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Abstract

This thesis applies and extends microeconometric methods in the analysis of economic

questions related to education choice and fertility choice, and their interaction with the

labour market.

Chapter 2 extends the literature on non-parametric bounds on the returns from education

by allowing for non-random selection into both education and labour market participa-

tion simultaneously. Allowing for both forms of non-random selection leads to very wide

bounds on the estimated returns from education. This finding highlights both the role of

parametric assumptions in pinpointing the magnitude of these effects, but also the impor-

tance of rigorously validating the assumptions leading to point estimates in such a wide

identified set.

Chapter 3 reviews the marginal treatment effect approach. This chapter also outlines how

the MTE model can be used to estimate the selection effect, and to estimate whether

an advantage exists for the treated group for either potential outcome (treated and non-

treated). This chapter also rigorously discusses the comparison of ATE, OLS and IV

estimates, and discusses what can be inferred from these comparisons.

Chapter 4 estimates heterogeneity in the returns to higher education in the UK. Signif-

icant heterogeneity due to observable characteristics was found, in particular with high

ability individuals receiving lower returns to higher education than lower ability individ-

uals. Since graduates have higher mean levels of ability than non-graduates this leads to

negative selection; individuals who do not attend higher education stand to gain more

from participation than those who do attend. This counter-intuitive finding is discussed

and possible economic explanations explored.

Finally, chapter 5 found that extensions in the duration of paid maternity leave led to

deteriorating female labour market conditions, with female employees receiving lower pay

and experiencing higher levels of redundancy relative to males as a result of an expansion

in the duration of paid maternity leave.
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Chapter 1

Introduction

This thesis applies and extends microeconometric methods in the analysis of economic

questions related to education choice and fertility choice, and their interaction with the

labour market.

Chapter 2 estimates the monetary returns to different levels of education, allowing for

non-random selection into both the level of education and into the labour market simulta-

neously. Naive estimates of the return to education ignoring these sources of non-random

selection could lead to severely biased estimates of the return to education. Much of the

analysis in this chapter imposes less restrictive assumptions than those typically used in

empirical work, which often leads to set rather than point identification of the return to

education. Different assumptions about how individuals self select into education and

the labour market are considered. Some assumptions considered include exogenous treat-

ment selection (leads to point identification), monotone treatment selection (conditional

on education it is assumed that there are higher mean potential earnings among the group

observed to be working), monotone treatment response (potential labour market income

is increasing in education for every individual), monotone instrumental variables (it is

assumed that parental education changes the distribution over completed education level

or labour market participation, while being monotonically related to potential earnings),

with combinations of the above assumptions also being considered. This chapter builds

on work by Manski (1989, 1990, 1997), Manski and Pepper (2000, 2009) (who allow for

non-random selection into education level) and Blundell et al. (2007) (who allow for non-

random selection into the labour market). This chapter finds that the weak assumptions

imposed in the analysis do not provide a great deal of identification, with bounds of the

returns to education being above zero only in cases when it is imposed by assumption.

Since the data is only weakly informative about the returns to education, this finding

highlights both the role of parametric assumptions in pinpointing the magnitude of these

effects, but also the importance of rigorously validating the assumptions leading to point
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estimates in such a wide identified set.

Chapter 3 provides a detailed overview of the marginal treatment effect approach intro-

duced into the literature by Heckman and Vytlacil (1999). The marginal treatment effect

approach allows for estimation of a distribution of treatment effects over the range of

unobservable characteristics that affect the probability of treatment. This chapter pays

particular attention to estimation approaches and uses as a running example the use of the

MTE in estimation of the returns to education, as this is the context in which it has been

most frequently applied in the literature. This chapter also outlines how the MTE model

can be used to estimate the selection effect, and to estimate whether an advantage exists

for the treated group for either potential outcome (treated and non-treated). Furthermore,

this chapter discusses how to decompose these effects into the component due to observ-

able characteristics and the component due to unobservable characteristics. Finally, this

chapter rigorously discusses the comparison of ATE, OLS and IV estimates (comparisons

that are frequently made in the literature), and discusses what can be inferred from these

comparisons.

Chapter 4 applies the marginal treatment effect to estimate heterogeneity in the returns

to higher education in the UK. In contrast to previous work in the literature, the analysis

finds little evidence of heterogeneity in the returns owing to unobservable characteristics,

once an extensive set of observable characteristics were controlled for. However, significant

heterogeneity owing to observable characteristics were found, in particular, with individ-

uals with higher levels of measured ability receiving lower returns than individuals with

lower levels of measured ability. Another interesting finding in this work is that there is

negative selection into higher education, with those not attending higher education stand-

ing to gain more than those who choose to attend. Differential non-monetary returns was

one possible explanation for this counter-intuitive finding, however, little evidence in sup-

port of this explanation was found. These results suggest that there must be either higher

monetary or non-monetary costs, or barriers to entry associated with higher education for

lower ability individuals.

Chapter 5 analyses the impact of an expansion in paid maternity leave on relative female-

male labour market outcomes. A policy reform in the UK, which increased paid maternity

leave duration by 50% from a maximum of 26 weeks to a maximum of 39 weeks from

April 2007 was used to provide exogenous variation. A simple theoretical model was

developed, which predicts an increasing female-male wage gap in response to an increase

in maternity leave duration. A quasi-experimental difference in differences estimation

approach was used to estimate the impact on the relative wage gap. Furthermore, for the

the impact of the extension on discrete outcomes (employment, hiring and redundancy),

an alternative estimation approach was proposed that has the advantage of providing

interpretable treatment effects in the presence of substitution effects. The reform was

14



found to significantly increase the amount of leave female employees took relative to male

employees. There was an increase of about 1% in the proportion of time female employees

aged 25-34 spent on leave relative to males, with almost half of this due to a fertility

response and half due to an increase in maternity leave duration. The results also suggest

that the expansion engendered a deterioration in relative female labour market outcomes,

with empirical evidence indicating a decrease in female relative wages and an increase in

relative female redundancies.

Finally, chapter 6 concludes.
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Chapter 2

Bounding Returns from Education:

Selection into Education and the

Labour Market

2.1 Introduction

Estimates of the return to education suffer from potential bias due to non-random selection

into different education levels and non-random selection into labour market participation.

Both sources of bias are due to the problem of missing counterfactuals. The econometrician

does not know what an individual who left school after high school would have earned

if he had graduated from college, nor what this individual would earn with or without a

college education if he does not participate in the labour market. This chapter provides

non-parametric bound estimates on the returns from different levels of education, allowing

for non-random selection into both education and the labour market.

Manski (1989, 1990, 1997), Manski and Pepper (2000, 2009) and Blundell et al. (2007) have

developed a framework for estimating treatment effects under less restrictive assumptions

than typically implemented in empirical work. Often, these methods set rather than point

identify a region within which the treatment effect lies. These approaches have been

applied to labour market earnings, with Manski and Pepper (2000) estimating the returns

to distinct years of schooling, allowing for non-random selection into different education

levels. Blundell et al. (2007) allow for non-random selection into the labour market when

examining changes in wage distributions for different education/gender groups over time.

This chapter builds on this work, by estimating bounds on the returns to education,

allowing for non-random selection both into the labour market and into different education

levels simultaneously. Treatment effects under various alternative assumptions that can

be motivated by economic theory will be estimated, and the identifying power of the
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alternative assumptions in this context will be analysed.

In this chapter the focus is on estimating conditional mean functions and average treatment

effects allowing for non-random selection into both education and employment simultane-

ously, under various alternative assumptions about how individuals select into the labour

market and different levels of education. Section 2.2 discusses related literature, section 2.3

derives bounds on the returns to education under various alternative assumptions on the

selection mechanisms, section 2.4 describes the data set, section 2.5 discusses the empirical

findings and section 2.6 concludes.

2.2 Literature Review

Suppose we are interested in the conditional expectation E[y(t)|x], where y(t) is the out-

come of an individual (e.g. hourly wages) if they received treatment t ∈ T (e.g. years

of education). The treatment they actually receive is denoted z ∈ T . x ∈ X is a set of

observable characteristics. As derived in Manski (1989, 1990) the conditional expectation

under non-random selection into treatment status in the worst case (when y(z) is always

observed) can be bounded as follows:

E[y(t)|x] = E[y(t)|x, z = t]P (z = t|x) + E[y(t)|x, z 6= t]P (z 6= t|x)

All identities on the right hand side of the above equation are identified with the exception

of E[y(t)|x, z 6= t]. If y(t) is bounded between [K0, K1] then the conditional expectation

can be bounded as follows:

E[y|x, z = t]P (z = t|x) +K0P (z 6= t|x)

≤ E[y(t)|x] ≤

E[y|x, z = t]P (z = t|x) +K1P (z 6= t|x)

In Manski and Pepper (2000), focus is on non-random selection into alternative education

levels, and the reported empirical bounds do not deal with non-random selection into

labour market participation (the estimated bounds in their paper is therefore bounding

the impact of education on individuals who participate in the labour market). Assumptions

including ETS, MTS, IV, MIV, MTR and MIV-MTR and MTS-MTR combinations are

considered, with the MTR-MTS case being estimated empirically.

Blundell et al. (2007) focus instead on non-random selection into employment, and esti-

mate bounds on conditional quantiles rather than the conditional mean. W denotes log

wage, E denotes employment status with E=1 denoting employment and E=0 unemploy-
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ment, x is again a set of observable characteristics. Blundell et al. (2007) estimate the

conditional distribution of wages F (w|x), and start with a similar worst case bound to

Manski (1989, 1990). There is:

F (w|x) = F (w|x,E = 1)P (E = 1|x) + F (w|x,E = 0)(1− P (E = 1|x))

All identities except F (w|x,E = 0) on the right hand side of equation 3 are identified.

Since F (w|x,E = 0) is a conditional distribution function, it must be bounded between

[0,1], so the conditional distribution function can be bounded as follows:

F (w|x,E = 1)P (E = 1|x)

≤ F (w|x) ≤

F (w|x,E = 1)P (E = 1|x) + (1− P (E = 1|x))

Blundell et al. (2007) also consider the identifying power of various assumptions, deriving

bounds on the conditional distributions imposing a stochastic dominance assumption, a

median restriction, an exclusion restriction and a monotonicity assumption. The bounds

on the conditional distribution functions are translated to bounds on conditional quan-

tiles. Additionally, bounds on within group inequality and bounds on across group and

time inequality based on these conditional quantiles were derived. A benefit of using

quantiles rather than means is that no support assumptions are necessary. Blundell et al.

(2007) also introduces specification tests for the validity of the exclusion and monotonicity

assumptions. They also look at the change of education differentials over time, allowing

for non-random selection into the labour market whereas Manski and Pepper (2000) esti-

mate the impact of education on earnings allowing for non-random selection into different

education levels (for the sub-population of the education who participate in the labour

market). Manski and Pepper (2000) impose some structure on how individuals select into

different levels of education, Blundell et al. (2007) impose some structure on how individ-

uals select into the labour market. In this chapter, structure is imposed on both selection

thresholds to try and estimate bounds on the return to different levels of education.

Structural, parametric models have estimated the returns from education allowing for

endogeneous education and labour market participation e.g. (Keane and Wolpin, 1997;

Adda et al., 2013). See Meghir and Rivkin (2011) for further discussion.
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2.3 Allowing for both forms of selection

In this section, bounds on the conditional mean are derived, imposing different assumptions

on selection into different levels of education and selection into labour market participa-

tion. In particular, the worst case scenario, exogenous treatment selection (ETS) for both

the education choice and the labour market participation choice, monotone treatment

response (MTR) for education, monotone treatment selection (MTS) for labour market

participation and monotone instrumental variables (MIV) assumptions are considered,

and identification power of each assumption is investigated. Bounds are also estimated

combining MIV-MTR-MTS assumptions.

2.3.1 Worst Case Bounds

Potential wages of individuals had they received education level t; y(t), is observed only for

those who actually received education level t (z=t), and for those who are in employment.

No assumptions are made about the potential wages with education t (y(t)) of those

individuals who do not have education level t or those who do not participate.1

E[y(t)|x] = E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+ E[y(t)|x, z 6= t, E = 1]P (z 6= t, E = 1|x)

+ E[y(t)|x, z = t, E = 0]P (z = t, E = 0|x)

+ E[y(t)|x, z 6= t, E = 0]P (z 6= t, E = 0|x)

There are now more identities on the right hand side that are unidentified in comparison

to the worst case bounds considered in Manski (1989, 1990), and discussed in the previous

section. The unidentified identities are E[y(t)|x, z 6= t, E = 1], E[y(t)|x, z = t, E = 0] and

E[y(t)|x, z 6= t, E = 0]. If y(t) is bounded between [K0, K1], then the conditional mean

can be bounded as follows:

1There are some assumptions imposed even in the worst case scenario; the support is assumed to lie
between K0 and K1 and survey attrition and non-response are considered random
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E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+K0(1− P (z = t, E = 1|x))

≤ E[y(t)|x] ≤

E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+K1(1− P (z = t, E = 1|x))

The average treatment effect E[y(t) − y(s)|x] (ATE(x)) is bounded from below by sub-

tracting the upper bound of E[y(s)|x] from the lower bound for E[y(t)|x], and bounded

from above by subtracting the lower bound of E[y(s)|x] from the upper bound for E[y(t)|x]:

{E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+K0(1− P (z = t, E = 1|x))}−

{E[y|x, z = s, E = 1]P (z = s, E = 1|x)

+K1(1− P (z = s, E = 1|x))}

≤ E[y(t)− y(s)|x] ≤

{E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+K1(1− P (z = t, E = 1|x))}

{E[y|x, z = s, E = 1]P (z = s, E = 1|x)

+K0(1− P (z = s, E = 1|x))}

2.3.2 Exogeneous Treatment Selection (ETS)

Assumption:

E[y(t)|x, z = t′′, E = E ′′] = E[y(t)|x, z = t′, E = E ′]

∀x ∈ X
∀t× t′′ × t′ ∈ T × T × T
∀E ′ × E ′′ ∈ (0, 1)× (0, 1)

This assumption implies there is no selection into either education level or labour market

participation conditional on x.
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This implies the conditional mean outcome of interest is point identified from:

E[y(t)|x] = E[y|x, z = t, E = 1]

And implies the ATE(x) can be point identified using:

E[y(t)− y(s)|x] = E[y|x, z = t, E = 1]− E[y|x, z = s, E = 1]

2.3.3 Monotone Treatment Selection (MTS)

Assumption:

E[y(t)|x, z = t′, E = E ′′] ≥ E[y(t)|x, z = t′, E = E ′]

∀x ∈ X
∀t× t′ ∈ T × T
E ′′ = 1, E ′ = 0

This assumption implies there is monotone treatment selection into labour market partic-

ipation conditional on x and education. Individuals with the same level of education and

the same observable characteristics who choose to participate in the labour market have

higher mean labour market wages for any given level of education.

This implies the following bounds from observables for the conditional expectations E[y(t)|x, z, E]

For t′ = t, E = 1 : E[y(t)|x, z = t′, E = 1] = E[y|x, z = t, E = 1]

For t′ = t, E = 0 : K0 ≤ E[y(t)|x, z = t, E = 0] ≤ E[y|x, z = t, E = 1]

For t′ 6= t : K0 ≤ E[y(t)|x, z = t′, E] ≤ K1

This implies the bound:

K0(P (z 6= t|x) + P (z = t, E = 0|x)) + E[y|x, z = t, E = 1]P (z = t, E = 1|x)

≤ E[y(t)|x] ≤

K1(1− P (z = t|x)) + E[y|x, z = t, E = 1]P (z = t|x)

And the ATE(x) bound:
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{K0(P (z 6= t|x) + P (z = t, E = 0|x)) + E[y|x, z = t, E = 1]P (z = t, E = 1|x)}−

{K1(1− P (z = s|x)) + E[y|x, z = s, E = 1]P (z = s|x)}

≤ E[y(t)− y(s)|x] ≤

{K1(1− P (z = t|x)) + E[y|x, z = t, E = 1]P (z = t|x)}

{K0(P (z 6= s|x) + P (z = s, E = 0|x)) + E[y|x, z = s, E = 1]P (z = s, E = 1|x)}

2.3.4 Monotone Treatment Response (MTR)

Monotone treatment response assumes that potential labour market income is increasing

in education for every individual.

t2 ≥ t1 ⇒ yj(t2) ≥ yj(t1) ∀j

Using the same notation as Manksi (1997) let y0j(t) and y1j(t) be the lower or upper

bound for the potential outcome of individual j had they received treatment t. The MTR

assumption implies:

y0j(t) ≡ yj if t ≥ zj, Ej = 1

≡ K0 otherwise

y1j(t) ≡ yj if t ≤ zj, Ej = 1

≡ K1 otherwise

Adjusting Proposition M1 in Manksi (1997) for the two forms of selection is straightfor-

ward.
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zj > t,Ej = 1,⇒ K0 ≤ yj(t) ≤ yj

zj > t,Ej = 0,⇒ K0 ≤ yj(t) ≤ K1

zj = t, Ej = 1,⇒ yj(t) = yj

zj = t, Ej = 0,⇒ K0 ≤ yj(t) ≤ K1

zj < t,Ej = 1,⇒ yj ≤ yj(t) ≤ K1

zj < t,Ej = 0,⇒ K0 ≤ yj(t) ≤ K1

Therefore,

y0j(t) ≤ yj(t) ≤ y1j(t) j ∈ J

As stated in the Proposition M1, this implies y0(t) is stochastically dominated by y(t),

which is dominated by y1(t). Furthermore, if D(.) is a function that respects stochastic

dominance, then for every t ∈ T ,

D[y0(t)] ≤ D[y(t)] ≤ D[y1(t)]

Therefore, since the mean respects stochastic dominance, the above can be used to derived

the following bounds for the conditional expectation

K0{P (E = 0|x) + P (z > t, E = 1|x)}+

E[y|x, z = t, E = 1]P (z = t, E = 1|x) + E[y|x, z < t, E = 1]P (z < t, E = 1|x)

≤ E[y(t)|x] ≤

K1{P (E = 0|x) + P (z < t, E = 1|x)}+

E[y|x, z = t, E = 1]P (z = t, E = 1|x) + E[y|x, z > t, E = 1]P (z > t, E = 1|x)

And following from Manksi (1997) the ATE(x) bound for t ≥ s:
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0 ≤ E[y(t)− y(s)|x] ≤

{K1{P (E = 0|x) + P (z < t, E = 1|x)}+

E[y|x, z = t, E = 1]P (z = t, E = 1|x) + E[y|x, z > t, E = 1]P (z > t, E = 1|x)}−

{K0{P (E = 0|x) + P (z > s,E = 1|x)}+

E[y|x, z = s, E = 1]P (z = s, E = 1|x) + E[y|x, z < s,E = 1]P (z < s,E = 1|x)}

The usual computation of the lower bound of the ATE(x) found by subtracting the upper

bound of E[y(s)|x] from the lower bound of E[y(t)|x] is always negative, which is ruled

out by the MTR assumption. The upper bound estimate of the ATE(x) is always positive.

2.3.5 Monotone Instrumental Variables (MIV)

Assumption:

E[y(t)|x, v = u′′] ≥ E[y(t)|x, v = u′]

∀x ∈ X
∀t ∈ T
∀u′′ ≥ u′ ∈ V × V

In order to be more informative than the worst case bound, the instrumental variable

must vary the conditional probability of obtaining education level z=t and/or choosing to

participate in the labour market. However, in contrast to standard IV, under MIV the

instrumental variable v is allowed to be monotonically related to potential labour market

earnings.
The MIV assumption implies
E[y(t)|x, v = u1] ≤ E[y(t)|x, v = u] ≤ E[y(t)|x, v = u2]
∀u1 ≤ u ≤ u2

Since this holds for all u1 ≤ u and all u2 ≥ u and combining the worst case bound and
the MIV assumption:

sup(u1≤u){E[y|x, v = u1, z = t, E = 1]P (z = t, E = 1|x, v = u1) +K0(1− P (z = t, E = 1|x, v = u1))}

≤ E[y(t)|x, v = u] ≤

inf(u2≥u){E[y|x, v = u2, z = t, E = 1]P (z = t, E = 1|x, v = u2) +K1(1− P (z = t, E = 1|x, v = u2))}

Therefore:
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Σu∈V P (v = u|x)[sup(u1≤u){E[y|x, v = u1, z = t, E = 1]P (z = t, E = 1|x, v = u1) +K0(1− P (z = t, E = 1|x, v = u1))}]

≤ E[y(t)|x] ≤

Σu∈V P (v = u|x)[inf(u2≥u){E[y|x, v = u2, z = t, E = 1]P (z = t, E = 1|x, v = u2) +K1(1− P (z = t, E = 1|x, v = u2))}]

Which implies the ATE(x):

{Σu∈V P (v = u|x)[sup(u1t≤u){E[y|x, v = u1t, z = t, E = 1]P (z = t, E = 1|x, v = u1t) +K0(1− P (z = t, E = 1|x, v = u1t))}]}−

{Σu∈V P (v = u|x)[inf(u2s≥u){E[y|x, v = u2s, z = s, E = 1]P (z = s, E = 1|x, v = u2s) +K1(1− P (z = s, E = 1|x, v = u2s))}]}

≤ E[y(t)− y(s)|x] ≤

{Σu∈V P (v = u|x)[inf(u2t≥u){E[y|x, v = u2t, z = t, E = 1]P (z = t, E = 1|x, v = u2t) +K1(1− P (z = t, E = 1|x, v = u2t))}]}−

{Σu∈V P (v = u|x)[sup(u1s≤u){E[y|x, v = u1s, z = s, E = 1]P (z = s, E = 1|x, v = u1s) +K0(1− P (z = s, E = 1|x, v = u1s))}]}

2.3.6 MIV-MTR-MTS

In order to estimate the MIV-MTR-MTS bounds the MIV & MTR and the MTR & MTS

bounds are first derived.

MIV & MTR

This section considers combining the MIV assumptions with the MTR assumption.
From MTR there is

K0{P (E = 0|x, v = u) + P (z > t,E = 1|x, v = u)}+

E[y|x, v = u, z = t, E = 1]P (z = t, E = 1|x, v = u) + E[y|x, v = u, z < t,E = 1]P (z < t,E = 1|x, v = u)

≤ E[y(t)|x, v = u] ≤

K1{P (E = 0|x, v = u) + P (z < t,E = 1|x, v = u)}+

E[y|x, v = u, z = t, E = 1]P (z = t, E = 1|x, v = u) + E[y|x, v = u, z > t,E = 1]P (z > t,E = 1|x, v = u)

And from MIV that E[y(t)|x, v = u1] ≤ E[y(t)|x, v = u] ≤ E[y(t)|x, v = u2]
for u2 ≥ u ≥ u1.
Combining these assumptions:

sup(u1≤u){K0{P (E = 0|x, v = u1) + P (z > t,E = 1|x, v = u1)}+

E[y|x, v = u1, z = t, E = 1]P (z = t, E = 1|x, v = u1) + E[y|x, v = u1, z < t, E = 1]P (z < t,E = 1|x, v = u1)}

≤ E[y(t)|x, v = u] ≤

inf(u2≥u){K1{P (E = 0|x, v = u2) + P (z < t,E = 1|x, v = u2)}+

E[y|x, v = u2, z = t, E = 1]P (z = t, E = 1|x, v = u2) + E[y|x, v = u2, z > t, E = 1]P (z > t,E = 1|x, v = u2)}

Therefore:

25



Σu∈V P (v = u|x)[sup(u1≤u){K0{P (E = 0|x, v = u1) + P (z > t,E = 1|x, v = u1)}+

E[y|x, v = u1, z = t, E = 1]P (z = t, E = 1|x, v = u1) + E[y|x, v = u1, z < t, E = 1]P (z < t,E = 1|x, v = u1)}]

≤ E[y(t)|x] ≤

Σu∈V P (v = u|x)[inf(u2≥u){K1{P (E = 0|x, v = u2) + P (z < t,E = 1|x, v = u2)}+

E[y|x, v = u2, z = t, E = 1]P (z = t, E = 1|x, v = u2) + E[y|x, v = u2, z > t, E = 1]P (z > t,E = 1|x, v = u2)}]

As the MTR assumption is also imposed here it implies the lower bound of E[y(t)−y(s)|x]

must not be smaller than zero, E[y(t)− y(s)|x] ≥ 0 as in the MTR-only case. Unlike the

MTR case, an additional complication now is that by the MTR-MIV assumption, the

standard computation for the lower bound of E[y(t) − y(s)|x, v = u] is not necessarily

≤ 0, so simply replacing the lower bound with 0 (as is done in the MTR and MTR-MTS

cases) might result in lost information. Instead, the lower bound of E[y(t)−y(s)|x, v = u]

is replaced by 0 only when it is estimated to be less than zero.
Imposing these additional constraints ATE(x) is bounded:

Σu∈V P (v = u|x) ∗max{0, [sup(u1t≤u){K0{P (E = 0|x, v = u1t) + P (z > t,E = 1|x, v = u1t)}+

E[y|x, v = u1t, z = t, E = 1]P (z = t, E = 1|x, v = u1t) + E[y|x, v = u1t, z < t, E = 1]P (z < t,E = 1|x, v = u1t)}

−{inf(u2s≥u){K1{P (E = 0|x, v = u2s) + P (z < s,E = 1|x, v = u2s)}+

E[y|x, v = u2s, z = s, E = 1]P (z = s, E = 1|x, v = u2s) + E[y|x, v = u2s, z > s,E = 1]P (z > s,E = 1|x, v = u2s)}}]}

≤ E[y(t)− y(s)|x] ≤

Σu∈V P (v = u|x)[inf(u2t≥u){K1{P (E = 0|x, v = u2t) + P (z < t,E = 1|x, v = u2t)}+

E[y|x, v = u2t, z = t, E = 1]P (z = t, E = 1|x, v = u2t) + E[y|x, v = u2t, z > t, E = 1]P (z > t,E = 1|x, v = u2t)}]−

{Σu∈V P (v = u|x)[sup(u1s≤u){K0{P (E = 0|x, v = u1s) + P (z > s,E = 1|x, v = u1s)}+

E[y|x, v = u1s, z = s, E = 1]P (z = s, E = 1|x, v = u1s) + E[y|x, v = u1s, z < s,E = 1]P (z < s,E = 1|x, v = u1s)}]}

MTR & MTS

This section considers combining the MTS assumptions with the MTR assumption.

From MTS there is

E[y(t)|x, z = t′, E = 1] ≥ E[y(t)|x, z = t′, E = 0]

However, E[y(t)|x, z = t′, E = e] is not identified for t′ 6= t ∩ E 6= 1. From MTR,

∀j ∈ J, yj(t2) ≥ yj(t1);
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For t′ ≤ t, E = 1 : E[y(t′)|x, z = t′, E = 1] ≤ E[y(t)|x, z = t′, E = 1] ≤ K1

For t′ = t, E = 1 : E[y(t)|x, z = t′, E = 1] = E[y(t)|x, z = t, E = 1]

For t′ ≥ t, E = 1 : K0 ≤ E[y(t)|x, z = t′, E = 1] ≤ E[y(t′)|x, z = t′, E = 1]

For t′ ≤ t, E = 0 : K0 ≤ E[y(t)|x, z = t′, E = 0] ≤ K1

For t′ = t, E = 0 : K0 ≤ E[y(t)|x, z = t′, E = 0] =

E[y(t)|x, z = t, E = 0] ≤ E[y(t)|x, z = t, E = 1]

For t′ ≥ t, E = 0 : K0 ≤ E[y(t)|x, z = t′, E = 0] ≤

E[y(t′)|x, z = t′, E = 0] ≤ E[y(t′)|x, z = t′, E = 1]

Combining the information from the MTS and the MTR assumption, and since

E[y(t)|x] = E[y|x, z = t, E = 1]P (z = t, E = 1|x)

+ E[y(t)|x, z 6= t, E = 1]P (z 6= t, E = 1|x)

+ E[y(t)|x, z = t, E = 0]P (z = t, E = 0|x)

+ E[y(t)|x, z 6= t, E = 0]P (z 6= t, E = 0|x)

There is;

E[y|x, z = t, E = 1]P (z = t, E = 1|x) + Σt′<t{E[y|x, z = t′, E = 1]P (z = t′, E = 1|x)}

+K0(P (E = 0|x) + P (z > t, E = 1|x))

≤ E[y(t)|x] ≤

E[y|x, z = t, E = 1]P (z = t|x) + Σt′>t{E[y|x, z = t′, E = 1]P (z = t′|x)}+K1P (z < t|x)

As in the MTS & MTR bounds the lower bound is replaced by zero as the standard

computation for the lower bound is always negative, which is not possible by the MTR

assumption, giving the ATE(x) bounds:

0 ≤ E[y(t)− y(s)|x] ≤

E[y|x, z = t, E = 1]P (z = t|x) + Σt′>t{E[y|x, z = t′, E = 1]P (z = t′|x)}+K1P (z < t|x)−

{E[y|x, z = s, E = 1]P (z = s, E = 1|x) + Σt′<s{E[y|x, z = t′, E = 1]P (z = t′, E = 1|x)}+

K0(P (E = 0|x) + P (z > s,E = 1|x))}
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MIV-MTR-MTS

The MIV-MTR-MTS lower bound is estimated by taking the maximum of the lower MIV-

MTS bound and the lower MTR-MTS bound. Similarly, the MIV-MTR-MTS upper bound

is estimated by taking the minimum of the upper MIV-MTS bound and the upper MTR-

MTS bound.

Therefore the MIV-MTR-MTS bound for the conditional mean function is:

max[Σu∈V P (v = u|x)[sup(u1≤u){K0{P (E = 0|x, v = u1) + P (z > t,E = 1|x, v = u1)}+

E[y|x, v = u1, z = t, E = 1]P (z = t, E = 1|x, v = u1) + E[y|x, v = u1, z < t, E = 1]P (z < t,E = 1|x, v = u1)}],

E[y|x, z = t, E = 1]P (z = t, E = 1|x) + Σt′<t{E[y|x, z = t′, E = 1]P (z = t′, E = 1|x)}

+K0(P (E = 0|x) + P (z > t,E = 1|x))]

≤ E[y(t)|x] ≤

min[Σu∈V P (v = u|x)[inf(u2≥u){K1{P (E = 0|x, v = u2) + P (z < t,E = 1|x, v = u2)}+

E[y|x, v = u2, z = t, E = 1]P (z = t, E = 1|x, v = u2) + E[y|x, v = u2, z > t, E = 1]P (z > t,E = 1|x, v = u2)}],

E[y|x, z = t, E = 1]P (z = t|x) + Σt′>t{E[y|x, z = t′, E = 1]P (z = t′|x)}+K1P (z < t|x)]

And the MIV-MTR-MTS bound for the ATE is:

max[Σu∈V P (v = u|x) ∗max{0, [sup(u1t≤u){K0{P (E = 0|x, v = u1t) + P (z > t,E = 1|x, v = u1t)}+

E[y|x, v = u1t, z = t, E = 1]P (z = t, E = 1|x, v = u1t) + E[y|x, v = u1t, z < t, E = 1]P (z < t,E = 1|x, v = u1t)}

−{inf(u2s≥u){K1{P (E = 0|x, v = u2s) + P (z < s,E = 1|x, v = u2s)}+

E[y|x, v = u2s, z = s, E = 1]P (z = s, E = 1|x, v = u2s) + E[y|x, v = u2s, z > s,E = 1]P (z > s,E = 1|x, v = u2s)}}]},

0]

≤ E[y(t)− y(s)|x] ≤

min[Σu∈V P (v = u|x)[inf(u2t≥u){K1{P (E = 0|x, v = u2t) + P (z < t,E = 1|x, v = u2t)}+

E[y|x, v = u2t, z = t, E = 1]P (z = t, E = 1|x, v = u2t) + E[y|x, v = u2t, z > t, E = 1]P (z > t,E = 1|x, v = u2t)}]−

{Σu∈V P (v = u|x)[sup(u1s≤u){K0{P (E = 0|x, v = u1s) + P (z > s,E = 1|x, v = u1s)}+

E[y|x, v = u1s, z = s, E = 1]P (z = s, E = 1|x, v = u1s) + E[y|x, v = u1s, z < s,E = 1]P (z < s,E = 1|x, v = u1s)}]},

E[y|x, z = t, E = 1]P (z = t|x) + Σt′>t{E[y|x, z = t′, E = 1]P (z = t′|x)}+K1P (z < t|x)−

{E[y|x, z = s, E = 1]P (z = s, E = 1|x) + Σt′<s{E[y|x, z = t′, E = 1]P (z = t′, E = 1|x)}+

K0(P (E = 0|x) + P (z > s,E = 1|x))}]
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2.4 Data

The National Child Development Study (NCDS)2 data is used to illustrate the identifying

power of the bounds derived above, in the context of the returns to education in the UK.

The NCDS is a longitudinal study that attempted to recruit all individuals born in Eng-

land, Scotland and Wales in a single week in March 1958. Following the perinatal wave,

data has been collected in 1965, 1969, 1974, 1981, 1991, 1999/2000, 2004, 2008 and 2013.

Exam data was also collected in 1978. This analysis uses the labour market outcomes

collected in 1991 to estimate the return from different levels of education. Education was

measured by the “hqual33” variable, which measured highest level of education obtained

by 1991 and has 7 categories: no information, no qualification, educational qualifications

equivalent to NVQ1 (national vocational qualification level 1), NVQ2, NVQ3, NVQ4 and

NVQ5/6. For details of how this variable was constructed see Smith (1991), and in par-

ticular see the appendix in Smith (1991) for the mapping between various qualifications

and the levels of the “hqual33” variable. The only x variables (observable characteristics)

controlled for are gender and region. Region is defined as region at age 16. If the individ-

ual did not participate in the 1974 round of the survey, the region recorded in the most

recent round of the survey was used for that individual. There are 12 region categories; no

information, North, North West, East and West Riding, North Midlands, Midlands, East,

South East, South, South West, Wales and Scotland. The main outcome of interest is log

hourly gross income, which is measured by dividing the reported “usual gross pay” by the

usual period for usual gross pay in weeks ∗ usual hours for usual pay per week. Self em-

ployed individuals did not report their income in the same way, and so comparable hourly

earnings can not be constructed for these individuals. An individual is deemed as being

employed if they state that their current main economic activity is either full time or part

time employee, self-employed if they state they are full-time or part-time self-employed

and unemployed if they state they are unemployed or in home or family care. Individ-

uals in full-time education, temporarily sick or disabled or permanently sick or disabled,

or “other” are excluded from this analysis. The monotone instrumental variable used in

this analysis is combined age that parents left education, which was reported in the 1974

wave of the study. Mid points of the response intervals were used, and those who left

before age 13 were allocated 13, and those who left at age 23 or older were allocated 23.

The distribution was then split into 5 categories to avoid data sparsity; less than 29, less

than 30, less than 31, less than 36 and greater than 36. The thresholds were chosen to

try and create a relatively even distribution over each category. (Individuals who do not

have both mother’s and father’s level of education recorded are dropped from the MIV

2University of London. Institute of Education. Centre for Longitudinal Studies, National Child De-
velopment Study [computer files]. Colchester, Essex: UK Data Archive [distributor]
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analysis). The analysis therefore assumes that parental education impacts selection into

either/both education or the labour market. Furthermore, parental education is allowed

to affect the conditional mean of potential labour market earnings but only monotonically.

Of 18,555 individuals who participated in any round of the NCDS, 11,469 individuals

responded to the fifth wave which is used to measure labour market outcomes in this

analysis. For descriptives statistics of the variables discussed above for these individuals

see Table 2.1, and for the sample distribution of observable characteristics see Table 2.2.

2.5 Empirical Analysis

All of the bounds derived above are estimated in turn and the results are illustrated in

Table 2.3 - Table 2.9. Individuals for whom highest level of education is not recorded in

the 1991 wave of the study are dropped. Log hourly gross income is trimmed at the 2.5th

and 97.5th quantiles to remove sensitivity to outliers, and individuals reporting income

at these levels are dropped from the analysis. K0 is defined as the 2.5th quantile of the

log hourly gross income distribution and K1 as the 97.5th quantile. The majority of the

analysis also drops those individuals who are self-employed, as they do not report their

labour market income in the same way, as are those individuals for whom hourly gross

income is not constructed (as they not report income, hours worked or period covered

by most recent pay). Individuals who are temporarily/permanently sick or disabled or

in full time education are dropped from all analysis. In addition, while the NCDS aims

to be representative of the population who were born in a particular week in 1958, there

is non-response and attrition. Without an assumption that these additional selection

mechanisms are random, interpretation of the estimated bounds is difficult. The analysis

in this chapter proceeds with this random selection assumption. This allows the bounds

to be interpreted as the impact of education on potential formal labour market outcomes.

Register data that has information on all wages, including the self-employed, could avoid

some of these assumptions. Alternatively, the additional selection mechanisms could be

dealt with in the same way that selection into education and selection into the labour

market are treated in this chapter. For instance, Table 2.3 includes individuals who do

not report their income, who fall into the income categories that are trimmed (below 2.5th

quantile or above 97.5th quantile) or who are self-employed in the E=0 category under the

worst case scenario. This is essentially redefining E = 1 as those individuals who work (not

self-employed) and who report income in the 2.5th - 97.5th quantile range, and individuals

with E = 0 as everybody else. This allocates self-employed individuals/individuals whose

income is not known a maximum possible log hourly income of K1 and a minimum possible

log hourly income of K0 in the computation of E[y(t)|x].

The bounds on the returns to each level of education with no empirical data or assumptions
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are estimated as [K0-K1, K1-K0]. In our analysis K0 is estimated to be 0.64 and K1 at

2.85, resulting in bounds of [-2.21, 2.21] if no other empirical data was available. Table

2.3 - Table 2.9 show the extent to which these bounds are tightened under the various

assumptions discussed above. Point identification is obtained only under ETS (exogeneous

treatment selection into both education and the labour market) as shown in Table 2.5 . In

this case, the point estimate of the labour market return to NVQ1 versus no qualification

ranges between -.293 and 0.243 depending on the observable characteristics cell. The

point estimate of NVQ2 versus NVQ1 ranges from 0.020 to 0.602, NVQ3 versus NVQ2

from 0.034 to 0.428, NVQ4 versus NVQ3 from -0.065 to 0.374, and NVQ5/6 versus NVQ4

from 0.040 to 0.310. As can be seen in the other cases, the estimated bounds are all fairly

wide, and looking at Table 2.3 - 2.4 and Table 2.6 - Table 2.9, all straddle zero except in

the cases where the lower bound is by assumption greater than zero.

Table 2.10 attempts to give an overview of how much identification power the alternative

assumptions provide for the average treatment effects. For each assumption considered,

the average bound tightness for consecutive ATEs (NVQ1 versus no qualification, NVQ2

versus NVQ1, etc.) was found by weighting the covariate specific ATE bound by the

proportion of individuals with those particular characteristics in the sample. Then a

straight average across ATE bounds for the different education levels was estimated to

give a single average bound estimate for each assumption considered. From this table

it is clear that the MTR assumption is key in tightening the bounds, with much of the

tightness coming from the fact that the MTR assumption bounds the ATE above zero.

2.6 Conclusion

This chapter attempts to estimate the return to education under weak non-parametric

assumptions, allowing for non-random selection into both education and the labour market.

To our knowledge, dealing with both forms of selection non-parametrically has not been

attempted before. Both forms of selection have been estimated in structural, parametric

settings, but these approaches impose many strong assumptions.

Various restrictions were considered, and the bounds estimated under each case. In partic-

ular, the return to education was estimated under worst case bounds, with an exogenous

treatment assumption, with a monotone treatment selection assumption, with a monotone

treatment response assumption, with a monotone instrumental variable assumption and

finally, under a combined monotone instrumental variable - monotone treatment response

- monotone treatment selection assumption. In each case the estimated bounds were wide

(with the obvious exception of the exogeneous treatment assumption case), and the lower

bound of the ATE only above zero in the cases where it is so by assumption.

Extensions of this work could include inference on the bound estimates, development of a
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behavioural model that would formally provide the theoretical assumptions underpinning

the imposed assumptions, and the estimation of conditional quantiles rather than the

conditional mean which remove the necessity of imposing the type of support assumptions

imposed in the current estimation.
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Table 2.1: Descriptive Statistics

Male Female

Gender 49.12% 50.88%

Region North 7.45% 7.04%
North West 11.55% 12.80%
Riding 8.93% 8.43%
North Midlands 8.13% 7.18%
Midlands 9.89% 9.37%
East 8.61% 8.69%
South East 16.68% 17.48%
South 6.99% 6.70%
South West 6.80% 6.70%
Wales 5.66% 5.74%
Scotland 9.30% 9.85%

Employment Full-time employee 73.09% 32.31%
Part-time employee 0.76% 28.40%
Full-time self-employed 15.51% 3.50%
Part-time self-employed 0.28% 3.17%
Unemployed 5.96% 2.02%
Full-time education 0.37% 0.82%
Temporarily sick/disabled 0.39% 0.26%
Permanently sick/disabled 1.69% 0.84%
Home/family care 0.39% 27.22%
Other 0.67% 0.60%
Missing 0.87% 0.87%

Parental Education Less than or equal to 29 28.65% 28.26%
Between 29 and 30 10.60% 10.51%
Between 30 and 31 13.53% 13.95%
Between 31 and 36 13.08% 12.96%
Greater than 36 4.47% 4.92%
Missing 29.68% 29.41%

Education No Information 2.68% 1.95%
No Qualification 11.00% 13.42%
NVQ1 10.77% 13.37%
NVQ2 29.64% 36.57%
NVQ3 17.78% 9.72%
NVQ4 13.93% 13.57%
NVQ5/6 13.67% 10.83%
Missing 0.51% 0.57%

Mean hourly gross income* £7.46 £5.59

K0
** 0.64

K1
*** 2.85

N 11,469

* For individuals who are part-time or full-time employed (not self-
employed), for whom highest level of obtained education is known
and hourly income can be constructed

** 2.5th quantile of log hourly income for individuals who are part-time
or full-time employed (not self-employed), for whom highest level of
obtained education is known and hourly income can be constructed

*** 97.5th quantile of log hourly income for individuals who are part-
time or full-time employed (not self-employed), for whom highest level
of obtained education is known and hourly income can be constructed
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Table 2.2: Sample Frequencies

Sample Frequencies

Region Sex No Qual NVQ1 NVQ2 NVQ3 NVQ4 NVQ5/6

North Male 0.40% 0.51% 1.21% 0.63% 0.56% 0.46%
North Female 0.66% 0.67% 1.54% 0.21% 0.46% 0.27%
North West Male 0.48% 0.62% 1.48% 0.99% 1.05% 0.66%
North West Female 0.95% 0.92% 2.46% 0.55% 1.09% 0.82%
Riding Male 0.53% 0.42% 1.63% 0.54% 0.49% 0.63%
Riding Female 0.88% 0.68% 1.87% 0.32% 0.59% 0.38%
North Midlands Male 0.47% 0.45% 1.00% 0.73% 0.58% 0.48%
North Midlands Female 0.62% 0.52% 1.54% 0.29% 0.56% 0.35%
Midlands Male 0.46% 0.67% 1.33% 0.76% 0.58% 0.61%
Midlands Female 0.55% 0.86% 2.06% 0.42% 0.80% 0.43%
East Male 0.33% 0.60% 1.03% 0.60% 0.66% 0.51%
East Female 0.55% 0.81% 1.75% 0.49% 0.59% 0.51%
South East Male 0.60% 0.81% 2.21% 1.47% 1.07% 1.15%
South East Female 1.01% 1.46% 3.75% 1.02% 1.03% 1.39%
South Male 0.22% 0.36% 0.72% 0.58% 0.48% 0.52%
South Female 0.34% 0.68% 1.28% 0.43% 0.53% 0.41%
South West Male 0.21% 0.28% 0.78% 0.60% 0.48% 0.51%
South West Female 0.34% 0.65% 1.43% 0.34% 0.38% 0.41%
Wales Male 0.52% 0.21% 0.76% 0.39% 0.34% 0.36%
Wales Female 0.53% 0.33% 1.20% 0.22% 0.40% 0.32%
Scotland Male 0.72% 0.07% 1.46% 1.01% 0.63% 0.73%
Scotland Female 1.19% 0.02% 1.65% 1.10% 1.15% 0.56%
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Table 2.10: Bound Tightness

Bound Tightness

No Data* 4.42
No Assumptions with SE and missing** 3.97
No Assumptions 3.84
ETS 0.00
MTS 3.76
MTR 1.46
MIV 3.61
MIV-MTR-MTS 1.18

* Data was used to construct K0 and K1, which was estimated from
2.5th quantile and 97.5th quantile of constructed log hourly gross
income

** This is the only case where self employed and those with no
reported income are included in the bound analysis
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Chapter 3

Review and Discussion of the MTE

Estimator

3.1 Introduction

The marginal treatment effect (MTE) approach to programme evaluation allows for het-

erogeneity in the response to treatment, and under weak assumptions identifies a distri-

bution of heterogeneous treatment effects. This approach combines advantages of both

the reduced form approach and the structural method approach, and knowledge of the

distribution of marginal treatment effects allows for estimation of a range of treatment

effect parameters of interest (Heckman and Vytlacil, 1999). This chapter reviews the

MTE approach in a binary treatment model, paying particular attention to estimation

approaches. The use of the MTE in estimation of the returns to education is used as a

running example, as this is the context in which it has been most frequently applied in the

literature. This chapter also contributes to the literature by outlining how the MTE model

can be used to estimate the selection effect, and to estimate whether an advantage exists

for the treated group in either potential outcome (treated or non-treated). Furthermore,

this chapter discusses how to decompose these effects into the component due to observ-

able characteristics and the component due to unobservable characteristics. Finally, the

chapter rigorously discusses the comparison of ATE, OLS and IV estimates (comparisons

that are frequently made in the literature), and discusses what can be inferred from these

comparisons.

