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ABSTRACT 

 

OBJECTIVE 

Implementation of winter surge management in intensive care is hampered by the annual variability in 

the start and duration of the winter surge. We aimed to develop a real-time monitoring system that 

could identify the start promptly and accurately predict the end of the winter surge in a pediatric 

intensive care (PIC) setting.  

 

DESIGN 

We adapted a method from the stock market called “Bollinger bands” to compare current levels of 

demand for PIC services to thresholds based on medium term average demand. Algorithms to identify 

the start and end of the surge were developed using Bollinger bands and pragmatic considerations. 

The method was applied to a specific PIC service: the North Thames Children’s Acute Transport 

Service (CATS) using eight winters of data (2005-2012) to tune the algorithms and one winter to test 

the final method (2013/14).   

 

SETTING 

A regional specialised pediatric retrieval service based in London, UK.  

 

RESULTS 

The optimal Bollinger band thresholds were 1.2 and 1 standard deviations above and below a 41-day 

moving average of demand respectively. A simple linear model was found to predict the end of the 

surge and overall surge demand volume as soon as the start had been identified. Applying the 

method to the validation winter of 2013/14 showed excellent performance, with the surge identified 

from 18th November 2013 to 4th January 2014. 

 

CONCLUSIONS 

We have developed and tested a novel method to identify the start and predict the end of the winter 

surge in emergency demand for pediatric intensive care.  
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INTRODUCTION 

 

Each winter in the UK, there is a significant increase in the number of emergency admissions to 

hospitals, particularly in patients with respiratory illness. In the United Kingdom, this surge in demand 

for hospital beds regularly outstrips availability and results in frequent bed crises. The British Medical 

Association, NHS England, and many hospitals, have plans for winter preparedness to cope with 

these pressures (e.g. 1-4). However, these plans tend to be reactive once bed pressures arise, rather 

than being proactive attempts to manage capacity. Real-time monitoring of demand and prompt 

identification of a demand surge offers the potential for more informed management of the system  

Winter pressures on pediatric intensive care units (PICUs) and retrieval services can be 

particularly acute. Referrals of infants with acute respiratory failure approximately double during this 

period and almost all these infants are admitted to PICU following retrieval from district general 

hospitals [5]. Plans for surge management have been published recently by the Paediatric Intensive 

Care Society (PICS) and NHS England [6]. They identify the winter surge as lasting an average of 6 

weeks between mid-November and January, and recommend various measures during this time (see 

also 7), such as to increase capacity, streamline work processes and reschedule elective workload. 

Despite these plans, their implementation in practice is hampered by variability in timing of the 

start of the winter surge from year to year. In the UK there is some real time surveillance during winter 

for factors “upstream” of general emergency demand, such as general practitioner visits for seasonal 

influenza, but these factors may not be relevant to pediatric ICU services and are usually published 

weekly and not daily. Surveillance of other potential data streams such as reported cases of RSV 

infection is currently not possible in real time. An accurate method to identify the start and end of a 

surge, and to predict the overall level of demand during it, will be useful for PICU services to 

implement targeted surge management plans in a clinically relevant and cost effective manner. The 

start of the surge should ideally be identified as soon as possible based on monitoring demand levels 

on a daily basis rather than weekly or monthly. 

 

In this study, we describe the novel use of a statistical process control method adopted from 

the stock market to signal alerts to mark the start and end of the winter surge accurately and illustrate 
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the method for a large regional PICU retrieval service based in London. Although the timing of 

seasonal surges may vary with geographical location [7,8], this does not affect the applicability of the 

method.  

 

METHODS  

 

Statistical control method  

 

Standard definition of Bollinger bands 

Bollinger bands were introduced by stock market investor John Bollinger in 1992 [9] as way to trigger 

buy and sell signals on shares by comparing current prices to the medium term moving average.  

