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ABSTRACT: Photocatalytic hydrogen production from water offers an abundant, clean
fuel source, but it is challenging to produce photocatalysts that use the solar spectrum
effectively. Many hydrogen-evolving photocatalysts are active in the ultraviolet range, but
ultraviolet light accounts for only 3% of the energy available in the solar spectrum at ground
level. Solid-state crystalline photocatalysts have light absorption profiles that are a discrete
function of their crystalline phase and that are not always tunable. Here, we prepare a series
of amorphous, microporous organic polymers with exquisite synthetic control over the
optical gap in the range 1.94−2.95 eV. Specific monomer compositions give polymers that
are robust and effective photocatalysts for the evolution of hydrogen from water in the
presence of a sacrificial electron donor, without the apparent need for an added metal
cocatalyst. Remarkably, unlike other organic systems, the best performing polymer is only
photoactive under visible rather than ultraviolet irradiation.

■ INTRODUCTION

Many studies have focused on inorganic semiconductors as
photocatalysts for hydrogen production from water using
ultraviolet (UV) or visible light.1−3 Organic semiconductors
are much less explored, but they are intriguing because of their
diverse synthetic modularity, which allows their electronic and
structural properties to be tailored. Conjugated linear poly(p-
phenylene)s4,5 can catalyze hydrogen evolution, but they are
only modestly active under UV irradiation and their performance
under visible light is very poor. In 2009, Antonietti and co-
workers reported an organic photocatalyst for hydrogen
evolution based on graphitic carbon nitride (g-C3N4).

6 The
quantity of hydrogen evolved for native g-C3N4 was low, but this
was significantly improved upon addition of platinum as a
cocatalyst. Copolymerization routes to carbon nitrides were
shown to dramatically increase the rate of hydrogen production,
again using platinum as a cocatalyst.7−9 Carbon nitrides are
visible light photocatalysts; like polyphenylenes, however, they
are most active in UV light.6,9 Microstructure appears to
influence activity in carbon nitrides: for example, mesoporosity
was shown to significantly increase the amount of hydrogen
evolved.10,11 Related organic polymers, such as a poly(triazine
imide) doped with 4-amino-2,6-dihydroxypyrimidine12 and a
heptazine-based network,13 are also effective photocatalysts for
hydrogen evolution. In all of these cases, platinum was added as a
cocatalyst in combination with a sacrificial electron donor. Other
modifiers can be used: for example, Ag2S-modified14 and

polypyrrole-modified15 carbon nitrides were recently reported.
The rates of hydrogen evolution for these organic solids are lower
than for some inorganic photocatalysts, but improved rates can
be achieved by using liquid-assisted grinding approaches16 or
sol−gel syntheses17 or by controlling the degree of polymer-
ization and the proton concentration.18

Other than carbon nitrides and linear poly(p-phenylene)s,
there are few examples of organic polymers that act as
photocatalysts for hydrogen evolution from water. A small
number of nitrogen-containing polymers have been studied, such
as poly(azomethines),19 where the optical gap could be tuned to
some extent by the choice of monomer. Likewise, a hydrazone-
based covalent organic framework showed significant hydrogen
evolution.20 Very recently, a porous organic push−pull polymer
exhibited visible-light-induced hydrogen production from water
when prepared as a composite with titanium dioxide.21 Again,
these systems all required the addition of a platinum cocatalyst.
A well-known advantage of organic polymers is that

copolymers can be produced over a continuous range of
monomer compositions, thus achieving systematic control over
physical properties. This continuous tunability is distinct, for
example, from that of crystalline inorganic solids, which often
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exist as discrete phases with specific physical properties. For
example, we demonstrated the fine-tuning of pore size in
conjugated microporous polymers (CMPs) by statistical
copolymerization.22 Others showed that the fluorescence of
microporous polymers can be varied by copolymerization
strategies.23 Copolymerization was also used to prepare
polymers with tunable gas sorption properties.24 Of particular
relevance here, we were able to tune the optical gap for pyrene-
based CMPs by statistical copolymerization.25