This chapter proceed as follows, section 3.2 overviews the most general MTE approach.

Section 3.3 discusses alternative estimation approaches of the MTE model, and the as-

sumptions that are often additionally imposed to make estimation tractable. This section

also discusses recent developments, including the extension of the MTE model to cases

where only discrete instrumental variables are available, and the use of the MTE approach
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to estimate the distributions of potential outcomes. Section 3.4 briefly discusses tests of

constancy of the MTE model. Section 3.5 discusses treatment effect estimation. Section

3.6 and 3.7 discuss estimation of selection effects and advantage. Section 3.8 discusses the

implications of OLS, ATE, and IV relative orderings and section 3.9 concludes.
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3.2 Marginal Treatment Effects

Björklund and Moffitt (1987) first introduced the concept of a marginal treatment effect

by identifying a treatment effect for marginal individuals in a normal selection model.

Heckman and Vytlacil (1999, 2001b,c,a, 2005, 2007); Heckman et al. (2006); Carneiro et al.

(2010, 2011a) develop this approach, allowing for identification of MTE under more general

specifications. Furthermore, Heckman and Vytlacil (1999) show that commonly reported

treatment effects (ATE, ATT, LATE) can be expressed as a weighted average of the MTE.

When the full distribution of MTE cannot be estimated, often it is possible to estimate

bounds of the treatment effects (Heckman and Vytlacil, 1999, 2001b). In addition, the

MTE approach has facilitated the definition and estimation of a policy relevant treatment

effect (PRTE), (Heckman and Vytlacil, 2001b). Rather than using commonly reported

treatment effect parameters to try and answer policy relevant questions, this approach

advocates directly estimating the treatment effect that would result due to implementation

of the new policy. A marginal policy relevant treatment effect (MPRTE) has also been

defined by Carneiro et al. (2010, 2011a), and aims to estimate the impact of a marginal

increase/decrease in the currently implemented policy.

The MTE was introduced initially in the context of binary treatment models. More recent

papers, Heckman et al. (2006) and Heckman and Vytlacil (2007), extend this binary

treatment case to models with more than two treatments, however this chapter focuses

on the binary treatment case. The MTE approach is based on a potential outcome model

combined with a latent variable model of treatment choice. Under the potential outcome

model, each individual is associated with two potential outcomes Y1i/Y0i which is the

outcome that would be observed had individual i received/not received treatment. The

treatment considered in this analysis is whether or not an individual has obtained a college

degree. Let Ci = 1 represent college education and let Ci = 0 represent less than college

education, therefore the observed outcome, Yi, can be modelled as follows:

Yi = CiY1i + (1− Ci)Y0i

Let the potential outcomes be modelled:

Y1i = µ1(Xai, Xbi, U1i)

Y0i = µ0(Xai, Xbi, U0i)

Where Xai and Xbi are vectors of observable characteristics determined outside of the

model. Xai is the set of observable characteristics that will enter both the college choice

model and the potential outcome model, whereas the set Xbi enter only the potential
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outcome model (either vector can be null). This notation is somewhat non-standard in

the literature, however since the following discussion will frequently distinguish between

the two sets of control variables distinct notation is allocated to each set. U1i and U0i are

unobserved random variables. Since this is a model with non-separable errors, continuous,

discrete and ordered outcome variables can all be modelled within this framework.

Much of the following analysis rests on the assumption of a latent variable/index model for

selection into treatment. Assume the following model for selection into college education:

C∗i = µc(Xai, Zi)− Uci
Ci = 1[C∗i > 0]

⇒ Ci = 1[µc(Xai, Zi)− Uci > 0]

Where Zi is a non null vector of exogeneous instruments, of which at least one element

is typically required to be continuous. It is useful to interpret µc(Xai, Zi) as a measure

of the ease of attending college, since those with high values of µc(Xai, Zi) tend to go to

college. For instance, in the empirical specification used in the following chapter, distance

to nearest university at age 16 is one of the instruments used, and the identification

strategy rests on the intuitive assumption that the nearer you live to university the easier

it is to attend college, for example, due to reduced transport costs or living costs. This

identification strategy has been used before, for instance in Carneiro et al. (2011a). Uci is

an unobserved random variable that impacts upon the treatment choice decision. It might

be useful to interpret Uci as an unobservable measure of ability, with higher values of Uci

indicating lower ability. Alternatively, Uci can be interpreted as an unobservable measure

of the cost of effort, as individuals with high values of Uci tend not to go to college.

Given the notation defined above, the marginal treatment effect can now be defined. The

marginal treatment effect at a point (Xa = xa,Xb = xb, Uc = uc) is defined:

MTE(xa, xb, uc) = E[Y1 − Y0|Xa = xa,Xb = xb, Uc = uc]

The marginal treatment effect can be interpreted in a number of ways (Heckman and

Vytlacil, 2005). MTE(xa, xb, uc) can be interpreted as the average treatment effect for an

individual who has observable characteristics (Xa = xa,Xb = xb) and unobservable costs

of attending college of Uc = uc. Alternatively, the MTE(xa, xb, uc) can be interpreted as

the average treatment effect of an individual who has observable characteristics (Xa =

xa,Xb = xb) and who would be indifferent between attending college and not if they were

randomly assigned instrument value Z = z, where µc(xa, z) = uc.

In order to derive an estimator for the MTE, the following assumptions as stated in Heck-
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man and Vytlacil (2005) are imposed:

A1: µc(Xa,Z) is a nondegenerate random variable conditional on Xa, Xb

A2: The random vectors (U1, Uc) and (U0, Uc) are independent of Z conditional on Xa,

Xb

A3: The distribution of Uc is absolutely continuous with respect to Lebesgue measure

A4: Both potential outcomes Y1 and Y0 have finite first moments

A5: 1 > P (C = 1|Xa = xa,Xb = xb) > 0 for all (xa, xb) ∈ Ω(Xa,Xb), where Ω(.)

denotes support

The propensity score, or the probability that an individual with observed characteristics

(Z = z,Xa = xa,Xb = xb) attends college is given by:

P (C = 1|Xa = xa,Xb = xb, Z = z) = P (Uc < µc(Xa,Z)|Xa = xa,Xb = xb, Z = z)

= FUc|Xa,Xb,Z(µc(Xa,Z))

Also, notice the selection into college equation can be rewritten as follows:

C = 1[FUc|Xa,Xb,Z(µc(Xa,Z))− FUc|Xa,Xb,Z(Uc) > 0]

Since FUc|Xa,Xb,Z(.) is a monotonic transformation.

Following the notation in Carneiro and Lee (2009), define V = FUc|Xa,Xb,Z(Uc) and

P = FUc|Xa,Xb,Z(µc(Xa,Z)), where P now represents the propensity score. Therefore

the selection into college equation can be rewritten as:

C = 1[V < P ]

Therefore, an individual with V < P attends college, and an individual with V = P is just

indifferent between attending college or not. The MTE distribution will now be defined

over (Xa,Xb, V ), rather than over (Xa,Xb, Uc). Later the fact that the distribution of

V conditional on (Xa,Xb, Z) ∼ Unif [0, 1] will be used. To see this notice that for any

a ∈ [0, 1]

P [FUc|Xa,Xb,Z(Uc) < a|Xa,Xb, Z] = P [Uc < F−1
Uc|Xa,Xb,Z(a)|Xa,Xb, Z]

= FUc|Xa,Xb,Z(F−1
Uc|Xa,Xb,Z(a))

= a

The next step in deriving an estimator of the MTE is to write the expectation of the
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outcome, conditional on the observables (Xa,Xb) and conditional on the propensity score

P .

E[Y |Xa = xa,Xb = xb, P = p] = E[Y0|xa, xb, p]

+ E[Y1 − Y0|xa, xb, p, C = 1] ∗ Pr[C = 1|xa, xb, p]

Or,

E[Y |Xa = xa,Xb = xb, P = p] = E[µ0(xa, xb, uc)|xa, xb, p]

+ E[µ1(xa, xb, uc)− µ0(xa, xb, uc)|xa, xb, p, C = 1] ∗ Pr[C = 1|xa, xb, p]

Since (U1, Uc) and (U0, Uc) are independent of Z conditional on Xa, Xb, it is also true

that (U1, Uc) and (U0, Uc) are independent of any function of Z conditional on Xa, Xb.

P is simply a function of Z once you have already conditioned on (Xa,Xb). Additionally,

plugging in the condition for selection into college the above can be rewritten as:

E[Y |Xa = xa,Xb = xb, P = p] = E[µ0(xa, xb, uc)|xa, xb]

+ E[µ1(xa, xb, uc)− µ0(xa, xb, uc)|xa, xb, V < p] ∗ Pr[V < p|xa, xb]

Notice this can also be written as:

E[Y |Xa = xa,Xb = xb, P = p] = E[µ0(xa, xb, uc)|xa, xb]

+

p∫
0

E[µ1(xa, xb, uc)− µ0(xa, xb, uc)|xa, xb, V = p′]f(V = p′|xa, xb)dp′ ∗ [
p∫
0

f(V = p′|xa, xb)dp′]
p∫
0

f(V = p′|xa, xb)dp′

Cancelling above and below the line and substituting for f(V = p′|xa, xb):

E[Y |Xa = xa,Xb = xb, P = p] = E[µ0(xa, xb, uc)|xa, xb]

+

p∫
0

E[µ1(xa, xb, uc)−µ0(xa, xb, uc)|xa, xb, V = p′]

∫
Z
f(V = p′|xa, xb, z)f(z|xa, xb)dzdp′

Since V is uniform conditional on (Xa,Xb, Z) this simplifies to:

E[Y |Xa = xa,Xb = xb, P = p] = E[µ0(xa, xb, uc)|xa, xb]

+

p∫
0

E[µ1(xa, xb, uc)− µ0(xa, xb, uc)|xa, xb, V = p′]dp′
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The derivative of this conditional expectation with respect to P = p provides an expression

for the MTE at the point (xa, xb, V = p).

∂E[Y |Xa = xa,Xb = xb, P = p]

∂p
= E[µ1(xa, xb, uc)− µ0(xa, xb, uc)|xa, xb, V = p]

= E[Y1 − Y0|Xa = xa,Xb = xb, V = p]

= MTE(Xa = xa,Xb = xb, V = p)

For every (Xa,Xb) combination, V ranges from 0 to 1, but the range over whichMTE(xa, xb, V )

can be estimated depends on the support of P conditional on (Xa,Xb), and in this flexible

approach can only be estimated at points of continuity of P . Heckman and Vytlacil (1999),

Heckman and Vytlacil (2001b) and Heckman and Vytlacil (2005) show that various treat-

ment parameters can be represented as weighted averages of the MTE(Xa,Xb,V) (e.g. the

ATE(Xa,Xb), TT(Xa,Xb), LATE(Xa,Xb), TUT(Xa,Xb), PRTE(Xa,Xb), IV(Xa,Xb) and

OLS(Xa,Xb)). The support of P determines which of these treatment parameters can be

estimated from the MTE estimates, see Heckman and Vytlacil (1999) and Heckman and

Vytlacil (2001b) for further discussion.
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3.3 Estimation

Estimation of the MTE generally requires assumptions in addition to A1-A5. This is be-

cause estimation of the propensity score and the mean outcome conditional on (Xa,Xb, Z)

suffers from the curse of dimensionality in finite samples. In addition, non-parametric es-

timation of the MTE imposes heavy requirements on the support of the propensity score

conditional on (Xa,Xb). A number of different approaches have been followed in the liter-

ature to overcome these issues. Typically, the propensity score is estimated parametrically

in the first step, using a logit or probit model (e.g. Carneiro et al. (2010), Carneiro et al.

(2011c), Moffitt (2008)). In addition, it is often assumed that the potential outcomes

are linear in parameters and have separable errors, and the independence assumption

(A2) is often strengthened to full independence; (U1, Uc) and (U0, Uc) are independent of

(Xa,Xb, Z).

Given these assumptions, a number of different estimation approaches have been followed

in the literature. Three such approaches are discussed in the following. When normality is

not assumed the MTE distribution can be estimated via Robinson’s partially linear model

or sieve estimation. Alternatively, if joint normality of the errors are assumed the MTE

distribution can be estimated using the normal selection model.

Two additional estimation approaches are also discussed; that in Brinch et al. (2012) who

propose an estimator for the MTE that allows for discrete instrumental variables, and

that in Carneiro and Lee (2009) who estimate distributions of potential outcomes under

somewhat less restrictive assumptions than those discussed above.

3.3.1 Robinson’s Partially Linear Model

In the first stage of all three estimation approaches the propensity score is estimated

typically using a logit or probit model. There are also the following models for the potential

outcomes.1

Y0 = (Xa Xb)β0 + U0

Y1 = (Xa Xb)β1 + U1

1More generally, this could be written Yj = µj(X)βj + Uj for j ∈ (0, 1), which is still linear in
parameters but where the µj(.) function denotes that a flexible specification could be used, for instance
with higher order terms and interactions
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Therefore the expectation of Y conditional on (Xa,Xb, P ) can be written as:

E[Y |Xa = xa,Xb = xb, P = p] = (xa xb)β0 + E[U0|xa, xb, p]

+ (xa xb)(β1 − β0)P (C = 1|xa, xb, p)

+ E[U1 − U0|xa, xb, p, C = 1]P (C = 1|xa, xb, p)

Which, due to the stronger independence assumption simplifies to:

E[Y |Xa = xa,Xb = xb, P = p] = (xa xb)β0 + E[U0]

+ (xa xb)(β1 − β0)P (V < p) + E[U1 − U0|V < p]P (V < p)

Also, since V = FUc|Xa,Xb,Z(Uc) was uniformly distributed on [0,1] conditional on (Xa,Xb, Z),

and since Uc is now independent of (Xa,Xb, Z), this implies that V = FUc(Uc), which

is now unconditionally uniform. Also, denoting E[U1 − U0|V < p]P (V < p) as K(p) the

above can be rewritten as:

E[Y |Xa = xa,Xb = xb, P = p] = (xa xb)β0 + E[U0] + (xa xb)(β1 − β0)p+K(p)

Note that K ′(p) = E[U1 − U0|V = p]
Splitting out the constant terms (since Xa,Xb contains a constant) rewrite the above as

E[Y |Xa = xa,Xb = xb, P = p] = α0 + (X̃a X̃b)β̃0 + E[U0] + (α1 − α0)p+ (X̃a X̃b)(β̃1 − β̃0)p+K(p)

Where α0, α1 represent the constant coefficient in the potential outcome models, β̃0, β̃1

represent the remaining coefficients in the potential outcome models and where X̃a X̃b

represents the variables excluding the constant.

Taking the derivative with respect to p there is:

∂E[Y |Xa = xa,Xb = xb, P = p]

∂p
= (α1 − α0) + (x̃a x̃b)(β̃1 − β̃0) +K ′(p)

= E[Y1 − Y0|Xa = xa,Xb = xb, V = p]

= MTE(xa, xb, V = p)

There is

E[Y |Xa = xa,Xb = xb, P ] =α0 + (X̃a X̃b)β̃0 + E[U0]

+ (α1 − α0)P + (X̃a X̃b)(β̃1 − β̃0)P +K(P )
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⇒ Y = α0 + (X̃a X̃b)β̃0 + E[U0] + (α1 − α0)P + (X̃a X̃b)(β̃1 − β̃0)P +K(P ) + ε

Where E[ε|Xa,Xb, P ] = 0

Taking expectations conditional on the propensity score:

E[Y |P ] = α0 + E[X̃a X̃b|P ]β̃0 + E[U0] + (α1 − α0)P + E[X̃a X̃b|P ](β̃1 − β̃0)P +K(P )

⇒ Y − E[Y |P ] = ((X̃a X̃b)− E[X̃a X̃b|P ])β̃0 + ((X̃a X̃b)− E[X̃a X̃b|P ])(β̃1 − β̃0)P + ε

In order to estimate β̃0 and β̃1 − β̃0, E[W |P = p̂] is estimated nonparametrically for

W = (Y, X̃a, X̃b), (for instance using kernel estimation with cross validated bandwidth),

using the fitted p̂ calculated in the first step. This is then used to estimate W −
Ê[W |P = p̂]. Then Y − Ê[Y |P = p̂] is regressed on (X̃a X̃b) − Ê[X̃a X̃b|P = p̂] and

((X̃a X̃b) − Ê[X̃a X̃b|P = p̂]) ∗ p̂ , dropping a small fraction of the data for which there

is low estimated density of p̂.

The K(P) is estimated in an extension of Robinson’s partially linear model developed

in Heckman et al. (1998). This approach is as follows:

Y − (X̃a X̃b)β̃0 − (X̃a X̃b)(β̃1 − β̃0)P = α0 + E[U0] + (α1 − α0)P +K(P ) + ε

Using P̂ estimated in the first step, and ˆ̃β0, ( ˜̂β1 − β̃0) estimated in the second step, the

residual Y − (X̃aX̃b) ˆ̃β0− (X̃aX̃b)( ˜̂β1 − β̃0)P̂ is computed. The residual is estimated non-

parametrically as a function of the propensity score, by analysing the relationship between

this residual and P̂, using, for example, locally quadratic regression with cross validated

bandwidth. Call this function L(P̂). L’(P̂) is then estimated either using analytical or

numerical first order differentiation of the estimated L(P̂) function. This derivative esti-

mates (α1 − α0) +K ′(P̂ ).

Recall MTE(xa, xb, V = p) = (xa xb)(β1 − β0) +K ′(p). Therefore, combining the above:

ˆMTE(Xa = xa,Xb = xb, V = p̂) = (x̃a x̃b)( ˜̂β1 − β̃0) + L̂′(p̂)

= (x̃a x̃b)( ˜̂β1 − β̃0) + ( ̂α1 − α0 +K ′(p̂))

Typically, what is reported in empirical work is MTE(V=p), which is the average marginal

treatment effect for those individuals with V=p. The average MTE can be derived as fol-
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lows:

MTE(V = p̂) = EXa,Xb|V [E[Y1 − Y0|Xa,Xb, V = p̂]]

⇒MTE(V = p̂) = E[(X̃a X̃b)|V = p̂](β̃1 − β̃0) + (α1 − α0 +K ′(p̂))

⇒MTE(V = p̂) = E[(X̃a X̃b)](β̃1 − β̃0) + (α1 − α0 +K ′(p̂))

since Uc is independent of (Xa,Xb,Z), and V = FUc|Xa,Xb,Z(Uc), this implies V is indepen-

dent of (Xa,Xb,Z)

⇒ ˆMTE(V = p̂) = (
ˆ̃̄
Xa

ˆ̃̄
Xb)( ˜̂β1 − β̃0) + ( ̂α1 − α0 +K ′(p̂))

Where
ˆ̃̄
Xa

ˆ̃̄
Xb = Ê[(X̃a X̃b)]

3.3.2 Sieve Method:

As in the previous approach the propensity score is estimated in the first stage. As derived

above:

E[Y |Xa = xa,Xb = xb, P = p] = (xa xb)β0 + E[U0] + (xa xb)(β1 − β0)p+K(p)

Again, splitting out the constants

E[Y |Xa = xa,Xb = xb, P = p] = α0 + (X̃a X̃b)β̃0 + E[U0] + (α1 − α0)P + (X̃a X̃b)(β̃1 − β̃0)P +K(P )

⇒ Y = α0 + (X̃a X̃b)β̃0 + E[U0] + (α1 − α0)P + (X̃a X̃b)(β̃1 − β̃0)P +K(P ) + ε

Where E[ε|Xa,Xb, P ] = 0.

The sieve approach to estimating the MTE estimates K(P ) using a flexible functional form

such as series/spline specifications. For example, Moffitt (2008) estimates the MTE of the

returns to college education in the UK using the following K(P ) specifications; a linear

function, a quadratic function, a cubic function, a quadratic function with a median spline

break and a quadratic function with quartile spline breaks. Given a specific functional

form assumption the model is then estimated by regressing Y on (XaXb), (XaXb)P̂ and

the K(P̂ ) function, where P̂ is the estimated propensity score from the first step. Suppose

for instance that a quadratic function is assumed for the K(P ) function2:

K(P ) = π0 + π1P + π2P
2

2The K(P) specification can be chosen by least squares cross-validation as suggested in Belloni et al.
(2011)
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Therefore there is the following model

E[Y |Xa = xa,Xb = xb, P = p] =α0 + (X̃a X̃b)β̃0 + E[U0]

+ (α1 − α0)P + (X̃a X̃b)(β̃1 − β̃0)P + π0 + π1P + π2P
2

And taking the derivative with respect to p:

∂E[Y |Xa = xa,Xb = xb, P = p]

∂p
= (α1 − α0) + (x̃a x̃b)(β̃1 − β̃0) + π1 + 2π2p

= MTE(xa, xb, V = p)

In order to estimate the above, estimate the following by OLS:

Y = θ0 + (X̃a X̃b)β0 + θ1P + (X̃a X̃b)(β̃1 − β̃0)P + π2P
2 + ε

Where θ0 = (α0 + E[U0] + π0), and θ1 = (α1 − α0 + π1). The MTE is then estimated by

plugging the estimated OLS coefficients from the above model into:

∂E[Y |Xa = xa,Xb = xb, P = p̂]

∂p̂
= ˆMTE(Xa = xa,Xb = xb, V = p̂)

= θ̂1 + (X̃a X̃b)( ˜̂β1 − β̃0) + 2π̂2P̂

As before, the average MTE(V=p) can be estimated:

MTE(V = p̂) = EXa,Xb|V [E[Y1 − Y0|Xa,Xb, V = p̂]]

⇒MTE(V = p̂) = θ1 + E[(X̃a X̃b)|V = p̂](β̃1 − β̃0) + 2π2p̂

⇒ ˆMTE(V = p̂) = θ̂1 + (
ˆ̃̄
Xa

ˆ̃̄
Xb)( ˜̂β1 − β̃0) + 2π̂2p̂

3.3.3 Normal Selection Model

As in the previous two approaches the propensity score is estimated in the first stage.

Using results from Heckman (1979), the MTE distribution can be estimated under the

additional assumption of joint normality of the errors using a normal selection model.

There is:

54



Y0 = (Xa Xb)β0 + U0

Y1 = (Xa Xb)β1 + U1

C = 1[Uc < µc(Xa,Z)]U1

U0

Uc


∣∣∣∣∣∣∣ (Xa,Xb, Z) ∼ N


0

0

0

 ,

σ2
1 σ10 σ1c

σ01 σ2
0 σ0c

σc1 σc0 1




MTE(Xa,Xb, Uc) = E[Y1 − Y0|Xa,Xb, Uc]

= E[Y1|Xa,Xb, Uc]− E[Y0|Xa,Xb, Uc]

= (Xa Xb)(β1 − β0) + E[U1|Uc]− E[U0|Uc]

Where, from normality

E[U1|Uc] = σ1cUc

E[U0|Uc] = σ0cUc

Also,

E[Y1|Xa,Xb, µc(Xai, Zi) = a, C = 1] = E[Y1|Xa,Xb, Uc < a]

= (Xa Xb)β1 + E[U1|Uc < a]

E[Y0|Xa,Xb, µc(Xai, Zi) = a, C = 0] = E[Y0|Xa,Xb, Uc ≥ a]

= (Xa Xb)β0 + E[U0|Uc ≥ a]

Where, from normality

E[U1|Uc ≤ a] = σ1cE[Uc|Uc ≤ a]

E[U0|Uc > a] = σ0cE[Uc|Uc > a]
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E[Uc|Uc ≤ a] =

∫ a

x−∞
ucfuc(uc|uc ≤ a)duc

=

∫ a

−∞
ucfuc(uc)/P (uc ≤ a)duc

=

∫ a

−∞
ucφ(uc)/Φ(a)duc

= −φ(a)/Φ(a)

⇒ E[U1|Uc ≤ a] = σ1c ∗ (−φ(a)/Φ(a))

Similarly,

E[Uc|Uc > a] =

∫ ∞
a

ucfuc(uc|uc > a)duc

=

∫ ∞
a

ucfuc(uc)/P (uc > a)duc

=

∫ ∞
a

ucφ(uc)/(1− Φ(a))duc

= φ(a)/(1− Φ(a))

⇒ E[U0|Uc ≥ a] = σ0c(φ(a)/ (1− Φ(a)))

Note that P ≡ P (C = 1|Xa,Xb, Z) = Φ(µc(Xa,Z)). And since conditioning on µc(Xai, Zi) =

a is equivalent to conditioning on Φ(µc(Xa,Z)) = Φ(a),

E[Y1|Xa,Xb, P = Φ(a), C = 1] = (Xa Xb)β1 − σ1c(φ(Φ−1(P ))/P )

E[Y0|Xa,Xb, P = Φ(a), C = 0] = (Xa Xb)β0 + σ0c(φ(Φ−1(P ))/(1− P ))

From a linear regression of the observed outcome for those who graduated from college on

(Xa,Xb, φ(Φ−1(P̂ ))/P̂ ), (β1, σ1c) can be estimated. From a linear regression of the ob-

served outcome for those who did not graduate from college on (Xa,Xb, φ(Φ−1(P̂ ))/(1−
P̂ )), (β0, σ0c) can be estimated. Therefore, the following can be estimated:

ˆMTE(Xa,Xb, Uc) = (Xa Xb)(β̂1 − β̂0) + σ̂1cUc− σ̂0cUc

or, defining over the unit interval for comparability with the previous methods,

ˆMTE(Xa,Xb, V = Φ(Uc)) = (Xa Xb)(β̂1 − β̂0) + σ̂1cΦ
−1(V )− σ̂0cΦ

−1(V )

As before, the average MTE(V = p̂) can be estimated:
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MTE(V = p̂) = EXa,Xb|V [E[Y1 − Y0|Xa,Xb, V = p̂]]

⇒MTE(V = p̂) = E[Xa Xb|V = p̂](β1 − β0) + σ1cΦ
−1(p̂)− σ0cΦ

−1(p̂)

⇒ ˆMTE(V = p̂) = ( ˆ̄Xa ˆ̄Xb)(β̂1 − β̂0) + σ̂1cΦ
−1(p̂)− σ̂0cΦ

−1(p̂)

3.3.4 Estimating MTE with Discrete Instrumental Variables

Brinch et al. (2012) also estimate the propensity score using a logit model in the first step

and they also assume linearity in parameters and additive separability in the outcome

equations. While they discuss estimation without the stronger independence assumption,

their empirical illustration imposes it. The theoretical contribution of their paper is the

extension of the MTE in cases where continuous instrumental variables are not available.

In that case, parametric assumption about the shape of the MTE curve along with discrete

instrumental variables can allow identification of the MTE curve.3 Furthermore, this paper

also shows that a separation estimation approach allows for a higher order specification

of the MTE curve. In fact, with just a binary instrumental variable this approach allows

a test of the external validity of a LATE estimate (i.e. whether the LATE is a consistent

estimator for the ATE).

Heckman and Vytlacil (2007), Carneiro and Lee (2009) and Brinch et al. (2012) all dis-

cuss separation estimation approaches. In this approach, the participation decision is

conditioned on in addition to the observable covariates and the propensity score in the

conditional mean function. In Carneiro and Lee (2009) this approach is used in the estima-

tion of distributions of potential outcomes in addition to distributions of treatment effects.

In Brinch et al. (2012) it is shown that this approach allows for higher order estimation

of the shape of the MTE curve when working with discrete instrumental variables.

As before the propensity score is estimated in the first stage. As before, suppose there is:

Y0 = (Xa Xb)β0 + U0

Y1 = (Xa Xb)β1 + U1

Therefore the expectation of Y1 conditional on (Xa,Xb, P, C = 1) can be written as:

E[Y1|Xa = xa,Xb = xb, P = p, C = 1] = (xa xb)β1 + E[U1|xa, xb, p, C = 1]

3Discrete instrumental variables are also sufficient when estimating the MTE curve using the normal
selection model.
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Which can be rewritten as:

E[Y1|Xa = xa,Xb = xb, P = p, C = 1] = (xa xb)β1 + E[U1|xa, xb, V ≤ p]

Or as:

E[Y1|Xa = xa,Xb = xb, P = p, C = 1] =(xa xb)β1

+

p∫
0

E[U1|xa, xb, V = p′]f(V = p′|xa, xb)dp′

p∫
0

f(V = p′|xa, xb)dp′

=(xa xb)β1

+

p∫
0

E[U1|xa, xb, V = p′]
∫
Z

f(V = p′|xa, xb, z′)f(z|xa, xb)dz′dp′

p∫
0

∫
Z

f(V = p′|xa, xb, z′)f(z|xa, xb)dz′dp′

=(xa xb)β1 +

p∫
0

E[U1|xa, xb, V = p′]dp′

p∫
0

1dp′

=(xa xb)β1 +

p∫
0

E[U1|xa, xb, V = p′]dp′

p

since V is uniform conditional on (Xa,Xb, Z).

Denote

K1(Xa = xa,Xb = xb, P = p) = E[U1|xa, xb, V ≤ p] =

p∫
0

E[U1|xa, xb, V = p′]dp′

p

Note that

∂K1(Xa = xa,Xb = xb, P = p)

∂p
=
E[U1|xa, xb, V = p]

p
−

p∫
0

E[U1|xa, xb, V = p′]dp′

p2

⇒ ∂K1(Xa = xa,Xb = xb, P = p)

∂p
=
k1(xa, xb, p)

p
− K1(xa, xb, p)

p

⇒ k1(xa, xb, p) =
∂K1(Xa = xa,Xb = xb, P = p)

∂p
∗ p+K1(xa, xb, p)
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where k1(xa, xb, p) = E[U1|xa, xb, v = p]

And the expectation of Y0 conditional on (Xa,Xb, P, C = 0) can be written as:

E[Y0|Xa = xa,Xb = xb, P = p, C = 0] = (xa xb)β0 + E[U0|xa, xb, p, C = 0]

Which can be rewritten as:

E[Y0|Xa = xa,Xb = xb, P = p, C = 0] = (xa xb)β0 + E[U0|xa, xb, V > p]

Or as:

E[Y0|Xa = xa,Xb = xb, P = p, C = 0] =(xa xb)β0

+

1∫
p
E[U0|xa, xb, V = p′]f(V = p′|xa, xb)dp′

1∫
p
f(V = p′|xa, xb)dp′

=(xa xb)β0

+

1∫
p
E[U0|xa, xb, V = p′]

∫
Z

f(V = p′|xa, xb, z′)f(z|xa, xb)dz′dp′

1∫
p

∫
Z

f(V = p′|xa, xb, z′)f(z|xa, xb)dz′dp′

=(xa xb)β0 +

1∫
p
E[U0|xa, xb, V = p′]dp′

1∫
p

1dp′

=(xa xb)β0 +

1∫
p
E[U0|xa, xb, V = p′]dp′

1− p

Denote

K0(Xa = xa,Xb = xb, P = p) = E[U0|xa, xb, V > p] =

1∫
p

E[U0|xa, xb, V = p′]dp′

1− p
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Note that

∂K0(Xa = xa,Xb = xb, P = p)

∂p
= −E[U0|xa, xb, V = p]

1− p
+

1∫
p

E[U0|xa, xb, V = p′]dp′

(1− p)2

⇒ ∂K0(Xa = xa,Xb = xb, P = p)

∂p
= −k0(xa, xb, p)

1− p
+
K0(xa, xb, p)

1− p

⇒ k0(xa, xb, p) = −∂K0(Xa = xa,Xb = xb, P = p)

∂p
∗ (1− p) +K0(xa, xb, p)

where k0(xa, xb, p) = E[U0|xa, xb, v = p]

And therefore the MTE can be estimated using the separation approach from:

E[Y1 − Y0|Xa = xa,Xb = xb, V = p] = (xa xb)(β1 − β0) + E[U1 − U0|xa, xb, v = p]

= (xa xb)(β1 − β0) + k1(xa, xb, p)− k0(xa, xb, p)

= (xa xb)(β1 − β0)

+
∂K1(Xa = xa,Xb = xb, P = p)

∂p
∗ p+K1(xa, xb, p)

+
∂K0(Xa = xa,Xb = xb, P = p)

∂p
∗ (1− p)−K0(xa, xb, p)

where sieve estimation methods similar to those discussed in the previous sections could

be used to estimate β1, β0, the K1, K0 functions and their derivatives, k1, k0. Robinson’s

partially linear approach is no longer possible since the K1, K0 functions are dependent

on (xa, xb) as well as the propensity score, as the stronger independence assumption has

not been imposed yet.

In the case of discrete instrumental variables, the next step is to impose some functional

form restriction for the K1, K0 functions. Suppose you want to model the MTE as a linear

function. A linear specification for the K1, K0 functions will result in a linear specification.

For instance, suppose one assumes

K1(xa, xb, p) = axaxb + bxaxbp

K0(xa, xb, p) = cxaxb + dxaxbp

where the xaxb subscript denotes that these contant terms can vary across different Xa,
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Xb combinations.

Therefore,

k1(xa, xb, p) = axaxb + 2bxaxbp

k0(xa, xb, p) = cxaxb − dxaxb + 2dxaxbp

These functions are estimated from the conditional mean expectations:

E[Y1|Xa = xa,Xb = xb, P = p, C = 1] = (xa xb)β1 + axaxb + bxaxbp

⇒ Y1 = (xa xb)β1 + axaxb1 + bxaxb1p

+
∑

xaxbj∈Xa,Xb for j>1

1[xaxb = xaxbj][(axaxbj − axaxb1) + (bxaxbj − bxaxb1)p] + ε1

where E[ε1|xa, xb, p, C = 1] = 0

and where the set of xaxb combinations have been ordered from 1 to N

E[Y0|Xa = xa,Xb = xb, P = p, C = 0] = (xa xb)β0 + cxaxb + dxaxbp

⇒ Y0 = (xa xb)β0 + cxaxb1 + dxaxb1p

+
∑

xaxbj∈Xa,Xb for j>1

1[xaxb = xaxbj][(cxaxbj − cxaxb1) + (dxaxbj − dxaxb1)p] + ε0

where E[ε0|xa, xb, p, C = 0] = 0

Note that axaxb1, cxaxb1 will not be separably identified from β1, β0 since there is a constant

in (xa xb). Denote

β̃1 =



B11

B12

.

.

.

B1Q


+



axaxb1

0

.

.

.

0



and β̃0 =



B01

B02

.

.

.

B0Q


+



cxaxb1

0

.

.

.

0


where Xa,Xb has dimension Q, and where the constant is the first term in the (Xa,Xb)
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vector.

Therefore, from above you can see that the MTE will be a linear specification, where:

E[Y1 − Y0|Xa = xa,Xb = xb, V = p] = (xa xb)(β1 − β0) + axaxb − cxaxb + dxaxb + 2p(bxaxb − dxaxb)

= (xa xb)(β̃1 − β̃0) + dxaxb1 + 2p(bxaxb1 − dxaxb1)

+
∑
j>1

1[xaxb = xaxbj][(axaxbj − axaxb1)− (cxaxbj − cxaxb1)

+(dxaxbj − dxaxb1) + 2p((bxaxbj − bxaxb1)− (dxaxbj − dxaxb1))]

A discrete binary instrumental variable that has full support for each combination of

(xa xb) ∈ (Xa Xb) among those who go to college, and among those who do not go to

college will identify the above MTE using the separation approach. Further more, this is

sufficient for a test of the external validity of a LATE estimate for the ATE. If the MTE

is found to be non-constant, (i.e. bxaxbj 6= dxaxbj∀j, then the external validity of the LATE

estimate is rejected.)

As pointed out in Brinch et al. (2012) if the separation approach is not taken, in order to

identify a linear MTE, an instrumental variable that takes at least three distinct values is

required for identification.

To see this, note that, given the linear specification assumption for K1, K0

E[Y |Xa = xa,Xb = xb, P = p] =(xa xb)β0 + E[U0|xa, xb] + (xa xb)(β1 − β0)p

+ E[U1 − U0|xa, xb, V ≤ p]p

Denoting E[U1 − U0|xa, xb, V ≤ p]p = K(xa, xb, p), note

K(xa, xb, p) =

∫ p
0

(E[U1 − U0|xa, xb, V = p′]dp′)∫ p
0
f(V = p′|xa, xb)dp′

∗ p

=
1

p

∫ p

0

E[U1 − U0|xa, xb, V = p′]dp′ ∗ p

=

∫ p

0

k1(xa, xb, p)dp′ −
∫ p

0

k0(xa, xb, p)dp′

=

∫ p

0

(ax + 2bxp)dp
′ −
∫ p

0

(cx − dx + 2dxp)dp
′

= axaxbp+ bxaxbp
2 − ((cxaxb − dxaxb)p+ dxaxbp

2)

= axaxb − (cxaxb − dxaxb)p+ (bxaxb + dxaxb)p
2

Which, unlike the separation approach is not linear in p, and so a binary instrumental

variable will not suffice for identification with this approach.
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Brinch et al. (2012) also discuss the additional identification resulting from the stronger

independence assumption (which they refer to as separability). The intuition here is that

with this stronger assumption, the MTE curve is parallel with intercept shifts across

different values of (xa, xb). Therefore, even with a binary instrumental variable a more

flexible MTE curve can be estimated, since variation in the propensity score at different

(Xa,Xb) points information on the shape of the MTE curve at different points of the

unobservable affecting selection into treatment. The following illustrates the separation

approach under the stronger independence assumption.

In contrast to before, the K1, K0 functions are independent of (xa, xb). There is now

E[U1|Xa = xa,Xb = xb, V ≤ p] = E[U1|V ≤ p] = K1(p) = a+ bp

E[U0|Xa = xa,Xb = xb, V > p] = E[U0|V > p] = K0(p) = c+ dp

Therefore,

E[U1|Xa = xa,Xb = xb, V = p] = E[U1|V = p] = k1(p) = a+ 2bp

E[U0|Xa = xa,Xb = xb, V = p] = E[U0|V = p] = k0(p) = c− d+ 2dp

These functions are estimated from the conditional mean expectations:

E[Y1|Xa = xa,Xb = xb, P = p, C = 1] = (xa xb)β1 + a+ bp

⇒ Y1 = (xa xb)β1 + a+ bp+ ε1

where E[ε1|xa, xb, p, C = 1] = 0

E[Y0|Xa = xa,Xb = xb, P = p, C = 0] = (xa xb)β0 + c+ dp

⇒ Y0 = (xa xb)β0 + c+ dp+ ε0

where E[ε0|xa, xb, p, C = 0] = 0

As before, a, c will not be separately identified from the constant coefficients in (xa xb).
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Denote β̃1 =



B11

B12

.

.

.

B1Q


+



a

0

.

.

.

0



and β̃0 =
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0

.

.

.

0


Therefore, the MTE will be a linear specification, where:

E[Y1 − Y0|Xa = xa,Xb = xb, V = p] = (xa xb)(β1 − β0) + a− c+ d+ 2p(b− d)

= (xa xb)(β̃1 − β̃0) + d+ 2p(b− d)

Brinch et al. (2012) prove that without the stronger independence assumption, an instru-

mental variable that takes on N different values identifies an MTE of order (N-1). With the

stronger independence assumption, if the X variables take on M different values, and the

instrumental variable N different values, then an MTE of order (N-1)M can be identified.

3.3.5 Estimating Distributions of Potential Outcomes

Carneiro and Lee (2009) semiparametrically estimate distributions of potential outcomes

using the separation approach.

In contrast to the previous approaches where most of the emphasis is on the distribution

of treatment effects, this approach suggests a way of estimating distributions of potential

outcomes (in addition to estimating the density of potential outcomes and quantiles of

potential outcomes across different values of the unobservable affecting selection).

Interest is in estimating how E[Y1|Xa = xa,Xb = xb, V = p] and E[Y0|Xa = xa,Xb =

xb, V = p] vary over V. As in the previous section, the separation approach is used in

estimation.

In the empirical application, additive separability of the outcome equations are assumed,

and the µ1, µ0 functions are modelled as quadratic functions of x, with a number of in-

teractions terms. Furthermore, the stronger independence restriction is assumed. The
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selection equation is modelled semiparametrically as a partially linear model, where some

components enter additively and others are modelled non-parametrically using cubic B-

splines. Cross-validation was used to determine the number of knots to use in addition to

determining which interactions to include. Since the predicted propensity scores could lie

outside the (0,1) interval, the propensity score estimates are trimmed above 1 and below

0.

Robinson’s partially linear method was used to estimate the K1, K0 functions defined in

the previous section as follows.

E[Y1|Xa = xa,Xb = xb, C = 1, V = p] = (xa, xb)β1 + E[U1|xa, xb, V ≤ p]

E[Y1|Xa = xa,Xb = xb, C = 1, V = p] = (xa, xb)β1 + E[U1|V ≤ p]

E[Y1|Xa = xa,Xb = xb, C = 1, V = p] = (xa, xb)β1 +K1(p)

Note that under the model assumptions, the conditional mean outcome with treatment

for individuals with some xa, xb characteristics, and a particular value of the unobservable

affecting selection can be written

E[Y1|Xa = xa,Xb = xb, V = p] = (xa, xb)β1 + E[U1|V = p]

E[Y1|Xa = xa,Xb = xb, V = p] = (xa, xb)β1 + k1(p)

where k1(p) = E[U1|V = p].

Furthermore, note that (as shown in the previous section):

E[U1|V = p] =
∂K1(p)

∂p
p+K1(p)

or k1(p) =
∂K1(p)

∂p
p+K1(p)
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To see how β1, K1(p) are estimated, note that

Y1 = (xa, xb)β1 +K1(p) + ε1

where E[ε1|Xa = xa,Xb = xb, C = 1, V = p] = 0

⇒ E[Y1|p] = E[xa, xb|p]β1 +K1(p)

⇒ Y − E[Y1|p] = ((xa, xb)− E[xa, xb|p])β1 + ε1

To estimate β1, E[W |P = p̂] is calculated nonparametrically for W = (Y1, Xa,Xb), using

the estimated propensity score calculated in the first step. This is then used to calculate

W − E[W |P = p̂]. Then Y − E[Y |P = p̂] is regressed on (Xa,Xb) − E[Xa,Xb|P = p̂],

dropping a small fraction of observations for which there is low estimated density of p̂.

