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Abstract

Total column ozone variations estimated using ground-based stations provide impor-
tant independent source of information in addition to satellite-based estimates. This
estimation has been vigorously challenged by data inhomogeneity in time and by the
irregularity of the spatial distribution of stations, as well as by interruptions in observa-5

tion records. Furthermore, some stations have calibration issues and thus observations
may drift. In this paper we compare the spatial interpolation of ozone levels using the
novel stochastic partial differential equation (SPDE) approach with kriging. We show
how these new spatial predictions are more accurate, less uncertain and more robust.
We construct long-term zonal means to investigate the robustness against the absence10

of measurements at some stations as well as instruments drifts. We conclude that time
series analyzes can benefit from the SPDE approach compared to kriging when sta-
tions are missing, but the positive impact of the technique is less pronounced in the
case of drifts.

1 Introduction15

The ground-based total column ozone data set is based on Dobson and Brewer spec-
trophotometer and filter ozonometer observations available from the World Ozone
and UV Data Centre (WOUDC) (http://www.woudc.org/). Large longitudinal inhomo-
geneities in the global ozone distribution and limited spatial coverage of the ground-
based network make it difficult to estimate zonal and global total ozone values from20

station observations directly (Fioletov et al., 2002). The Total Column Ozone (TCO)
data set is comprised of the ozone observations from the set ground-based stations
worldwide. Most of those stations are located on land in the Northern Hemisphere, and
relatively few stations are over the Southern Hemisphere and oceans. Therefore the
spatial distribution of ground-based stations is highly irregular. In addition, durations of25

operations for each station are different. One of the major difficulties in assessing long-
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term global total ozone variations is thus data inhomogeneity. Indeed recalibration of
ground-based instruments, or interruptions in observation records result in data sets
which may have systematic errors that change with time (Fioletov et al., 2002, 2008).

The TCO data set and corresponding satellite measurements has also been widely
discussed in the statistics literature. Some authors have noticed space–time asymme-5

try in ozone data (Stein, 2005, 2007; Jun and Stein, 2007, 2008). The other important
feature of TCO data is that the spatial dependence of ozone distributions varies strongly
with latitude and weakly with longitude, so that homogeneous models (invariant to all
rotations) are clearly unsuitable (Stein, 2007). This is why Jun and Stein (2007) assume
that the spatial process driving the TCO data is an axially symmetric process whose10

first two moments are invariant to rotations about the Earth’s axis, and constructed
space–time covariance functions on the sphere× time that are weakly stationary with
respect to longitude and time for fixed values of latitude. Jun and Stein (2008) fur-
ther used linear combinations of Legendre polynomials to represent the coefficients
of partial differential operators in the covariance functions. These covariance functions15

produce covariance matrices that are neither of low rank nor sparse for irregularly dis-
tributed observations, as it is the case with ground-based stations. Hence, likelihood
calculations can thus be difficult in that situation, and we will not follow this approach.

The aim of this article is to apply a new technique, the stochastic partial differential
equation (SPDE) approach in spatial statistics (Lindgren et al., 2010) in order to best20

evaluate total column ozone spatially from ground based stations. The SPDE approach
has already been applied to regularly spaced ozone satellite data by Bolin and Lindgren
(2011) but not to ground-level stations, where gains in accuracy are potentially larger
due to the gaps in coverage. Furthermore, we quantify the impact of the improvement
of these spatial estimations on the computations of time series over various regions.25

Finally, the SPDE and kriging methods are also used to calculate monthly zonal mean
total ozone values and compare them with zonal means calculated from ground-based
data and available from the WOUDC (Bojkov and Fioletov, 1995; Fioletov et al., 2002).
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Section 2 gives a brief introduction to the theoretical framework of the SPDE tech-
nique, a basic description of the universal kriging, and related model selection and
diagnostic techniques. Section 3 describes the spatial analysis using TCO data from
WOUDC at monthly, seasonal and annual bases. Furthermore, the estimated results of
SPDE and kriging are compared with the Total Ozone Mapping Spectrometer (TOMS)5

satellite data, to examine which method yields approximations closer to satellite data.
Finally, the long-term zonal mean trends enable us to conduct a sensitivity analysis by
removing stations at random and by introducing long-term drifts at some ground-based
stations.

2 Methods10

Our main problem is to estimate ozone values at places where it is not observed. Mod-
els in spatial statistics that enable this task are usually specified through the covariance
function of the latent field. Indeed, in order to assess uncertainties in the spatial inter-
polation with global coverage, we cannot build models only for the discretely located
observations, we need to build an approximation of the entire underlying stochastic15

process defined on the sphere. Statistical models assumes that the unknown function
is a realization of a Gaussian random spatial process. The standard fitting approach,
kriging, spatially interpolates values as linear combinations of the original observations,
and this constitutes the spatial predictor (with a mean field often estimated as well). Not
only large data sets can be computationally demanding for kriging, but kriging struggles20

to take into consideration nonstationarity (i.e. when physical spatial correlations are dif-
ferent across regions), due to the fixed underlying covariance structure. Recently, a dif-
ferent computational approach (for identical underlying spatial covariance models) was
introduced by Lindgren et al. (2010), in which random fields are expressed as a weak
solution to a stochastic partial differential equation (SPDE), with explicit links between25

the parameters of the SPDE and the covariance structure. This approach can deal with
large spatial data sets and naturally account for nonstationarity. We review below some
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of the recent development on the covariance structure modelling on the sphere, with
a particular focus on SPDE and kriging. Computational implementations of SPDE and
kriging, with mathematical details, are relegated to Appendix A.

