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Abstract

A mixed-effects regression model with a bent-cable change-point predic-
tor is formulated to describe potential decline of cognitive function over time
in the older population. For the individual trajectories, cognitive function is
considered to be a latent variable measured through an item response the-
ory model given longitudinal test data. Individual-specific parameters are
defined for both cognitive function and the rate of change over time, using
the change-point predictor for non-linear trends. Bayesian inference is used,
where the Deviance Information Criterion and the L-criterion are investigated
for model comparison. Special attention is given to the identifiability of the
item response parameters. Item response theory makes it possible to use
dichotomous and polytomous test items, and to take into account missing
data and survey-design change during follow-up. This will be illustrated in an
application where data stem from the Cambridge City over-75s Cohort Study.

Key words: bent-cable; change point; cognition; growth-curve model; item-
response theory; longitudinal data analysis.
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1 Introduction

Of interest is cognitive function in the older population in the years before death.
Potential decline and the possibility of a one-off change in the trend of the decline
(Riegel and Riegel, 1972) will be investigated using mixed-effects regression models
for longitudinal data, where the response variable is latent cognitive function and
the predictors are linear or non-linear.

Data stem from the Cambridge City over-75s Cohort Study (CC75C), where
cognitive function is measured using a modified version of the Mini-Mental State
Examination (MMSE, see Folstein et al, 1975). The MMSE is often used as a
screening for dementia or mild cognitive impairment. Holling et al. (2012) show
that the examination has a better diagnostic accuracy for dementia than for mild
cognitive impairment. The MMSE consists of a questionnaire with dichotomous and
polytomous items. The distribution of the integer sum score is skewed since most
of the items are not difficult for an individual with normal cognition, and many
individuals score close to the upper bound of the scale. The discreteness of the sum
score and the skewness of its distribution means that a regression model with the
sum score as response variable is problematic when the conditional distribution for
the response is assumed to be normal.

In this paper, the response variable in the regression models is a latent continuous
variable which explains how well individuals score in the examination. The link
between the latent variable and the longitudinal scores on the individual items in
the questionnaire is described by an Item Response Theory (IRT) model (Van der
Linden and Hambleton, 1997). Hence, the latent response is interpreted as the
underlying cognitive function which explains observed cognitive performance.

A one-off change in the trend of cognitive decline cannot be properly modeled
using a linear predictor, which implies a constant rate of decline. For this reason,
a change-point predictor will be used to describe the change of cognitive function
in the older population. The most basic change-point model is the broken-stick
model. The broken-stick model implies a non-linear predictor such that there are
two linear parts (with different slopes) that intersect at the change point. For
the models in the current work, we will use a smooth version of the broken-stick
model, which is called the bent-cable model (Chiu et al, 2006; Van den Hout et al,
2013). Change-point models have been used in various applications, e.g., in medical
statistics (Stasinopoulos and Rigby, 1992), in demography (Cohen 2008), and in
transport (Lévy-Leduc and Roueff, 2009).

Bayesian inference will be applied using Markov chain Monte-Carlo (MCMC)
techniques. The Deviance Information Criterion (DIC, Spiegelhalter et al, 2002) and
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the L-criterion (Laud and Ibrahim, 1995; Gelfand and Gosh, 1998) are investigated
with respect to model comparison.

The combination of an IRT model and a change-point regression model has not
been investigated before but seems promising in scope. In modeling latent cog-
nitive function, the change-point regression model makes it possible to evaluate
within-subject change in growth rates given latent cognitive function as an outcome
variable. The common assumption of constant growth rates in linear models may
not be realistic with respect to cognitive function in the years before death. The IRT
model is formulated for longitudinal question-specific data without relying on less
informative aggregate data information such as sum scores. Hence, IRT acknowl-
edges that different items have different characteristics in terms of difficulty and
discriminatory effect. A further advantage of IRT is that missing data can be dealt
with at the level of the individual questions. There are six waves in our application,
and data on a selection of the dichotomous items are collapsed into polytomous data
in the first three waves but are available in the last three waves. Because of this
design, data are missing by design and hence missing at random (Rubin 1976). It
will be shown that using IRT makes it relatively easy to deal with missing data due
to a change of design.

Our work is building upon Bayesian inference for IRT as presented in Johnson
and Albert (1999) and Fox (2010). Longitudinal IRT models which include regres-
sion models with linear predictors have been discussed in a Bayesian framework by
Douglas (1999), Fox and Glas (2001), and Klein-Entink et al. (2011). Special at-
tention will be given to the way the longitudinal IRT model is identified, exploring
both restrictions on the item parameters, and restrictions on the scale of the latent
variable.

With respect to the change-point modeling of questionnaire data, the current
paper aims to extend the work in Van den Hout et al. (2011), where the assumption
of the normal distribution for the conditional (manifest) response variable may not
always be the optimal choice in practice. See also Jacqmin-Gadda et al. (2006), who
used a change-point model with the normal distribution for a test score as response.
In addition to handling non-normality of the response, the current paper extends
the modeling by combining an IRT measurement model with a structural model for
latent cognitive function. Instead of using a fixed measure of cognitive function,
response pattern information will be used.