The residuals Y1 − (xa, xb)β̂1 are used to estimate the K1(p) function, using:

Y1 − (xa, xb)β̂1 = K1(p) + ε1

The K1(p) function and it’s derivative is estimated using local polynomial regression. Then

the β1, K1(p), p, ∂K1(p)
∂p

estimates are plugged in to estimate:

Ê[Y1|Xa = xa,Xb = xb, V = p̂] = (xa, xb)β̂1 +
∂K̂1(p̂)

∂p̂
p̂+ K̂1(p̂)

Similarly, for E[Y0|Xa = xa,Xb = xb, V = p]:

E[Y0|Xa = xa,Xb = xb, V = p] = (xa, xb)β0 + E[U0|V = p]

E[Y0|Xa = xa,Xb = xb, V = p] = (xa, xb)β0 + k0(p)

where k0(p) = E[U0|V = p].

Furthermore, note that (as shown in the previous section):

E[U0|V = p] = −∂K0(p)

∂p
∗ (1− p) +K0(p)

or k0(p) = −∂K0(p)

∂p
∗ (1− p) +K0(p)
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E[Y0|Xa = xa,Xb = xb, C = 0, V = p] = (xa, xb)β0 + E[U0|xa, xb, V > p]

E[Y0|Xa = xa,Xb = xb, C = 0, V = p] = (xa, xb)β0 + E[U0|V > p]

E[Y0|Xa = xa,Xb = xb, C = 0, V = p] = (xa, xb)β0 +K0(p)

Y0 = (xa, xb)β0 +K0(p) + ε0

where E[ε0|Xa = xa,Xb = xb, C = 0, V = p] = 0

Similarly to before, note that

Y0 = (xa, xb)β0 +K0(p) + ε0

where E[ε0|Xa = xa,Xb = xb, C = 0, V = p] = 0

⇒ E[Y0|p] = E[xa, xb|p]β0 +K0(p)

⇒ Y − E[Y0|p] = ((xa, xb)− E[xa, xb|p])β0 + ε0

β0 is estimated in the same way as β1. The K0(p) function is estimated by first forming

the residuals Y0 − (xa, xb)β̂0. Then using the following;

Y0 − (xa, xb)β̂0 = K0(p) + ε0

the K0(p) function and it’s derivative is estimated using local polynomial regression. Then

the β0, K0(p), p, ∂K0(p)
∂p

estimates are plugged in to estimate:

Ê[Y0|Xa = xa,Xb = xb, V = p̂] = (xa, xb)β̂0 +
∂K̂0(p̂)

∂p̂
p̂+ K̂0(p̂)

3.4 Testing Constancy of the MTE

Heckman et al. (2010) discuss two alternative methods of testing the constancy of the

MTE estimate. The first is based on comparing LATE estimates, and the second is based

on testing for linearity in the conditional mean function E[Y |X,P ] (if the conditional

mean function is better estimated by a higher order polynomial, this is evidence against

constancy of the MTE). The LATE comparison method estimates the MTE (for instance,

using Robinson’s partially linear method), and then compares estimates of LATEs over

different intervals of the unobservable affected selection into treatment. As in the empirical

illustration in Heckman et al. (2010), one might compare the LATE estimates for the
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interval below and above the median estimated propensity score (i.e. compare estimates

of E[Y1 − Y0|Xa,Xb, V ≤ P0.5] and E[Y1 − Y0|Xa,Xb, V > P0.5] where P0.5 denotes the

median propensity score - these LATEs can be calculated by taking a simple average of

the MTE estimates over the relevant interval, since V is uniformly distributed when the

stronger independence assumption is maintained). Similarly one might compare LATE

estimates across different quartiles of the propensity score. If one rejects the null of a

Wald test that the LATE estimates are the same across different intervals, then this is

evidence against a constant MTE function. When the interval is split into more than two,

all pairwise comparisons are made, and the null hypothesis test is based on the pair with

the greatest absolute difference. Heckman et al. (2010) recommend using the Romano and

Wolf (2005) stepdown procedure for multiple hypothesis testing. The second method for

testing for constancy uses the spline estimation method for estimating the MTE, and tests

whether the coefficients on any of the quadratic or higher order terms in P are statistically

significant. In the case where the conditional mean function is only specified as a quadratic

form (e.g. when it is assumed that K(P ) = π0 + π1P + π2P
2), this is simply a test for

the significance of the coefficient on the quadratic term (π2). When the K(P ) function is

specified with higher order terms, again a stepdown procedure must be used to take into

account the multiple hypothesis being tested. In the normal selection model, constancy of

the MTE can be analysed by testing whether σ1c − σ0c is significantly different from zero

(Heckman et al., 2010).

Constancy of the MTE does not imply OLS is a consistent estimate of the ATE. As

discussed in section 3.8.1, given a linear functional form assumption, OLS estimates

E[Y |X,C = 1]− E[Y |X,C = 0] = X(β1 − β0) + E[U1|X,C = 1]− E[U0|X,C = 0]

It can be the case that the MTE is constant:

E[Y1 − Y0|X, V = p] = X(β1 − β0) + E[U1 − U0|X, V = p]

E[Y1 − Y0|X, V = p] = X(β1 − β0) + E[U1 − U0|V = p]

E[Y1 − Y0|X, V = p] = X(β1 − β0) +K ′(p)

E[Y1 − Y0|X, V = p] = X(β1 − β0) + π1

which implies that E[U1|X, V = p] and E[U0|X, V = p] are parallel, but not necessarily

that E[U1|X,C = 1] = E[U0|X,C = 0].
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3.5 Estimating Treatment Effect Parameters

Heckman and Vytlacil (1999), Heckman and Vytlacil (2001b) and Heckman and Vytlacil
(2005) show that various treatment parameters can be estimated as weighted averages of
the MTE. In the following estimation of the ATE, TT and TUT are discussed.

ATE(xa, xb) =

∫ 1

0

MTE(xa, xb, v)dv

TT (xa, xb) =

∫ 1

0

MTE(xa, xb, v)fV |Xa,Xb(v|Xa,Xb,C = 1)dv

=

∫ 1

0

MTE(xa, xb, v)

((∫ 1

v

f(p|Xa = xa,Xb = xb)dp

)
1

E(P |Xa = xa,Xb = xb)

)
dv

TUT (xa, xb) =

∫ 1

0

MTE(xa, xb, v)fV |Xa,Xb(v|Xa,Xb,C = 0)dv

=

∫ 1

0

MTE(xa, xb, v)

((∫ v

0

f(p|Xa = xa,Xb = xb)dp

)
1

E((1− P )|Xa = xa,Xb = xb)

)
dv

Estimation of the weights also suffer from the curse of dimensionality, since the density

of the propensity score conditional on (Xa,Xb) has to be estimated. However, Carneiro

et al. (2011c) propose a simple simulation method for estimating the weights under the

assumptions imposed in this section. Under the stronger independence assumption, V is

assumed independent of (Xa,Xb, Z). Therefore, Carneiro et al. (2011c) suggest drawing a

large number (N) from a uniform distribution for each individual observation (these draws

represent draws from V for each individual), and then evaluating the MTE(Xa,Xb, V )

for each of the N draws for that individual. To estimate ATE(Xa,Xb) for an individual,

the average over the N estimated MTE(Xa,Xb, V ) is taken. To estimate TT (Xa,Xb),

the average over the N estimated MTE(Xa,Xb, V ) where V < P is taken and to estimate

TUT (Xa,Xb), the average over the N estimated MTE(Xa,Xb, V ) where V ≥ P is taken.

In addition, the average ATE in the population (E[Y1−Y0]) can be estimated by averaging

over ATE(Xa,Xb) in the sample. The average TT in the population (T̄ T = E[Y1−Y0|C =

1]) can be estimated by averaging over TT (Xa,Xb) for those individuals in the sample

who go to college, and the average TUT in the population ( ¯TUT = E[Y1−Y0|C = 0]) can

be estimated by averaging over TUT (Xa,Xb) for those individuals in the sample who do

not go to college.

Two alternatives to this approach have been used in the literature. Both assume that the

conditional density of the propensity score, f(p|xa, xb) satisfies a single index sufficiency

condition. The first approach, followed in the main analysis of Carneiro et al. (2011a)

assumes that the single index is equal to the linear component of the MTE; (xa xb)(β1−β0).

The second approach, discussed and estimated as a misspecification test in Carneiro et al.

(2011a) estimates the linear index semiparametrically using Ichimura (1993). However,
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as noted in Carneiro et al. (2011a), this method is computationally intenstive, making

standard error computation difficult/infeasible.

In the normal selection model you can estimate some of the parameters of interest without

simulation. For instance, as shown in Heckman et al. (2003), in the normal selection model

ATE(Xa,Xb) = E[Y1 − Y0|Xa,Xb] = (Xa Xb)(β1 − β0)

TT (Xa,Xb, P ) = E[Y1 − Y0|Xa,Xb, P, C = 1]

= E[Y1 − Y0|Xa,Xb, Uc < Φ−1(P )] = (Xa Xb)(β1 − β0)− (σ1c − σ0c)(φ(Φ−1(P ))/P )

TUT (Xa,Xb, P ) = E[Y1 − Y0|Xa,Xb, P, C = 0]

= E[Y1− Y0|Xa,Xb, Uc ≥ Φ−1(P )] = (XaXb)(β1− β0) + (σ1c− σ0c)(φ(Φ−1(P ))/(1−P ))

3.6 Selection

Maintaining the stronger assumptions discussed at the start of section 3.3 (linearity in

parameters, separable errors and the stronger independence assumption), the next two

sections discuss how to estimate whether those receiving treatment have a higher gain

from that treatment than those not receiving it, and secondly whether the treated group

have an advantage over the non-treated group in either potential outcome (treated or

non-treated).

Using the running example where college is the treatment, selection into college is said to

occur if the average gain from attending college is greater for those who actually attend

college than for those who do not attend college. In addition, the total selection gain

can be decomposed into a component due to observable characteristics and a component

due to unobservable characteristics. Subtracting TT (Xa,Xb) from TUT (Xa,Xb) at a

particular value of (Xa,Xb) gives the difference between the gain from unobservables for
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individuals with that value of (Xa,Xb) who choose to go to college and the gain from

unobservables for individual with that value of (Xa,Xb) who choose not to go to college.

TT (Xa,Xb)− TUT (Xa,Xb) = E[Y1 − Y0|Xa,Xb, C = 1]− E[Y1 − Y0|Xa,Xb, C = 0]

The difference between the average TT in the population and the average TUT in the

population gives the total selection gain, which in the additively seperable model can be

decomposed into a component owing to observable characteristics and a component owing

to unobservable characteristics.

T̄ T − ¯TUT = (E[(X̃a X̃b)|C = 1]− E[(X̃a X̃b)|C = 0])(B̃1 − B̃0)

+ (E[U1 − U0|C = 1]− E[U1 − U0|C = 0])

Where (E[(X̃a X̃b)|C = 1] − E[(X̃a X̃b)|C = 0])(B̃1 − B̃0) is the selection component

due to observables and E[U1 − U0|C = 1] − E[U1 − U0|C = 0] is the component due

to unobservables. The selection component due to observables can be estimated since

(B̃1− B̃0) can be estimated using any of the estimation methods discussed previously, and

by subtracting (Ê[(X̃a X̃b)|C = 1] − Ê[(X̃a X̃b)|C = 0])( ˜̂B1 − B̃0) from ˆ̄TT − ˆ̄TUT the

selection component due to unobservables can also be estimated.

3.7 Advantage

Given the model framework and assumptions, it is possible to compare whether graduates

have an advantage over non-graduates in the graduate labour market, and this advantage

can be decomposed into a component explained by differences in observable characteristics

and a component due to differences in unobservable characteristics. It is also possible to

see whether one group has an advantage over the other in the non-graduate labour market,

and to test whether there is a two-skill labour market.

Graduates are said to have an advantage in the graduate labour market if E[Y1|C = 1] >

E[Y1|C = 0]. Graduates are said to have an advantage in the non-graduate labour market

if E[Y0|C = 1] > E[Y0|C = 0]. E[Y1|C = 1] and E[Y0|C = 0] can be estimated directly

from the observed data.

The mean wages of non-graduates in the graduate labour market can be estimated using

the following relationship:

E[Y1|C = 0] = E[Y0|C = 0] + E[Y1 − Y0|C = 0]

= E[Y0|C = 0] + ¯TUT
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Similarly the mean wages of graduates in the non-graduate labour market can be estimated

using the following:

E[Y0|C = 1] = −(E[Y1 − Y0|C = 1]− E[Y1|C = 1])

= −(T̄ T − E[Y1|C = 1])

Furthermore, in the additively separable model, the relative advantages can be broken

down into a component due to observable characteristics and a component owing to un-

observable characteristics.

The graduate advantage in the graduate labour market can be broken down as follows:

E[Y1|C = 1]− E[Y1|C = 0] = (E[Xa,Xb|C = 1]− E[Xa,Xb|C = 0])B1

+ E[U1|C = 1]− E[U1|C = 0]

Once E[Y1|C = 1]−E[Y1|C = 0] has been estimated, the unobservable contribution can be

estimated by subtracting the observable contribution which can be estimated by plugging

in B̂1, ˆE[Xa,Xb|C = 1] and ˆE[Xa,Xb|C = 0] estimates.4

Similarly, the graduate advantage in the non-graduate labour market can be broken down

as follows:

E[Y0|C = 1]− E[Y0|C = 0] = (E[Xa,Xb|C = 1]− E[Xa,Xb|C = 0])B0

+ E[U0|C = 1]− E[U0|C = 0]

Once E[Y0|C = 1]−E[Y0|C = 0] has been estimated, the unobservable contribution can be

estimated by subtracting the observable contribution which can be estimated by plugging

in B̂0, Ê[Xa,Xb|C = 1] and Ê[Xa,Xb|C = 0] estimates.

If graduates have an advantage in the graduate labour market and non-graduates in the

non-graduate labour market we say there is a two-skill labour market, with individuals

selecting into the sector in which they have an advantage.

3.8 ATE, OLS & IV estimates

Frequently in the literature of the return to education, IV estimates are compared with

OLS estimates. It is often not clear what information this comparison provides. In this

4Note that in the spline/Robinson’s partially linear model for estimating the MTE that although β1
is not identified (only β̃1 , from (β̃1 − β̃0) + β̃0, you can still decompose the graduate advantage since
(E[Xa,Xb|C = 1]− E[Xa,Xb|C = 0])B1 = (E[(X̃a X̃b)|C = 1]− E[(X̃a X̃b)|C = 0])(B̃1)
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section, the interpretation of each estimate along with the ATE parameter is discussed,

and implications of the relative orderings analysed.

3.8.1 ATE

Given the assumptions of linearity and additive errors the ATE parameter is simply:

ATE(Xa,Xb) = E[Y1 − Y0|Xa,Xb] = (Xa,Xb)(B1 −B0) + E[U1 − U0|Xa,Xb]

3.8.2 OLS

Given the assumptions of linearity and additive errors this section discusses the interpre-

tation of OLS estimates. The outcome Y can be written:

Y = (Xa,Xb)B0 + (Xa,Xb)(B1 −B0)C + U0 + (U1 − U0)C

Abadie (2003) shows that under the assumption E[U0 + (U1−U0)C|Xa,Xb, C] belongs to

the class of parametric functions with the specification (Xa,Xb)α0 + (Xa,Xb)Cα1 then

the OLS estimate of the following model estimates E[Y |Xa,Xb, C];

Y = (Xa,Xb)Π0 + (Xa,Xb)CΠ1 + ε

where E[ε|X,C] = 0, Π0 = B0 + α0 and Π1 = (B1 − B0) + α1. Under functional form

misspecification the above OLS estimates the best least squares approximation to that

functional form specification.

Since

E[Y |Xa,Xb, C = 1] = E[Y1|Xa,Xb, C = 1]

E[Y |Xa,Xb, C = 0] = E[Y0|Xa,Xb, C = 0]

⇒ E[Y |Xa,Xb, C = 1]− E[Y |Xa,Xb, C = 0] = E[Y1|Xa,Xb, C = 1]− E[Y0|Xa,Xb, C = 0]

Therefore, the OLS estimate of the return to college education for a particular (Xa,Xb):

E[Y |Xa,Xb,C = 1]− E[Y |Xa,Xb,C = 0] = E[Y1|Xa,Xb,C = 1]− E[Y0|Xa,Xb,C = 0]

= (Xa,Xb)Π1

= (Xa,Xb)(B1 −B0) + E[U1|Xa,Xb,C = 1]− E[U0|Xa,Xb,C = 0]

Since E[Y |Xa,Xb, C = 1] − E[Y |Xa,Xb, C = 0] = (Xa,Xb)Π1 is linear in (Xa,Xb),

the mean OLS estimate of treatment effect in the population can be estimated from
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¯OLS = (X̄a, X̄b)Π1 = E[Y1|X̄a, X̄b, C = 1] − E[Y0|X̄a, X̄b, C = 0], where (X̄a, X̄b) =

E[Xa,Xb].5

3.8.3 IV

Suppose there is a binary instrument, Z ∈ (Z1, Z2). If the IV model is estimated

using the methodology proposed in Abadie (2003), and a number assumptions which

are implied by the more restrictive version of the MTE model discussed in the previ-

ous section hold,6 then Abadie (2003) shows that under the assumption E[U0 + (U1 −
U0)C|Xa,Xb, C, C(Z2) = 1, C(Z1) = 0] belongs to a particular class of parametric func-

tions, E[Y |Xa,Xb, C, C(Z2) = 1, C(Z1) = 0] can be estimated, where C(Z) is the treat-

ment received had the individual been allocated instrument value Z. Furthermore, Abadie

(2003) shows that

E[Y |Xa,Xb, C = 0, C(Z2) = 1, C(Z1) = 0] = E[Y0|Xa,Xb, Z = Z1, C(Z2) = 1, C(Z1) = 0]

= E[Y0|Xa,Xb, C(Z2) = 1, C(Z1) = 0]

and

E[Y |Xa,Xb, C = 1, C(Z2) = 1, C(Z1) = 0] = E[Y1|Xa,Xb, Z = Z2, C(Z2) = 1, C(Z1) = 0]

= E[Y1|Xa,Xb, C(Z2) = 1, C(Z1) = 0]

which implies

E[Y |Xa,Xb, C = 1, C(Z2) = 1, C(Z1) = 0]− E[Y |Xa,Xb, C = 0, C(Z2) = 1, C(Z1) = 0] =

E[Y1 − Y0|Xa,Xb, C(Z2) = 1, C(Z1) = 0]

Which is the treatment effect for switchers (individuals who would have gone to college if

they received instrument value Z2 but who would not have gone if they received instrument

value Z1).

Assume E[U0 + (U1−U0)C|Xa,Xb, C, C(Z2) = 1, C(Z1) = 0] belongs to the class of para-

metric functions with the linear specification (Xa,Xb)γ0 + (Xa,Xb)Cγ1. Therefore,

E[Y |Xa,Xb, C, C(Z2) = 1, C(Z1) = 0] = (Xa,Xb)Ψ0 + (Xa,Xb)CΨ1 + υ

where Ψ0 = B0 + γ0, Ψ1 = (B1 −B0) + γ1 and E[υ|X,C,C(Z2) = 1, C(Z1) = 0] = 0.

Abadie (2003) shows the following provides consistent estimates of the Ψ0,Ψ1 parameters:

5note E[Y1|X̄a, X̄b, C = 1]− E[Y0|X̄a, X̄b, C = 0] 6= E[Y1|C = 1]− E[Y0|C = 0]
6Does not impose the stronger independence assumption
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(Ψ̂0, Ψ̂1) = argmin
(Ψ0,Ψ1)

1

n
ΣN
i=1κi(yi − (Xa,Xb)Ψ0 + (Xa,Xb)CΨ1)2

Where κi = 1− CI(Z1)
P (Z=Z1|Xa,Xb) −

(1−C)I(Z2)
P (Z=Z2|Xa,Xb)

Therefore, the treatment effect for switchers can be estimated from

E[Y |Xa,Xb,C = 1, C(Z2) = 1, C(Z1) = 0]− E[Y |Xa,Xb,C = 0, C(Z2) = 1, C(Z1) = 0]

= E[Y1 − Y0|Xa,Xb,C(Z2) = 1, C(Z1) = 0]

= (Xa,Xb)Ψ1

= (Xa,Xb)(B1 −B0)

+E[U1|Xa,Xb,C = 1, C(Z2) = 1, C(Z1) = 0]− E[U0|Xa,Xb,C = 0, C(Z2) = 1, C(Z1) = 0]

= (Xa,Xb)(B1 −B0)

+E[U1|Xa,Xb,C(Z2) = 1, C(Z1) = 0]− E[U0|Xa,Xb,C(Z2) = 1, C(Z1) = 0]

Since E[Y |Xa,Xb, C = 1, C(Z2) = 1, C(Z1) = 0]−E[Y |Xa,Xb, C = 0, C(Z2) = 1, C(Z1) =

0] = (Xa,Xb)Ψ1 is linear in (Xa,Xb), the mean IV estimate in the population for the in-

strumental variable Z can be estimated ¯IV = E[Xa,Xb]Ψ1 = E[Y1− Y0|X̄a, X̄b, C(Z2) =

1, C(Z1) = 0].7

The above discusses how to estimate covariate specific LATE when you have a binary

instrumental variable, multiple covariates and heterogeneity. More generally, with mul-

tiple instrumental variables, covariates and heterogeneous treatment effects, in order to

estimate covariate specific local average treatment effects you can either estimate non-

parametrically by partitioning the data for each X combination and estimating 2SLS on

each subsample, or you can assume the covariate specific local average treatment effect

is some deterministic function of X (Angrist and Pischke, 2009) (however this method

typically involves many first stage regressions). Alternatively, Angrist and Pischke (2009)

show that if you estimate 2SLS with a saturated first and second stage (dummy variable

included for every possible combination of X), then the treatment estimate from the second

stage estimates a weighted average of the covariate specific LATEs, where the weights are

higher for values of X where the instrument has a bigger impact on treatment. However,

it is not clear what the interpretation of the standard 2SLS is when you have multiple

instrumental variables, covariates and heterogeneous treatment effects.

7note E[Y1 − Y0|X̄a, X̄b, C(Z2) = 1, C(Z1) = 0] 6= E[Y1 − Y0|C(Z2) = 1, C(Z1) = 0]
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3.8.4 ATE versus OLS/IV

In empirical work estimating the returns to education it is often found that IV > OLS.

Suppose for discussion purposes that the ATE lies between the IV and the OLS. In this

section the implications of these orderings are discussed.

ATE versus OLS

Comparing the ATE estimate and the OLS estimate at a particular value of (Xa,Xb)
estimates:

ATE(Xa,Xb)−OLS(Xa,Xb) = E[U1|Xa,Xb]− E[U1|Xa,Xb,C = 1]− (E[U0|Xa,Xb]− E[U0|Xa,Xb,C = 0])

= (E[U1|Xa,Xb,C = 0]− E[U1|Xa,Xb,C = 1])(1− P (C = 1|Xa,Xb))

+ (E[U0|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 1])P (C = 1|Xa,Xb)

If this difference is positive, and if you assume individuals who choose to go to college

have higher levels of the unobservable in the graduate market (E[U1|Xa,Xb, C = 0] −
E[U1|Xa,Xb, C = 1] < 0), this implies that individuals who choose not to go to college

must have higher levels of the unobservable in the non-graduate market (E[U0|Xa,Xb, C =

0] − E[U0|Xa,Xb, C = 1] > 0). This implies a two-skill model, where college graduates

have an advantage relative to non-graduates in the graduate labour market (based on

unobservables), whereas non-graduates have an advantage relative to graduate in the non-

graduate labour market.

Given the model assumptions, whether or not one group have an advantage over the other

in a particular market due to unobservables can be tested. Since;

TT (Xa,Xb) = (Xa Xb)(β1 − β0) + E[U1 − U0|Xa,Xb, C = 1]

and OLS(Xa,Xb) = (Xa Xb)(β1 − β0) + E[U1|Xa,Xb, C = 1]− E[U0|Xa,Xb, C = 0]

⇒ TT (Xa,Xb)−OLS(Xa,Xb) = E[U0|Xa,Xb, C = 0]− E[U0|Xa,Xb, C = 1]

Similarly,

TUT (Xa,Xb) = (Xa Xb)(β1 − β0) + E[U1 − U0|Xa,Xb, C = 0]

and OLS(Xa,Xb) = (Xa Xb)(β1 − β0) + E[U1|Xa,Xb, C = 1]− E[U0|Xa,Xb, C = 0]

⇒ TUT (Xa,Xb)−OLS(Xa,Xb) = E[U1|Xa,Xb, C = 0]− E[U1|Xa,Xb, C = 1]

It is possible to further interpret the comparison between conditional ATE and OLS esti-

mates if we have some knowledge, or assume something about selection. For instance, if

there is no selection into treatment, but ATE(x) > OLS(x), then it must be the case that
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non-graduates do better than graduates in both the graduate and non-graduate labour

market due to unobservables. If there is positive selection into treatment, and the con-

ditional ATE is higher than OLS, then it must be the case that non-graduates do better

than graduates in the non-graduate labour market due to unobservables; they could do

better/worse in terms of unobservables in the graduate labour market. Finally, if there

is negative selection into treatment, and the conditional ATE is higher than OLS, then

it must be the case that non-graduates do better than graduates in the graduate labour

market due to unobservables; they could do better/worse in terms of unobservables in the

non-graduate labour market.
To see the derivation for the negative selection case, notice:

ATE(Xa,Xb)−OLS(Xa,Xb) = E[U1|Xa,Xb,C = 0]− E[U1|Xa,Xb,C = 1]

+ (E[U1|Xa,Xb,C = 1]− E[U0|Xa,Xb,C = 1]

− (E[U1|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 0]))P (C = 1|Xa,Xb)

= E[U1|Xa,Xb,C = 0]− E[U1|Xa,Xb,C = 1]

+ (TT (Xa,Xb)− TUT (Xa,Xb))P (C = 1|Xa,Xb)

Therefore, if there is negative selection TT (Xa,Xb) − TUT (Xa,Xb) < 0, then the re-

sult ATE(Xa,Xb) − OLS(Xa,Xb) > 0 must be explained by E[U1|Xa,Xb, C = 0] −
E[U1|Xa,Xb, C = 1] > 0, i.e. non-graduates must do better in the graduate labour

market than graduates.

To see the derivation for the positive selection case, notice firstly the difference between

the conditional ATE and OLS could also be written as

ATE(Xa,Xb)−OLS(Xa,Xb) = E[U1|Xa,Xb]− E[U1|Xa,Xb,C = 1]− (E[U0|Xa,Xb]− E[U0|Xa,Xb,C = 0])

= (E[U1|Xa,Xb,C = 0]− E[U1|Xa,Xb,C = 1])P (C = 0|Xa,Xb)

+ (E[U0|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 1])(1− P (C = 0|Xa,Xb))

= E[U0|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 1]

+ (E[U1|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 0]

− (E[U1|Xa,Xb,C = 1]− E[U0|Xa,Xb,C = 1]))P (C = 0|Xa,Xb)

= E[U0|Xa,Xb,C = 0]− E[U0|Xa,Xb,C = 1]

+ (TUT (Xa,Xb)− TT (Xa,Xb))P (C = 0|Xa,Xb)
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Therefore, if there is positive selection TUT (Xa,Xb) − TT (Xa,Xb) < 0, then the re-

sult ATE(Xa,Xb) − OLS(Xa,Xb) > 0 must be explained by E[U0|Xa,Xb, C = 0] −
E[U0|Xa,Xb, C = 1] > 0, i.e. non-graduates must do better in the non-graduate labour

market than graduates.

Finally, if there is no selection, such that TT (Xa,Xb) = TUT (Xa,Xb), then from the

previous two derivations it can be seen that if ATE(Xa,Xb) − OLS(Xa,Xb) > 0,

then it must be the case that E[U1|Xa,Xb, C = 0] − E[U1|Xa,Xb, C = 1] > 0 and

E[U0|Xa,Xb, C = 0] − E[U0|Xa,Xb, C = 1] > 0, i.e. non-graduates must do better in

both the graduate and the non-graduate labour market than graduates.

ATE versus IV

Comparing the ATE estimate and the IV estimate at a particular value of (Xa,Xb):

IV (Xa,Xb)−ATE(Xa,Xb) =

E[U1|Xa,Xb,C(Z2) = 1, C(Z1) = 0]− E[U1|Xa,Xb]

− E[U0|Xa,Xb,C(Z2) = 1, C(Z1) = 0] + E[U0|Xa,Xb]

= E[U1 − U0|Xa,Xb, µc(Xa,Z1) ≤ Uc < µc(Xa,Z2)](1− P (Uc ∈ [µc(Xa,Z1), µc(Xa,Z2))|Xa,Xb))

− E[U1 − U0|Xa,Xb, Uc 6∈ [µc(Xa,Z1), µc(Xa,Z2)])(1− P (Uc ∈ [µc(Xa,Z1), µc(Xa,Z2))|Xa,Xb))

If this difference is positive, it implies that the return owing to unobservable for switch-

ers is higher than the average return for non-switchers, for the group of individuals

with that level of observable characteristics. For IV to be higher than ATE, the re-

turn to switchers must be higher than either/both the return for never takers and the

return for always takers. Define the region Uc < µc(Xa,Z1) = A (always takers)

µc(Xa,Z1) ≤ Uc < µc(Xa,Z2) = B (switchers), Uc ≥ µc(Xa,Z2) = C (never takers)

for notational convenience. Therefore, note that IV (Xa,Xb)−ATE(Xa,Xb) > 0 implies:

E[U1 − U0|Xa,Xb, Uc ∈ B] > E[U1 − U0|Xa,Xb, Uc 6∈ B]

And

E[U1 − U0|Xa,Xb, Uc 6∈ B] =

E[U1 − U0|Xa,Xb, Uc ∈ A]P (Uc ∈ A|Xa,Xb, Uc 6∈ B)+

E[U1 − U0|Xa,Xb, Uc ∈ C]P (Uc ∈ C|Xa,Xb, Uc 6∈ B)
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Therefore,

E[U1 − U0|Xa,Xb, Uc ∈ B] > E[U1 − U0|Xa,Xb, Uc 6∈ B]

Implies

(E[U1 − U0|Xa,Xb, Uc ∈ B]− E[U1 − U0|Xa,Xb, Uc ∈ A]P (Uc ∈ A|Xa,Xb, Uc 6∈ B)+

(E[U1 − U0|Xa,Xb, Uc ∈ B]− E[U1 − U0|Xa,Xb, Uc ∈ C])P (Uc ∈ C|Xa,Xb, Uc 6∈ B) > 0

Therefore, either/both E[U1 − U0|Xa,Xb, Uc ∈ B] − E[U1 − U0|Xa,Xb, Uc ∈ A], or

E[U1 − U0|Xa,Xb, Uc ∈ B]− E[U1 − U0|Xa,Xb, Uc ∈ C] must be greater than zero, i.e.

switchers must have a higher return to participation due to unobservables than either/both

always takers and never takers.

IV versus OLS

Comparing the IV estimate and the OLS estimate at a particular value of (Xa,Xb):

IV (Xa,Xb)−OLS(Xa,Xb) =

E[U1|Xa,Xb,C(Z2) = 1, C(Z1) = 0]− E[U1|Xa,Xb,C = 1]

− E[U0|Xa,Xb,C(Z2) = 1, C(Z1) = 0] + E[U0|Xa,Xb,C = 0]

= (E[U1|Xa,Xb, Switcher]− E[U1|Xa,Xb,AlwaysTaker])(1− (
Ax

Ax +Bx
)P (Z = Z2|Xa,Xb,C = 1))

− (E[U0|Xa,Xb, Switcher]− E[U0|Xa,Xb,NeverTaker])(1− (
Ax

Ax + Cx
)P (Z = Z1|Xa,Xb,C = 0))

This derivation is not as straightforward as the previous cases, and is shown in the ap-

pendix.

Ax represents P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb), (the probability of being a

switcher conditional on (Xa,Xb)). Bx represents P (Uc ≤ µc(Xa,Z1)|Xa,Xb), (the

probability of being an always taker conditional on (Xa,Xb)). Cx represents P (Uc >

µc(Xa,Z2)|Xa,Xb), (the probability of being a never taker conditional on (Xa,Xb)).

(1−( Ax
Ax+Bx

)P (Z = Z2|Xa,Xb, C = 1)) represents the proportion of college graduates who

are always takers conditional on (Xa,Xb), and (1 − ( Ax
Ax+Cx

)P (Z = Z1|Xa,Xb, C = 0))

represents the proportion of non-college graduates who are never takers conditional on

(Xa,Xb).

Suppose this difference is positive (i.e. suppose IV (x) > OLS(x) as is often reported

in the literature), and suppose that individuals who always choose to go to college have

higher levels of the unobservable in the graduate market compared to individuals who only

choose to go to college if they get a favourable instrumental variable allocation. Then the

positive result implies that individuals who choose never to go to college must have higher

levels of the unobservable in the non-graduate market than the switchers (individuals who

79



only go to college if they get a favourable instrumental variable allocation). Again, this

would be evidence in favour of a two skill labour market.

3.9 Conclusion

This chapter summarises the literature on estimation of the MTE model, discusses alter-

native estimation approaches and the assumptions necessary therein. This chapter also

reviews alternative methods for testing the constancy of the MTE, and for estimating vari-

ous treatment effect parameters from the estimated MTE model. This chapter contributes

to the literature by discussing how the model can be used to estimate selection and advan-

tage effects, and how to decompose these into a component due to observable/unobservable

characteristics. This chapter also discusses in detail how conditional ATE, IV and OLS

estimates can be interpreted in the context of the model, and what can be inferred from

comparison of these treatment effect parameters.
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3.A Appendix

The derivation of the OLS and IV comparison discussed in section 3.8.4 is given below:
There is

E[U1|Xa,Xb,C = 1] =E[U1|Xa,Xb, Switcher, C = 1]P (Switcher|Xa,Xb,C = 1)

+ E[U1|Xa,Xb,AlwaysTaker, C = 1](1− P (Switcher|Xa,Xb,C = 1))

=E[U1|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2), C = 1]P (Switcher|Xa,Xb,C = 1)

+ E[U1|Xa,Xb, Uc ≤ µc(Xa,Z1), C = 1](1− P (Switcher|Xa,Xb,C = 1))

=E[U1|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2), Z = Z2]P (Switcher|Xa,Xb,C = 1)

+ E[U1|Xa,Xb, Uc ≤ µc(Xa,Z1), Z = (Z1, Z2)](1− P (Switcher|Xa,Xb,C = 1))

=E[U1|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)]P (Switcher|Xa,Xb,C = 1)

+ E[U1|Xa,Xb, Uc ≤ µc(Xa,Z1)](1− P (Switcher|Xa,Xb,C = 1))

=E[U1|Xa,Xb, Switcher]P (Switcher|Xa,Xb,C = 1)

+ E[U1|Xa,Xb,AlwaysTaker](1− P (Switcher|Xa,Xb,C = 1))

Where the fourth equality follows from the assumption that the joint distribution (U1, Uc)

is independent from Z conditional on (Xa,Xb).
Similarly,

E[U0|Xa,Xb,C = 0] =E[U0|Xa,Xb, Switcher, C = 0]P (Switcher|Xa,Xb,C = 0)

+ E[U0|Xa,Xb,NeverTaker, C = 0](1− P (Switcher|Xa,Xb,C = 0))

=E[U0|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2), C = 0]P (Switcher|Xa,Xb,C = 0)

+ E[U0|Xa,Xb, Uc > µc(Xa,Z2), C = 0](1− P (Switcher|Xa,Xb,C = 0))

=E[U0|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2), Z = Z1]P (Switcher|Xa,Xb,C = 0)

+ E[U0|Xa,Xb, Uc > µc(Xa,Z2), Z = (Z1, Z2)](1− P (Switcher|Xa,Xb,C = 0))

=E[U0|Xa,Xb, µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)]P (Switcher|Xa,Xb,C = 0)

+ E[U0|Xa,Xb, Uc > µc(Xa,Z2)](1− P (Switcher|Xa,Xb,C = 0))

=E[U0|Xa,Xb, Switcher]P (Switcher|Xa,Xb,C = 0)

+ E[U0|Xa,Xb,NeverTaker](1− P (Switcher|Xa,Xb,C = 0))

Where the fourth equality follows from the assumption that the joint distribution (U0, Uc)
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is independent from Z conditional on (Xa,Xb).
Also, note we can write

P (Switcher|Xa,Xb,C = 1) =P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 1)

=P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 1, Z = Z1)P (Z = Z1|Xa,Xb,C = 1)

+ P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 1, Z = Z2)P (Z = Z2|Xa,Xb,C = 1)

=P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc ≤ µc(Xa,Z1)P (Z = Z1|Xa,Xb,C = 1)

+ P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc ≤ µc(Xa,Z2)P (Z = Z2|Xa,Xb,C = 1)

=0

+ P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc ≤ µc(Xa,Z2)P (Z = Z2|Xa,Xb,C = 1)

=
Ax

Ax +Bx
P (Z = Z2|Xa,Xb,C = 1)

Where Ax represents P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb) (the probability of being

a switcher conditional on (Xa,Xb)) and Bx represents P (Uc ≤ µc(Xa,Z1)|Xa,Xb) (the

probability of being an always taker conditional on (Xa,Xb)).
And

P (Switcher|Xa,Xb,C = 0) =P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 0)

=P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 0, Z = Z1)P (Z = Z1|Xa,Xb,C = 0)

+ P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb,C = 0, Z = Z2)P (Z = Z2|Xa,Xb,C = 0)

=P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc > µc(Xa,Z1)P (Z = Z1|Xa,Xb,C = 0)

+ P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc > µc(Xa,Z2)P (Z = Z2|Xa,Xb,C = 0)

=P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb, Uc > µc(Xa,Z1)P (Z = Z1|Xa,Xb,C = 0)

+ 0

=
Ax

Ax + Cx
P (Z = Z1|Xa,Xb,C = 0)

Where as before Ax represents P (µc(Xa,Z1) < Uc ≤ µc(Xa,Z2)|Xa,Xb) (the probability

of being a switcher conditional on (Xa,Xb)) and Cx represents P (Uc > µc(Xa,Z2)|Xa,Xb)
(the probability of being a never taker conditional on (Xa,Xb)).
Therefore:

IV (Xa,Xb)−OLS(Xa,Xb) =

E[U1|Xa,Xb,C(Z2) = 1, C(Z1) = 0]− E[U1|Xa,Xb,C = 1]

−E[U0|Xa,Xb,C(Z2) = 1, C(Z1) = 0] + E[U0|Xa,Xb,C = 0]

= (E[U1|Xa,Xb, Switcher]− E[U1|Xa,Xb,AlwaysTaker])(1− P (Switcher|Xa,Xb,C = 1))

−(E[U0|Xa,Xb, Switcher]− E[U0|Xa,Xb,NeverTaker])(1− P (Switcher|Xa,Xb,C = 0))

= (E[U1|Xa,Xb, Switcher]− E[U1|Xa,Xb,AlwaysTaker])(1− (
Ax

Ax +Bx
)P (Z = Z2|Xa,Xb,C = 1))

−(E[U0|Xa,Xb, Switcher]− E[U0|Xa,Xb,NeverTaker])(1− (
Ax

Ax + Cx
)P (Z = Z1|Xa,Xb,C = 0))
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Chapter 4

Heterogeneity in the Returns to

Higher Education in the UK

4.1 Introduction

This chapter uses the MTE technique discussed in detail in the previous chapter to estimate

heterogeneity in the returns to higher education in the United Kingdom. Recent empirical

applications of the MTE approach have found a positive relationship between the return

to college and values of the unobservables which make it more likely an individual attends

college, both in the United States (Carneiro et al., 2011a) and in the United Kingdom

(Moffitt, 2008). A positive relationship between the return to college and values of the

unobservables which makes college attendance more likely may be interpreted as follows;

individuals with values of the unobservables that make it more likely they attend college

might be individuals with higher unobserved ability, and these high ability individuals may

benefit more from participation in higher education than individuals with lower levels of

unobserved ability.

In contrast to previous work, the analysis in this chapter finds little evidence of heterogene-

ity due to unobservables. However, there was significant heterogeneity owing to observable

characteristics.

In addition to analysing heterogeneity in the returns to higher education, this chapter also

looks at whether there is a two skill market, with graduates outperforming non-graduates

in the graduate labour market and non-graduates outperforming graduates in the non-

graduate labour market. Little evidence was found in support of this. Graduates seem

to outperform non-graduates in both sections of the labour market. The differential is

greatest in the non-graduate labour market.

Suggestive evidence of negative selection was found, with individuals choosing to attend

college getting a lower return to higher education than individuals choosing not to at-
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tend. This counter-intuitive finding is understood though considering the outcomes of

graduates/non-graduates in the graduate/non-graduate labour market. Graduates do bet-

ter than non-graduates in both markets, but the differential is greatest in the non-graduate

labour market. Graduates are giving up more in the non-graduate labour market to earn

similar amounts in the graduate labour market, relative to non-graduates.

Possible explanations for why negative selection exists are discussed. Compensating wage

differentials is one avenue considered; if graduates have nicer job attributes than non-

graduates in the graduate labour market this could help explain why negative selection

persists. Little evidence was found to support this explanation. Alternative explanations

are considered in the conclusion section.

This chapter proceeds as follows; Section 4.2 presents the model and assumptions, Section

4.3 outlines the data, Section 4.4 presents the results and Section 4.5 concludes.

4.2 Model and Assumptions

The following selection model is assumed:

⇒ Ci = 1[µc(Xai, Zi)− Uci > 0]

Where Ci is a binary variable which takes a value of 1 if the individual is a college graduate

and a value of 0 otherwise, Xai is a vector of observable characteristics, Zi is a non null

vector of exogeneous instruments, of which at least one element is typically required to be

continuous and Uci is an unobserved random variable. Furthermore, it is assumed that

this selection model can be modelled using a linear probit specification.

There are the following potential outcome models:

Y0i = (Xai Xbi)β0 + U0i

Y1i = (Xai Xbi)β1 + U1i

Where Y0i is the potential non-graduate earnings of individual i, and Y1i is the potential

graduate earnings of individual i. As before, Xai is a vector of observable characteris-

tics and Xbi is an additional vector of observable characteristics that may appear in the

potential outcome equations but not the selection equation. (U0i, U1i) are unobservable

random variables.

The five standard MTE assumptions are imposed:

A1: µc(Xa,Z) is a nondegenerate random variable conditional on Xa, Xb
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A2: The random vectors (U1, Uc) and (U0, Uc) are independent of Z conditional on Xa,

Xb

A3: The distribution of Uc is absolutely continuous with respect to Lebesgue measure

A4: Both potential outcomes Y1 and Y0 have finite first moments

A5: 1 > P (C = 1|Xa = xa,Xb = xb) > 0 for all (xa, xb) ∈ Ω(Xa,Xb), where Ω(.)

denotes support

The additional assumptions typically imposed for empirical tractability (discussed in the

previous chapter) are also imposed. The independence assumption (A2) is strengthened

to a full independence assumption;

A2’: The random vectors (U1, Uc) and (U0, Uc) are independent of (Xa,Xb, Z)

And, as specified in the above, linearity and separable errors are assumed for both potential

outcome models.

Therefore the MTE for an individual with observable characteristics (Xa,Xb) if they had

a value Uc = uc for the unobservable random variable affecting the selection choice is:

MTE(Xa,Xb, Uc = uc) = (Xai Xbi)(β1 − β0) + E[U1 − U0|Uc = uc]

There is heterogeneity in the returns to college education due to observables if B1−B0 6= 0.

There is heterogeneity due to unobservables if E[U1 − U0|Uc = uc] varies over the range

of Uc.

