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ABSTRACT
This paper presents a method for correcting erratic pairwise
registrations when reconstructing a volume from 2D histol-
ogy slices. Due to complex and unpredictable alterations
of the content of histology images, a pairwise rigid regis-
tration between two adjacent slices may fail systematically.
Conversely, a neighbouring registration, which potentially
involves one of these two slices, will work. This grounds
our approach: using correct spatial correspondences estab-
lished through neighbouring registrations to account for direct
failures. We propose to search the best alignment of every
couple of adjacent slices from a finite set of transformations
that involve neighbouring slices in a transitive fashion. Using
the proposed method, we obtained reconstructed volumes
with increased coherence compared to the classical pairwise
approach, both in synthetic and real data.

Index Terms— Rigid registration, histology, volume re-
construction

1. INTRODUCTION

The potential of histopathology image analysis is well estab-
lished and embodies a two-way benefit: not only is it a gold
standard in disease diagnosis but it also helps understanding
the inherent reasons for making a diagnosis [1]. One goal
logically derived from this reality is thus to be able to explore
how the findings about a disease in histology slices correlate
to the information provided by standard clinical imaging rou-
tines. This would improve the disease understanding by com-
bining high resolution anatomical information with 3D, non-
invasive though lower resolution information (e.g. using mag-
netic resonance (MR) imaging). This is known as data fusion,
where the information gained from two modalities is usually
of complementary nature. This motivates the building of 3D
histological atlases as they provide a priori knowledge when
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Fig. 1. Illustration of the pairwise rigid registration speci-
ficity among three consecutive histology slices si, si+1 and
si+2. The registration of slices si+1 and si fails (a), whereas
the two neighbouring registrations of slices si+1 and si+2,
and of slices si+2 and si work (b)-(c). The right-most panel
shows that composing two intermediate good transformations
Tsi+2←si+1

and Tsi←si+2
results in a better alignment of

slices si+1 and si (d).

conformed to living patients MR. Atlases permit the recogni-
tion of complex anatomical structures and the identification of
their corresponding signals in other modalities when the im-
age content is not described explicitly enough. Consequently,
they become very helpful in surgical planning [2] where some
interventions impose high demands on intraoperative accu-
racy. This integration process requires bringing the modalities
involved into spatial alignment. The initial concern is to glob-
ally reconstruct the histology volume as good as possible so
that subsequent local adjustments are effective. Several issues
arise when dealing with histology, the most obvious being that
the volume information is lost as soon as the histological pro-
cess is engaged. At a finer scale, tissues are independently
altered due to preparation: the cutting process induces geo-
metrical distortions, tearing and missing parts, various shapes
and locations on the slide, while the staining causes artefacts
and intensity inhomogeneities. In addition, the goal being
to align a sequence of images of similar rather than of same
objects, errors propagate and accumulate along the stack [3].
Early works tackled the tissue degradation issue by search-
ing for the rigid transformation that locally maps the largest
number of similar regions [4]. In order to improve the coher-
ence of the reconstructed volume, attention has been directed
toward neighbouring slices [5], and toward defining bound-
ary smoothness as a gauge of quality [6]. More recent works



showed the importance of the reference slice selection [7],
which as a matter of fact also showed that the generated vol-
ume depends directly on the choice of that reference slice.

Unlike previous approaches, the proposed method relaxes
the constraint of choosing a reference slice. As in [5], we for-
mulate the reconstruction problem using graphs, though we
make sure that the set of weights—the similarity measures—
applied to the graph edges is totally ordered: it is a par-
tially ordered set that has the property of comparability. The
key idea is based upon the simple observation described in
Fig.1, where the transitive relation on the set N of n slices
(or nodes) s is defined as: ∀ si, si+1, sl ∈ N with l 6=
{i, i + 1} :

(
si+1Rsl ∧ slRsi

)
⇒ si+1Rsi, where sl is

an intermediate neighbouring slice, the binary relation R is
equivalent to a rigid registration in our case and ∧ is the
logical conjunction. This relation can be extended to any
number of intermediate slices. In practice, this means that
the transformation between two adjacent slices can be ex-
pressed 1) directly, and 2) indirectly as the composition of
two (or more) transformations using neighbouring slices. For
every pair of adjacent slices (si, si+1), we thus aim at finding
the transformation that minimises the dissimilarity, i.e. the
cost of the link. The process is iterated until convergence to
guarantee the recovery of a reconstructed histological volume
with continuous structures.