The time scale in the analysis of the CC75C data is rather specific. The majority
of the participants in CC75C have passed away since the start of the study in 1985.
By ignoring the data from the small group of survivors, it is possible to use years-
to-death as the time scale. The presented methodology, however, is general and can
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also be used in longitudinal models with different time scales.
In Section 2, a brief summary of the CC75C data is given. Section 3 and 4

present the models and the Bayesian inference, respectively. Section 5 discusses the
data analysis after investigating choices of parameter restrictions. Section 6 is the
conclusion.

2 Cambridge City over-75s Cohort Study

The Cambridge City over-75s Cohort Study (CC75C, www.cc75c.group.cam.ac.uk)
is a UK population-based longitudinal study of aging that started in 1985 with par-
ticipants aged at least 75 years old in Cambridge city. Topics in the study are, e.g.,
cognitive decline and dementia, patterns of cognitive change, depression and depres-
sive symptoms, socio-demographics and social contacts, falls and functional ability,
and genetics. Here we focus on the measuring of cognitive function using a modified
version of the Mini Mental State Examination (MMSE). In the examination there
are items on, for instance, orientation (“What day of the week is it?”, “What floor
of the building are we on?”), on recognizing objects (“What is this called?”), and on
memory (“Can you tell me what were the objects in the colored pictures I showed
you a little while ago?”).

Due to the long follow-up and advanced age at baseline, almost all of the par-
ticipants passed away since the start of the study. After baseline (wave 1), further
interviews were conducted on average 2, 7, 9, 12, 17, and 21 years later. The sample
size of wave 1 is 2165 individuals. There is a large dropout between wave 1 and
2. Because dealing with the complex mechanism behind this dropout is outside the
scope of the methods in the present paper, we will only use data from the 1204
individuals in wave 2 up to 7. However, for 25 of these 1204 individuals a death
time is not available. The data of these survivors will be ignored. The resulting
data contains observations from 1179 individuals. This sample includes the data
from 40 individuals who were observed at wave 1 and have follow-up data from
wave 3 onwards only. There is also intermittent missing data in the follow-up of the
individuals who are observed at wave 2. This kind of missingness is very common in
longitudinal data. We assume that the mechanism for the intermittent missing data
is missing at random. Specifying the growth-curve model as a random-effects model,
see next section, should provide some robustness against possible violation of this
missing-at-random assumption (Verbeke and Molenbergh 2000). The frequencies for
the number of times individuals are observed before death are 507, 320, 195, 112,
38, and 7, for one up to six times, respectively.
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Figure 1: Availability of the item scores in CC75C.

For waves 2, 3, and 4, the data contain the answers to twelve dichotomous
items and four polytomous items. The latter four items are actually the result of
summarizing scores for dichotomous items. For waves 2, 3, and 4, the scores of
these underlying dichotomous items are not available. However, for waves 5, 6, and
7, these scores are available. The maximum for the total sum is 23: maximum for the
some of twelve dichotomous items is 12, and the maxima for the polytomous item
are 2, 3, 3, and 3, respectively. The diagram in Figure 1 illustrates the availability
of the item scores in the data set. As will be shown, the change in information
across waves can be accounted for in the IRT modeling. More information on the
individual items will be given in the section with the data analysis.
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3 Models

Latent cognitive function is described by regression models where random effects are
used to take into account dependencies between observations within an individual.
This kind of models for longitudinal data are sometimes called latent growth models.

Let the latent variable be given by θi = θi1, ..., θini
, for individual i at times

ti1, ..., tini
, where time of death is t = 0 and the times before death are represented

by negative values. So tini
is the last time individual i was observed in the study.

Model I is the linear regression model for θij given by

θij = η1i + η2itij + eij eij ∼ N(0, σ2)

η1i = β1 + b1i

η2i = β2 + b2i (b1i, b2i) ∼ MVN (0,Σ) . (3.1)

That is, parameter vectors (b1i, b2i) are multivariate normally distributed with mean
zero and 2× 2 variance-covariance matrix Σ. The conditional distribution of θij is
normal with unknown variance σ2. Random intercept η1i is the value of θij at time
of death t = 0, and random slope η2i reflects the change of θij over the time before
death, i.e., for t < 0. If the response variable would be manifest, then (3.1) would
be a standard linear mixed-effects model (Pinheiro and Bates, 2000; Molenberghs
and Verbeke, 2001).

Model I implies a linear change of latent cognitive function. As an alternative,
a regression model with a change-point predictor will be specified. This model will
be denoted Model II and is an extension of the fixed-effects bent-cable regression
model for a manifest response as introduced by Tischler and Zang (1981) and further
developed and investigated by Chiu et al. (2006). The bent-cable regression model
can be seen as a smoothed broken-stick model. The broken-stick change-point model
consists of two linear splines that intersect at the change point. The basic idea in
bent-cable regression is that the kink in the broken-stick change-point model is
replaced by a quadratic bend.

Given latent θij for cognitive function, Model II describes the change of θij over
time by fitting two linear parts, which are connected smoothly by a third part.
Corresponding to the three parts, the formulation of the model consists of three
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equations and it given by

θij =


η1i + η2itij + eij tij ≤ τi − δ
η1i + η2itij + η3i(tij − τi + δ)2/4δ + eij τi − δ < tij ≤ τi + δ
η1i + (η2i + η3i)tij − η3iτi + eij τi + δ < tij,

η1i = β1 + b1i eij ∼ N(0, σ2)

η2i = β2 + b2i

η3i = β3 + b3i

τi = g(β4 + b4i) (b1i, b2i, b3i, b4i) ∼ MVN (0,Σ) . (3.2)

where δ > 0, τi is the random-effect change point, andΣ is a 4×4 variance-covariance
matrix. Note that the location of the change point is midway the part that connects
the two linear parts. Thus the quadratic bend has half-width δ and location at
τi. The function g is the link function between the change point τi and its linear
predictor. This function can be used to impose a restriction on the support of the
change point.