4.3 Data

This analysis uses the UK National Child Development Study (NCDS)1 to estimate the

distribution of marginal treatment effects from higher education for males and females

separately in the United Kingdom. The NCDS follows a group of people born in England,

Scotland and Wales in a single week in March, 1958. The initial wave of the survey

collected information from the mothers of babies born in that week. These children were

subsequently followed in nine sweeps; in 1965 (aged 7), in 1969 (aged 11) in 1974 (aged

16), in 1981 (aged 23), in 1991 (aged 33), in 1999/2000 (aged 42), in 2004 (aged 46), in

2008 (aged 50) and most recently in 2013 (aged 55) (exam data was additionally collected

in 1978 (aged 20)). The later life outcomes considered in this analysis are those reported

in the 1991 wave when the respondents were aged 33.

The outcome variable of interest is gross hourly wage for employed individuals (self-

1University of London. Institute of Education. Centre for Longitudinal Studies, National Child De-
velopment Study [computer files]. Colchester, Essex: UK Data Archive [distributor]
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employed individuals are excluded from the data as hourly wage information is not avail-

able for this group). The main explanatory variable is whether or not the individual has

graduated from college (either a university/polytechnic) with a minimum of an undergrad-

uate degree. Outcomes for males and females are estimated separately. The other variables

used in this analysis are the set of Z variables (or instruments). Two sets of instrumental

variables were considered in the estimation, the first set are those used in Moffitt (2008)

and Blundell et al. (2005), namely, a dummy variable indicating whether the individual’s

teacher reported high or low parental interest in the individual’s education at the age of

7, a dummy variable indicating whether at either age 11 or age 16 the individual’s parents

reported suffering an adverse financial shock in the previous 12 months, and the number

of older siblings the individual had. The second set of instruments considered are distance

from nearest college (proximity to nearest university/polytechnic are included as separate

instruments) at age 16, and region at age 16.2 The first set of instrumental variables;

whether the individual’s teacher reported high or low parental interest in the individual’s

education at the age of 7, a dummy variable indicating whether at either age 11 or age

16 the individual’s parents reported suffering an adverse financial shock in the previous

12 months, and the number of older siblings the individual has, were found to be highly

significant in predicting college attendance in Blundell et al. (2005). In terms of the second

set of instrumental variables; proximity to college and/or local labour market conditions

have been used previously in the literature to instrument for college attendance, for exam-

ple in Cameron and Taber (2004), Card (1995), Cameron and Heckman (1998) and in the

estimation of the MTE distribution by Carneiro et al. (2010, 2011a). The rationale behind

using the proximity instrument is that distance to nearest college might proxy for the cost

of attending college, which might in turn impact upon an individuals decision to attend

college. Individuals living further away from college face higher commuting costs, or may

be more likely to need to pay for private rented accommodation. The rationale behind

using the local labour market instrument is discussed in Cameron and Taber (2004), and

Carneiro et al. (2011a). As discussed in these papers, local labour market conditions have

an ambigious impact on college attendance. On one hand, they proxy the opportunity

cost of attending college, with individuals in better performing labour markets being less

likely to attend. On the other hand, credit constraints might be less of a factor in strong

local labour markets, or it might be the case that in strong labour markets the return to

college is higher. Since cohort data is used, region at age 16 is included as an instrument to

measure local labour market conditions when the individual was at the college-attendance

decision age.

The Xa variables described in the previous section include number of siblings, ability (as

measured by the Douglas general ability test score measured in 1969 when the individuals

2Distance variables constructed with thanks by Jon Johnson at the CLS
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were aged 11), mothers’ years of education and fathers’ years of education. Missing vari-

able dummies are also included for number of siblings, ability, and mothers’ and fathers’

education. Additional Xb variables are included in the specification with the second set of

instrumental variables (distance to nearest university/polytechnic and region at age 16).

The Xb variables for this specification include region at age 33, and distance to nearest

pre-existing college at age 33. Cameron and Taber (2004) highlight the importance of con-

trolling for current labour market conditions when past local labour market conditions are

used as excluded instruments. This is because past local labour market conditions may

be correlated with current local labour market conditions or other regional conditions

which might impact upon later life outcomes. Similarly, as there is some concern that

the distance to nearest university/polytechnic instrument might be proxying urban/rural

status, distance to nearest pre-existing university/polytechnic at age 33 is included as an

additional Xb control variable.

In total, there are 18,558 individual who answer at least one of the first three rounds

of the NCDS, of whom 11,469 respond to the 1991 (age 33) round of the survey. Of

these, education, region and distance variables are successfully measured for 9,158 of

the 1991 respondents. Table 4.1 shows labour market participation figures in 1991 and

2008. In 1991, 75.0% of males and 62.2% of females were in employment (excluding

self-employment).

Descriptives of the Xa, Xb and Z variables for these individuals are shown in Table 4.2.

Hourly gross income is also displayed in these tables. In 1991, 11% of males and 19%

of females report having graduated from college. Men and women who graduated from

college have higher levels of mother’s and father’s education on average. They also have

higher levels of ability as measured by the Douglas general ability test score at age 11.

They have slightly fewer siblings on average. Later in life, graduates are more likely to

be located in London and the South East as compared to non-graduates. Average hourly

gross wages in 1991 were £10.22 for males graduates compared to £7.08 for non-graduates,

and £7.66 for females graduates compared to £4.72 for non-graduates.3

4.4 Results

The MTE model is estimated using both the normal selection model approach and using a

sieve estimation approach (both discussed in the previous chapter). Results using an OLS

model are also estimated. In the sieve estimation, the model specifications estimated are;

constant MTE, linear MTE, quadratic MTE, linear MTE with median break and linear

MTE with quartile breaks. For the 7 different models (OLS, normal, 5 sieve specifications),

32.5% of observations have been trimmed from both tails of income for entire analysis
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heterogeneity due to unobservables and heterogeneity due to observable characteristics are

estimated. In addition, graduate advantage in the graduate/non-graduate labour market

is estimated, as is selection into higher education. Finally, average treatment effects for

individuals with the mean level of observable characteristics are reported.

4.4.1 First Stage

The propensity score is estimated in the first step using a probit model. Table 4.3 tabulates

the estimated model for the propensity score using the first set of instrumental variables

(older siblings, financial shock and parental interest). Table 4.4 tabulates the estimated

model for the propensity score using the other set of instrumental variables (distance to

nearest university/polytechnic at age 16 and region at age 16), and log odds are reported.

The first set of IVs was highly significant for all groups with the exception of Males in

2008. The second set of IVs were significant for females in both time periods, but not for

males. Therefore, for the rest of the analysis, this chapter uses the first set of instrumental

variables, as they provide significant variation in college graduation for both males and

females (although not significantly for males in 2008).

4.4.2 Heterogeneity due to Unobservables

Figure 4.1 shows the shape of the MTE curves estimated under the assumption of joint

normality of the unobservables (in both the outcome equations and the selection into col-

lege equation), and for the five spline specifications for Males in 1991. The MTE curves

are graphed for individuals with the mean level of observed covariates (for different co-

variate values, given the model assumptions, the shape of the MTE curve is the same but

there may be a location shift). The corresponding coefficients are shown in Table 4.5. In-

significant heterogeneity estimates in terms of unobservable characteristics were found for

the normal selection model, the linear model and the linear model with a median break.

While significant coefficients were estimated for the quadratic and linear quartile break

models, both of these models lead to implausibly high estimates of the return to college

education over some regions of the unobservables, and so it is assumed these models are

incorrectly specified. Therefore, it seems that there is little evidence of heterogeneity in

the returns to higher education owing to unobservable characteristics, once a rich set of

observable characteristics (available in the NCDS) are controlled for. Table 4.6 reports the

ATE estimated for individuals with the mean level of observed covariates. If it is assumed

that there is no heterogeneity in the returns to higher education owing to unobservables,

the remaining candidate models are the OLS specification and the constant MTE model.

The constant MTE model does not allow for heterogeneity in the returns due to unobserv-

ables, but might lead to different estimates of the ATE from the OLS model. There could
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be non-constant parallel E[U1|X,Uc], E[U0|X,Uc] functions that implies homogeneity in

the returns, but biased OLS estimates. However, the constant MTE model suggests im-

plausibly high returns to higher education (twice the magnitude of the OLS estimates).

Therefore, for the remainder of the discussion results from the OLS model are discussed.

The OLS model suggests a return to higher education of 31.8% in aggregate for males in

1991 with the mean level of covariates.

For females the results and interpretations are very similar. There is little evidence of

any heterogeneity owing to unobservables (see Table 4.15), and from the ATE estimates

(Table 4.16) the sensible model choice again seems to be OLS. For females, the OLS model

suggests a return to higher education of 46.7% in aggregate for individuals with the mean

level of covariates.

For 2008 the results and interpretations are also very similar, and the figures and tables

are not presented in this chapter for conciseness. The OLS estimate of the return to

higher education for males with the mean level of the covariates in 2008 was 32.9% and

for females the corresponding figure is 42.6% (when the cohort were aged 50).

4.4.3 Heterogeneity due to Observables

Table 4.8 reports the heterogeneity in the returns to higher education for males in 1991

owing to observable characteristics. The OLS results are reported in the first column,

and indicate that the only significant dimension for heterogeneity is observed ability, with

individuals with higher levels of ability having lower returns to education. Comparing

these B1 − B0 estimates with the B0 estimates reported in table 4.7 suggests that while

there are significant gains to observed ability in the non-graduate labour market (the B0

estimate corresponding to observed ability is 0.007), there is little relationship between

ability and earnings in the graduate labour market (the B1 − B0 estimate corresponding

to observed ability is -0.007, which implies B1 ≈ 0).

Similar results in terms of heterogeneity owing to observed ability are estimated for females

in 1991. Significantly higher returns to education are estimated for individuals with lower

levels of observed ability, which is explained due to the stronger relationship between

ability and earnings in the non-graduate labour market relative to the graduate labour

market. There are additional covariates that lead to heterogeneous returns for females

however, with those with higher levels of mothers’ education, those living in London at

age 16 and those living in the Eastern region all receiving lower returns to education ceteris

paribus.

These results hold for the sample observed in 2008, with a significant negative relationship

between observed ability and returns being estimated for both males and females.
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4.4.4 Graduate Advantage in the Graduate/Non-Graduate Labour

Market

Male graduates in 1991 are estimated to have a small advantage over non-graduates in

the graduate labour market, with the average male graduate earning approximately 4.8%

more in the graduate labour market than the average male non-graduate would have earned

had he graduated from higher education. The results from the OLS model are shown in

column 1 of Table 4.9. However, this differential is much bigger in the non-graduate labour

market. The average graduate male is estimated to earn 17.0% more in the non-graduate

labour market if he had not attended higher education that the average non-graduate

male earns in the non-graduate labour market. Looking at the decomposition results in

column 1 Table 4.11, 67.3% of this differential is explained through observed ability. As

discussed in the previous section, ability is associated with higher rewards in the non-

graduate labour market than the graduate labour market. Since graduates have higher

levels of observed ability than non-graduates, they earn more than non-graduates in the

non-graduate labour market where ability is highly rewarded, but similar amounts in the

graduate labour market.

Again, a very similar result holds for females in 1991. The average female graduate earns

1.9% more than the average female non-graduate in the graduate labour market. The

differential is much greater in the non-graduate labour market, with the average female

graduate earning 21.0% more than the average female non-graduate.

Similar findings were observed in 2008.

4.4.5 Selection into Higher Education

As in the previous chapter, selection into higher education is said to exist if the average gain

from attending higher education is greater for those who actually attend higher education

than for those who do not attend. As shown in column 1 in Table 4.10, a negative selection

estimate was found for males in 1991. This surprising result implies that non-graduates

would have had a higher return to attending higher education than graduates. In the

decomposition analysis, differences in observed ability was found to explain 92.9% of this

negative selection. This is because those with lower ability receive a higher return to

attending higher education, and non-graduates have lower levels of observed ability than

graduates. Intuitively, recall that those with high ability are rewarded for that ability in

the non-graduate labour market, but to a lesser extent in the graduate labour market.

Therefore, high ability graduates are giving up more in the non-graduate labour market

to earn similar amounts in the graduate labour market, relative to non-graduates.

For females in 1991 (as shown in column 1 Table 4.21) a negative selection estimation of
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19.2% was found, with half of the differential being explained through observed ability.

19.1% of the remaining differential was explained through differences in mothers years of

education, and 19.3% due to growing up in London.

These significant negative selection estimates persist in the 2008 sample.

4.4.6 Compensating Differentials

The negative selection estimate found was surprising. If non-graduates stand to bene-

fit more than graduates from participation in higher education then why don’t more of

them attend higher education? A rational individual chooses to invest in education if the

monetary and non-monetary benefits outweigh the costs. Higher monetary benefits were

estimated for non-graduates, therefore to rationalise the findings, it must be that there

are higher non-monetary benefits for graduates, or higher monetary or non-monetary costs

for non-graduates. Evidence of compensating differentials in the labour market could ra-

tionalise these findings if highly able graduates end up in jobs with nicer attributes than

lower ability graduates. Non-graduates (with lower levels of observed ability) might an-

ticipate working in less nice jobs if they were to attend higher education than higher

ability individuals and decide not to attend higher education. This possible explanation

was tested by analysing the relationship between ability and job characteristics in the

graduate and non-graduate labour market. Certain job characteristics were regressed on

the set of control variables in the wage equation (including observed ability), and the set

of control variables interacted with graduate status. A positive coefficient on the ability-

college interaction would be evidence of this type of positive relationship between ability

and nice job characteristics in the graduate labour market. The set of job characteristics

considered were; whether you work in the public or charity sector, whether you do night

work, whether you do weekend work, whether you work fixed hours or whether you have

flexibility in the hours worked, whether your job involves working with a computer and

hours worked per week. In addition, whether you receive any of the following benefits was

analysed; whether you have the chance to have shares in your employer’s firm, whether you

have private use of a company car, whether you receive other travel benefits, whether you

have subsidised meals, whether you receive private medical insurance, whether you have

an employer organised pension scheme, whether you receive help with child care, whether

you receive discounts on goods or services, or whether you receive any other benefits.

The results are shown in Tables 4.12, 4.13 and 4.14 for males in 1991. While there is

often a positive relationship between ability and what would be considered positive job

characteristics (e.g. not having weekend work, having flexibility in the hours worked,

having a company car, etc.) in the non-graduate labour market, it does not seem to be

the case that higher ability graduates have differential levels of positive job characteristics
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compared to lower ability individuals.

As can be seen in Tables 4.22, 4.23 and 4.24, similar results were found for women, although

there was some evidence that higher ability graduates are more likely to receive help with

childcare and receive discounts on goods and services.

4.5 Discussion and Conclusion

This chapter exploits a rich longitudinal data set to answer three related questions. Firstly,

is there any evidence of heterogeneity in the returns from higher education, due to ei-

ther unobservable or observable characteristics? Secondly, do one group (graduates/non-

graduates) have an advantage over the other in the graduate/non-graduate labour market?

Finally, if heterogeneous returns exist, are individuals selecting into higher education based

on this heterogeneity?

The results presented in the previous section are somewhat surprising. The empirical ev-

idence suggests that there is significant heterogeneity in the returns to education based

on observable characteristics, in particular, with high ability individuals receiving a lower

return to higher education than lower ability individuals. Since higher education partic-

ipation is higher among high ability students, this creates negative selection into higher

education, with individuals who attend receiving lower returns than the hypothetical re-

turns the lower ability group would have received had they graduated. This finding is

largely driven by the fact that there is a strong positive relationship between ability and

earnings in the non-graduate labour market but a much smaller/negligible relationship

between ability and earnings in the graduate labour market, implying that high ability

graduates give up more (in the non-graduate labour market) to receive the same (in the

graduate labour market). This implies a lower return to college graduation for high ability

individuals relative to lower ability individuals.

There is little evidence of heterogeneity in the returns due to unobservables character-

istics. This is in contrast to the previous literature in the US (Carneiro et al., 2011a).

Previous work in the UK (Moffitt, 2008) found evidence of heterogeneity in the returns to

higher education due to unobservables, but only when much of the heterogeneity owing to

observables is assumed to be null.

A rational individual chooses to participate in higher education if the monetary and non-

monetary benefits outweigh the monetary and non-monetary costs. This chapter found

evidence of higher monetary benefits for non-graduates, which implies that in a ratio-

nal model, graduates must have higher levels of non-monetary benefits, lower monetary

costs or lower non-monetary costs in order to explain why they attend college while non-

graduates who would receive higher monetary returns do not attend. Compensating dif-

ferentials in the graduate labour market was ruled out, as no evidence was found that high
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ability graduates have nicer job attributes than lower ability graduates. An alternative

explanation may be that high ability individuals have lower non-monetary costs, for in-

stance, if they have a lower effort cost, or if there is a higher probability of course failure

for low ability students. Finally, another possible explanation for this negative selection

is that low ability students are facing barriers to entry. This could be indirectly though

credit constraints for instance, or directly, though stringent college admission procedures.
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Table 4.1: Labour Market Participation

1991 2008

Male Female Male Female
Employed 90.51% 68.01% 68.23% 73.07%

Employed (not self employed) 74.64% 61.24% 88.12% 80.66%
No HE HE No HE HE No HE HE No HE HE

Employed 89.66% 95.71% 66.82% 77.58% 86.86% 93.26% 79.08% 87.38%
Employed (not self employed) 73.29% 82.83% 60.33% 68.52% 66.77% 74.18% 72.12% 77.09%
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Table 4.2: Moffitt Descriptives
Male 1991 Male 2008 Female 1991 Female 2008

College Graduate 0.11 0.16 0.19 0.23
HE No HE HE No HE HE No HE HE No HE

Xa: Ability 58.44 42.21 56.01 42.28 60.41 44.70 56.23 45.18
Mother ed yrs 15.86 14.80 15.40 14.77 16.31 14.84 15.76 14.84
Mother ed yrs m 0.02 0.02 0.03 0.02 0.01 0.02 0.03 0.01
Father ed yrs 16.44 14.76 16.06 14.78 16.36 14.83 15.93 14.81
Father ed yrs m 0.03 0.04 0.04 0.04 0.02 0.05 0.06 0.05
Siblings 1.89 2.35 2.04 2.40 1.88 2.38 1.98 2.32
North West 16 0.10 0.10 0.12 0.11 0.09 0.12 0.12 0.12
Yorkshire and Humber 16 0.08 0.09 0.10 0.09 0.08 0.08 0.08 0.09
East Midlands 16 0.06 0.08 0.06 0.08 0.05 0.08 0.04 0.08
West Midlands 16 0.12 0.10 0.12 0.09 0.08 0.10 0.07 0.11
Eastern 16 0.07 0.10 0.09 0.11 0.11 0.10 0.10 0.10
London 16 0.15 0.09 0.12 0.09 0.20 0.09 0.17 0.08
South East 16 0.15 0.13 0.10 0.14 0.18 0.12 0.15 0.13
South West 16 0.09 0.08 0.09 0.08 0.07 0.09 0.08 0.09
Wales 16 0.04 0.06 0.04 0.05 0.05 0.06 0.03 0.05
Scotland 16 0.09 0.10 0.09 0.11 0.05 0.10 0.10 0.10
Region m 16 0.15 0.15 0.17 0.16 0.12 0.13 0.15 0.13

Z: Financial Shock 0.04 0.15 0.07 0.14 0.06 0.16 0.07 0.15
Parental Interest 0.76 0.41 0.66 0.42 0.85 0.40 0.75 0.40
Older Siblings 0.83 1.15 0.92 1.16 0.84 1.16 0.88 1.11

Y: Hourly income 10.22 7.08 23.39 15.72 7.66 4.72 16.23 10.41
N 2416 1761 2517 1969

Notes
1. Individuals with non-reported income/college have been dropped from analysis. Individuals with non-
reported values of the instrumental variables have also been dropped (financial shock, parental interest
and older siblings in this case). In addition, individuals with income outside the 2.5th and 97.5th quantiles
have been dropped from the analysis.
2: Very few individuals had missing ability once the above sample had been dropped. Therefore, these
individuals were also dropped as keeping them in the sample led to perfect collinearity in the estimation.
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Table 4.3: Propensity Score Estimates - Moffitt Instruments

Male1991Moff Female1991Moff Male2008Moff Female2008Moff

Financial Shock −0.447∗∗ −0.204 −0.190 −0.270∗

(0.154) (0.157) (0.131) (0.129)
Parental Interest 0.337∗∗∗ 0.615∗∗∗ 0.119 0.456∗∗∗

(0.079) (0.096) (0.081) (0.080)
Older Siblings 0.015 0.025 −0.017 −0.042

(0.042) (0.047) (0.041) (0.040)
Cons −6.004∗∗∗ −6.652∗∗∗ −4.257∗∗∗ −4.288∗∗∗

(0.405) (0.456) (0.428) (0.395)
Ability 0.043∗∗∗ 0.044∗∗∗ 0.037∗∗∗ 0.026∗∗∗

(0.003) (0.004) (0.003) (0.003)
Mother ed yrs 0.061∗ 0.121∗∗∗ 0.012 0.088∗∗∗

(0.026) (0.025) (0.030) (0.025)
Mother ed yrs m 0.097 0.480 0.191 0.694∗

(0.281) (0.356) (0.272) (0.296)
Father ed yrs 0.111∗∗∗ 0.050∗ 0.104∗∗∗ 0.054∗∗

(0.019) (0.021) (0.021) (0.021)
Father ed yrs m 0.140 −0.612∗ 0.137 0.075

(0.225) (0.272) (0.207) (0.183)
Siblings −0.031 −0.020 0.007 0.032

(0.034) (0.038) (0.033) (0.031)
North West 16 0.241 −0.016 0.001 −0.331

(0.205) (0.252) (0.197) (0.191)
Yorkshire and Humber 16 0.173 0.154 −0.003 −0.371

(0.209) (0.261) (0.204) (0.206)
East Midlands 16 −0.106 −0.095 −0.318 −0.646∗∗

(0.221) (0.275) (0.221) (0.229)
West Midlands 16 0.237 0.065 0.134 −0.519∗

(0.201) (0.260) (0.201) (0.205)
Eastern 16 −0.282 −0.053 −0.306 −0.493∗

(0.214) (0.253) (0.205) (0.198)
London 16 0.229 0.376 −0.062 −0.026

(0.197) (0.240) (0.203) (0.193)
South East 16 0.058 0.201 −0.399∗ −0.405∗

(0.192) (0.242) (0.199) (0.189)
South West 16 0.102 0.002 −0.031 −0.599∗∗

(0.208) (0.265) (0.211) (0.208)
Wales 16 −0.172 0.013 −0.340 −0.653∗∗

(0.241) (0.288) (0.247) (0.247)
Scotland 16 0.105 −0.030 −0.201 −0.205

(0.205) (0.266) (0.206) (0.197)
Region m 16 0.166 0.181 −0.055 −0.245

(0.187) (0.243) (0.183) (0.183)

N 2416 2517 1761 1969
McFadden R-sq. 0.529 0.649 0.372 0.422
P-Value 0.000∗∗∗ 0.000∗∗∗ 0.217 0.000∗∗∗
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Table 4.4: Propensity Score Estimates - Distance Region Instruments

Male1991Distreg Female1991Distreg Male2008Distreg Female2008Distreg

Distance Uni 16 −0.002 −0.003 −0.001 −0.001
(0.002) (0.002) (0.002) (0.002)

Distance Poly 16 −0.000 −0.004 −0.001 −0.001
(0.002) (0.002) (0.002) (0.002)

North West 16 0.173 0.262 0.036 −0.168
(0.165) (0.202) (0.164) (0.158)

Yorkshire and Humber 16 0.207 0.261 0.021 −0.124
(0.173) (0.214) (0.174) (0.168)

East Midlands 16 0.034 0.148 −0.246 −0.460∗

(0.180) (0.226) (0.185) (0.190)
West Midlands 16 0.167 0.319 0.094 −0.317

(0.170) (0.210) (0.170) (0.172)
Eastern 16 0.043 0.366 −0.181 −0.268

(0.178) (0.215) (0.181) (0.173)
London 16 0.245 0.558∗∗ 0.024 0.061

(0.164) (0.196) (0.166) (0.157)
South East 16 0.265 0.517∗∗ −0.095 −0.213

(0.159) (0.198) (0.163) (0.158)
South West 16 0.248 0.245 0.172 −0.205

(0.177) (0.223) (0.182) (0.176)
Wales 16 0.049 0.148 −0.207 −0.455∗

(0.200) (0.243) (0.213) (0.206)
Scotland 16 0.265 0.458∗ −0.081 −0.013

(0.177) (0.215) (0.180) (0.169)
Cons −6.630∗∗∗ −7.294∗∗∗ −4.826∗∗∗ −5.209∗∗∗

(0.389) (0.434) (0.418) (0.395)
Ability 0.045∗∗∗ 0.051∗∗∗ 0.039∗∗∗ 0.036∗∗∗

(0.003) (0.004) (0.003) (0.003)
Ability m 0.300∗∗∗ 0.634∗∗∗ 0.166 0.284∗∗

(0.091) (0.099) (0.100) (0.095)
Mother ed yrs 0.097∗∗∗ 0.155∗∗∗ 0.021 0.112∗∗∗

(0.025) (0.024) (0.030) (0.024)
Mother ed yrs m 0.109 0.241 −0.061 0.382

(0.241) (0.257) (0.245) (0.233)
Father ed yrs 0.122∗∗∗ 0.061∗∗ 0.127∗∗∗ 0.069∗∗∗

(0.019) (0.020) (0.021) (0.021)
Father ed yrs m 0.074 −0.288 0.145 −0.110

(0.211) (0.202) (0.209) (0.176)
Siblings −0.048 −0.071∗ −0.024 −0.003

(0.025) (0.029) (0.025) (0.024)
Siblings m −0.282 0.112 −0.218 −0.141

(0.199) (0.218) (0.198) (0.199)

N 3073 3276 2222 2502
McFadden R-sq. 0.509 0.597 0.383 0.387
P-Value 0.529 0.000∗∗∗ 0.247 0.002∗∗∗
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Figure 4.1: MTE estimates - 1991 - Male
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Table 4.12: Nicejobs A - 1991 - Male
Pubchar Nightwork Weekendwork Fixedhours Compwork Workhours

Cons 0.128 0.681∗∗∗ 0.802∗∗∗ 1.136∗∗∗ −0.371∗∗ 40.060∗∗∗

(0.135) (0.143) (0.146) (0.138) (0.135) (2.837)
Ability 0.000 −0.001 −0.002∗∗ −0.004∗∗∗ 0.010∗∗∗ 0.003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.014)
Mother ed yrs 0.007 −0.007 −0.003 0.014 0.002 0.128

(0.009) (0.010) (0.010) (0.010) (0.009) (0.197)
Mother ed yrs m 0.017 0.096 −0.090 −0.022 0.071 −1.309

(0.078) (0.083) (0.084) (0.080) (0.078) (1.649)
Father ed yrs −0.012 0.012 0.005 0.025 −0.021 0.057

(0.013) (0.013) (0.014) (0.013) (0.013) (0.266)
Father ed yrs m 0.061 −0.050 −0.027 0.035 −0.104 −0.127

(0.055) (0.059) (0.060) (0.056) (0.055) (1.164)
Siblings −0.010 0.017∗∗ 0.018∗∗ 0.005 −0.016∗∗ 0.322∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.121)
North West 16 −0.050 −0.142∗ −0.069 −0.111∗ 0.034 −0.998

(0.053) (0.056) (0.057) (0.054) (0.052) (1.107)
Yorkshire and Humber 16 −0.061 −0.101 −0.022 −0.065 −0.026 0.513

(0.053) (0.056) (0.058) (0.054) (0.053) (1.117)
East Midlands 16 −0.006 −0.001 0.011 −0.165∗∗ 0.023 0.967

(0.054) (0.057) (0.059) (0.055) (0.054) (1.140)
West Midlands 16 −0.047 −0.091 −0.048 −0.090 −0.032 0.139

(0.053) (0.056) (0.057) (0.054) (0.053) (1.111)
Eastern 16 −0.065 0.010 −0.087 −0.129∗ 0.136∗ 1.609

(0.053) (0.056) (0.057) (0.054) (0.053) (1.113)
London 16 −0.001 −0.125∗ −0.158∗∗ −0.139∗ 0.096 −0.242

(0.054) (0.057) (0.058) (0.055) (0.054) (1.131)
South East 16 −0.050 −0.084 −0.071 −0.131∗ 0.133∗∗ 0.864

(0.050) (0.053) (0.055) (0.052) (0.050) (1.058)
South West 16 −0.062 −0.095 −0.090 −0.062 0.016 1.934

(0.055) (0.058) (0.059) (0.056) (0.055) (1.152)
Wales 16 −0.002 −0.083 0.020 −0.046 −0.045 −0.013

(0.059) (0.063) (0.064) (0.061) (0.059) (1.246)
Scotland 16 0.032 −0.144∗ −0.049 −0.023 0.009 0.151

(0.053) (0.056) (0.058) (0.054) (0.053) (1.117)
Region m 16 0.018 −0.040 0.000 −0.059 0.017 0.691

(0.047) (0.051) (0.052) (0.049) (0.048) (1.002)
Cons*C 1.075∗∗∗ −1.057∗∗∗ −0.577∗ −0.456 1.264∗∗∗ −6.293

(0.267) (0.284) (0.291) (0.275) (0.267) (5.642)
Ability*C −0.008∗∗∗ −0.001 −0.001 0.000 −0.009∗∗∗ 0.015

(0.002) (0.002) (0.002) (0.002) (0.002) (0.048)
Mother ed yrs*C −0.026 0.036∗ 0.026 −0.015 −0.015 0.246

(0.016) (0.017) (0.018) (0.017) (0.016) (0.342)
Mother ed yrs m*C −0.058 −0.119 0.192 0.391 −0.140 6.309

(0.216) (0.230) (0.238) (0.221) (0.216) (4.557)
Father ed yrs m*C −0.216 0.092 −0.008 −0.268 0.195 2.371

(0.179) (0.190) (0.194) (0.183) (0.179) (3.771)
Siblings*C 0.014 −0.035 −0.011 −0.002 0.031 −0.551

(0.018) (0.019) (0.020) (0.019) (0.018) (0.381)
North West 16*C 0.126 0.303∗ 0.102 0.175 −0.127 1.604

(0.143) (0.152) (0.157) (0.146) (0.143) (3.025)
Yorkshire and Humber 16*C 0.131 0.375∗ −0.045 0.133 0.063 −0.821

(0.149) (0.158) (0.161) (0.152) (0.149) (3.140)
East Midlands 16*C −0.082 0.185 0.050 0.398∗ −0.046 0.732

(0.155) (0.164) (0.168) (0.157) (0.154) (3.250)
West Midlands 16*C 0.180 0.305∗ −0.074 0.292∗ −0.010 −1.747

(0.141) (0.150) (0.152) (0.144) (0.141) (2.969)
Eastern 16*C 0.112 0.175 0.119 −0.017 −0.233 3.726

(0.151) (0.161) (0.163) (0.155) (0.151) (3.190)
London 16*C 0.021 0.193 0.010 0.137 −0.076 −0.330

(0.136) (0.145) (0.148) (0.140) (0.137) (2.880)
South East 16*C 0.043 0.262 −0.002 0.181 −0.163 1.532

(0.136) (0.145) (0.147) (0.139) (0.136) (2.873)
South West 16*C 0.081 0.339∗ −0.020 0.049 −0.104 −0.545

(0.147) (0.156) (0.159) (0.151) (0.147) (3.095)
Wales 16*C 0.291 0.173 −0.135 0.075 −0.005 −4.213

(0.175) (0.186) (0.192) (0.186) (0.175) (3.690)
Scotland 16*C −0.092 0.282 −0.045 0.097 −0.035 −1.242

(0.147) (0.155) (0.158) (0.149) (0.146) (3.085)
Region m 16*C −0.014 0.285∗ −0.074 0.051 −0.007 −1.133

(0.133) (0.141) (0.143) (0.135) (0.133) (2.798)

N 2532 2536 2506 2516 2540 2543
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Table 4.13: Nicejobs B - 1991 - Male
Benefits Firmshares Companycar Travelben Subsmeals

Cons 1.217∗ 0.030 −0.180 0.152 0.312∗

(0.494) (0.144) (0.138) (0.139) (0.149)
Ability 0.018∗∗∗ 0.002∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.000

(0.003) (0.001) (0.001) (0.001) (0.001)
Mother ed yrs 0.023 0.012 −0.008 −0.009 0.011

(0.034) (0.010) (0.010) (0.010) (0.010)
Mother ed yrs m −0.492 −0.051 −0.096 −0.038 −0.063

(0.299) (0.087) (0.084) (0.084) (0.090)
Father ed yrs 0.012 0.016 −0.019 −0.017 0.030∗

(0.045) (0.013) (0.013) (0.013) (0.014)
Father ed yrs m 0.076 −0.006 0.003 0.124∗ −0.040

(0.214) (0.062) (0.060) (0.060) (0.064)
Siblings −0.017 0.002 0.003 −0.010 0.004

(0.022) (0.006) (0.006) (0.006) (0.007)
North West 16 −0.041 0.007 0.086 −0.024 0.006

(0.199) (0.058) (0.056) (0.056) (0.060)
Yorkshire and Humber 16 −0.067 0.040 −0.022 −0.033 −0.009

(0.202) (0.059) (0.056) (0.057) (0.061)
East Midlands 16 0.212 0.065 0.040 −0.013 0.062

(0.202) (0.059) (0.056) (0.057) (0.061)
West Midlands 16 0.195 0.074 0.057 −0.021 0.036

(0.200) (0.058) (0.056) (0.056) (0.060)
Eastern 16 0.394∗ 0.076 0.050 −0.003 0.103

(0.199) (0.058) (0.056) (0.056) (0.060)
London 16 0.568∗∗ 0.098 0.106 0.056 0.134∗

(0.199) (0.058) (0.056) (0.056) (0.060)
South East 16 0.424∗ 0.112∗ 0.040 0.034 0.125∗

(0.189) (0.055) (0.053) (0.053) (0.057)
South West 16 −0.028 0.099 −0.004 −0.061 0.005

(0.206) (0.060) (0.057) (0.058) (0.062)
Wales 16 −0.091 0.047 0.013 −0.010 0.026

(0.222) (0.065) (0.062) (0.062) (0.067)
Scotland 16 0.210 0.032 0.032 0.053 0.078

(0.200) (0.058) (0.056) (0.056) (0.060)
Region m 16 0.102 0.022 0.015 0.007 0.024

(0.182) (0.053) (0.051) (0.051) (0.055)
Cons*C 1.294 −0.140 0.137 0.637∗ 0.117

(0.968) (0.282) (0.270) (0.272) (0.291)
Ability*C −0.007 0.004 −0.001 −0.006∗ −0.001

(0.008) (0.002) (0.002) (0.002) (0.003)
Mother ed yrs*C −0.028 −0.026 0.023 0.001 −0.022

(0.058) (0.017) (0.016) (0.016) (0.018)
Mother ed yrs m*C 1.109 −0.014 0.394 0.228 0.160

(0.767) (0.224) (0.214) (0.216) (0.231)
Father ed yrs m*C −0.021 0.263 −0.244 −0.194 −0.022

(0.634) (0.185) (0.177) (0.178) (0.191)
Siblings*C −0.075 0.008 −0.011 −0.002 −0.003

(0.065) (0.019) (0.018) (0.018) (0.020)
North West 16*C −0.473 0.029 −0.091 −0.185 −0.154

(0.512) (0.149) (0.143) (0.144) (0.154)
Yorkshire and Humber 16*C −0.132 −0.023 0.057 0.012 −0.164

(0.534) (0.156) (0.149) (0.150) (0.161)
East Midlands 16*C −0.109 0.075 −0.005 −0.049 −0.145

(0.545) (0.159) (0.152) (0.153) (0.164)
West Midlands 16*C −1.039∗ −0.119 −0.199 −0.125 −0.168

(0.503) (0.146) (0.140) (0.141) (0.151)
Eastern 16*C −0.487 −0.013 0.117 0.044 −0.350∗

(0.539) (0.157) (0.151) (0.151) (0.162)
London 16*C −0.929 0.015 −0.153 −0.179 −0.306∗

(0.487) (0.142) (0.136) (0.137) (0.147)
South East 16*C −0.545 −0.055 −0.006 −0.108 −0.176

(0.486) (0.142) (0.136) (0.137) (0.146)
South West 16*C −0.236 −0.069 −0.003 0.116 −0.036

(0.526) (0.153) (0.147) (0.148) (0.158)
Wales 16*C −0.924 −0.153 −0.140 0.048 −0.188

(0.630) (0.184) (0.176) (0.177) (0.190)
Scotland 16*C −0.565 0.043 −0.130 −0.123 −0.035

(0.521) (0.152) (0.145) (0.146) (0.157)
Region m 16*C −0.459 0.048 −0.091 −0.020 −0.108

(0.472) (0.138) (0.132) (0.133) (0.142)

N 2259 2259 2259 2259 2259
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Table 4.14: Nicejobs C - 1991 - Male
Medicalins Pension Childcare Discounts Otherben

Cons −0.387∗∗ 0.730∗∗∗ 0.021 0.558∗∗∗ −0.018
(0.133) (0.134) (0.032) (0.151) (0.127)

Ability 0.003∗∗∗ 0.003∗∗∗ 0.000 0.001 0.002∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.001)
Mother ed yrs 0.022∗ 0.001 −0.002 −0.002 −0.002

(0.009) (0.009) (0.002) (0.011) (0.009)
Mother ed yrs m −0.111 0.096 −0.005 −0.064 −0.160∗

(0.080) (0.081) (0.019) (0.092) (0.077)
Father ed yrs −0.004 0.000 −0.002 0.016 −0.009

(0.012) (0.012) (0.003) (0.014) (0.012)
Father ed yrs m −0.050 −0.017 −0.009 0.069 0.001

(0.057) (0.058) (0.014) (0.065) (0.055)
Siblings −0.005 −0.015∗ −0.001 0.004 0.001

(0.006) (0.006) (0.001) (0.007) (0.006)
North West 16 −0.034 −0.115∗ 0.007 0.034 −0.008

(0.053) (0.054) (0.013) (0.061) (0.051)
Yorkshire and Humber 16 0.011 −0.097 0.007 0.042 −0.006

(0.054) (0.055) (0.013) (0.062) (0.052)
East Midlands 16 0.049 −0.066 0.014 0.041 0.018

(0.054) (0.055) (0.013) (0.062) (0.052)
West Midlands 16 0.054 −0.078 0.001 0.081 −0.009

(0.054) (0.054) (0.013) (0.061) (0.051)
Eastern 16 0.083 −0.036 0.013 0.078 0.030

(0.053) (0.054) (0.013) (0.061) (0.051)
London 16 0.129∗ −0.018 0.007 0.064 −0.007

(0.053) (0.054) (0.013) (0.061) (0.051)
South East 16 0.084 −0.071 0.006 0.049 0.047

(0.051) (0.051) (0.012) (0.058) (0.048)
South West 16 −0.030 −0.154∗∗ 0.008 0.124 −0.017

(0.055) (0.056) (0.013) (0.063) (0.053)
Wales 16 −0.017 −0.186∗∗ 0.021 0.024 −0.008

(0.060) (0.060) (0.014) (0.068) (0.057)
Scotland 16 −0.020 −0.063 0.007 0.067 0.024

(0.054) (0.054) (0.013) (0.061) (0.051)
Region m 16 0.035 −0.082 0.020 0.062 −0.001

(0.049) (0.049) (0.012) (0.056) (0.047)
Cons*C 0.607∗ 0.322 −0.064 −0.343 0.022

(0.260) (0.263) (0.062) (0.297) (0.248)
Ability*C −0.001 −0.004 0.001 0.002 −0.001

(0.002) (0.002) (0.001) (0.003) (0.002)
Mother ed yrs*C −0.019 −0.006 0.004 0.008 0.007

(0.016) (0.016) (0.004) (0.018) (0.015)
Mother ed yrs m*C 0.257 0.077 −0.016 0.058 −0.035

(0.206) (0.209) (0.049) (0.235) (0.197)
Father ed yrs m*C −0.013 −0.135 0.007 0.188 0.128

(0.170) (0.173) (0.040) (0.194) (0.163)
Siblings*C −0.049∗∗ 0.006 −0.004 −0.006 −0.014

(0.018) (0.018) (0.004) (0.020) (0.017)
North West 16*C −0.063 0.077 0.027 −0.194 0.081

(0.137) (0.139) (0.033) (0.157) (0.131)
Yorkshire and Humber 16*C 0.001 0.173 0.039 −0.343∗ 0.115

(0.143) (0.145) (0.034) (0.164) (0.137)
East Midlands 16*C −0.104 0.050 −0.012 −0.038 0.119

(0.146) (0.148) (0.035) (0.167) (0.140)
West Midlands 16*C −0.089 0.037 0.001 −0.398∗∗ 0.022

(0.135) (0.137) (0.032) (0.154) (0.129)
Eastern 16*C 0.023 0.006 −0.015 −0.365∗ 0.067

(0.145) (0.147) (0.034) (0.165) (0.138)
London 16*C −0.125 −0.107 −0.005 −0.249 0.180

(0.131) (0.132) (0.031) (0.149) (0.125)
South East 16*C −0.031 0.065 0.038 −0.304∗ 0.031

(0.130) (0.132) (0.031) (0.149) (0.125)
South West 16*C −0.183 0.101 −0.003 −0.352∗ 0.192

(0.141) (0.143) (0.034) (0.161) (0.135)
Wales 16*C −0.187 0.020 −0.014 −0.369 0.058

(0.169) (0.171) (0.040) (0.193) (0.162)
Scotland 16*C −0.207 0.021 0.032 −0.243 0.079

(0.140) (0.142) (0.033) (0.160) (0.134)
Region m 16*C −0.012 0.002 0.003 −0.281 0.001

(0.127) (0.128) (0.030) (0.145) (0.121)

N 2259 2259 2259 2259 2259
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Figure 4.2: MTE estimates - 1991 - Female
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Table 4.22: Nicejobs A - 1991 - Female
Pubchar Nightwork Weekendwork Fixedhours Compwork Workhours

Cons 0.165 0.111 0.580∗∗∗ 0.921∗∗∗ −0.212 14.994∗∗∗

(0.134) (0.100) (0.135) (0.126) (0.130) (3.530)
Ability 0.002∗∗ −0.001∗ −0.002∗∗ −0.004∗∗∗ 0.009∗∗∗ 0.061∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.019)
Mother ed yrs 0.012 0.007 0.005 −0.004 0.013 0.418

(0.009) (0.007) (0.009) (0.008) (0.009) (0.233)
Mother ed yrs m 0.012 0.057 −0.030 −0.093 0.031 −2.285

(0.084) (0.063) (0.084) (0.078) (0.081) (2.215)
Father ed yrs 0.003 0.011 0.019 −0.007 −0.018 −0.054

(0.014) (0.011) (0.015) (0.014) (0.014) (0.381)
Father ed yrs m 0.016 0.014 0.015 −0.039 −0.046 1.468

(0.050) (0.037) (0.050) (0.047) (0.048) (1.314)
Siblings −0.002 0.012∗∗ 0.013∗ 0.016∗∗ −0.021∗∗∗ −0.049

(0.006) (0.004) (0.006) (0.005) (0.006) (0.154)
North West 16 0.005 0.041 −0.110∗ −0.007 0.041 0.912

(0.053) (0.039) (0.054) (0.050) (0.051) (1.385)
Yorkshire and Humber 16 0.021 −0.045 −0.109 0.024 −0.062 −0.753

(0.056) (0.042) (0.058) (0.053) (0.054) (1.480)
East Midlands 16 −0.005 0.027 −0.083 −0.015 0.022 −1.406

(0.057) (0.043) (0.058) (0.054) (0.055) (1.501)
West Midlands 16 −0.016 0.007 −0.104 −0.028 0.055 1.857