■ RESULTS AND DISCUSSION
We now report the synthesis of a library of CMP networks via
statistical copolymerization and show that the adsorption/
emission spectra, and hence the optical gap, can be tuned over a
wide range in a continuous fashion. These polymer networks
exhibit high levels of porosity of up to 1700 m2 g−1, and they can
be used, without the addition of additional metal cocatalysts or
photosensitizers, for the photocatalytic generation of hydrogen
from water in the presence of a sacrificial electron donor. The
materials are stable for several catalytic cycles without any
obvious photodegradation. Some copolymers are exclusively
active under visible light, rather than UV irradiation, which we
believe is unique for organic photocatalysts.
Fifteen polymer networks were synthesized using Pd(0)-

catalyzed Suzuki−Miyaura polycondensation26 of 1,4-benzene
diboronic acid (1) and/or 1,3,6,8-tetraboronic pinacol ester of
pyrene (3) and/or 1,2,4,5-tetrabromobenzene (2) and/or
1,3,6,8-tetrabromopyrene (4) (Figure 1, Table 1).

All of the polymers are insoluble in organic solvents, and they
were characterized by FT-IR spectroscopy and elemental analysis
(Experimental Section, Supporting Information). Thermogravi-
metric analysis indicated that the polymers are thermally stable in
air up to 300 °C (Figures S-4 and 5). Powder X-ray diffraction
showed that all materials are amorphous. The polymers were
porous to nitrogen at 77 K and give rise to type I sorption
isotherms, indicating microporosity (pores < 2 nm, Figures S-6−
10). The apparent Brunauer−Emmett−Teller (SABET) surface
areas range from 600 to 1700 m2 g−1 (Table 1). Polymers CP-
CMP127 and CP-CMP1025,28 were both synthesized previously;
all other networks in the series are first reported here. CP-
CMP15 has the same nominal structure as our earlier polypyrene
network,25 but the synthetic protocol is different (Suzuki−

Miyaura coupling instead of Yamamoto coupling). As a result,
the absorption onset and the photoluminescence maximum for
CP-CMP15 are both blue-shifted, suggesting that the polymer
microstructure obtained using the Suzuki−Miyaura protocol is
subtly different. The UV−visible reflectance spectra (Figure 2a)
show a redshift in the optical absorption onset (optical gap) from
420 to 640 nm with an increase of pyrene content when going
from CP-CMP1 to CP-CMP15. These data show that it is
possible to fine-tune the optical properties of the CMP networks,
and hence the optical gap (Table 2), over a broad range by
adjusting the molar ratio of the monomers (Figure 2, top).
Time-dependent density functional theory (TD-DFT) cluster

calculations (Experimental Section, Supporting Information),
using an approach reported previously,29 suggest that the redshift
in the UV−visible spectra with increasing pyrene incorporation is
driven by a change in the character of the orbitals contributing to
the excitations responsible for the optical gap. The highest
occupied molecular orbital (HOMO) of a pyrene-containing
system lies higher in energy than its phenylene equivalent.
Equally, the lowest unoccupied molecular orbital (LUMO) of a
pyrene-containing system lies lower in energy than its phenylene
equivalent. Hence, upon increasing incorporation of pyrene, the
low-energy excitations are dominated by pyrene contributions,
and the optical gap shifts to higher wavelengths.
The photoluminescence spectrum for CP-CMP1, which

contains no pyrene, is blue, with a maximum characteristic
emission at 445 nm.27 By contrast, the emission for the
copolymers with pyrene units (CP-CMP2 through CP-
CMP10) show a gradual redshift from a bluish-green emission
at 465 nm (CP-CMP2) to a saturated green-yellow emission at
534 nm (CP-CMP10), and further to a red emission at 588 nm
for CP-CMP15 (Figure 2b). We suggested before29 that pyrene
CMPs contain cyclic structures, or rings, and that ring-strain
manifests itself as a redshift in the emission spectrum. Recently,
Colina and co-workers30 independently came to the same
conclusions about the topology and strained nature of pyrene
CMPs in their structural modeling work. Hence, the gradual
redshift can probably be explained, as is the shift in the optical

Figure 1. Synthesis of conjugated copolymer photocatalysts. Suzuki−
Miyaura polycondensation produced a library of statistical copolymers
with varying ratios of benzene and pyrene (Table 1).