Model II specifies a bent-cable curve for each individual i. Coefficient η2i is the
slope of the first linear part, and η2i+ η3i is the slope of the second linear part. The
intercept η1i is the value of the extrapolation of the first linear part at the time of
death t = 0.

In the application, the value of transition parameter δ is fixed. To estimate δ
from data, an intensive follow-up is needed - especially around the change point. In
CC75C, we do not have that kind of data. We consider δ to be a nuisance parameter:
it enables to define a smooth curve but its value is of limited importance in the
current setting.

A restriction used in the application, and probably of interest in general, is the
restriction of the support of the change point. We will use L and B to denote
the lower and upper bound of τi. The specification of L and B may require prior
subject-matter knowledge. If the change point is a fixed effect, i.e., τi = β4, then
the lower and upper bounds can be enforced by using a uniform density as the prior
for β4, and specifying g as the identity link. A more general solution to enforce the
bounds is to use a logistic link, see Muggeo et al. (2014). For example, when τi is
including as a random effect the bounds are enforced by

τi = g(β4 + b4i|L,B) =
L+ B exp(β4 + b4i)

1 + exp(β4 + b4i)
. (3.3)

This link function allows easily for adding covariates to the modelling of τi. This
will be illustrated in the application.
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Figure 2: Example of a fixed-effects bent-cable model for CC75C data for a selected
individual. Using the normal distribution for the response, and with vertical lines
for the estimated location of the change point τ .

To illustrate the bent-cable regression model, Figure 2 depicts CC75C data from
a selected individual and the fit of a fixed-effects model. For δ → 0 the model
converges to the shape of a broken-stick change-point model (although it will stay
smooth). The vertical lines are the estimated location of the change point τ for
the two values of δ. The fit of the bent-cable model is by maximum likelihood
estimation, where the normal distribution is used for the integer sum score with
response scale {1, 2, ..., 23}. Note that using the normal distribution in a situation
such as this may result in fitted values outside the range of the test score, which
would cause a dependence between residuals and fitted values - a violation of model
assumptions. This is one of the reasons to investigate IRT models.

The likelihoods for Models I and II conditional on the random effects are straight-
forward products of normal densities for values of θij with means specified by the
regression equations, and variance σ2. The likelihoods are generically denoted by
p(θ|β, b, σ2), where β is the vector with the fixed effects, and b is the vector with
the random effects.

Cognitive function is latent since it is not directly observed but measured by
a test (a questionnaire). At every observation time, the test consists of K items
(questions). We formulate the normal ogive version of the graded-response model
(Samejima, 1997; Fox, 2010). Let yij = (yij1, ..., yijK) denote data for individual i
at time tij. For item k with response categories 1 up to R (with the latter denoting
the best score), the model has R − 1 ordered thresholds parameters dk1, .., dkR−1.
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Together with the bounds −∞ and ∞ and the ordering −∞ < dk1 < ... < dkR−1 <
∞, these thresholds define segments on the real line. The graded-response model is
given by

p(yijk = m|θij, ck,dk) = Φ(ckθij − dkm−1)− Φ(ckθij − dkm), (3.4)

where dk = (dk1, ..., dkR−1). For item k, parameter ck is the discrimination parame-
ter, and dk is the vector with the difficulty parameters. Given a value of θij, these
parameters define the probabilities of the answer categories.

In case R = 2 and answer categories 1 and 2, the graded response model (3.4)
reduces to the ogive model p(yijk = 2|θij, ck, dk1) = Φ(ckθij − dk1).

Mixed responses (dichotomous and polytomous items) can be formulated by
making R item-dependent. A further extension is to make the item parameters ck
and dk time-dependent, with notation cjk and djk = (djk1, ..., djkR−1) for item k
at wave j. However, time-dependent item characteristics can lead to identification
problems. If all items are time dependent, then it is not possible to distinguish
change of individual latent ability over time from change of test characteristics. For
that reason, at least one time-invariant item is required.

The conditional density for questionnaire data y with K items, item-dependent
R, and wave-dependent item parameters is

p(y|θ, c,d) =
N∏
i=1

ni∏
j=1

K∏
k=1

Rk∑
m=1

p(yijk = m|θij, cjk,djk)I(yijk = m),

where I(y = m) = 1 if y = m and 0 otherwise.
The model for longitudinal questionnaire MMSE data that combines the regres-

sion model and the IRT model is not identified. This is caused by the IRT model
where θ is latent and has no metric. A common choice in cross-sectional IRT models
is to restrict θij such that it is normally distributed with mean 0 and variance 1. An
alternative is to impose restrictions on the scale of the item parameters. If R = 2
for all items, for example, restrictions

∏K
k=1 ck = 1 and

∑K
k=1 dk1 = 0 can be used.