(0.054) (0.040) (0.055) (0.051) (0.052) (1.420)
Eastern 16 −0.087 −0.002 −0.185∗∗∗ −0.034 0.064 1.024

(0.054) (0.040) (0.055) (0.051) (0.052) (1.414)
London 16 0.007 0.001 −0.169∗∗ 0.007 0.179∗∗∗ 4.598∗∗

(0.055) (0.041) (0.056) (0.052) (0.053) (1.452)
South East 16 −0.135∗ 0.018 −0.110∗ 0.001 0.052 0.301

(0.053) (0.039) (0.053) (0.050) (0.051) (1.385)
South West 16 −0.070 0.020 −0.106 −0.028 −0.015 −1.317

(0.056) (0.042) (0.057) (0.053) (0.054) (1.479)
Wales 16 0.039 0.012 −0.066 0.057 −0.031 1.260

(0.062) (0.046) (0.063) (0.059) (0.060) (1.627)
Scotland 16 0.056 0.006 −0.069 0.024 −0.053 1.022

(0.054) (0.040) (0.055) (0.051) (0.052) (1.415)
Region m 16 0.030 −0.010 −0.059 −0.005 0.024 1.721

(0.050) (0.037) (0.051) (0.047) (0.048) (1.324)
Cons*C 0.931∗∗ −0.229 −0.556 0.078 0.677∗ 10.466

(0.322) (0.241) (0.327) (0.302) (0.311) (8.496)
Ability*C −0.010∗∗ 0.004 0.002 0.002 −0.003 −0.033

(0.003) (0.002) (0.003) (0.003) (0.003) (0.083)
Mother ed yrs*C −0.030 −0.011 0.003 −0.005 −0.002 0.213

(0.017) (0.013) (0.017) (0.016) (0.016) (0.448)
Mother ed yrs m*C −0.210 −0.216 0.042 0.316 0.143 8.019

(0.283) (0.212) (0.285) (0.264) (0.274) (7.470)
Father ed yrs m*C 0.125 0.132 0.410 −0.137 −0.263 1.855

(0.227) (0.170) (0.229) (0.212) (0.220) (6.001)
Siblings*C 0.043 −0.011 −0.012 −0.027 −0.003 −0.307

(0.022) (0.017) (0.023) (0.021) (0.022) (0.590)
North West 16*C 0.196 −0.056 0.094 −0.081 −0.087 −7.969

(0.190) (0.142) (0.192) (0.177) (0.183) (5.010)
Yorkshire and Humber 16*C 0.290 0.090 0.154 0.194 0.116 −7.519

(0.196) (0.147) (0.197) (0.183) (0.189) (5.174)
East Midlands 16*C 0.148 0.286 0.171 0.172 −0.012 −1.883

(0.212) (0.162) (0.217) (0.201) (0.206) (5.614)
West Midlands 16*C 0.385∗ −0.111 −0.043 0.241 −0.164 −8.859

(0.193) (0.145) (0.195) (0.180) (0.187) (5.109)
Eastern 16*C 0.288 0.050 0.163 0.142 −0.190 −5.864

(0.189) (0.141) (0.191) (0.177) (0.182) (4.982)
London 16*C 0.115 0.043 0.057 0.021 −0.209 −9.443∗

(0.178) (0.133) (0.179) (0.166) (0.172) (4.690)
South East 16*C 0.335 0.014 0.134 0.046 −0.076 −5.411

(0.179) (0.134) (0.180) (0.167) (0.173) (4.729)
South West 16*C 0.130 −0.129 0.121 −0.002 −0.156 −3.525

(0.196) (0.146) (0.197) (0.183) (0.189) (5.172)
Wales 16*C 0.244 0.071 0.163 0.157 −0.062 −2.324

(0.220) (0.165) (0.226) (0.205) (0.213) (5.812)
Scotland 16*C 0.376 0.027 −0.138 0.041 0.036 −8.865

(0.203) (0.152) (0.207) (0.194) (0.197) (5.369)
Region m 16*C 0.216 −0.058 −0.037 0.025 −0.062 −10.321∗

(0.183) (0.138) (0.185) (0.171) (0.177) (4.839)

N 2642 2640 2602 2601 2648 2651
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Table 4.23: Nicejobs B - 1991 - Female
Benefits Firmshares Companycar Travelben Subsmeals

Cons 1.053∗ 0.374∗∗ −0.074 −0.355∗∗ 0.371∗

(0.414) (0.127) (0.079) (0.122) (0.155)
Ability 0.009∗∗∗ 0.002∗∗ 0.000 0.001 −0.002

(0.002) (0.001) (0.000) (0.001) (0.001)
Mother ed yrs 0.004 −0.016 0.011∗ 0.014 0.005

(0.027) (0.008) (0.005) (0.008) (0.010)
Mother ed yrs m −0.295 −0.006 −0.023 −0.118 −0.027

(0.262) (0.080) (0.050) (0.077) (0.098)
Father ed yrs −0.052 −0.004 0.002 −0.003 −0.003

(0.043) (0.013) (0.008) (0.013) (0.016)
Father ed yrs m 0.006 0.027 −0.010 0.046 0.105

(0.149) (0.046) (0.028) (0.044) (0.056)
Siblings −0.045∗ −0.009 −0.006 −0.012∗ 0.012

(0.019) (0.006) (0.004) (0.006) (0.007)
North West 16 0.057 −0.063 0.055 0.052 0.009

(0.172) (0.053) (0.033) (0.051) (0.064)
Yorkshire and Humber 16 0.004 −0.069 −0.008 −0.015 0.023

(0.184) (0.057) (0.035) (0.054) (0.069)
East Midlands 16 0.003 −0.014 0.014 0.019 0.046

(0.187) (0.057) (0.036) (0.055) (0.070)
West Midlands 16 0.294 0.024 0.036 0.062 −0.001

(0.176) (0.054) (0.034) (0.052) (0.065)
Eastern 16 0.263 0.047 0.035 0.007 0.021

(0.175) (0.054) (0.033) (0.052) (0.065)
London 16 0.427∗ 0.014 0.016 0.086 0.085

(0.176) (0.054) (0.034) (0.052) (0.066)
South East 16 0.217 0.028 0.015 0.020 0.067

(0.173) (0.053) (0.033) (0.051) (0.064)
South West 16 0.165 0.012 −0.012 0.031 0.043

(0.189) (0.058) (0.036) (0.056) (0.070)
Wales 16 0.038 −0.037 −0.001 0.086 −0.039

(0.204) (0.063) (0.039) (0.060) (0.076)
Scotland 16 −0.142 −0.099 0.033 0.058 −0.013

(0.177) (0.055) (0.034) (0.052) (0.066)
Region m 16 0.097 −0.008 0.020 0.083 0.003

(0.167) (0.051) (0.032) (0.049) (0.062)
Cons*C −0.212 −0.460 0.276 0.650∗ −0.532

(0.933) (0.287) (0.178) (0.275) (0.348)
Ability*C 0.010 −0.000 0.003 −0.003 0.001

(0.009) (0.003) (0.002) (0.003) (0.003)
Mother ed yrs*C 0.053 0.024 −0.014 −0.021 0.026

(0.050) (0.015) (0.010) (0.015) (0.019)
Mother ed yrs m*C −0.351 0.242 −0.162 −0.161 −0.096

(0.781) (0.240) (0.149) (0.230) (0.291)
Father ed yrs m*C 0.794 −0.250 0.195 0.419∗ −0.015

(0.677) (0.208) (0.129) (0.199) (0.253)
Siblings*C 0.007 0.009 −0.017 −0.005 −0.010

(0.065) (0.020) (0.012) (0.019) (0.024)
North West 16*C −0.258 0.059 −0.262∗∗ 0.109 0.114

(0.526) (0.162) (0.101) (0.155) (0.196)
Yorkshire and Humber 16*C −1.058 −0.024 −0.120 0.029 −0.076

(0.541) (0.166) (0.103) (0.159) (0.202)
East Midlands 16*C −0.626 −0.003 −0.149 −0.195 −0.026

(0.579) (0.178) (0.111) (0.170) (0.216)
West Midlands 16*C −0.640 0.028 −0.286∗∗ −0.045 0.203

(0.530) (0.163) (0.101) (0.156) (0.198)
Eastern 16*C −0.765 0.010 −0.275∗∗ 0.073 0.227

(0.536) (0.165) (0.102) (0.158) (0.200)
London 16*C −0.989∗ 0.084 −0.186∗ −0.154 0.042

(0.495) (0.152) (0.095) (0.146) (0.185)
South East 16*C −0.788 0.051 −0.219∗ −0.104 0.080

(0.498) (0.153) (0.095) (0.146) (0.186)
South West 16*C −0.340 0.017 −0.083 0.168 0.114

(0.556) (0.171) (0.106) (0.164) (0.207)
Wales 16*C −0.535 0.031 −0.328∗∗ 0.191 0.224

(0.614) (0.189) (0.117) (0.181) (0.229)
Scotland 16*C −0.782 0.016 −0.306∗∗ 0.040 −0.118

(0.572) (0.176) (0.109) (0.168) (0.213)
Region m 16*C −0.802 −0.040 −0.189 −0.106 0.016

(0.511) (0.157) (0.098) (0.150) (0.191)

N 1929 1929 1928 1927 1927
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Table 4.24: Nicejobs C - 1991 - Female
Medicalins Pension Childcare Discounts Otherben

Cons −0.153 0.306∗ −0.069 0.662∗∗∗ 0.025
(0.102) (0.156) (0.050) (0.155) (0.121)

Ability 0.001∗ 0.005∗∗∗ 0.000 −0.001 0.002∗∗

(0.001) (0.001) (0.000) (0.001) (0.001)
Mother ed yrs 0.008 0.012 0.001 −0.018 −0.016∗

(0.007) (0.010) (0.003) (0.010) (0.008)
Mother ed yrs m −0.044 0.041 0.051 −0.106 −0.062

(0.065) (0.098) (0.031) (0.097) (0.076)
Father ed yrs −0.006 0.005 −0.001 −0.019 −0.023

(0.011) (0.016) (0.005) (0.016) (0.013)
Father ed yrs m −0.060 −0.078 −0.008 0.011 −0.028

(0.037) (0.056) (0.018) (0.056) (0.044)
Siblings −0.008 −0.017∗ −0.000 0.002 −0.005

(0.005) (0.007) (0.002) (0.007) (0.005)
North West 16 0.040 −0.085 −0.001 −0.010 0.061

(0.042) (0.065) (0.021) (0.064) (0.050)
Yorkshire and Humber 16 0.009 −0.061 0.044∗ −0.023 0.105

(0.045) (0.069) (0.022) (0.069) (0.054)
East Midlands 16 0.025 −0.102 0.005 −0.018 0.030

(0.046) (0.070) (0.022) (0.070) (0.055)
West Midlands 16 0.075 0.001 0.020 −0.059 0.137∗∗

(0.043) (0.066) (0.021) (0.065) (0.051)
Eastern 16 0.087∗ −0.063 0.029 −0.051 0.143∗∗

(0.043) (0.066) (0.021) (0.065) (0.051)
London 16 0.157∗∗∗ 0.029 0.011 −0.094 0.125∗

(0.043) (0.066) (0.021) (0.066) (0.051)
South East 16 0.100∗ −0.066 −0.004 0.006 0.053

(0.043) (0.065) (0.021) (0.064) (0.050)
South West 16 0.036 −0.056 0.005 −0.001 0.108

(0.047) (0.071) (0.023) (0.070) (0.055)
Wales 16 0.061 −0.064 −0.001 −0.006 0.039

(0.050) (0.077) (0.024) (0.076) (0.060)
Scotland 16 0.011 −0.065 0.007 −0.109 0.036

(0.044) (0.067) (0.021) (0.066) (0.052)
Region m 16 0.049 −0.070 0.004 −0.025 0.044

(0.041) (0.063) (0.020) (0.062) (0.049)
Cons*C 0.231 0.343 0.031 −0.498 −0.288

(0.230) (0.351) (0.112) (0.348) (0.273)
Ability*C 0.003 −0.006 0.002∗ 0.007∗ 0.002

(0.002) (0.004) (0.001) (0.003) (0.003)
Mother ed yrs*C 0.007 −0.008 −0.012∗ 0.021 0.033∗

(0.012) (0.019) (0.006) (0.019) (0.015)
Mother ed yrs m*C 0.035 −0.176 −0.117 0.361 −0.279

(0.193) (0.294) (0.094) (0.291) (0.228)
Father ed yrs m*C 0.305 −0.305 −0.006 0.047 0.402∗

(0.167) (0.254) (0.081) (0.252) (0.198)
Siblings*C −0.020 0.072∗∗ 0.001 −0.004 −0.020

(0.016) (0.025) (0.008) (0.024) (0.019)
North West 16*C −0.379∗∗ 0.133 0.108 −0.162 0.023

(0.130) (0.198) (0.063) (0.196) (0.154)
Yorkshire and Humber 16*C −0.399∗∗ 0.021 −0.026 −0.324 −0.140

(0.134) (0.204) (0.065) (0.202) (0.158)
East Midlands 16*C −0.296∗ 0.174 0.011 −0.098 −0.045

(0.143) (0.218) (0.069) (0.216) (0.169)
West Midlands 16*C −0.491∗∗∗ 0.139 −0.014 −0.038 −0.136

(0.131) (0.199) (0.064) (0.197) (0.155)
Eastern 16*C −0.548∗∗∗ −0.037 0.040 −0.156 −0.090

(0.132) (0.202) (0.064) (0.200) (0.157)
London 16*C −0.526∗∗∗ −0.062 0.012 −0.088 −0.112

(0.122) (0.186) (0.059) (0.184) (0.145)
South East 16*C −0.479∗∗∗ 0.050 0.050 −0.233 0.014

(0.123) (0.187) (0.060) (0.185) (0.145)
South West 16*C −0.407∗∗ −0.049 0.138∗ −0.165 −0.072

(0.137) (0.209) (0.067) (0.207) (0.162)
Wales 16*C −0.609∗∗∗ 0.329 0.106 −0.298 −0.182

(0.151) (0.231) (0.074) (0.229) (0.179)
Scotland 16*C −0.483∗∗∗ 0.150 0.021 −0.071 −0.031

(0.141) (0.215) (0.069) (0.213) (0.167)
Region m 16*C −0.360∗∗ −0.027 0.023 −0.135 0.011

(0.126) (0.192) (0.061) (0.190) (0.149)

N 1927 1928 1927 1927 1927
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Chapter 5

Maternity Leave Duration and

Female-Male Relative Labour

Market Outcomes

5.1 Introduction

Large gender pay gaps exist in most countries, with the EU average gender pay gap

standing at 16.5% in 2012. The UK gender gap stands slightly higher than the EU

average, at 19.1%.1 These gaps are persistent despite the high priority placed on closing the

gender pay gap, both at an EU and a UK level, and despite female educational attainment

surpassing male attainment over the last decade.2 Motivating factors for decreasing the

gender pay gap include promoting gender fairness and equality, increasing female labour

market participation and decreasing litigation costs. At the same time, many countries

have recently increased the generosity of maternity leave benefits, and have introduced

increasingly flexible working arrangements. Numerous arguments can be made for paid

parental leave/flexible working arrangements, such as increasing female labour market

opportunity and participation. A key question arises as to whether the increasing flexibility

of maternity leave and working arrangements (which potentially impose direct or indirect

employer costs), hinders progress in closing the gender gap or impacts on other relative

female-male labour market outcomes.

This chapter analyses the impact of an increase in the duration of paid maternity leave

on relative female labour market outcomes. The analysis is based in the UK, which

experienced a 50% increase in the duration of paid maternity leave for female employees,

1Eurostat
2In 2012 the UK average share of males aged 30-34 who had completed tertiary education was 44.0%

compared to 50.2% for females. The corresponding figures for 2002 were 32.4% for males and 30.7% for
females. (Eurostat)
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from a maximum of 26 weeks to a maximum of 39 weeks from 1st April 2007. While

similar reforms in other countries/time periods tended to increase parental leave for male

and female employees simultaneously (e.g. the FMLA in the United States), this reform

was unusual in changing parental rights for female employees only. Furthermore, the

quasi-experimental estimation approach implemented in this chapter is unique in that it

estimates the role of statistical discrimination by employers on relative female-male labour

market outcomes, separately from the impact of increased human capital depreciation

or higher numbers of retained job matches. The existing literature tends to estimate

an impact that is an aggregate of any employer discrimination, the increased number of

retained job matches and the impact of longer leave periods on human capital depreciation.

A difference in differences estimation strategy is implemented, with an alternative ap-

proach being suggested for binary outcome models that respects the discrete nature of the

outcome. The proposed approach builds on that of Athey and Imbens (2006) and Blundell

et al. (2004b). One key benefit of the proposed approach is that it facilitates estimation of

the impact of a policy change when there are possible substitution effects impacting the

control group.

A simple theoretical model of the role of differential parental leave uptake by male and

female employees on relative labour market outcomes is developed. While on parental leave

employees do not receive pay from their firms, but employees taking longer leave periods

are less profitable for the firm because the firm has equal sunk hiring and training costs

for all employees. This implies a male-female wage gap for otherwise identical employees.

Furthermore, in the face of expanding differentials in male-female parental leave uptake,

the model predicts an increase in the male-female wage gap.

This chapter shows that the policy change increased the relative uptake of parental leave

by females compared to males, particularly for those aged 25-34. The aggregate effect was

decomposed into specific effects due to fertility responses and relative female-male uptake

of parental leave, both of which play a significant role in the divergence. Furthermore,

empirical evidence was found in support of the theoretical model, with evidence of a

divergence in male-female relative wages after the expansion of paid maternity leave in the

UK. This divergence was in contrast with the weak trend of converging male-female wages

observed in previous years. Furthermore, evidence was found of an increase in relative

female redundancies after the policy change. Although a negative impact was estimated

on relative female hiring rates it was not statistically significant. The low magnitude

of the hiring effect may be due to higher rates of female replacements necessitated by

fertility responses and/or higher maternity leave durations, combined with the likelihood

of a female employee being replaced with another female due to occupational sorting.

Similarly, a negative but insignificant impact was found on relative female conditional

employment rates. It is possible that a longer observation period would lead to larger
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estimates on relative employment rates, as differential hiring/firing rates accumulate.

The chapter is laid out as follows; Section 5.2 provides a review of the existing literature,

Section 5.3 outlines the theoretical model, Section 5.4 discusses the estimation method-

ology both for continuous outcomes and the proposed methodology for binary outcomes,

Section 5.5 provides an overview of the legislative context in the UK, the data and em-

pirical strategy are outlined in Section 5.6, the results are presented in Section 5.7 and

finally, Section 5.8 concludes.

5.2 Previous Literature

The main economic theories of labour market discrimination are taste based models dating

back to Becker (1957) on the one hand, and models of statistical discrimination introduced

into the literature by Phelps (1972), Arrow (1972) and Aigner and Cain (1977) on the

other. Taste based models of discrimination deal with employer taste for discrimination,

employee taste for discrimination or customer taste for discrimination. More closely related

to the approach followed in this chapter, statistical based discrimination presumes no

prejudice. There are two main strands to the statistical discrimination model; the first

which is based on different group mean productivity levels (heterogeneous productivity

levels are unobservable to the employer, although they may receive a noisy signal) and the

second which is based on different group precision levels relating to the signal received.

Statistical discrimination models of the male-female wage gap that assume different mean

productivity levels of males and females (due to the higher levels of work absence amongst

females owing to pregnancy/maternity leave) falls into the first category of different group

mean productivity levels. This statistical discrimination based on different group mean

productivity levels leads to labour market discrimination against women. As pointed out

by Cain (1986), women who participate the most will be underpaid and women who par-

ticipate the least will be overpaid relative to their productivity levels, with underpayments

cancelling out overpayments. On average females are paid a rate equal to their average

productivity. Therefore it is often stated that there is no group discrimination against

women.3 However, using common definitions of labour market discrimination every fe-

male experiences labour market discrimination if employers base hiring or wage decisions

on this type of statistical information. This is clarified in the following.

Heckman and Siegelman (1993) define labour market discrimination as: “it occurs if per-

sons in one groups with the same relevant productivity characteristics as persons in another

group are treated unfavourably by the labor market solely as a consequence of their demo-

3Thurow (1975) points out that even in this case of statistical discrimination based on groups means,
group discrimination may still exist when you consider employment decisions, which are a zero-one deci-
sion.
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graphic status”. Similarly, Altonji and Blank (1999) define labour market discrimination

as “a situation in which persons who provide labor market services and who are equally

productive in a physical or material sense are treated unequally in a way that is related

to an observable characteristic such as race, ethnicity, or gender. By “unequal” we mean

these persons receive different wages or face different demands for their services at a given

wage.” Either definition would lead us to conclude that women experience labour market

discrimination. To clarify this point, consider a distribution of propensities to be out of

the labour market on parental leave for male and female employees who have the same

levels of all other productivity characteristics. Male and female employees have different

distributions of the propensity to be out of the labour market, with the female distribution

much more skewed to the right relative to the male distribution. However, for any given

propensity to be out of the labour market, females will be paid less than a comparable

male. This is because propensity to be out of the labour market is not observed by the

employer, and hiring/wage decisions are based on gender means.

Regardless of how this type of employer behaviour is classified economically, this type of

behaviour by employers is typically illegal in most countries, and certainly in the legal

sense would tend to be classified as discriminatory.4 Furthermore, regardless of whether

this employer behaviour is considered discriminatory by economists, it is still a topic of

interest for labour economists considering female labour market participation or the male-

female wage gap.

With the exception of statistical discrimination models where the role of higher parental

leave taking by mothers is incorporated into a lower mean productivity level, there is little

in the theoretical literature about the potential role maternity leave plays in contributing to

the male-female wage gap. One recent exception is a paper by Yip and Wong (2014), who

introduce a search based model of labour market discrimination where female employees

differ from males only in leave taking due to childbearing. In their model, a male-female

wage gap occurs due to the lower productivity of a female worker.5 They derive a number

of empirical implications from their model; the first being that even in the absence of taste

based discrimination females will receive lower bargaining wages than males. Furthermore,

along the age specific fertility rate profile (ASFR), the male-female wage gap should be

4For instance, see Masselot et al. (2012) for an overview of the legislative framework in Europe.
Typically, sex discrimination legislation exists in the EU member states, which prohibits differential
employment treatment (recruitment/employment/payment) for male and female workers (e.g. the Sex
Discrimination Act (1975) in the UK). Additionally, case law (for instance in the European Court of
Justice), has ruled that since only a women can become pregnant, a refusal to employ her, or decision
to dismiss her because of pregnancy/maternity is equivalent to sex discrimination. Furthermore the Sex
Discrimination Act (1975) in the UK was amended by the Employment Equality (Sex Discrimination)
Regulations (2005), to make explicit that discrimination on the grounds of pregnancy constitutes sex
discrimination. See Section 5 and Appendix 5B. for a more in-depth discussion of the legislative framework
in the UK.

5Employees continue to receive pay while on leave in this model.
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largest when the ASFR is the highest. Yip and Wong (2014) do not estimate their search

model, but test the empirical implications by looking at the relationship between the

male-female wage gap and ASFR and find some evidence that the ASFR does indeed

have a negative impact on female wages in Hong Kong. Similarly, Erosa et al. (2010)

develop and calibrate a structural model of maternity leave policies and fertility, welfare

and employment in the US prior to the introduction of the FMLA, and perform various

counterfactual simulations to try and understand the mechanisms through which maternity

leave laws affect these outcomes. The model estimates that employer costs associated with

paid maternity leave (which exist even though employees do not receive pay from employers

while on leave in this model) results in a lower wage for females of childbearing age.6

There are many empirical papers researching female labour market discrimination. Cain

(1986) reviews 20 early empirical papers, which focus on estimating earnings functions.

The coefficient on the group variable in the earnings functions, once other productivity

characteristics have been taken into account is referred to as the wage gap rather than

wage discrimination. This is in recognition of the fact that if variables measuring pro-

ductivity reflect discrimination, or if productivity characteristics which are non-random

across groups have been omitted, then the wage gap may be either an upwards/downwards

biased estimate of wage discrimination. Altonji and Blank (1999) also review a number of

empirical papers providing evidence on the extent of discrimination in the labour market,

focusing largely on quasi-experimental approaches. Papers they review that deal with fe-

male labour market discrimination include audit studies (e.g. Neumark (1996) who looks

at employment rates of male versus female applicants in the restaurant industry. This

paper finds some evidence of discrimination, with male and female applicants more likely

to be hired in high/low end restaurants respectively) and sex blind hiring (e.g Goldin and

Rouse (2000), who look at the impact of blind hiring on the relative hiring rates of male

and female musicians. This paper finds strong evidence of discrimination).7 They also

discuss the direct approach of Hellerstein et al. (1999) who estimate marginal productiv-

ities of various demographic groups and then compare these estimates to labour market

wages directly. This paper found that the relative marginal productivities of female to

male employees was higher than the corresponding relative wages, suggesting possible

discrimination. However, their model does not seem to match the data very well; for in-

stance, unskilled labour was estimated to be more productive than professional/managerial

labour. In another paper, Hellerstein et al. (2002) also test directly for discrimination by

6One quarter of paid maternity leave was estimated to correspond to a 0.5% decrease in lifetime female
wages through the bargaining channel

7More recent male-female audit studies include Riach and Rich (2006) who find evidence of gender
sorting in the UK, with females more likely to receive call backs in female dominated occupations and
vice versa for males. Petit (2007) also using an audit study, find evidence of discrimination against young
women in France in high-skilled administrative jobs, and for jobs with long term contracts
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comparing profitability of firms with different female/male employee compositions. Again

evidence suggestive of discrimination was found, but as pointed out in the Altonji & Blank

review, there may be endogeneity if the gender composition is correlated with other firm

characteristics.8

Most closely related to this work are several papers that look at the impact of policy

changes that may directly impact female labour market outcomes. Gruber (1994) analy-

ses the impact of state and federal laws introduced in the US in the 1970s which stipulated

that pregnancy must not be treated differently from comparable illness in health insur-

ance benefits. This additional coverage resulted in higher health insurance premiums for

women of childbearing age. Therefore, the cost of employing women of childbearing age

by employers who provide health insurance benefits (and married men with wives of child-

bearing age who are covered under their employer provided health insurance) increased.

State laws came into effect for 23 states between 1976 and 1977, whereas a federal law,

covering all states, was passed in 1978. Using a triple differences estimation strategy (with

a time-state-group dimension), Gruber (1994) estimates the impact of the introduction of

this policy change first using the states that passed state laws between 1976 and 1977 as

the treatment group, and states that did not pass state legislation as the control group.

He also separately estimates the impact of the policy using the federal legislation, this

time using the states that had already passed the legislation as the control group. The

treatment group considered are married women aged 20-40 and the control group are sin-

gle men aged 20-40 and everyone aged over 40. In the regression analysis, this paper found

that the state (federal) policy change decreased the relative wages of the treatment group

by about 4.3% (2.1%). There was no significant effects found on relative employment.

Another related study is Baum (2003), who analyses the impact of the introduction of the

Family Medical Leave Act of 1993 in the US. This federal law provided access for certain

employees to job-protected unpaid leave for various medical and family reasons. To qualify

you must have been employed by your employer for 12 months, to have worked 1250 hours

in the last 12 months and to be employed by an employer with 50 or more employees who

live in a 75 mile radius of the workplace (this employee threshold did not apply to the

public sector). The FMLA allows for up to 12 weeks of leave a year for reasons including

caring for a new baby (birth/adopted), own health reasons and caring for an ill family

member. Baum (2003) also follows a triple difference estimation strategy, exploiting the

fact that some states passed maternity leave legislation before the 1993 FMLA (also uses

time-state-group dimension). Two treatment groups are considered; those with children

under the age of 1, and all women of childbearing age. Two control groups are also

8Another estimation approach reviewed is that in Altonji and Pierret (2001), who suggest a test for
statistical discrimination based on observed earnings differentials over time - although this approach is
applied to race rather than gender discrimination
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considered; all men and alternatively single men. Sample selection is controlled for in one

specification. Regardless of the specification and choice of treatment/control group the

analysis found no evidence of an impact of the policy change on relative employment or

wages. However, this paper does not present evidence of a significant first stage effect -

a differential impact of leave taking by women relative to males as a result of the policy

change. In fact, a report by The Commission on Leave (The Commission on Leave,

1995) documented similar levels of leave taking by workplaces covered/not covered by the

FMLA. Furthermore, men were more likely to take FMLA leave for spousal care reasons

(attributed in the report to possible care of wives before/after childbirth). Therefore,

there does not seem to be clear evidence that FMLA increased leave taking, or if it did

that it differentially impacted upon men and women. Waldfogel (1999) analyses the first

stage effect (tests for a larger relative uptake of leave by women after the introduction of

the FMLA), and finds a divergence in female-male relative leave taking only for medium

sized firms, with small/large firms actually experiencing the opposite effect. Waldfogel

(1999) also does not find strong evidence of any relative employment or wage effects.

A number of recent papers have analysed the impact of the introduction of the Californian

Paid Family Leave policy, implemented in 2004. This policy brought in up to 6 weeks of

paid leave each year. At the time the federal Family and Medical Leave Act allowed for

up to 12 weeks of unpaid leave. Male and female employees were eligible for the paid

leave to bond with a new child, or to care for a seriously ill child, spouse, parent or

registered domestic partner. Baum and Ruhm (2013) provide evidence that the first stage

effects (the impact of the policy on parental leave taking) were greater for mothers (2.4

week increase) relative to fathers (1 week increase), but otherwise focus on labour market

outcomes of mothers/fathers. Using the same policy reform, a recent paper by Curtis

et al. (2014) found no evidence of any impact of the policy on female earnings, using a

triple difference approach with time-state-group dimensions, where young females are the

treatment group and all other demographic groups the control group. The paper did find

higher rates of job separations (over 3 months) for female workers. However, they do not

separate redundancies from extended maternity leave in their analysis. Higher rates of

recalls lead the authors to conclude that the although the policy increased the occurrence

of separations, some of these women returned to their same employer after an extended

leave period. Finally, evidence of an increase in new hires was found amongst young

women after the policy change (which might be explained by the higher separation rates -

due to occupational sorting it is more likely to hire a female to replace a female). Another

recent paper, Das and Polachek (2014) using the same reform find evidence that the

policy increased female labour market participation, but increased female unemployment

and unemployment duration to a greater extent.

One paper that finds significant negative effects on female wages resulting from the intro-
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duction of mandatory paid maternity leave is Lai and Masters (2005). This paper analyses

the introduction of the Labor Standards Law in 1984 in Taiwan. This law introduced eight

weeks of paid maternity leave (paid for by employer) for employees employed for at least 6

months in covered industries (manufacturing, mining, electricity, construction, transport

and mass media). The law also prohibited employers from firing women due to mar-

riage/pregnancy. New mothers were paid two half-hour breaks a day for breastfeeding

until their child was 1 year old. Finally, employers had to provide a different role for

pregnant employees if their typical role had a health risk. A triple difference estimation

strategy is used with time-industry-group dimensions. Women aged 20-29 are the treat-

ment group, with one specification using men aged 20-29 as the control, and another using

women aged 30-54 as the control. Negative relative wage effects are found, particularly

when young men are used as the control group. A difference in difference model is used

to estimate relative employment effects, with time-group dimension. Negative relative

employment effects were also found.

Another interesting finding is that employers appear to reduce investment in on-the-job

training of young women in response to an increase in maternity leave. Puhani and Son-

derhof (2009) analyse the impact of the doubling of the German maternity leave duration

from 18 months to 36 months in 1992 using a difference in difference approach (time-

group dimension) where the treatment group is women aged 20-35 and the control group

is women aged 40-55. A triple difference approach is also taken, with time-gender-age

dimension. Across different specifications, negative effects were found for employer pro-

vided on-the-job training for women of childbearing age, with some evidence that this was

partially compensated through employee arranged training.

There is also a strand of research which uses cross-country analysis to try and estimate

the impact of maternity leave policies on female labour market outcomes. Ruhm (1998)

studies 9 European countries during the period 1969-1993, all of which experienced large

changes in maternity leave policies. Outcomes considered are employment to population

ratios and hourly wages. A triple differences approach is used with time-country-gender

dimension. Weeks of paid leave (regardless of replacement rate) is the key policy variable

considered. 40 weeks of paid maternity leave compared to none at all was estimated to

increase employment-population ratios of women by 4.2 percent and to lower hourly wages

by 2.7 percent, with larger effects found for women of childbearing age. Ruhm (1998) dis-

cusses some possible econometric issues associated with this type of cross-country analysis;

firstly that changes in other family policies might occur at the same time as changes in

maternity leave policies within a country, confounding the results. Secondly, increases in

female labour supply might increase political pressure for these types of legislative changes,

leading to endogeneity. There may be intra-household substitution, changing the inter-

pretation of the DDD estimates. Finally, he notes that some of the positive employment
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effect may be due to how females are classified while on leave. Although not noted in the

paper, a related issue is how wages are reported by women while on maternity leave. Often

women will receive some percentage of their salary from their employers while on mater-

nity leave, therefore longer leave periods may also lead to lower mean levels of reported

wages among women, which may explain some of the downwards wage effect.

Akgunduz and Plantenga (2012) provide an update of Ruhm (1998), by analysing the

impact of changes in maternity leave legislation across 16 European countries between

1970-2010. Following a very similar estimation strategy to Ruhm (1998), and using weeks

of (weighted) full-replacement leave as the explanatory variable this paper also finds that

longer leave entitlements increase female employment and decrease wages, particularly for

high skill women. In addition to the potential issues addressed in Ruhm (1998), this paper

also does not distinguish between maternity and parental leave, assuming all leave is taken

up by the mother. This may also bias the results, depending on actual leave take up by

females/males in the labour market.

A number of related papers look at the impact of maternity/paternity leave duration

on the wages of mothers/fathers and the return to work after leave.9,10 Another related

strand of research analyses the impact of expanding parental leave policies on fertility.11

Finally, a number of papers focus on the impact of expanding parental leave policies on

child health/education outcomes.12

5.3 Simple Theoretical Model

In this section, a simple theoretical model is presented. Higher levels of parental leave taken

by female employees leads to a predicted male-female wage gap in the model. Furthermore,

greater divergence in relative female-male leave taking is predicted to increase the male-

female wage gap. This prediction is tested empirically later in the chapter, facilitated

by a common trends assumption. The model also predicts that a greater divergence in

relative female-male leave taking is associated with higher male wages and higher male

9Mothers’/Fathers’ wages: Ondrich and Spiess (2002) - Germany, Buligescu et al. (2008) - Germany,
Schönberg and Ludsteck (2007) - Germany, Ekberg et al. (2013) - Sweden (”Daddy-Month” reform),
Waldfogel (1998) - US and Britain, Joseph et al. (2013) - France, Lalive et al. (2013) - Austria, Rege and
Solli (2013) - Norway (Parenity leave quota), Baum and Ruhm (2013) - US, Dahl et al. (2013) - Norway

10Return to work: Ondrich et al. (1996) - Germany, Pronzato (2009) - Europe, Schönberg and Ludsteck
(2007) - Germany, Baker and Milligan (2008a) - Canada, Hanratty and Trzcinski (2008) - Canada, Joseph
et al. (2013) - France, Lalive and Zweimüller (2009) - Austria, Lalive et al. (2013) - Austria, Rossin-Slater
et al. (2013) - California, Waldfogel et al. (1999) - US, Britain and Japan, Dahl et al. (2013) - Norway

11Fertility: Lalive and Zweimüller (2009) - Austria, Björklund (2006) - Sweden, Dahl et al. (2013) -
Norway, Cannonier (2014) - US, Raute (2014) - Germany

12Child outcomes: Baker and Milligan (2008b) - Canada, Berger et al. (2005) - US, Carneiro et al.
(2011b) - Norway, Dustmann and Schönberg (2012) - Germany, Liu and Skans (2010) - Sweden, Rasmussen
(2010) - Denmark, Dahl et al. (2013) - Norway
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employment. There are ambiguous predictions for female wages and employment.

A two period model where firms can discriminate without sanction is considered. A risk

neutral, profit maximizing, price taking representative firm chooses the optimal numbers

of male and female hires in the first period. In this period, the firm pays hiring costs c

and training costs t for each worker. It also pays male workers the market wage wm and

female workers the market wage wf in each period. Production occurs in the second time

period. All male workers are retained by the firm in the second time period. All female

workers who do not take maternity leave are retained in the second period. Those that

take maternity leave - a proportion γ(θ), do not work for the duration of their maternity

leave, a fraction θ of the year. During this time they are not producing and are not being

paid a wage by the employer. A higher θ is interpreted as a more generous maternity

leave period. 1− δ(θ) is the proportion of productive females in the second period, where

δ(θ) = γ(θ) ∗ θ.13 We assume 0 < δ(θ) < 1. A firm with concave production function F ,

(with F ≥ 0, F ′ ≥ 0, F ′′ ≤ 0), where male and female workers are assumed to be perfect

substitutes solves the following problem:

π = maxLm,Lf [−(c+t)(Lm+Lf )−wmLm−wfLf+β(−wmLm−wf (1−δ(θ))Lf+F (L2(Lm, Lf , δ(θ))))]

where L2 denotes second period workers, which will be a function of the number of male

and female hires in the first period, and the absence rate of females. If male and female

workers are perfect substitutes, L2 = Lm + (1− δ(θ))Lf .14,15,16

This model could be considered a formalisation of the argument made by Thurow (1975)

13Note that fertility is modelled as a function of θ, this allows for the possibility that fertility rates
respond to more generous maternity leave

14In the empirical work, it is assumed that males and female workers are perfect substitutes conditional
on a set of observable characteristics including education, industry and region. Unfortunately there is
no good measure of experience in the data, however analysis conditioning on employees with no children
does not greatly change the estimate of the policy impact.

15Acemoglu et al. (2004) use female labour market mobilisation during WWII to provide one of the few
quasi-experimental estimates of the degree of substitution between female and male workers. This paper
found that male and female workers were imperfect substitutes. However, this research used data mainly
from 1940-1960. At that time, male workers differed from female workers as they were presumably more
productive in jobs where brawn was required. It is likely that as brawn has became a less important worker
attribute with technological change, it is also likely that male and female workers are closer substitutes
in 2006 than they were fifty year ago.

16Older workers do not appear in this model. Intuitively, if older male/female workers are also perfect
conditional substitutes for young female workers, then the discussion of relative young female - young
male labour market outcomes holds up for relative young female - young male, old female or old male
labour market outcomes. If older workers are perfect complements to younger workers, and if the increase
in the cost of young employment leads to decreased young employment, then there will also be decreased
old employment, and lower wages. If there is perfect cost shifting among young workers, such that young
employment is not impacted, there should not be any impact on old labour market outcomes. If on the
other hand old and young workers are imperfect substitutes, the impact on old labour market outcomes
will depend on the strength of substitution and the degree of cost shifting among young workers.

129



where he discusses employer’s use of statistical discrimination in making employment

decisions. Thurow points out that employers who invest in on-the-job training (t in the

model above) are less likely to be able to recoup the investment from women.17

Solving the firm’s optimisation problem (where LDm, L
D
f denotes male/female labour de-

mand);

FOC[LDm] : wm =
β

1 + β

∂F (L2(LDm, L
D
f , δ(θ)))

∂L2(LDm, L
D
f , δ(θ))

− c+ t

1 + β

FOC[LDf ] : wf =
β(1− δ(θ))

1 + β(1− δ(θ))
∂F (L2(LDm, L

D
f , δ(θ)))

∂L2(LDm, L
D
f , δ(θ))

− c+ t

1 + β(1− δ(θ))

Firms solve for the number of males and females to hire such that the above FOC are

satisfied, which will be jointly determined by male and female labour market supply.

Suppose male/female labour supply can be modelled as follows

LSm = Sm(wm)

LSf = Sf (wf , θ)

where it is assumed that male labour supply is not influenced by θ, but that female labour

supply is.18 Female labour supply in the first period can be impacted by an increase

in maternity leave allowances, θ, by increasing the payoffs to participating in the labour

market. There is;

∂LSm
∂wm

=
∂Sm(wm)

∂wm
≥ 0

∂LSm
∂θ

=
∂Sm(wm)

∂θ
= 0

∂LSf
∂wf

=
∂Sf (wf , θ)

∂wf
≥ 0

∂LSf
∂θ

=
∂Sm(wf , θ)

∂θ
≥ 0

Equilibrium is the point (w∗m, w
∗
f , L

∗
m, L

∗
f ) that solves four equations; the firm’s two op-

timisation equations, male labour supply = male labour demand (L∗m = LSm = LDm) and

17Thurow (1975) also claims that although female and male workers spend similar average lengths of
time with employers (due to the higher probability of job switching for males), employers still place the
emphasis on lifetime labour market participation. His claim is based on the reasoning that with male
employees the employer has the option to increase the wage bid to try and retain valuable workers.

18More generally male labour supply could also be allowed to depend on θ, which would allow for intra-
household substitution between male and female labour (Ruhm, 1998). See discussion on relaxing this
assumption in Section 5.3.1
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female labour supply = female labour demand (L∗f = LSf = LDf ). Note the above could be

reduced down to a problem of two equations by substituting the labour supply equilibrium

conditions (L∗m = Sm(w∗m), L∗f = Sf (w
∗
f , θ)) into the first order conditions.

This model implies that in equilibrium there will be a male-female wage gap, with19

w∗m − w∗f =
βδ(θ)

(1 + β)(1 + β(1− δ(θ)))

(
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

)

which is greater than zero since F ′ ≥ 0, 0 < δ(θ) < 1 and 0 < β < 1. Therefore, in a model

with training costs and hiring costs, this model predicts that when female workers are more

likely to be absent from the labour market, profit maximising firms will pay female workers

lower wages. The intuition behind this is that the profit maximising condition sets the

marginal cost for males equal to the marginal benefit for males, and similarly for females.

The marginal benefit of a female is a proportion of the marginal benefit of a male (with

the proportion equal to the fraction of time spent working in the second period, 1-δ(θ)).

Therefore, the marginal cost of a female will be set equal to 1 − δ(θ) times the marginal

cost of a male. If wages of males and females were the same, this condition would hold in

the second period (since females are only paid for the proportion of time they work) but

not the first period (when males and females are paid for the full period).20

5.3.1 The impact of increasing maternity leave on the male-

female wage gap

An increase in maternity leave increases the male-female wage gap (i.e. d(w∗m−w∗f )/dθ > 0)

if the following holds:21

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂θ
≤ 0

Let’s consider when
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0. This is the change in second period workers

for a given male, female equilibrium wage in response to an increase in the length of

maternity leave.

19See Appendix 5A for proof.
20More complicated models could allow for; administration costs that an employer must pay when a

female worker is on maternity leave, male/female worker quits, male/female worker firing, risk adverse
firms who possibly have contract commitments, for the possibility to hire short term experienced employ-
ees to cover maternity leave at a premium, and heterogeneity in fertility, leave take-up or productivity. In
addition, risk of prosecution and the resulting financial costs (or reputational costs) incurred by discrimi-
nating firms could be incorporated into the model. With more time periods return behaviour of mothers
could be modelled, allowing for depreciation of human capital.

21See Appendix 5A for proof.
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∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂θ
=
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

=(1− δ(θ))
∂Sf (w

∗
f , θ)

∂θ
− Sf (w∗f , θ)

∂δ(θ)

∂θ

Since L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)) = Sm(w∗m) + (1− δ(θ))Sf (w∗f , θ).

