity has been well described by a

Debye model modified to include an additional low energy optical phonon mode. Both

the Debye temperatures and the characteristic additional phonon temperatures have

been found to decrease with increasing intercalant mass, as expected. The Sommerfeld

electronic constant has been seen to decrease from CaC6 to SrC6 to BaC6, yielding

electron-phonon coupling values for CaC6 and SrC6 in agreement with predictions and

that are consistent with known values of TC . The electron-phonon coupling constant in

BaC6 has been found to be only a quarter of the predicted value, explaining the absence

of superconducting effects at the predicted TC in recent magnetisation measurements.

Measurements of the heat capacity of SrC6 and BaC6 at temperatures below 2K have

detected previously unobserved features centered at ∼ 0.2K2 and ∼ 0.3K2, respec-

tively. These features are well described by Schottky-like fits and have similarity with

features exhibited by defective and polycrystalline graphites. The temperature range

over which these features persist means that the region at which superconductivity has

previously been observed in SrC6 is obscured and makes any assessment of possible

superconductivity in BaC6 impossible. However, it is noted that the observed disparity

between the measured and predicted values of the electron-phonon coupling constant

in BaC6 is such that the predicted TC is likely to be inaccurate in any case.
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3.2 Theory and Phenomena

3.2.1 Heat Capacity

[This section follows the description of heat capacity found in Specific Heats at Low

Temperatures by Gopal [73]. Full derivations of the formulae included below are found

therein].

The measurement of the heat capacity of solids can provide considerable information

about the vibrational, electronic and magnetic properties of materials. Heat capacity

measurements, particularly when taken at low temperatures, directly probe the elec-

tronic and magnetic energy levels of a material and hence allow comparisons between

theory and experiment.

The heat capacity C describes the response of the temperature T of a material to a

change in its internal energy U due to an influx of heat ∂Q, as:

C =
∂U

∂T
=
∂Q

∂T
(3.1)

Using the second law of thermodynamics dQ = TdS, C can also be described in terms

of entropy, as:

C = T
∂S

∂T
(3.2)

C can be defined as the amount of heat required to raise the temperature of one mole

of a substance by one degree Kelvin. This is the molar heat capacity Cn in units of

J/K/mol.

Cn is a function of pressure, volume and temperature. Measurements can be made at

constant pressure (CP ) or constant volume (CV ), with the latter typically used for gas

and liquid samples. For solids CP and CV are effectively equal assuming negligible

thermal expansion. As such, this work will discuss heat capacity only as C = Cn.

C of a substance is governed by the manner in which its internal energy is distributed

amongst its constituents. The basic total heat capacity of a metallic crystal is a sum of

the contributions from atomic vibrations about lattice sites, the motion of atoms within

molecules and thermal excitation of conduction electrons (magnetic contributions can

also arise but are not discussed here). These are the lattice mode of thermal excitation,

molecular modes and electronic contribution, respectively.
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At low temperatures the lattice and molecular (phonon) modes combine to give a T 3

relationship [74] for C and the electronic contribution is proportional to T [75], as:

C = γT + βT 3 (3.3)

where γ is the Sommerfeld constant; β is the lattice contribution coefficient. The coeffi-

cients γ and β are described by:

γ =
π2NAk

2
B

2EF
(3.4)

β =
12π4NAkB

5Θ3
D

(3.5)

where NA is the Avogadro constant; kB is the Boltzmann constant; EF is the Fermi

energy; ΘD is the Debye temperature.

ΘD is the temperature which corresponds to the highest occupied phonon mode of a

material. It can equally be thought of as the temperature required to activate all the

phonon modes of a crystal. A higher value of ΘD therefore indicates higher energy

phonon modes due, for example, to a lower atomic mass or stronger bonding.

At high temperaturesC tends towards a constant value of 3kBNA/mol = 24.94 J/K/mol

(the Dulong-Petit law [76]).

As described above the relationship between heat and temperature is governed by the

heat capacity. However, at a phase transition the heat capacity is not well defined.

At a first-order transition the heat added or removed during a phase change does not

change the temperature, making the heat capacity technically infinite at that point (equa-

tion 3.2). In second-order transitions the first derivative is continuous but the second

derivative shows an infinity. In practice the heat capacity does not become infinite at a

phase change but instead displays a cusp or discontinuous jump. The behaviour of the

heat capacity at two second-order phase transitions, those of superconductivity and the

charge density wave (CDW) state, is discussed in sections 3.2.2 and 3.2.3, respectively.

3.2.2 Superconductivity

[This section follows the description of superconducting phenomena found in Introduc-

tion to Superconductivity by Tinkham [12]. Full derivations of the formulae included

below are found therein].
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Superconductivity is defined by the coexistence of two phenomena, perfect conductivity

and perfect diamagnetism: Below a critical temperature TC the electrical resistance falls

to zero [77] and any magnetic field is expelled [78].

Superconductors are classified as type I or type II based on their response to applied

magnetic fieldsH . A magnetic field applied to a superconductor is screened by currents

flowing in its surface which allow the field to penetrate only a short distance into the

superconductor [79]. The magnetic field can be screened in this way up to a critical field.

For a type I superconductor this critical field is HC and for H ≥ HC superconductivity

is destroyed (left panel of figure 3.1). For a type II superconductor [80] at a field HC1

discrete lines of magnetic flux penetrate the superconductor and form a flux lattice with

normal cores but superconductivity persists in this mixed state. Only at a field H ≥
HC2 > HC1 is superconductivity destroyed.

The right panel of figure 3.1 shows the behaviour of HC as a function of temperature

T for a type I superconductor - for type II superconductors HC2(T ) is given by the

Werthamer-Helfand-Hohenberg (WHH) equations [81] which describe a similar shape.

Empirically HC(T ) is seen to vary as:

HC(T ) ≈ HC(0)

[
1−

(
T

TC

)2
]

(3.6)

In layered superconductors HC2(T ) has been observed to exhibit an extended linear

dependence as an almost universal property [82].

Superconductivity occurs when normal electrons form pairs in the presence of an at-

tractive potential, resulting in a condensate with an energy lower than that of the normal

state. This formation of ’Cooper pairs’ is described by the microscopic, mean-field BCS

theory [83]:

In a superconductor at T = 0 all the Cooper pairs are in the ground state. This

ground state is separated from the excited states by an energy gap 2∆SC(T ), as

shown schematically in figure 3.2. The size of the gap at T = 0 is related to TC by

the equation:

2∆SC(0)

kBTC
= 3.528 (3.7)

At T > 0 some Cooper pairs break apart and quasiparticles, which include both

electron- and hole-like excitations, are generated. As T increases the quasiparticles
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Figure 3.1: Left: Comparison of flux penetration behaviour of type I and type II super-
conductors. HC is the critical field for a type I superconductor. HC1 and HC2 are the
lower and upper critical fields for a type II superconductor. Right: Temperature depen-
dence of the critical field HC . Figures taken from [12].

Figure 3.2: An isotropically gapped Fermi surface in a BCS superconductor at T = 0.
The shaded region represents the occupied states of the superconducting electrons.



SUPERCONDUCTIVITY AND CHARGE DENSITY WAVES IN MC6... 51

Figure 3.3: Temperature dependence of the energy gap in the BCS theory. Strictly
speaking, the curve holds only in a weak-coupling limit, but it is a good approximation
in most cases. Figure taken from [12].

are excited across the gap and there are fewer Cooper pairs in the superconducting

ground state, so that ∆SC(T ) → 0 as T → TC . At TC the number of Cooper pairs

goes to zero and the material becomes normal. The temperature dependence of ∆SC

is shown in figure 3.3.

The attractive potential which joins the electrons in Cooper pairs can have various ori-

gins. In conventional superconductivity the attraction between electrons is due to in-

teraction with phonons. Electrons with equal and opposite momenta and spin join to

form the Cooper pairs below TC , forming an isotropic energy gap in reciprocal space

(as previously shown in figure 3.2). The net angular momentum of these pairs is 0,

thus the superconducting state is the lowest in energy. This is conventional s-wave

superconductivity.

In d-wave superconductivity electrons form into Cooper pairs in which the net angular

momentum is not zero. This pairing yields an energy gap which is anisotropic and

contains nodes in reciprocal space. The gap is not ’clean’ as in the s-wave case but

contains states, even in the superconducting phase. This type of pairing has been

proposed as a potential mechanism for high-temperature superconductors [84].

BCS theory is very successful in accounting for the behaviour of superconductors where

the electron-phonon interaction is weak. In this weak-coupling limit the electron-phonon

coupling constant λel−ph � 1. Coupling is described as of intermediate strength when
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λel−ph . 1, and strong when λel−ph & 1. The Sommerfeld constant γ is related to

λel−ph via the DOS at the Fermi level g(EF ). This relationship allows λel−ph to be

estimated using the equation:

(1 + λel−ph) =
0.212γ

g(EF )
(3.8)

where γ has units of mJ/K2/gat; g(EF ) has units of states/eV/atom/spin. Cou-

pling strength can similarly be assessed using equation 3.7 such that superconductors

with values of the ratio 2∆SC(0)
kBTC

< 3.528 have weak-coupling, while those with greater

values have strong-coupling.

Measurement of the heat capacity of a superconductor in both its normal and super-

conducting states can be used to characterise the nature of its superconductivity. For

T > TC the heat capacity follows the Debye model, as detailed in section 3.2.1; the

electronic contribution to the heat capacity in the normal state is Cen and is proportional

to temperature:

Cen = γT (3.9)

For T < TC BCS theory predicts that the electronic contribution to the heat capacity

Ces will depend exponentially on temperature as:

Ces ≈ γTCae−b
TC
T (3.10)

At TC , therefore, there is a discontinuity in Ce, while the lattice heat capacity is as-

sumed to be unaffected. Figure 3.4 shows the nature of the discontinuity ∆C and the

exponential dependence below TC . BCS theory predicts the size of the discontinuity to

be:

∆C = 1.426Cen (3.11)

or equivalently, using equation 3.9:

∆C

γTC
= 1.426 (3.12)
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Figure 3.4: Heat capacity of a material at and below the BCS superconducting transition
showing the discontinuous jump in heat capacity at TC . Figure from [12].

3.2.3 Charge Density Waves

[This section follows the description of CDWs in the text Density Waves in Solids by

Grüner [85]].

Density waves are broken-symmetry states of metals brought about by electron-phonon

or electron-electron interactions. Their ground states are a coherent superposition of

electron-hole pairs in which the charge density or spin density displays a periodic spatial

variation. The former is a CDW [86, 87] and the latter a spin density wave (SDW) [88].

The CDW ground state is that of a coupled carrier-phonon system, similar to that of

BCS superconductivity. The pairs here are formed by electrons and holes on opposite

sides of the Fermi surface, with wavevectors ±kF . The resulting coupled states are

separated from the normal states by an energy gap 2∆CDW .

CDWs are low-dimensional phenomena exhibited by quasi-1D (e.g. 1T-TaSe2 [89],

K0.3MoO3 [90]) and quasi-2D systems (e.g. the transition metal dichalcogenides 2H-TaSe2,

2H-TaS2, 2H-NbSe2 and 2H-NbS2 [91, for a review]). The purely 1D case is de-

scribed by the Peierls theory [87] and, although not quantitatively accurate for the

higher-dimensional cases, does give a good qualitative picture:

At T = 0 in a 1D metal in the absence of electron-electron or electron-phonon inter-
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actions the ground state corresponds to the situation shown in the left panel of figure

3.5.

Figure 3.5: Peierls distortion in a 1D metal with a half-filled band: (left) undistorted
metal; (right) Peierls insulator. d(r) is the electronic density; a is the lattice constant.
Figure taken from [13].

In the presence of an electron-phonon interaction it is energetically favourable to create

a periodic lattice distortion (right panel of figure 3.5) with period x related to the Fermi

wave vector by:

x =
π

kF
(3.13)

This distortion opens up a gap ∆CDW at the Fermi level which modifies the dispersion

relation as shown in the figure and lowers the electronic energy. In 1D ∆CDW is pro-

portional to the amplitude of the lattice distortion. The modification of the dispersion

relation leads to a position-dependent electron density - the CDW - which locally neu-

tralises the lattice distortion. If the ratio of the distortion period to the lattice constant is

rational the CDW is called commensurate (CCDW) with the lattice, otherwise it is called

incommensurate (ICDW). In some materials the transition from the normal state to an

ICDW state is followed at lower temperatures by a further transition to a CCDW state

(e.g. 2H-TaSe2 [92]).

At T > 0 normal electrons are excited across the gap, causing screening of the

electron-phonon interaction. This reduces both ∆CDW [93] and the magnitude of the

distortion leading to a second-order, ’Peierls transition’ at a temperature TP . The main

features of the transition are described by mean-field theory in the same way as that

of BCS superconductivity [94]. Consequently, the temperature dependence of the gap
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∆CDW (T ) has the same form as that of BCS superconductivity (figure 3.3) and it van-

ishes at the transition temperature:

2∆CDW (0)

kBTP
= 3.528 (3.14)

In the form of a ratio of the gap size to the transition temperature equation 3.14 is used

to compare CDW coupling strengths across different host systems [13]. Similarly to

BCS superconductivity (equation 3.7), CDW coupling is termed weak if the ratio is less

than 3.528 and strong if it is greater.

The mean-field treatment neglects the effects of thermodynamic fluctuations which for

a strictly 1D system would prevent the CDW phase transition occurring above T = 0

[95]. In real, quasi-1D systems interchain coupling partially suppresses the effects of

such fluctuations, allowing the Peierls transition to occur but at a lower temperature

TCDW < TP .

In the 1D case at T > TCDW the material is a metal; at T < TCDW it is an insulator

because the Fermi surface is fully gapped. In cases where gapping is incomplete the

number of states around the Fermi level is depleted but does not fall to zero and the ma-

terial remains conducting to some degree giving a metal-metal or metal-semiconductor

transition.

The concept of ’nesting’ of sections of the Fermi surface is useful in describing incom-

plete gapping. In systems whose Fermi surface topologies include large parallel faces

spanned by a (nesting) vector there will be an instability toward the opening up of gaps

on these faces only [96]. Where this is the case portions of the Fermi surface can host

a CDW gap while other sections remain normal, giving partial gapping and a metallic

CDW state below TCDW .

The effect of an applied magnetic field H on the 1D CDW state is similar to that on a

BCS superconductor, in that increasing fields weaken the pairing interaction and reduce

the transition temperature. The field dependence of TCDW is predicted [97, 98] by:

∆TCDW
TCDW (0)

≈ −1

4

(
µBH

kBTCDW (0)

)2

(3.15)

where µB is the Bohr magneton.

The equation shows that very large fields are required in order to destroy a CDW state;

e.g. the quasi-1D organic metal CDW system (Per)2M(mnt)2 [99] has a relatively low

TCDW (0) = 11.3K and this corresponds to a critical field of ∼ 37T [98].
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A variety of experiments have been conducted on quasi-1D and quasi-2D materials with

CDW states. The second order phase transition at the onset of the CDW state has been

examined by measurements of various thermodynamic quantities such as heat capacity,

thermal expansion and elastic constants, as well as electrical transport coefficients and

structural measurements by x-ray and neutron diffraction [100, for a review].

As noted above, the equations of the 1D CDW state are of the same form as those

of BCS superconductivity. Therefore, in measurements of the heat capacity the CDW

phase transition leads to an equivalent anomoly in the heat capacity at the onset tem-

perature. In the 1D case described above this transition occurs at TP causing a heat

capacity jump ∆C described [100] by:

∆C = 1.426γTP =
π2

8.414
g(EF )k2

BTP (3.16)

where g(EF ) is the DOS at the Fermi level; kB is the Boltzmann constant and γ is the

Sommerfeld constant (c.f. equation 3.12 and figure 3.4 for the BCS equivalent).

The above equation assumes the participation of all states at the Fermi level, as in-

dicated by the use of g(EF ), resulting in complete gapping of the Fermi surface. In

systems where partial gapping occurs the number of states participating in the CDW is

less than g(EF ) and ∆C is correspondingly smaller. As such ∆C(g(EF )) is treated

as an upper limit on the size of the heat capacity jump.

Heat capacity measurements of the CDW transitions of the quasi-2D dichalcogenides

2H-NbSe2, 2H-TaS2 and 2H-TaSe2 and quasi-1D K0.3MoO3 are shown in figures 3.6,

3.7, 3.8 and 3.9, respectively. In the figures transition shapes and widths are typical

and are seen to vary in the range ∆T ∼ 5 − 40K. The magnitude of the excess

contribution to the heat capacity at the transition ∆C varies widely between materials

and across material classes. General behaviour is described by equations 3.10 and

3.12 while comparison between materials is made more simply by calculating the ratio

of ∆C to the total heat capacity at TCDW ∆C
C(TCDW ) . Table 3.1 presents electronic and

vibrational parameters for several layered dichalcogenides with CDW states.

As is clear from table 3.1 transition into the CDW state generally occurs at high tempera-

tures. From an experimental point of view a difficulty in analyzing such high-temperature

features in heat capacity measurements is the substantial contribution from background

thermal excitations which must be subtracted from the total. This is especially the case

since the normal state is not easily attained by applying a magnetic field as for su-

perconductors. To obtain ∆C for a CDW transition the following procedure is typically
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followed [15]: First, a polynomial fit is made to the surrounding background heat capac-

ity by masking the transition region during fitting. Subtraction of this fit then yields an

estimate for the excess heat capacity ∆C associated with CDW formation.

Figure 3.6: Heat capacity of 2H-NbSe2 showing the CDW transition at TCDW = 33K.
The superconducting transition is seen at 7K. Figure adapted from [14].