For the longitudinal models, we will investigate similar restrictions in the CC75C
data analysis.
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4 Bayesian Inference

4.1 Markov Chain Monte Carlo

For the mixed-effects regression model with non-linear change-point predictor we
formulate the basic steps in the Gibbs sampler for the model parameters given
mixed responses (dichotomous and polytomous items). Define ybin and ypol as the
dichotomous and polytomous subset of y, respectively. Likewise, let cbin, dbin, cpol,
and dpol denote the corresponding subsets of the item parameters.

For dichotomous items, using an auxiliary variable allows for a straightforward
implementation of sample techniques for the item parameters (Johnson and Albert
1999). Define z as a continuous representation of ybin such that, corresponding to
ybin
ijk, zijk is normally distributed with mean ckθij − dk and standard deviation 1.
Value ybin

ijk = 2 is observed when zijk > 0, and ybin
ijk = 1 is observed, when zijk ≤ 0.

A Gibbs sampler is a Markov chain Monte Carlo (MCMC) where each of the
model parameters is sampled from a distribution which is conditional on the values
of all other parameters. The conditional distributions that are used in the Gibbs
sampler are given in shorthand notation by

p(z|...) = p(z|θ, cbin,dbin,ybin)

p(cbin|...) ∝ p(z|θ, cbin,dbin)p(cbin)

p(dbin|...) ∝ p(z|θ, cbin,dbin)p(dbin)

p(cpol|...) ∝ p(ypol|θ, cpol,dpol)p(cpol)

p(dpoly|...) ∝ p(ypol|θ, c,dpol)p(dpol)

p(θ|...) ∝ p(y|θ, c,d)p(θ|β, b, σ, t)
p(β|...) ∝ p(θ|β, b, σ, t)p(β)
p(σ|...) ∝ p(θ|β, b, σ, t)p(σ)
p(b|...) ∝ p(θ|β, b, σ, t)p(b|Σ)

p(Σ|...) ∝ p(b|Σ)p(Σ),

In the application, the specification of the random-effects distributions results in
Σ being either a 2 × 2 matrix parameterized by two standard deviations and a
correlation, or a 3 × 3 matrix parameterized by three standard deviations and one
correlation. Parameter restrictions to identify the model are imposed in every run
of the Gibbs sampler, this will be discussed in Section 5.1. Prior densities for
parameters vectors β, c, and d assume independence between the coefficients, for
example, p(β) = p(β1)p(β2)p(β3)p(β4).
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In the MCMC, we use the logistic transformation in (3.3) – also when change
point τi is a fixed effect. Because of the transformation, we have τi ∈ (L,B) for any
value of β4 + b4i, which allows for unrestricted sampling of β and b4i.

The first five steps in the Gibbs sampler above are derived from MCMC schemes
that can be found in the literature for cross-sectional IRT data analysis. Note that
when conditioning on θ, the conditional distributions for the item parameters have
the same form as in cross-sectional IRT. The first three steps are detailed in Johnson
and Albert (1999, Chapter 6), where the conditional distributions are specified as
normal distributions, the fourth and the fifth are discussed in Fox (2011, Section
4.3.4). We use Metropolis steps for cpol and Metropolis-Hastings steps for dpol to
sample from the conditional distributions. In the sampling of candidates values for
dpol, the ordering of the threshold is maintained.

The sampling of θ is undertaken using Metropolis steps. Parameters for the
regression model can be sampled using the methods in Gelfand et al. (1990) when
the predictor is linear, or by using methods for non-linear regression models as
discussed in, e.g., Gelman et al. (2004). Since we use non-conjugate prior densities
for the standard deviations, we also use Metropolis steps to sample values for the
standard deviations.

The above Gibbs sampler results in draws of parameters values from the posterior
of Model II. The expression for this posterior is

p(θ,z, c,d,β, b, σ,Σ|y, t) ∝
p(z|θ, cbin,dbin,ybin)p(ypol|θ, cpol,dpol)p(θ|β, b, σ, t)p(b|Σ)p(c)p(d)p(β)p(σ)p(Σ).

For missing item scores, we assume that the values are missing at random, i.e.,
the missingness does not depend on the missing value itself, but may depend on
observed data. The MCMC can easily be extended to take this kind of missing data
into account: first missing values are sampled from their conditional distributions
given current parameter values, and next the MCMC steps for complete data are
undertaken. In formulas, if dichotomous value ybin

ijk is missing in wave 2, 3, or 4 (see
Figure 1), then it is sampled using a Bernoulli trial with success probability Φ(ckθij−
dk1). If polytomous value ypol

ijk is missing, then it is sampled using a multinomial
distribution with probabilities given by (3.4).

Posterior inference for means, credible intervals, and other derived quantities
are based upon two chains, each with a burn-in and additional updates used for
inference. Convergence of the chains for the item parameters and the parameters for
the growth model is be assessed by visual inspection of the chains and by diagnostics
tools provided in the R-package coda (Plummer et al. 2006). This will be illustrated
in the application.
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4.2 Deviance Information Criterion and L-criterion

To compare models, we use the Deviance Information Criterion (DIC, Spiegelhalter
et al. 2002) and the L-criterion (Laud and Ibrahim, 1995; Gelfand and Gosh, 1998).
The DIC comparison is based on a trade-off between the fit of the data to the model
and the complexity of the model. Models with smaller DIC are better supported by
the data. The DIC in the current setting is based on the deviance, which is specified
for the questionnaire data by

D(y,Ω) = −2 log p(y|Ω), (4.1)

where Ω = (θ, c,d). The DIC is given by

DIC = D̂ + 2pD, (4.2)

where D̂ = D(y, E(Ω)) is the plug-in deviance and pD denotes the effective number

of parameters. The expected deviance is denotedD and is used to define pD asD−D̂.
The expected deviance is estimated by M−1

∑M
m=1 D(y,Ω(m)) with m denoting the

iterations in the MCMC algorithm. The plug-in deviance is estimated by using the
posterior means of the model parameters.