The Matérn covariance function is the most advanced covariance structure used to
model dependence of spatial data on the plane. On the sphere, Guinness and Fuentes5

(2013) show that the kriging prediction using the Matérn function with chordal distance
outperform all other types of covariance functions, both in terms of accuracy and quan-
tification of uncertainty. The shape parameter ν, scale parameter κ, and the marginal
precision τ2, parameterize it:

C(h) =
21−ν

(4π)d/2Γ(ν+d/2)κ2ντ2
(κ‖h‖)νKν(κ‖h‖), (1)10

where h ∈Rd denotes the difference between any two locations s and s
′: h = s−s′,

and Kν is a modified Bessel function of the second kind of order ν > 0.

2.1 SPDE approach

Let X (s) be the latent field of ozone measurements Y (s) under observation errors ε(s).
Lindgren et al. (2010) use the fact that a random process X (s) on Rd with a Matérn15

covariance function (Eq. 1) is the stationary solution to the SPDE:

(κ2 −∆)α/2τX (s) =W(s), (2)

where W(s) is Gaussian white noise, and ∆ is the Laplace operator. The regularity
(or smoothness) parameter ν essentially determines the order of differentiability of
the fields. The link between the Matérn covariance (Eq. 1) and the SPDE formulation20

(Eq. 2) is given by α = ν+d/2, which makes explicit the relationship between dimension
and regularity for fixed α. Unlike kriging, the SPDE approach can be easily manipulated
on manifolds. On more general manifolds than Rd , the direct Matérn representation is
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not easy to implement, but the SPDE formulation provides a natural generalisation, and
the ν parameter will keep its meaning as the quantitative measure of regularity. Instead
of defining Matérn fields by the covariance function on these manifolds, Lindgren et al.
(2010) used the solution of the SPDE as a definition, and it is much easier and flexible
to do so. This definition is valid not only on Rd but also on general smooth manifolds,5

such as the sphere. The SPDE approach allows κ and τ to varies with location:

(κ2(s)−∆)α/2τ(s)X (s) =W(s), (3)

where κ(s) and τ(s) are estimated by expanding them in a basis of a function
space such as the spherical harmonic basis. We estimate the SPDE approach pa-
rameters and supply uncertainty information about the surfaces by using the inte-10

grated nested Laplacian approximations (INLA) framework, available as an R package
(http://www.r-inla.org/). For latent Gaussian Markov random fields used to efficiently
solve SPDEs on triangulations, INLA provides good approximations of posterior den-
sities at a fraction of the cost of Markov Chain Monte Carlo (MCMC). Note that for
models with Gaussian data, the calculated densities are for practical purposes exact.15

2.2 Spatial kriging

For locations on spherical domain, si = (Li , li ), let Y (si ) denotes the ozone measured
at station i , then the kriging representation can be assumed additive with a polynomial
model for the spatial trend (universal kriging):

Y (si ) = X (si )+ei = P (si )+Z(si )+ei ,20

where P is a polynomial which is the fixed part of the model, Z is a zero mean, Gaus-
sian stochastic process with an unknown covariance function K , and ei are i.i.d. normal
errors. The estimated latent field X (s) is then the best linear unbiased estimator (BLUE)
of P (s)+Z(s) given the observed data.

For kriging, the hurdle that we are facing is that we have to define a valid (but flexible25

enough) covariance model, and furthermore, compared to data on the plane, we must
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employ a distance on the sphere. Two distances are commonly be considered. The
chordal distance between the two points (L1, l1) and (L2, l2) on the sphere is given by

ch(L1,L2, l1 − l2) = 2r
(

sin2
(

L1 −L2

2

)
+ cosL1 cosL2sin2

(
l1 − l2

2

))1/2

,

where r denote the Earth’s radius. The more physically intuitive great circle distance
between the two locations is gc(L1,L2, l1 − l2) = 2r arcsin{ch(L1,L2, l1 − l2)}. However,5

Gneiting (2013) pointed out that using the great circle distance in the original Matérn
covariance function (Eq. 1) would not work, as it may not yield a valid positive definite
covariance function. Therefore in this study we use the chordal distance in kriging. The
main advantage of using the chordal distance is that it is well defined on spherical
domain, as it restricts positive definite covariance functions on R3 to S2 (Jun and Stein,10

2007). For the ozone data, we specify the Matérn covariance function defined in Eq. (1)
in the kriging approach in order to compare the performance with the SPDE approach
for exactly the same covariance function. The relevant model diagnostic and selection
criteria are described in Appendix B. Note that the smoothness parameter ν is allowed
to be selected in kriging, whereas it is fixed at ν = 0.5 in the SPDE approach.15

3 Mapping accuracy

In this section, we produce statistical estimates of monthly ozone maps, using TCO
data from WOUDC. We consider TCO data in January 2000 as an illustration, which
contains 150 ground-based ozone observations around the world. All ozone values in
this article are in Dobson Units (DU). We first choose the model set-ups for both SPDE20

and kriging below.
With the SPDE approach, as the smoothness parameter ν is through the relationship

α = ν+d/2, we only need to choose the basis expansion order to represent κ and τ.
To choose the best maximal order of the spherical harmonic basis, we fitted models
with different maximal orders of spherical harmonics for the expansions of κ and τ in25
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order to estimate them thereafter (the default choice in the R-INLA package). The best
fitted model is for a spherical harmonics basis with maximal order 3 since it yielded
the lowest Generalized Cross Validation (GCV) SD computed in Eq. (B2), which yield
a total of 9 parameters to be estimated (4 parameters for the expansions of κ and
τ, and 1 parameter for the variance). For kriging, we need to choose the smoothness5

parameter in the Matérn covariance function before estimating the univariate quantities
κ and τ2. The same GCV SD criterion is used to evaluate the model performance. The
smoothing parameter ν = 20 minimizes the σGCV for these ozone data.

