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1 Introduction

It is well known from the work of Brown and Walker (1989) that maximization of random util-

ity implies that the heterogeneity components in stochastic demand equations cannot generally

be additive, as typically assumed in statistical demand models. Consequently, for recovering

consumer preferences across individuals, models should in general be nonseparable in unob-

served heterogeneity. However, in nonseparable models identification is typically accomplished

through a monotonicity assumption, see for example, Matzkin (2003) and Newey and Imbens

(2002). For a multiple equation case, as in consumer choices over several goods, this mono-

tonicity assumption becomes a global invertibility condition. Indeed Matzkin (2005) uses the

global invertibility condition to show global identification for general nonparametric simulta-

neous equation systems. We ask: what conditions on heterogeneous preferences enable such a

global invertibility assumption?

One interpretation of randomness in consumer choice data, given prices and total expendi-

ture, is unobserved heterogeneity in consumer preferences. Unobserved preference heterogene-

ity can be modelled in terms of random utility U(x, ε) where x ∈ RJ
+ is a vector of continuous

consumption amounts of J goods and ε ∈ RJ−1 is a J−1 dimensional vector representing unob-

served heterogeneity in preferences. Then, given prices p ∈ RJ−1
++ , pJ ≡ 1, and total expenditure

m > 0, stochastic demand functions h(p,m, ε) for the J − 1 inside goods x−J = (x1, . . . xJ−1)
′

solve

p = MRS(x−J ,m− p′x−J , ε)

x−J = h(p,m, ε),

where MRS(x, ε) =
[

∂
∂xj

U(x, ε)/ ∂
∂xJ

U(x, ε)
]

j=1,...,J−1
is the J−1 dimensional vector of stochas-

tic marginal rates of substitution. We focus on two specific cases. In the first, unobserved

heterogeneity is separable in the marginal rate of substitution function MRS(x, ε) as in Brown

and Matzkin (1995); in the second, this separability is relaxed.

Maximization of random utility implies that the conditional residuals ν(p,m, ε) = h(p,m, ε)−
E[h(p,m, ε)|p,m] must be functionally dependent on p and m, so that the heterogeneity com-

ponents ε generally cannot be isolated additively. Lewbel (2001) provides conditions on the

reduced form demand system that are necessary and sufficient for statistical demands to sat-

isfy revealed preference inequalities implied by utility maximization. This paper goes beyond

2



additivity of heterogeneity terms and considers the general consumer choice problem in which

unobserved preference heterogeneity is nonseparable. It examines conditions on the structural

model U(x, ε) or MRS(x, ε) that induce the mapping h between demands x−J and unobserved

preference heterogeneity ε, given p and m, to be globally invertible. In other words, the condi-

tions that imply a continuous one-to-one relationship - a global homeomorphism.

For the special case of scalar heterogeneity ε ∈ R, global invertibility follows from strict

monotonicity of h with respect to ε. This paper treats the general case of multidimensional

heterogeneity.1 The global homeomorphism property is necessary for global nonparametric

identification of U(x, ε) (Brown and Matzkin (1995), following the approach taken by Brown

(1983) and Roehrig (1988)2). It is also required for the existence of well-specified probability

models for choice variables x−J , given p and m, and, hence, for the analysis of revealed stochas-

tic preference (McFadden and Richter (1971, 1990) and McFadden (2004)). In Appendix A we

present an example of a deficient probability model in which there are continuous choice vari-

ables but they do not have a joint density. In the absence of a proper probability model the

postulates of revealed stochastic preference cannot be verified.

The paper proceeds as follows. Section 2 lays out the formal framework and notation for

this analysis. Section 3 presents a result for local invertibility of demand functions, primarily

as a reference point for the main parts of the paper. Section 4 presents a result on global in-

vertibility when unobserved preference heterogeneity enters the structural model in a separable

fashion. This result extends the model considered by Brown and Matzkin (1995). Section 5

discusses this result, illuminating the implicit limitations of the underlying model assumptions

in light of a synopsis of further global invertibility results for structural models with completely

nonseparable heterogeneity. Section 6 concludes.