The plug-in deviance is not invariant to parametrization and does not take into
account the precision of the estimates. The expected deviance, however, is a function
of the posterior of the model parameters and does account for the precision of the
estimates (Plummer 2008).

Although the DIC is widely used, it is not without problems, see, e.g., Carlin
and Louis (2009) and the discussion in the seminal paper Spiegelhalter et al. (2002).
The DIC can given inappropriate results if there are highly non-normal posterior
distributions of the parameters on which prior distributions have been placed (Lunn
et al, 2009). Given the complexity of the current model, some caution when using
the DIC is therefore recommended. As alternative, we look at the L-criterion, which
is not justified by relying on asymptotic results. The L-criterion is a posterior
predictive check and is derived from the sum of the variance of the predictions and
a distance measure with respect to predicted and observed values. The L-criterion
for replicates xrep

l of observed xl is given by

L =

√∑
l

V ar[xrep
l ] + (E[xrep

l ]− xl)2. (4.3)

As is clear from the expression itself, smaller values of L are better. In the IRT
context, this criterion can be formulated with respect to the individual item scores
yijk, in which case the summation in (4.3) is over all the combinations of i, j, and k.
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We will only discuss and compare the criterions in light of the application, a
more theoretical and wider discussion is outside the scope of the present paper.

5 Data Analysis

Section 5.1 investigates parameter restrictions using a subsample from the CC75C
data with dichotomous items only. The results provide insight in the effect of restric-
tions and will also function as a preliminary step for the change-point data analysis
in Section 5.2

5.1 Parameter restrictions

Parameter restrictions to identify the model are imposed in every run of the Gibbs
sampler. Restrictions are needed because the latent cognition parameterized by
θij does not have a metric. For cross-sectional IRT models parameter restrictions
are discussed in Fox (2010, Section 4.4.2). In the following similar restrictions are
used for longitudinal models. Using CC75C data, the effects of the restrictions
are investigated with respect to model comparison and convergence of the MCMC
sampling.

Since running the MCMC is computationally intensive we use a random sub-
sample of the data with sample size N = 400. For this sample size, there is enough
information in the data for parameter inference whilst the running of the MCMC is
not too time consuming. Frequencies of the number of times the MMSE is observed
per individual in this subsample are 168, 113, 61, 49, 6, and 3, for one up to six
times, respectively. Hence there are 821 observations in total.

This section discusses Model I and Model II for binary IRT data. The models for
latent cognitive function consist of an IRT measurement model and a latent growth
model. In this section, Model I and Model II have the same measurement model,
but differ in the model for the latent growth.

Using K = 12 binary items with score 1 for an incorrect answer, and 2 for a
correct one, the IRT measurement model is given by

p(yijk = 2|θij, ck, dk) = Φ(ckθij − dk),

where i denotes the individual, j indexes the repeated observations, and k indexes
the question, see (3.4).

The latent growth in Model I is specified by (3.1) using a linear predictor for the
latent θij. For the Bayesian inference, vague prior densities are used for the residual

13



variance and the variance components, i.e., σ, σ1, σ2 ∼ U(0, 5). For ρ the prior is
U(−1, 1). For the remaining model parameters, the priors are improper and equal
to 1.

The latent growth in Model II is a restricted version of (3.2) and is given by

η1i = β1 + b1i η2i = β2 η3i = β3 + b3i

τi = τ =
L+ B exp(β4)

1 + exp(β4)
(b1i, b3i) ∼ MVN (0,Σ) ,

where Σ is parameterized by standard deviations σ1 and σ3, and correlation ρ. For
the fixed-effects β1, β2, β3 and β4, the priors are improper and equal to 1. For the
current time scale, B = 0 represents the time of death, L = −12 represents twelve
year before the time of death. The choice for L reflects our current interest: going
back more than 12 years means losing the assumed link between cognitive decline
and the proximity of death. The transition parameter δ is fixed to 1/2, representing
half a year. For all other parameters the priors are as in Model I.

The scale of the 821 × 1 vector with latent values of θij, denoted by θ, can
be restricted in each MCMC iteration by transforming a sampled θ such that the
resulting θ has mean 0 and variance 1. This fixing of the metric for θij does not have
to take into account the hierarchical structure of the repeated observations within
individuals. The transformation is linear so the relative distances between values of
θij are maintained. Note also that fixing the metric for θij does not fix σ, which is
the conditional variance V ar(θij|η1i, η2i, tij).

Alternatively, if the restriction concerns dichotomous item parameters c and
d, then re-scaling is undertaken such that

∏K
k=1 ck = 1 and

∑K
k=1 dk = 0. This

is a common choice in cross-sectional IRT models and can easily be implemented
in a longitudinal setting. If some or all items are polytomous, restrictions can be
imposed by restricting the product of their discrimination parameters to be one, and
by restricting, for each item, the sum of the difficulty parameters.