This will be negative if there is either no female labour supply response to an increase

in maternity leave duration (θ) at the equilibrium wages w∗m, w
∗
f , or if the increase is not

too large. The first term on the right hand side of the above expression is the increase

in second period workers due to an increasing maternity leave duration drawing more

female workers into the labour market. The second term is the decrease in second period

workers due to female workers who have children taking longer maternity leave periods

(and possibly female workers having more children and hence taking up maternity leave

more frequently). Therefore if the decrease due to increased leave outweighs the increase

due to increased supply, the above condition will hold and it can be concluded that the

male-female wage gap must increase in response to an increase in maternity leave length

in this model.22

If we had allowed male labour market supply to react to changing θ (for instance, it is

possible that households substitute female labour supply for male labour supply in response

to such a policy change), then the condition required for
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0 to hold

is

∂L2(Sm(w∗m, θ), Sf (w
∗
f , θ), δ(θ))

∂θ
=
∂L2(Sm(w∗m, θ), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+

∂L2(Sm(w∗m, θ), Sf (w
∗
f , θ), δ(θ))

∂Sm(w∗m, θ)

∂Sm(w∗m, θ)

∂θ
+

∂L2(Sm(w∗m, θ), Sf (w
∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

=(1− δ(θ))
∂Sf (w

∗
f , θ)

∂θ
+
∂Sm(w∗m, θ)

∂θ
− Sf (w∗f , θ)

∂δ(θ)

∂θ

As before, this will be negative if the female labour supply response is not too large. If

22Even if there is a large female supply response, there will still be a positive impact on the male-female
wage gap as long as the female labour supply response does not cause second period labour to increase so
much so that the downwards impact on the male-female wage gap from the falling marginal productivity
outweighs the upwards impact on the male-female wage gap due to the decreasing productivity of female
workers.
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there is intra-household labour supply substitution then the condition becomes weaker,

since now the sum of the decrease in second period labour from female labour workers

who are taking more frequent/longer maternity leave periods and the decrease due to

male labour being substituted for by female labour is required to outweigh the increase in

second period labour due to increased female labour supply.

The following assumption is imposed to facilitate the interpretation of the model implica-

tions for the remainder of this section.

Assumption:
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0

The intuition for the mechanisms behind the impact of increasing maternity leave on

the male-female wage gap is as follows. An increase in maternity length is assumed to

decrease period two labour, which increases marginal productivity and hence applies up-

wards pressure on both male and female wages. However, male wages get a bigger upwards

boost from this mechanism as they are more likely to be producing in the second period.

Secondly, increasing maternity leave length decreases female productivity, reducing their

wages. Furthermore, since male and female labour are substitutes, employers substitute

away from female labour towards male labour, providing upwards pressure on male wages,

but exacerbating the downwards pressure on female wages.23

Proposition 1: Increases in maternity leave increase the male-female wage gap

Proposition 2: Increases in maternity leave increase male wages and employ-

ment24

Proposition 3: Increases in maternity leave have an ambiguous effect on female

wages and employment25

In the empirical section a difference in differences estimation approach is implemented,

23Note that in a non-discriminatory model, an increase in maternity leave should have the same impact
on male and female wages, regardless of any labour supply responses. Therefore, if any impact is found on
relative male-female wages in response to an increase in maternity leave duration this could be interpreted
as evidence of discriminating employers. That in itself would not necessarily imply support for the above
model - which predicts an increasing male-female wage gap in response to an increase in maternity leave
duration (unless there are very large increases in female labour supply).

24Unless there are large negative male supply responses due to intra-household substitution of labour.
Proof in Appendix 5A

25Unless maternity leave increases were found to increase female wages, in which case the employment
effect is unambiguously positive. Proof in Appendix 5A

133



where identification is through a common trends assumption. As discussed in the method-

ology section, this allows for estimation of the treatment effect on relative female-male

labour outcomes (rather than gender specific treatment effects). Therefore, the empirical

section focusses on the key testable model implication given the common trends assump-

tion: increases in maternity leave duration lead to increases in the male-female wage gap

(proposition 1). The empirical section will also estimate the treatment effect on relative

female-male employment, redundancies and hiring rates.

5.4 Methodology

The impact of the expansion in maternity leave duration in the UK on relative female

labour market outcomes is estimated using a difference in differences approach. A time-

gender dimension is used. A standard difference in differences estimation approach is used

for the continuous outcome variable (hourly wages). The standard difference in differences

treatment effect estimator provides an estimate of the relative impact of the treatment

when there are substitution effects on the control group.

Let Y P
i (T ) denote the potential outcome of an individual i at time T with policy P,

and let Yi(T ) denote the observed outcome. There are two time periods - before and

after the policy change (T=0, T=1 respectively), two policy environments - pre and post

policy change (P=0, P=1 respectively), and two groups, females and males (F=1, F=0

respectively). The policy change occurs between time period T=0 and time period T=1.

Let WiT = 1 if an individual i is observed in the data at time T, and 0 otherwise. X is

a set of observable characteristics. It is shown in Appendix 5C, that given the following

assumptions, the standard difference in differences estimator provides an estimate of the

relative impact of the treatment.

Assumptions:

1. Conditional common time trend assumption

2. No composition effects conditionally

3. No heterogeneity in mean conditional treatment effects for males or females.

4. No heterogeneity in mean conditional time trends for males or females.

5. Linear index restrictions are imposed on conditional mean non-treated male and

female outcomes in period T=0.

6. Covariates enter the same way into male and female conditional mean non-treated

outcomes in period T=0.

134



The difference in differences model can then be estimated with the following regression;

Yi(T ) = a1 + a2Fi + a3Xi + (b1 + c1)Ti + b2FiTi + εit

Where

b2 = E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]− E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]

is the estimate of the impact of the policy change on females relative to males.

5.4.1 Binary Outcome Variables

There have been a number of approaches recently suggested in the literature for estimating

binary outcomes models within the difference in differences framework. The problem with

using the standard approach discussed in the above, is that the assumptions can lead

to predicted counterfactual probabilities outside the zero-one interval which can bias the

results (discussed for instance in Athey and Imbens (2006)).

In this section the two main alternatives to point identification of binary outcome difference

in differences models are discussed (Athey and Imbens (2006) and Blundell et al. (2004b)),

and an alternative approach which builds upon this previous literature is suggested. This

alternative approach is based on the assumption that the odds ratio of the treatment group

and the odds ratio of the control group have the same growth rate in the absence of a policy

change. In contrast with the other methods, this approach facilitates interpretation when

one allows for the control group to be impacted by substitution effects. Similarly to Athey

and Imbens (2006) but in contrast with Blundell et al. (2004b), trend assumptions are

non-parametrically specified and have an intuitive interpretation, however, unlike Athey

and Imbens (2006) the trend assumptions do not have a switch point. Similarly to Blundell

et al. (2004b) but (generally) in contrast with Athey and Imbens (2006), the suggested

approach retains the intuitive condition that when macro conditions are such that non-

treated outcomes for the control group are constant across two time periods, then the

predicted non-treated outcomes for the treatment group are also constant across the same

two time periods.

The no composition effect assumption is assumed throughout this discussion.

Athey and Imbens (2006)

Athey and Imbens (2006) assume the following26

(1) The control group is not impacted by the policy change

26Athey and Imbens (2006) also discuss bound estimation of the policy impact under alternative as-
sumptions.
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E[Y 1(1)− Y 0(1)|F = 0, X] = 0

(2) If the probability of success (Y=1) decreases for males (the non-treated group) then

the rate of decrease in the probability of success for females (the treated group) had they

not been treated would have been the same as the rate of decrease in the probability of

success for males

E[Y 0(1)|F = 1, X]

E[Y 0(0)|F = 1, X]
=
E[Y 0(1)|F = 0, X]

E[Y 0(0)|F = 0, X]
if E[Y 0(1)|F = 0, X] ≤ E[Y 0(0)|F = 0, X]

On the other hand, if the probability of success increases for males, then the method

assumes the rate of decrease in the probability of failure for females had they not been

treated would have been the same as the rate of decrease in the probability of failure for

males

1− E[Y 0(1)|F = 1, X]

1− E[Y 0(0)|F = 1, X]
=

1− E[Y 0(1)|F = 0, X]

1− E[Y 0(0)|F = 0, X]
if E[Y 0(1)|F = 0, X] > E[Y 0(0)|F = 0, X]

Therefore, if the probability of success for males decreases, the counterfactual for females

can be written as

E[Y 0(1)|F = 1, X] =
E[Y |F = 0, T = 1, X]

E[Y |F = 0, T = 0, X]
E[Y |F = 1, T = 0, X]

And the impact of the policy can be estimated from

E[Y 1(1)|F = 1, X]− E[Y 0(1)|F = 1, X] =

E[Y |F = 1, T = 1, X]− E[Y |F = 0, T = 1, X]

E[Y |F = 0, T = 0, X]
E[Y |F = 1, T = 0, X]

And if the probability of success for males increases, the counterfactual for females can be

written as

E[Y 0(1)|F = 1, X] = 1−
(

1− E[Y |F = 0, T = 1, X]

1− E[Y |F = 0, T = 0, X]

)
(1− E[Y |F = 1, T = 0, X])

And the impact of the policy can be estimated from

E[Y 1(1)|F = 1, X]− E[Y 0(1)|F = 1, X] =

E[Y |F = 1, T = 1, X]− 1 +

(
1− E[Y |F = 0, T = 1, X]

1− E[Y |F = 0, T = 0, X]

)
(1− E[Y |F = 1, T = 0, X])
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In general, the approach in Athey and Imbens (2006) does not preserve the condition

that when macro conditions are such that non-treated outcomes for the control group

are constant across two time periods, then the predicted non-treated outcomes for the

treatment group are also constant across the same two time periods.

In fact, their approach assumes convergence of the non-treated outcomes over time (one

exception of this rule is when in the initial period (T=0) mean non-treated outcomes for

males and females are the same, in which case the approach assumes that the non-treated

mean outcomes of males and females will always be equal. Therefore, if the non-treated

outcomes for males are constant across two time periods it must also be the case for

females).

To understand the intuition behind this convergence point, note that imposing the same

rate of decrease of non-treated outcomes implies a higher absolute decrease for whichever

group had the highest starting value.27

Blundell et al. (2004b)

Blundell et al. (2004b) impose a common trends assumption on the inverse probability

function for non-treated outcomes, in addition to the assumption that the control group

are not impacted by the policy change. They assume:

(1) The control group are not impacted by the policy change

E[Y 1(1)− Y 0(1)|F = 0, X] = 0

(2) Common trends on the inverse probability function

E[Y 0(1)|F = 1, X] = f(g(F = 1, T = 1, X))

E[Y 0(0)|F = 1, X] = f(g(F = 1, T = 0, X))

27To further consider this point, consider male and female employment rates. Suppose male employment
rates are observed to decrease. Then this approach assumes the rate of decrease of female employment
rates would have been the same as that of males if there had been no policy change. Since the same
rate of decrease implies that the group with the highest starting level of employment would have the
largest absolute decrease in employment rates, this implies convergence of male-female employment rates.
Similarly, if male employment rates were observed to increase, then the method predicts the rate of
decrease of female unemployment rates in the absence of a policy change would have been the same as
the rate of decrease in unemployment rates observed for males. Since the same rate of decrease implies
that the group with the highest starting level of unemployment would have the largest absolute decrease
in unemployment rates, this implies convergence of male-female unemployment rates (and therefore also
convergence of employment rates).
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E[Y 0(1)|F = 0, X] = f(g(F = 0, T = 1, X))

E[Y 0(0)|F = 0, X] = f(g(F = 0, T = 0, X))

where

g(F = 1, T = 1, X)− g(F = 1, T = 0, X) = g(F = 0, T = 1, X)− g(F = 0, T = 0, X)

If additional assumptions are imposed (that are somewhat analogous to the heterogeneity

assumptions imposed in the linear case); specifically, linear index restrictions on how the

covariates enter into the g(.) function, covariates enter into the g(.) index function in the

same way for males and females and if there is no interaction between covariates and time

in the index function, then

g(F, T,X) = α0 + α1F + α2T + βX

The choice of the f(.) function is left up to the researcher. Typical specifications include

the logistic function or the cumulative normal distribution function. The α and β param-

eters are estimated using observed data on non-treated outcomes for males in time periods

T=0 and T=1, and on non-treated females in time period T=0.

Therefore the non-treated mean conditional outcomes can be written;

E[Y 0(T )|F,X] = f(g(F, T,X)) = f(α0 + α1F + α2T + βX)

and the counterfactual of the no-treatment case for females in time period T=1 can be

estimated from

E[Y 0(1)|F = 1, X] = f(g(F = 1, T = 1, X)) = f(α0 + α1 + α2 + βX)

Therefore the impact of the policy on females can be estimated from

E[Y 1(1)|F = 1, X]−E[Y 0(1)|F = 1, X] = E[Y |F = 1, T = 1, X]− f(α0 + α1 + α2 + βX)

Suppose it is also assumed that the conditional mean treated outcome for females in time

period T=1 (treated outcomes) can be modelled using the same f(.) function as used in
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the non-treated outcome,

E[Y 1(1)|F = 1, X] = f(h(F = 1, T = 1, X))

if there are also linear index restrictions on how the covariates enter into the h(.) function

and if covariates enter into the h(.) index function in the same way as they enter into the

g(.) function, then the four observed conditional mean outcomes can be modelled as:

E[Y |F, T,X] = f(α0 + α1F + α2T + α3FT + βX)

Where now the α and β parameters are estimated using observed data on non-treated

outcomes for males in time periods T=0 and T=1, on non-treated females in time period

T=0 and on treated females in time period T=1.

The impact of the policy on females can then be estimated from

E[Y 1(1)|F = 1, X]−E[Y 0(1)|F = 1, X] = f(α0+α1+α2+α3+βX)−f(α0+α1+α2+βX)

Alternative Assumptions for Binary Outcome DD Model

Alternative identifying assumptions for the policy impact are considered in this section.

The main assumption is that the odds ratio of the treatment group and the odds ratio

of the control group have the same growth rate in the absence of a policy change, or

equivalently, that non-treated relative female-male odds ratios are constant over time.

This approach allows for some interpretation of the policy effect when substitution effects

for males are not assumed away. Similarly to Athey and Imbens (2006), assumptions are

non-parametrically specified. Similarly to Blundell et al. (2004b) when macro conditions

are such that the non-treated outcomes for one group are constant across two time periods,

then this assumption implies non-treated outcomes for the other group are also constant.

There are close similarities between this approach and that suggested by Blundell et al.

(2004b), which is discussed in more detail in the following.

Assume to begin with

(1) The control group are not impacted by the policy change

E[Y 1(1)− Y 0(1)|F = 0, X] = 0

(2) The conditional relative odds ratio is constant over time in the absence of the policy.

This can be expressed as

E[Y 0(T )|F,X]

1− E[Y 0(T )|F,X]
≡ l(F, T,X) = l1(F,X)l2(T,X)
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or
E[Y 0(1)|F=1,X]

1−E[Y 0(1)|F=1,X]

E[Y 0(1)|F=0,X]
1−E[Y 0(1)|F=0,X]

=

E[Y 0(0)|F=1,X]
1−E[Y 0(0)|F=1,X]

E[Y 0(0)|F=0,X]
1−E[Y 0(0)|F=0,X]

Therefore the counterfactual for females can be estimated from

E[Y 0(1)|F = 1, X]

1− E[Y 0(1)|F = 1, X]
=

E[Y |F=1,T=0,X]
1−E[Y |F=1,T=0,X]

E[Y |F=0,T=0,X]
1−E[Y |F=0,T=0,X]

∗ E[Y |F = 0, T = 1, X]

1− E[Y |F = 0, T = 1, X]

which implies

E[Y 0(1)|F = 1, X] =

E[Y |F=1,T=0,X]
1−E[Y |F=1,T=0,X]
E[Y |F=0,T=0,X]

1−E[Y |F=0,T=0,X]

∗ E[Y |F=0,T=1,X]
1−E[Y |F=0,T=1,X]

1 +
E[Y |F=1,T=0,X]

1−E[Y |F=1,T=0,X]
E[Y |F=0,T=0,X]

1−E[Y |F=0,T=0,X]

∗ E[Y |F=0,T=1,X]
1−E[Y |F=0,T=1,X]

And the impact of the policy can be estimated from

E[Y 1(1)|F = 1, X]− E[Y 0(1)|F = 1, X] =E[Y |F = 1, T = 1, X]

−

E[Y |F=1,T=0,X]
1−E[Y |F=1,T=0,X]
E[Y |F=0,T=0,X]

1−E[Y |F=0,T=0,X]

∗ E[Y |F=0,T=1,X]
1−E[Y |F=0,T=1,X]

1 +
E[Y |F=1,T=0,X]

1−E[Y |F=1,T=0,X]
E[Y |F=0,T=0,X]

1−E[Y |F=0,T=0,X]

∗ E[Y |F=0,T=1,X]
1−E[Y |F=0,T=1,X]

With iid assumptions (either on joint/separate observations over individuals) and appli-

cation of CLT and delta theorems, confidence intervals on the above policy impact can be

estimated.

However, it is possible to show that under the imposed assumptions, the conditional

expectations (conditioning on group and time) can be written as a logistic function with

group and time additive effects which suggests an alternative estimation approach.

Proof (ignoring covariates for now):

In the current setting with two groups and two time periods E[Y 0(T )|F,X]
1−E[Y 0(T )|F,X]

= l1(F )l2(T )

can be written without additional assumptions as

l1(F )l2(T ) = (β11 + β12F )(β21 + β22T )

Which can be written as

l1(F )l2(T ) =
1

β11

(1 +
β12

β11

F )(β21 + β22T )

=
1

β11β21

(1 +
β12

β11

F )(1 +
β22

β21

T )
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And since F,T are binary the above can be written as

l1(F )l2(T ) =
1

β11β21

(1 +
β12

β11

)F (1 +
β22

β21

)T

⇒ ln(l1(F )l2(T )) = ln(
1

β11β21

) + F ∗ ln((1 +
β12

β11

)) + T ∗ ln(1 +
β22

β21

)

⇒ eln(l1(F )l2(T )) = e
ln( 1

β11β21
)+F∗ln((1+

β12
β11

))+T∗ln(1+
β22
β21

)

⇒ l1(F )l2(T ) = eα0+α1F+α2T

where

α0 = ln(
1

β11β21

)

α1 = ln(1 +
β12

β11

)

α2 = ln(1 +
β22

β21

)

Finally, if

E[Y 0(T )|F ]

1− E[Y 0(T )|F ]
= l1(F )l2(T )

⇒ E[Y 0(T )|F ] =
l1(F )l2(T )

1 + l1(F )l2(T )

⇒ E[Y 0(T )|F ] =
eα0+α1F+α2T

1 + eα0+α1F+α2T

Also, going in the other direction, if the conditional expectation takes a logistic form with

group and time additive effects then the odds ratio is multiplicatively separable in group

and time effects.

Proof; if

E[Y 0(T )|F ] =
eα0+α1F+α2T

1 + eα0+α1F+α2T

⇒ E[Y 0(T )|F ]

1− E[Y 0(T )|F ]
= eα0+α1F+α2T

= eα0+α1F eα2T = l1(F )l2(T )

Where l1(F ) = eα0+α1F and l2(T ) = eα2T . This explains the close relationship between

this approach and that in Blundell et al. (2004b) - if the f(.) function in the Blundell

et al. (2004b) approach is assumed to be the logistic function, then in a model with no
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covariates the above shows that the rate of change of non-treated odds ratios must be the

same for both groups. Therefore, this approach provides interpretable restrictions that

lead to the estimation approach proposed in Blundell et al. (2004b).

The α coefficients are estimated using observed data on non-treated outcomes for males

in time periods T=0 and T=1 and on non-treated outcomes for females in time periods

T=0.

The impact of the policy can then be estimated from

E[Y 1(1)|F = 1]− E[Y 0(1)|F = 1] = E[Y |F = 1, T = 1]− eα0+α1+α2

1 + eα0+α1+α2

If observations are iid then the standard error of the policy impact can be estimated using

a combination of ML, a CLT for E[Y |F = 1, T = 1], the delta method, and the formula

for the variance of the sum of independent variables.

Note if it is also assumed that the conditional mean outcome for females in time period

T=1 (treated outcomes) can be modelled as a logistic function then the four conditional

mean outcomes can be modelled as

E[Y |F, T ] =
eα0+α1F+α2T+α3FT

1 + eα0+α1F+α2T+α3FT

where now the coefficients are estimated using observed data on non-treated outcomes for

males in time periods T=0 and T=1, on non-treated outcomes for females in time periods

T=0 and on treated outcomes for females in time period T=1.

And the impact of the policy can be estimated from

E[Y 1(1)|F = 1]− E[Y 0(1)|F = 1] =
eα0+α1+α2+α3

1 + eα0+α1+α2+α3
− eα0+α1+α2

1 + eα0+α1+α2

If the observations are assumed iid, then ML estimation is efficient, and application of the

delta method allows estimation of the standard error of the estimate of the policy impact.

If observations are not assumed to be iid, then pseudo maximum likelihood estimation can

be implemented, and subsequent application of the delta method allows estimation of the

standard error of the estimate of the policy impact.28

28A pseudo or quasi MLE estimator is defined as an estimator that maximises a log-likelihood function
that is misspecified (Cameron and Trivedi, 2005). For the class of linear exponential family densities (of
which the Bernoulli density belongs), the pseudo MLE estimator is consistent as long as the conditional
mean is correctly specified (Gourieroux et al., 1984). Suppose there is a dependence between some
observations. Therefore, the log-likelihood function based on an LEF density which assumes independence
between observations is misspecified, but will nonetheless provide a consistent estimator for the parameter
values of the conditional mean function, so long as the conditional mean function is correctly specified.
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With discrete covariates all the above follows through with the following specification:

l1(F,X)l2(T,X) =
∑
x∈X

1[X = x][(β11x + β12xF )(β21x + β22xT )]

However, for empirically tractability assumptions analogous to those discussed previously

are imposed; it is assumed that the covariates enter multiplicatively into l1(F,X) and

l2(T,X). In other words, it is assumed that

E[Y 0(T )|F,X]

1− E[Y 0(T )|F,X]
≡ l(F, T,X) = l1(F )l2(T )l3(X)

and furthermore, the function l3(X) is assumed log-linear.29 Therefore, note that the

conditional means of non-treated outcomes can be modelled:

E[Y 0(T )|F,X] =
eα0+α1F+α2T+βX

1 + eα0+α1F+α2T+βX

and the impact of the policy can be estimated from

E[Y 1(1)|F = 1, X]− E[Y 0(1)|F = 1, X] = E[Y |F = 1, T = 1, X]− eα0+α1+α2+βX

1 + eα0+α1+α2+βX

If it is also assumed that covariates enter multiplicatively into the odds ratio for treated

outcomes for females in period T=1 in the same way as they enter into the non-treated

odds ratios, then
E[Y 1(1)|F = 1, X]

1− E[Y 1(1)|F = 1, X]
= l4l3(X)

Therefore:
E[Y 1(1)|F = 1, X]

1− E[Y 1(1)|F = 1, X]
= eα3′+βX

Where α3′ = ln(l4) and

E[Y 1(1)|F = 1, X] =
eα3′+βX

1 + eα3′+βX

And the four observed conditional mean outcomes can be modelled as:

E[Y |F, T,X] =
eα0+α1F+α2T+α3FT+βX

1 + eα0+α1F+α2T+α3FT+βX

where α3 = α3′ − α0 − α1 − α2.

29l3(X) = eβX
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And the impact of the policy can be estimated from

E[Y 1(1)|F = 1, X]− E[Y 0(1)|F = 1, X] =
eα0+α1+α2+α3+βX

1 + eα0+α1+α2+α3+βX
− eα0+α1+α2+βX

1 + eα0+α1+α2+βX

What if there are substitution effects on the control group?

In this case, and maintaining the other assumptions, the impact of the policy on the

relative odds ratio can be estimated. There is by assumption,

E[Y 0(1)|F=1,X]
1−E[Y 0(1)|F=1,X]

E[Y 0(1)|F=0,X]
1−E[Y 0(1)|F=0,X]

=

E[Y 0(0)|F=1,X]
1−E[Y 0(0)|F=1,X]

E[Y 0(0)|F=0,X]
1−E[Y 0(0)|F=0,X]

Also, as shown in the above (with the multiplicative and log linearity assumptions on how

X enters the non-treated odds ratios)

E[Y 0(T )|F,X]

1− E[Y 0(T )|F,X]
= eα0+α1F+α2T+βX

Therefore,

E[Y 0(1)|F=1,X]
1−E[Y 0(1)|F=1,X]

E[Y 0(1)|F=0,X]
1−E[Y 0(1)|F=0,X]

=
eα0+α1+α2+βX

eα0+α2+βX

= eα1

Therefore, the impact of the policy on the relative odds ratio in time period T=1 can be

estimated from30

E[Y 1(1)|F=1,X]
1−E[Y 1(1)|F=1,X]

E[Y 1(1)|F=0,X]
1−E[Y 1(1)|F=0,X]

−
E[Y 0(1)|F=1,X]

1−E[Y 0(1)|F=1,X]

E[Y 0(1)|F=0,X]
1−E[Y 0(1)|F=0,X]

=

E[Y 1(1)|F=1,X]
1−E[Y 1(1)|F=1,X]

E[Y 1(1)|F=0,X]
1−E[Y 1(1)|F=0,X]

− eα1

If this is zero then the policy has no impact. If it is negative then it means that the policy

change decreased the odds ratio of females relative to males. If it is positive then it means

30Where α0, α1, β are estimated from the following (note that E[Y 0(T )|F,X] is observed now only for
(F=1,T=0) and (F=0,T=0))

E[Y 0(T )|F, T = 0, X] =
eα0+α1F+βX

1 + eα0+α1F+βX
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that the policy change increased the odds ratio of females relative to males.

If it is also assumed that covariates enter multiplicatively into the odds ratio for treated

outcomes for males and females in period T=1 in the same way as they enter into the

non-treated odds ratios, so

E[Y 1(1)|F,X]

1− E[Y 1(1)|F,X]
= l4(F )l3(X)

then:
E[Y 1(1)|F,X]

1− E[Y 1(1)|F,X]
= eα2′′+α3′′F+βX

Where α2′′ = ln(l4(F = 0)), α3′′ = ln(l4(F = 1))− ln(l4(F = 0)) and

E[Y 1(1)|F,X] =
eα2′′+α3′′F+βX

1 + eα2′′+α3′′F+βX

And the four observed conditional mean outcomes can be modelled as:

E[Y |F, T,X] =
eα0+α1F+α2T+α3FT+βX

1 + eα0+α1F+α2T+α3FT+βX

where α2 = α2′′ − α0

and α3 = α3′′ − α1

and the impact of the policy on the relative odds ratio in time period T=1 can be estimated

from

E[Y 1(1)|F=1,X]
1−E[Y 1(1)|F=1,X]

E[Y 1(1)|F=0,X]
1−E[Y 1(1)|F=0,X]

−
E[Y 0(1)|F=1,X]

1−E[Y 0(1)|F=1,X]

E[Y 0(1)|F=0,X]
1−E[Y 0(1)|F=0,X]

=

eα0+α1+α2+α3+βX

eα0+α2+βX
− eα0+α1+βX

eα0+βX
=

eα1+α3 − eα1 =

eα1(eα3 − 1)

As before, if the observations are assumed iid, then ML estimation is efficient, and appli-

cation of the delta method allows estimation of the standard error of the impact of the

policy. If observations are not assumed to be iid, pseudo maximum likelihood estimation

can be used, and subsequent application of the delta method allows estimation of the

standard error of the impact of the policy.

Beyond Relative Effects

In the standard difference in differences model (for continuous outcomes), a positive rela-

tive treatment effect in the presence of substitution effects can be found when the treatment
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and control groups are both positively impacted by the policy change, both negatively im-

pacted by the policy change or when the treatment group is positively effected and the

control group negatively impacted. Without further assumptions nothing more can be in-

ferred about the direction or magnitude of the treatment effect for either group. However, if

the theory suggests that the treatment group are positively impacted by the policy change,

then the impact of the policy effect can be bounded from below for both the treatment

and the control group. The treatment group has a lower bound simply of zero, and the

control group has a lower bound of −b2, where b2 is the estimate from the interaction term

in the standard difference in differences model; b2 = E[Y1−Y0|G = T ]−E[Y1−Y0|G = C]

where G=T for the treatment group and G=C for the control group.

If the theory suggests that the control group are negatively impacted by the policy change,

then the impact of the policy effect can be bounded from above for both the treatment

and the control groups. The control group has an upper bound of zero, and the treatment

group has an upper bound of b2.

If both assumptions hold (the treatment group are positively impacted and the control

group negatively impacted), then the treatment effect for the treated group lies in the

interval [0, b2], and the treatment effect for the control group lies in the interval [−b2,0].31

The same intuition holds in the binary difference in differences model. An increase in the

relative odds ratio due to a policy change in the presence of substitution effects could be

found when there are positive treatment effects for both the treatment and control group,

negative treatment effects for both the treatment and control group, or when there are

positive treatment effects for the treatment group and negative treatment effects for the

control group. Note that an increase in the relative odds ratio corresponds to the case

where α3 > 0. Under the same assumptions (the treatment group (females) are positively

impacted and the control group (males) are negatively impacted), then the treatment effect

for females lies in the interval [0, eα0+α1+α2+α3+βX

1+eα0+α1+α2+α3+βX − eα0+α1+α2+βX

1+eα0+α1+α2+βX ] and the treatment

effect for males lies in the interval [ eα0+α2+βX

1+eα0+α2+βX − eα0+α2+α3+βX

1+eα0+α2+α3+βX , 0 ].32

31If a negative relative treatment effect was estimated (b2 < 0), and it is assumed that the treatment
group are negatively impacted and the control group positively impacted, then the treatment effect for
the treatment group lies in the interval [b2,0], and the treatment effect for the control group lies in the
interval [0,−b2].

32If there is an estimated decrease in the relative odds ratio, and the impact on the treated group
(females) is assumed negative and the impact on the control group (males) assumed positive, then the

treatment effect for females lies in the interval [ eα0+α1+α2+α3+βX

1+eα0+α1+α2+α3+βX − eα0+α1+α2+βX

1+eα0+α1+α2+βX ,0] and the treatment

effect for males lies in the interval [0, eα0+α2+βX

1+eα0+α2+βX − eα0+α2+α3+βX

1+eα0+α2+α3+βX ].
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5.5 Legislative Environment

Some form of legislated maternity benefits have existed in the United Kingdom since the

introduction of the National Insurance Act (1911). There have been many changes to the

legislation and provisions since then, which are reviewed in detail in Appendix 5B. This

section focuses on changes to maternity benefits between 1996 and 2007. The period from

1996 - 2006 is used as a placebo period in the empirical analysis, with the policy change

under analysis being implemented in 2007.

There were two major policy changes impacting maternity benefits in the time period

over which the placebo analysis is carried out (1996-2006). Prior to this period, all female

employees had the right to 14 weeks of maternity leave (which was not necessarily paid).33

To receive statutory maternity pay (SMP) (paid for up to 18 weeks) from your employer

you typically had to be continuously employed for 26 weeks before the expected week

of childbirth. To receive state maternity allowance (also paid for up to 18 weeks) you

typically had to have made at least 26 national insurance contributions in the previous

year. The first 6 weeks of statutory maternity pay were paid at 90% of average weekly

earnings, with the remaining 12 weeks being paid at a flat rate set by the government each

year (which was £54.55 in 1996, which was the equivalent of £89.35 in 2013). The state

maternity allowance was paid at the flat SMP rate.34 92% of SMP was reclaimable by

the employer through a rebate from the government. However small employers (defined

as those whose annual contributing payments did not exceed £20,000) received a rebate

of 104% of the SMP paid.35 If an employee had been continuously employed for 2 years

they typically qualified for an additional leave period, which ended 29 weeks after birth.

The first major policy change in the placebo period occurred in 1999, and applied to

women whose expected week of childbirth began on or after 30th April 2000. The amount

of maternity leave all employees were entitled to was increased from 14 to 18 weeks. The

tenure qualifying condition for the additional leave period was decreased from 2 years

of continuous employment to 1 year of continuous employment. Unpaid parental leave

of up to 13 weeks was also introduced, with a maximum of 4 weeks in any one year.

Additionally, in 1999 an exemption was introduced for small employees which stated an

employee being dismissed for any reason connected with her pregnancy or maternity leave

was not considered to have been unfairly dismissed if her employer had fewer than five

employees. Finally, the earnings qualifying rule for the state maternity allowance was

changed, and an earnings related aspect was introduced which impacted low earners.36

332 weeks of which were compulsory immediately after birth
34There were complicated earnings qualifying rules to qualify for SMP, the higher rate of SMP and the

state maternity allowance - see Appendix 5B for more details
35This percentage was changed slightly over time, and the annual contribution level was increased to

£45,000 in 2004 - see Appendix 5B for more details
36See Appendix 5B for more details
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The second major policy change in the policy period occurred in 2002, and applied to

women whose expected week of childbirth began on or after 6th April 2003. The amount

of maternity leave all employees were entitled to was increased from 18 to 26 weeks.

The additional leave period was changed from being up until the 29th week after birth

to being the 26 week period continuing on from the first 26 week leave period. The

tenure qualifying condition for this leave period was changed from 1 year of continuous

employment to 26 weeks of continuous employment. In 2002, paid paternity leave of

2 weeks was also introduced, which had a tenure qualifying condition of 26 weeks of

continuous employment.37 Since the policy changes in 1999 and 2002 changed parental

leave rights for both male and female employees simultaneously, the predicted direction of

initial relative labour market effects would depend on the anticipated impact of the policy

changes on relative male-female leave taking.

The key policy change of interest occurred in 2006. This legislative change was passed

into law on the 1st October 2006, with women who qualified for SMP/the state maternity

allowance, and whose expected week of childbirth fell on or after the 1st April 2007, being

eligible for an additional 13 weeks of paid maternity leave/maternity allowance. This gave

a maximum statutory paid maternity leave duration of 39 weeks compared to 26 weeks

previously. In addition from the 1st April 2007, the tenure required to qualify for the

additional maternity leave period was abolished, implying that all employed women were

entitled to a job-protected leave period of up to 52 weeks. At this juncture, the small

employer exemption introduced in 1999 was also removed, which meant that all employees

had the right to return to the same or similar job regardless of the size of her employer’s

firm. As with the other changes, this affected employees whose expected week of childbirth

began on or after the 1st April 2007.

The intention to increase paid maternity leave duration was published in the Labour

Party’s 2005 election manifesto on 13th April 2005 (The Labour Party, 2005), where they

stated their intention to increase paid maternity leave from 26 to 39 weeks. The election

took place on 5th May 2005, resulting in a Labour majority. In the analysis it is assumed

that employers react to the actual legislative change that took place on 1st October 2006

rather than proposed legislative change. If this assumption is invalid, and in fact employers

pre-empt the legislative change then it is possible that the estimation approach results in

a downwards biased estimate of the impact of the policy change.

37The rate of statutory paternity pay was equivalent to that of female employee on the state maternity
allowance, and had the same earnings qualifying rule
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5.6 Data and Empirical Specification

The analysis in this chapter is based on data from the UK Labour Force Survey (LFS)38.

The analysis uses a quasi-experimental difference in differences approach, comparing the

change in female versus male outcomes during a period in which an expansion in maternity

leave legislation occurred.

Most of the analysis uses LFS data from quarters 2 and 3 (April - September) in 2006

and 2007. The legislative change occurred in October 2006, but only started affecting

women whose expected week of childbirth began on or after the 1st April 2007. There-

fore, employers looking to avoid the additional costs associated with women taking longer

periods of maternity leave did not have to react immediately.39 Therefore, the six month

period running from the 1st April 2007 until the 30th September 2007 is taken as the

after period, and the corresponding period in 2006 as the before period. Using only this 6

month window is beneficial as it avoids the potentially confounding effect of higher num-

bers of retained job matches (amongst women who wanted to take more than 6 months of

maternity leave), and also the effect of greater human capital depreciation among women

coming back into the labour market after taking longer periods of maternity leave.

The analysis focuses on relative male-female outcomes aged between 25-34. This age

category is chosen as the majority of births (over 50%) are to mothers in this age range

in 2007 (see Figure 5.1). The probability of giving birth each year for women in this

age category was over 10% in 2007 (compared to 3.5% for females aged under 20, 7.9%

for females aged 20-24, 4.8% for females aged 35-39 and 0.9% for females aged over 40 -

see Figure 2). Estimates for those aged 16-24, 35-44 and over 45 are also presented as a

comparison.

The key outcomes considered are hourly wages, employment conditional on participation,

redundancy and hiring (new starts and job changers combined). Hourly wages of em-

ployed individuals are considered (excluding self-employed). The hourly wage outcome

is measured using the hourpay variable in the LFS dataset for the most part, which is

constructed using gross reported last earnings, the period of time that payment covered

and paid hours of work (including paid overtime). From 1999 individuals in the LFS were

asked whether their gross reported last earnings was the same as that received each similar

period. For those that reported no, this analysis replaces the hourpay variable with the

38Office for National Statistics. Social and Vital Statistics Division and Northern Ireland Statistics
and Research Agency. Central Survey Unit, Quarterly Labour Force Survey, [multiple computer files].
Colchester, Essex: UK Data Archive [distributor]

39Estimates using the entire October 2006-September 2007 period as the after period (and the corre-
sponding period 12 months earlier for the before period) may provide an estimate of an average of the
total effect and the effect during the phase-in period. The size of the effect on hourly wages was found to
be approximately 2

3 of the magnitude of the effect estimated when using the period April 2007-September
2007 was used as the after period (and the corresponding period 12 months earlier for the before period),
and statistically significant at the same level.
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hourly wage corresponding to the gross reported typical earnings. Since there may have

been a fertility response to the legislative change, and while on maternity leave employees

often receive some proportion of their typical earnings, this approach avoids picking up

this confounding effect in the comparison of male and female earnings. All earnings are

adjusted for inflation using the ONS annual RPI figures.

Individuals are counted as in employment in accordance with the LFS definitions of em-

ployment. Therefore, employees, self-employed, those in government employment or train-

ing programmes and unpaid family workers are treated as being employed. Those in the

labour force (seeking and available for work) are treated as unemployed.

Experience of redundancy in the previous three months is analysed. This time period

is analysed because employees are only asked if and why they left a paid job if they

started a new job in the previous 3 months (whereas unemployed individuals are asked if

they have become unemployed in the previous 8 years). Individuals are treated as having

experienced redundancy if they stated that the reason they left their last job was due to

being dismissed, or they were made redundant or took voluntary redundancy (voluntary

redundancy was unfortunately not asked as a separate category).

Experience of starting a new job (either from unemployment or job change) in the previous

three months is also analysed. Unemployed individuals are assumed not to have started a

job within the previous three months.

The impact of the policy change on continuous variables is analysed using the following

difference in differences equation

Yi(T ) = a1 + a2Fi + a3Xi + (b1 + c1)Ti + b2FiTi + εit

where b2 is the estimate of the differential impact of the policy change on females com-

pared to males (as discussed in the methodology section). There is an overlapping panel

structure in the LFS, whereby participants recruited into the LFS are surveyed over 5

quarters. Therefore, some individuals may appear in the data set twice. It is not possible

to identify these individuals in the standard LFS data files. This introduces potential

serial correlation. To account for this, cluster-robust standard errors are reported, with

clustering on region-industry level. Under the assumption that individuals observed twice

remain in the same region-industry group, this method will account for serial correlation.

This approach also allows for group errors at the region-industry level.

The impact of the policy change for binary outcome variables is analysed using a logit

model

E[Y |F, T,X] =
eα0+α1F+α2T+α3FT+βX

1 + eα0+α1F+α2T+α3FT+βX
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where the impact of the policy on the relative odds ratio is estimated from eα1(eα3 −
1) (as discussed in the methodology section). To allow for repeated observations and

possible error correlation, pseudo maximum likelihood was used to estimate the above

model. Results for discrete variables assuming a linear probability model with the above

specification are also estimated, with robust standard errors reported.

The set of control variables common to all analysis are; age finished continuous full time

education, government office region and an indicator for whether the individual was born

in the UK. For the wage analysis, industry-region fixed effects are included, as well as an

indicator for part time/full time status and an indicator for public or private sector. The

redundancy analysis controls for the industry in which you were made redundant from (or

if you were not made redundant, your current or last industry). Furthermore, 1% of wages

are trimmed above and below to avoid undue influence of outliers. The analysis does not

include individuals who report they left full time education at an age younger than 12 or

older than 30.40 See Table 5.1 for summary statistics of the outcome and control variables.

5.7 Results

5.7.1 First Stage

The first set of results look at whether the policy change impacted the amount of leave

taken by females relative to males of the same age. A difference in differences model is

used to analyse this, with the after period being April - September 2008 and the before

period being April - September 2006. It is assumed that the rate of change in the female

and male odds ratio of being on leave between 2006 and 2008 would have been the same

in the absence of a policy change. Note that the after period is different from that used in

the main outcome analysis. The justification for this is because the aim is to compare a

group of women who are affected by the policy change to a group of women not affected.

The LFS has information on whether the youngest child in your family unit is under 1,

but the age is not more specifically determinable. Therefore, whereas all women from

April 2008 with a child under the age of 1 qualified for the more generous leave allowance,

this was not the case for all women with a child under the age of 1 in the previous year.

Some of these women would have had their child after April 2007 and qualified, and some

before.

In the first instance, the impact of the policy change on being on leave from paid work is

estimated. Individuals who had a paid job in the reference week are considered. Individuals

who had a paid job in the reference week, which they were away from temporarily, were

40This only results in 25 people aged 25-34 being dropped from the wage analysis, and does not affect
the results.
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said to be on leave.41 Column 2 of Table 5.2 shows a significant increase in the relative

odds ratio of a female employee being on leave compared to a male employee over the

period 2006-2008. Table 5.3 shows the corresponding results from an LPM model, which

estimates a 1.3% increase in the fraction of 25-34 year old females on leave relative to

males over the period 2006-2008.

An alternative approach is also followed, where the impact of the policy change on parental

leave taken by females relative to males is decomposed into an increase due to a fertility

response and an increase due to changing lengths of maternity/paternity leave taken. The

average length of time out of the labour market for a female employee due to maternity

leave is given by:

E[ML] = λFγFL

where γFL denotes the fertility rate of a female employee and λF represents the average

leave taken by a female worker who gives birth that year. The average length of time out

of the labour market for a male employee due to paternity leave is given by:

E[PL] = λMγML

where γML denotes the probability a male employee has a child, and λM represents the

average leave taken by a male worker who has a child that year. Therefore note that the

gap in the average length of time out of the labour market for a female employee compared

to a male employee due to parental leave is given by:

E[ML− PL] = λFγFL − λMγML

Therefore,

dE[ML− FL]

dθ
=
∂E[ML− PL]

∂λF

dλF
dθ

+
∂E[ML− PL]

∂γFL

dγFL
dθ

+
∂E[ML− PL]

∂λM

dλM
dθ

+
∂E[ML− PL]

∂γML

dγML

dθ

→ dE[ML− PL]

dθ
= γFL

dλF
dθ

+ λF
dγFL
dθ
− γML

dλM
dθ
− λM

dγML

dθ

The results from this analysis are shown in Table 5.4.42 γFL (γML) is estimated from the

41They are many leave reasons besides parental leave, however, if patterns of uptake of non-parental
leave did not change for females relative to males across the comparison period then comparing aggregate
leave before and after should give an estimate of the relative impact of the policy change on parental leave
uptake of females relative to males.