1Brown and Wegkamp (2002) consider the multidimensional case, but their analysis is based on the invert-

ibility assumption I.1 in their paper.
2Benkard and Berry (2004) point out that these results are deficient. Recent work by Matzkin (2005) demon-

strates how these deficiencies can be remedied and provides a complete characterization of the identification

conditions.
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2 Framework for Analysis

The analysis in this paper proceeds within the following setup. Let (X,X ) be a metric space

of choice variables, where X ⊂ RJ and X is the Borel σ-algebra of subsets of X.

Denote by (U,U , Pε) the probability space defined over all random (direct) utility functions

U : RJ
+ × RJ−1 → R, i.e. U(x, ε), where x ∈ RJ

+ is a vector of continuous consumption

amounts, ε ∈ RJ−1 is a J−1 dimensional random component representing unobserved preference

heterogeneity, distributed according to probability measure Pε. U is the Borel σ-algebra of

subsets of U. Elements U ∈ U in this probability space satisfy the following assumptions:

Assumption A1: For each ε, U ∈ U is continuous in its arguments, continuously differen-

tiable in ε,x, strongly monotone, concave and strictly quasi-concave in x.

Assumption A2: Let MRS(x, ε) =
[

∂
∂xj

U(x, ε)/ ∂
∂xJ

U(x, ε)
]

j=1,...,J−1
. Suppose that the

(J − 1)× (J − 1) matrix ∇εMRS( x, ε) has full rank J − 1 for all ε.

Assumption A3: (smoothness in the sense of Debreu) The bordered Hessian satisfies

∣∣∣∣∣
∇ww′U(x, ε) ∇wU(x, ε)

∇w′U(x, ε) 0

∣∣∣∣∣ 6= 0

for all w′ = (x′, ε′).

Assumptions A1 - A3 guarantee that the reduced form system of stochastic demands

h(p,m, ε) is a system of continuously differentiable demand functions. In other words, un-

der these assumptions, the system

g(x−J ,m,p, ε) = MRS(x−J ,m− p′x−J , ε)− p

associates a unique value of x−J with any p, m and ε, i.e. it has a well-defined reduced form

x−J = h(p,m, ε).

Let (h,H, Ph) denote the probability space of demands, where Ph is the probability measure

induced by Pε through the nonlinear transformation h(p,m, ε), given p and m; and let H be the

Borel σ-field of subsets of h. In the terminology of revealed stochastic preference (McFadden

(2004)), the probability spaces (U,U , Pε) and (h,H, Ph) are consistent (or h is U-rational), if
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i.a. for any x−J satisfying p′x ≤ m, xJ ≥ 0, the inverse image of x−J = h(p,m, ε) with respect

to ε, given p and m, is in U , i.e. Ph(h(p,m, ε)) = Pε(Ũ(p,m,x−J)), where Ũ(p,m,x−J)) =

{U ∈ U : (x−J ,m − p′x−J)′ = (h(p,m, ε), xJ)′ = arg maxp′x≤m U(x, ε)} ∈ U . In order for

unambiguous revelation of stochastic preferences from stochastic demands, this inverse should

be unique. This paper provides conditions on the structural model U ∈ U that are sufficient for

x−J = h(p,m, ε) and ε to be continuous and globally one-to-one - or a global homeomorphism

-, given any p and m.

It is worth noting that arguments establishing global homeomorphisms rest on applications

of the theorems by Gale and Nikaido (1965) or Mas-Colell (1979). These theorems provide suf-

ficient conditions for the existence of global homeomorphisms. Hence, within the constraints of

these theorems, there is no scope to determine necessary conditions for global homeomorphisms.

To distinguish the conditions for global invertibility of h(p,m, ε) from the substantially weaker

requirements for local invertibility, the following section presents a local invertibility result,

while subsequent sections are devoted to conditions for global invertibility. Local invertibility

is necessary for global invertibility, and hence the analysis of local invertibility sheds some light

on necessary conditions for global invertibility.

3 Local Invertibility

Definition: The random variable x ∈ RJ has dimension J , denoted by dim(x) = J , if it has a

non-degenerate distribution on RJ .

Assumption A4: dim(ε) = J − 1.

Assumption 5: Im (MRS(x, ε)) =
{
MRS(x, ε) : ε ∈ RJ−1

}
= RJ−1

++ .