To compare the performance of the SPDE approach with kriging, the same σGCV
criterion is used as it balances well predictive power v. overfitting across methods. Fig-10

ure 1 shows the predicted mean and SD ozone maps on January 2000. The spatial
distributions of ozone means are similar for SPDE and kriging in the Northern Hemi-
sphere, but there are differences in the Southern Hemisphere. These differences arise
from the asymmetry of available stations in the two hemispheres. The spatial distribu-
tions of the SD present similar general patterns for the two techniques. The uncertain-15

ties are higher where with fewer station available, see the large uncertainty distribution
at the South Pacific Ocean. SD of SPDE predictions are much smaller than the SD
of the kriging predictions, especially where fewer observations are available (e.g. mid-
Atlantic, and South Pacific), but are larger near the North Pole; this maybe due to
kriging underestimating its own uncertainty.20

In order to achieve a better estimation, the monthly mean “norms” (Bojkov and Fiole-
tov, 1995) (or total ozone “climatology”) are calculated for each station and each month
of the year over the whole period and then subtracted from the data. The norms are
used as a first approximations to remove the general spatial trend. For each station for
each month, spatial interpolation through SPDE and kriging were performed to these25

deviations.
We now start an illustration to 6 years of monthly observations. The results of the

analysis of ozone data averaged from 2000 to 2005 are shown in Table 1. The aver-
aged number of available stations is denoted by n, and RSS indicates residuals sum of
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square, which is defined in Eq. (B1). The SPDE approach provides a better fit than the
kriging for all months. The effective degree of freedom neff is higher in the SPDE ap-
proach as it is more complex than kriging. Higher effective degrees of freedom means
smaller values in the σGCV denominator (n−neff) thus higher values for σGCV to account
for overparametrization. Nevertheless, σGCV values for the SPDE approach are still all5

much lower than for kriging in all cases. This means that the residuals sum of squares
(RSS) in SPDE approach is drastically smaller than the residuals sum of squares for
kriging. Thus the SPDE approach supplies a much better fit to the true ozone observa-
tion.

Table 1 also reports regional RSSs by dividing the Earth into the Northern Hemi-10

sphere (> 30◦N), Tropics (30◦ S–30◦N) and Southern Hemisphere (< 30◦ S). In gen-
eral, over half of the ground-based stations are located on the Northern Hemisphere,
which gives rise to higher RSS with respect to other regions as the RSSs are not nor-
malized by the number of observations. RSSs estimated by SPDE and kriging show
similar patterns across months, and across regions. Lower estimation errors can be15

found in September–November and higher errors occur in March–May. The ratio of
RSS between kriging and SPDE (Relative RSS or RR) are displayed in the table. The
SPDE method always improves upon kriging, with the highest improvements being in
October in the Southern Hemisphere (a very large ratio of 9.45).

3.1 Seasonal and annual effects20

Seasonal ozone data are obtained by averaging the corresponding monthly data (but
all months of every season must be available to create such seasonal averages). Ta-
ble 2 shows the seasonal results over year 2000–2005. The SPDE approach and krig-
ing reveal different seasonal effects in RSSs. Their respective highest errors are in
December-January-February (DJF) for spatial kirging and in June-July-August (JJA)25

for SPDE. Moreover, the values of σGCV and RSS from this seasonal analysis are
smaller than the corresponding analysis for each month of the associated season,
both in SPDE approach and kriging, and are also closer across the two competing
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techniques due to additional averaging smoothing out the gains in accuracy. Neverthe-
less the SPDE approach still provides a better fit than kriging in all seasons. Figure 2
and 3 shows the seasonal ozone maps of means and SD, respectively. The maps for
SD again reveal the higher estimated error in regions without stations. Again, higher
RSSs for kriging may reveals some underestimation of the uncertainties.5

The annual ozone data is obtained by creating an annual average, which also means
that stations with record interruptions are not used. Therefore less stations are available
for this exercise. To see the improvement of the annual based analysis over season-
ally and monthly analyses, Table 3 shows the annual averaged results by month and
seasonally, and results directly obtained by doing the analysis on the annual mean.10

Although there are less stations in annual-based and seasonal-based data than in
monthly data, the errors are lower than for monthly data over the years both in SPDE
and kriging, and the results directly obtained from annual means yields even lower RSS
and σGCV than the results averaged by seasons due to smooth variation.

3.2 Comparison with satellite data15

In this section, we assess the match between satellite observations and spatial predic-
tions based on ground-level stations. The Total Ozone Mapping Spectrometer (TOMS)
data on monthly averages are obtained from the NASA website (http://ozoneaq.gsfc.
nasa.gov/), where we collected the Earth Probe (25 July 1996–31 December 2005)
satellite data with grid 1◦ ×1.25◦. We calculate the differences over all grid cells and20

summarize it by the root mean square error (RMSE). Let ŷi be the estimated result
from the SPDE or kriging on grid i , and ys

i denotes the satellite value on grid i , then
the (normalized) RMSE is given by

RMSE =

√∑n
i=1

(
ŷi − y

s
i

)2
n

,

where n = 180×288 is total number of grid cells. However, satellite data are unavailable25

over high latitudes in DJF and MAM (March-April-May), and over low latitudes in JJA
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and SON (September-October-November). Therefore we restrict the calculations of
RMSEs between 60◦ S–60◦N.

Monthly comparisons over 2000–2005 are shown in Table 4. Ozone surfaces pre-
dicted by the SPDE approach are closer to the satellite data than the predictions from
kriging over all months. The highest improvement of SPDE over kriging is 69.92 %5

in October and the lowest is 22.78 % in July. Also, in contrast with relatively unsta-
ble monthly predictions by kriging, SPDE shows more consistency in predictions of
monthly ozone variations.