Figure 3.7: Heat capacity of 2H-TaS2 showing the CDW transition at TCDW = 78K.
Figure adapted from [14].
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Figure 3.8: Heat capacity of 2H-TaSe2 showing the CDW transitions at TCDW = 121K
and 90K for the ICDW and CCDWs, respectively. Figure adapted from [14].

Figure 3.9: Temperature dependence of the heat capacity of K0.3MoO3 (blue bronze).
The CDW transition is clear at TCDW = 180K. The solid line is a polynomial fit through
the background of the heat capacity data. Figure adapted from [15].
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3.2.4 Competition between Superconductivity and CDWs

Some systems exhibit both superconducting and CDW states; a recent review by Gabovich

[101] extensively documented the superconducting and CDW properties of many such

systems including the layered dichalcogenides, A15 and C15 structured materials and

high TC oxides (the review contains a table which details the superconducting and CDW

parameters of some 40 compounds). Both superconducting and CDW states arise from

carrier pairing via electron-phonon coupling and both exhibit gapping of the Fermi sur-

face. As a result, in materials where they coexist the superconducting and CDW states

conflict [102]. These mutual effects have been observed in a number of ways; as the ex-

clusion of the nested portions of the Fermi surface from participating in superconductiv-

ity in NbSe2 [103] and the high-TC oxides [104, 105]; in CuxTiSe2 competition between

CDW and superconducting states has been observed by the suppression of the CDW by

tuning the amount of Cu [106]; while in the organic conductor (Per)2[Au(mnt)2] a similar

suppression of the CDW state under pressure has shown an emergent superconducting

state [107].

The Gabovich model [102] predicts thermodynamic properties in the case of an s-wave

BCS superconductor with a CDW, where TC � TCDW . In the combined superconducting-

CDW state it defines the Fermi surface gapping as:

D(T ) =
[
∆2
SC(T ) + ∆2

CDW (T )
] 1

2 (3.17)

This is the combined gap appearing on the nested Fermi surface sections. The re-

maining (unnested) sections are defined solely by the superconducting order parameter

∆SC(T ). Each of the gaps has the BCS form. In the superconducting-CDW state both

the T = 0 superconducting energy gap ∆SC(0) and CDW energy gap ∆CDW (0) are

reduced compared to the lone case i.e. the CDW inhibits superconductivity and vice

versa. Figure 3.10 shows the reductions of ∆SC(T ) and ∆CDW (T ) resulting from the

presence of CDW gapping of a proportion µ of the Fermi surface compared to the BCS

case.

Since the BCS character of the gap dependences for the CDW s-wave superconductor

is preserved the temperature dependence of both the CDW and superconducting heat

capacity anomalies is unaltered from the situation described in sections 3.2.2 and 3.2.3,

when TC � TCDW . In the case where TC ≈ TCDW the heat capacity anomalies are

more complex and are described further in [102].
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Figure 3.10: Temperature dependences of the superconducting (∆SC ) and CDW
(∆CDW ) order parameters for different values of the parameter µ, the portion of the
Fermi surface where the CDW gap develops. Figure taken from [16].
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3.3 Introduction and Experimental Motivation

3.3.1 Superconductivity in GICs - The Study of CaC6

Superconductivity has been observed in more than 20 donor-GICs - it has not been

seen in any acceptor GICs. Table 3.2 lists the TC of the superconducting group I, II and

III donor-GICs and their discovering references.

GIC TC (K) Reference

RbC8 0.026 Hannay 1965 [51]; Kobayashi 1985 [108]
KC8 0.15 Hannay 1965 [51]; Koike 1980 [109]
KC6 1.5 Avdeev 1986 [110]
SrC6 1.65 Kim 2007 [22]

Li3C6
∗ 1.9 Belash 1989 [111]

Na3C6
∗ 5 Belash 1987 [112]

K2C8
∗ 5.5 Avdeev 1986 [110]

Cs2C8
∗ 6 Avdeev 1990 [113]

YbC6 6.5 Weller 2005 [52]
CaC6 11.5 Weller 2005 [52]

Table 3.2: Superconducting group I, II and III donor-GICs, their transition temperatures
and discovering references. ∗Metastable compound formed under high pressure.

Superconductivity has been known in alkali-metal GICs from the first experiments in

1965 [51] but since the discovery of superconducting CaC6 and YbC6 in 2005 [52]

interest in the mechanism underlying the superconducting GICs has been rejuvenated.

With the highest TC CaC6 has been the main focus of both theoretical and experimental

work.

Immediately following the discovery of superconductivity in CaC6 and YbC6 a novel

pairing mechanism involving excitons and acoustic plasmons was proposed as expla-

nation by Csanyi [53]. This was suggested due to an empirical observation that super-

conductivity coincides with electronic occupation of the interlayer band in GICs. This

explanation was subsequently criticised in a paper by Mazin [114] in which a more con-

ventional picture was proposed of Cooper pairing via electron-phonon coupling. Based

on the BCS isotope effect the different electron-phonon coupling contributions were pre-

dicted as 85 % from coupling to intercalant phonons and 15 % from coupling to graphitic

phonons.
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DFT calculations by Calandra proposed to make a complete description of the electron-

phonon coupling mechanism in CaC6 [10]. This was done by calculating electronic

structure and phonon structure as well as electron-phonon coupling constants for Ca

and graphitic phonons. Their findings were contrary to those of Mazin in that the

electron-phonon coupling contributions were calculated to be approximately equal be-

tween Ca and graphitic phonons with αCa = 0.24 and αgraphitic = 0.26 (summing to

the BCS value of 0.5). They concluded that the primary electron-phonon coupling re-

sults from the Ca-derived part of the Fermi surface interacting with out-of-plane graphitic

phonons and in-plane Ca phonons, and estimated the total electron-phonon coupling

constant λel−ph = 0.83. Similar electronic and phonon structures were subsequently

used in another theoretical work which described well the experimentally observed in-

crease in TC with pressure [115].

The first measurements of the Ca isotope effect in CaC6 were made by Hinks [116],

who found a significant effect suggesting that Ca phonons are heavily involved in the

superconducting mechanism. The Ca isotope effect was found to be 0.53, greater than

the BCS value of 0.5. Given this result the natural conclusion is that if the superconduc-

tivity is BCS-like there must be virtually no electron-phonon coupling with the graphitic

phonons, contrary to the DFT picture. Other explanations include potential magnetic

sample impurities; or that the total isotope effect is significantly greater than 0.5 as is

the case for some high temperature superconductors [117]. The latter of these explana-

tions is supported by tunneling measurements [118] which find a large superconducting

gap of 2.3meV which corresponds to a value of 2∆SC

kBTC
∼ 4.6, putting CaC6 well into

the strong-coupling regime. However, this value is disputed by scanning tunneling mi-

croscopy (STM) measurements which find a gap of only 1.6meV [20].

Recent work by Yang [119] has resolved theπ∗ and interlayer bands in CaC6 with new

clarity and elaborated upon the nature of the coupling underlying superconductivity.

ARPES measurements found that a superconducting gap opens on both the π∗ and

interlayer bands and that the π∗−interlayer interaction contributes > 50 % to the total

electron-phonon coupling strength. Additionally, Yang et al found evidence of coupling

between the Cz phonon modes and both the π∗ and interlayer bands, but no interaction

between the Cxy modes and the interlayer band, in agreement with [10, 18]. Caxy

modes could not be resolved.

The first measurement of the heat capacity of the superconducting phase of CaC6 was

made by Kim in 2006 [17]. The samples tested, created using an HOPG base inter-

calated by the Li-Ca alloy method [44], were estimated to contain approximately 5 %

impurities but the superconducting anomaly was still clearly observed. Measurements
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Figure 3.11: Temperature dependence of ∆CP

T = CP (H=0)
T − CP (H=10 kOe)

T for CaC6.
The red solid line is the best fit according to a scaled isotropic s-wave BCS model. Inset:
HC2(T ) forH ‖ c estimated from heat capacity (filled squares) and susceptibility (open
circles) measurements. The blue dashed line demonstrates the WHH prediction and the
red solid line is a linear fit for the low magnetic field data (H < 1 kOe). Figure adapted
from [17].

in the normal state found a Debye temperature of 593K. Measurements of the super-

conducting anomaly are shown in figure 3.11 as ∆C
T = (Cs−Cn)

T , the heat capacity

difference between the superconducting and normal states. Applying a scaled isotropic

s-wave fit the heat capacity jump at TC was found to be ∆C
γTC

= 1.432, close to the weak

limit BCS value of 1.426. Measurements of TC(H ‖ c) found a linear dependence (fig-

ure 3.11 inset) characteristic of layered superconductors and HC2 = 2.48 kOe. Linear

behaviour of the Sommerfeld constant γ(H) at low fields was interpreted as being con-

sistent with an isotropic gap, while the exponential temperature dependence of Ces
showed the absence of gap nodes. The electron-phonon coupling constant was es-

timated at λel−ph = 0.70, in reasonable agreement with the prediction of Calandra.

Taken together this suggests that CaC6 has a fully gapped, isotropic superconducting

order parameter and fits within the intermediate coupling BCS approach.

A 2007 paper entitled ’Unresolved problems in superconductivity of CaC6’ [19] clearly

laid out the findings, agreements and contradictions outlined above. With respect to

the heat capacity a significant difference was noted between experimental data and

the values calculated using the electronic and vibrational structures of Boeri [115]. As

shown in figure 3.12 both the magnitude of the superconducting heat capacity anomaly
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Figure 3.12: Deviation of the calculated (Boeri [18]) strong-coupling heat capacity from
experimental results (Kim [17]) for CaC6. Figure taken from [19].

as predicted by Boeri and its temperature dependence differ markedly from experiment.

Two possible explanations appear for the disagreement. Firstly, sample impurities noted

by Kim could play a role, meaning a confirmation of Kim’s findings is desirable in order to

discern whether the inconsistency is on the side of the experimental work. Secondly, the

theoretical predictions may be inaccurate because the model assumes an isotropic su-

perconducting gap, whereas the gap could be to some degree anisotropic as suggested

by ARPES measurements which show anisotropic coupling of the graphitic Fermi sur-

face and phonons [120]. Indeed the fit to the Kim data does show more curvature than

is evident in the data implying a possible lack of suitability of the isotropic s-wave BCS

model.

Work by Sanna [21] has attempted to resolve the problem of the heat capacity disagree-

ment by performing calculations assuming a ’moderately anisotropic gap’ rather than an

isotropic one. This approach, while contradicting the linear γ(H) observed by Kim, does

improve agreement with the experimentally found ∆C
T , though the detailed temperature

dependence remains poorly described (left panel of figure 3.13). Sanna also used this

model to predict a corroborating superconducting gap shape as measured by scanning

tunnelling spectroscopy (STS) but no better agreement is achieved for the anisotropic

case than for the isotropic (right panel of figure 3.13), leaving the question of the degree

of gap anisotropy unresolved.

In addition to the theoretical and experimental work done on CaC6 other alkali earth-

metal GICs have been tested to provide a better picture of the field as a whole. In
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Figure 3.13: Left: Comparison of the reduced heat capacity of CaC6 as measured
by Kim [17] to isotropic and moderately anisotropic gap models. Right: Experimental
normalized conductance [20] compared to isotropic and anisotropic gap predictions.
Figure adapted from [21].

2007 measurements of the magnetisation and heat capacity of SrC6 showed it to su-

perconduct with TC = 1.65K [22], showing order of magnitude agreement with the

Calandra DFT predicted value of TC = 3.1K [11]. ∆C was found to be less than

the BCS value close to TC and greater than BCS at lower temperatures (figure 3.14)

indicating an anisotropic gap, a conclusion supported by anisotropy in the upper critical

field (although ∆C
γTC

is calculated confusion arises in the paper as to its value). This con-

clusion was extended to suggest that gap anisotropy in CaC6 is greater than originally

suggested as well as being greater than in SrC6, lending support to the case for the

importance of investigations into an anisotropic gap in CaC6.

In this work fresh measurements of the superconducting heat capacity anomaly of CaC6

are presented such that previous measurements of its magnitude and temperature de-

pendence can be verified and compared with theoretical models. Furthermore this and

previous data is analysed in the context of the recent finding of a CDW state at 78K

(detailed in section 3.3.3).

3.3.2 Prediction of Superconductivity in BaC6

Attempts to further understand the superconducting mechanism in CaC6 have been

aided by studying the relationship between different physical parameters and supercon-

ductivity. Figure 3.15 shows that the graphitic interlayer separation dc correlates well

with TC , showing an exponential-like decrease of TC with increasing interlayer separa-

tion across a number of GICs. This observation is also consistent with the measured

increase of TC with increasing pressure, a process which decreases interlayer sepa-
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Figure 3.14: Temperature dependence of ∆CP

T = CP (H=0)
T − CP (H=500Oe)

T for SrC6.
The red solid line is the best fit according to a scaled isotropic s-wave BCS model. The
blue dashed line represents the BCS curve. Figure taken from [22].

ration, in CaC6 [115] and a smaller effect in YbC6 [121]. The mechanism for this is

suggested to be as follows: a decrease in the interlayer spacing promotes an inter-

band interaction between the graphitic π and interlayer parts of the Fermi surface which

intersect, which increases the amount of electron-phonon coupling possible [22, 18].

The emprical relationship between TC and dc, and application of the rigid band model

lead Csanyi to suggest BaC6 as a possible superconductor in his 2005 paper. Although

contradicting Csanyi’s proposed coupling mechanism, Calandra also suggested BaC6

to be superconducting, predicting a TC of 0.23K [11].

Recently several experiments have been performed on samples of BaC6 with the aim of

comparing the superconducting TC , if found, with the predicted value. Each experiment

has measured the temperature dependence of the magnetic susceptibility of mm-sized

samples of vapour-phase, Madagascan natural graphite-based BaC6. To date no mea-

surements of the heat capacity of BaC6 have been published.

In 2007 Kim found no signature of superconductivity in a BaC6 sample down to 300mK

[22], and in 2008 Nakamae extended that conclusion down to 80mK [24]. Figure 3.16

shows the field-cooled magnetisation results of Nakamae at low fields, with no signs

of the diamagnetic transition characteristic of superconductivity. In 2010 Heguri per-

formed the same measurement still lower in temperature and found no superconducting
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Figure 3.15: TC as a function of interlayer spacing for CaC6, YbC6, SrC6, BaC6, KC8,
RbC8 and CsC8. For CaC6 TC at a pressure of 8GPa is also plotted in grey. An upper
limit for BaC6 of TC = 0.3K is labelled with an arrow [22], although this upper limit has
been subsequently superseded (now 0.06K [23]). Figure taken from [22].

signature down to 60mK [23].

Two possible explanations arise for this apparent disagreement between the theoretical

and experimental results. The first is based on the findings of [9] showing the DFT un-

derestimation of the BaC6 low energy phonons suggests that the predicted TC may be

erroneous. If this is the case BaC6 may have a significantly reduced TC , or it may not

be superconducting at all. The second is based on the complexity of the cryogenic set-

up required for achieving sub-300mK temperatures with respect to sample reactivity

and thermalisation. To meet these constraints the Nakamae experiment attached the

BaC6 sample with Apiezon H grease (a high temperature grease intended for use above

−10 ◦C) to the inside of a quartz capsule which was sealed under a weak helium pres-

sure. This capsule was thermally connected to the cold head-thermometer assembly by

copper whiskers wrapped around the capsule and fixed with a small amount of silicon-

based grease. Given the extremely low temperatures, the number of thermal bound-

aries and the low thermal conductivity of the quartz capsule at these temperatures, it

is reasonable to ask whether complete thermalisation was achieved - i.e. whether the

temperatures relayed from the thermometer attached to the cryostat cold head were the

same as those at the sample. For the results of Heguri it is not possible to assess the

experimental setup as no details are given.
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Figure 3.16: Field-cooled magnetisation M as a function of temperature at constant
applied magnetic fields indicated in the legend. No superconducting transition is seen
at any field. Figure taken from [24].

The above outlined disagreement between the theoretical predictions and experimental

results requires further experimental work for several reasons: (i) BaC6 has been pre-

dicted as superconducting by models which have described very similar GICs well but

to date experimental studies have found no evidence of this; (ii) to this point only the

magnetisation of BaC6 has been studied for signs of superconductivity and other sen-

sitive methods, such as heat capacity measurement, could well provide further detail;

(iii) given the uncertainties discussed above about some of the experimental techniques

employed to this point it seems sensible to perform verifying measurements. This thesis

aims to provide these experiments, and thus clarify the situation with respect to any

superconducting nature in BaC6.

3.3.3 Evidence of a Charge Density Wave in CaC6

Recently, STM and STS measurements have observed a CDW state in CaC6. These

experiments were performed by K.C. Rahnejat at University College London. The paper

detailing these findings and supporting work is currently in review. It is referenced here

as [25].

The observation of a CDW state in CaC6 was unexpected but is not entirely unsurprising
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Figure 3.17: Left: Constant current STM image of a CaC6 surface recorded at 78K,
+400mV showing atomic resolution with a superimposed one-dimensional, 1.125nm
period stripe. Right: Conductance spectroscopy showing the CDW gap with 2∆CDW ≈
475meV . Figures provided by K.C. Rahnejat, University College London [25].

given that other similarly layered compounds exhibit both superconducting and CDW

states, including the transition-metal dichalcogenides [122, 123, 45], metal-containing

organic compounds [124] and cuprate high-temperature superconductors [125]. The

recent work observed a modulation across CaC6 surfaces at 78K, in addition to an

associated gap of 2∆CDW ≈ 475meV in the electronic DOS at the Fermi level. The

left panel of figure 3.17 shows an STM scan of a CaC6 surface showing this modulation,

identified in the work as a 1D CDW. The right panel shows STS measurements of the

CDW gap.