Lemma 3.1: (Local Invertibility) Suppose A1-A5 hold. Consider the system of demand

functions for the J − 1 inside goods x−J = h(p,m, ε). Fix ε0 ∈ RJ−1. Then, there exists δ > 0

such that, on the sets

E(ε0; δ) := {ε ∈ RJ−1 : ||ε− ε0|| < δ}
X (ε0; δ) := {z ∈ RJ−1

+ : z = h(p,m, ε) for ε ∈ E(ε0; δ)}.
x−J = h(p,m, ε) and ε are one-to-one, given any (p′,m)′ > 0, and hence the distribution of
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x−J ∈ X (ε0; δ), conditional on p and m, is non-degenerate.

The proof is an application of the Implicit Function Theorem and is omitted. Local in-

vertibility is not enough for global identification of unobserved preference heterogeneity and

hence of random utility. The result does, however, point to a necessary condition for global

invertibility. Suppose that h(p,m, ε) is invertible with respect to p. Denote this inverse by

q(x−J ,m, ε). The mapping between x−J and ε being homeomorphic, given p and m, is equiva-

lent to p− q(x−J ,m, ε) = 0 being an implicit homeomorphism between x−J and ε, given p and

m. Let B−J(p,m) = {x−J ∈ RJ−1
+ : p′x−J + xJ = m,xJ ≥ 0}. Since

p = q(x−J ,m, ε) = MRS(x−J ,m− p′x−J , ε),

this implies that x−J and ε are one-to-one, given p and m, if, and only if, for any x−J ∈
B−J(p, m), MRS(x−J ,m−p′x−J , ε) is an implicit homeomorphism between x−J and ε. Under

conventional smoothness assumptions, the rank condition on the matrix ∇εMRS( x, ε) in A2,

rk(∇εMRS( x, ε)) = J − 1 on x−J ∈ B−J(p,m), is a necessary, though not sufficient condition

for this.

4 Global Invertibility with MRS-Separable Heterogene-

ity

This section examines structural model specifications in which unobserved preference hetero-

geneity ε enters the marginal rate of substitution in a separable form. Specifically, it considers

models for marginal rates of substitution in which unobserved preference heterogeneity enters

in a multiplicative fashion. The advantage of such specifications is that they permit higher

order derivatives of random utility to depend on unobserved heterogeneity as well, allowing i.a.

for heterogeneous curvature of utility and heterogenous substitution elasticities. They include

the model of Brown and Matzkin (1995) as a special case; in their model, heterogeneity enters

random utility linearly, so that the utility curvature is not heterogeneous.

The following additional assumptions are maintained:

Assumption A4’: In addition to A4, assume that supp(ε) is a rectangle.
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This assumption is rather mild, as McFadden and Train (2000) demonstrate. Their Lemma

3 shows that for any random vector ξ ∈ RJ−1 which admits a conditional probability law for

each coordinate there exists a uniformly distributed random vector ε ∈ [0, 1]J−1 and measurable

functions gi : [0, 1]i → R, i = 1, . . . , J − 1, such that ξi = gi(ε1, . . . , εi) almost surely.

Assumption A6: MRS(x, ε) is multiplicatively separable with respect to ε:

MRS(x, ε) = v(x) + K(x)ψ(ε),

where v(x) is a (J − 1)× 1 vector of nonnegative functions, K(x) is a (J − 1)× (J − 1) matrix

with full rank and span equal to RJ−1
++ , and ψ : RJ−1 → RJ−1 satisfies the Gale and Nikaido or

Mas-Colell conditions.3

Lemma 4.1: Suppose A1, A2, A3, A4’ and A6 hold. Then, for any p and m, h(p, m, ε) is

globally invertible for all x−J ∈ B−J(p,m), and, hence, x−J has a non-degenerate distribution

on B−J(p,m), given any p and m.

Proof: From the first-order conditions and A8,

ψ(ε) = K(x)−1(p− v(x)),

and the result follows from an application of the Gale Nikaido or the Mas-Colell Theorem. ¤

As an illustration of the these results, consider the random utility model

U(x, ε) = u(x−J)′ψ(ε) + ν(x),

where u(·) is defined on RJ−1
+ , monotonically increasing and weakly concave, ν(·) is defined on

RJ
+ and satisfies A1 and A3, and ψ(ε) as in A4’. In this model, preferences are nonseparable

over the J goods, and marginal utilities may involve any subset of the components of ε. Then,

MRS(x, ε) =

[
∂

∂xj
ν(x)

∂
∂xJ

ν(x)