For each of the models, two chains are used each consisting of 40000 iterations.
For Model I, half of the iterations are discarded afterwards as the burn in. For Model
II, we discard the first 5000 of each chain as the burn-in. Model II is more complex
and convergence diagnostics improved when using more sampled values. The jump
distributions in the Metropolis steps are adjusted during the burn-in such that the
acceptance rates are between 30% and 50%. Table 1 presents DIC and L-criterion
statistics, and convergence diagnostics using the univariate or multivariate potential
scale reduction factor (Gelman and Rubin, 1992).

In IRT, the ability parameters θij are much more involved in the determination of
the effective number of parameters pD than the item parameters. Increased shrinkage
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Table 1: For a subset of the data (N = 400), DIC, L-criterion, and potential scale
reduction factors (psrf) for a selection of the parameters.

DIC D D̂ pD minimum D L-criterion

Linear model for latent cognitive function

Restricted θ 5750 5400 5051 350 5225 29.0
psrf(σ) = 1.02 psrf(c) = 1.01

psrf(β) = 1.00 psrf(ρ) = 1.02 psrf(σ1, σ2) = 1.01

Restricted c and d 5662 5235 4808 427 5058 28.6
psrf(σ) = 1.07 psrf(c) = 1.05

psrf(β) = 1.01 psrf(ρ) = 1.02 psrf(σ1, σ2) = 1.02

Restricted c and θ 5673 5246 4818 428 5071 28.6
psrf(σ) = 1.04 psrf(c) = 1.03

psrf(β) = 1.00 psrf(ρ) = 1.05 psrf(σ1, σ2) = 1.01

CP Model for latent cognitive function

Restricted on c and d 5643 5236 4828 408 5052 28.6
psrf(σ) = 1.16 psrf(c) = 1.05

psrf(β) = 1.08 psrf(ρ) = 1.06 psrf(σ1, σ3) = 1.07

on θij induces a lower value of pD because with more shrinkage there is less variability
in θij. As a random effect, the shrinkage on θij is determined by the variance: if the
variance of θij is higher, then there is less shrinkage and pD is higher.

Denote the overall variance of θij by σ∗. Restricting the discrimination param-
eters c by equalling their product to one will lead to a value of σ∗, which defines
the amount of shrinkage of θij and hence the value of pD. Restricting θij by σ∗ = 1
is a second way to define the amount of shrinkage. The two choices of parameter
restrictions do not lead to the same amount of shrinkage on θij. In the application,
Table 1 shows that for the chosen restrictions on c and d imply less shrinkage.

Note that all this is not an issue of reparametrization, it is about restrictions on
model parameters. For specified restrictions, DIC can be used to compare models.
From Table 1, e.g., we can conclude that for the current restrictions, the model with
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restricted c and d performs better than the model with restricted θij. But this does
not imply that choosing to restrict item parameters is the best choice in general.
The idea of the un-identified model is that we should be able to find a restriction on
θij such that the resulting DIC is equal to the DIC obtained with a given restriction
on c and d.

From the univariate and multivariate potential scale reduction factor in Table 1,
we conclude that, for Model I, the choice of restrictions do not have an influence on
the convergence of the MCMC. For Model II, longer chains were needed to attain
convergence statistics similar to Model I.

Both the DIC and the L-criterion favor the chosen restrictions on c and d over
the chosen restrictions on θij. Using restrictions on c and θij for the model with the
linear predictor also works well, but will not be pursued in what follows. According
to the DIC, the model with the change-point predictor is an improvement upon the
model with the linear predictor. The L-criterion does not signal a difference between
these two models.

We also investigated the sensitivity with respect to the choice of fixing the value
of δ to 1/2 in Model II. Results across various fixed values are very similar. For
δ = 1/4, posterior mean for the fixed-effects change point parameter τ is -6.33, and
95% credible interval is (-7.89, -5.08). The DIC is 5640. For δ = 1/2, the inference
is -6.42 (-7.65, -5.35), with DIC in Table 1 equal to 5643. For δ = 1, the inference
is -6.48 (-8.32, -5.30), with DIC = 5644. Convergence diagnostics are similar for all
three settings and do not indicate problems.

There is not a lot of variation in the DICs in this sensitivity analysis, and the
L-criterion is the same across the three different values, i.e., 28.6. With increasing
values for δ there is a slight shift in the posterior mean further away with the time
of death, but the shift is less than half a year with all the 95% credible intervals
wider than 2 years.

We are not sure whether the DIC is suitable in the current setting for model
comparison across models with a different random-effects specifications. The L-
criterion has the advantage this it is not justified by relying on asymptotic results,
but may be to too crude to compared models that differ in minor aspects only.

5.2 Random change-point model for CC75C

This section investigates the IRT growth model with random change-points for the
CC75C data specified in Section 2, with sample size N = 1179. For the CC75C
waves 2 up to 7, the twelve dichotomous items in the data are Qweekday, Qdateday,
Qmonth, Qyear, Qseason, Qcounty, Qtown, Qstreet, Qplace, Qifs, Qwrite, and

16



Qread. The first nine are with respect to orientation, Qifs is about repetition of
the expression “No ifs, ands or buts.”, Qwrite, and Qread are tests for writing and
reading, respectively.