STM imaging measured the hexagonal graphite lattice in CaC6 as having a0 = 2.50 Å,

and the Ca superlattice 3a0 = 4.33 Å, as expected. The periodicity of the CDW was

measured as 1.125nm, identifying it as commensurate with both the graphite and Ca

lattices. STM imaging further showed a transverse distortion of 0.6 Å of the Ca lat-

tice conincident with the stripe but no measurable distortion of the graphite lattice. It

was also noted that a graphene terminated surface was required for the CDW to be im-

aged. Together these observations imply that the CDW involves only the electrons in the

graphene planes with no distortion of the carbon atoms, while the Ca atoms between

planes are displaced.

The CDW gap was measured by STS current imaging tunneling spectroscopy (CITS)

which yields a position-dependent conductivity map of the surface. The Fourier trans-

form of this map was used to deconvolve the contributions to the gap of the graphite
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and Ca lattices and the stripe, and found strong association of the gap with the stripe.

The large gap size of 2∆CDW ≈ 475meV indicates a significant modification of the

Fermi surface, although zero bias conductivity is non-zero showing that CaC6 remains

metallic in the CDW state.

As detailed, the results of [25] provide strong evidence for the existence of a CDW

state in CaC6. Such an observation is of particular interest in CaC6 as a supercon-

ductor because the relationship between superconductivity and CDWs is not yet fully

understood. To date, no measurements of heat capacity of CaC6 have been published

above ∼ 20K, as all interest to this point has focused on the superconducting transi-

tion at 11.5K. The STM/STS measurements of [25] showing the CDW were made at

78K, thus the CDW onset temperature must be above this point. Therefore, in order

to characterise the CaC6 CDW high resolution measurements of properties sensitive to

CDW formation, such as heat capacity, are required. This thesis aims to provide these

measurements.

3.4 Experimental Details

3.4.1 Sample Creation by Intercalation

The intercalated graphite samples measured in this thesis were prepared by Dr Chris

Howard of University College London using previously published methods. Therefore,

only brief descriptions of the fabrication methods are presented, along with basic sample

characterisation used to assess the sample quality.

Table 3.3 presents an overview of the intercalation methods used to form the CaC6,

SrC6 and BaC6 samples tested here. Representative x-ray diffraction patterns of each

material are shown in figure 3.18. These patterns were used to assess sample quality

by identifying the phases present in each sample and calculating peak height ratios of

the desired phase to any other phases present. The results of this diffraction study are

shown in table 3.4. In CaC6 and BaC6 samples quality is seen to be high with purity

percentages of 100 % in both cases (i.e. no other phases were detected). In scans

of SrC6 it was also the case that no undesired phases were detected, however the

small sample size and contribution from the Kapton tape securing the sample to the

diffractometer combined to give a background with variation approximately 5 % of the

[004] peak height, meaning sample purity can be stated only as > 95 %.



SUPERCONDUCTIVITY AND CHARGE DENSITY WAVES IN MC6... 72

Material Method Temp
(°C)

Press.
(mbar)

Time

CaC6 Li:Ca alloy in 3:1 ratio &
outgassed HOPG graphite [44]

350 ∼ 1x10−6 10 days

SrC6 One-zone vapour transport
with excess Sr metal &
outgassed Madagascan

natural graphite [65]

465 ∼ 1x10−6 4 weeks

BaC6 One-zone vapour transport
with excess Ba metal &
outgassed Madagascan

natural graphite

500 ∼ 1x10−6 4 weeks

Table 3.3: Overview of the intercalation methods used.

GIC Graphite base Appearance Purity from XRD (%)

CaC6 HOPG Silvery; metallic 100
SrC6 Madagascan

natural
graphite

Silvery; metallic & 95

BaC6 Madagascan
natural
graphite

Silvery; metallic 100

Table 3.4: GIC sample quality assessment from x-ray diffraction patterns shown in figure
3.18.
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Figure 3.18: 2Θ x-ray diffraction patterns for samples of CaC6, and SrC6 and BaC6

from the same batches as those tested below. Sample purities as detailed in table
3.4 calculated by ratios of peak heights taking local backgrounds. SrC6 background
variation is due to small sample size and Kapton tape used to secure the sample in the
diffractometer.
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Figure 3.19: Schematic representation of the sample environment in the Quantum De-
sign PPMS. Figures taken from the PPMS documentation supplied by Quantum Design.

3.4.2 Heat Capacity Measurement Setup

Measurements of the heat capacity of samples presented in this thesis were performed

using Quantum Design Physical Properties Measurement Systems (PPMS) at Univer-

sity College London and Warwick University. With the standard probe (figure 3.19) heat

capacity measurements were performed from a maximum of 300K down to 2K. Mea-

surements made between 2K and 350mK utilised a Quantum Design low temperature
3He probe. The systems are fitted with superconducting magnets capable of producing

fields above HC2 in all cases, directed along the graphitic c-axis (H ‖ c).

The measurement technique employed by the PPMS is the two-tau relaxation method

[126, and PPMS documentation available from Quantum Design]. Each measurement

cycle consists of a heating period followed by a cooling period during which the entire
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temperature response of the sample platform is fitted to a model that accounts for both

the thermal relaxation of the sample platform and the sample itself.

The measurement of the heat capacity of each sample consists of two stages. In the

first stage the heat capacity of the sample holder and a minute amount of Apiezon N

grease on the platform is measured over the required temperature range. This is the

’addenda’ measurement. The sample is then secured to the grease on the platform and

the measurement run again over the same temperature range to give a ’total’ measure-

ment. The heat capacity of the sample is then calculated by subtracting the addenda

from the total.

The magnitude of the uncertainty in each measurement is dependent upon the mass

of the sample through the relative sizes of the sample and addenda contributions. This

is an important effect for some of the samples measured here. Samples of several

milligrams of CaC6 can be readily formed using the Li:Ca alloy method with HOPG

[44] but sample masses are necessarily smaller (≤ 0.5mg) for Madagascan natural

graphite-based SrC6 and BaC6. As such the absolute heat capacity values presented

here are accurate to within ±2 %/5 %/6 % for 5 ≤ T ≤ 300K and ±3 %/14 %/6 %

for T ≤ 5K for CaC6/SrC6/BaC6, respectively.

A well recognised difficulty in the interpretation of heat capacity measurements at high

temperatures is the sizable background and correspondingly large noise in the data

[15]. Given the observation of the CDW in CaC6 at 78K (i.e. TCDW & 78K) and the

possible small feature size, this was foreseen as an issue. In order to reduce this noise

to a minimum and yield a high resolution measurement the heat capacity was recorded

in steps of 0.5K over the entire temperature range with two averaged datapoints per

temperature setpoint. As heat capacity is a slow measurement at high temperatures

a single H = 0Oe run from 2K to 300K took over a week - given this timescale

the corresponding addenda measurement was recorded with high temperature steps of

10K.

Due to the air and moisture reactivity of alkali earth-metal GICs significant care was

taken in preparing samples for the heat capacity measurements. Samples were pre-

pared for and loaded into the PPMS cryostat as follows: In an argon filled glovebox (max

O2 < 0.1 ppm, H2O< 0.1 ppm) samples were cleaved, cut and shaved flat with razor

blades under a binocular microscope. Resulting samples were a maximum of ∼ 3mm

x∼ 3mm, smaller than the heat capacity sample platform, and had clean, flat surfaces

to ensure good thermal contact. The samples were sealed in an airtight travel case

for transport to the PPMS and, subsequently, opened inside a helium filled glovebag
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containing a binocular microscope and the puck mounting apparatus. Included in the

travel case was a ∼ 5mm sized piece of Li metal which was used as a rough indicator

of the purity of the transport and glovebag environment. The Li did not lose its metallic

shine, indicating that oxidation of the samples was unlikely to have taken place. Each

sample was seated on a minute amount of Apiezon N vacuum grease on the platform.

The puck cap was attached and the assembly then loaded onto the end of the required

probe. For CaC6 samples the probe was then removed from the glovebag and inserted

rapidly into the bore of the cryostat where the sample space was quickly purged and

evacuated several times. The total exposure to air was less than 5 seconds from the

beginning to the end of this process. For the more reactive SrC6 and BaC6 samples the

probe end was sealed in a helium atmosphere during transfer from the glovebag to the

PPMS. This atmosphere was broken only in the flowing 4He gas of the cryostat and the

probe loaded immediately.

3.5 Results

3.5.1 CaC6 - Heat Capacity Measurements

Figure 3.20 shows a plot of the heat capacity of a CaC6 sample as a function of temper-

ature between 300K and 2K. The overall shape of theC(T ) curve is that described by

the Debye model, with a steep low temperature rise tending to a high temperature con-

stant value. The inset in figure 3.20 of the same heat capacity measurement between

12K and 2K clearly shows the superconducting transition with onset at TC = 11.5K

(centre at 11.3K).

Figure 3.21 shows measurements of the heat capacity of a CaC6 sample at low temper-

atures as a function of applied magnetic field, showing the zero field superconducting

transition at 11.5K and its suppression in applied fields up to 10 kOe.
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Figure 3.20: Heat capacity as a function of temperature for CaC6 from 300K to 2K at
zero magnetic field. Error bars are smaller than datapoints at all temperatures. Inset:
The superconducting transition onset is at 11.5K.

Figure 3.21: Heat capacity of CaC6 as a function of temperature between 12.5K and
2K showing the superconducting transition in zero magnetic field and its suppression in
applied fields up to 10 kOe. Error bars are smaller than datapoints at all temperatures.
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Figure 3.22: Heat capacity as a function of temperature for SrC6 between 75K and
2K in zero magnetic field.

Figure 3.23: Heat capacity as a function of temperature for SrC6 from 10K to 0.386K
in zero magnetic field.
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3.5.2 SrC6 - Heat Capacity Measurements

Figure 3.22 shows a plot of the heat capacity of an SrC6 sample as a function of tem-

perature between 75K and 2K showing similar behaviour to CaC6, with an additional

slight hump seen at ∼ 40K.

Figure 3.23 shows a plot of the low temperature heat capacity of an SrC6 sample be-

tween 14K and 0.386K. Unexpectedly the superconducting anomaly previously ob-

served at TC = 1.65K [22] is not seen.

3.5.3 BaC6 - Heat Capacity Measurements

Figure 3.24 shows a plot of the high temperature heat capacity of a BaC6 sample as

a function of temperature between 150K and 2K showing similar behaviour to CaC6

and SrC6.

Figure 3.25 shows a plot of the low temperature heat capacity of a BaC6 sample be-

tween 10K and 0.386K.

Figure 3.24: Heat capacity as a function of temperature for BaC6 from 150K to 2K in
zero magnetic field.
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Figure 3.25: Heat capacity as a function of temperature for BaC6 from 10K to 0.386K
in zero magnetic field.

3.6 Discussion

3.6.1 Low Temperature Heat Capacity of MC6 GICs

In the low temperature limit (T � ΘD) the Debye heat capacity relation (equation 3.3)

is expressed as:

C = γT + βT 3

Previous measurements of the low temperature heat capacity of GICs have shown devi-

ation from this Debye description, withC(T ) showing slightly steeper curvature. Studies

of KC8, RbC8 [127] and CsC8 [128] showed that this deviation was due to the contri-

bution of a dispersionless optical phonon mode of the intercalant and could be fitted

using an Einstein mode. (Recent studies of CaC6 [17] and SrC6 [22] fitted instead an

empirical T 5 term but still employed the same explanation.) From [127] this additional

contribution to the heat capacity CInt is:

CInt = A

(
δ

T

)2

exp

(
−δ
T

)
(3.18)
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Figure 3.26: Low temperature heat capacities of CaC6, SrC6 and BaC6 as a function
of temperature. The red lines are fits to the function described by equation 3.19 with
parameters given in table 3.5.

Material γ
(mJ/K2/mol)

β
(mJ/K4/mol)

ΘD

(K)
δ

(K)
A

CaC6 7.12± 0.06 0.1943±0.0009 412± 2 − −
SrC6 6.4± 0.2 0.211± 0.002 402± 4 45± 1 0.054±0.007
BaC6 4.2± 0.4 0.54± 0.01 293± 5 24± 4 0.004±0.002

Table 3.5: Table of fit coefficients for curve shown in figure 3.26. ΘD value calculated
from β using equation 3.5.

where A =
(
N
NA

)
f is a coefficient relating to the degree of participation ( NNA

) and

dimensionality (f ) of the vibration; δ is the characteristic temperature. Following on

from these studies the low temperature heat capacities of CaC6, SrC6 and BaC6 have

been interpreted by fitting the following function:

C = γT + βT 3 +A

(
δ

T

)2

exp

(
−δ
T

)
(3.19)

Figure 3.26 shows the resulting curves and table 3.5 details the fit coefficients. Each

of γ, β, δ and A is discussed in turn in the following section with comparison made to

previously measured values where available.

The values of γ found in this work (presented in table 3.5) are seen to decrease from
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CaC6 to SrC6 to BaC6. Table 3.6 shows that the values obtained for CaC6 and SrC6

are in agreement with previous measurements, while BaC6 has not previously been

measured.

Recent Raman scattering work on alkali earth-metal GICs [68] found softening of the

Cz phonons with decreasing interlayer distance dc. This was suggested as due to

increased filling of the π∗−band with decreasing dc, as π∗ is an antibonding band

whose occupation acts to destabilise the in-plane bonds. γ is proportional to the DOS

at the Fermi level (equation 3.8), which is positioned in the π∗−band in donor-GICs

(figure 2.17). Therefore, the observation made here of decreasing γ from CaC6 to SrC6

to BaC6 (i.e. with increasing dc) supports the argument and findings of the previous

work.

The obtained values of γ can be used to calculate an estimate for the electron-phonon

coupling strength λel−ph through its relationship with the electronic DOS at the Fermi

level. This relationship can be expressed as (equation 3.8):

(1 + λel−ph) =
0.212γ

g(EF )

where λel−ph is the electron-phonon coupling constant; γ is the Sommerfeld coef-

ficient (mJ/K2/gat); g(EF ) is the electronic DOS at the Fermi level (states/eV/

atom/spin).

Results of this calculation are presented in table 3.7 alongside the predicted values of

Boeri [18]. Agreement between the experimental and calculated values of λel−ph is

good for CaC6 and SrC6. However, in the case of BaC6 the experimental λel−ph is

found to be substantially smaller than the calculated value. This discrepancy has been

explained by recent experimental work [9] which has given cause to doubt the predicted

GIC γ
(mJ/K2/mol)

g(EF )
(states/eV/C spin)

a

Experimental
λel−ph

Calculated
λel−ph

a

CaC6 7.12 0.13 0.7 0.83
SrC6 6.4 0.14 0.4 0.54
BaC6 4.2 0.12 0.1 0.38

Table 3.7: Values of the electron-phonon coupling λel−ph as estimated from the experi-
mental Sommerfeld constant γ and theoretical electronic DOS at the Fermi level g(EF ).
a Data taken from [11].
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Figure 3.27: Debye temperature ΘD as a function of molecular mass for (red) CaC6,
SrC6 and BaC6 (left to right) as measured here. Red error bars are experimental un-
certainty. Other points (black) are average values from other studies as detailed in table
3.6. Black error bars demonstrate the upper and lower limits of previously measured
values.

value of λel−ph and, therefore, of TC in BaC6; the work measured the low energy

phonons of CaC6 and BaC6 by inelastic x-ray scattering as a function of temperature.

In the case of superconducting CaC6 the phonons observed showed reasonable agree-

ment with those predicted by theory. However, for BaC6 the phonon energies were

observed at significantly higher (up to 20 %) energies than predicted signifying that the

theoretical phonon model for BaC6 is incorrect. The resulting overestimate of λel−ph
produces estimates of TC in BaC6 which are also likely to overestimate, explaining the

absence of superconductivity in previous measurements at the predicted temperature.

The fitted values of β given in table 3.5 yield Debye temperatures which decrease with

increasing molecular mass from CaC6 to SrC6 to BaC6 as expected, at a rate of approx-

imately −1.2Ku−1. Figure 3.27 shows this trend clearly in a plot of ΘD as a function

of molecular mass (red points). Values of ΘD found by previous studies are also shown

in the figure (black points) and detailed in table 3.6.

Overall the values measured here of ΘD are in good agreement with measurements for

other alkali-metal GICs as shown in table 3.6, fitting the trend of decreasing ΘD with

increasing molecular mass. However, ΘD for CaC6 as measured here is noticably lower

than the previously measured value. On the face of it this is a perplexing outcome given

that the graphite-base in both cases is HOPG and the preparation procedures are very
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Group I GIC δ (K) Group II GIC δ (K)

KC8 − [128] CaC6 −
RbC8 71 [127] SrC6 45
CsC8 48 [128] BaC6 24

Table 3.8: Values of δ for group I and group II GICs.

similar. However, it was noted in the previous work that tested samples contained∼ 5 %

impurities, likely to be Li inclusions arising from the Li-Ca alloy used in intercalation. If

these inclusions formed areas of LiC6 within test samples the higher energy of the LiC6

phonons would likely increase the measured ΘD. An alternative possibility is that the

prior value is affected by a reduced value of β caused by the additional fitting of the

empirical T 5 factor in the heat capacity.

The parameter δ is the characteristic temperature of the optical phonon mode of the

intercalant, as described by Suganuma [127], which provides an additional heat capac-

ity CInt in some GICs. It is dependent upon the type of intercalant atom rather than

the graphite layers. In the case of CsC8 δ = 48K and for RbC8 δ = 71K. For KC8

the low temperature Debye model is followed well indicating a still higher value of δ and

clarifying the trend of increasing δ with decreasing atomic mass. LiC6 as a very light

GIC also shows no low temperature CInt [132].