Figures 4 and 5 map the differences of surface predictions of kriging and SPDE
methods with respect to satellite data over 60◦ S–60◦N on January, April, July and Oc-10

tober 2000. The differences in October turn out to be much larger than in other months,
therefore a different scale is used. These maps indicate the overestimation (red) and
underestimation (blue) with respect to satellite data. Similar patterns in deviations are
revealed for both techniques, but SPDE displays less magnitude in the deviations than
kriging. One noticeable feature is that the pattern of deviation from satellite data is15

strongly related to the distribution of ground based stations: for instance, the kriging
predicted surfaces tend to underestimate the values over the South Pacific Ocean,
where few stations are available. The surface predictions by SPDE achieve a clear im-
provement in predictions compared to kriging over areas with less stations, especially
on January and October.20

The seasonal predicted total ozone is obtained by averaging the corresponding
monthly means. We excluded stations that have interruptions in their records. Therefore
less observations are used to predict seasonal means. The RMSEs between predicted
surface and satellite data are presented in Table 5. In general, seasonal maps should
agree better with satellite-based maps than monthly maps. However, less observations25

are used in seasonal predictions and that may trigger high RMSEs in the kriging es-
timation in particular. In those circumstances, the SPDE approach shows robustness
against observations loss. Figures 6 and 7 show TOMS maps of all seasons in 2000
in top panels, and differences with predictions from SPDE and kriging. Underestima-
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tion at the South Pacific are in accordance with expectations for both techniques, but
surface predictions by SPDE achieve a better fit than kriging, especially in SON.

4 Impact on long-term changes

In this section, we show how variations in time of the zonal means can be improved by
employing the more accurate SPDE-based mapping technique instead of kriging.5

4.1 Zonal mean time series analysis

To see how the ozone zonal means change over time over the same stations with differ-
ent algorithms, we choose the stations which supplied data at least 25 years between
1979 and 2010. Hence 67 stations are used to construct these zonal mean time series.
There is a strong asymmetry between the Southern Hemisphere (6 stations) and the10

Northern Hemisphere (48 stations); 13 stations at the Tropics (defined as 30◦ S–30◦N.)
The zonal means were constructed by averaging the estimations obtained from either
kriging or SPDE, over a grid of 1◦ ×1◦.

In order to overcome the underestimation over the South Pacific (see Fig. 4) and
achieve a better estimation of long-term global zonal means, the monthly mean norms15

for each station were subtracted from observations over all the period. Then for each
month, spatial interpolation through SPDE and kriging were performed to the devi-
ations. The ozone norms were added back to these deviations in order to compare
zonal means over the corresponding belts.

In this study, we compare the zonal mean time series estimated by SPDE and kriging20

with Solar Backscatter Ultraviolet (SBUV) satellite instrument merged ozone data de-
scribed by Frith et al. (2014) (http://acd-ext.gsfc.nasa.gov/Data_services/merged/) and
a dataset based on ground-based data available from the WOUDC (Bojkov and Fiole-
tov, 1995; Fioletov et al., 2002). The SBUV merged satellite data sets incorporated the
measurements from eight backscatter ultraviolet instruments (BUV on Nimbus 4, SBUV25
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on Nimbus 7, and a series of SBUV/2 instruments on NOAA satellites) processed with
the v8.6 algorithm (Bhartia et al., 2013). The WOUDC ground-based zonal mean data
set is based on the following technique: firstly, monthly means for each point of the
globe were estimated from satellite Total Ozone Mapping Spectrometer (TOMS) data
for 1978–1989. Then for each station and for each month the deviations from these5

means were calculated, and the belt’s value for a particular month was estimated as
a mean of these deviations. The calculations were done for 5-degree broad latitudinal
belts. In order to take into account various densities of the network across regions,
the deviations of the stations were first averaged over 5 by 30◦ cells, and then the belt
mean was calculated by averaging these first set of averages over the belts. Till this10

point the data in the different 5◦ belts were based on different stations (i.e., were con-
sidered independent). However, the differences between nearby belts are small. Hence
one can reduce the errors of the belt’s average estimations without loss of accuracy by
using some smoothing or approximation. So the zonal means were then approximated
by zonal spherical functions (Legendre polynomials cosine of the latitude) to smooth15

out spurious variations. Therefore this methodology (Bojkov and Fioletov, 1995) shares
some ideas with SPDE in terms of taking advantage of spherical functions for spatial
interpolation over the globe, but this methodology can only be conducted on zonal
means calculation, rather than global surface prediction. The merged satellite and the
WOUDC data sets were compared again recently and demonstrated a good agreement20

(Chiou et al., 2014).
To investigate the pattern of zonal mean long term changes in detail, Fig. 8 shows the

monthly means from SBUV merged data (black), WOUDC dataset (green), kriging (red)
and SPDE (blue). Kriging and SPDE estimated means both match well satellite data
and the WOUDC dataset in the Northern Hemisphere. Kriging means in the tropics25

fluctuate heavily and are unrealistic in some years, which indicates that kriging may
perform well at some locations but can provide distorted results at other locations;
moreover the large kriging-based fluctuations in the beginning of the period may be
due to a lack of stations in the early years of 1979–2010. SPDE estimated means are
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more robust under this circumstance. Limited stations in the South Hemisphere may
trigger underestimation and disappear of estimated annual cycle in SPDE and kriging.
Therefore we carry out a seasonal smoothing by averaging September to November
to estimate better the annual peak over the Southern Hemisphere (i.e. October). This
smoothing algorithm improves the match with SBUV data.5

4.2 Sensitivity analysis

The final step is to conduct a sensitivity analysis for the long-term zonal mean esti-
mations against either randomly removed stations, or drifts in some of ground-based
observations. To see the impact of removing stations to the long-term ozone zonal
mean change, we choose 57 stations (39 stations in the Northern Hemisphere, 10 sta-10

tions in the Tropics and 8 stations in the Southern Hemisphere) which provided data
over the entire period 1990 to 2010. We randomly remove 5, 10, 20 and 30 stations
out of these set of stations by taking into account the relative weights of the respective
regions, and estimate the zonal mean trends in each case. The stations removed are
randomly chosen by the design in Table 6.15