For waves 2, 3 and 4, the four polytomous items are Qobject, Qregist, Qrregist,
and Qpaper. The first is about recognizing two objects. Qregist is about registering
three objects, and Qrregist is about remembering these three objects later on in
the interview. Qpaper is about following instructions regarding handling a piece of
paper. For the remaining waves 5, 6, and 7, the scores for the underlying dichoto-
mous items are available for these four polytomous items. For example, Qobject
is split up in two items scoring the correct recognition of a pencil (Qpencil) and
a watch (Qwatch). The other three polytomous items are split up in (Qrapple,
Qrtable, Qrpenny), (Qrrapple, Qrrtable, Qrrpenny), and (Qhand, Qfold, Qlap),
respectively.

For the data analysis, the polytomous scores for waves 5, 6, and 7 are derived
from the observed dichotomous scores, see Figure 1. The dichotomous scores un-
derlying the four polytomous items in waves 2, 3 and 4 are missing by design and
are therefore not taken into account in the analysis. We could have imputed these
missing dichotomous scores within the MCMC but that would add unnecessary un-
certainty to the analysis.

The change-point Model II with random change point that will be used is speci-
fied by the graded-response measurement model (3.4) and the latent growth model

η1i = β1 + b1i

η2i = β2

η3i = β3 + b3i

τi =
L+ B exp(β4 + b4i + γ1Di + γ2Si)

1 + exp(β4 + b4i + γ1Di + γ2Si)
(b1i, b3i, bi4) ∼ MVN (0,Σ) ,

where Di is age at death for individual i, and Si is a 0/1 dummy for women/men.
The 3× 3 matrix Σ is parameterized by standard deviations σ1 and σ3, and corre-
lation ρ for random effects b1i and b3i, and standard deviation σ4 for random effect
b4i. Model II has thus six fixed-effects parameters (β1, β2, β3, β4, γ1, γ2), one residual
variance parameter (standard deviation σ), three parameters for the standard devi-
ations for the random effects (σ1, σ3, σ4), and one correlation parameter for random
intercept and random second slope (ρ). There are as many ability parameters θij as
there are interviews, there are 27 discrimination parameters c (twelve for the twelve
dichotomous items in all waves, eleven for the dichotomous items in the last three
waves, and four for the four polytomous items). There are 23 difficulty parame-

17



Table 2: Posterior mean (and 95% credible interval) for the parameters in the
growth-curve submodel in Model II. Number of MCMC iterations is 60000, where
first 10000 are ignored as burn-in.

Coefficients Variance components

β1 1.36 (1.25, 1.47) σ1 0.46 (0.41, 0.51)
β2 -0.03 (-0.04, -0.02)
β3 -0.22 (-0.31, -0.14) σ3 0.11 (0.06, 0.17) ρ -0.37 (-0.82, 0.12)
β4 1.37 (0.54, 2.27) σ4 1.43 (0.91, 2.23)
γ1 -0.08 (-0.11, -0.05) σ 0.33 (0.27, 0.38)
γ2 0.85 (0.37, 1.57)

ters for the dichotomous items, two difficulty parameters for the first polytomous
question and 3 × 3 = 9 difficulty parameters for the three remaining polytomous
questions.

As in Section 5.1, the priors for the fixed-effects parameters are equal to 1, the
vague prior density for σ1 and σ3 is U(0, 5), and for σ4 the prior is U(0, 3). All
other priors are improper and equal to 1. The transition parameter δ is fixed to
1/2. MCMC for the item parameters is robust and convergence is quickly attained.
For the parameters in the growth-curve submodel, more iterations are needed for
proper convergence. The total number of iterations is 60000, where the first 15000
are ignored as burn-in.

Table 2 presents the posterior inference for the parameters for the growth-curve
modeling.

An absolute value of θij as a measure of cognitive ability should not be interpreted
on its own. Only comparisons between values are meaningful. The fixed-effects slope
parameters in Table 2 show that conditional on the mean zero for the random effects,
there is a slight overall decline of ability before the change point (β2) followed by
a sharper decline after the change point (β2 + β3). The correlation ρ between the
random effects for the intercept and second slope (b1 and b3) has a negative posterior
mean, but a wide 95% credible interval, which includes zero.

Posterior inference for the effect of age at death, γ1, shows that people dying at a
high age have a change point more years before death then people who die younger.
The posterior mean γ2 > 0 shows that men tend to have change points closer to
death than women.

Figure 3 depicts the posterior distributions for the item parameters. The item
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Figure 3: Posterior inference for the parameters for the four polytomous items.
Discrimination parameters cpol at the top and corresponding difficulty parameters
dpol at the bottom.

Qobject, recognizing two objects discriminates best, whereas item Qrregist about
remembering these objects later does not seem to help in discriminating between
individual abilities. Figure 3 also shows that the item parameters are well identified.

Posterior inference for random change points is best undertaken by assessing
the posterior for τi for i = 1, ..., N . Additional sampling using 1000 iterations
was undertaking for posterior inference using the random effects. For the N =
1179 posterior means of the individual-specific random change points, the mean
is -2.52 years before death. The distribution of the N posterior means is skewed:
the quantiles are -10.58, -4.02, -2.52, -1.55, and -0.40, for the 0, 1/4, 1/2, 3/4, 1
quantiles, respectively.