The values of δ obtained here for the group II GICs CaC6, SrC6 and BaC6 as presented

in table 3.5 are repeated in table 3.8 alongside those of the group I GICs KC8, RbC8

and CsC8 for comparison.

Table 3.8 shows that the trend of decreasing δ with increasing molecular mass shown

by the group I GICs is also followed by the group II GICs as measured here. This

effect is clear both within and across periods. As with KC8, CaC6 shows no appreciable

contribution from the mode to the low temperature heat capacity because of its elevated

value of δ. The values of δ = 45K and 24K equate to characteristic energies of

4meV and 2meV for SrC6 and BaC6, respectively. Comparison to the calculated

phonon dispersion shown earlier for CaC6 in figure 2.14 shows approximate agreement

with the lowest energy modes calculated as resulting from intercalant motion.

The fitted values of the parameter A are given in table 3.5. A =
(
N
NA

)
f where f

describes the number of degrees of freedom of the vibration and N
NA

describes the

proportion of atoms which participate. Clearly it is not possible here to obtain values for

both f and N
NA

, however, assuming f takes a similar value to that suggested in [127]
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of f ∼ 2 (i.e. intercalant atoms vibrate parallel to the ab-plane but are hindered along

the c-axis) values of N
NA

of ∼ 2.5% and ∼ 0.2% are obtained for SrC6 and BaC6,

respectively. These are small proportions of the intercalant atoms in each GIC and

suggest that the observed modes correspond to areas of the tested samples which have

a less complete intercalation. This in turn suggests that these modes are not intrinsic to

GICs with the stoichiometry MC6 due to their higher intercalant concentrations. In both

cases this finding of small poorly intercalated volume is consistent with the assessment

from x-ray diffraction of sample purity.

3.6.2 Very Low Temperature Effects in SrC6 and BaC6

Measurements of the heat capacity of SrC6 and BaC6 to temperatures below 2K have

shown an unexpected and previously unobserved low temperature feature (CaC6 was

not measured). This is seen clearly in figures 3.28 and 3.29 where heat capacity is

plotted as C
T as a function of T 2, with fits described below - plotted in this way a heat

capacity with simple electronic and lattice components is linear, with slope β and y-

intercept γ. The observed shape is not that of a superconducting transition and, indeed,

it obscures the region in which the superconducting anomaly already proven for SrC6

would be expected (T 2
C = 2.72K2 [22]). In SrC6 the peak arises below ∼ 6K2 with a

center at ∼ 0.2K2, while for BaC6 it arises below ∼ 10K2 with a center at ∼ 0.3K2.

The observed low temperature rise in the heat capacity is clearly common to both ma-

terials, and is suggested by the lowest temperature points in the BaC6 plot to be an

asymmetric peak shape. This additional contribution appears superimposed on the

expected low temperature linear Debye behaviour (previously fitted additional modes

become evident only above 25K2 and have been excluded from these plots for clarity).

The shape of the additional contribution is well described by the equation of a Schottky

anomaly [73] as:

CSch = R

(
δ

kBT

)2
g0

g1
exp

(
δ

kBT

)[
1 +

(
g0

g1

)
exp

(
δ

kBT

)]−2

(3.20)

where R is the molar gas constant; δ is the characteristic energy; g0g1 is the degeneracy

ratio.

The red lines shown in figures 3.28 and 3.29 are fits to the equation:

C = γT + βT 3 + CSch (3.21)
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Figure 3.28: Very low temperature measurements of the heat capacity of SrC6 plotted
as C

T as a function of T 2 showing a Schottky-like anomaly below 6K2. The red line is
a fit to equation 3.21 with parameters given in table 3.9.

Figure 3.29: Very low temperature measurements of the heat capacity of BaC6 plotted
as C

T as a function of T 2 showing a Schottky-like anomaly below 10K2. The red line is
a fit to equation 3.21 with parameters given in table 3.9.
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GIC γ
(mJ/K2/mol)

β(J/K4/mol) δ(meV ) g0
g1

SrC6 5.6± 0.1 3.46± 0.06x10−4 0.123± 0.006 1370± 50
BaC6 14± 1 4.6± 0.5x10−4 0.15± 0.02 340± 50

Table 3.9: Table of coefficients to fits to equation 3.21 for curves shown in figures 3.28
and 3.29.

The fit parameters are given in table 3.9. The fitted values of γ and β for SrC6 are

in approximate agreement with those found at higher temperatures in section 3.6.1,

while for BaC6 the fitted values differ substantially. This disagreement is thought due

to the low mass of the BaC6 sample and the relatively few data points available. In the

context of a Schottky model the fitted values of g0g1 for both compounds at 1370 ± 50

and 340 ± 50 are unusually large and suggest that strict application of this model is

inappropriate. Instead other approaches are investigated.

Given the similarity of the features exhibited in terms of onset temperature and temper-

ature dependence the origin of this effect seems likely to be common between SrC6

and BaC6. As this is the first published measurement of the heat capacity of BaC6 no

direct comparison can be made against other results, while one previous measurement

of SrC6 has been made [22], but it did not show the low temperature feature measured

here.

It is interesting to compare the heat capacity anomalies observed above with similar

features seen in poorly graphitised and defective graphites. In these systems a series

of heat capacity anomalies are exhibited which are remarkably similar to those shown

in figures 3.28 and 3.29 - a review by Mrozowski [26] documents these features in

a variety of carbons and graphites of varying degrees of graphitisation. Figure 3.30

shows one such heat capacity anomaly in a polycrystalline graphite. The features are

explained to arise in these systems as the result of the antiferromagnetic ordering of

electron spins localised at defect centers, with the defect source and type being largely

unimportant with respect to the exhibited behaviour. In the present systems of SrC6

and BaC6 it can be postulated that the defect centers which allow this behaviour to be

exhibited are present in interior areas of the samples which remain unintercalated, or

are perhaps due to the damage caused to the host graphite by the intercalation process

itself. It has previously been suggested that the microstructure of the host graphite has

important consequences for the measurement of materials properties [9] and the line

of reasoning given here supports this suggestion in that the sole SrC6 sample whose
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Figure 3.30: Heat capacity of an Airco-Speer chlorine-purified polycrystalline graphite
(AS) neutron irradiated to various doses. Figure taken from [26]

heat capacity has been measured at these temperatures had an HOPG base and did

not exhibit the effects seen here in natural flake based samples. A similar comparison

cannot be made in the case of BaC6 as there are no previously published heat capacity

measurements. However, it is worth noting that previous measurements of the magneti-

sation of Madagascan natural graphite-based BaC6 showed only a paramagnetic signal

at temperatures below 1K with no additional features [24].

In order to rule out measurement problems the two types of artefact previously observed

in measurements of the heat capacity in the very low temperature range are described

below (documentation of these effects using the present system is available from Quan-

tum Design). Firstly, below ∼ 10K it is possible for helium to condense onto the sam-

ple, the platform and its suspension wires resulting in a broad peak in the heat capacity

in the range 3− 5K. Given the linear dependence evident over 9− 25K2 range in fig-



SUPERCONDUCTIVITY AND CHARGE DENSITY WAVES IN MC6... 90

ures 3.28 and 3.29 this effect is seen not to be responsible for the observed behaviour.

Secondly, at temperatures below ∼ 1K, too short a measurement duration with re-

spect to the total time-constant can cause heat capacity to appear to decrease more

rapidly than expected with decreasing temperature, due to increased thermal boundary

resistance at low temperatures. This effect manifests as a dip in C
T as a function of T 2

below 0.5K2 and is therefore not the source of the pronounced rise in C
T as a function

of T 2 below 3− 4K2 in each sample.

This leaves the cause of the observed low temperature effects unclear and in need

of further study. While interesting, in the case of BaC6 it is frustrating that these pre-

viously unobserved anomalies should obscure the low temperature regime and thus

make assessment of the predicted superconducting phase impossible. However, given

the demonstration here of the inaccuracy of the predicted value of λel−ph, the recent

work showing overestimation of the phonon energies and magnetisation studies report-

ing no superconducting phase at the predicted temperature, the issue is perhaps now

resolved regardless.

3.6.3 Charge Density Wave Detection in CaC6

The STM observation of a CDW phase in CaC6 at a temperature of 78K [25] makes

clear that TCDW ≥ 78K. In order to make an estimate of TCDW equation 3.14

relating ∆CDW and TCDW can be used together with analogy with the similar system

of NbSe2.

NbSe2 as a CDW system is a useful comparison for CaC6. Both are hexagonally coor-

dinated, quasi-2D, layered systems exhibiting type-II superconductivity [133] with super-

conducting transitions in the same temperature range and with similar superconducting

gap size. Table 3.10 repeats several important characteristics of NbSe2 with which

comparison to CaC6 is made.

For NbSe2
2∆CDW

kBTCDW
= 23.9. Assuming the same ratio for CaC6 the gap size of

2∆CDW ≈ 475meV yields an estimate of TCDW ∼ 230K. A cursory look at the

measured heat capacity of CaC6 above 78K (figure 3.20) shows no obvious transition-

like shapes, although an extended feature is evident at high temperatures, above ∼
215K.

Interpretation of heat capacity measurements in this 210−300K region is complicated

by the irregular contribution to the total heat capacity of the Apiezon N grease used to
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Figure 3.31: Heat capacity of CaC6 as a function of temperature (black points) from
300K to 2K at zero magnetic field. Red line is a polynomial fit to the data between
50K and 180K extrapolated to 300K for comparison with data.

secure the sample to the platform. This difficulty manifests as variation in the tempera-

ture and magnitude of features due to the grease both across and within studies [137].

In order to make such features clear and avoid anomalous subtraction the high temper-

ature heat capacity is presented in figure 3.31 without the grease contribution removed.

Instead, following the analysis of Kwok [15] an extrapolated polynomial fit to the data

has been subtracted in order to make clear any and all irregular features present in

the CaC6 heat capacity. The fit is shown in figure 3.31 and the data resulting from the

subtraction in figure 3.32.

Figure 3.32 clearly shows that a step-like feature in the zero field and 10 kOe heat

capacity data arising at ∼ 210K and a peak at ∼ 290K are due to the Apiezon N

grease (blue points). These two features are characteristic of the grease as studied

by a number of heat capacity measurements [138, 27, 137], although it is noted that

there is variation in both the temperature of the peak in the range 290− 300K, and its

magnitude. The comparison here is made with 0.25mg of the grease, a good estimate

of the amount used to mount the 5.0mg CaC6 sample.

Other than the grease contribution the zero field CaC6 curve shows a peak centred at

242K with a magnitude 1.4 % of C and a shape approximate to a smeared second-

order transition. The 10 kOe curve shows that the 242K peak is completely sup-

pressed by magnetic field. Work by Graf [98] has shown suppression of a CDW state by
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Figure 3.32: ∆C as a function of temperature from 78K to 300K for CaC6 in zero
magnetic field (black points), in a field of 10 kOe (red points) and 0.25mg of Apiezon N
grease in zero magnetic field (blue points). Apiezon N data taken from [27]. All curves
obtained by subtracting an extrapolated polynomial fitted between 50K and 180K.

magnetic field in a quasi-one-dimensional system but with complete suppression only

achieved at high magnetic fields of 30 − 40T (300 − 400 kOe). It is therefore unlikely

that this feature is a CDW peak given its suppression in an applied field of 1T (10 kOe).

Further measurements will be needed to investigate this feature over a range of tem-

peratures, magnetic fields and using grease with a less intrusive high temperature heat

capacity contribution to discover its cause.

Overall, the above analysis suggests that the CDW transition in CaC6 has not been

observed. Several possible explanations for this conclusion are outlined below:

• The most simple explanation is that the CDW onset temperature is outside of the

temperature range explored i.e. TCDW > 300K. Given the large size of ∆CDW

in CaC6 this is not unreasonable as other CDW systems with large ∆CDW are

known to have correspondingly high TCDW e.g. the rare-earth tritellurides all

have TCDW > 240K with CeTe3 having 2∆CDW ≈ 400meV and TCDW >

450K [139].

• Despite the high resolution of the heat capacity measurements presented here it

is possible that any transition in the temperature range 78−300K is unobserved

because of the magnitude of the background C at these high temperatures. This

would lead to a seemingly unreasonably small value of ∆C for a normal state to
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CDW transition, but as STM measurements have observed the CDW is already

commensurate with the lattice at 78K. It is therefore possible that a smaller,

ICDW to CCDW transition occurs in the temperature range 78 − 300K with the

larger, normal to ICDW transition occuring above 300K. If this were the case

the ICDW-CCDW transition could well be hidden, given their general small size -

e.g in TaS2 the normal to ICDW transition is 22 % of C while the ICDW to CCDW

transition is < 0.1 % of C [14].

• Wang [140] observed that depending on the individual sample and method of

preparation the magnitude of ∆C at the CDW transition and the width ∆T of the

transition vary widely. Again it seems possible that any CDW transition has been

smeared beyond recognition. This hypothesis could be tested by measuring more

crystallographically perfect samples which could well yield a larger, detectable

∆C in future experiments.

• A final possibility is that the CDW observed in [25] is a surface state only i.e. the

bulk of the CaC6 remains normal. In this case the surface CDW’s contribution to

the overall heat capacity would likely be well below the measurable threshold at

all temperatures.

3.6.4 The Nature of Superconductivity in CaC6

The superconducting phase of CaC6 is studied here as a function of both temperature

and magnetic field. The superconducting heat capacity anomaly ∆C has been obtained

by subtracting the normal state (H = 10 kOe > HC2) curve from the superconducting

(H = 0Oe) curve. The results of this subtraction are shown below in figure 3.33 as
∆C
T = Cs−Cn

T as a function of T . For comparison a BCS curve with TC = 11.3K is

shown.

Figure 3.33 shows that the transition temperature, defined as the centre of the transition,

is consistent with previous measurements [44, 17, 141] with TC = 11.3 ± 0.1K. The

electronic component at T = 0 is γ = 6.95 ± 0.03mJ/K2/mol, in line with the

normal state fitted value from figure 3.26. The magnitude of the heat capacity jump
∆C
T = 8.6± 0.1mJ/K2/mol. From this the reduced heat capacity jump is calculated

as ∆C
γTC

= 1.24 ± 0.02, lower than the BCS weak limit value of 1.426. This reduced

value is further discussed below.

Also shown in figure 3.33 is a BCS curve calculated from tabulated values of C
Cen(TC)

[28] using coefficients of TC = 11.3K and Cen(TC) = γTC = 7.12TC mJ/K/mol.
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Figure 3.33: ∆C
T as a function of temperature for CaC6 (blue points) showing the super-

conducting anomaly with TC = 11.3 ± 0.1K at the centre of the transition (onset at
11.5K), ∆C(TC)

TC
= 8.6 ± 0.1mJ/K2/mol, γ = 6.95 ± 0.03mK/K2/mol. Error

bars are smaller than symbols at all temperatures. Also shown is a BCS curve (black
line) calculated from the tabulated values of Mühlschlegel [28] with TC = 11.3K and
Cen(TC) = γTC = 7.12TC mJ/K/mol.

The overall temperature dependence is BCS-like, although at low temperatures (0.2 <
T
TC

< 0.5) ∆C exceeds the BCS curve, while at higher temperatures ∆C is clearly

lower.

As shown earlier in figure 3.21 the superconductivity is suppressed by the application of

a magnetic field - with increasing field TC falls and the transition broadens. Figure 3.34

shows the behaviour of TC with field up to H = 1.5 kOe (above this field the transition

is too smeared to measure accurately). A linear fit has been applied to the data which

predicts HC2(T = 0) = 2.31± 0.02 kOe, in agreement with previous measurements.

This fit is used rather than a WHH fit because there is a clear linear relationship here, a

feature exhibited by many other layered superconductors (e.g. [142, 143, 144]).

The dependence of γ on magnetic field can be used to describe the degree of anisotropy

of the superconducting gap as a plot of γ(H). If γ(H) ∝ H then the gap is isotropic,

whereas if γ(H) ∝ H 1
2 then the gap is strongly anisotropic. The difference between the

isotropic and anisotropic cases is most marked at low fields because above ∼ 0.3HC2

the slope of γ decreases even for isotropically gapped superconductors [145]. Figure

3.35 clearly shows a linear relationship of γ(H) at low fields and a crossover into a

non-linear regime above ∼ 0.3HC2, suggesting an isotropic gap.
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Figure 3.34: HC2(T ) estimated from heat capacity measurements at the CaC6 super-
conducting transition. TC is measured at the mid-point of the transition and is shown
with an error bar corresponding to the transition width. At fields greater than 1.5 kOe
the transition is too heavily smeared to measure. The red line is a linear fit to the data
with H ≤ 1 kOe indicating HC2(T = 0) = 2.31± 0.02 kOe.

From the calculation performed above, the electron-phonon coupling constant was es-

timated at λel−ph = 0.7, in the intermediate coupling regime. Thus, in summary, the

results detailed above show that CaC6 is a BCS-like superconductor in the intermediate-

coupling limit with an isotropic or very slightly anisotropic gap in agreement with previous

heat capacity measurements.

Above it was noted that while the temperature dependence of ∆C
T is clearly BCS-like,

the measured value of ∆C
γTC

is significantly reduced at 1.24 compared to the BCS value

of 1.426. There are two main causes of a reduced ∆C
γTC

: Low coupling strength and

gap anisotropy. If the electron-phonon coupling of a material is lower than that of the

BCS weak-coupling case then ∆C
γTC

will be reduced below 1.426. ∆C
γTC

= 1.24 is a sig-

nificant reduction which implies weak-coupling. However, the electron-phonon coupling

constant has been found in the normal state to be λel−ph = 0.7 which places CaC6

firmly in the intermediate coupling regime and suggests that weak-coupling is not the

cause of the reduced ∆C
γTC

.

