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We study the tensor spectral index nt and the tensor-to-scalar ratio r in the simplest multifield extension
to single-field, slow-roll inflation models. We show that multifield models with potentials V ∼

P
iλijϕijp

have different predictions for nt=r than single-field models, even when all the couplings are equal λi ¼ λj,
due to the probabilistic nature of the fields’ initial values. We analyze well-motivated prior probabilities for
the λi and initial conditions to make detailed predictions for the marginalized probability distribution of
nt=r. WithOð100Þ fields and p > 3=4, we find that nt=r differs from the single-field result of nt=r ¼ −1=8
at the 5σ level. This gives a novel and testable prediction for the simplest multifield inflation models.
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A cosmological gravitational wave background (CGWB)
is a compelling signature of inflation, which is already
supported by the highly Gaussian primordial perturbations
[1,2] and their broken scale invariance, now detected at
5σ significance [3,4]. A large-amplitude CGWB provides
fundamentally new tests of single-field slow-roll inflation via
the consistency relation [5] nt=r ¼ −1=8, which relates the
tensor spectral index nt to the ratio of the tensor and scalar
perturbation amplitudes r.
While there has been dramatic progress towards the

direct detection of a CGWB through the B-mode polari-
zation in the cosmic microwave background [6], measuring
nt is challenging with current technologies [7–9]. However,
for r≳ 0.1 this will be feasible with the next generation of
space-based [10,11], ground-based [12–15], and balloon-
borne [16,17] experiments, while future 21 cm projects
[18,19] could also detect lensing by a CGWB and direct
detection experiments [20,21] would test the consistency
condition using the lever arm between the cosmic micro-
wave background and solar system scales to far greater
accuracy with r≳Oð10−3Þ.
The simplest inflationary scenarios that yield an easily

detectable CGWB are monomial models with the infla-
tionary potential V ∼ jϕjp, which have 0.05≲ r≲ 0.30 for
2=3≲ p≲ 4. Single field models are simple but not
necessarily natural, as many high energy theories yield
large numbers of scalar degrees of freedom [22–25]. For
multifield models the consistency relation is reduced to an
inequality, nt=r ≤ −1=8. While r and nt are correlated for
Nf ¼ 2 [26,27], there is no known relationship between r
and nt when Nf is large.
In this Letter, we derive a robust prediction for nt=r

for Nf-monomial models, with potential

V ¼ 1

p

X
i

λijϕijp; ð1Þ

where λi are real, positive constants and summations run
over the number of fields, Nf. Equation (1) arises naturally
in many high energy theories [28–35] and is a simple,
intuitive generalization of the chaotic single-field slow-roll
models.
We treat the λi and the values of ϕi at a fixed number of

e-folds before the end of inflation as independent random
variables. WhenNf → ∞, the central limit theorem ensures
that nt=r is a Gaussian random variable. Critically, hnt=ri
does not reduce to the single-field limit if the couplings are
identical unless the field values ϕi;� when the pivot scale k�
leaves the horizon are also fixed, except for the special case
p ¼ 2. The expected value of nt=r depends only on two
moments of the distributions of the λi and ϕi, and is
independent of Nf. The variance in nt=r is s2nt=r ∼ 1=Nf

(for p > 3=4), giving a sharp, generic prediction for the
consistency relation in the many-field limit. This provides a
direct test for distinguishing betweenNf-monomial models
and their single-field analogues.
Model.— In some cases the λi in Eq. (1) might be

derivable from fundamental theory, but in general we
are ignorant of their values, so we treat these terms as
independent random variables (RVs) with a prior proba-
bility PðλÞ. Similarly, we do not know the fields’ initial
conditions, so we also treat these as identically distributed,
but possibly correlated, RVs with a prior probability Pðϕ0Þ.
We then marginalize over the PðλÞ and Pðϕ0Þ to produce a
probability distribution for nt=r. Since a change of varia-
bles ϕi → ~ϕiðϕj; λjÞ will mix the λi and ϕi, it is clear that
there is no a priori difference between these two types of
parameters, motivating our statistical approach.
The simplest choice for Pðϕ0Þ is a uniform distribution