The model assumes that all individuals have a change point. However, the
change point assessment is only of interest regarding those individuals who expe-
rience change during the follow-up. For the stable trends, change points are fitted
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Figure 4: Posterior means for N = 1179 random change points against change in
test score during follow-up (first observed score minus last one). Circles for women,
triangles for men.

very close to the time of death and cannot be considered to be true change points.
Define change in test score as first observed score minus last observed one. This

definition ignores the inherent variability of the measuring, but will help to assess
the distribution of the individual change points. Figure 4 depicts posterior means for
the N = 1179 random change points against change in test score during follow-up.
The graph illustrates the skewness of the posterior means, the difference between
men and women, and that more change is associated with an earlier change point
on the scale years before to death. For example, for the individuals with a score
change of 5 or more, the mean of the individual posterior means is -5.66 years before
death (and the median is -5.48). For a score change of 10 or more, the mean is -7.07
(median -7.42).

It is possible to predict the item scores given the posterior distribution of the
population parameters and the random effects. For a random sample from those
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Figure 5: For a random sample from individuals who were seen five times or more,
observed sum scores and fitted curves (with 95% credible band). Vertical line for
location posterior mean individual change point. Dashed lines for men, solid for
women.

individuals who were seen five times or more, Figure 5 shows fitted sum scores and
observed scores. It is nice to see that the model captures to observed sum-score
trend reasonable well for these individuals. Figure 5 also shows that the model is
capable of fitting stable individual trends, see the graph for individuals ID = 1080
and ID = 787. This is an important feature of the modeling, which acknowledges
that not all individuals in the sample experience cognitive decline in the years prior
to death.
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6 Conclusion

As stated in Klein Entink et al. (2011), the use of questionnaires is widespread, not
only in social sciences but also the biostatistics (e.g., the measuring of depression
or quality of life). Because of this, item response theory (IRT) becomes more im-
portant as it enables the measuring of an underlying variable while recognizing the
psychometric properties of the questionnaire that is used. By accounting for differ-
ential item effects, IRT implies a more realistic data analysis compared to models
which use the sum score and assume that each item contributes in an equal way.

In our model, the latent variable representing cognitive function is assumed to
be continuous. For applications where the assumption of a discrete latent variable
is suitable, other methods are available. Bartolucci et al. (2009) discuss a model
where latent states of a first-order discrete-time Markov model explain observed lon-
gitudinal binary item scores. For cognitive function, it seems reasonable to assume
that the latent scale is continuous given that we assume that change is gradual.
But it is of course possible to approximate a continuous latent scale by introducing
a series of latent discrete states. How many latent states to define is not clear at
the outset, and this is a disadvantage of the latent-states approach. But there is a
similar problem with assuming beforehand that the latent scale for cognitive func-
tion is univariate. Exploring a bivariate latent scale in our application would be an
interesting extension of our current model. An additional advantage of using the
mixed-effects growth model in our application is that it does not require a regular
spacing of consecutive interviews. Observation times are allowed to vary between
and within individuals. With latent-variable modelling, there is always the problem
of interpretability of the parameter for the latent trait. In our model, the slope
parameters for the change in latent cognitive function do not provide information
other than their signs. However, the interpretation of the posterior distribution of
the change point is clear and direct, as illustrated by Figures 4 and 5.

When models are compared, the minimum value of the Deviance Information
Criterion (DIC) is intended to identify the model that performs best with respect
to short-term predictions (Lunn et al, 2012). The criterion is particularly useful
when comparing random-effects models, although as a general method for model
comparison it is also subject to criticism, see Section 4.2. In the current setting,
the effective number of parameters is high due to the latent variable approach in
addition to the random-effects specification, and we are not sure whether the DIC
is suitable for comparing models with different random-effects structures. The L-
criterion is used as an alternative. The latter criterion is not justified by relying on
asymptotic results. We also investigated the use of the pseudo-marginal likelihood
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(Geisser and Eddy, 1979; Gelfand and Dey, 1994) as an alternative to the DIC. But
the estimation of the conditional predictive ordinates was quite unstable for the
models and the data at hand, and this approach was not pursued.

Although there are publications on IRT models for longitudinal questionnaire
data, there is still scope for further work and improved data analysis. Douglas
(1999) and Fox and Glas (2001) discuss linear regression models for time-dependent
latent ability as measured by IRT. Recent work by Wang et al. (2013) presents
Bayesian inference for IRT models where the change in latent ability over time is
modeled using dynamic models. The random change point model is capable of
fitting stable individual trends as shown in Figure 5. A possible extension would
be to explicitly model stable trends versus change using a two-component mixture.
A similar latent-class mixture approach is used in Van den Hout et al. (2013) who
analyze a manifest outcome variable with a change-point predictor.

For the Cambridge City over-75s Cohort Study sample in the analysis, all the
N = 1179 death times are obtained from population registers. For the intermittent
missing data (missing an interview) the random-effects model should provide some
robustness against violation of the MAR assumption. We used the CC75C data
from wave 2 onwards only. The dropout between wave 1 and wave 2 in CC75C has
not been taken into account in the current analysis, and whether this has an impact
on the conclusions is still to be investigated.

The methods in the current paper show that it is possible to estimate regression
models with non-linear predictors for the underlying variable and that it is worth-
while to investigate different ways of identifying the model. The application shows
how this approach can be used to investigate potential decline in cognitive function
taking into account the possibility of a one-off change in the trend of the decline.
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