For a daily time series, Bollinger bands are traditionally defined as two standard deviations 

either side of a 20-day moving average (i.e. a “window size” of 20 days and a “band width” of 2 

standard deviations). However, the choice of window size and band width is flexible and depends on 

the purpose for which it is designed. Although very simple, Bollinger bands have been shown to be 

profitable rules of thumb and continue to be used today in the stock market [10,11]. They have also 

been used in completely different contexts such as identifying fabric defects during manufacturing 

[12], although we were able to find only a few documented uses outside of finance, and none in health 

care. 

The advantage of using a technique like Bollinger bands for monitoring demand in pediatric 

intensive care is that they rely only on knowing recent demand and are simple to implement.  

Bollinger Bands can be thought of as another type of statistical process control method.  

 

Using Bollinger bands to identify the start and end of a winter surge 

Use of Bollinger bands in the stock market is focused on spotting when a time series has deviated 

significantly from a recent medium term average. The underlying assumption is that such deviations 

cannot be predicted. In the stock market, all deviations are important regardless of when in the year 

they occur. However the situation for pediatric intensive care services is somewhat different: there is a 

surge every winter that places significant pressure on PICU services. Thus, if looking at daily demand 

over the year, demand will breach the upper Bollinger band at some point in the autumn as demand 
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increases during the surge and it will breach the lower Bollinger band as demand decreases once the 

surge is over. Those breaches could then act as surge identifiers, signalling the start and end of the 

winter surge. Our aim was to choose a window size and band width that respond quickly to changes 

in demand (to provide timely warning that the surge has started or ended) but not so quickly that a 

transient spike or dip in demand will result in a ‘false positive’ identification. Allowing the band width 

and window size to be determined by tuning the identification algorithms to historical data is a key 

difference in our approach from both the use of Bollinger Bands in the stock market and other 

statistical process control (SPC) methods in health care. 

Additionally, the likelihood of a false positive identification can be reduced by requiring that 

daily demand must consistently breach either the upper Bollinger band (to define the start of the 

surge) or the lower Bollinger band (to define the end of the surge). An example would be requiring 

daily demand to breech the Bollinger band for several days in a row before the start of the surge is 

formally identified (e.g. see 13).  

Finally, daily demand breaches the upper Bollinger Band whenever current demand is 

significantly higher than the recent average. However, while this does represent a surge in demand, it 

only matters to a service if demand is high enough to strain capacity. For instance, in a service that 

has experienced consistently low demand (e.g. during August), a surge to medium demand is unlikely 

to present any problems in meeting that demand. To be useful for winter planning purposes, the 

identification of the start of the winter surge should occur only when demand has reached a level that 

strains available capacity.  

The most suitable choices for window size, band width, consistency and absolute demand 

requirements are likely to depend on the particular pediatric intensive care service. The level of 

demand that is considered to strain available capacity must be defined by the local team. Choices for 

window size, band width and consistency can then be optimised by defining start and end dates for 

previous winter surges in that service.  

Once Bollinger bands, consistency and demand thresholds have been identified to identify the 

start and end of the winter surge, relationships between identified start and end dates and overall 

demand volume can be explored to enable prediction of the end and size of the winter surge as soon 

as the start has been identified.  
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The method is not fitting a statistical model to the data. The approach adopted is deliberately 

pragmatic, making the most of a single time series of recent demand that is likely to be readily 

available, to determine when the winter surge has started and ended within a particular service. 

 

Example application in the North Thames Children’s Acute Transport Service (CATS) 

The Children’s Acute Transport Service (CATS) is a regional PICU retrieval service based at Great 

Ormond Street Hospital in London, UK. CATS transports patients from over 50 district general 

hospitals covering a large geographical region in the South East of England to any one of three 

tertiary intensive care units in North London (Great Ormond Street Hospital, the Royal Brompton 

Hospital and St Mary’s Hospital). The CATS service does not sit within an ICU and has two dedicated 

retrieval teams. In this work, we applied the method to demand for CATS retrieval. 

Data on all CATS referrals are checked and entered onto a dedicated database daily so that 

the database is up to date and of high quality in almost real time. In practice, at 9 am on any given 

day, data exist up until the day before.  The data used to develop and test the method were 

anonymised reports generated from routinely collected data. The study was discussed with the local 

Independent Review Board Chair who confirmed that ethical approval was not required.  