Next the possibility that CaC6 is an s-wave BCS-like superconductor but with some de-

gree of gap anisotropy is assessed. Gap anisotropy manifests in heat capacity measure-

ments as a redistribution of ∆C from temperatures close to TC to lower temperatures,
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Figure 3.35: Sommerfeld constant γ as a function of magnetic field at 2K. Note: While
recording the superconducting heat capacity anomaly as a function of magnetic field it
was observed that field history affected the outcome. For fields of 250Oe and 500Oe
the field was applied at 2K and data recorded as the sample warmed through TC . In
all other cases the field was applied with T > TC(H = 0). At temperatures close
to TC(H) no hysteresis effects were seen (this is clear from the linear relationship in
figure 3.34). However, at low temperatures (T < 4K) behaviour for H = 250Oe and
H = 500Oe is erroneous, due to pinning and surface barrier effects. Data points at
fields H = 250Oe and H = 500Oe were omitted from the figure for this reason.
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Figure 3.36: ∆C
T as a function of temperature for CaC6 (blue points). The black line

represents the BCS curve calculated from the tabulated values of Mühlschlegel [28].
The red line shows the high and low temperature behaviour of the anisotropic gap BCS
model with < a2 >= 0.05 [29]. This model is not applicable to the regime 0.3 < T

TC
<

0.7 although a smooth interpolation between the low and high temperature ranges is
expected.

leading to a reduced heat capacity jump ∆C
γTC

. Measurements of γ(H) shown above

have suggested an isotropic gap although mild anisotropy would cause little deviation

from the observed linear behaviour.

In order to investigate this possibility a BCS model with an anisotropic gap has been

employed to compare both the heat capacity jump and the overall temperature depen-

dence of the anisotropic case with the data measured here. The model [29] has been

used to predict the effect of mild anisotropy (< a2 >= 0.05, where< a2 > is the mean-

square anisotropy proportional to the angular average of the square of the deviation of

the gap parameter from its average value) on the heat capacity at low temperatures

( TTC
< 0.3) and close to TC ( TTC

> 0.7) - the employed model is not valid in the range

0.3 ≤ T
TC
≤ 0.7. Figure 3.36 shows the results of calculations using TC = 11.3K and

γ = 7.12mJ/K2/mol in comparison with the BCS model and data.

The anisotropic model with < a2 >= 0.05 clearly shows an improved description of

the heat capacity jump ∆C
TC

compared to the BCS model. However, the temperature de-

pendence at low temperatures and close to TC does not show detailed agreement with

the data, with the model displaying greater curvature in both regimes. More complex

DFT modelled heat capacity predictions based on calculations of the vibrational and



SUPERCONDUCTIVITY AND CHARGE DENSITY WAVES IN MC6... 99

electronic structures of CaC6 [21] confirm these observations.

Given that both the calculations of Sanna and those of Boeri are based on CaC6 phonon

dispersions which have been shown by experiment to be accurate [9] it is perplexing that

the disagreement with the heat capacity observations remains.

At this point it is interesting to consider once again the recent observation of the CDW

at 78K. As the work of Gabovich [101, 102, 16] has predicted, the coexistence of

superconducting and CDW states reduces the magnitude of both the superconducting

and CDW gaps when they share a Fermi surface. Assuming the CDW state coexists

with superconductivity below 11.5K in CaC6 it could well alter the nature of the su-

perconducting state by reducing the available Fermi surface and thereby decreasing

∆SC . Because TC is dependent on ∆SC the ratio 2∆SC

kBTC
would remain unchanged in

this scenario. However, predictions of the magnitude of the superconducting heat ca-

pacity jump should overestimate because the calculations are based on the assumption

of a complete Fermi surface, rather than the reduced version left by the CDW gapping.

In this light, therefore, a simple explanation for the reduced value of ∆C
γTC

is that ∆C

corresponds to only the superconducting states whereas γ includes both the supercon-

ducting states and those which contribute to the CDW, meaning that ∆C is smaller than

expected for the value of γ.

Another possibility must also be put forward, namely that the complex Fermi surfaces

of CaC6 allow ’peaceful’ coexistence of the CDW and superconducting states. It was

noted in [25] that the measured CDW state is strongly metallic, with < 5 % change in

the electrical conductivity within compared with outside the gap. This means that while

the gap is large in terms of energy (at 2∆CDW ≈ 475meV ) the number of states

at the Fermi level which are affected by the opening of the gap, and the total area of

the Fermi surface gapped by the CDW are relatively small. It is therefore possible that

below TC the CDW and superconducting states gap different areas of the CaC6 Fermi

surface and therefore coexist with little competition. One way in which this could occur

is if the CDW state is supported wholly by the doped graphene sheets as suggested in

[25] and the superconducting state is hosted predominantly by the Ca intercalant atoms,

as suggested by Calandra [10]. If this were the case the measured value of ∆C
γTC

would

identify CaC6 as having an anisotropic gap in line with the calculations shown above.

The interplay between the superconducting and CDW states in CaC6 requires further

investigation to clarify the magnitude and nature of the effects. Theoretical predictions of

superconducting behaviour which take the CDW state into account should be compared

to the results herein and those of previous studies. In addition experimental attempts
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should be made to suppress the CDW state as a method of perhaps increasing the TC
of CaC6 above 11.5K.

3.7 Summary

The heat capacities of the MC6 graphite intercalation compounds CaC6, SrC6 and BaC6

have been measured here over a wide range of temperatures. Portions of the heat ca-

pacities of CaC6 [17] and SrC6 [22] have been previously published, while the measure-

ments of BaC6 are the first to be presented.

The superconducting phase of CaC6 has been previously characterised [17] and this

work supports the previous primary findings of BCS-like, intermediate-coupling super-

conductivity. Comparison with an anisotropic BCS model suggests mild gap anisotropy

as a partial explanation of the observed reduced heat capacity jump. In the temper-

ature range not previously explored the onset anomaly of a CDW phase present at

78K [25] has not been detected up to a maximum temperature of 300K signifying

that TCDW > 300K, in line with other systems with similarly large CDW gaps. It is

suggested that the reduction of available Fermi surface caused by the presence of the

CDW phase at low temperatures may account for the inaccuracies of theoretical models

in describing the measured superconducting heat capacity anomoly in CaC6 [19].

The low temperature heat capacities measured here are well fitted by the Debye model

with the additional dispersionless optical phonon modes originally described by Sug-

anuma [127]. The resulting values of the electronic coefficient, Debye temperature and

characteristic phonon temperatures fit well within the pattern described by other alkali-

metal GICs. The electron-phonon coupling constant as estimated from the electronic

coefficient is in agreement with theoretical predictions for CaC6 and SrC6 but is found to

be substantially smaller in BaC6 [18] suggesting that previous predictions of TC [11] are

overestimated in this compound. Novel Schottky-like anomalies have been observed at

very low temperatures in SrC6 and BaC6, an effect not previously observed in the sole

prior SrC6 measurement in this temperature range [22].



Chapter 4

Ballistic Transport and

Pseudogap State in FIB-Milled

Kish Graphite Micro-Structures

4.1 Abstract

Graphite is an interesting system in which to study electrical phenomena because of

the marked anisotropy of its properties and their dependence on the morphology of

individual graphite types. It has been seen to display strong system size-effects at

micro- and macroscopic scales at high temperatures only observed in other metallic

conductors in the nanometre, liquid helium range.

Focused ion beam milling can be used to create electronic devices with complex shapes

for studying electrical phenomena in reduced dimensions and particular geometries.

Current-voltage characteristics of these devices can yield conductance as a function

of voltage giving a spectroscopic insight into the behaviour of excitations and Fermi

surface effects.

Here, focused ion beam milling has been used to create two micron-sized, c-axis stack

devices electrically contacted by ab-plane graphite, from kish graphite precursors. Mea-

surements of resistance as a function of temperature have observed large resistance

offsets in both devices caused by ballistic transport through the devices due to mean

101



BALLISTIC TRANSPORT AND PSEUDOGAP STATE IN FIB-MILLED... 102

free paths of several microns. In device A this behaviour persists up to at least 250K,

while increased disorder and the reduction of the mean free path below the device di-

mensions causes device B to change behaviour at ∼ 130K.

Current-voltage measurements have found the emergence of a Coulomb-like gap below

40K in device A, in agreement with previous observations in similar devices, thought

due to localisation of carriers in the graphitic planes of the device region. Device B

showed no such behaviour due to its increased disorder coupling the planes together

more strongly. The pseudogap was seen to have a maximum size at 2K of 50±5mV ,

noted as large for a Coulomb-type gap. Further complex features in the conductance of

device A were observed and are discussed but remain of unknown cause.

The resistance-temperature measurements of devices A and B, as well as those of

previous similar microscopic devices, have been analysed in the context of attempts

to characterise the c-axis conduction of ’ideal’ graphite. It is found that the results for

devices A and B do not constitute such a measurement due to the mean free path being

considerably greater than the device size. Previous measurements are also found not

to exemplify ideal behaviour due to similar ballistic behaviour or included stacking faults.

A test geometry which could allow such a measurement is suggested.

4.2 Theory and Phenomena

4.2.1 Drude Model of Electrical Conduction

The Drude model is a purely classical conduction theory in that it uses kinetic theory

to describe the motion of a non-interacting gas of electrons in a metal [146]. In the

model the only interactions of the electrons with the metallic lattice are instantaneous,

momentum altering collisions. In the absence of an electric field
−→
E the electrons exhibit

random walk motion with an average velocity vav . The direction of−→v after each collision

is random, so vav = 0. In an electric field
−→
E > 0 the electrons are accelerated between

collisions, in the direction opposite to
−→
E . If the applied field in constant then Newton’s

second law gives a velocity:

−→v = −→v0 −
e
−→
Eτ

m
(4.1)

where v0 is the electron velocity; e is the electron charge; m is the electron mass.

Taking the average velocity of all the electrons eliminates v0, while the second term is
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just a constant multiplied by the average time between collisions τ . This time is related

to the average distance travelled between collisions - the mean free path λMFP - as:

τ =
λMFP

v

If the conduction electron density is ne and the charge of each electron e then the

current density within the metal can be written as:

j = −neev (4.2)

Substituting equation 4.1 into equation 4.2 gives:

j =

(
nee

2τ

m

)
E = σE (4.3)

where σ is the Drude conductivity. Equation 4.3 is a form of Ohm’s law and conductors

which obey it are considered ’Ohmic’.

The Drude model is successful in using the average electron velocity to find the electrical

current but does not describe how electrons actually move through a conductor. This

detail is contained within λMFP .

The purely classical approach predicts that λMFP is on the order of the unit cell size

as electrons scatter from the metal ions. This is not the case and a quantum approach

describes the propagation of electron waves through the oscillating ionic potential and

their scattering from lattice imperfections and distortions. These different types of scat-

tering contribute different elements of λMFP . The inelastic mean free path li gives the

average distance between inelastic scatterings, such as by phonons, while the elastic

mean free path le gives the average distance between elastic scatterings, such as by

lattice imperfections or other carriers. These elements contribute to λMFP as:

λMFP =

(
1

li
+

1

le

)−1

The electrical resistivity ρ = σ−1 and is therefore proportional to λ−1
MFP . In a metal

free from lattice imperfections ρ(T ) is governed mainly by the scattering of electrons

by phonons. This scattering is an inelastic process in that it involves the absorption or

emission of a phonon by an electron, which changes the electron’s energy and wave
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vector. As such it is reflected in li. At high temperatures, above the Debye temperature

ΘD (see section 3.2.1) the number of phonons is proportional to T , so that:

ρ ∝ T T � ΘD (4.4)

Below ΘD only a reduced number of phonons with energy . kBT can be absorbed

or emitted by electrons. These phonons have small wave vectors meaning that each

electron can only be scattered through a small angle. This reduces the resistivity greatly

both because the effect of individual small angle scattering events is not large and

because the number of phonons which can take part in the scattering is greatly reduced.

The resistivity then approximately follows the law:

ρ ∝ T 5 T � ΘD (4.5)

In any real conductor this behaviour is modified at low temperatures by scattering from

crystal imperfections. These scattering events are elastic and are therefore reflected

in le. Electrons are scattered with an approximately constant cross-section giving a

contribution to the resistivity that is independent of temperature:

ρ0 = constant (4.6)

The above behaviours are combined together to describe the temperature dependence

of the total resistivity as:

ρtotal(T ) = ρ0 + ρ(T ) (4.7)

For an individual sample its resistance R is related to the resistivity ρ by its length l and

cross-sectional area A as:

R = ρ
l

A
(4.8)

4.2.2 Ballistic Transport

The Drude description of Ohmic conduction implicitly assumes that λMFP is much

smaller than the characteristic system size L. As described above, when λMFP � L
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electrons undergo numerous scattering events as they travel through the system and

as a result the resistivity is dominated by electrons scattering from phonons and crys-

tal imperfections. However, as the dimensions of the system are reduced a regime is

approached in which λMFP & L. In this regime electrons travel through the system

without collisions i.e. ballistically, τ becomes infinite and the Ohmic description breaks

down.

One such geometry in which this transition from Ohmic to ballistic transport must be

considered is that of a small circular constricting orifice of diameter W between two

bulk conductors of resistivity ρ(T ). At high temperatures λMFP

W � 1, and an Ohmic

contribution to the resistance found by Maxwell [147] is seen as:

RM =
ρ(T )

W
(4.9)

As the temperature is reduced the ratio λMFP

W increases and the Ohmic value is cor-

rected by a factor Γ(k) of the order of unity, where k = W
λMFP

. Γ(k → ∞) = 1 and

varies smoothly to Γ(k → 0) = 0.67 [148]. Once λMFP increases such that the ratio
λMFP

W & 1 a dominant, ballistic resistance term appears [149, 150] as:

RB =
4ρ(T )λMFP (T )

3A
(4.10)

where A = πW 2

4 is the area of the constriction. Equations 4.9 and 4.10 are combined

to give an expression known as the Knudsen-Sharvin equation which describes the total

resistance arising from the constriction as:

RKS =
4ρ(T )λMFP (T )

3A
+ Γ(k)

ρ(T )

W
(4.11)

4.2.3 Coulomb Interactions

As noted above, one of the assumptions of the Drude model of conduction is that the

electrons do not interact with each other - that they are independent. In systems with

low carrier concentrations, on the metal-insulator border, Coulomb interactions are not

fully screened and must be accounted for.

One such system was described by Efros and Shklovskii [151] (ES). In the ES system

electron states close to the Fermi level are localised and conduction occurs by hopping

between sites.
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Figure 4.1: Schematic representation of electron energy states localised in space in the
ES system. Left: A set of localised states at T = 0. All states below the Fermi level are
occupied while all states above the Fermi level are unoccupied. Right: An electron from
below the Fermi level is moved to a state above the Fermi level, leaving a hole behind.
The shaded region represents the resulting Coulomb interaction between the electron
and hole.

At T = 0 all energy states below the Fermi level are occupied and all states above are

vacant - this situation is shown schematically in the left panel of figure 4.1. The transfer

of an electron from state i to state j (right panel of figure 4.1) increases the energy of

the system by an amount ∆E = Ej − Ei − eij > 0 where eij = e2

κrij
is the energy

of the Coulomb interaction between the electron now in state j and the hole in state i

(e is the electronic charge, κ is the dielectric constant and rij is the distance between

the states). If the distance between the states is large then eij < Ej − Ei and the

energy of the system is increased, but if the distance is small eij will be large and will

overcompensate Ej − Ei. Hence, for the original inequality to hold the states must be

far apart and, therefore, the density of states is small. This means a reduction in the

DOS at the Fermi energy with a width EC defined when the Coulomb energy is equal

to the difference in energy of the states. In 3D this ’pseudogap’ is quadratic in E as:

g(E) = α3DE
2

where α3D = 3
π
κ3

e6 .

AtE � EC the DOS approaches the constant value g0, while in the limit of smallE the

DOS approaches the above parabolic dependence. As an approximation of the entire

range of E the following equation is used [152]:
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g(E) = α3D
E2
CE

2

EC + E2
(4.12)

The gap described by equation 4.12 is described as a ’soft’ gap in that g(E) ∝ E2 at

EF , rather than a ’hard’ gap in which g(E) not only equals zero at EF but also in the

vicinity.

4.3 Introduction and Experimental Motivation

4.3.1 Electrical Resistance in Graphites

The resistivity of graphite is strongly anisotropic between the in-plane direction and

along the c-axis [48]. In-plane conduction is metallic at all temperatures i.e. dρ
dT is pos-

itive. At low temperatures (below ∼ 10K) the dominant contribution to the in-plane

electrical resistivity ρab(T ) is the elastic scattering of carriers by structural defects and

impurities. The degree of ’faultedness’ of a graphite sample has historically been es-

timated from the value of the residual resistivity ratio (RRR), the ratio of the in-plane

resistivity at high temperatures to that at low temperatures (equation 4.13). Higher val-

ues of RRR indicate less faulted graphites and vice versa.

RRR =
ρab(300K)

ρab(4.2K)
(4.13)

Above ∼ 10K scattering by phonons becomes dominant, giving ρab(T ) a steep in-

crease as ∼ T 3 then tending towards a high temperature linear-T behaviour of a metal

above its Debye temperature, ΘD ∼ 420K in-plane [129, 128, 130].