Table 1. Monomer Feed Ratios for the Copolymerization
Reactions and Apparent Brunauer−Emmett−Teller Surface
Areas of the Copolymersa

relative molar monomer ratio

copolymer 1 2 3 4 SABET (m
2 g−1)b

CP-CMP1 2 1 0 0 597
CP-CMP2 2 0.99 0 0.01 682
CP-CMP3 2 0.95 0 0.05 710
CP-CMP4 2 0.90 0 0.10 684
CP-CMP5 2 0.80 0 0.20 734
CP-CMP6 2 0.60 0 0.40 726
CP-CMP7 2 0.50 0 0.50 839
CP-CMP8 2 0.40 0 0.60 1056
CP-CMP9 2 0.20 0 0.80 762
CP-CMP10 2 0 0 1 995
CP-CMP11 1.9 0 0.05 1 770
CP-CMP12 1.6 0 0.2 1 957
CP-CMP13 1 0 0.5 1 1710
CP-CMP14 0.4 0 0.8 1 1525
CP-CMP15 0 0 1 1 1218

aThe structures of monomers 1−4 are shown in Figure 1. bApparent
BET surface area, SABET, is calculated from the N2 adsorption
isotherm.
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gap, by the incorporation of the pyrene chromophore itself,
coupled with an increase in ring-strain down the copolymer
series, especially beyond CP-CMP10 (Experimental Section,
Supporting Information).
Photocatalytic hydrogen-evolution experiments were carried

out with these CMPs in the presence of a sacrificial electron
donor. Unlike for most previously reported polymer systems,
diethylamine and not triethanolamine was selected because it

showed the highest photocatalytic activity among a range of
sacrificial reagents tested (Figure S-19). This might be due to
better wettability or swelling of the polymer network in the
water/diethylamine mixture. For CP-CMP10, swelling of the
polymer network in the presence of solvents has been reported.27

All of the CMPs showed steady hydrogen production under
illumination with visible light (λ > 420 nm, Table 2), with a
gradual increase in the hydrogen evolution rate from CP-CMP1
to CP-CMP10, that is, as the optical gap of the polymer
decreased. However, for polymers with even smaller optical gaps
(i.e., CP-CMP11 through CP-CMP15), a sudden drop in the
photocatalytic performance was observed (Figure 3).
The amounts of polymer used have not been optimized, and

therefore all experiments were performed using either 100 mg or

Figure 2. Statistical copolymerization allows continuous tuning of the photophysical properties of the photocatalysts. (top) Photographs of the 15
copolymers (CP-CMP1−15), imaged under irradiation with UV light (λexcitation = 365 nm); (a) UV−visible absorption spectra of the copolymers
measured in the solid state (intensities normalized); (b) photoluminescence spectra of the copolymers, also measured in the solid state (λexcitation = 360
nm) and also normalized. (Absolute quantum yields can be found in the Table S-1.) A systematic redshift is observed as the pyrene monomer
incorporation is increased.

Table 2. Photophysical Properties and Hydrogen Evolution
Rates for the Polymer Photocatalysts

copolymer
λem

(nm)a
optical gap
(eV)b

total H2 evolved
(μmol)c

H2 evolution rate
(μmol h−1)c

CP-CMP1 445 2.95 5 1.0 ± 0.1
CP-CMP2 465 2.69 8 1.4 ± 0.1
CP-CMP3 474 2.61 11 1.8 ± 0.2
CP-CMP4 483 2.54 14 2.4 ± 0.1
CP-CMP5 498 2.53 17 3.0 ± 0.2
CP-CMP6 512 2.50 15 2.6 ± 0.2
CP-CMP7 517 2.47 17 2.9 ± 0.2
CP-CMP8 523 2.42 35 6.0 ± 0.6
CP-CMP9 528 2.38 69 10.9 ± 0.1
CP-CMP10 534 2.33 100 17.4 ± 0.9
CP-CMP11 535 2.24 11 2.0 ± 0.2
CP-CMP12 547 2.10 8 1.4 ± 0.2
CP-CMP13 558 2.07 6 1.0 ± 0.1
CP-CMP14 566 1.96 <0.5 <0.1
CP-CMP15 588 1.94 <1 0.2 ± <0.1

aPhotoluminescent emission peak of polymer recorded in the solid
state. bCalculated from the onset of the absorption spectrum; see
discussion in the computational section of the Experimental Section,
Supporting Information. cReaction conditions: 100 mg polymer was
suspended in 100 mL diethylamine/water solution (20 vol %) and
irradiated by a 300 W Xe lamp (λ > 420 nm visible filter) for 6 h.