To tune the method, we used data on all calls to CATS from April 2005 to July 2013. We 

quarantined data from July 2013 to February 2014 to validate the final choices of window size, band 

width and consistency requirements. We defined “demand for retrievals” as all retrievals performed 

plus retrievals refused due to lack of a retrieval team or PICU capacity. 

Since raw daily demand data is highly variable, we used the rolling 7-day total demand as our 

daily time series of interest. The clinical team defined a demand level of “28 retrievals in the last 

week” as the threshold beyond which capacity was strained. To prevent ‘false positive’ identification, 

we required demand to breach the upper or lower Bollinger band three days in a row to identify the 

start or end of the surge. Finally, since we are only concerned with the winter surge, we added the 

constraint that the start could only be identified on or after the 1st October and that the end could only 

be triggered on or after the 1st December and more than 31 days after the start of the surge. These 

fixed date and duration constraints were based on historical data (the earliest start of the winter surge 

was 8th October in 2010) but we acknowledge that they are somewhat arbitrary.   
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Identifying the start of winter surge 

The start of the winter surge would be identified if it was after September and EITHER the rolling 7-

day total demand had breached the upper Bollinger band three days in a row and the most recent 7-

day total had reached 28 OR we had seen demand at or above 28 for four consecutive days. The 

latter was included to allow for the (rare) possibility of a rising tide of demand that was slow enough to 

stay within the Bollinger bands (based on a medium-term moving average) but would nonetheless 

result in consistently high demand.  

 

Identifying the end of winter surge 

The end of the winter surge would be identified if it was after November, more than 31 days since the 

start and the rolling 7-day total demand has breached the lower Bollinger band three days in a row.  

To define the historical winter surges, two authors (CP, PR) visually picked out the start and 

end dates for the surge each year using the “28 a week” demand threshold as a guide. The choices of 

window size and band width were optimised by minimising the sum of squared differences between 

the automatically identified dates and the manually chosen dates. We allowed the window size and 

band width to differ for identifying the start and end of the winter surge.  

Finally, the chosen Bollinger bands were tested on the quarantined 2013/2014 winter data as 

a performance check in “out-of-sample” data.  

 

RESULTS 

 

Between 1 April 2005 and 15 July 2013, CATS received 17,527 calls. Of these, 9,731 represented 

genuine demand for retrieval, with a daily mean of 3.2 and standard deviation 1.7. The overall referral 

breakdown by outcome is given in Table 1, along with an indication of which referrals corresponded to 

genuine demand for retrieval.   

 

The seasonal nature of CATS activity can be clearly seen from the monthly time series of 

demand shown in Figure 2.  

 

Results of the optimisation 
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The optimal Bollinger bands for both the start and end of the surge use a window size of 41 days. The 

Bollinger Band widths for the start and end of the winter surge are 1.2 and 1 standard deviations 

respectively.  The corresponding automatically identified start and end dates, along with the manually 

identified dates and the sum of square errors, are shown in Table 2. The dates identified using these 

bands matched the manually identified start and end dates very well, particularly for the start of the 

surge.  

 

Predicting the end of the winter surge and total volume of demand 

Exploring graphically the relationship between the identified start and end dates and volume of 

demand, the duration and overall volume of demand were linearly related to the start of the surge. We 

defined a new variable 𝑠𝑦𝑒𝑎𝑟 as the number of days after the 1st October (the first possible 

identification date) that the winter surge is identified each year. Plotting the duration of the surge, 

defined as the number days between the identified start and end, versus 𝑠𝑦𝑒𝑎𝑟, we found an excellent 

linear relationship (Figure 2). Using a simple linear regression we get a fitted R2 value of 0.91 and the 

fitted equation: 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑦𝑒𝑎𝑟 = 108.7 − 1.26𝑠𝑦𝑒𝑎𝑟 .                                 