]

j=1,...,J−1

+

[
∂

∂xJ

ν(x)

]−1 [
∂

∂xj

u(x−J)′
]

j=1,...,J−1

ψ(ε)

= v(x) + K(x)ψ(ε),

3The Gale and Nikaido conditions are: the support of ε is a rectangle, and the Jacobian of ψ(ε) is a P matrix

for every ε, i.e. every principal minor has positive sign. The Mas-Colell conditions are weaker and imply that,

if the support of ε is a rectangle, the Jacobian needs to be a P matrix only at its vertices and that for ε in

the interior of its support it is only required that the Jacobian have a positive determinant. An example of a

function ψ(ε) is provided in Appendix B.
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where v(x) =

[
∂

∂xj
ν(x)

∂
∂xJ

ν(x)

]

j=1,...,J−1

∈ RJ−1
+ and K(x) =

[
∂

∂xJ
ν(x)

]−1 [
∂

∂xj
u(x−J)′

]
j=1,...,J−1

. A1

and A3 imply that K(x) has full rank and that its span is RJ−1
++ .

The model due to Brown and Matzkin (1995) can be obtained by choosing u(·) and ψ(·)
the respective identity functions, i.e. u(x−J) = x−J for any x−J ∈ RJ−1

+ , and ψ(ε) = ε for any

ε, and ν(x) = φ(x) + xJ , so that U(x, ε) = φ(x) + x′−Jε + xJ . Brown and Matzkin’s model

implies that marginal rates of substitution are additive in ε, hence invertibility follows directly

from the first-order conditions and no recourse to the Gale Nikaido or Mas-Colell results is

necessary, so that ε need not have rectangular support. Another illustration is provided by a

random coefficient Cobb-Douglas utility model, where the random coefficients are functions of

ε satisfying Gale Nikaido or Mas-Colell conditions.

5 Global Invertibility without MRS-Separable Hetero-

geneity

Section 4 extends the class of nonparametric random utility models which are globally identi-

fiable beyond the model of Brown and Matzkin (1995). To illuminate the restrictions that the

separability assumption A6 imposes, this section considers a variety of structural models where

the marginal rate of substitution is not separable in heterogeneity. Such cases require stronger

assumptions. The reason is that the property of ∇εh(p,m, ε) being a P matrix, in general,

must be deduced from

∇εh(p,m, ε) = − [∇x−J
MRS(x, ε)

]−1∇εMRS(x, ε)

where x = (h(p,m, ε)′,m−h(p,m, ε)′p)′, for any p, m, ε. Hence, assumptions on the structural

preference model, i.e. on MRS(x, ε), need to be such that, after differentiation with respect

to x−J and ε, inversion of ∇x−J
MRS(x, ε) and multiplication of − [∇x−J

MRS(x, ε)
]−1

and

∇εMRS(x, ε), the resulting matrix has principal minors of the same sign. This section provides

different sets of assumptions that induce this property.

Assumption A7: For x−J ∈ B−J(p,m), U(x, ε) satisfies ∇εMRS(x, ε)∇x−J
MRS(x, ε) =

A(x, ε) negative definite a.s., and ∇x−J
MRS(x, ε) full rank and symmetric, a.s.
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Lemma 5.1: Suppose that A1, A3, A4’, and A7 hold. Then, for any p and m, h(p,m, ε) is

globally invertible for all x−J ∈ B−J(p,m), and, hence, x−J has a non-degenerate distribution

on B−J(p,m), given any p and m.

Proof: By A3, ∇x−J
MRS(x−J ,m− p′x−J , ε) has full rank, so that its inverse exists. From

the first-order conditions,

∇εh(p,m, ε) = − [∇x−J
MRS(x−J ,m− p′x−J , ε)

]−1∇εMRS(x−J ,m− p′x−J , ε).

The Gale Nikaido Theorem requires that this (J−1)×(J−1) Jacobian matrix has all principal

minors positive. Magnus and Neudecker, Chapt.1 Theorem 29, establishes that for symmetric

matrices this is equivalent to it being positive definite. Therefore, A7 implies

∇εMRS(x−J ,m− p′x−J , ε) = A(x−J ,m− p′x−J , ε)
[∇x−J

MRS(x−J ,m− p′x−J , ε)
]−1

,

so that ∇εh(p,m, ε) is seen to be positive definite. ¤

The following corollary follows immediately.