Figure 3. Rate of photocatalytic hydrogen production can be correlated
with the optical gap in the polymers. Data shown for networks CP-
CMP1−15 (black squares) and analogous linear polymers (discussed
below), P16−18 (open squares); all measurements relate to 100 mg
catalyst in water containing 20 vol % diethylamine as an electron donor
under filtered, visible irradiation (λ > 420 nm, E < 2.95 eV).
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25 mg of catalyst with a fixed ratio of the catalyst amount to the
volume of water/sacrificial reagent. For comparison, commercial
graphitic carbon nitride and poly(para-phenylene) were tested
with sacrificial reagents and cocatalysts previously employed in
literature, using exactly the same setup as the polymers in this
study (Experimental Section, Supporting Information).
TD-DFT cluster calculations31,32 (Experimental Section,

Supporting Information) suggested that these CMP materials
should have a significant thermodynamic driving force (2−3 V)
for the proton reduction half-reaction. As the optical gap is red-
shifted in the series of CP-CMP1 to CP-CMP15, photons in a
larger part of the visible spectrum are able to generate electrons
that can reduce protons. Hence, one might reasonably expect
that the rate of hydrogen production under visible light would
increase down the series; indeed, theory agrees with the
experiment for the series from CP-CMP1 to CP-CMP10. The
dramatic drop in hydrogen production for polymers in the series
beyond CP-CMP10 (Figure 3) suggests that dark, nonradiative
electron−hole recombination in the pyrene-rich materials might
become dominant, thus losing most electrons through
recombination.
An alternative, kinetic explanation for the peak hydrogen

production in CP-CMP10 is that the barrier for electron-transfer
between the polymers and the protons increases with increasing
pyrene content, thus reducing the amount of hydrogen evolved.
We are not at this point able to distinguish between these
explanations.
A typical time course for hydrogen production using CP-

CMP10 catalyst under visible-light irradiation (λ > 420 nm) is
shown in Figure 4a. The reaction was allowed to proceed for a
total of 24 h with intermittent degassing of the reaction mixture
every 6 h. Continuous hydrogen evolution was observed over the
entire time course, even when the reaction was continued for a
total of more than 100 h, without significant decline in activity
(Figure S-20). The total amount of hydrogen evolved is equal to
four times the amount of catalyst employed, indicating that the
reaction proceeds photocatalytically. Furthermore, FT-IR, UV−
vis, and photoluminescence spectra of the polymer network
before and after the reaction showed no obvious signs of
photodegradation, and the surface area of the catalyst is also
retained (Figures S-21−23). Finally, control experiments
showed that no reaction occurs in the dark at room temperature
or 45 °C. No hydrogen evolution was observed in the absence of
the polymer or when using pure diethylamine without water.
Unlike most examples in the literature, we added no additional

noble metal cocatalysts to catalyze the hydrogen evolution. The
polymers were, however, prepared via palladium-catalyzed
Suzuki−Miyaura reactions. We therefore hypothesized that
residual palladium metal in the polymers might assist in
catalyzing the proton reduction. On measuring the residual
metal contents, CP-CMP10 was found to contain a smaller
amount of residual palladium than many of the other polymers in
the series (0.42 wt %), despite displaying the highest rate of
hydrogen evolution (Figure S-24). This suggests that residual
metal is not the sole cause of the maximum hydrogen evolution
activity in CP-CMP10. Likewise, when CP-CMP15 was
synthesized again using a palladium-free Yamamoto protocol
(CP-CMP15Y, Figure S-38), equivalent photocatalytic perform-
ance was observed (0.2 μmol h−1) compared to the network
synthesized using Suzuki−Miyaura polycondensation.24 None of
these results suggest that residual palladium has a significant
effect on the rate of hydrogen evolution, but this does not
eliminate the possibility that it plays a role in CMP-CMP10 and