42Since the policy reform brought about a discrete change in the duration of maternity leave, this
decomposition analysis implicitly assumes a linear response of fertility/parental leave to changes in the
duration of maternity leave
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proportion of females (males) who have a paid job (which they may have been away from)

and who have a child under the age of 1 in 2006. λF (λM) is estimated from the mean

number of females (males) with a child under the age of 1 and who have a paid job in

2006 from which they were on leave from. dγFL
dθ

(dγML

dθ
) is estimated from a single difference

linear probability model of females (males), estimating the increase in the fertility rate of

females who have a paid job (paternity rate of males) from 2006 to 2008, controlling for age

finished full time continuous education, region of residence and indicator for whether UK

born. dλF
dθ

(dλM
dθ

) is estimated from a single difference linear probability model of females

(males), estimating the increase in the proportion of female (male) individuals on leave

from a paid job amongst those with a child under the age of 1 between 2006 and 2008,

also controlling for age finished full time continuous education, region of residence and

indicator for whether UK born. Since the sample of individuals used to estimate fertility

rates and leave rates in 2006 are also used in the regression analysis to estimate the changes

in fertility rates and leave rates, the female/male set of parameters are estimated using a

GMM model (a separate model is used for males/females, and the male and female samples

are assumed to be independent). Results are reported only for the age categories 25-34

and 35-44. This is because the GMM estimation did not converge for the age category

16-24 due to the low probability of men in this age category having children. Similarly,

the procedure did not converge for the age category 45-64 due to the low probability of

women in this age category having children.

As shown in Table 5.4, the maternity-paternity leave gap was estimated to increase by

1.00% for the 25-34 age group and by 0.43% for the 35-44 age group. Approximately half of

the divergence in leave taking is explained by the increase in the number of females having

children and half explained by the increase in the duration of maternity leave taken.43

5.7.2 Impact on Wages

The key testable model prediction is that an increase in maternity leave uptake will lead

to an increase in the male-female wage gap. In this section whether or not there is any

empirical evidence to support this is discussed. Table 5.5 shows the results from the

difference in differences analysis, which compares female and male wage growth over the

43Note that in the model male/female wages are assumed not to impact upon fertility rates or length
of maternity leave. A more complicated model could have allowed for this dependence. For instance,
the probability a female worker has a child could be modelled as γ(θ, w∗m, w

∗
f ) instead of γ(θ). Similarly,

the average length of leave taken could have been modelled as a function of equilibrium wages as well as
legislated leave. This would not change the models implications hugely, so long as the partial derivative
of second period labour with respect to male (and female) wages remains positive. What happens to the

derivation is that
∂L2(Sm(w∗m,θ),Sf (w

∗
f ,θ),δ(θ,w

∗
m,w

∗
f )))

∂w∗m
becomes

∂L2(Sm(w∗m,θ),Sf (w
∗
f ,θ),δ(θ,w

∗
m,w

∗
f )))

∂Sm(w∗m,θ)
∂Sm(w∗m,θ)

∂w∗m
+

∂L2(Sm(w∗m,θ),Sf (w
∗
f ,θ),δ(θ,w

∗
m,w

∗
f )))

∂δ(θ,w∗m,w
∗
f )

∂δ(θ,w∗m,w
∗
f )

∂w∗m
instead of

∂L2(Sm(w∗m,θ),Sf (w
∗
f ,θ),δ(θ)))

∂Sm(w∗m,θ)
∂Sm(w∗m,θ)

∂w∗m
. The conclu-

sions in the model section remain unchanged if ∂L2

∂w∗m
remains positive.
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period 2006-2007. The empirical results suggest there was a large and significant negative

impact on the wages of females relative to males in the age group 25-34. This is in line

with the model implications. The model estimated that the male-female wage gap for

those aged 25-34 increased by £0.29.44 There was a smaller negative impact estimated for

the relative wages of females compared to males for the 16-24 age group (this age group

also experienced a large divergence in male-female leave uptake after the policy change),

however the impact was not estimated to be significant.

In Figure 5.3 the results from a placebo analysis are presented for the age group 25-34.

This placebo analysis estimates the same difference in differences model using previous

comparison years (so the 2006 figure represents the 2005-2006 comparison, 2005 represents

the 2004-2005 comparison, etc.). There are a couple of observations to make. Firstly, the

estimated impact for the relevant year (2007 versus 2006) is the largest negative impact

across the 11 estimates. Secondly, across the 11 year period there is only one other year for

which a statistically significant estimate is found; 2005. However, this significant estimate

went in the opposite direction to the estimated policy effect. Therefore, to the extent that

the significant value estimate for 2005 suggests the common trends assumption may be

invalid, it in fact suggests that the male-female wage gap is converging. In light of this,

the diverging estimate found for 2007 is even stronger evidence in favour of a negative

impact of the policy on relative female wages.

The large convergence in the male-female wage gap estimated between 2004-2005 might be

due to a number of factors. The then Prime Minister Tony Blair established a Women and

Work Commission which focused on narrowing the gender pay gap in July 2004.45 One

proposal that received some media coverage at the time was the possible implementation of

equal pay reviews, which may have impacted relative male-female wages.46 There were also

a number of high profile equal pay cases, for instance the North Cumbria Acute NHS Trust

v Unison Trade Union case47 and the Home Office v Bailey case48. Additionally, the Equal

Opportunities Commission (subsumed by the Equality and Human Rights Commission

in 2007) launched a pregnancy discrimination campaign in January 2005, which they

estimated was heard or seen by 50% of the population at least twice (Equal Opportunities

Commission, 2005). Finally, the Sex Discrimination Act (1975) was amended in 2005

by the Employment Equality (Sex Discrimination) Regulations (2005), which explicitly

stated that differential treatment due to pregnancy or maternity leave amounted to sex

discrimination (although this had previously been established by case law).

More evidence supporting the common trends assumption is shown in Figure 5.4a - Figure

44This corresponds to 2.4% of average male wages, or 2.7% of average female wages
45BBC News (2004)
46The Sunday Times (2005)
47The Guardian (2005)
48The Times (2005)
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5.4f. Figures 5.4a, 5.4c and 5.4e show the time trend of male and female conditional

wages in the age group 25-34 over the period 1996-2006, allowing for a cubic, quadratic

or linear time trend respectively.49 Mean male and female wages seem to follow parallel

trends over the period, however further analysis of the predicted mean male-female wage

gap over this time period (Figures 5.4b, 5.4d and 5.4f) suggests that the gap may have

been converging during this period. Again, as with the placebo analysis, evidence of the

diverging impact of the policy change on the male-female wage gap is made stronger in

view of this converging trend.

Table 5.6 shows the difference in differences estimation for the sample without any depen-

dent children. Although the estimate is no longer statistically significant (due to a halving

of the sample size), the magnitude of the estimated relative treatment effect is of the same

order (the male-female wage gap for those without children aged 25-34 was estimated to

increase by £0.23).

There are a number of channels through which selection on unobservables could affect

the results. Heterogeneous fertility responses, participation choices and experience of

redundancy and hiring could imply that the group of workers in 2007 are not comparable

to those observed in 2006. Intuitively, it might be assumed that positive fertility responses

are most likely amongst those with weak labour market attachment and lower wages.

Similarly, redundancies might be more common among the group of females with the

lowest match surplus, which might also be expected to be the lowest wage workers. By

the same argument, newly hired female workers may have to generate a higher surplus

in order to be hired (higher productivity workers). Working in the opposite direction,

the largest labour market participation effects might be expected among the group of low

potential wage earners. Therefore, it is not clear a priori in which direction the selection

effect would work. However, there is little evidence of any positive participation effects in

response to the policy change. Estimates of the impact of the policy change on relative

participation effects are shown in Table 5.7, under the assumption that the rate of change

in the odds ratio for male/female labour market participation would have been the same

if there had been no policy change.50 A small negative estimate was found, implying

that the odds of female participation actually decreased relative to males. This suggests

that negative selection effects may be ruled out. To the extent that there are remaining

selection effects through the fertility/redundancy/hiring mechanisms, they are expected

to have a positive impact on the difference in differences estimate. And so the negative

difference in differences estimate still stands as evidence of deteriorating female labour

market outcomes as a result of the policy.

49This is estimated by assuming covariates affect male and female wages in the same way over time,
but allowing for separate male/female time trends otherwise.

50Results from an LPM model are presented in Table 5.8.
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Further evidence in favour of this argument comes from comparing predicted wages of

the sample of employed individuals before and after the policy change. To the extent

that there is any selection on unobservables you might reasonably expect the selection

on observables to work in the same direction. A t-test comparing the difference in mean

predicted female wages of the sample of working females after the policy change and the

sample of working females before the policy change (excluding the impact of the time

trend/estimated policy effect) suggests that the sample of women working after the policy

change were positively selected relative to the sample working before the policy change.

The predicted mean hourly wage for females in the pre-period was £10.48 compared to

£10.53 in the post-period. The £0.05 gap has a p-value of 0.08. This is evidence in

support of the above discussion.51

5.7.3 Impact on Employment

Although there are no model predictions relating to relative male/female employment

rates, a common trends assumption can still allow for estimation of the impact of the policy

change on relative male/female employment outcomes. Table 5.9 shows that although

negative, the impact on the relative odds ratio of female-male employment was not found

to be statistically significant. The placebo analysis in Figure 5.5 also suggests that 2007

was nothing out of the ordinary in the evolution of male-female relative odds ratio of

employment (in the age category 25-34). The trend analysis in Figure 5.6 also corroborates

this; the analysis of the male-female relative odds ratio of conditional employment suggests

that the relative odds ratio was decreasing over time, and so the small (insignificant)

decrease in relative conditional employment rates in 2007 seem to be in line with other

years. The corresponding analysis using the LPM is shown in Table 5.10 and in Figures

5.7 and 5.8.

As noted in Curtis et al. (2014), a change in policy that impacts the labour market

should be observed more quickly on labour market flows (redundancies and hires) than

on aggregate levels. While it may take time to adjust to a new aggregate equilibrium,

short term effects may be more quickly observable in flow data. Therefore, how relative

female-male redundancy and hiring rates changed between 2006 and 2007 are analysed.

Table 5.11 suggests that the odds ratio of female redundancy increased significantly relative

to males over the period in question for the age group 25-34. The placebo analysis shown

in Figure 5.9 shows that the positive impact on the female-male relative odds ratio was the

largest absolute impact estimated over the 11 year period. Furthermore, the trend analysis

in Figure 5.10 suggests that the discrete model version of the common trends assumption

51A similar analysis for males suggest the sample of males observed working after the policy change
were in fact negatively selected relative to the sample working before the policy change.
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is not rejected (constant relative odds ratio). The same analysis using the LPM model is

presented in Table 5.12, with the placebo analysis in Figure 5.11 and the trend analysis

in Figure 5.12. These results corroborate the finding that female redundancies increased

relative to males as a result of the longer paid maternity leave duration.

Finally, Table 5.13 suggests that the policy change had little impact on the odds ratio of

female hiring relative to males. The estimate is slightly negative, but is not statistically

significant. This outcome variable measures both hiring from unemployment and job

switches. The placebo analysis in Figure 5.13 also suggests that 2007 was nothing out

of the ordinary in the evolution of male-female relative odds ratio of hiring (in the age

category 25-34). The trend analysis in Figure 5.14 also corroborates this. One explanation

for this finding in the context of the other results, which suggest female labour market

outcomes deteriorated, is that the employees hired to cover the higher number of female

employees taking longer or more frequent maternity leave tended to female workers (due

to occupational sorting), thus hiding any potential negative impact of the policy change

on relative female-male hiring rates. Table 5.14 and Figure 5.15 and Figure 5.16 show the

corresponding analysis using an LPM model.

5.8 Conclusion

A simple theoretical model was proposed, which suggests that differential levels of parental

leave taken by male and female employees could contribute to the persistent male-female

wage gap. A key model implication is that an increase in maternity leave uptake is

associated with an increasing male-female wage gap.

A legislative change in the length of paid maternity leave/state maternity allowance that

created an exogenous expansion in the uptake of maternity leave was used in a quasi-

experimental estimation approach. The policy change increased the statutory maternity

pay period and the state maternity allowance period from a maximum of 26 to 39 weeks.

Empirical evidence of a significant first stage effect was found, with the policy change

engendering a divergence in the amount of parental leave taken by female compared to

male employees. A decomposition analysis provides evidence that most of this divergence

was explained by female behaviour - both through increasing fertility and an increase in

maternity leave duration.

Empirical evidence suggests that the extension in paid maternity leave led to a decrease

in relative female wages for the age group 25-34. Empirical evidence was also found of

an impact on relative female redundancy rates, with females relatively more likely than

males to experience redundancy after the maternity leave expansion.

There was little evidence of an impact on aggregate employment levels, perhaps because

of the longer time it would take for the impact of the legislative change to show up
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in aggregate employment figures (Curtis et al., 2014). Furthermore, the policy change

did not appear to have a large impact on relative female hiring rates. This might be

explained by the higher number of hires needed to replace females going on more frequent,

longer maternity leave, and that due to occupational sorting females employees tend to

be replaced by other females.
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Figure 5.1: Births by age of mother - 2007
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Source: ONS Birth Summary Tables, England and Wales 2013

Figure 5.2: Fertility by age of mother - 2007
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Table 5.1: Descriptives - aged 25-34

2006 2007 2008

Male Female Male Female Male Female
Age 29.75 29.78 29.79 29.71 29.67 29.65
Age left full time education 18.61 18.61 18.64 18.72 18.75 18.81
Region
North East 4.17% 4.49% 4.47% 4.17% 4.50% 4.15%
North West 8.44% 8.79% 9.19% 8.70% 9.15% 8.99%
Merseyside 1.89% 1.87% 1.64% 2.04% 1.98% 2.35%
Yorkshire and Humberside 8.97% 9.11% 8.93% 9.01% 9.00% 8.91%
East Midlands 7.09% 7.32% 6.83% 7.13% 7.87% 7.66%
West Midlands 8.64% 8.78% 7.46% 8.04% 8.11% 8.58%
Eastern 9.31% 8.31% 9.90% 9.48% 9.17% 8.72%
London 12.86% 12.88% 12.91% 13.02% 12.88% 12.90%
South East 13.00% 13.03% 12.87% 13.67% 12.77% 12.94%
South West 7.71% 8.17% 8.02% 7.77% 7.83% 7.47%
Wales 4.68% 4.79% 4.36% 5.03% 4.41% 4.88%
Scotland 8.53% 8.02% 8.19% 7.75% 7.72% 7.77%
Northern Ireland 4.72% 4.44% 5.23% 4.20% 4.62% 4.68%

UK born 84.28% 84.63% 82.25% 82.64% 81.53% 81.19%
Child under 1 8.68% 10.43% 9.00% 10.97% 9.93% 11.51%
On leave 6.14% 14.50% 6.23% 14.90% 5.69% 15.25%
On leave - child under 1 5.68% 62.29% 7.81% 61.74% 6.88% 68.02%
Participation 93.57% 76.51% 93.91% 76.08% 93.48% 76.87%
Employed 95.04% 95.28% 95.74% 95.42% 95.06% 95.01%
Hourlywage 11.27 10.17 11.92 10.64 12.08 10.71
Paid hours 41.10 32.61 41.15 32.74 40.88 32.88
Unpaid hours 1.63 1.57 1.67 1.57 1.69 1.61
Redundancy 0.84% 0.44% 0.60% 0.57% 0.91% 0.43%
Redundancy incl temp 1.46% 1.12% 1.29% 1.11% 1.51% 0.95%
Hired 6.47% 6.67% 7.14% 7.05% 6.01% 5.80%
Permanency 95.39% 94.57% 95.70% 94.13% 95.98% 95.05%
Public sector 15.21% 32.66% 14.53% 32.33% 15.63% 32.07%
Self employed 12.76% 5.80% 12.41% 5.88% 12.51% 5.88%
Small firm 24.72% 22.22% 25.76% 21.92% 25.95% 21.76%
Small firm leq 10 14.03% 11.90% 14.63% 12.10% 14.66% 11.43%
Part time 4.97% 35.65% 4.79% 34.01% 5.42% 33.95%
Current Industry
Agriculture and fishing 1.73% 0.41% 1.61% 0.39% 1.70% 0.70%
Energy and water 1.33% 0.72% 1.75% 0.93% 1.58% 0.80%
Manufacturing 17.93% 7.73% 17.11% 8.27% 16.51% 8.04%
Construction 13.28% 2.11% 13.85% 1.58% 13.25% 1.69%
Distribution, hotels and restaurants 16.81% 17.61% 16.63% 17.05% 17.26% 17.34%
Transport and communication 8.79% 4.21% 8.46% 4.18% 8.20% 3.83%
Banking, finance and insurance 19.92% 18.25% 20.59% 19.50% 19.62% 19.54%
Public admin, educ. health & other 20.22% 48.95% 20.00% 48.09% 21.89% 48.07%

N 11,019 12,982 10,806 12,715 9,357 10,836
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Table 5.2: Leave 2006-2008 - Logit Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.398*** 0.942*** 0.666*** 0.340***
(0.086) (0.051) (0.040) (0.032)

yearb -0.069 -0.079 -0.022 -0.046
(0.097) (0.063) (0.047) (0.034)

femaleyearb 0.106 0.146* 0.026 -0.011
(0.128) (0.077) (0.060) (0.047)

Constant -2.613*** -2.998*** -3.493*** -2.958***
(0.337) (0.167) (0.143) (0.111)

Observations 15,970 35,347 49,060 74,205
Impact on R.O.R. 0.167 0.404* 0.050 -0.015

(0.203) (0.214) (0.119) (0.066)

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK

(2) Could be away for work for many reasons - parental leave,
holiday, sick/injured, training course, started new/changing job,
etc.

(3) yearb = 0 if observation year is 2006, yearb = 1 if observation
year is 2008

(4) Estimation is by quasi-maximum likelihood.

(5) The impact on R.O.R. measures the change in the odds ratio
of a female being on leave relative to a male
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Table 5.3: Leave 2006-2008 - LPM Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.025*** 0.083*** 0.064*** 0.034***
(0.005) (0.004) (0.004) (0.003)

yearb -0.004 -0.004 -0.002 -0.004
(0.005) (0.004) (0.003) (0.003)

femaleyearb 0.006 0.013* 0.002 -0.002
(0.008) (0.006) (0.006) (0.005)

Constant 0.075*** 0.040*** -0.020 0.025**
(0.023) (0.015) (0.013) (0.011)

Observations 15,970 35,347 49,060 74,205
R-squared 0.005 0.023 0.013 0.004

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, GOR
region and dummy for whether born in UK

(2) Could be away for work for many reasons - parental
leave, holiday, sick/injured, training course, started
new/changing job, etc.

(3) yearb = 0 if observation year is 2006, yearb = 1 if
observation year is 2008
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Table 5.4: Decomposition of change in parental leave of females relative to males 2006-2008

(1) (2)
25-34 35-44

Fertility in 2006 0.088*** 0.031***
γFL (0.003) (0.002)
Paternity in 2006 0.090*** 0.051***
γML (0.003) (0.002)
Maternity leave in 2006 0.623*** 0.624***
λF (0.017) (0.024)
Paternity leave in 2006 0.057*** 0.098***
λM (0.008) (0.011)

Change in fertility 2006-2008 0.010** 0.003
dγFL
dθ (LPM) (0.004) (0.002)

Change in paternity 2006-2008 0.012*** 0.004
dγML
dθ (LPM) (0.004) (0.003)

Change in maternity leave 2006-2008 0.066*** 0.053
dλF
dθ (LPM) (0.024) (0.034)

Change in paternity leave 2006-2008 0.013 -0.020
dλM
dθ (LPM) (0.012) (0.015)

Due to Increase in fertility 0.006** 0.002

λF
dγFL
dθ (0.003) (0.001)

Due to Increase in maternity leave 0.006*** 0.002

γFL
dλF
dθ (0.002) (0.001)

Aggregate Female Response 0.012*** 0.004**
(0.003) (0.002)

Due to Increase in paternity (-ve effect) 0.001** 0.000

λM
dγML
dθ (0.000) (0.000)

Due to Increase in paternity leave (-ve effect) 0.001 -0.001

γML
dλM
dθ (0.001) (0.001)

Aggregate Male Response (-ve effect) 0.002* -0.001
(0.001) (0.001)

Estimated increase in maternity-paternity leave gap 0.010*** 0.004**
(0.003) (0.002)

(1) Estimated increase in maternity-paternity leave gap may differ from
estimated increase in total leave gap

(2) Independence between the male and female samples is assumed

(3) Robust standard errors reported

(4) GMM does not converge for age 16-25 men or for age 44-65 women
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Table 5.5: Hourly wages 2006-2007
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female -0.103 -0.790*** -1.886*** -2.012***
(0.101) (0.127) (0.157) (0.149)

year 0.067 0.132 -0.192 -0.167
(0.126) (0.107) (0.132) (0.115)

femaleyear -0.091 -0.288** 0.243 0.026
(0.148) (0.140) (0.151) (0.130)

Constant 1.391** -0.861* -5.266*** -6.136***
(0.614) (0.451) (0.704) (0.592)

Observations 4,702 11,213 14,675 20,948
R-squared 0.254 0.285 0.318 0.332

Female Bound 25-34 [-0.288**, 0.000 ]
Male Bound 25-34 [ 0.000, 0.288** ]

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, region-industry
fixed effects, a dummy for whether born in the UK, a dummy for
whether working part time and a dummy for whether working in
the public or private sector

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007

(3) Cluster robust standard errors with clustering at the region-
industry level are reported
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Figure 5.3: Placebo analysis - Hourly wages age 25-34

-0.60 

-0.40 

-0.20 

0.00 

0.20 

0.40 

0.60 

0.80 

2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 

165



Figure 5.4: Common trend analysis - hourly wages
(a) Hourly wages residuals age 25-34 (Cubic)
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(b) Hourly wage gap age 25-34 (Cubic)
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(c) Hourly wages residuals age 25-34 (Quadratic)
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(d) Hourly wage gap age 25-34 (Quadratic)
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(e) Hourly wages residuals age 25-34 (Linear)
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(f) Hourly wage gap age 25-34 (Linear)
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Table 5.6: Hourly wages 2006-2007 - No Children
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female -0.084 -0.571*** -0.668*** -1.645***
(0.106) (0.135) (0.253) (0.164)

year 0.064 0.068 -0.070 -0.216*
(0.130) (0.134) (0.235) (0.116)

femaleyear -0.068 -0.233 0.175 0.086
(0.153) (0.193) (0.322) (0.162)

Constant 1.018 0.880* -3.424*** -5.940***
(0.636) (0.521) (0.945) (0.542)

Observations 4,248 6,526 4,527 15,433
R-squared 0.257 0.279 0.304 0.322

Female Bound 25-34 [-0.233, 0.000 ]
Male Bound 25-34 [ 0.000, 0.233 ]

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, region-
industry fixed effects, a dummy for whether born in the UK,
a dummy for whether working part time and a dummy for
whether working in the public or private sector

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007

(3) Cluster robust standard errors with clustering at the region-
industry level are reported
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Table 5.7: Labour market participation 2006-2007 - Logit Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 25-34 45-64

female -0.984*** -1.564*** -1.306*** -0.131***
(0.052) (0.045) (0.037) (0.021)

year -0.044 0.072 -0.016 -0.013
(0.059) (0.057) (0.045) (0.021)

femaleyear 0.020 -0.108* -0.003 0.040
(0.074) (0.065) (0.052) (0.030)

Constant -2.553*** -2.135*** -0.639*** -1.592***
(0.221) (0.135) (0.125) (0.080)

Observations 24,698 47,522 64,070 103,859
Impact on R.O.R. 0.008 -0.021* -0.001 0.036

(0.028) (0.013) (0.014) (0.027)

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK

(2) year = 0 if observation year is 2006, 1 if observation year is
2007

(3) Estimation is by quasi-maximum likelihood.

(4) The impact on R.O.R. measures the change in the odds ratio
of a female participating in the labour market relative to a male
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Table 5.8: Labour market participation 2006-2007 - LPM Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female -0.127*** -0.171*** -0.144*** -0.021***
(0.006) (0.004) (0.004) (0.004)

year -0.004 0.004 -0.001 -0.002
(0.006) (0.003) (0.003) (0.003)

femaleyear 0.001 -0.010 -0.001 0.007
(0.009) (0.006) (0.005) (0.005)

Constant 0.323*** 0.402*** 0.572*** 0.342***
(0.025) (0.014) (0.013) (0.012)

Observations 24,698 47,522 64,070 103,859
R-squared 0.056 0.100 0.061 0.024

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, GOR
region and dummy for whether born in UK

(2) year = 0 if observation year is 2006, 1 if observation
year is 2007
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Table 5.9: Employment conditional on participation 2006-2007 - Logit model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.188*** -0.006 -0.152** 0.415***
(0.057) (0.066) (0.064) (0.061)

year 0.024 0.169** 0.102 0.008
(0.053) (0.067) (0.068) (0.053)

femaleyear 0.025 -0.150 0.003 -0.047
(0.081) (0.096) (0.094) (0.086)

Constant -0.962*** -0.317 0.312 0.789***
(0.242) (0.242) (0.235) (0.196)

Observations 20,588 40,063 54,555 80,988

Impact on R.O.R. 0.030 -0.139 0.003 -0.070
(0.100) (0.088) (0.081) (0.128)

Female Bound 25-34 [ -0.006, 0.000 ]
Male Bound 25-34 [ 0.000, 0.006 ]

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007

(3) Estimation is by quasi-maximum likelihood.

(4) The impact on R.O.R. measures the change in the odds
ratio of a female being employed relative to a male
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Figure 5.5: Placebo analysis - Conditional employment age 25-34 - Logit model
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Figure 5.6: Common trend analysis - conditional employment - Logit model
(a) Conditional empl. age 25-34 (Cubic)
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(b) Conditional empl. gap age 25-34 (Cubic)
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(c) Conditional empl. age 25-34 (Quadratic)
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(d) Conditional empl. gap age 25-34 (Quadratic)
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(e) Conditional empl. age 25-34 (Linear)
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(f) Conditional empl. gap age 25-34 (Linear)
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Table 5.10: Employment conditional on participation 2006-2007 - LPM Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.023*** -0.000 -0.005** 0.011***
(0.007) (0.003) (0.002) (0.002)

year 0.004 0.007** 0.003 0.000
(0.007) (0.003) (0.002) (0.002)

femaleyear 0.002 -0.006 0.000 -0.001
(0.010) (0.004) (0.003) (0.002)

Constant 0.550*** 0.814*** 0.859*** 0.892***
(0.026) (0.010) (0.008) (0.006)

Observations 20,588 40,063 54,555 80,988
R-squared 0.015 0.009 0.008 0.005

Female Bound 25-34 [ -0.006, 0.000 ]
Male Bound 25-34 [ 0.000, 0.006 ]

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007
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Figure 5.7: Placebo analysis - Conditional employment age 25-34 - LPM Model
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Figure 5.8: Common trend analysis - conditional employment - LPM Model
(a) Conditional empl. age 25-34 (Cubic)
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(b) Conditional empl. gap age 25-34 (Cubic)
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(c) Conditional empl. age 25-34 (Quadratic)
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(d) Conditional empl. gap age 25-34 (Quadratic)
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(e) Conditional empl. age 25-34 (Linear)
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(f) Conditional empl. gap age 25-34 (Linear)
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Table 5.11: Experienced redundancy in last 3 months 2006-2007 - Logit model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.074 -0.330* -0.289 -0.153
(0.209) (0.196) (0.179) (0.153)

year 0.082 -0.318* -0.233 -0.071
(0.181) (0.171) (0.151) (0.126)

femaleyear -0.163 0.596** 0.308 0.071
(0.280) (0.268) (0.237) (0.205)

Constant -0.737 -4.494*** -4.634*** -4.767***
(1.167) (0.950) (0.923) (0.875)

Observations 18,191 38,764 53,149 79,506

Impact on R.O.R. -0.162 0.586** 0.270 0.064
(0.278) (0.284) (0.212) (0.182)

Female Bound 25-34 [ 0.000, 0.002** ]
Male Bound 25-34 [ -0.003*, 0.000 ]

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK and industry

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007

(3) Estimation is by quasi-maximum likelihood.

(4) The impact on R.O.R. measures the change in the odds ratio
of a female experiencing redundancy relative to a male
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Figure 5.9: Placebo analysis - Redundancy age 25-34 - Logit model
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Figure 5.10: Common trend analysis - redundancy - Logit model
(a) Redundancy age 25-34 (Cubic)
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(b) Redundancy gap age 25-34 (Cubic)
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(c) Redundancy age 25-34 (Quadratic)
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(d) Redundancy gap age 25-34 (Quadratic)
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(e) Redundancy age 25-34 (Linear)
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(f) Redundancy gap age 25-34 (Linear)
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Table 5.12: Experienced redundancy in last 3 months 2006-2007 - LPM Model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.001 -0.002* -0.002* -0.001
(0.002) (0.001) (0.001) (0.001)

year 0.001 -0.002* -0.002 -0.000
(0.002) (0.001) (0.001) (0.001)

femaleyear -0.002 0.004** 0.002 0.000
(0.003) (0.002) (0.001) (0.001)

Constant 0.044*** 0.010** 0.009** 0.010***
(0.010) (0.005) (0.004) (0.003)

Observations 18,191 38,764 53,149 79,506
R-squared 0.003 0.003 0.002 0.002

Female Bound 25-34 [ 0.000, 0.004** ]
Male Bound 25-34 [ -0.004**, 0.000 ]

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, GOR
region and dummy for whether born in UK and industry

(2) year = 0 if observation year is 2006, year = 1 if observation
year is 2007
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Figure 5.11: Placebo analysis - Redundancy age 25-34 - LPM Model
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Figure 5.12: Common trend analysis - redundancy - LPM Model
(a) Redundancy residuals age 25-34 (Cubic)
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(b) Redundancy gap age 25-34 (Cubic)
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(c) Redundancy residuals age 25-34 (Quadratic)

-0
.0

03
-0

.0
01

0.
00

1
0.

00
3

M
al

e/
F

em
al

e
C

on
d

it
io

n
al

T
im

e
T

re
n

d
s

1996-1 1998-1 2000-1 2002-1 2004-1 2006-1

Before Period
After Period

(d) Redundancy gap age 25-34 (Quadratic)

-0
.0

0
5

-0
.0

0
3

-0
.0

0
1

0.
00

1

F
em

al
e-

M
a
le

G
a
p

1996-1 1998-1 2000-1 2002-1 2004-1 2006-1

Female-Male Gap
95pc Conf. Int.

(e) Redundancy residuals age 25-34 (Linear)
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(f) Redundancy gap age 25-34 (Linear)
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Table 5.13: Whether hired/changed job in last 3 months 2006-2007 - Logit model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 25-34 25-34

female 0.068 0.118** -0.009 0.062
(0.059) (0.059) (0.063) (0.062)

year 0.073 0.086 0.074 -0.005
(0.055) (0.056) (0.058) (0.058)

femaleyear -0.018 -0.041 0.051 0.015
(0.079) (0.080) (0.084) (0.084)

Constant -1.801*** -2.074*** -2.252*** -3.587***
(0.270) (0.271) (0.298) (0.290)

Observations 19,113 39,558 53,911 80,172

Impact on R.O.R. -0.019 -0.045 0.052 0.017
(0.084) (0.088) (0.086) (0.090)

Female Bound 25-34 [ -0.003, 0.000 ]
Male Bound 25-34 [ 0.000, 0.002 ]

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

(1) Other controls include age finished education, GOR region and
dummy for whether born in UK and industry

(2) Those hired and fired within 3 months treated as not hired

(3) year = 0 if observation year is 2006, year = 1 if observation
year is 2007

(4) Estimation is by quasi-maximum likelihood.

(5) The impact on R.O.R. measures the change in the odds ratio
of a female being hired/changing jobs relative to a male
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Figure 5.13: Placebo analysis - Hiring age 25-34 - Logit model
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Figure 5.14: Common trend analysis - hiring - Logit model
(a) Hiring age 25-34 (Cubic)
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(b) Hiring gap age 25-34 (Cubic)
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(c) Hiring age 25-34 (Quadratic)
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(d) Hiring gap age 25-34 (Quadratic)
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(e) Hiring age 25-34 (Linear)
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(f) Hiring gap age 25-34 (Linear)
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Table 5.14: Whether hired/changed job in last 3 months 2006-2007 - LPM model
(1) (2) (3) (4)

VARIABLES 16-24 25-34 35-44 45-64

female 0.008 0.007* -0.000 0.002
(0.007) (0.004) (0.003) (0.002)

year 0.009 0.005 0.003 -0.000
(0.007) (0.004) (0.002) (0.002)

femaleyear -0.001 -0.002 0.002 0.001
(0.010) (0.005) (0.004) (0.002)

Constant 0.152*** 0.109*** 0.081*** 0.030***
(0.038) (0.017) (0.012) (0.007)

Observations 20,426 39,880 54,322 80,637
R-squared 0.018 0.007 0.004 0.002

Female Bound 25-34 [ -0.002, 0.000 ]
Male Bound 25-34 [ 0.000, 0.002 ]

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) Other controls include age finished education, GOR region
and dummy for whether born in UK and industry

(2) Those hired and fired within 3 months treated as not hired

(3) year = 0 if observation year is 2006, year = 1 if observation
year is 2007
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Figure 5.15: Placebo analysis - Hiring age 25-34 - LPM model
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Figure 5.16: Common trend analysis - hiring - LPM model
(a) Hiring residuals age 25-34 (Cubic)
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(b) Hiring gap age 25-34 (Cubic)
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(c) Hiring residuals age 25-34 (Quadratic)
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(d) Hiring gap age 25-34 (Quadratic)
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(e) Hiring residuals age 25-34 (Linear)
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(f) Hiring gap age 25-34 (Linear)
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5.A Appendix

Appendix A

Male-Female Wage Gap

The theoretical model discussed in Section 5.3 in chapter 5 implies there will be male-

female wage gap in equilibrium. Solving for equilibrium wages:

w∗m =
β

1 + β

∂F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
− c+ t

1 + β

w∗f =
β(1− δ(θ))

1 + β(1− δ(θ))
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
− c+ t

1 + β(1− δ(θ))

Therefore the model implies that in equilibrium there will be a male-female wage gap,

since:

w∗m − w∗f =
β(1 + β(1− δ(θ)))

(1 + β)(1 + β(1− δ(θ)))
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
− (c+ t)(1 + β(1− δ(θ)))

(1 + β)(1 + β(1− δ(θ)))

−

[
β(1− δ(θ))(1 + β)

(1 + β)(1 + β(1− δ(θ)))
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
− (c+ t)(1 + β)

(1 + β)(1 + β(1− δ(θ)))

]

=
βδ(θ)

(1 + β)(1 + β(1− δ(θ)))

(
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

)

⇒w∗m − w∗f =
βδ(θ)

(1 + β)(1 + β(1− δ(θ)))

(
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

)

which is greater than zero since F ′ ≥ 0, 0 < δ(θ) < 1 and 0 < β < 1.
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Male-Female Wage Gap and Increases in Maternity Leave Dura-

tion

Since male/female equilibrium wages and the male-female equilibrium wage gap can not

be expressed as a function of θ, implicit functions are used to estimate the impact of an

increase in maternity leave on the male-female wage gap. Interest is in d(w∗m − w∗f )/dθ;
the change in the male-female wage gap as maternity leave generosity increases.

The following two implicit functions are defined

gm(w∗m, w
∗
f , θ) = w∗m −

β

1 + β

∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+
c+ t

1 + β
= 0

gf (w∗m, w
∗
f , θ) = w∗f −

β(1− δ(θ))
1 + β(1− δ(θ))

∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+

c+ t

1 + β(1− δ(θ))
= 0

Taking total derivatives

∂gm(w∗m, w
∗
f , θ)

∂w∗m
dw∗m +

∂gm(w∗m, w
∗
f , θ)

∂w∗f
dw∗f +

∂gm(w∗m, w
∗
f , θ)

∂θ
dθ = 0

∂gf (w∗m, w
∗
f , θ)

∂w∗m
dw∗m +

∂gf (w∗m, w
∗
f , θ)

∂w∗f
dw∗f +

∂gf (w∗m, w
∗
f , θ)

∂θ
dθ = 0

Solving the set of simultaneous equations for dw∗m/dθ and dw∗f/dθ (and using the following

shorthand notation: gm(w∗m, w
∗
f , θ) = gm, gf (w

∗
m, w

∗
f , θ) = gf )

dw∗m
dθ

= −

[
∂gm
∂θ
−

∂gm
∂w∗
f

∂gf
∂w∗
f

∂gf
∂θ

]
[
∂gm
∂w∗m
−

∂gm
∂w∗
f

∂gf
∂w∗
f

∂gf
∂w∗m

]

dw∗f
dθ

= −

[
∂gm
∂θ
−

∂gm
∂w∗m
∂gf
∂w∗m

∂gf
∂θ

]
[
∂gm
∂w∗f
−

∂gm
∂w∗m
∂gf
∂w∗m

∂gf
∂w∗f

]
Therefore, the male-female wage gap changes with θ as shown below
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dw∗m
dθ
−
dw∗f
dθ

= −

[
∂gm
∂θ

∂gf
∂w∗f
− ∂gm

∂w∗f

∂gf
∂θ

]
[
∂gm
∂w∗m

∂gf
∂w∗f
− ∂gm

∂w∗f

∂gf
∂w∗m

] +

[
∂gm
∂θ

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂θ

]
[
∂gm
∂w∗f

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂w∗f

]
Noticing the denominators are the same except for sign

dw∗m
dθ
−
dw∗f
dθ

=

[
∂gm
∂θ

∂gf
∂w∗f
− ∂gm

∂w∗f

∂gf
∂θ

+ ∂gm
∂θ

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂θ

]
[
∂gm
∂w∗f

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂w∗f

]
Writing the relevant partial derivatives separately

∂gm
∂w∗m

= 1− β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

∂gm
∂w∗f

= − β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂w∗f

∂gm
∂θ

=− β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]

∂gf
∂w∗m

= − β(1− δ(θ))
1 + β(1− δ(θ))

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

∂gf
∂wf

= 1− β(1− δ(θ))
1 + β(1− δ(θ))

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f
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∂gf
∂θ

=
β ∂δ(θ)

∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]

− β(1− δ(θ))
1 + β(1− δ(θ))

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]

Therefore, the denominator of the impact of a change in θ on the male-female wage gap is

∂gm

∂w∗f

∂gf

∂w∗m
−
∂gm

∂w∗m

∂gf

∂w∗f
=

[
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

]
∗[

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂wm

]
−[

1−
β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

]
∗[

1−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

]

Which simplifies to

∂gm

∂w∗f

∂gf

∂w∗m
−
∂gm

∂w∗m

∂gf

∂w∗f
=− 1+[

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

]
+[

β(1− δ(θ))
1 + β(1− δ(θ))

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

]

Which is negative, since it is the sum of three negative terms. This is since

β

1 + β
≥ 0

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

≤ 0

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)
≥ 0

∂Sf (w∗f , θ)

∂w∗f
≥ 0

β(1− δ(θ))
1 + β(1− δ(θ))

≥ 0

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)
≥ 0

∂Sm(w∗m)

∂w∗m
≥ 0
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Therefore the denominator is always negative in this model. Now consider the numerator

- if this is also negative it can be concluded that an increase in maternity leave length

increases the male-female wage gap.

∂gm
∂θ

∂gf
∂w∗f

− ∂gm
∂w∗f

∂gf
∂θ

+
∂gm
∂θ

∂gf
∂w∗m

− ∂gm
∂w∗m

∂gf
∂θ

=
∂gm
∂θ

[
∂gf
∂w∗f

+
∂gf
∂w∗m

]
− ∂gf

∂θ

[
∂gm
∂w∗f

+
∂gm
∂w∗m

]

num =

{
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}
∗

[(
1−

β(1− δ(θ))
1 + β(1− δ(θ))

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

)
+(

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

)]

−

{
β
∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}
∗

[(
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

)
+(

1−
β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

)]

Simplifying the above expression

192



num =− βδ(θ)

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]

−

β ∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]
∗[

1− β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

− β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂w∗f

]

The second half of this term is negative, since

β ∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2
≥ 0

∂F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
≥ 0

β

1 + β
≥ 0

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

≤ 0

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sm(w∗m)
≥ 0

∂Sm(w∗m)

∂w∗m
≥ 0

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sf (w∗f , θ)
≥ 0

∂Sf (w
∗
f , θ)

∂w∗f
≥ 0
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The first half of this term is negative if
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0, since

βδ(θ)

1 + β(1− δ(θ))
≥ 0

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

≤ 0

Male Wages and Increases in Maternity Leave Duration

From the previous section there is:

dw∗m
dθ

=

[
∂gm
∂θ

∂gf
∂w∗f
− ∂gm

∂w∗f

∂gf
∂θ

]
[
∂gm
∂w∗f

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂w∗f

]
It has already been shown that the denominator is negative.
Consider the numerator

num =
∂gm

∂θ

∂gf

∂w∗f
−
∂gm

∂w∗f

∂gf

∂θ

=

{
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}
∗{

1−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

}

−

{
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

}
∗

{
β
∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}

194



Simplifying the above

num =
∂gm

∂θ

∂gf

∂w∗f
−
∂gm

∂w∗f

∂gf

∂θ

=

{
β

1 + β

β
∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂w∗f

}
∗[

∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]

+

{
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}

The first term of the above expression is negative. The second term is negative if
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0.

Therefore, if this condition holds then the numerator is surely negative, and therefore since

the denominator is also negative, this model implies that an increase in maternity leave

length will lead to an increase in male wages.

To provide some intuition for what the mechanism is here, the first term captures the

impact of the increasing maternity leave on female productivity. Increasing maternity

leave length decreases female productivity, reducing their wages. Therefore, since male

and female labour are substitutes, employers substitute away from female labour towards

male labour, pushing up male wages. The second term captures the impact of the change

in maternity leave on period two labour, holding equilibrium wages constant. An increase

in maternity length is assumed to decrease period two labour, which increases marginal

productivity and hence increases male wages.

Female Wages and Increases in Maternity Leave Duration

From the previous section there is

dw∗m
dθ

= −

[
∂gm
∂θ

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂θ

]
[
∂gm
∂w∗f

∂gf
∂w∗m
− ∂gm

∂w∗m

∂gf
∂w∗f

]
It has already been shown that the denominator is negative.
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Consider the numerator

num =
∂gm

∂w∗m

∂gf

∂θ
−
∂gm

∂θ

∂gf

∂w∗m

=

{
1−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

}
∗

{
β
∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}

−

{
−

β

1 + β

∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w∗f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}
∗{

−
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w∗f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

}

Simplifying the above

num =
∂gm
∂w∗m

∂gf
∂θ
− ∂gm

∂θ

∂gf
∂w∗m

=

{
1− β

1 + β

∂2F (L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∂L2(Sm(w∗m), Sf (w
∗
f , θ), δ(θ))

∂Sm(w∗m)

∂Sm(w∗m)

∂w∗m

}
∗{

β ∂δ(θ)
∂θ

(1 + β(1− δ(θ)))2

[
∂F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2(Sm(w∗m), Sf (w∗f , θ), δ(θ))
+ (c+ t)

]}

−

{
β(1− δ(θ))

1 + β(1− δ(θ))
∂2F (L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ)))

∂L2
2(Sm(w∗m), Sf (w∗f , θ), δ(θ))

∗[
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂Sf (w∗f , θ)

∂Sf (w
∗
f , θ)

∂θ
+
∂L2(Sm(w∗m), Sf (w

∗
f , θ), δ(θ))

∂δ(θ)

∂δ(θ)

∂θ

]}

The first term of the above expression is positive. The second term is negative if
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0.

Therefore, it is not clear what the impact of an increase in maternity length will be on

female wages due to these opposing effects.

To provide some intuition for what the mechanism is here, the first term captures the

196



impact of the increasing maternity leave on female productivity. Increasing maternity leave

length decreases female productivity, reducing their wages. The second term captures the

impact of the change in maternity leave on period two labour, holding equilibrium wages

constant. An increase in maternity length is assumed to decrease period two labour, which

increases marginal productivity and hence applies an opposing upwards pressure on female

wages.

Male and Female Employment and Increases in Maternity Leave

Duration

The model also allows us to analyse what happens to male and female employment in

response to a increase in maternity leave length, θ. Suppose that an increase in mater-

nity length is assumed to decrease period two labour, holding equilibrium wages constant.