Furthermore, to illustrate possible variations in the sensitivity analysis, we randomly
draw 5 times stations which need to be removed, labelled cases 1–5. The time series
for different zonal mean trends over the latitude band 30–60◦N and 30–60◦ S are dis-
played in Figs. 9 and 10, respectively. The impact of randomly removing stations in the
Northern Hemisphere is small, even in the case of 30 stations removed (over half of20

the observations). The Southern Hemisphere is more sensitive to loss information be-
cause only few stations are located in there. The more stations are removed, the more
fluctuations appear in the time series. The main finding is that the long-term effects es-
timated by SPDE are again more robust than the ones obtained by kriging, especially
for the case of 30 stations removed (with only 2 stations left in the SH). The kriging es-25

timated trends can become be chaotic for cases 2 and 4, and under this circumstance
the total ozone annual cycle become unidentifiable.
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We use case 1 for further illustration, where both kriging and SPDE estimated well
with respect to other cases. Figure 11 shows deviations in time series in the annual
mean total ozone estimated by SBUV data, WOUDC dataset, SPDE and kriging. We
can see that both SPDE and kriging estimate well in the Northern Hemisphere. Krig-
ing prediction underestimate means significantly over the Tropics and the Southern5

Hemisphere, while SPDE estimated means are close to SBUV trends. In summary, the
SPDE approach is more robust than kriging against incomplete information. Note that
SPDE estimated trends using all stations are closer to SBUV observations than the
WOUDC dataset at the Tropics and Southern Hemisphere overall.

For the second part of sensitivity analysis, we add random long-term drifts into obser-10

vations due to instrument-related problems. In reality, all observations from a ground-
level station are often be biased by 5–10 DU (2–3 %) over a period of several years.
For the setting of drifts, let yi j be the ozone observations at station i and time j . We
randomly select some stations i and set

y∗i j = aiyi j ,15

where ai ∼ N(1,0.032) is the slope over every 5 year periods, i.e., one slope factor for
1990–1994, then different drifts for 1995–1999, 2000–2004 and 2005–2010. This set-
ting means that stations were randomly selected and drift values were then randomly
generated, but the drifts are fixed for particular station over every 5 or 6 years.

Using the same 57 stations which provided data consistently over 1990 to 2010,20

the zonal mean trends were estimated with these added drifts subsets of randomly
selected 5, 10, 20 and 30 stations. We consider 5 sets of random drifts as well to
account for possible random variations in the selection process. The time series in
each case are shown in Figs. 12 and 13 for the Northern and Southern Hemisphere.
Kriging estimations hold robust in the case of over half of stations are drifted, SPDE25

also displays robustness to drift. We use case 1 as further illustration. Figure 14 shows
the annual mean total ozone deviations in time series for SBUV, WOUDC dataset,
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kriging and SPDE estimated means when drifts are present. SPDE estimated trends
reveals to be superior to kriging at the Tropics and Southern Hemisphere overall.

Table 7 reports monthly, seasonal and annual average RMSEs obtained by compar-
ing the WOUDC, SPDE, and kriging estimated zonal means to the SBUV zonal means
over 1990–2010. We can see that SPDE is always superior to kriging. Furthermore,5

SPDE zonal means are closer to satellite zonal means than WOUDC zonal means for
annual and seasonal averages in the Northern Hemisphere, despite using less stations
(39) than WOUDC that uses all available stations each month. It shows the superior
ability of SPDE to interpolate variations over the globe than WOUDC. However, for
monthly zonal means, SPDE zonal means are further away from satellite zonal means10

than WOUDC zonal means. Indeed, there is much less averaging over one month, and
the SPDE approach can suffer from the lack of stations at some locations to describe
particular monthly features that can be more pronounced than seasonal or annual av-
erages. SPDE zonal means over the Tropics and Southern Hemisphere in monthly and
seasonal analysis suffer greatly as only 10 stations are used in the Tropics and 8 in15

the Southern Hemisphere (whereas WOUDC can use up to 20–30 in the Southern
Hemisphere). We expect that for operational purposes, using all the available stations
(usually around 130–150 as seen in Table 3, not 57 as done here for convenience) for
each month would allow SPDE to clearly outperform WOUDC everywhere at all fre-
quencies, as it does already with less stations in the Northern Hemisphere for annual20

and seasonal averages. Such a data set would constitute a improvement for the study
of trends based on ground level instruments.

5 Conclusions

In summary, the kriging method may perform fairly well in global behavior, but displays
misfit locally. The misfits will be averaged out when zonal means are estimated, but it25

reveals the relatively higher errors in estimations compared to the SPDE spatial pre-
diction method for mapping. Moreover, both the estimation uncertainty of kriging and
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SPDE methods considerably depend on the location of stations, but the SPDE ap-
proach outperforms kriging in terms of the uncertainty quantification in areas with few
stations. The time series analysis in the Northern Hemisphere are relatively better than
the Southern Hemisphere as there is a much denser network of stations than in the
Southern Hemisphere. The sensitivity analysis suggests that the ground-based net-5

work can provide a reliable source of data for estimation of the long-term ozone trends.
In the Northern Hemisphere, annual means can be successfully estimated even if half
of the available sites is excluded from the analysis. This is not the case for the Tropical
belt and Southern Hemisphere where the number of sites is very limited. Additional
3 % biases over 5 year intervals at up to the half of the network have relatively small10

impact on the estimated zonal means. This suggest that the network can tolerate some
systematic errors as long as instruments are calibrated on a regular basis (5 years in
our tests) that remove such biases. Overall, when stations are removed or drift, the
SPDE approach shows more robustness than kriging, and thus, for current observa-
tions, should be a preferred method.15