Representative measurements from a number of studies of ρab(T ) of kish, natural and

HOPG graphites are shown in figures 4.2, 4.3 and 4.4, respectively. From these fig-

ures it is clear that the general temperature dependence of ρab is metallic and is com-

mon across graphite types and samples. However, the low temperature behaviour and

the residual resistance are strongly dependent on the microstructure of each individual

sample. For kish graphite samples RRR is independent of in-plane crystallite size and

low temperature λMFP is calculated to be considerably smaller than the crystallites [3],

showing that λMFP is limited by the crystal defects and impurities. Table 4.1 gives rep-

resentative values of RRR, λMFP at 4.2K and average in-plane crystallite size. This is

also the case for natural graphites, which generally display greater values of RRR due
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Graphite type RRR λMFP (4.2K)
(µm)

Average in-plane
crystallite size (µm)

Kish a 4.65 3.2 ∼ 1000
Kish a 11.9 7.3 −
Kish a 34.3 12.2 ∼ 1000

HOPG a 5.50 5.4 ∼ 60
HOPG b 6.8 − 55.5
HOPG b 8.1 − 58.7

Table 4.1: Values of RRR, λMFP at 4.2K and average in-plane crystallite size for kish
and HOPG samples. Data taken from a[3] and b[46].

to their lower defect concentrations. In samples of HOPG with a metallic ρab(T ) it is

unclear as to whether λMFP is limited by crystallite size or defect prevalence. Typical

crystallites are observed by ECCI [3] to have diameter ∼ 60µm and calculations show

λMFP (4.2K) ∼ 6µm which suggests defect limiting, however as ECCI cannot detect

crystallite boundaries aligned better than 4 o the true crystallite size may actually be

∼ 6µm [46]. HOPG samples with non-metallic ρab(T ) such as that shown in figure 4.4

(black squares) are discussed below.

c-axis resistivity ρc (figures 4.5, 4.6, 4.7, 4.8 and 4.9) is seen to be between 102 and

104 times higher than ρab. Its temperature dependence is metallic, semiconducting-like

(negative dρ
dT ) or a combination of the two depending on both the type and microstruc-

ture of the graphite tested. For kish and natural graphite samples with RRR . 15

ρc(T ) tends to show a metallic temperature dependence at low temperatures becom-

ing semiconducting-like at higher temperatures - figures 4.5, 4.6 and 4.8. For RRR & 15

the temperature dependence is mainly metallic with the semiconducting-like behaviour

at higher temperatures still. Some kish graphite samples have been seen to display

only a metallic dependence as shown in figure 4.7, while several natural graphite sam-

ples reported as single crystal behave similarly, although the moniker ’single crystal’

must be questioned given that ρc(T ) differs markedly between these samples - figure

4.8. The temperature dependence of ρc for HOPG differs from those of kish and nat-

ural graphites, as is seen in figure 4.9; RRR no longer predicts c-axis behaviour, with

samples with RRR= 60 displaying the same temperature dependence as those with

RRR∼ 10.
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Figure 4.2: Resistivity as a function of temperature in-plane of two kish graphite samples
showing typical behaviour. Key designations are according to RRR. Data taken from
[30, 31].

Figure 4.3: Resistivity as a function of temperature in-plane of two natural graphite
samples showing typical behaviour. Published relative resistance values have here
been scaled by absolute values of resistivity in similar samples measured by Primak
of ρab(300K) = 4.0x10−7 Ωm. Key designations are according to RRR. Data taken
from [32].
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Figure 4.4: Resistivity as a function of temperature in-plane of four HOPG graphite
samples showing typical behaviour. Key designations are according to RRR for purely
metallic samples only. Data taken from [33, 34].

Figure 4.5: Resistivity as a function of temperature along the c-axis of five kish graphite
samples showing typical behaviour. This data is presented normalised in figure 4.6. Key
designations are according to RRR. Data taken from [35].
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Figure 4.6: ρC(T )/ρC(300K) of the five kish graphite samples shown in figure 4.5.
Key designations are according to RRR. Data taken from [35].

Figure 4.7: Resistivity as a function of temperature along the c-axis of two kish graphite
samples showing typical behaviour. RRR values are not available for these measure-
ments. Data taken from [36].
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Figure 4.8: Resistivity as a function of temperature along the c-axis of two natural
graphite samples showing typical behaviour. Published relative resistance values have
here been scaled by absolute values of resistivity in similar samples measured by Pri-
mak of ρc(300K) = 5x10−5 Ωm. RRR values are not available for these measure-
ments. Data taken from [32].

Figure 4.9: Resistivity as a function of temperature c-axis of four HOPG graphite sam-
ples showing typical behaviour. Samples are the same as those presented in figure 4.4.
Key designations are according to RRR for purely metallic samples only. Data taken
from [33, 34].
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Several theories have been put forward to explain the variation in the behaviour of ρc(T )

in HOPG. The magnitude of c-axis resistivity is predicted, in a theory by Ono [40], by

postulating regularly spaced stacking faults at which carriers are either reflected or tun-

nel through. The semiconducting-like behaviour is then given by the thermal excitation

of carriers across the low potential barrier formed at each stacking fault. The work of

Matsubara [34] explains the metallic-like downturn at lower temperatures by a crystal

defect-assisted interlayer hopping conduction, in conjunction with phonon-carrier scat-

tering. Together these theories suggest that ρc(T ) of ’ideal’ i.e. unfaulted graphite has

a metallic behaviour.

For each of HOPG, kish and natural graphites the above theories describe the following:

• The high ρc ∼ 10−2 Ωm of HOPG samples (figure 4.9) indicates large potential

barriers along the c-axis arising from a combination of a high frequency of stack-

ing faults and a large mismatch at those faults (through a lack of layer registration

across the fault). The extent of the metallic-like behaviour at low temperatures is

governed by increased coupling between layers at crystal defect sites. The be-

haviour displayed by the sample represented by the black points [33] in figures

4.4 and 4.9 is qualitatively different to the other displayed samples. At first sight

it would appear that stacking faults along the c-axis are contributing to ρab(T )

as would be expected in a sample with crystallites not aligned parallel in-plane,

i.e. with a very large mosaic spread. However, the spread of this sample is

0.4 o so this cannot be the case. Instead it is suggested that the in-plane bound-

aries between crystallites are so badly matched that sizable potential barriers are

formed, which then act in a similar way with temperature as stacking faults along

the c-axis. This suggests that mosaic spread is not a good guide to microscopic

perfection from the point of view of electrical conduction and that HOPG is not a

good approximation for ’ideal’ graphite.

• In kish graphites with ρc ∼ 10−3 Ωm (figure 4.5) samples with more crystal de-

fects (lower RRR) display a similar behaviour to HOPG but with a lower resistivity

and a sharper transition between low temperature metallic-like and high tempera-

ture semcionducting-like behaviours. This is suggested as being due to a smaller

number of stacking faults and good registration of planes across faults (i.e. uni-

form potential barrier size).

• In kish and natural graphites with ρc ∼ 10−5 Ωm (figures 4.7 and 4.8) there are

very few stacking faults, giving the lower resistivity and predominantly metallic
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temperature dependence. Low levels of crystal defects act to enhance interlayer

coupling and as scattering centres.

To reiterate, the above theories of Ono [40] and Matsubara [34] make the prediction that

unfaulted, defect-free ’ideal’ graphite should have a purely metallic behaviour in both

ρab(T ) and ρc(T ), with ρab � ρc. In this light the kish and natural graphite samples

with ρc ∼ 10−5 Ωm are the closest to a validation of these theories. However, recent

work by Kempa [33] studying the magnetic field driven metal-insulator transition (MIT) in

kish and HOPG graphites has found strong similarity between ρab(T,B) and ρc(T,B)

indicating that the metallic behaviour of ρc(T ) is correlated with that of ρab(T ) through

enhanced interlayer coupling by crystal defects. If this is the case then ρc(T ) for ’ideal’

graphite would not be expected to be metallic.

It is clear from the above descriptions of macroscopic measurements that it is not pos-

sible to verify either of these predictions for ρc(T ) by testing macroscopic samples

because even the most perfect samples contain both stacking-faults and defects. An-

other way to approach this problem is to test a sample with dimensions smaller than

the average fault spacing, a sample which would be unfaulted by definition. The pro-

cessing undertaken in this thesis aims to create such a test device from a kish graphite

precursor and the electrical measurements made on these devices are later analysed

and presented in the context of the above theories.

4.3.2 Micron-Sized Stack Devices

In 1998 a technique for making intrinsic Josephson junctions in layered high temperature

superconductors was developed [37]. Focused ion beam (FIB) milling of Bi2Sr2CaCu2O8+δ

crystals was used to create micron-sized devices in which an electrical test current was

forced across the alternate conducting and insulating crystal layers along the c-axis cre-

ating a series of tunnel junctions (a ’stack’), while allowing the remaining ab portions of

the crystal to be used for electrical contact to the stack. Figure 4.10 shows a schematic

of the stack device created.

Subsequently this technique was used with other layered conductors to measure the

energy gaps of the CDW states of NbSe3, TaS3 and KMo6O17 as a function of temper-

ature [153, 38, 154]. Figure 4.11 shows one of the stack devices created.

Although not stated in the literature, in essence the method employs a tunneling mecha-

nism where electrical transport occurs between elementary conducting layers separated



BALLISTIC TRANSPORT AND PSEUDOGAP STATE IN FIB-MILLED... 115

Figure 4.10: Schematic of the FIB-milled structure used to study superconductivity in
high temperature superconductors. The ab direction is in-plane; c is the cross-plane
direction. Figure adapted from [37].

Figure 4.11: Scanning electron microscope (SEM) image of a 1 µm x 1 µm stack
device. Figure taken from [38].
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by elementary insulating layers. In such a conductor-insulator-conductor situation the

conductance dI
dV is proportional to the electronic DOS of the conductors as [12]:

I = A |T |2
ˆ ∞
−∞

g1(E)g(E + eV )[f(E)− f(E + eV )]dE (4.14)

dI

dV
= A |T |2 g1(EF )g(eV ) (4.15)

where A is a constant of proportionality; T is a constant tunneling matrix element;

g(EF ) is the DOS of the conductor at the Fermi level; V is the applied voltage; f(E) is

the Fermi function.

In 2008 the technique was used with a natural graphite precursor to create a graphitic

stack device [39] of the same form as those shown in figures 4.10 and 4.11. The device

consisted of a constricted region of dimensions 1µm x 1µm in-plane and 300nm in

height within which electrical current was forced along the c-axis. The temperature

dependence of the device resistance was found to display behaviour unlike either c-

axis or in-plane graphitic conduction as shown in the left panel of figure 4.12: With

decreasing temperature the device resistance increased gradually for 100K . T .

300K, becoming temperature independent for 30K . T . 100K and showing a

pronounced rise for T . 30K. In-plane resistance-temperature measurements of a

bulk/unmilled sample ’from the same batch’ showed a very low value of RRR∼ 5 and

behaviour uncharacteristic of natural graphite. The most similar literature sample is the

HOPG sample previously shown by the black points in figure 4.4, the behaviour of which

is likely due to highly misaligned crystallites in-plane.

Conductance calculated as dI
dV from current-voltage (IV ) characteristics was metallic

at high temperatures but below ∼ 30K developed a gap-like shape centred around

zero bias (right panel of figure 4.12). This behaviour was suggested to be the opening

of a pseudogap due to the presence of interlayer correlations possibly mediated by the

Coulomb interaction, or the precursor to a more ordered gap state such as supercon-

ductivity or CDW. By analogy with a similar pseudogap observed in a carbon nanotube

stack device the graphitic pseudogap was stated as intrinsic to the graphite.

Very recently measurements of the electrical properties of similar graphite structures

were performed [41]. Two stack devices with in-plane dimensions 1µm x 1µm and

c-axis heights 100nm and 200nm were fabricated from an HOPG precursor. The

measured resistance-temperature behaviour and IV characteristics are shown in figure

4.13.
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Figure 4.12: Left: Temperature dependence of the scaled resistance of the device and
an in-plane measurement of a graphite sample from the same batch. Right: Tempera-
ture dependence of dI

dV as a function of voltage for the natural graphite device. Figures
adapted from [39].

Figure 4.13: Left: Resistance as a function of temperature for the HOPG 1µm x 1µm
x 100nm stack device showing semiconducting-like dependence (curve fit is a c-axis
conduction fit based on [40, 34]) Inset: precursor HOPG flake. Right: IV characteristics
at 300K and 20K for 1µm x 1µm x 100nm and 1µm x 1µm x 200nm devices
showing linear behaviour at 300 K and smooth nonlinear behaviour at 20K. Figures
adapted from [41].
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Figure 4.14: Conductance as a function of voltage for the 1µm x 1µm x 100nm stack
device. Note the absence of the pseudogap feature observed in [39]. Figure adapted
from [41].

For both devices measurements of the resistance as a function of temperature showed a

semiconducting-type behaviour typical of c-axis macroscopic HOPG (as shown in figure

4.9), while IV characteristics were linear at 300K and smoothly nonlinear at 20K (the

lowest measured temperature). Conductance as a function of voltage between 300K

and 20K was metallic in the V . 30mV range (figure 4.14) and did not show the

pseudogap feature described above [39].

Several factors can be suggested as being responsible for the variation in the conduc-

tance findings between [39] and [41]. Firstly, the precursor graphite of which the stack

devices are composed; natural graphite was used in [39] while [41] used HOPG. Natu-

ral graphite is composed of larger crystallites in the c-direction than HOPG [59, 4] and

crystallites in HOPG are not well registered in the ab-plane. HOPG, therefore, contains

more potential barriers to conduction along the c-axis. In combination with the differ-

ences in c-axis height of the stack devices (300nm in [39], 100nm and 200nm in [41])

different behaviour should be expected.

In order to clarify the findings to date it is desirable to perform further measurements

on similar stack devices with the aim of examining both the observed pseudogap and

resistance-temperature behaviour. Kish graphite has crystallite sizes comparable to

natural graphite and significantly greater than HOPG, while also having a greater crystal
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defect concentration than both. As such it serves as a good precursor material from

which to make comparative stack devices, as detailed and tested in this thesis. Further,

the devices created here have c-axis stack height between the 200nm of [41] and

the 300nm of [39] allowing study of the dependence of the conductance behaviour on

device dimensions.

4.4 Experimental Details

In order to create the graphite stack devices described in this thesis a number of macro-

scopic and microscopic steps were performed. The main stages of the processing were:

creating thin, narrow graphite pieces, forming electrical contacts and FIB milling. These

main stages are outlined schematically in figure 4.15.

Figure 4.15: Main stages involved in macro- and microscopic processing of graphite
flakes to form stack devices. From left to right: Bulk flake is cleaved to thin and then
trimmed to narrow; current (I) and voltage (V ) contacts are deposited and the stack
device fabricated by FIB milling between the voltage contacts.

4.4.1 Graphite Precursor

Kish graphite pieces (supplied by Corus Steel, via Andrew Walters - ESRF) were used

as the basis for the stack devices. Those chosen for this experiment were the largest

and were up to ∼ 8mm x ∼ 8mm with a thickness of ∼ 80 ± 20µm as measured

using a Dektak surface profiler. X-ray diffraction of the graphite [002] peak (figure 4.16)

showed the ’jagged’ pattern characteristic of kish graphite, being constituted of grains

ordered in both in-plane and c directions.
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Figure 4.16: Rocking curve of [002] x-ray diffraction peak (theta-theta scan).

4.4.2 Macroscopic Preparation

Very thin samples of kish graphite were needed for the microscopic/FIB stage of the

preparation, as FIB milling is a slow process and macroscopic thinning reduces the

subsequently required milling time. The kish graphite pieces were thinned through re-

peated cleaving by securing each to a thick glass slide using a minute amount of su-

perglue and taking multiple cleaves using 3M ‘Magic Tape’ [36]. The first cleave in each

case was discarded as the top surface of each sample was invariably very rough and

pitted, whereas further cleaves were smoother. This difference can be seen in SEM

images of the surfaces shown in figure 4.17.

The thin cleaves were then floated off the tape in isopropanol and deposited onto individ-

ual SiO2 substrates before being dried in a vacuum oven. Each sample was assessed

under 400X microscopy and those with the fewest visible structural flaws chosen for

further processing - figure 4.18 shows a representative sample at this stage.

Chosen samples were then narrowed to ∼ 300µm width by careful sawing using razor

blades. Slight crush damage was inevitably caused at the cut edges of each sample

but the central regions where the devices were to be created remained undisturbed.

Processing to this point for the two samples further discussed herein resulted in the

dimensions shown in table 4.2.
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Figure 4.17: Left: SEM image of initial kish top surface. Right: SEM image of kish top
surface after several cleaves.

Figure 4.18: Optical microscopy of a kish graphite cleave showing large areas of flat,
undisturbed graphite. Images share a common centre.
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Figure 4.19: SEM image of macroscopic graphite sample mounted on a SiO2 substrate
after gold deposition. Light areas are gold, dark lines are regions from which deposited
gold has been mechanically removed to electrically separate contacts.

Stack Device Length (mm)∗ Width (µm)∗ Thickness (µm)∗

A 2.0± 0.1 290± 20 18± 5
B 2.3± 0.1 240± 20 25± 5

Table 4.2: Dimensions of the graphite samples after macroscopic preparation. ∗± rep-
resents variation in dimension across sample as seen under SEM imaging, not uncer-
tainty.

Evaporated gold was used to make electrical contact to each graphite piece. An Ed-

wards A306 bell jar evaporator was used to deposit ∼ 600nm thickness of gold onto

each sample and SiO2 substrate. After deposition, separate contacts were formed by

removing the deposited gold from inter-contact regions. This was achieved using a glass

rod pulled to a sharp point and attached to the hydraulic arm of a micro-manipulator be-

ing dragged across the surface in strong contact - this accounts for the jagged edges

visible in SEM images of the deposited gold (figure 4.19). The separation of contacts

was later completed by FIB milling of the inter-contact gold on the graphite surface, to

form four distinct contacts. (Initially, masked deposition was attempted but it was found

that the masking did not ensure complete contact separation).