Therefore, increasing maternity leave length will result in increased male wages. Therefore

since in equilibrium labour supply = labour demand, what will happen to male employ-

ment can be estimated from the following;

Taking the total derivative of male equilibrium labour supply

d(Sm(w∗m, θ)) =
∂Sm(w∗m, θ)

∂θ
dθ +

∂Sm(w∗m, θ)

∂w∗m
dw∗m

→ d(Sm(w∗m, θ))

dθ
=
∂Sm(w∗m, θ)

∂θ
+
∂Sm(w∗m, θ)

∂w∗m

dw∗m
dθ

The second term of the above is positive, since ∂Sm(w∗m,θ)
∂w∗m

≥ 0, and given the assumption

decreasing period 2 labour dw∗m
dθ
≥ 0.

The first term may be negative, given the labour substitution argument forwarded by cite

Ruhm (1998). If the male labour supply response is sufficiently small, or zero then the

impact of an increase in maternity leave length will be to increase male wages and male

employment.

In conclusion, increases in maternity leave increase male employment, unless there are

large negative male supply responses.

Similarly, for females there is

d(Sf (w
∗
f , θ)) =

∂Sf (w
∗
f , θ)

∂θ
dθ +

∂Sf (w
∗
f , θ)

∂w∗f
dw∗f

→
d(Sf (w

∗
f , θ))

dθ
=
∂Sf (w

∗
f , θ)

∂θ
+
∂Sf (w

∗
f , θ)

∂w∗f

dw∗f
dθ

The first term in the above is presumably positive; holding equilibrium wages constant,

increasing maternity length generosity increases female labour supply. On the other hand,
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the know the sign of the second component is not known. There were opposing forces

acting on female wages when
∂L2(Sm(w∗m),Sf (w∗f ,θ),δ(θ))

∂θ
≤ 0. If female equilibrium wages

are reduced as a result of increasing maternity leave duration then depending on which

component has the larger absolute size the impact on equilibrium female employment may

be negative or positive. On the other hand, if increasing maternity leave length actually

increases female wages, then it can be concluded that the impact of increasing maternity

leave length will also increase female employment.

In conclusion, if increases in maternity leave decrease female wages, then there is an

ambiguous effect on female employment. If increases in maternity leave increase female

wages, then there is a positive effect on female employment.
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Appendix B

Legislative History

Legislated provision of maternity benefits in the UK originated with the National Insurance

Act (1911). Some of the key legislative changes impacting upon maternity benefits from

this date onwards are discussed in the following. Maternity grants, maternity allowances

and statutory payment rates varied frequently over the time period in question, and will not

be covered exhaustively. Focus is on key changes to qualifying conditions, or fundamental

changes to the benefits allowed.

Some form of support for working mothers has existed in the United Kingdom since the

introduction of the National Insurance Act (1911). This Act introduced maternity benefit

for insured people. All workers earning under £160 a year were required to become insured

and to make national insurance contributions.52 £160 would have had the same purchasing

power as £16,445 would have in 2013.53 The weekly contribution was 4 pence (£1.71 in

2013).54 To qualify for insurance you need to have made 26 weekly national insurance

contributions since entry into insurance (so you must have been employed for at least 6

months, but not necessarily continuously). Insured women, the wife of an insured man,

or the widow of an insured man having a posthumous child were eligible for a maternity

grant of 30 shillings upon confinement (£154.17 in 2013).

The National Insurance Act (1946) introduced a maternity allowance for up to 13 weeks.

The Act required all individuals living in Great Britain and who were between school

leaving and pensionable age to be insured.55 Employed, self-employed people and non-

employed people made different levels of contributions. There was provisions for low

income individuals, full-time students and unemployed to be exempt from contributing.

Employed/self-employed contributions were counted towards eligibility for maternity ben-

efits. Insured women, or the wives of insured men received a £4 maternity grant for each

baby (£146.18 in 2013). If the women was insured and gainfully employed she also re-

ceived a maternity allowance of 36 shillings a week for 13 weeks, beginning with the 6th

week before the expected week of confinement (£43.85 in 2013), if she was insured herself,

or the wife of an insured man, but not employed she received an attendance allowance of

20 shillings a week for 4 weeks beginning with the day of confinement (£24.36 in 2013). In

order to qualify for the grant/attendance allowance, at least 26 national insurance contri-

butions had to be paid since entry into insurance, and at least 26 contributions had to be

52Excluded self-employed
53All conversions in this section use inflation data complied by the House of Commons (Allen, 2012)

combined with the all item RPI annual figures (2011-2013) from the ONS (Office for National Statistics,
2013)

54There was 240 pennies in a pound
55Northern Ireland passed a separate National Insurance Act in 1946.
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paid or credited in the contribution year before the year in which confinement occurred. In

order to qualify for the maternity allowance, at least 45 national insurance contributions

had to be paid or credited in the 52 weeks immediately preceding the payment period,

and at least 26 have to have been actually paid.

The National Insurance Act (1953) extended the duration of maternity allowance for in-

sured, employed women to 18 weeks beginning with the 11th week before the expected

week of confinement. In addition, in 1953 the attendance allowance and the maternity

grant (for insured women or the wives of insured men) were amalgamated into one ma-

ternity grant payment. At this stage the maternity grant was increased to £9 (£219.26 in

2013) and the weekly maternity allowance was 32 shillings and 6 pence (£26.60 in 2013).

In order to qualify for the maternity allowance this act now stated that at least 50 national

insurance contributions have to have been paid or credited in the 52 weeks immediately

preceding the 13th week before the expected week of confinement.

In the Social Security Act (1973) a supplementary earnings related component of the

maternity allowance was introduced that covered most of the maternity leave period (the

earnings related component began on the 13th day of maternity leave and could be paid for

up to a maximum of 156 days) for all women who qualified for the maternity allowance.56

The flat maternity allowance at this point was £6.75 (£71.23 in 2013) and the maternity

grant was £25 (£263.82 in 2013). The 1973 Act covered Northern Ireland also. In the 1973

Social Security Act in order to qualify for maternity allowance (grant) you were required to

have paid or been credited with national insurance contributions of the relevant class, and

the earnings factor derived from these contributions had to be at least equal to the lower

earnings limit (LEL) multiplied by a factor of 50 (25 for maternity grant) in the relevant

past year (the benefit year before the benefit year of interruption).57 In addition, in any

other year they must have actually paid contributions of a relevant class, with an earnings

factor of that year’s lower earnings limit multiplied by a factor of 25. This qualifying

condition was also invoked in the Social Security Act (1975) and the Social Security Act

(1986).

The Employment Protection Act (1975) made it illegal to sack a woman because she was

pregnant - unless she is incapable of doing the work she was employed to do (if this is

the case then if there is a suitable alternative vacancy this has to be offered to her). In

addition, if a woman was employed until immediately before the start of the 11th week

56The earnings related component of maternity allowance was calculated as the lower of (a) the sum
of 1

3 of the amount of weekly reckonable earnings that exceeds the LEL but does not exceed £30 and
15% of the earnings that do exceed £30 but do not exceed the upper earnings limit (a level above which
national insurance contributions rates change), or (b) the amount by which the fixed maternity allowance
falls short of 85% of weekly reckonable earnings. Reckonable weekly earnings were defined as the earnings
factor for the benefit year immediately preceding the benefit year of interuption divided by 50. See
www.niconsultancy.co.uk/article0402.htm for discussion on earnings factors.

57The lower earnings limit is the level below which no national insurance contributions are paid
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before the expected confinement week, and at that point had been continuously employed

by her employer for at least two years, then her employer had to pay her maternity pay

for up to six weeks at a rate equal to 90% of her weekly pay less the maternity allowance

payable. The maternity pay period covered the first 6 weeks of absence starting on or after

the beginning of the 11th week before the expected week of confinement. This payment

was reclaimable in full by the employer through a maternity pay rebate. In the same

year, the Social Security Act (1975) removed the earnings related component of maternity

allowance, meaning that the only earnings related maternity benefit was the maternity

pay received from employers. In addition, if the woman met these qualifying conditions

she had the right to return, at any time up until the end of the 29th week beginning

with the week in which confinement occurred, to the job in which she was originally

employed. Terms and conditions of employment were to be as if the employment period

before absence due to maternity leave and the employment after returning from maternity

leave were continuous. Since maternity leave could typically begin 11 weeks before the

expected week of confinement, this meant that the legislation gave (expected) maternity

leave of up to 40 weeks, 18 weeks of which either maternity pay or maternity allowance

were payable to qualifying women. In 1975 the maternity grant was set at £25 (£71.73

in 2013) and the weekly maternity allowance was £9.80 (£182.99 in 2013). The 1975 Act

covered Northern Ireland also.

In addition, in 1975 the Sex Discrimination Act (1975) was passed, which prohibited

differential treatment for male and female workers. Case law has since ruled that since only

a women can become pregnant, a refusal to employ her, or decision to dismiss her because

of pregnancy is equivalent to sex discrimination. Furthermore, the Employment Equality

(Sex Discrimination) Regulations (2005) amend the Sex Discrimination Act (1975) to

explicitly cover differential treatment due to pregnancy as discriminatory behaviour.

In the Social Security Act (1986) the term “Statutory Maternity Pay” was defined, and

referred to the maternity benefit paid by employers to qualifying employees. Previously

this had been referred to as maternity pay. The amount of time a female needed to be

employed by an employee in order to qualify for this Statutory Maternity Pay (SNP) was

reduced to a period of 26 weeks running up until the 14th week before the expected week

of confinement (from the previously stipulated 2 year period). An earnings qualifying rule

for maternity pay was introduced; her normal weekly earnings (calculated using the 8 week

period up until the 14th week before the expected week of confinement) had to be above

the lower earnings limit.58 The maternity pay period was for a period of 18 weeks. The

period began on whichever was earlier: the week following the week an employee stopped

work, given she gave notice to her employer that she intended to stop work, and that week

is after the 12th week before the expected week of confinement, or, the 6th week before

58If she did not meet this rule she might still qualify for state maternity allowance
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the expected week of confinement.596061 The first six weeks were typically paid at a higher

rate of 90% of average weekly earnings, with the remaining 12 weeks paid at a lower weekly

rate. In order to qualify for the higher rate you had to be continuously employed with

the same employer for a period of 2 years immediately preceding the 14th week before

the expected week of confinement. Women working for less than 16 hours a week did not

qualify for the higher rate of SMP, unless they worked between 8-16 hours a week and had

been employed by their employer for a period of at least 5 years. The lower weekly rate

in 1987 was set at £32.85 (£83.99 in 2013) (see Smith (2010) for historical SMP flat rates

from 1987-2006). SMP paid by employers was deductible from contribution payments.

Women receiving SMP were no longer eligible for maternity allowance in the same week.

This Act also abolished the Maternity Grant, but established a social fund, which paid

out funds for maternity expenses in some circumstances. Social fund officers determined

in which cases payment should be made, and how much to be awarded in respect of an

application for payment. The Social Security (Northern Ireland) Order (1986) brought

about the same changes in Northern Ireland.

The Social Security Act (1989) stipulated that employment rights or accrual of any benefits

(e.g. pension benefits/gym membership/health insurance) of an employed woman earner

(or who was an employed earner immediately before a paid maternity leave period) during

any period of paid maternity leave (statutory or contractual) must be conferred as if she

were still employed. The Social Security (Northern Ireland) Order (1989) brought about

the same changes in Northern Ireland.

The Social Security Contributions and Benefits Act (1992) changed the qualifying con-

ditions for the state maternity allowance from the Social Security Act (1973). Now the

qualifying conditions stipulated that an employee had to have made national insurance

contributions of a relevant class for at least 26 weeks in the 52 weeks immediately before

the 14th week before the expected week of confinement (note these contributions had to

be made by the claimant, her husband’s contributions no longer insured her). In the case

of Class 1 contributions (payable by employees), they must not have been secondary rate

or reduced rate contributions.62 The flat rate of maternity allowance was £42.25 (£76.29

59If she is confined before the 11th week before the expected week of confinement or between the 12th
and 6th week before expected week of confinement and this time precedes the date given by her in notice
to her employer, then the period begins the week after the week in which she is confined

60The state maternity allowance period was stipulated to be the period which if the employee had been
eligible for statutory maternity pay would have been her maternity pay period

61The Social Security, Statutory Maternity Pay and Statutory Sick Pay (Miscellaneous Amendments)
Regulations (2002) amended the start of the maternity pay period to be the earlier of: the week following
the week an employee stopped work, given she gave notice to her employer that she intended to stop work,
and that week is after the 12th week before the expected week of confinement, or, the week following the
week of confinement. If the employee was absent from work for a partial/full day due to pregnancy on
any day on or after the 4th week before the expected week of confinement, the first week of maternity pay
is the week beginning the day after the absence.

62Married women/widows used to be able to elect to pay a reduced rate of national insurance contri-
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in 2013) The Social Security Contributions and Benefits (Northern Ireland) Act (1992)

brought about the same changes in Northern Ireland.

The Maternity (Compulsory Leave) Regulations (1994)63 stated that an employee can not

work from the day of childbirth for a two week period. In addition, in the same year, The

Statutory Maternity Pay (Compensation of Employers) and Miscellaneous Amendment

Regulations (1994)64 made a distinction between small employers and other employers

in terms of the amount of SMP that was reclaimable. Small employers (those whose

contribution payments for the qualifying tax year do not exceed £20,000), received a

payment of 104% of the amount paid out in statutory maternity pay.65 Other employers

from this date only received a payment of 92% of the amount paid out in statutory

maternity pay, implying that 8% of statutory maternity pay was now covered by employers,

with the exception of small employers.

The Employment Rights Act (1996)66, which implemented in part the EU Council Di-

rective 92/85/EEC (1992), gave all employees the right to 14 weeks of maternity leave

from the date of commencement (or the birth of the child if later). An employee could

choose when to begin her maternity leave from the beginning of the 11th week before the

expected week of childbirth, by giving notice to her employee. If earlier, the maternity

leave period automatically starts on the first day after the first whole or partial day of

absence due to her pregnancy from the beginning of the sixth week before the expected

week of childbirth, or, if earlier, the day on which childbirth occurs. This Act did not

change SMP/maternity allowance qualifying conditions. If an employee is made redundant

during the maternity leave period then the employee is entitled employment if there is an

alternative suitable vacancy with her employer/successor or associated employer, under

butions which meant they were not eligible for contributory state benefits. Secondary rate contributions
are contributions made on your behalf, but not paid by you

63and the Maternity (Compulsory Leave) Regulations (Northern Ireland) (1994)
64and the Statutory Maternity Pay (Compensation of Employers) and Miscellaneous Amendment Reg-

ulations (Northern Ireland) (1994)
65This was increased to 105% by The Statutory Maternity Pay (Compensation of Employers) Amend-

ment Regulations (1995) and The Statutory Maternity Pay (Compensation of Employers) Amendment
Regulations (Northern Ireland) (1995), to 105.5% by The Statutory Maternity Pay (Compensation of
Employers) Amendment Regulations (1996) and The Statutory Maternity Pay (Compensation of Em-
ployers) Amendment Regulations (Northern Ireland) (1996), to 106.5% by The Statutory Maternity Pay
(Compensation of Employers) Amendment Regulations (1997) and The Statutory Maternity Pay (Com-
pensation of Employers) Amendment Regulations (Northern Ireland) (1996), to 107% by The Statutory
Maternity Pay (Compensation of Employers) Amendment Regulations (1998) and The Statutory Mater-
nity Pay (Compensation of Employers) Amendment Regulations (Northern Ireland) (1998), back to 105%
by The Statutory Maternity Pay (Compensation of Employers) Amendment Regulations (1999) and Statu-
tory Maternity Pay (Compensation of Employers) Amendment Regulations (Northern Ireland) (1999), to
104.5% by The Statutory Maternity Pay (Compensation of Employers) Amendment Regulations (2002),
and to 103% by The Statutory Maternity Pay (Compensation of Employers) Amendment Regulations
(2011). The contribution payments cutoff threshold for a small employer was increase to £45,000 by The
Statutory Maternity Pay (Compensation of Employers) Amendment Regulations (2004)

66and the Employment Rights (Northern Ireland) Order (1996)
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conditions not substantially less favourable. Furthermore, this act stipulated the right to

return after this period of maternity leave for work with terms and conditions not less

favourable than if she had not been absent on maternity leave. For employees qualifying

for the additional leave period of up to 29 weeks after birth had the right to return to her

employment with terms and conditions as to remuneration not less favourable than if she

had not been absent on maternity leave, with seniority, pension rights and similar rights

as if there had been no interruption between the periods of her employment, and otherwise

with terms and conditions not less favourable than if she had not been absent from the

end of her 14 week standard maternity leave period.67

The Employment Relations Act (1999)68 increased the maternity leave period from 14

weeks to 18 weeks for all employers regardless of tenure. The Employment Relations Act

(1999) also formally defined Compulsory Maternity Leave (CML), Ordinary Maternity

Leave (OML) and Additional Maternity Leave (AML). An employee fulfilling conditions

which may be prescribed (in subsequent regulations) qualifies for OML, and has the right to

return from leave to the same job. CML falls within an OML period. An employee fulfilling

conditions which may be prescribed (in subsequent regulations) qualifies for AML, and has

the right to return from leave to a job fulfilling certain conditions. Parental leave was also

defined in this Act, and the right to return to a job fulfilling certain conditions. Some of the

conditions are left vague in this Act, in order for future Acts to be able to change certain

conditions without having to implement a new Act. The Maternity and Parental Leave etc.

Regulations (1999)69 outlined some of the necessary conditions; for instance, if requested

to do so by her employer, an employee applying for OML must produce proof of expected

date of childbirth, however from this point on essentially all employees qualified for OML.

Furthermore, this Act states that the tenure requirements for Additional Maternity Leave

is one year of continuous employment with employer at the beginning of the 11th week

before the expected week of childbirth. Previously to this Act, employees who had been

continuously employed for 2 years had the right to maternity leave up until the 29th

week, so the Act essentially reduced the tenure requirement from 2 years of continuous

employment to one. Compulsory Maternity Leave was the period of two weeks commencing

on the day of childbirth. Ordinary Maternity Leave lasted for a duration of 18 weeks (or

until the end of the compulsory maternity leave period if later), and can not begin earlier

than the 11th week before the expected week of childbirth. Additional Maternity Leave

commmenced on the day after the last day of her Ordinary Maternity Leave Period. The

Additional Maternity Leave period continues up until the end of the 29th week after the

67Since all terms and conditions were protected during this initial 14 week leave period as if she had
not been absent on maternity leave this essentially meant all of these other terms and conditions were
protected as if she had not been absent from the beginning of her leave period.

68and the Employment Relations (Northern Ireland) Order (1999)
69and the Maternity and Parental Leave etc. Regulations (Northern Ireland) (1999)
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week of childbirth. Subject to providing 21 days of notice an employee has the right

to return to work before the end of her OML/AML. The Employment Relations Act

(1999) stipulated that the right to return after ordinary maternity leave meant with all

terms and conditions as if she had not been absent. The Maternity and Parental Leave

etc. Regulations 1999 stated the right to the same terms and conditions for women

taking additional maternity leave (or parental leave immediately after ordinary maternity

leave, and for employees taking parental leave) as to remuneration as if the employment

interruption had not happened. Seniority, pension rights and other rights were to be as if

the period of employment before and after the leave periods were continuous (subject to

the Social Security Act (1989) pension rights for women on paid maternity leave). Other

terms and conditions are not to be less favourable than had she not been absent from the

commencement of her ordinary leave period/parental leave period.70 These regulations also

stated that the changes applied for employees whose expected week of childbirth began

on or after 30th April 2000. The Employment Relations Act (1999) also introduced time

off for dependants - this includes, for instance, an allowance for an employee to take a

reasonable amount of time off when a dependant (partner/child) gives birth/falls ill/is

injured.

The Maternity and Parental Leave etc. Regulations (1999) also specified conditions sur-

rounding parental leave. Any employee who has been employed continuously for at least

a year and has parental responsibilities for a child under the age of 5 who was born on

or after the 15th December 1999 had the right to 13 weeks of parental leave in respect

of that child (there are some exceptions, for instance in the case of a child entitled to

disability allowance the age cut off is 18).71 The maximum amount that can be taken in

any one year is four weeks. If you leave a job you can carry over any unused parental leave

entitlement, but will not be able to use it until after a year of continuous employment with

the new employer. If the parental leave period taken was less than 4 weeks the employee

has the right to return to the same job, if the leave period is longer they have the right

to return to the same job unless not practical for the employer, in which case they are

entitled to return to another suitable job. Parental leave must be taken in multiples of a

full week. These regulations also introduced an additional exemption for small employers

- employees dismissed for being pregnant, or for any reason connected with her pregnancy

or for taking maternity leave, and whose employer who had fewer than 5 employees, was

not considered to have been unfairly dismissed.

70Since all terms and conditions were protected during the initial leave period as if the employee had
not been absent this essentially meant all of these other terms and conditions were protected as if the
employee had not been absent from the beginning of the leave period.

71The Maternity and Parental Leave (Amendment) Regulations (2001) (and The Maternity and Parental
Leave etc. (Amendment) Regulations (Northern Ireland) (2002)) extended the qualifying birth date by
five years, and allowed parents of these children to take up their parental leave allowance up until the 31st
March 2005. The parental leave allowance for a disabled child was increased to 18 weeks.
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The Welfare Reform and Pensions Act (1999) (which also covered Northern Ireland)

amended the earnings qualifying rule for maternity allowance. A woman needed to have

worked for 26 weeks of the 66 weeks immediately preceding the expected week of confine-

ment (“the test period”), and her average weekly earnings within a specified period (to

be defined in subsequent regulations) had to be above the maternity allowance threshold

which was set at £30 (£45.36 in 2013). This threshold has not changed to date. If her aver-

age weekly earnings were above the lower earnings limit for the relevant tax year, then she

received maternity allowance at the lower SMP rate (£59.55 which was £90.05 in 2013).

If her average weekly earnings were lower than the lower earnings limit for the relevant

tax year but above the maternity allowance threshold, she received maternity allowance

at a rate equal to 90% of her average weekly earnings, or the lower SMP rate, whichever

was lower. The specified period was defined in the Social Security (Maternity Allowance)

(Earnings) Regulations (2000)72, to be the period of 13 consecutive weeks falling within

the 66 week period immediately preceding the expected week of confinement for which the

woman’s average earnings were highest. The Social Security (Maternity Allowance) (Earn-

ings) (Amendment) Regulations (2003)73 changed the period to be any (not necessarily

consecutive) 13 weeks in the 66 week test period.

The Maternity and Parental Leave (Amendment) Regulations (2002)74 extended the period

of Ordinary Maternity Leave from 18 to 26 weeks. Therefore, all employees could take

maternity leave of up to 26 weeks, beginning the earliest at 11 weeks before the expected

week of childbirth. The Additional Leave Period was changed from covering the period up

until the 29th week after childbirth to covering the period from the end of the Ordinary

Leave Period and ending 26 weeks later. In addition, the tenure requirement for qualifying

for AML was further reduced from 1 year of continuous employment at the beginning of

the 11th week before the expected week of confinement to being 26 weeks of continuous

employment at the beginning of the 14th week before the expected week of confinement.

Therefore, qualifying women could take up to 52 weeks of maternity leave at this stage. To

coincide with the extension of the Ordinary Maternity Leave period, the Social Security,

Statutory Maternity Pay and Statutory Sick Pay (Miscellaneous Amendments) Regulations

(2002)75 extended the Statutory Maternity Pay period from 18 weeks to 26 weeks. The

state maternity allowance period was also extended from 18 weeks to 26 weeks. These

changes applied to women whose expected week of childbirth began on or after 6th April

72or The Social Security (Maternity Allowance) (Earnings) Regulations (Northern Ireland) (2000) for
Northern Ireland

73or The Social Security (Maternity Allowance) (Earnings) (Amendment) Regulations (Northern Ire-
land) (2003) for Northern Ireland

74and the Maternity and Parental Leave etc. (Amendment No. 3) Regulations (Northern Ireland)
(2002)

75The Social Security, Statutory Maternity Pay and Statutory Sick Pay (Miscellaneous Amendments)
Regulations (Northern Ireland) (2002)
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2003.

The Employment Act (2002)76 introduced paternity leave for birth and adoption, statutory

paternity pay for birth and adoption, in addition to general adoption leave and additional

adoption leave for parents of children born on or after 6th April 2003, or whose expected

week of birth begins on or after that date (for parents of adopted children they must have

been notified of the match on or after that date, or the child must have been placed for

adoption on or after that date). The Paternity and Adoption Leave Regulations (2002) and

the Statutory Paternity Pay and Statutory Adoption Pay (General) Regulations (2002)77

stipulate a number of conditions referred to in the Employment Act (2002) that needed

to be met to qualify for the leave/statutory pay benefits. These legislative changes intro-

duced 2 weeks of paternity leave for birth/adoption. Statutory parental leave could taken

either as one week, or as two consecutive weeks. Statutory paternity pay was payable for

a maximum of two weeks. Statutory paternity pay was paid at the lower of £100 or 90%

of normal weekly earnings, as stipulated in the Statutory Paternity Pay and Statutory

Adoption Pay(Weekly Rates) Regulations (2002)78. Employees had to have been employed

for a period of at least 26 weeks continuously ending with the week immediately before

the 14th week before the expected week of child birth for birth, or ending with the week in

which notification of adoption match was made. The employee had to satisfy an earnings

rule; his normal weekly earnings for the period of 8 weeks immediately before the qual-

ifying week (the 14th week immediately preceding the expected week of childbirth/date

of notification of adopter match) had to be above the lower earnings limit. In addition,

the employee had to be the father of the child or married to or the partner of the child’s

mother (or in the case of adoption leave had to be either married to or the partner of the

child’s adopter) and has or expects to have responsibility for the upbringing of the child.

Similar job protection applied as that existing for employees taking maternity/parental

leave as set out in the Employment Relations Act (1999) and the Maternity and Parental

Leave etc. Regulations (1999) (terms and conditions were to be as if the employee had

not been absent). General adoption leave and statutory adoption pay for employees was

pretty much in line with the legislation surrounding maternity leave and statutory ma-

ternity pay - although there was no tenure requirement for additional adoption leave as

there was at this time for additional maternity leave. The Employment Act (2002) also

introduced the right to request flexible working if they have children under the age of six

(or 18 if disabled).79

76and the Employment (Northern Ireland) Order (2002)
77and the Paternity and Adoption Leave Regulations (Northern Ireland) (2002) and the Statutory Pa-

ternity Pay and Statutory Adoption Pay (General) Regulations (Northern Ireland) (2002)
78and the Statutory Paternity Pay and Statutory Adoption Pay (Weekly Rates) Regulations (Northern

Ireland) (2002)
79This was extended to carers of some adults and parents of children under the age of 18 by the Work
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The two legislative changes that are used as a natural experiment in the empirical anal-

ysis are the Maternity and Parental Leave etc. and the Paternity and Adoption Leave

(Amendment) Regulations (2006)80, and Statutory Maternity Pay, Social Security (Ma-

ternity Allowance) and Social Security (Overlapping Benefits) (Amendment) Regulations

(2006)81. Both sets of regulations came into force on the 1st October 2006. The relevant

changes in maternity leave/statutory maternity pay applied for women whose expected

week of childbirth fell on or after 1st April 2007. The Maternity and Parental Leave

etc. and the Paternity and Adoption Leave (Amendment) Regulations (2006) removed the

tenure qualifying condition for Additional Maternity Leave, implying that essentially all

employees were entitled to 26 weeks of Ordinary Maternity Leave plus 26 weeks of Addi-

tional Maternity Leave. Furthermore, these regulations removed the exemption of small

employees that was introduced in The Maternity and Parental Leave etc. Regulations

(1999), which meant that all employees had the right to return to the same or a similar

job regardless of the size of her employee’s firm, and any dismissal for reasons relating

to her pregnancy or taking up of maternity leave would be treated as unfair dismissal.

The Statutory Maternity Pay, Social Security (Maternity Allowance) and Social Secu-

rity (Overlapping Benefits) (Amendment) Regulations (2006) also introduced “keeping in

touch” days, which allowed an employee on maternity leave to work for up to 10 days

during her maternity leave period without that period coming to an end. The Statutory

Maternity Pay, Social Security (Maternity Allowance) and Social Security (Overlapping

Benefits) (Amendment) Regulations (2006) extended the period of Statutory Maternity

Pay to 39 weeks. The state maternity allowance period was also extended from 26 weeks

to 39 weeks.

Since the 2006 legislative changes there have been a number of subsequent changes. The

Maternity and Parental Leave etc. and the Paternity and Adoption Leave (Amendment)

Regulations (2008)82 upgraded the rights of employees taking additional maternity leave

or additional adoption leave, so that all their terms and conditions were to be treated as

if they had not been absent. The Additional Statutory Paternity Pay (General) Regula-

tions (2010)83 allowed fathers or partners of mothers or adopters to receive an additional

period of statutory paternity pay as long as they satisfied the tenure condition, the earn-

ings condition, and where the mother/adopter was eligible for maternity allowance or

statutory maternity pay and had returned to work with at least two weeks of their ma-

ternity allowance period/maternity pay period unexpired. From the 20th week of birth

and Families Act (2006)
80and the Maternity and Parental Leave etc. (Amendment) Regulations (Northern Ireland) (2006)
81and the Statutory Maternity Pay, Social Security (Maternity Allowance) and Social Security (Over-

lapping Benefits) (Amendment) Regulations (Northern Ireland) (2006)
82and the Maternity and Parental Leave etc. and the Paternity and Adoption Leave (Amendment)

Regulations (Northern Ireland) (2008)
83and the Additional Statutory Paternity Pay (General) Regulations (Northern Ireland) (2010)
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a maximum of 26 weeks of additional statutory paternity pay (within the first 52 weeks

of birth/adoption placement) could be transferred from the mother/adopter’s entitlement

of statutory maternity pay to the mother/adopter’s partner. These regulations also cover

early births and entitlement in the event of the death of the mother/adopter.

Other Welfare Reforms

Free early education

In September 1998 the government introduced free early education for all 4 year olds.

They were entitled to five 21
2

hour sessions for 33 weeks of the year. There have been a

number of expansions of this program since. In April 2004 the program was expanded to

cover 3 year olds. In April 2006 the entitlement was increased to 38 weeks. In September

2010 the entitlement was expanded to 15 hours per week for 38 weeks, with more flexibility

(for instance the entitlement could be taken as five 3 hour sessions for 38 weeks, three 5

hour sessions for 38 weeks, or fewer hours spread over more weeks (National Audit Office,

2012). In 2013 the entitlement was expanded to all disadvantaged 2 year olds (Department

for Education, 2011).84

New Deal Programmes

There was a number of active labour market policies introduced into the UK in recent

years (Jarvis, 1997). The New Deal for Young People was rolled out nationally in April

1998. Those aged 18-24 and who have been unemployed for 6 months were automatically

enrolled into the programme, which included careers advice, help with jobsearch techniques

and basic skills courses if needed. If still unemployed after 4 months, the participant

could choose a number of options; they could try to get subsidised employment, they

could choose to work with the Environmental Taskforce or in the voluntary sector (they

received a weekly grant of approximately £15 plus benefits) or if eligible they could enrol

in certain training courses (while enrolled they received their usual benefits). The New

Deal for the Long-term Unemployed was rolled out in June 1998, which had two strands.

First, subsidised employment of up to 6 months for people aged over 25 and who had been

unemployed for over 2 years, and secondly, those unemployed for over two years could

enrol in full time education without jeopardising their job-seekers benefits. The New Deal

for Lone Parents was rolled out in October 1998, which was a voluntary programme that

included careers advice and provided support for organising childcare.

Sure Start grants

A Sure Start Maternity Grant of £200 was introduced in 1999. This grant was payable to

claimants who were recipients (or partners of recipients) of a number of income support/tax

84There was an initial pilot phase between 2006-2008 in 32 local authorities, then from September 2009
all local authorities were expected to fund free early education for disadvantaged 2 year olds. 23,000
places were funded from 2009 (expected to increase to 130,000 with the 2013 expansion).
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credits. Claimants also received advice on maternal health and advice on the health and

welfare of the new baby by a health professional. The level of the grant was increased

to £300 in 2000 and to £500 in 2002. Changes were made in 2011 such that the Sure

Start Maternity Grant was only payable for the first child (at least if there were no other

children under 16 living in the household. Multiple births each qualified for a grant as

long as there were no other children under 16 living in the household) (Kennedy, 2011).

Minimum wage

The National Minimum Wage Act 1998 introduced a national minimum wage for the first

time in the UK, which came into affect on the 1st April 1999. There are different rates

depending on age, and the rates have been updated every October. The minimum wage

increased at a rate slightly above inflation until about 2006, then it flattened until 2009

at which point inflation was slightly above the growth in the minimum wage (Low Pay

Commission, 2013).

Tax changes

There were also a number of changes to support for low income families in the UK recently.

In 1999 the Working Family Tax Credit replaced the Family Credit. See Brewer and

Browne (2006) for a detailed review of the different benefit structures. The main differences

were the higher generosity of the WFTC, in terms of tax credits and formal childcare

support. In 2001 a children’s tax credit was introduced. In 2003 the Working Tax Credit

and the Child Tax Credit replaced the Working Family Tax credit and the children’s

tax credit. See Blundell et al. (2004a) for a detailed review. The main differences were

increased benefits for low income families with children.
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Appendix C

Continuous Outcome Difference in Differences

The policy change occurs between time period T=0 and time period T=1. Therefore,

since in time period T=0 the policy had not been changed (P=0), observed outcomes for

all individuals in the first period are Y 0
i (0). Similarly, in time period T=1 the policy had

been changed (P=1), and so observed outcomes for all individuals in the second period

are Y 1
i (1). Y 1

i (0) and Y 0
i (1) are never observed for any individual. Therefore, there is

Yi(T ) = Y 0
i (0) + (Y 1

i (1)− Y 0
i (0))T

where Yi(T ) is the observed outcome in period T.

Notice from the above it can be written:

Yi(1) = Y 0
i (0) + Y 1

i (1)− Y 0
i (0)

= Y 0
i (0) + (Y 1

i (1)− Y 0
i (1))︸ ︷︷ ︸

treatment effect in period T=1 for i

+ (Y 0
i (1)− Y 0

i (0))︸ ︷︷ ︸
time trend for i

(5.1)

where the second term on the RHS is the difference in potential outcomes for individual

i in time period T=1 with and without the policy change (i.e. the treatment effect of

the change in policy in period T=1 for individual i). The third term is the difference in

potential outcomes for individual i between time period 1 and 0 if there had been no policy

change (i.e. the time trend for that individual).

Also

Yi(0) = Y 0
i (0) (5.2)

Let WiT = 1 if an individual i is observed in the data at time T, and 0 otherwise. X is

a set of observable characteristics. Consider the following four conditional expectations

(dropping i subscripts for convenience):

E[Y (T )|T = 0, F = 1,WT=0 = 1, X] = E[Y 0(0)|F = 1,W0 = 1, X]

E[Y (T )|T = 0, F = 0,WT=0 = 1, X] = E[Y 0(0)|F = 0,W0 = 1, X]

E[Y (T )|T = 1, F = 1,WT=1 = 1, X] =E[Y 0(0)|F = 1,W1 = 1, X]

+ E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]

+ E[Y 0(1)− Y 0(0)|F = 1,W1 = 1, X]
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E[Y (T )|T = 1, F = 0,WT=1 = 1, X] =E[Y 0(0)|F = 0,W1 = 1, X]

+ E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]

+ E[Y 0(1)− Y 0(0)|F = 0,W1 = 1, X]

Therefore, taking the difference in the average outcomes for females before and after the

policy change there is:

E[Y (T )|T = 1, F = 1,WT=1 = 1, X]− E[Y (T )|T = 0, F = 1,WT=0 = 1, X] =

E[Y 0(0)|F = 1,W1 = 1, X]− E[Y 0(0)|F = 1,W0 = 1, X]+

E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]+

E[Y 0(1)− Y 0(0)|F = 1,W1 = 1, X]

And taking the difference in the average outcomes for males before and after the policy

change there is:

E[Y (T )|T = 1, F = 0,WT=1 = 1, X]− E[Y (T )|T = 0, F = 0,WT=0 = 1, X] =

E[Y 0(0)|F = 0,W1 = 1, X]− E[Y 0(0)|F = 0,W0 = 1, X]+

E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]+

E[Y 0(1)− Y 0(0)|F = 0,W1 = 1, X]

Therefore, the DiD estimator, which takes the difference of these differences gives:

E[Y (T )|T = 1, F = 1,WT=1 = 1, X]− E[Y (T )|T = 0, F = 1,WT=0 = 1, X]−

(E[Y (T )|T = 1, F = 0,WT=1 = 1, X]− E[Y (T )|T = 0, F = 0,WT=0 = 1, X])

= E[Y 0(0)|F = 1,W1 = 1, X]− E[Y 0(0)|F = 1,W0 = 1, X]−(
E[Y 0(0)|F = 0,W1 = 1, X]− E[Y 0(0)|F = 0,W0 = 1, X]

)
+

E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]− E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]+

E[Y 0(1)− Y 0(0)|F = 1,W1 = 1, X]− E[Y 0(1)− Y 0(0)|F = 0,W1 = 1, X]

Assumptions:

1. Conditional Common Time Trend Assumption

E[Y 0(1)− Y 0(0)|F = 1,W1 = 1, X]− E[Y 0(1)− Y 0(0)|F = 0,W1 = 1, X] = 0

The average growth in outcomes for females who are observed in time period T=1

(W1 = 1) would have been the same as the average growth for males who are observed
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in time period T=1 if there had been no policy change conditional on some set of

specified covariates X.

2. No Composition Effects conditionally

E[Y 0(0)|F = 1,W1 = 1, X]− E[Y 0(0)|F = 1,W0 = 1, X] = 0

and E[Y 0(0)|F = 0,W1 = 1, X]− E[Y 0(0)|F = 0,W0 = 1, X] = 0

Therefore, E[Y 0(0)|F = 1,W1 = 1, X] = E[Y 0(0)|F = 1,W0 = 1, X] = E[Y 0(0)|F =

1, X],

and E[Y 0(0)|F = 0,W1 = 1, X] = E[Y 0(0)|F = 0,W0 = 1, X] = E[Y 0(0)|F = 0, X]

The average non-treated outcome in time period T=0 is the same for females ob-

served in the survey in T=0 and T=1 conditional on X. The same applies for males.

Under these assumptions, the conditional DiD estimator estimates:

E[Y (T )|T = 1, F = 1,WT=1 = 1, X]− E[Y (T )|T = 0, F = 1,WT=0 = 1, X]−

(E[Y (T )|T = 1, F = 0,WT=1 = 1, X]− E[Y (T )|T = 0, F = 0,WT=0 = 1, X])

= E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]− E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]

which gives the extent to which females were affected more than males by the policy

change conditional on X.

If the set of covariates to be conditioned on are discrete, then the conditional means can

be estimated by simply taking cell means. If covariates are continuous, conditional means

can be estimated using kernel methods. However, in the empirical work linear index re-

strictions are additionally imposed to avoid the curse of dimensionality, and heterogeneity

is restricted in the following ways;

Imposing index restriction on all conditional means:

E[Y (T )|F = 0, T = 0, X] =E[Y 0(0)|F = 0, X]

≡ α00 + α01X

E[Y (T )|F = 1, T = 0, X] =E[Y 0(0)|F = 1, X]

≡ α10 + α11X

E[Y (T )|F = 0, T = 1, X] =E[Y 0(0)|F = 0, X] + E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X] + E[Y 0(1)− Y 0(0)|F = 0,W1 = 1, X]

≡ α00 + α01X + β00 + β01X + δ00 + δ01X

E[Y (T )|F = 1, T = 1, X] =E[Y 0(0)|F = 1, X] + E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X] + E[Y 0(1)− Y 0(0)|F = 1,W1 = 1, X]

≡ α10 + α11X + β10 + β11X + δ10 + δ11X
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Therefore,

E[Y (T )|F, T,X] = a1 + a2F + a3X + a4XF + b1T + b2FT + b3XT + b4XFT + c1T + c2FT + c3XT + c4XFT

And,

Yi(T ) = a1+a2Fi+a3Xi+a4XiFi+(b1+c1)Ti+(b2+c2)FiTi+(b3+c3)XiTi+(b4+c4)XiFiTi+εit

Where E[εit|F, T,X] = 0

And where

a1 =α00

a2 =α10 − α00

a3 =α01

a4 =α11 − α01

b1 =β00

b2 =β10 − β00

b3 =β01

b4 =β11 − β01

c1 =δ00

c2 =δ10 − δ00

c3 =δ01

c4 =δ11 − δ01

The conditional common time trends assumption implies:

δ00 + δ01X = δ10 + δ11X for all X

→ δ00 = δ10 and δ01 = δ11

→ c2 = 0 and c4 = 0

Therefore the above equation simplifies to:

Yi(T ) = a1 + a2Fi + a3Xi + a4XiFi + (b1 + c1)Ti + b2FiTi + (b3 + c3)XiTi + b4XiFiTi + εit

Where (b1 + c1), (b3 + c3) are jointly but not separably identified but the other coefficients

are identified. Note

b2 + b4X = β10 + β11X − (β00 + β01X)

= E[Y 1(1)− Y 0(1)|F = 1,W1 = 1, X]− E[Y 1(1)− Y 0(1)|F = 0,W1 = 1, X]

which is the estimate of the impact of the policy change on females relative to males for

individuals with the observable characteristics X.

With the additional assumptions that restrict heterogeneity (which are often implicitly

imposed in similar empirical work):

• No heterogeneity in mean conditional treatment effects, therefore b3 = b4 = 0

• No heterogeneity in mean conditional time trends, therefore c3 = 0

• Covariates enter the same way into male and female conditional mean non-treated

outcomes in period T=0, therefore a4 = 0
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the above equation simplifies to:

Yi(T ) = a1 + a2Fi + a3Xi + (b1 + c1)Ti + b2FiTi + εit

Where

b2 = E[Y 1(1)− Y 0(1)|F = 1,W1 = 1]− E[Y 1(1)− Y 0(1)|F = 0,W1 = 1]

is the estimate of the impact of the policy change on females compared to males.
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Chapter 6

Conclusion

This thesis applies and extends microeconometric methods to analyse economic questions

of interest related to education choice and fertility choice, and their interaction with the

labour market.

Chapter 2 extends the literature on non-parametric bounds on the returns from education

by allowing for non-random selection into both education and labour market participation

simultaneously. The key finding from this research is that allowing for both forms of

non-random selection leads to very wide bounds on the returns from education, typically

straddling zero unless assumptions impose otherwise. This finding highlights both the

role of parametric assumptions in pinpointing the magnitude of these effects, but also the

importance of rigorously validating the assumptions leading to point estimates in such a

wide identified set.

Chapter 3 overviews the marginal treatment effect approach. This chapter outlines how

the MTE model can be used to estimate the selection effect, and to estimate whether

an advantage exists for the treated group in either potential outcome. Furthermore, this

chapter discusses how these effects can be decomposed into the component due to observ-

able characteristics and the component due to unobservable characteristics. Finally, the

chapter rigorously discusses the comparison of ATE, OLS and IV estimates, and discusses

what can be inferred from these comparisons.

Chapter 4 applies the MTE model to estimate heterogeneity in the returns to higher

education in the UK. While no heterogeneity owing to unobservables was found, significant

heterogeneity was found owing to observable characteristics, in particular with individuals

with higher levels of observed ability receiving lower returns to higher education than lower

ability individuals. Since graduates have higher mean levels of ability than non-graduates

this led to the finding of negative selection; with individuals who do not attend higher

education standing to gain more from participation than those who do attend.

Finally, chapter 5 found that extensions in the duration of paid maternity leave led to
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deteriorating female labour market conditions, with female employees receiving lower pay

and experiencing higher levels of redundancy relative to males as a result of an expansion

in the duration of paid maternity leave. Future research directions related to this analysis

include analysing how these labour market effects evolve over time, and a rigorous analysis

of the role played by heterogeneous selection (e.g. into labour market participation) in

driving these results.
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