Corollary: Suppose that A1, A3, A4’, and A7 hold. Then, ∇εh(p,m, ε) is positive definite

symmetric for all p,m, ε.

(A constructed) Example: Suppose that

U(x1, x2, x3) =

(
αε1 exp(

x1

ε1

) + exp(x3)

)ε1

+

(
βε2 exp(

x2

ε2

) + exp(x3)

)ε2

,

where α, β are positive parameters and ε1, ε2 are random components; εi > 0 is necessary and

sufficient for strict monotonicity and strict quasi-concavity, and εi < 1 is required for concavity,

i = 1, 2. Here, (x1, x3) and (x2, x3) are nonseparable. Moreover,

MRS(x, ε) =

[
α exp(x1

ε1
− x3)

β exp(x2

ε2
− x3)

]

shows that the model is nonseparable in the stochastic components. Since

∇x−3MRS(x, ε) =

[
α
ε1

exp(x1

ε1
− x3) 0

0 β
ε2

exp(x2

ε2
− x3)

]

∇εMRS(x, ε) =


 − α

ε21
exp(x1

ε1
− x3) 0

0 − β
ε22

exp(x2

ε2
− x3)




=

[
−x1

ε1
0

0 −x2

ε2

]
∇x−3MRS(x, ε),
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it follows that

∇εMRS(x, ε)∇x−3MRS(x, ε) =

[
−x1

ε1
0

0 −x2

ε2

]
[∇x−3MRS(x, ε)

]2
,

a diagonal matrix with negative elements on the diagonal, almost surely. Hence A7 is met.

An assumption slightly weaker than A7 is4

Assumption A8: U(x, ε) is strictly concave in x−J and linear in the outside good xJ , and

∇εMRS(x, ε) is positive definite almost surely.

Lemma 5.2: Suppose that A1, A3, A4’, and A8 hold. Then, for any p and m, h(p,m, ε) is

globally invertible for all x−J ∈ B−J(p,m), and, hence, x−J has a non-degenerate distribution

on B−J(p,m), given any p and m.

Proof: A8 implies that −∇x−J
MRS(x, ε) is positive definite for all x and ε, and symmetric.

Its inverse inherits these properties. Horn and Johnson, Theorem 7.6.3, then implies that its

product with a positive definite matrix ∇εMRS(x, ε) is diagonalizable, i.e. similar5 to a diag-

onal matrix, whose eigenvalues are positive. Similarity means that there exists a nonsingular

transformation S of x−J = h(p,m, ε), possibly dependent on p,m, ε, such that the transformed

vector of demands has a distribution, conditional on p and m, that can be deduced from the

distribution of ε by evaluation at the inverse function and multiplication by a Jacobian which

is diagonal. Then, one diagonalization is

∇εh(p,m, ε) = S(p,m, ε)D(p,m, ε)S(p,m, ε)−1,

where S(p,m, ε) is a nonsingular matrix consisting of the J−1 eigenvectors of ∇εh(p,m, ε) and

D(p,m, ε) is a diagonal matrix with the positive eigenvalues of ∇εh(p,m, ε) on its diagonal.

This is necessary and sufficient for ∇εh(p, m, ε) to be positive definite almost surely. Note that

under A10 ∇εh(p, m, ε) is not necessarily symmetric, so that the Magnus and Neudecker result

cannot be applied and the Gale Nikaido conditions need to be verified. For k = 1, . . . , J − 1,

define k × (J − 1) matrices Ek = [Ik,0], where 0 is a (J − 1 − k) × (J − 1) matrix of zeros.

Then, the kth principal minor of the Jacobian matrix ∇εh(p,m, ε) is

|∇εh(p,m, ε)k| = |Ek∇εh(p,m, ε)E ′
k| = |EkS(p,m, ε)D(p,m, ε)S(p,m, ε)−1Ek|.

4A8 appears to be weaker than A9 because it does not imply symmetry of the Jacobian ∇εh(p,m, ε).
5An n× n matrix A is similar to an n× n matrix B if there exists a nonsingular n× n matrix S such that

B = S−1AS. Similarity is an equivalence relation. See Horn and Johnson, section 1.3, for further details.
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Therefore, for any y ∈ Rk,y 6= 0, and any k = 1, . . . , J − 1,

y′∇εh(p,m, ε)ky = y′Ek∇εh(p,m, ε)E ′
ky

= (E ′
ky)′∇εh(p,m, ε)(E ′

ky) > 0,

where E ′
ky 6= 0 and the last inequality follows because ∇εh(p,m, ε) is positive definite al-

most surely. Hence, the Jacobian has all principal submatrices positive definite almost surely.