of ϕi;� defined when the pivot scale k� leaves the horizon
N� e-folds before the end of inflation. This choice contains
the least Shannon information about the fields’ initial
states and ensures that most of the fields are dynamically
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relevant. Further, this Pðϕ0Þ and others were extensively
studied in Ref. [36], where it was shown that the initial
conditions only weakly affect the predicted density spectra.
The likely values of ns and r for a related class of multifield
monodromy models was derived in Ref. [37], finding
0.955≲ ns ≲ 0.975. Furthermore, r ¼ 4p=N�, and the
non-Gaussianity is small.
δN formalism.— The potential in Eq. (1) is sum-

separable and, assuming slow roll, N� is [38,39]

N� ¼ −
Z

c

�

X
i

Vi

Vi
0 dϕi; ð2Þ

where Vi
0 ¼ λijϕijp−1 and ϕi;� and ϕi;c denote field values

at horizon crossing and the end of inflation, respectively.
For Nf-monomial inflation

N� ¼
1

2p

X
i

½ϕ2
i;� − ϕ2

i;c�: ð3Þ

The δN formalism relates the field perturbations at
horizon crossing to the gauge-invariant curvature pertur-
bation ζ on constant density hypersurfaces via

ζ ≈
X
i

N�;iδϕi;�; ð4Þ

where N�;i ≡ ∂N�=∂ϕi;�. If the field perturbations are
well approximated by a free field theory with power
spectrum Pij

δϕ ¼ ðH�=2πÞ2δij at horizon crossing, the
tensor-to-scalar ratio is

r ¼ 8P
iN�;iN�;i

: ð5Þ

To first-order in slow-roll nt ¼ −2ϵ, where

ϵ ¼ 1

2

X
i

�
V 0
i

V

�
2

: ð6Þ

For Nf-monomial models, the field values ϕi;c at the
end of inflation can typically be neglected. This horizon
crossing approximation (HCA) (e.g., Refs. [38,40]) is a
simplification of the δN formalism that incorporates the
superhorizon evolution of ζ, but ignores quantities con-
tributing to N� from the end-of-inflation surface. Setting
ϕi;c → 0 in Eq. (3), we find

nt
r
¼ −

1

4p2
ϵ
X
i

ϕ2
i;�; ð7Þ

where we restrict our attention to cases that are slowly
rolling at horizon crossing. Requiring ϵ≲ 0.1 then sets the
maximum deviation from the single-field result as

−
�
N�
2p

�
×Oð10−1Þ ≲ nt

r
≤ −

1

8
: ð8Þ

The many-field limit.— We build the probability distri-
bution for nt=r by marginalizing Eq. (7) over Pðϕ0Þ and
PðλÞ and use the central limit theorem (CLT) to take the
large Nf limit, Nf → ∞. By Eq. (3) the HCA implies that
Pðϕ0Þ is a uniform distribution pulled back onto an Nf-
sphere in field space with radius

ffiffiffiffiffiffiffiffiffiffiffi
2pN�

p
. Since the

multivariate normal distribution ~x ∼N ð0; 1Þ is invariant
under rotations of ~x, we can sample this Nf-sphere
uniformly by defining

ϕi;� ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pN�P

jx
2
j

s
xi for ~x ∼N ð0; 1Þ: ð9Þ

Using Eq. (9), the summations in Eqs. (6) and (7) are

X
i

λni jϕi;�jm ¼
X
i

λni

�
2pN�P

jx
2
j

�ðm=2Þ
jxijm: ð10Þ

As Nf → ∞ the CLT shows that the numerator is normally
distributed with mean

μnum ¼ Nfð2pN�Þm=2hλnihjxjmi ð11Þ

and standard deviation

snum ¼ ffiffiffiffiffiffi
Nf

p ð2pN�Þm=2σn;m; ð12Þ

where h:i indicates expected value and

σ2n;m ≡ hλ2nihjxj2mi − hλni2hjxjmi2; ð13Þ

which assumes that the λi and xj are independent. Finally,
the denominator in Eq. (9) is drawn from the χ-distribution,
which is closely approximated by N ð ffiffiffiffiffiffi