the other more active photocatalysts. As a direct control
experiment, a palladium-free equivalent of CP-CMP10 was
prepared (CP-CMP10Y), again using the nickel-catalyzed
Yamamoto protocol. However, in this case, the optical properties
of CP-CMP10Y were markedly different from those of the
Suzuki−Miyaura product, CP-CMP10, and a much lower rate of
hydrogen evolution was observed for CP-CMP10Y (0.3 μmol
h−1, Figure S-39). This low activity could be rationalized by the
optical gap for CP-CMP10Y (2.04 eV; c.f., Figure 3), and this
again illustrates that polymer microstructure can affect
absorption/emission spectra. It is unclear, therefore, whether
the large drop in photocatalytic activity in CP-CMP10Y with
respect to CP-CMP10 is a result of the absence of palladium or its
optical properties or both. We note that CP-CMP14 and CP-
CMP15 have optical gaps similar to that of CP-CMP10Y and
equally low photocatalytic activities (Figure 3), despite having
measurable palladium contents (0.73 and 0.40 wt %). However,
CP-CMP14 and CP-CMP15 are also significantly more pyrene-
rich than CP-CMP10Y, and this might lead to subtle micro-
structural differences, such as ring formation, that could influence
charge separation and charge transport. As such, the photo-
catalytic activity for the polymers may not be a simple function of
optical gap and palladium content alone.

Figure 4. Photocatalytic hydrogen evolution is repeatable over multiple
cycles and is mainly caused by visible light, not by UV irradiation. (a)
Time course of hydrogen production for CP-CMP10 (100 mg) from
water containing 20 vol % diethylamine as an electron donor under
visible light (λ > 420 nm, black symbols). The reaction was degassed
every 6 h (dashed line). Open diamonds represent an experiment where
a suspension of CP-CMP10 (25 mg) was treated with carbon monoxide
before the experiment. (b) Time course of H2 production for CP-
CMP10 (100 mg) under visible light (λ > 420 nm). The reaction was
then degassed and continued under UV light (U-340 filter), whereupon
the rate of H2 evolution is almost 30 times lower.
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To further probe the effect of metal cocatalysts, we tested the
hydrogen evolution performance for CP-CMP10 loaded
postsynthesis with platinum, using the widely used method of
photocatalytic deposition from H2PtCl6.

6,12,19,20,33 However,
attempted loading of CP-CMP10 with 3 wt % platinum seems to
be inefficient, and the system showed no improvement in
hydrogen evolution rate (Figure S-42).34 TEM images seem to
indicate that no Pt nanoparticles have been formed during the
deposition of Pt on CP-CMP10. The synthesized sample and the
Pt-loaded sample seem to contain the same amount of dense
metal particles that are probably the aforementioned Pd
nanoparticles (Figure S-43).35 Overall, we see no correlation
between photocatalytic activity and metal loading for the
polymers in this series (Figure S-24). Hence, it appears that
the polymers are effective photocatalysts without any additional
metal cocatalyst and that the rate of hydrogen evolution
correlates more strongly with the optical gap than with the
residual palladium content. Finally, a carbon monoxide poison-
ing experiment (Figure 4a) did not result in any change to the
catalytic activity.
Batch-to-batch and repeat measurements on a sample of CP-

CMP10 indicated an average hydrogen evolution rate of 17.4 ±
0.9 μmol h−1. The value is significantly higher than that observed
for poly(azomethine) networks loaded with 3 wt % Pt cocatalyst
(0.7 μmol h−1)19 and graphitic carbon nitride with 3 wt % Pt
cocatalyst (6.5 and 10.7 μmol h−1).6,9,34 The rate is similar to
those of other recent reports for carbon nitrides,8,16 although
lower than some reported for mesoporous carbon nitrides10 and
related materials.12,20 Direct comparison between different data
sets, however, is difficult because of variations in the reaction
setup;36 indeed, the reported values for carbon nitride itself vary
significantly from study to study.6,10,12,34 We note again,
however, that other reports involve the postsynthesis addition
of around 3 wt % metal cocatalysts to achieve good hydrogen
evolution rates.34