   

We also found an excellent linear relationship exploring the relationship of total volume of 

demand with 𝑠𝑦𝑒𝑎𝑟 . This is a result of the fact that during the surge each year, despite the peaks and 

troughs, the average daily volume of demand was very close to 4 for all historical years. Thus the 

overall volume during the surge was simply (approximately) 4 multiplied by the number of days it 

lasted. Using this, we were able to calculate a reasonable estimate of the total volume of demand 

over the surge. The fitted linear relationship for volume had an R2 of 0.91 and equation:  

𝑣𝑜𝑙𝑢𝑚𝑒𝑦𝑒𝑎𝑟 = 452.7 − 5.12𝑠𝑦𝑒𝑎𝑟    . However, we note that while overall demand during the signalled 

surges average around “4 a day”, the daily demand experienced by CATS remained highly variable, 

fluctuating anywhere between 0 and 10 on any given day.                                

 

Testing the automated identification method on the winter of 2013/4  

Running the optimised Bollinger bands on the quarantined dataset, the start of the winter surge was 

identified as the 18th November 2013 (Figure 3). When using a fitted equation to predict a future 
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value, there is some uncertainty in the predicted estimate which can be represented by a prediction 

interval. Applying the fitted equations to predict the duration and volume (with 60% prediction intervals 

given in the square brackets), we expected the end of surge to be 5th January 2014 [29 December, 

11th January] (shown as the grey dashed line in Figure 3) and an expected overall volume of demand 

207 [181, 241] over the winter surge. Thus the end of the surge and the overall volume of the surge 

have a 60% chance of falling within their respective prediction intervals. The automatically identified 

end of the surge was the 4th January 2014 and the overall volume of demand was 235 (see Figure 4), 

both well within their respective prediction intervals. As tested on the winter of 2013/4, our method for 

identifying the start and end of the winter surge is fit for purpose.  

 

DISCUSSION 

 

Using methods adapted from the stock market, we have developed a system for monitoring daily 

demand that can be used to identify the start and end of the winter surge for emergency pediatric 

intensive care services in real time. Importantly, the system also provides robust predictions of the 

duration of the winter surge and the total volume of demand during that time at the beginning of the 

surge. We suspect that the accuracy of these predictions is due at least partly to the fact that the 

winter surge almost always ends during the ten days of January, regardless of when the winter surge 

started (i.e. starting earlier does not mean it will end sooner!). The method performed very well when 

tested on data from a single pediatric retrieval service. 

 

The method identifies the start and end of the winter surge by comparing current demand to a 

medium-term moving average, where the optimal window size for the moving average was 41 days. 

The relatively large window size (almost 6 weeks) is probably required to prevent false positive 

identification from transient fluctuations in demand.  In almost all cases, the automatically identified 

date for both the start and the end of the surge was after the manually identified date. This is not 

surprising since a delay of at least three days was built into the method by requiring a consistent 

breach. This is not a weakness of the method since when looking at historical data with the benefit of 

hindsight (as was done to identify the target dates), it is relatively easy to identify the start and end of 

the surge. However, if using this method to automatically identify the start and end in real time, it is 
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important to be relatively sure that that we are identifying a real phenomenon and not simply a 

transient spike (or dip). 

 

 Although demand for pediatric ICU is not exclusively from external emergency referrals, it is such 

external referrals that drive the increase in demand every winter. Retrieval services cover an entire 

geographical area and, from an emergency demand point of view, sit “upstream” of individual PICUs. 

Applying this method within a retrieval service thus provides a practical way to alert clinical teams 

within local PICUs and local commissioners when the winter surge has started. The ability to know 

when the surge has started provides significant advantages over the current crude fixed dates used 

by several national bodies (e.g. 6). A key advantage is that the method also predicts the end date of 

the surge once the start has been signalled; this can be simply translated into a more approximate 

rule of thumb “the surge for PIC services will end during the first two weeks of January regardless of 

how early or late it starts”. 