Appendix A: Computational details of kriging and SPDE approaches

A1 SPDE approach

The algorithm of estimation of parameters in SPDE works as follows. Let Y (s) be an
observation of the latent field X (s), the model is given by

Y (s) = X (s)+ε(s),20

where X (s) is the solution of the SPDE approach (Eq. 3), and observation error ε(s)
is zero mean Gaussian noise with variance σ2. This latent field can be built on a basis
representation

x(s) =
n∑
k=1

ψk(s)wk ,

3983

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/3967/2015/amtd-8-3967-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/3967/2015/amtd-8-3967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 3967–4009, 2015

Ozone mapping

K.-L. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where the wk ’s are stochastical weights which are chosen so that the x(s) approx-
imates the distribution of solutions to the SPDE on the sphere. The basis functions
ψk(s)’s are chosen by a Finite Element Method in order to obtain a Markov structure,
and to preserve it when conditioning on local observations. To allow an explicit expres-
sion of the precision matrix for the stochastical weights, we use a piecewise linear basis5

functions defined by a triangulation on the sphere. Let C = 〈ψi ,ψj 〉 and G = 〈∇ψi ,∇ψj 〉
be matrices used in the construction of the Finite Element solutions of SPDE approach.
Then in case of α = 2, the precision matrix for the weights {wi} is given by

Q = τ2(κ4C+2κ2G+GC−1G)

the elements of Q have explicit expressions as functions of κ2 and τ (Lindgren et al.,10

2010).
As pointed out in Jun and Stein (2008), the spatial mean structure on a sphere can

be modelled using a regression basis of spherical harmonics; however, since the data
set only contains measurements from one specific event, it is not possible to identify
which part of the variation in the data come from a varying mean and which part that15

can be explained by the variance–covariance structure of the latent field. To avoid
this identifiability problem. The parameter κ(s) and τ(s) must be positive, and their
logarithm can be decomposed as

logκ(s) =
∑
k,m

κk,mSk,m(s)

logτ(s) =
∑
k,m

τk,mSk,m(s)20
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where Sk,m is the spherical harmonic of order k and mode m. The real spherical har-
monic Sk,m(s) of order k ∈N0 and mode m = −k, . . .,k is defined as

Sk,m(s) =

√
2k +1

4π
(k − |m|)!
(k + |m|)!


√

2sin(ml )Pk,|m|(sinL) if −k ≤m< 0,

Pk,0(sinL) if m = 0,√
2cos(ml )Pk,m(sinL) if 0 <m ≤ k,

where Pk,m are associated Legendre polynomials:

Pk,m(x) = (−1)m(1−x2)m/2 d
m

dxm
Pk(x),5

where Pk are Legendre polynomials:

Pk(x) =
1

2kk!

dk

dxk
(x2 −1)k ,

Regarding the computational implementation of the SPDE approach, one common
choice would be to use a Metropolis–Hastings algorithm, which is easy to imple-
ment, but computationally inefficient (Bolin and Lindgren, 2011). A better way is10

to use direct numerical optimization to estimate the parameters by employing inte-
grated nested Laplace approximations (INLA) framework, available as an R package
(http://www.r-inla.org/). For latent Gaussian Markov random fields, INLA provides good
approximations to posterior densities at a fraction of the cost of MCMC. For models
with Gaussian data, the calculated densities are for practical purposes exact. The main15

limitation is that R-INLA provides 0 < α ≤ 2 case (though 0 < α < 2 not as extensively
tested). So with α = 2 and three dimensions, the smoothness parameter ν must be
fixed at 0.5 due to the relationship α = ν+d/2.

A2 Spatial kriging

For the ozone data, we specified a second order linear polynomial for P (s) and a mean20

zero, Gaussian stochastic process with a Matérn covariance function for Z(s) defined
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in Eq. (1) and used chordal distance as spherical metric. We implemented kriging with
the R package fields. We also estimated the smoothness parameter ν as it is not fixed
for the kriging approach.

Appendix B: Model diagnostic and selection

To assess the performance of model fitting, the residuals are considered. Raw resid-5

uals are defined as the difference of the observed values and fitted values. They can
be interpreted as estimators of the errors ei (and are denoted by êi ). Therefore the
performance of model fitting can be assessed by the residual sum of square (RSS):

RSS =
n∑
i=1

ê2
i . (B1)

Furthermore, to choose the number of basis functions for the smoothing parameter10

and to compare the performance of SPDE approach and kriginqg, we also used the
generalised cross validation (GCV) criterion for comparing different models (Wahba,
1985). Let ŷ be the predictor vector for the observed y with ŷ = A(λ)y , where A is
the n×n smoothing matrix, and let the neff = trA(λ) measure the effective number of
degrees of freedom attributed to the smooth surface, which is also called the effective15

number of parameter. The GCV criterion selects λ as the minimizer of the GCV function:

V (λ) =
n−1‖(I −A(λ)y)‖
[n−1tr(I −A(λ))]2

=
1
n

n∑
i=1

(
yi − ŷi

1− tr(A(λ))/n

)2

An alternative frequentist estimate for the residual variance, σ2
GCV, is defined by

σ2
GCV

=

∑n
i=i (yi − ŷi )

2

n− tr(A(λ))
. (B2)
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The GCV in its standard form finds the weighted residual sum of squares when each
data point (i.e. station) is omitted and predicted from the remaining points. The weights
depend on the variance of the measurement error and the location of each point. The
σGCV measures the residual variance but mitigates the effect of the number of param-
eters used in the model.5
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Table 1. Comparison of the generalised cross validation error (σGCV) and the residual sum of
square (RSS) and relative RSS (RR) for kriging (K ) and SPDE (S) model averaged of 2000–
2005 by month. Estimation is reported by Northern Hemisphere (NH), Tropic and Southern
Hemisphere (SH).