Perhaps the most important feature of our polymers is their
photocatalytic activity under visible light. Graphitic carbon
nitride is also active under visible light (>420 nm), but it is far
more active under UV irradiation.9 This presents a challenge for
the effective utilization of the natural solar spectrum, where only
3% or so of the available energy is in the UV range. By contrast,
our polymers are mainly active in the visible range. For CP-
CMP10, replacement of the >420 nm filter with a 710−315 nm
filter resulted in a very similar rate of hydrogen production,
indicating that UV light with wavelengths lower than 420 nm
contributes little to the photocatalysis. Moreover, by using a filter
that only transmits UV light (U-340, 270−400 nm, see Figure
S44 for transmission characteristics), hydrogen was evolved at a
rate of just 0.6 μmol h−1 (Figure 4b). Hence, CP-CMP10 appears
to be a true visible light photocatalyst. To our knowledge, this
visible light bias is unique among organic photocatalysts for
hydrogen evolution.
We also performed studies on oxygen evolution to probe

whether full water splitting is possible with CP-CMP1 and CP-
CMP10. However, no O2 was detected under the conditions
used. (TD-)DFT-calculations also show that the system lacks
driving-force for oxidation of water (Experimental Section,
Supporting Information)
Three linear copolymer analogues of CP-CMP10 were

synthesized to study the effect of polymer nanostructure on
optical properties and on photocatalytic activity (Figure 5).
Polymer P16 contains, exclusively, 1,3-substituted pyrene
monomer units, whereas P17 contains only 1,6-linked

monomers; P18 has, as in CP-CMP10, a statistical mixture of
both 1,3- and 1,6-substituents.
The optical gap for P16 is blue-shifted by 74 nm with respect

to CP-CMP10; likewise, P17 is blue-shifted by 41 nm (Figure S-
14). The emission maxima are also blue-shifted by 69 and 35 nm,
respectively, for P16 and P17. The optical gap of the statistical
copolymer, P18, lies between those of P16 and P17. We believe
that these absorption shifts are further evidence for structural
elements, such as rings,29 that can form in network CP-CMP10
but not in the linear three polymers.
Polymers P16 and P18 showed modest BET surface areas that

were comparable with other intrinsically porous linear CMPs,37

whereas P17 was effectively nonporous, perhaps suggesting that
the 1,3-pyrene linkages contribute to contortion in the polymer
chains, and hence inefficient packing and porosity. When tested
as photocatalysts, P16 produced a negligible amount of hydrogen
under visible light (>420 nm). P17 and P18 have average
hydrogen evolution rates of 5.0 ± 0.4 and 3.8 ± 3 μmol h−1,
respectively, under visible light, but when the >420 filter was
replaced with a 315−710 nm filter, significantly higher rates of
11.7 ± 1.1 and 5.7 ± 0.5 μmol h−1, respectively, were observed.
The changes in photocatalytic activity with respect to network
CP-CMP10 can be explained by the differences in the absorption
profiles of the various polymers. For both CP-CMP10 and P17,
the use of filters that remove light at wavelengths higher than the
polymer absorption maximum significantly reduces the photo-
catalytic performance (Figures S-52 and 53).
The good photocatalytic activity of P17 under combined UV

and visible light indicates that a low BET surface area (13 m2 g−1)
is not necessarily a limiting factor for the performance of these
polymers. In fact, no direct correlation between photocatalytic
performance and surface area was found for this series of
photocatalysts (Figure S-55). In general, however, the ability to
introduce a large, distributed interface with water should be an
advantage in designing improved organophotocatalysts, both in
terms of optimizing mass transport and in allowing strategies
such as the introduction of dopants in the micropores. High
surface areas should also be an advantage in other heterogeneous
photocatalysis applications.38,39

■ CONCLUSIONS
The optical gap in a series of microporous copolymers was fine-
tuned over a broad range (1.94−2.95 eV) by varying monomer
composition. This optical gap determines the efficiency of the
copolymers as photocatalysts for hydrogen evolution. Unlike
most hydrogen-producing photocatalysts, certain copolymers are
active under visible light, and UV light contributes little to the
photocatalytic activity, possibly because higher-energy excited
states are diverted into pathways that are not suitable for

Figure 5. Structures of linear copolymer analogues of the CP-CMP10
network.
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hydrogen generation. These polymers do not require the
deposition of an additional metal cocatalyst and deliberate
“poisoning” of the polymer with carbonmonoxide does not affect
the H2 evolution rate. Our modular chemical strategy has
parallels with the chemical synthesis of graphene nanomateri-
als,40 and synthetic control over electronic structure and
microporosity should facilitate the design of improved photo-
catalysts for overall water splitting in the future.
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