2. METHODS

2.1. Preprocessing

Intensity standardisation. Inconsistencies in the staining
process may exhibit large differences in the appearance of
slices. In order to standardise their texture, we use cumulative
distribution function (CDF) matching, for its high computa-
tional speed and the advantageous property that a CDF is a
monotonically non-decreasing function. Every value from
the target distribution is mapped to its nearest value in the
source distribution. As for the registration problem, a refer-
ence histogram is required, to which every other histogram
is matched, or as in [8] the normalisation between each
pair of adjacent slices is propagated along the stack, which
goes back to implicitly taking the first histogram as refer-
ence. This means the intensity-compensated stack changes
with the choice of the reference slice. To bypass the non-
uniqueness of the solution, we chose a groupwise approach.
The CDFs c of the images of slices are formed from the nor-
malised histograms, and the mean CDF c̃ is computed using
least trimmed squares (LTS), which consists of minimising:
min
c̃

∑h
m=1

(
r2
)
m:n

where (r2)1:n ≤ . . . ≤ (r2)n:n are the

ordered squared residuals, rm =
∑

(cm− c̃). LTS regression
consists of finding the subset of h < n CDFs whose least
squares produces the smallest sum of squared residuals. We
set the number of inliers to h = bn/2c, assuming that the
outliers constitute less than 50% of the CDFs. This way, we
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Fig. 2. Subgraph (top) and paths (bottom) associated with a
pair of adjacent slices (si, si+1) (η = 2 and ε = 1). Once the
path pi,k with the minimum cost has been identified, the arc
(si, si+1) is updated.

minimise the bias from these outliers. Every CDF is then
matched to the estimated mean CDF, c̃.

Masking. Every slice has its tissue masked in order to
drive the registration process using relevant information only.
This is solved as a two-class problem, where the large contri-
bution of the background intensities can be identified in the
matched CDFs, c

′

i (i.e. largest slope). The threshold is there-
fore set as the bin where the derivative of c

′

i is maximum.
Erosion is then applied to the binary image so that the edges
of the tissue block are not taken into account. This, in addi-
tion to the fact that largest connected component is kept as the
final mask, is to prevent artificial edges (e.g. due to tearing)
from impacting the registration.

2.2. Multi-path optimisation

The method finds the shortest paths in a dynamic graph. By
dynamic graph, we denote the graph G = (N,A) subject to
a sequence of updates. A is the set of arcs (i.e. a rigid reg-
istration between two connected nodes is performed) and it
depends on two parameters, η and ε, being respectively: the
number of neighbouring slices taken into account in the short-
est path search, and the maximum gap tolerated between two
slices to be registered. The cost function to optimise is ex-
pressed as:

∑
1≤i≤n−1 min

Tsi←si+1

d
(
si, si+1◦Tsi←si+1

)
, where

d is the dissimilarity and Tsi←si+1
, an element of the spe-

cial Euclidean group SE(2), is the rigid transformation that
minimises d. G is static between two updates and we aim at
shortening the arcs (si, si+1).

2.2.1. Generating the graph G

For a given pair (si, si+1), let K be the total number of paths
that connect, directly and indirectly, si+1 to si. A path k ≤



K, pi,k, exists if it meets three conditions: 1) pi,k is a tree,
2) every arc of pi,k involves only nodes which indexes are
within the range [i − η; i + 1 + η], 3) if j is the index of the
current node, a successor is within the range j± (ε+1). This
inspection is done using a breadth-first search. Thus, the arc
set ofG, A(G) is the union of the arc sets of all the subgraphs
associated with pairs (si, si+1) and paths pi,k (Fig.2). The
transformation T

(k)
si←si+1 associated with the pair (si, si+1)

and path pi,k is defined as the composition of the transfor-
mations of every arc in the arc set of pi,k.

2.2.2. Registrations

The rigid registrations1 are done using the block-matching
strategy described in [9]. Prior to any registration, we use the
masks obtained in section 2.1. and align the centres of mass of
the two binary images. We thus ensure a better search neigh-
bourhood. The transformations are symmetric [10], making
the graph G undirected. The computation of the transforma-
tions is done once for all before the shortest path search, and
the list is given by the arc set A(G).

2.2.3. Updates and convergence

G is broken up into smaller overlapping subgraphs. One
iteration is complete when all the arcs (si, si+1) of G have
been shortened. For every subgraph associated with a pair
(si, si+1), the set of dissimilarities Di = {d(si, si+1 ◦
T

(k)
si←si+1 |1 ≤ k ≤ K}, where k = 1 refers to the path con-

necting directly si+1 to si, is computed and totally ordered.
The arc (si, si+1) at the next iteration is associated with
the new transformation: T

(1)
si←si+1 ← argminTsi←si+1

Di.
The convergence is reached when all the pi,1 (direct links
between every si+1 and si) are the shortest links. We use
the normalised mutual information as a similarity measure.
An extra step consists of doing another pass through the
method described, using the sequence of optimised pairwise
transformations as an initialisation of the registrations. The
multi-scale scheme in the block-matching strategy allows to
get out of a local maxima (if still stuck despite the first pass)
or to increase the smoothness of the reconstructed volume.
The volume is finally reconstructed by applying the resulting
sequence of transformations to the corresponding slices. The
choice of the reference slice only impacts the resolution of
the space in which every image is resampled.