Global Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

n 135.33 144.33 146.17 146.00 142.50 143.33 143.00 145.33 146.00 142.67 140.17 129.50
Kriging neff 16.89 25.69 30.51 19.57 24.14 15.46 14.39 29.63 36.93 38.24 28.86 20.67

σGCV 15.10 14.05 12.11 12.45 10.33 10.54 9.87 9.75 9.68 9.53 12.35 12.71
RSS 28 535 25 611 18 323 20 711 13 258 14 770 12 637 11 479 10 654 9645 17 550 19 129

SPDE neff 70.68 59.76 69.47 50.27 65.99 7 57.25 38.93 52.22 52.04 54.84 66.78 60.54
σGCV 8.43 9.81 7.98 10.00 7.21 8.01 8.44 7.89 7.72 7.00 8.71 7.93
RSS 6477 8873 5768 11 728 4660 6761 7802 6779 7055 5030 6198 4928
RR 4.41 2.82 3.00 1.77 2.84 2.18 1.62 1.69 1.51 1.92 2.83 3.88

Region RSS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

n 89.50 98.50 101.67 104.00 102.50 103.83 103.00 103.00 102.67 98.50 95.50 84.67
NH K 26 035 22 234 15 507 16 144 10 498 11 288 8435 7238 7179 6748 13 035 16 690

S 5066 6837 4369 9148 3721 5539 5702 5440 6019 4279 4693 3379
RR 5.14 3.25 3.55 1.76 2.82 2.04 1.48 1.33 1.19 1.58 2.78 4.94

n 27.83 27.33 26.33 26.33 26.50 26.67 27.33 27.33 26.83 26.67 27.00 27.17
Tropic K 1778 2182 2120 2988 1254 1632 2264 1228 957 1042 1360 1411

S 730 1020 845 1609 575 780 1605 849 665 554 995 1012
RR 2.44 2.14 2.51 1.86 2.18 2.09 1.41 1.45 1.44 1.88 1.37 1.39

n 18.00 18.50 18.17 15.67 13.50 12.83 12.67 15.00 16.50 17.50 17.67 17.67
SH K 722 1195 696 1580 1505 1850 1938 3012 2518 1855 3155 1028

S 682 1016 553 971 364 443 495 490 372 196 510 536
RR 1.06 1.17 1.26 1.63 4.13 4.18 3.92 6.15 6.78 9.45 6.19 1.92
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Table 2. Comparison of the generalised cross validation error (σGCV) and residual sum of
square (RSS) for kriging and SPDE approach averaged of years 2000–2005 by season.

Season DJF MAM JJA SON Average
n 117.17 132.83 132.17 130.67 128.21

Kriging neff 18.73 20.68 11.53 32.77 20.93
σGCV 9.47 9.20 8.39 8.19 8.81
RSS 10 274 9990 8526 6783 8893

SPDE neff 51.71 59.70 29.12 68.32 52.21
σGCV 7.02 6.55 7.52 5.95 6.76
RSS 3847 3833 6147 2724 4138
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Table 3. Comparison of the generalised cross validation error (σGCV) and residual sum of
square (RSS) for kriging and SPDE approach of years 2000–2005. The monthly and season-
ally results are averaged over each year, and annual results are directly estimated by annual
means from each station.

Year 2000 2001 2002 2003 2004 2005

Monthly n 143.25 151.58 147.50 136.17 135.25 138.42
Kriging neff 30.95 17.88 30.82 24.52 20.51 25.81

σGCV 10.85 12.60 10.34 10.98 12.75 11.72
RSS 14 473 23 946 12 693 13 930 20 112 15 998

SPDE neff 63.09 41.46 68.70 67.94 56.55 51.64
σGCV 7.31 10.29 6.95 7.33 8.75 8.94
RSS 4977 13 361 4063 3902 7390 7337

Seasonally n 126.00 135.75 135.50 123.75 120.50 127.75
Kriging neff 28.05 12.48 24.69 21.11 18.43 20.82

σGCV 8.18 10.38 7.71 8.37 8.63 9.63
RSS 6533 15 281 6552 7299 7781 9912

SPDE neff 57.14 42.38 57.52 65.85 48.06 42.31
σGCV 5.99 8.47 6.00 5.59 6.67 7.84
RSS 2583 7951 3148 1941 3797 5406

Annually n 83 97 101 90 87 97
Kriging neff 24.10 23.67 11.21 8.35 12.65 12.70

σGCV 5.05 5.34 6.29 7.23 5.95 8.67
RSS 1501 2094 3553 4271 2629 6343

SPDE neff 48.93 41.61 30.72 49.93 31.97 22.91
σGCV 3.13 3.70 5.17 5.28 4.74 6.49
RSS 367 982 2092 1059 1345 4372
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Table 4. Comparison of RMSEs for kriging and SPDE approach predictions with satellite data
over all months and averaged from 2000 to 2005.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AVE.

Kriging 19.82 25.20 21.62 17.37 26.83 15.52 13.26 32.99 48.99 51.14 39.02 28.70 28.37
SPDE 12.82 11.00 12.90 12.40 20.54 11.17 10.24 21.83 16.17 15.54 13.95 18.18 14.73
percentage of 35.32 56.34 40.34 28.63 23.46 28.00 22.78 33.83 67.00 69.62 64.25 36.68 48.09
improvement
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Table 5. Comparison of RMSEs for kriging and SPDE approach predictions with satellite data
over all seasons and averaged from 2000 to 2005.