Nf
p

; 1=
ffiffiffi
2

p Þ for
xi ∼N ð0; 1Þ.
The numerator and denominator in Eq. (10) are corre-

lated by the constraint in Eq. (3). For a given variance
in PðλÞ, the correlation γ is maximized when m ¼ 2 and
jγj → 1 as the variance vanishes. Since each

P
iλ

n
i jϕi;�jm is

uniquely determined given ~λ and ~ϕ�, we expect a strong
correlation between the numerator and denominator in
Eq. (6) for typical choices of PðλÞ. This significantly
reduces the variance of nt=r, and ensures a sharp prediction
for its value. We numerically calculate γ after defining the
priors on λ.
For any normally distributed variable y ∼N ðμ; σÞ

hjyjmi ¼ 2ðm=2Þσmffiffiffi
π

p Γ
�
1þm
2

�
F1;1

�
−m
2

;
1

2
;
−μ2

2σ2

�
;

ð14Þ
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for m > −1, and F1;1 is the confluent hypergeometric
function of the first kind. If μ ¼ 0, as for xi ∼N ð0; 1Þ,
then F1;1 ¼ 1 and only the Γ function contributes to the
moments.
If m < −1, hjyjmi may diverge if Pðy ¼ 0Þ does not

vanish fast enough. This is indeed the case for
xi ∼N ð0; 1Þ, and we cannot predict the distribution of
the sums in Eq. (10) with m ≤ −1. Sums like Eq. (10) are
effectively finite numerical approximations to the integral

1

Nf

X
i

λni jxijm ≈
Z

jxjmN ð0; 1Þdx
Z

λnPðλÞdλ; ð15Þ

which diverges for m < −1. While ratios of these sums
might be well defined [41], our approach shows that a finite
prediction for both the mean and the standard deviation of
nt=r requires p > 3=4, while only requiring a finite mean
needs p > 1=2, using the CLT.
The method.— Since nt=r is given by Eq. (7) and the

sums in Eq. (10) are ratios of correlated, normally distrib-
uted RVs, the key tool for this analysis is the ratio
distribution fratioðα=βÞ for normally distributed RVs α
and β. If w≡ α=β, then as Pðβ > 0Þ → 1 the CDF for
the ratio distribution fratioðwÞ is approximately [42]

FratioðwÞ ¼ Φ

�
μβw − μα
σασβaðwÞ

�
; ð16Þ

where μi and σ2i are the respective means and variances,

aðwÞ≡
�
w2

σ2α
−

2γw
σασβ

þ 1

σ2β

�
1=2

; ð17Þ

and

ΦðzÞ≡ 1

2

�
1þ Erf

�
zffiffiffi
2

p
��

ð18Þ

for real z. When Nf is large, the fratio approaches a normal
distribution with mean μα=μβ and standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2βσ

2
α − 2γμαμβσασβ þ μ2ασ

2
β

q
μ2β

: ð19Þ

The mean of the fratio is independent of the correlations γ,
and the standard deviation for nt=r is a straightforward—
but messy—algebraic function of hλi, hλ2i, and hλ4i, as
well as hjxjmi for m ¼ 2; 4; p; 2p; 2p − 2, and 4p − 4.
To obtain the distribution fratioðnt=rÞ we express the

consistency relation in terms of the sums in Eq. (10) as

nt
r
¼ −

pN�
4

�P
iλ

2
i jϕi;�j2p−2

ðPjλjjϕjjpÞ2
�
: ð20Þ

For each sum above, we calculate the covariance in Eq. (10)
between the numerator and denominator given PðλÞ, and
use Eq. (19) to find the variance of the sum. Although the
denominator ðPiλijϕi;�jpÞ2 is then χ2 distributed, this is
approximately normal in the many-field limit. We then
substitute these two normally distributed RVs back into
Eq. (16). Similarly, we evaluate the correlation between the
numerator and denominator in Eq. (20), finally obtaining
the probability distribution for nt=r.
Novel multifield predictions.— From the ratio distribu-