After completion using FIB milling the electrical contacts were assessed simply, using

a two-point digital multimeter to measure resistance. Between multimeter probes the

resistance was 0.3 Ω. Between different areas of a single contact pad the resistance

was 0.5 Ω. Between adjacent, separated contact pads (with current running through the
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bulk graphite sample) resistance was 1.0 Ω.

4.4.3 Focused Ion Beam Milling

Each microscopic stack device was formed by FIB milling of the macroscopically pre-

pared samples. FIB produces and directs a stream of high-energy ionised gallium atoms

(Ga+), focuses them using electric fields and directs them onto the sample for both

milling and imaging. In this work a Carl Zeiss 1540 Crossbeam system was used (fig-

ure 4.20). The system comprises a Gemini SEM column from Carl Zeiss with an add-on

Orsay Physics Canion 31 FIB column. These beams have a common vacuum space

and hence high-resolution SEM imaging can be used to position the sample for FIB

milling, reducing the sample surface damage caused by prolonged FIB imaging [155].

The ultimate resolution of the SEM is 1.1nm at 20 kV ; 7nm at 30 kV for the FIB.

When imaging/milling micron-scale features the accuracy with which features can be

resolved/defined is limited by the magnification and focus. In practice, for this work this

means a best accuracy of ∼ ±1 %.

Figure 4.20: The Carl Zeiss XB1540 Cross-Beam SEMFIB.
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Figure 4.21: View inside the vacuum chamber of samples mounted on flat stage for
top-down (left) and angled stage for lateral milling (right) showing SEM and FIB gun
positions.

The sample to be milled was secured on a metal SEM pin and one gold contact grounded

to the pin with silver paint (Agar Scientific G3648). This increases the accuracy of the

SEM and FIB beams by reducing electrostatic sample charging which can otherwise

cause the beams to deflect. For top-down milling the pin was mounted on a standard

flat stage (left panel of figure 4.21) and loaded into the vacuum chamber. An angled

stage (right panel of figure 4.21) was used for lateral cuts.

The following details the specific FIB milling process used to create the stack devices,

shown in overview in figure 4.22. Unless otherwise stated milling was performed at a

current of 50 pA and a voltage of 30 kV .

• Figure 4.22, step (a): The sample and substrate were angled such that they

were perpendicular to the FIB beam. Two long, offset trenches each 15µm wide

were milled through the sample to the substrate parallel to the short axis of the

sample, leaving a ∼ 20µm section of undisturbed graphite between them (left

panel of figure 4.23). A third 15µmwide trench was milled parallel to the long axis

between these, giving two potential device sites. Further trenches were milled

to define 50µm long current paths in which to form the device. Initially (stack

device A) a total of three 15µm wide trenches were cut to allow two distinct

current channels for the two potential device sites. Later (stack device B) trench

positions were reconfigured such that only two trenches were cut leaving one

current path but still two options.
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Figure 4.22: Schematic representation of FIB milling process to form stack devices. (a)
Initial top down milling narrows the ∼ 300µm wide sample to several microns and de-
fines a target device region; (b) the target region is further narrowed to a width of 1µm;
(c) the sample is repositioned such that the FIB beam is parallel to the substrate and
two lateral cuts are made, leaving an undisturbed region of 1µm x 1µm in between;
(d) the lateral cuts overlap by a height of 230nm (device A) and 290nm (device B)
creating the stack device in the circled area.
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Figure 4.23: Overview (left) and close-up (right) of stack device A after major cuts, at
the point of site selection.

Figure 4.24: Overview (left) and close-up (right) of stack device B after major cuts.
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• Figure 4.22, step (b): Both SEM and FIB imaging were used to choose the better

potential device site for each sample. Selection was made based on the unifor-

mity and undisturbed nature of the graphite at each site. For stack device A, with

two independent current paths, both available sites could be milled further with-

out detrimental effects and the site decision delayed. Chosen device sites were

thinned on both sides by FIB milling to a width of 1µm. This milling was begun at

500 pA with the current then reduced in stages to 20 pA to allow more precision

approaching the desired width of 1µm. At this point for stack device A it became

apparent that one site was damaged (right panel of figure 4.23) so it was milled

through to leave only one current path. For stack device B the selected site is

shown in figure 4.24.

• Figure 4.22, step (c): The sample and substrate were then remounted on the

angled stage and rotated such that the FIB beam was parallel to the substrate and

pointing along the short axis trench directly at the device site (figure 4.25). The

bottom of the device site was milled away to create a ‘bridge’ over the substrate

as the only conducting path. Two vertically overlapping cuts (20 pA, 30 kV ) were

made through the bridge leaving a section between them 1µm x 1µm in-plane

and 230nm (device A) and 290nm (device B) in height.

• Finally, any sections of graphite or gold between the macroscopic contacts were

removed to ensure that the four electrical contacts were independent.

Figure 4.25: FIB view of stack device A during lateral milling.
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4.4.4 Device Details

The above processing resulted in several functional devices. Stack devices A and B

are detailed immediately below and are the subject of this thesis. Several other devices

in graphite, CaC6 and NbSe2 failed in testing and these are described briefly in ’Other

Devices’.

4.4.4.1 Stack Device A

Figure 4.26 shows the finalised stack device A. The dimensions of the c-axis transport

region are 1.08 ± 0.01µm x 1.09 ± 0.01µm in-plane and 230 ± 10nm in height, as

measured by the SEM.

Figure 4.26: False-colour SEM image of stack device A viewed along the lateral cut.

4.4.4.2 Stack Device B

Figure 4.27 shows the finished stack device B. The final dimensions of the c-axis trans-

port region were 1.07±0.01µm x 1.03±0.01µm in-plane and 290±10nm in height.
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Figure 4.27: False-colour SEM image of stack device B.

4.4.4.3 Other Devices

Several other devices were fabricated from graphite, CaC6 and NbSe2, but for various

reasons they yielded no usable data. These devices are detailed here for the reference

of those attempting similar processing.

One further graphite device was fabricated using the same processes as detailed above

and is shown in figure 4.28. However, it suffered a shear fracture in the final stage of

preparation.

Two devices were created from CaC6 with the aim of studying the superconducting [52]

and CDW states (see chapter 3). In both cases the macroscopic preparation, gold de-

position and milling processes were completed successfully and the samples loaded

into the cryostat. Due to the reactivity of CaC6 with moisture and oxygen in the air

each step was performed under argon to prevent destructive reactions. The device

shown in the left panel of figure 4.29 had a resistivity consistent with CaC6 in the nor-

mal state and showed the CaC6 superconducting transition at 11.5K [52]. However,

reaction between the CaC6 and the silver epoxy used to make electrical contact caused

its degradation and failure after only preliminary tests had been performed. The second
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Figure 4.28: Additional graphite-based stack device showing a shear fracture at the
stack site.

Figure 4.29: Two devices fabricated from CaC6 precursors.
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device (right panel of figure 4.29) had a high temperature resistivity consistent with un-

intercalated graphite, indicating that the device had been created too deeply within an

only superficially intercalated CaC6 precursor.

A final device was created from an NbSe2 crystal, again with the aim of studying the

superconducting [133] and CDW states [156]. Preliminary low current testing in the

cryostat was performed and the 7K superconducting transition was observed. On

increasing current to levels comparable with those used for graphite devices the NbSe2

device burnt out due to Joule heating in the narrow stack region.

4.4.5 Electrical Measurement Setup

The completed FIB samples were mounted on a chip carrier using GE varnish and

electrically connected to the chip pins using copper wire in a four-point configuration

secured by silver epoxy (Epotek E4110) cured at ∼ 100 oC. The chip carrier was

inserted into the socket on the probe of the Oxford Instruments MagLab measurement

system. For variable temperature measurements the probe was mounted in the central

vacuum space of an Oxford Instruments 4He cryostat, capable of temperature control

between 250K and 2K.

To measure the IV characteristics of the devices current was supplied by a Keithley

6221 AC/DC current source operating in DC mode and voltage measured using a Keith-

ley 2182A nanovoltmeter, both under the control of LabView software written for this

work. The current source was used exclusively in the 100mA range in which it has an

accuracy of 0.1 % (e.g. ±50µA at 50mA).

For each measurement the temperature was stabilised to within ≤ 0.1K before the

current was stepped from −100mA to +100mA in 2mA increments. Each current

value was held for 500ms before a voltage measurement was made to ensure good

temperature control in case of localised Joule heating. Each voltage reading was av-

eraged over five power line cycles, resulting in very good repeatability in the voltage

readings at all currents (e.g. 0.02 % variation in V at 50mA at 2K).

Two methods were used to study the behaviour of the resistance as a function of tem-

perature of the devices: DC measurement derived from IV characteristics and AC

measurement at a single current.

DC values of resistance as a function of temperature were derived from the above de-

scribed IV measurements as the gradient of a linear fit to a plot of V (I). This fitting

procedure typically resulted in an error of < 0.01 % in the fitted resistance value.
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Detailed measurement of the resistance of device A was performed using the AC resis-

tance measuring function and automated temperature control of the Oxford Instruments

MagLab system (details of which can be found in the relevant manuals, available from

Oxford Instruments). The device temperature was swept at a rate of 1.8K/min and

an AC current of 50mA at a frequency of 10Hz was used, resulting in variation of

∼ 1.5 % in resistance readings at all temperatures

Measurements were performed on each device in turn to the point of physical failure.

4.5 Results

4.5.1 Stack Device A

Figure 4.30 shows the IV characteristics of stack device A between 246K and 2K.

IV s at all temperatures appear linear demonstrating the good overall quality of the elec-

trical contacts. Gradients steepen with decreasing temperature showing that resistance

decreases with decreasing temperature showing the presence of predominantly metallic

conduction.

Conductance, numerically calculated as dI
dV from IV characteristics, is shown in figure

4.31. Low temperature curves show the presence of gap-like structures around zero

bias. In all curves minor background curvature is seen likely resulting from slight contact

imperfections, while at the highest temperatures some asymmetric variation is seen.

This high temperature variation is consistent with the temperature control response of

the system and is not seen in curves below 134K.

Figure 4.32 shows the detailed resistance-temperature behaviour of this device between

250K and 2K, confirming overall metallic conduction.
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Figure 4.30: IV characteristics for stack device A between 246K and 2K.

Figure 4.31: Numerical dIdV for stack device A between 246K and 2K. Values calcu-
lated from IV characteristics shown in figure 4.30.
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Figure 4.32: Resistance as a function of temperature for stack device A between 250K
and 2K.

4.5.2 Stack Device B

Figure 4.33 shows the IV characteristics of stack device B between 200K and 4K.

IV s at all temperatures are again linear demonstrating the good overall quality of the

electrical contacts.

Numerically calculated conductance dI
dV is shown in figure 4.34, as derived from IV

characteristics shown in figure 4.33. A slight curvature of all curves is again present,

while the low temperature features exhibited by stack device A are not observed.

Figure 4.35 shows the resistance-temperature behaviour of this device between 200K

and 4K as extracted from the gradient of the IV characteristics. With decreasing

temperature device resistance shows a rise to a broad peak at ∼ 130K followed by a

metallic decrease to low temperatures.
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Figure 4.33: IV characteristics for stack device B between 200K and 4K.

Figure 4.34: Numerical dIdV for stack device B between 200K and 4K. Values calcu-
lated from IV characteristics shown in figure 4.33.
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Figure 4.35: Resistance as a function of temperature for stack device B between 200K
and 4K. Resistance values are calculated as the inverse gradient of the IV character-
istics shown in figure 4.33.

4.6 Discussion

4.6.1 Size Effects in Graphitic Stack Devices

Figures 4.26 and 4.27 show SEM images of the device regions of devices A and B,

respectively. From the figures it appears clear that no continuous ab-plane current path

exists through the device region. The electrical test current must, therefore, travel along

the graphitic c-axis at the device and as such both devices should exhibit an interlayer-

type R(T ) behaviour. However, this is not evident in the R(T ) graphs shown in figures

4.32 and 4.35. The reasons for this are discussed below.

Two important features are evident in the plots of R(T ) for devices A and B (figures

4.32 and 4.35, respectively) relating to the overall magnitude of the resistance and to its

temperature dependence. On the first point, in device A the low temperature resistance

R(2K) = 1.66 Ω and the high temperature resistance is R(250K) = 1.98 Ω, while

in device B R(2K) = 0.61 Ω and R(250K) ∼ 0.71 Ω (estimated from a linear fit to

R(T > 130K)). Given that the difference in the dimensions between the devices is

very small these differences in R cannot be explained by sample size as per equation

4.8, which relates R and ρ. On the second point, device A shows a purely metallic tem-

perature dependence reminiscent of conduction in the ab-plane, although SEM images
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Figure 4.36: Schematic representation of the series combination of the resistance due
to the device (Rdevice) with that of the ab-plane leads where Rleads(T ) = R1(T ) +
R2(T ).

of the device (figure 4.26) clearly shows that the electrical test current must cross planes

along the c-axis in the device region. In addition, the RRR for such purely ab-plane con-

duction at R(250K)
R(2K) = 1.2 implies an unrealistically high defect concentration. Device

B shows a similar metallic dependence to device A up to ∼ 130K, however above this

temperature dR
dT becomes negative. This shows that similar mechanisms to those of

device A are likely to predominate at lower temperatures while at higher temperatures

behaviours differ.

To this point it has been assumed that the difference in magnitude between ρab and ρc
(as found by macroscopic measurements) would mean that the total resistance Rtotal
would be dominated by the contribution of the c-axis device region, while any resistance

from the ab-plane ’lead’ sections would be negligible. Given the presence of a clear

ab/metallic contribution in R(T ) of both devices this assumption should be questioned.

To assess the likely magnitude of any contribution from the ab/metallic leads toRtotal(T )

the system is modelled as a series combination of the leads and the device itself (figure

4.36), the total resistance then being described by:

Rtotal(T ) = Rleads(T ) +Rdevice(T ) (4.16)

where

Rleads(T ) = R1(T ) +R2(T )

For device A, taking the temperature dependent part of the measuredRtotal (i.e. ∆R =

Rtotal −R(2K)) and scaling by the dimensions of the leads using equation 4.8 yields
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Figure 4.37: Estimated resistivity of lead sections of devices A and B. Device A shows
a metallic behaviour at all temperatures ( dρdT < 0) while device B has dρ

dT < 0 at low
temperatures but for T & 140K dρ

dT > 0 showing an additional contribution. Resistivity

is calculated as ρleads = [R(T )−R(2K)]
[
Alead

llead

]
.

the blue points shown in figure 4.37. Comparison to figure 4.2 shows that both the over-

all magnitude, at ∼ 10−7 Ωm, and temperature dependence match very closely those

of ab-plane graphite. This in turn implies via equation 4.16 that Rdevice ∼ constant =

R(2K) = 1.66 Ω over the measured temperature range. Taking the same line of rea-

soning for device B results in the red points in figure 4.37. The approximate agreement

of the magnitude and behaviour for T . 130K demonstrates that both devices feature

a resistance contribution from the ab-plane leads, with the device B leads being more

resistive. Above ∼ 130K, therefore, the drop off in the resistance of device B must

signify a decrease in Rdevice.

The absence of a temperature dependence to Rdevice for device A at all temperatures

and for device B for T . 130K suggests a different conduction mechanism is operating

in the devices compared to the Ohmic conduction in the leads. The Knudsen-Sharvin

equation (equation 4.11) describes the resistance arising from a short conducting con-

striction between two Ohmic conductors as:

RKS =
4ρ(T )λMFP (T )

3A
+ Γ(k)

ρ(T )

W

where ρ(T ) is the resistivity of the conductor; λMFP (T ) is the mean free path; A is the

cross-sectional area of the constriction; Γ(k) is a smoothly varying geometrical factor;
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Figure 4.38: Estimated mean free path for devices A and B. Black horizontal lines are
positioned at the device width of W = 1µm and average device c-axis height of hc =
290nm. Black arrow is positioned at 130K, the temperature at which Rdevice for
device B begins to decrease.

W is the width of the constriction.

Considering each device region as a constriction between bulk conductors with resistiv-

ity as calculated in figure 4.37, the following calculation can be performed to estimate the

mean free path. Taking the resistivity of the lead sections of device A (figure 4.37) with

an additional estimated residual resistivity of 1 × 10−7 Ωm (i.e. ρ(T ) = ρleads(T ) +

1 × 10−7 Ωm), with the device parameters A = 1µm2, W = 1µm and Γ(k) = 0.67

and device resistances RKS = RdeviceA = 1.66 Ω and RKS = RdeviceB = 0.61 Ω

yields estimates for the mean free path λMFP (T ) as shown in figure 4.38.

Figure 4.38 shows that for device A λMFP remains greater than both W and hc at all

temperatures, meaning that transport through the device is always ballistic. However, for

device B λMFP is smaller at all temperatures and falls below W at T ∼ 100K. In this

sense the divergence observed in theR(T ) behaviour of the two devices at∼ 130K is

explained as a transition from ballistic to more Ohmic behaviour in device B as λMFP

becomes comparable to W and hc.

These findings of ballistic transport contributions are in agreement with recent work by

Dusari [55] which observed ballistic transport through micron-sized constrictions in ab-

plane HOPG at room temperature i.e. λMFP (300K) > 1µm. In agreement with the

above description the R(T ) behaviour observed was heavily modified by the presence

of the constriction from a typical ab-plane dependence to one which showed a negative
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∂R
∂T for 100K . T . 300K and R ∼ constant for T . 100K. Similarities between

the R(T ) behaviour observed by Dusari and that seen in the stack device of Latyshev

[39] are discussed below in section 4.6.3.