A surge in demand for PIC services occurs regularly every winter in the UK and stretches a 

system that is already running at high bed occupancy levels [14]. The use of specialist retrieval teams 

has been shown to improve survival [15]. Lack of specialist teams to undertake retrieval may thus 

worsen outcomes for critically ill children either because children are then transported by non-

specialised teams or because children may have to spend longer in local hospitals that are not 

equipped with a full range of specialist PIC services. In parallel, unavailability of regional PIC beds 

may result in children being managed at the referring hospital for prolonged periods and/or requiring 

long distance retrieval to out of region PICUs, further exacerbating the mismatch between supply of 

PIC resources and demand.  

The availability of a system to alert clinical teams to the start of a surge in demand, along with 

predictions of the end of the surge and the total volume of demand, will have significant implications 

on how emergency preparedness plans are implemented in PIC in the future. Since emergency 

demand is inherently unpredictable and cannot be controlled, the main response from the retrieval 

service could be to increase the number of available teams from the identified date (rather than a 

fixed date) until the predicted end of the surge, although we acknowledge difficulties with designing 

rotas that are flexible enough to cope with short term changes. Knowledge of the predicted demand 

will also help plan for the number of such additional teams required. Further work will include 
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exploring the pattern of PICU occupancy in the North Thames region before, during and after 

identified winter surge periods. Other possible responses by retrieval services could include reducing 

the number of non-essential meetings, restricting annual leave or using non-clinical staff days. 

Sharing information regarding the surge with the regional PICUs will help them prepare for the excess 

demand by hiring temporary staff to open more beds or by rescheduling elective surgery cases to 

after the end of the surge period. While these measures have already been tried in the past, they 

have either been too late (long after the surge has started) or too early (weeks before any surge), 

resulting in an ineffective response both clinically and from a cost perspective. The tool was used 

successfully in real time at CATS for the winter of 2014/15 and its outputs shared with other regional 

retrieval services and local service commissioners.  Next year, we expect this tool to include informing 

the scheduling of the weekly regional teleconferences during winter and to inform local PICUs when 

CATS has start experiencing the winter surge. We also note that since the implemented tool runs 

throughout the year, plotting the current and recent demand with the upper and lower Bollinger 

Bands, it provides a daily visual check for sudden increases in demand outside of winter and would 

highlight unexpected demand due to, for instance, a new epidemic.  

The method’s robustness and simplicity should also allow for a relatively straightforward 

application to any PIC service, and indeed, other health care environments where external demand 

for services is both highly variable and unpredictable.  Applying it to another PIC service does require 

local knowledge of what is a suitable threshold of high demand and requires data to be available on 

refusals that were in scope of the service. At this time, these requirements make this method more 

suitable for local use than for UK national use (using the PICAnet dataset), although it is conceivable 

that it could be used nationally in the future using the new PICAnet referrals dataset. The winter surge 

in demand for PIC services comes almost entirely from children with respiratory problems [6] who 

need intensive care support but not necessarily other forms of care such as surgical interventions. For 

very different contexts, the methodology for signalling a surge would be the same but the range of 

possible responses/implications would differ.  

This is also a novel method - to our knowledge, this is the first time that Bollinger bands have 

been adapted for use in health care services. The methodology has been implemented at CATS for 

the winter of 2014/15, so that an Excel spreadsheet runs automatically every morning to produce up 

to date plots of recent demand and the optimal Bollinger bands. Although the method has performed 
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well on previous years, including the validation year of 2013/4, it is still untested, and will inevitably be 

different for the team to experience it in real time as opposed to reviewing the surges in hindsight. 

That said, the algorithm for identifying the start and end of the winter surge can be adapted after each 

year to take into account evolving experience – inevitably the eight years used to develop this initial 

method will not provide the full range of possible winter surge activity. We thus expect this method to 

become ever more accurate over time as more data is collected.  