tion (16), as Nf → ∞ the value of nt=r in Eq. (20) is
normally distributed with a mean�

nt
r

�
Nf↑

¼
�
−
1

8

��hλ2i
hλi2

�� ffiffiffi
π

p
Γðp − 1

2
Þ

2Γ2ðpþ1
2
Þ

�
ð21Þ

and a standard deviation proportional to

snt=r ∝
1ffiffiffiffiffiffi
Nf

p → 0 as Nf → ∞; ð22Þ

which can be found by substituting the means, variances,
and correlations of Eq. (10) into Eq. (19).
The first bracketed term in Eq. (21) is the single-field

prediction, the second is due to the couplings λi, and the
third arises from the uniform prior for ϕi;� on the horizon-
crossing surface. This last term is due only to the spread in
the field values at horizon crossing and is independent of
everything except p. The functional form of this term is
fixed by the uniform prior distribution on the horizon
crossing surface, but other prior probabilities for ϕi;� result
in qualitatively similar behavior as demonstrated in
Ref. [36]. As Eq. (22) vanishes in the many-field limit,
Eq. (21) is the generic multifield prediction, which deviates
from the single-field result at > 5σ for Nf ≳Oð102Þ for
typical PðλÞ.
Consequently, even if hλ2i ¼ hλi2, Nf-monomial models

do not predict nt=r ¼ −1=8, unless the ϕi;� are also
identical. Figure 1 compares the predicted value for

FIG. 1 (color online). The multifield prediction from Eq. (21)
compared to the numerical mean hnt=ri of simulations with 5000
samples, at each plotted value of p, with Nf ¼ 1000 using the
horizon-crossing approximation. The field values ϕi;� as the pivot
scale k� leaves the horizon are drawn from a uniform prior on the
surface in Eq. (3) and all the couplings λi are identical.
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hnt=ri in Eq. (21), with all λi equal, to numerical results
obtained by directly evaluating nt=r with Eq. (7), showing
excellent agreement for many fields. The divergence at
p ¼ 1=2 reflects the fact that hjxj2p−2i → ∞. Thus, when
p ≤ 1=2, hnt=rimay be arbitrarily large, which violates the
slow-roll assumption. Consequently, these models are most
easily distinguished from their single field analogues, but
the hardest to make accurate predictions for.
Specific examples.— To understand how the mean hnt=ri

in Eq. (21) is affected by PðλÞ we compare two explicit
priors that are widely used in Bayesian analyses of inflation
[4,43–46]. We focus on the p ¼ 2 case, since the depend-
ence on the prior on ϕi;� in Eq. (21) cancels for this
scenario.
We look at two cases: uniform prior probabilities over λi

or αi for λi ≡ 10αi, which we denote the uniform model
and log model, respectively. The uniform model would be
applicable when the relevant scale of λi is known to within
an order of magnitude, while the log model effectively
scans over a range of physical scales.
For the uniform model, the λi are drawn from U½a; b�,

and Eq. (21) becomes

�
nt
r

�
unif

p¼2

¼ −
1

6

�
b2 þ abþ a2

ðbþ aÞ2
�
: ð23Þ

For λi ∈ ½10−14; 10−13�, as Nf → ∞ the predicted correla-
tion coefficient for fratioðnt=rÞ is γ ≈ −0.98 and hnt=ri ¼
−0.153. We plot fratio and the results of 10 000 numerical
realizations using the HCA in Fig. 2. We find excellent
agreement with Eq. (23), with fratio accurately capturing
the higher order moments of the nt=r distribution for
Nf ≳ 20. For p ¼ f3=2; 2; 3g the single-field result
nt=r ¼ −1=8 is a 5σ deviation from the mean in
Eq. (23) for Nf ≳ f120; 120; 200g, respectively.
For the log model with α ∼ U½a; b�,