4.6.2 Pseudogaps in Graphitic Stack Devices

Figures 4.31 and 4.34 show the behaviour of the conductance as a function of temper-

ature for devices A and B, respectively. For device B conductance dI
dV (V ) is constant at

each temperature showing a purely metallic behaviour. Device A shows a similar metal-

lic dependence at higher temperature but for T . 56K a gap-like feature emerges.

This feature becomes more prominent with decreasing temperature and further features

develop at the lowest temperatures. Figure 4.39 shows the temperature dependence of
dI
dV (V ) for device A with T 6 56K.

Figure 4.39: Conductance of device A as a function of voltage for T ≤ 56K showing
the development of the pseudogap centred at zero bias. Curves have been vertically
offset for ease of viewing but share a common scale.

As shown in figure 4.39 several features are evident in dI
dV (V ): a broad overall cur-

vature at all temperatures, a growing central pseudogap and complex low temperature

features. These are treated in turn below.

The continuous, broad curvature seen at all temperatures is likely due to a degree of

non-Ohmic behaviour in the macroscopic electrical contacts. The curvature evolves

smoothly with temperature, becoming flatter with decreasing temperature in the range
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Figure 4.40: Low voltage region of the conductance of device A as a function of voltage
for 10K ≤ T ≤ 56K showing the development of the pseudogap centred at zero
bias. Grey arrow indicates decreasing temperature. Curves have been vertically offset
for ease of viewing but share a common scale.

−200mV ≤ V ≤ 200mV . At low voltages (−75mV ≤ V ≤ 75mV ) this back-

ground is approximately flat at all temperatures. This behaviour is also seen in device B

(figure 4.34).

The second feature of dI
dV (V ), and the most prominent, is the pseudogap centred at

zero-bias. Figure 4.40 shows the evolution of this pseudogap with temperature in the

central voltage independent background region at low voltages (−75mV ≤ V ≤
75mV ). At 40K the gap becomes evident as a slight dip in the wider background

curve, becoming more prominent with decreasing temperature down to 10K. Figure

4.41 shows the conductance curve at 10K. The voltage dependence of the conduc-

tance is clearly parabolic, flattening towards a constant value at higher voltages. As

such a fit to a Coulomb gap is appropriate, as described below.

Equation 4.15 showed that the conductance of a metal is proportional to its DOS and

equation 4.12 described the DOS of a system with a Coulomb gap. Given the hybrid

and additive nature of the device as described above, this direct relationship between

conductance and DOS must be treated qualitatively with a fitting equation used which

accounts for these complexities. With these caveats in mind equation 4.17 is fitted to

the data for T ≤ 56K.
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Figure 4.41: Low voltage conductance of device A at 10K. Red line is a fit to equation
4.17 with parametersG0 = 0.58153±0.00007S,m = 2.2±0.2 andEC = 49±3mV .

dI

dV
(V ) = G0 +m

(
E2
CV

2

E2
C + V 2

)
(4.17)

Here, G0 describes the overall temperature dependence of the conductance in line with

the arguments laid out above. m is a parameter composed of many factors including

the graphitic DOS at the Fermi level and any tunneling probability elements. It is not

possible to decompose G0 and m into their constituents because of the hybrid nature

of the device. EC describes the pseudogap size.

As demonstrated by figure 4.41 using the 10K data as an example equation 4.17 de-

scribes data very well, here with parametersG0 = 0.58153±0.00007S,m = 2.2±0.2

and EC = 49 ± 3mV . Parameters of fits to this equation for dI
dV (V ) at 10K ≤ T ≤

56K are given in table 4.3.

As shown in table 4.3 values of the zero voltage conductanceG0 increase with decreas-

ing temperature, in agreement with the behaviour of R(T ) shown in figure 4.32. The

constant of proportionality m is approximately equal at all temperatures. The pseudo-

gap size EC grows with decreasing temperature as can be seen in the plot of EC(T )

shown in figure 4.42. It first becomes evident in the fit with a size EC = 23± 4mV at

33K and approximately doubles in size to EC = 49± 3mV at 10K.

To this point the behaviour of the conductance with T ≥ 10K has been discussed.

Below 10K the conductance becomes more complex - figure 4.43 shows the conduc-
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T (K) G0(S) m EC(mV )

56 0.56873± 0.00005 0 −
40 0.57175± 0.00004 0 −
33 0.5788± 0.0001 3± 1 23± 4
30 0.5769± 0.0001 3± 1 21± 4
25 0.5790± 0.0001 4± 1 23± 3
21 0.58268± 0.00009 3.7± 0.6 29± 2
20 0.5807± 0.0001 3.8± 0.8 28± 3
15 0.58150± 0.00008 2.9± 0.3 37± 3
11 0.58360± 0.00007 2.3± 0.2 49± 3
10 0.58153± 0.00007 2.2± 0.2 49± 3

Table 4.3: Fit parameters of equation 4.17 to dI
dV (V ) of device A for 10K ≤ T ≤ 56K.

Figure 4.42: Fitted pseudogap size EC (blue points) as a function of temperature -
individual values given in table 4.3. Grey points are estimated values as described in
the text.
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Figure 4.43: Conductance of device A as a function of voltage for 2K ≤ T ≤ 10K
showing the complex gapping at low temperatures. Curves have been vertically offset
for ease of viewing but share a common scale.

tance curves at 5K and 2K in comparison to the 10K curve shown above. The

figure shows that additional symmetrical features arise in the 5K and 2K curves in

the range 30mV ≤ V ≤ 130mV . At voltages V ≤ ±30mV and V ≥ ±130mV

all three curves coincide suggesting that behaviour in these regions is unchanged from

the 10K case. As such the pseudogap observed at higher temperatures is seen to

persist to the lowest temperatures. The sheer complexity of the features at 5K and

2K renders accurate fitting of the pseudogap using equation 4.17 impossible, however

the equivalence of the curvature around zero bias suggests that the pseudogap size

has saturated at the 10K value of EC ∼ 50mV (grey points in figure 4.42).

In the above the observed pseudogap has been well fitted by a Coulomb-like gap. This

is in line with the findings of Latyshev [39] in which a pseudogap observed for T . 30K

was suggested as being mediated by Coulomb interactions. The Coulomb gap arises

from the incomplete screening of Coulomb interactions between localised energy states

of electrons and holes. In many systems exhibiting a Coulomb gap these states are

localised by high levels of disorder, however given the low values of resistivity found

above it is clear that this cannot be the case here. Instead, the electrons in the device

region likely become partially localised in the graphene layers constituting the device as

the temperature falls. In isolation this localisation of carriers would lead to a significant

increase in resistance, however here it appears that ballistic electrons from the lead

sections of the device continue to pass through the device, seeing perhaps only a low
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potential barrier in the region.

The above explanation of the appearance of the Coulomb-like gap by localisation of

electrons onto the graphene planes of the device region in device A suggests that the

absence of such an effect in device B is due to a difference in microscopic physical

structure. This suggestion is in agreement with the above finding that the ab-plane

mean free path in device B is approximately half that of device A. Structural differences

which could account for these behaviours include stacking faults, grain boundaries and

crystal disorder (e.g. dislocations, impurities). Stacking faults would be unlikely to affect

ab-plane resistivity to the observed degree, and would also result in the peak in R(T )

at ∼ 50K characteristic of faulted c-axis transport (figures 4.5, 4.6 and 4.9), which is

not observed here. However, low level disorder could be sufficient to both decrease the

ab-plane mean free path and also increase coupling between graphene layers in the

device region disrupting localisation.

Outside of the pseudogap region in figure 4.43 futher complex behaviour has been

observed in the form of a reduction of conductance in both positive and negative bias.

These conductance ’dips’ are apparent below 10K, in the measurements made at 5K

and 2K. Comparing these two lowest temperature measurements it is clear that the

dips evolve with temperature, both deepening and moving to higher voltages at lower

temperatures. At present the cause of these conductance dips is unknown, although

possible explanations have been examined and discounted. For completeness, these

are discussed below: phonon assisted and resonant tunneling.

The geometry of the devices created and tested here is very similar to that used by point

contact spectroscopy experiments [157], in that the mean free path is on the order of

the contact size between two bulk conductors. In such experiments the transmission of

electrons through the contact region is strongly affected by their coupling with phonons,

with d2I
dV 2 being proportional to the Eliashberg function. However, the characteristic

feature of this interaction is that the voltage position of the conductance peaks does

not evolve with temperature as each peak corresponds to a particular phonon mode.

The dips in the conductance here are observed to shift with temperature, ruling out this

phenomenon.

Resonant tunneling can occur in systems where a conductor with dimensions on the

order of the electron de Broglie wavelength λdB is separated by tunnel barriers from

conducting leads either side of it [158]. Work by González [54] has calculated λdB ∼
1µm in graphite, the same size as the in-plane dimensions of devices A and B. A

variant of this effect is the double bend quantum channel (DBQC) [159] which consists
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of a conducting channel with two partial, non-conducting blocks across it - the geometry

of devices A and B. The narrow conducting paths left by these blocks create potential

barriers and define a region between them similar to a quantum dot. Electrons passing

through must ’tunnel’ in and then out which requires a characteristic energy, producing a

peak in the conductance. However, again, the characteristic energy is a constant value,

dependent on the ’dot’ size and as such does not shift with temperature.

Given the wealth of conductance features observed here and their coexistence it is clear

that further experiments must be performed before the causes of each can be explained.

Size effects and device geometry are likely to be highly important given the dimensions

of the devices with respect to the mean free path and experiments which vary these

parameters will go a long way to separating and elaborating upon these fascinating

effects.

4.6.3 Measuring c-axis Conduction

A secondary aim of this work is to investigate the behaviour of the c-axis conduction

of kish graphite as a function of temperature and compare it to the predicted ’ideal’

graphite cases of Ono-Matsubara [40, 34] and Kempa [33]. The advantage of using

micron-sized graphite devices to study conduction along the c-axis is that the devices

can be fabricated with dimensions smaller than the average crystallite size, meaning

that the graphite under test contains no grain boundaries or stacking faults and thus

represents the ideal case. However, the interplay between λMFP and the sample size

and geometry strongly affects the measurement and results.

From the measurements made on devices A and B it is clear that the conduction mecha-

nism of the c-axis section of the device has not been found in a way which is consistent

with studying macroscopic graphite. This was shown above as being due to λMFP

being large in comparison with the device dimensions at all temperatures, resulting in

predominantly ballistic rather than Ohmic transport.

With the above finding in mind the results of previously tested devices can be stud-

ied to see whether conduction in those devices constitutes ideal c-axis transport. In

the work of Gunasekaran [41] two devices with similar dimensions to those tested here

were fabricated from an HOPG precursor. Both devices showed resistance increasing

with decreasing temperature to ∼ 50K, with then a metallic behaviour down to the

lowest measured temperature of 20K (figure 4.13). Comparison with the resistance-

temperature behaviour of macroscopic samples of HOPG as shown in figure 4.9 demon-

strates that the micron-sized devices show macroscopic behaviour and therefore are
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likely to contain stacking faults. This is easily motivated by figure 2.5 which shows a

TEM image of a representative HOPG sample. The image shows that the c-axis crys-

tallite size is 60 ± 20nm, significantly smaller than the 100nm and 200nm c-axis

stack heights of the devices. The IV characteristics of the devices (figure 4.13) also

suggest the presence of stacking faults resulting in large potential barriers which cause

the tunneling-type curvature seen at higher voltages.

In the work of Latyshev [39] the device presented had dimensions 1µm x 1µm in-plane

and 300nm in height and was formed from a natural graphite precursor. The resistance

of the device as a function of temperature (figure 4.12) showed a gradual rise with de-

creasing temperature, becoming temperature independent below ∼ 100K before a

further rise below 30K concurrent with the opening of a pseudogap. It is possible that

the device height was less than the c-axis crystallite size meaning that the measure-

ment could represent ideal c-axis conduction. If so the negative ∂R
∂T suggests a that

the metallic conduction predicted by Ono-Matsubara [40, 34] is incorrect. However, the

interpretation of the results for this device is complicated by the findings of Dusari [55]

which find a very similar resistance-temperature behaviour for in-plane ballistic transport

through a constriction in an HOPG sample. Given the large mean free paths charac-

teristic of natural graphite samples ballistic behaviour of this kind is a distinct possibility

and undermines the idea of the Latyshev device as a c-axis measurement.

As discussed above it is unlikely that either of the devices tested here or those of pre-

vious studies represent a c-axis measurement of ideal graphite. Whether such a mea-

surement is actually achievable is an open question. It is clear that it cannot be achieved

using macroscopic samples but it now also seems unlikely that microscopic samples

can yield such a result. If a true characterisation of the c-axis conduction mechanism

is to be performed it seems that a sample geometry is required in which the c-axis sec-

tion under test is longer than the mean free path at all temperatures while being short

enough that it contains no faulting; a difficult proposition.

4.7 Summary

FIB micro-machining has been used to create two micron-sized, c-axis stack devices

with stack heights 230nm and 290nm ( devices A and B) from a kish graphite precur-

sor, following previously published work [37, 39]. IV andR(T ) measurements between

250K and 2K have shown the devices to have a hybrid behaviour with an Ohmic con-

tribution from ab-plane graphitic leads and a ballistic contribution from the device itself.
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Ballistic behaviour persists up to at least 250K in device A while the behaviour of de-

vice B changes at ∼ 130K, becoming more Ohmic due to reduction of the mean free

path.

A pseudogap observed in device A below 40K has been well described by a modified

Coulomb gap equation. This soft gap was observed to grow with decreasing tempera-

ture to a maximum size EC(2K) = 50 ± 5meV . Coulomb interactions between car-

riers localised within the graphene planes constituting the stack device are suggested

to be the cause. Further conductance dips have been observed in the same device

with unknown cause. It is noted that the gap size is large for a Coulomb gap but that

further investigation is greatly complicated by the wealth of conductance features exhib-

ited. Device B is seen to exhibit no gap features due to increased disorder which also

contributes to its reduced mean free path.

R(T ) results of stack devices A and B and of the similar structures of Latyshev [39]

and Gunasekaran [41] have been analysed in the context of Ohmic c-axis conduction

in ideal graphite and the models of Ono-Matsubara [40, 34] and Kempa [33]. As noted

above, devices A and B were found to exhibit ballistic behaviour, while the devices of

Gunasekaran were observed to contain stacking faults, with R(T ) behaviour mimicking

faulted macroscopic samples. The device of Latyshev was not observed to contain

significant faulting and as such the measuredR(T ) profile showing negative dR
dT for T &

100K and R(T ) ∼ constant for T . 100K could represent an ideal measurement.

However, it is noted that recent measurements by Dusari [55] of ab-plane transport

through micron-sized constrictions in HOPG showed a very similar R(T ). As such, it is

concluded that ideal c-axis conduction in graphite is yet to be observed.

Given the variation in the results of electrical transport measurements on such similar

devices as those here and in [39] and [41] and the inability to present complete explana-

tions it is clear that complex mechanisms are at work. Despite efforts to simplify these

devices as much as possible the combination of the geometry, the size with respect to

important transport lengths and the inherent structure and defective nature of graphite

produces a wealth of features which, while interesting, are difficult to study in combina-

tion. It will be a worthwhile challenge to design experiments which can separate and

elucidate the many phenomena which intersect in these devices.



Chapter 5

Summary and Next steps

The main, modified objectives of this thesis were to perform electrical transport and

heat capacity measurements on CaC6, graphite and other MC6 GICs in order to: (i)

characterise the superconducting and CDW gaps in CaC6 and make comparison to

similar systems; (ii) provide experimental verification of predicted superconductivity in

BaC6; (iii) provide experimental verification of observed superconductivity in SrC6, and

; (iv) verify the findings of a pseudogap in graphitic microstructures.

Against the first of these objectives: The superconducting gap in CaC6 was observed

and characterised in heat capacity measurements, with comparison measurements

made for SrC6 and BaC6. In CaC6 higher temperature measurements up to 300K

did not observe the CDW transition, indicating TCDW is to be found at still higher tem-

peratures. While superconducting micro-devices were created and superconductivity

observed in transport measurements, these devices failed before they could be di-

rected towards any study of the CDW state. Future heat capacity measurements should

be performed above 300K to find TCDW , with electrical transport measurements on

micro-samples then used to fully characterise the CDW gap evolution. Higher temper-

ature heat capacity measurements should not present a serious technical challenge,

whereas careful experimental design and work will be required to produce electrical

transport results.

Measurements of the heat capacity of BaC6 have observed no superconducting tran-

sition down to ∼ 390mK, consistent with previous experimental evidence. In addition,

the electron-phonon coupling has been observed to be significantly weaker than pre-

dicted by theory at λel−ph = 0.1 (vs λel−ph = 0.38 in [11]). Coupled with inelastic
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x-ray measurements showing the theoretically calculated phonon energies at ∼ 20 %

lower than experimentally observed [9], the next steps here must be to reevaluate the

theoretical modelling of BaC6 such that predictions are consistent with experimental

observations.

Measurements of the heat capacity of SrC6 found λel−ph = 0.4 in agreement with

theoretical predictions of λel−ph = 0.54 [11] but did not observe a previously discovered

superconducting transition at 1.65K [22]. Given the quality and unambiguous nature of

previous measurements the negative result seen here should likely not be considered

as contradictory to the published results. Instead, the experiment should be repeated

with special attention paid to sample preparation and experimental process in order to

provide a reliable comparison.

Characterisation of graphitic micro-structures using electrical transport measurements

has verified the findings of a pseudogap state in graphite of Latyshev et al [39] in one

device. A pseudogap was not observed in another, very similar device. The variation in

observations between devices tested here demonstrates their complexity and the need

for future focus on the design of experiments which can separate the many phenomena

which intersect in these devices.
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