 

CONCLUSIONS 

We have developed and tested a novel method to identify the start and end of the winter surge in 

emergency demand for pediatric intensive care depending on absolute levels of demand and how 

these compare to the 41-day moving averages and standard deviation of demand. Prospective 

studies are required to validate the method when used in real time, and to study the effects of their 

implementation in clinical practice.          
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TABLE CAPTIONS 

 

Table 1 - Number of calls by type of call received by Children’s Acute Transport Service (CATS) and 

outcome of call between 1 April 2005 and 15 July 2013. The final column indicates which calls were 

considered to represent “demand for retrieval”.  

 

 

Table 2 –Date for start and finish of the winter surge period as identified by the Bollinger bands 

method. The squared difference is defined as the square of the difference in days between the 

automatic and manually identified dates. So the first row, there are 3 days difference between the 

automatically signalled start of 7 November 2005 and the manually identified start of 4th November 

and this is then squared to give a value of 9.  
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FIGURE CAPTIONS 

Figure 1 – Monthly demand for retrievals by the Children’s Acute Transport Service 2005-2013. The 

annual winter peak is clearly seen. 

 

Figure 2 - Relationship between the number of days between 1 October and the identified start of the 

winter surge (𝒔𝒚𝒆𝒂𝒓) and the duration of the automatically identified surge for the eight winters from 

2005-2012. The best linear fit is shown by the blue line. 

 

Figure 3 - Applying the automatic identification method (described in to the winter of 2013/4 to identify 

the start of the winter surge. This data was not used to choose window size, band width or 

consistency requirements. The solid red lines show the upper and lower Bollinger bands. The red 

dashed line shows the automatically identified start of the surge and the grey dashed line the 

predicted end of the surge. 

 

Figure 4 - Applying the new automatic identification method to the winter of 2013/4 to identify the end 

of the winter surge. The red dashed lines shows the identified start and end of the surge and the grey 

dashed line shows the end of the surge predicted at the start of the surge (19 November 2013). 
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Table 1 - Number of calls by type of call received by Children’s Acute Transport Service (CATS) and 

outcome of call between 1 April 2005 and 15 July 2013. The final column indicates which calls were 

considered to represent “demand for retrieval”.  

Outcome of call  Frequency (% of calls) Counts as demand for 

retrieval? 

CATS team deployed 9337 (53%) Yes 

Transfer request refused due to 

no CATS team or PICU bed 

394 (2%) Yes 

Transfer request refused but not 

due to capacity constraint 

2434 (14%) No 

Call cancelled by referrer 1397 (8%) No 

Child died before team deployed 119 (1%) No 

Courtesy call  488 (3%) No 

Advice given 3343 (19%) No 

Unknown 15 (0%) No 

Total number of calls 17527 (100%)  

Total demand for retrieval 9731 (56%)  
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Table 2 –Date for start and finish of the winter surge period as identified by the Bollinger bands 

method. The squared difference is defined as the square of the difference in days between the 

automatic and manually identified dates. So the first row, there are 3 days difference between the 

automatically signalled start of 7 November 2005 and the manually identified start of 4th November 

and this is then squared to give a value of 9.  

Year 

Manually 

Identified 

start 

Automatically 

signalled 

start 

Squared 

difference 

for start 

Manually 

identified 

end  

Automatically 

signalled end 

Squared 

difference 

for end 

2005/6 04-Nov-05 07-Nov-05 9 10-Jan-06 14-Jan-06 16 

2006/7 18-Nov-06 23-Nov-06 25 05-Jan-07 08-Jan-07 9 

2007/8 25-Nov-07 26-Nov-07 1 03-Jan-08 06-Jan-08 9 

2008/9 04-Nov-08 07-Nov-08 9 24-Dec-08 26-Dec-08 4 

2009/10 19-Nov-09 20-Nov-09 1 23-Dec-09 29-Dec-09 36 

2010/11 08-Oct-10 08-Oct-10 0 11-Jan-11 12-Jan-11 1 

2011/12 23-Oct-11 24-Oct-11 1 10-Jan-12 15-Jan-12 25 

2012/13 20-Oct-12 21-Oct-12 1 26-Jan-13 19-Jan-13 49 

Total      47     75 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