�
nt
r

�
log

p¼2

¼ −
logð10Þðb − aÞ

16

�
10b þ 10a

10b − 10a

�
: ð24Þ

If a → b, we recover the single-field result in both Eqs. (23)
and (24). However, Eq. (24) diverges as a → −∞, reflect-
ing the failure of slow roll in the limit of widely separated
scales. For α ∈ ½−14;−12� the log model predicts
Pζ ∼Oð10−9Þ, ϵ≲ 0.03, γ ≈ −0.95, and nt=r ¼ −0.294.
For p ¼ f3=2; 2; 3g the single-field result is a 5σ deviation
from the mean in Eq. (24) for Nf ≳ f145; 135; 255g,
respectively.
Relaxing the approximations.— Fig. 3 compares the

HCA prediction to numerical results that include the
contribution from the end-of-inflation surface in Eq. (3),
with ϕi;c ≠ 0. We numerically solve the background Klein-
Gordon equations for 1000 realizations, finding the field
values at the end of inflation (defined by ϵ ¼ 1) and
obtaining the full δN prediction without using the HCA.
Figure 3 also incorporates both the subhorizon evolution of
the modes and any non-slow-roll behavior by solving the
mode equations numerically, as in Refs. [36,47], using the
MULTIMODECODE [48]. Results are plotted for the uniform
model, with the ranges λi ∈ ½10−14; 10−13� and p ¼ 2.
In all cases the numerical results are well-approximated

by the HCA. The HCA results are marginally larger than
the numerical results, which we attribute to second-order
corrections to the slow-roll equations; nt ¼ −2ϵ=ð1 − ϵÞ,
which suppresses nt relative to the first-order approxima-
tion. The variances in the numerical results scale as
σ2 ∝ 1=

ffiffiffiffiffiffi
Nf

p
, as predicted by the HCA results, confirming

that many-field models make sharp predictions for nt=r.
Conclusion.— We have computed the probability dis-

tribution for the consistency relation nt=r for inflation
driven by multiple scalar fields with monomial potential

FIG. 2 (color online). Predicted probability distributions for
nt=r with p ¼ 2 compared with histograms built from 10 000
numerical samples. The couplings λi are drawn from the uniform
model with (left) Nf ¼ 20 and (right) Nf ¼ 100. For
Nf ≲Oð102Þ, the distribution is skewed toward positive values
as predicted.

FIG. 3 (color online). The consistency relation for the uniform
model with p ¼ 2 is plotted for different Nf , marginalizing over
initial field values. The boxes (whiskers) cover the 50%(97%) CIs
and the gray regions delineate the same ranges as predicted by the
HCA and the central limit theorem. The (dashed) brown and
(solid) gray lines are the single-field and the many-field HCA
predictions, respectively. For each case we present results derived
from full numerical solutions to the mode equations [blue (left)],
the slow-roll prediction using the HCA [yellow (center)], and the
slow-roll prediction including the end-of-inflation surface [red
(right)] for Nf ¼ 20, 60, and 100.
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terms, as a function of the distribution of couplings and
initial field values. The single-field result is clearly dis-
tinguishable from the many-field limit, providing a clean
and compelling signature that distinguishes these models
from their single-field analogues. Other than for the
quadratic case, this result holds even when the couplings
are identical.
We focused on computing the slow roll parameter ϵ, but

the nature of the slow-roll hierarchy [49] indicates that this
approach will generalize to a variety of observables, so
quantities such as fNL that rely on the second and higher
slow-roll parameters should also have precise predictions
that deviate from the single-field expectation even when the
couplings are degenerate. This provides a further compel-
ling example of a multifield scenario in which the observ-
ables have a sharp and generic prediction in the many-field
limit [32,34–36,40,41,50–57].
The expected value hnt=ri depends on only two

moments of the prior probability distributions PðλÞ and
Pðϕ0Þ, and the corresponding variance is s2nt=r ∝ 1=Nf. The
single-field expectation of nt=r ¼ −1=8 differs from the
multifield result at the 5σ level when Nf ≳Oð102Þ.
Consequently, given specific priors for the field values
and couplings, we obtain generic and testable predictions
for the consistency relations in this large and interesting
class of multifield inflation models.
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