Season DJF MAM JJA SON Average

Kriging 20.19 19.52 15.46 43.57 24.69
SPDE 14.05 16.11 12.17 14.41 14.19
percentage of improvement 30.38 17.48 21.29 66.93 42.53
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Table 6. Design of the sensitivity analysis: stations to be removed are randomly selected within
each region.

Number of removed 5 10 20 30 Total

NH (90–30◦ N) 3 6 12 18 39
Tropic (30◦ S–30◦ N) 1 2 4 6 10
SH (30–90◦ S) 1 2 4 6 8
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Table 7. RMSEs of annual, seasonal and monthly total mean ozone from WOUDC dataset,
SPDE and kriging estimated means (using 57 stations) against SBUV data over 1990–2010.

Annual Seasonal Monthly
WOUDC SPDE Kriging WOUDC SPDE Kriging WOUDC SPDE Kriging

NH 3.17 2.37 2.94 3.40 3.21 3.54 3.95 4.21 4.40
Tropic 2.07 4.01 9.59 2.42 5.22 10.47 2.56 5.79 10.66
SH 4.51 3.96 8.39 4.39 8.84 15.33 6.10 11.07 15.58

Global 2.28 2.36 6.85 2.55 3.55 8.91 2.92 4.60 9.03
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(a) SPDE mean (b) SPDE SD

(c) Kriging mean (d) Kriging SD

Figure 1. Surface predicted ozone (DU) mean and SD (SD) for SPDE and kriging on Jan-
uary 2000. The red points indicate the locations of stations.

3996

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/3967/2015/amtd-8-3967-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/3967/2015/amtd-8-3967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 3967–4009, 2015

Ozone mapping

K.-L. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) DJF (b) MAM

(c) JJA (d) SON

Figure 2. Surface predicted ozone (DU) mean from SPDE approach by season on 2000.
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(a) DJF (b) MAM

(c) JJA (d) SON

Figure 3. Surface predicted ozone (DU) SD (SD) from SPDE approach by season on 2000.
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(a) SPDE (January) (b) Kriging (January)

(c) SPDE (April) (d) Kriging (April)

(e) SPDE (July) (f) Kriging (July)

Figure 4. Total ozone (DU) difference mapping of kriging and SPDE estimated mean with
respect to satellite data on January, April and July 2000, respectively.
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(a) SPDE (October) (b) Kriging (October)

Figure 5. Total ozone (DU) difference mapping of kriging and SPDE estimated mean with
respect to satellite data on October of 2000. Estimation in October shows worse prediction
than other months, hence it used different scale from Fig. 4.
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(a) TOMS DJF, 2000 (b) TOMS MAM, 2000

(c) SPDE (DJF) (d) SPDE (MAM)

(e) Kriging (DJF) (f) Kriging (MAM)

Figure 6. Ozone mapping from TOMS data in (a) DJF and (b) MAM; global difference mapping
of SPDE and kriging predicted mean with respect to TOMS data in DJF (c and e) and MAM (d
and f), 2000.
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(a) TOMS JJA, 2000 (b) TOMS SON, 2000

(c) SPDE (JJA) (d) SPDE (SON)

(e) Kriging (JJA) (f) Kriging (SON)

Figure 7. Ozone mapping from TOMS data in (a) JJA and (b) SON; global difference mapping
of SPDE and kriging predicted mean with respect to TOMS data in JJA (c and e) and SON (d
and f), 2000.
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Figure 8. Time series of zonal means by SBUV satellite data (black) WOUDC dataset (green),
kriging (red) and SPDE (blue) from 1979–2010.
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(a) Kriging zonal means (DU)

(b) SPDE zonal means (DU)

Figure 9. Time series of 30–60◦ N zonal means by (a) kriging and (b) SPDE from 1990–2010
for 4 scenarios with 5, 10, 20, and 30 stations removed globally including 3, 6, 12 and 18
stations removed in the NH respectively.
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(a) Kriging zonal means (DU)

(b) SPDE zonal means (DU)

Figure 10. Time series of 30–60◦ S zonal means by (a) kriging and (b) SPDE from 1990–2010
for 4 scenarios with 5, 10, 20, and 30 stations removed globally including 1, 2, 4 and 6 stations
removed in the SH respectively.
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(a) SPDE annual zonal mean (b) Kriging annual zonal mean

Figure 11. Annual zonal mean deviances from SBUV data (black), WOUDC dataset (green),
using all 57 available ground-based data (blue), random removed 5 (red), 10 (yellow), 20
(brown) and 30 (grey) stations in kriging and SPDE estimation over the (1) global (60◦ N–60◦ S),
(2) NH (30–60◦ N), (3) Tropics (30◦ N–30◦ S), and (4) SH (30–60◦ S) from 1990–2010.
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(a) Kriging zonal means (DU)

(b) SPDE zonal means (DU)

Figure 12. Time series of 30–60◦ N zonal means by (a) kriging and (b) SPDE from 1990–2010
for 4 scenarios with 5, 10, 20, and 30 stations drifted globally.
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(a) Kriging zonal means (DU)

(b) SPDE zonal means (DU)

Figure 13. Time series of 30–60◦ S zonal means by (a) kriging and (b) SPDE from 1990–2010
for 4 scenarios with 5, 10, 20, and 30 stations drifted globally.
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(a) SPDE annual zonal means (b) Kriging annual zonal means

Figure 14. Annual zonal mean deviances from SBUV data (black), WOUDC dataset (green),
using all 57 available ground-based data (blue), adding drift to 5 (red), 10 (yellow), 20 (brown),
and 30 (grey) stations in kriging and SPDE estimation over the (1) global (60◦ N–60◦ S), (2) NH
(30–60◦ N), (3) Tropics (30◦ N–30◦ S), and (4) SH (30–60◦ S) from 1990–2010.
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