3. VALIDATION

In order to assess the efficiency of the proposed method, two
MR volumes were sampled, thereby creating a sequence of
2D slices perfectly aligned: MR1, with 26 slices and MR2
with 29 slices. This volume was used as our ground truth.

1http://sourceforge.net/projects/niftyreg/
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Fig. 3. Validation and results. (a) Using four landmarks (the
four corners of a 2D MR image), the original MR volume
is shown in green, the rigidly corrupted volume, in red, and
the reconstructed volumes using pairwise transformations and
our multi-path approach, in blue (respectively on the left and
on the right). (b) shows the reconstruction of the MR vol-
umes using pairwise transformations (left) and our multi-path
approach (right). (c) shows the histology volume reconstruc-
tions in the same cases as in (b).

The resolution of 2D slices was 512 × 512. Every 2D slice
was corrupted with a random rigid transformation and adding
Gaussian noise (σnoise = 0.05), although most details were
already lost by nature of the image itself. The rotation (around

Table 1. Target registration error (TRE) with respect to
four landmarks (image corners) between original and recon-
structed MR volumes after pairwise (pw) and multi-path (mp)
approach for 2 datasets (in voxels).

mean TRE ± σ max TRE
pw mp pw mp

MR1 81.92± 37.86 20.48± 5.47 152.07 56.32

MR2 84.48± 42.94 53.76± 28.74 148.69 76.8

the stacking dimension) and translation (in-plane) parameters
were respectively limited to the ranges [−25, 25] (in degrees)
and [−50; 50] (in voxels). However, the translation parame-
ter is secondary here, as the centres of mass of tissues to be
registered are aligned by default. The resulting sequence of
slices was used as an input in the described method and the
target registration error (TRE) was measured with respect to
the four corners of the images, in order to check the accu-
racy of the reconstruction. As expected, the method allowed
to reduce the mean TRE as well as correcting erratic pairwise
registrations (Table 1). TREs need to be considered as rel-
ative rather than absolute measures because they depend on
where the landmarks have been taken. MR1 exhibited several
major failures (see in Fig.3 the blue volume on the left (a) and
the left panel in (b)) after pairwise registrations, while MR2

http://sourceforge.net/projects/niftyreg/


was unique in that the pairwise reconstruction was inducing
a spiral movement of the stack. By taking into account reg-
istrations involving pairs of non-adjacent slices, the latter ef-
fect was constrained and reduced. The small number of slices
made us choose η = 2 and ε = 1.

The method was also applied to three histology datasets
of around 30 slices each. Similar conclusions were drawn
(Fig.3c). We chose η = 2 and ε = 1, and in the registration
step: percentage of blocks used in the optimisation scheme:
70%; number of levels used to generate the pyramids in the
coarse-to-fine approach: 5; maximum number of iterations in
the LTS to perform per level: 50; standard deviation (in vox-
els) of the Gaussian kernel used to smooth the pair of images
to be registered: 5 (3 in the second pass). The multi-path ap-
proach took between 4 and 8 iterations to converge (including
the second pass).

4. DISCUSSION

Intensity standardisation. The choice made here for inten-
sity standardisation was only intended to ease the registration
process. It has no biological ground: a quantitative analysis
of the reconstructed histology volume may require more ad-
vanced normalisations that take into account the variations in
absorbance of staining compounds, and address the problem
of retrieving the biological component of a pixel value [11].
Another interesting track would be to use color decomposi-
tion as pre-processing for separating stained structures and
drive alignments using specific tissue types.

Registrations. As in [12], we believe that it is better to
preserve the shape of the tissue at this step rather than arbitrar-
ily and possibly wrongly compensating for distortions. Thus,
the number of degrees of freedom was restricted to 3, as no
external information about the true shape was used here. The
number of rigid registrations is

∑ε
j=0N−(j+1), making the

method have a linear time complexity (although all the regis-
trations can be performed in parallel). The previous number
does not depend upon η because redundant registrations are
discarded and the transformations are symmetric (only the in-
verse of a computed transformation is taken when needed).

Tissue degradations. Our framework is proposing alter-
native ways to reach alignment despite various degradations,
rather than addressing any of them specifically (Fig.1). This
means involving slices with slightly different features, posi-
tions and orientations that are potentially more conducive to
reaching global optimum. Specifically, though, our method
showed good results for tissues torn into several pieces when
the largest connected component was used to drive the reg-
istration of the entire image. One may also want to consider
each connected component as an independent tissue element,
and then fuse them into a unique image after separate align-
ments. Future works may involve more complex image cor-
rection techniques able to differentiate between cases where
tissue is missing or just torn open.
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