Therefore, for any k = 1, . . . , J − 1, there exists a full-rank k × k matrix Pk(p,m, ε) such that

∇εh(p,m, ε)k = Pk(p, m, ε)Pk(p,m, ε)′

⇒ |∇εh(p,m, ε)k| = |Pk(p, m, ε)Pk(p,m, ε)′|
= |Pk(p, m, ε)|2 > 0.

Therefore, the Gale Nikaido conditions are satisfied. ¤

Quasi-linearity U(x, ε) in the outside good xJ leaves the possibility that the demand for

the outside good may be negative. It can be relaxed if, instead, more structure is imposed on

∇εMRS(x, ε) and ∇x−J
MRS(x, ε). Consider, for instance,

Assumption A9: (i) ∇x−J
MRS(x, ε) has negative diagonal and non-negative off-diagonal

entries, a.s.; (ii) (−1)J∇εMRS(x, ε) has positive diagonal and non-positive off-diagonal entries,

and all its principal minors are positive, a.s.; and (iii) (−1)J∇x−J
MRS(x, ε)−∇εMRS(x, ε) ≥

0, a.s.

Matrices, having properties as in (i) and (ii), are sometimes referred to as M-matrices;

see, e.g., Horn and Johnson (1991). Assumption A9 is particularly attractive because it has

an economic interpretation. It can be shown that the restriction imposed by A9 imply that

the inside goods x1, . . . , xJ−1 are pairwise symmetric gross substitutes, while xj and xJ , j =

1, . . . , J − 1, are pairwise not necessarily symmetric gross complements.6 Let Z be the class

of square matrices whose off-diagonal elements are all non-positive, as in Fiedler and Pták’s

definition (4,1). And let K be those elements in Z which have all principal minors positive,

6Illustrative examples are available from the authors upon request. With additional assumptions on the

principal minors, such sign restrictions imply, furthermore, that ∇εMRS(x, ε) and − [∇x−J MRS(x, ε)
]−1

are strictly totally positive and bounded almost surely. Applying the Cauchy-Binet formula to |h(p,m, ε)k|,
k = 1, . . . , J − 1, and using a result due to Karlin (1968) on totally positive matrices (chapt.5, Theorem 3.1), it

can be shown immediately that ∇εh(p, m, ε) is a P matrix.
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as in Fiedler and Pták’s definition (4,4). Lemma 5.4 below uses Fiedler and Pták’s Theorem

(4,6): If A ∈ K, B ∈ Z and B − A ≥ 0, then, i.a., B−1A ∈ K.

Lemma 5.3: Suppose that A1, A3, A4’, and A9 hold. Then, for any p and m, h(p,m, ε) is

globally invertible for all x−J ∈ B−J(p,m), and, hence, x−J has a non-degenerate distribution

on B−J(p,m), given any p and m.

Proof: By A10(i), −∇x−J
MRS(x, ε) has positive diagonal and non-positive off-diagonal

entries. Hence it belongs to the class Z; and by A10(ii), (−1)J∇εMRS(x, ε) belongs to the

class K. Hence, using A10(iii), by Fiedler and Pták, Theorem (4,6),

h(p,m, ε) = − [∇x−J
MRS(x, ε)

]−1∇εMRS(x, ε)

= (−1)J
[−∇x−J

MRS(x, ε)
]−1∇εMRS(x, ε) ∈ K,

i.e. all its principal minors are positive, so that the Gale Nikaido conditions are satisfied. ¤

Among the structural models with non-separable heterogeneity, models based on A9, in

light of its economic interpretability, are likely to be the most useful for applied work.

6 Conclusions

This paper provides conditions on structural nonparametric preference models for continuous

choices under which the induced stochastic demand system is non-separable in unobserved

preference heterogeneity and globally invertible. It extends the class of nonparametrically

identifiable random utility models with separable heterogeneity beyond the classical model of

Brown and Matzkin (1995) and discusses various extensions to completely non-separable cases.

This broadens the class of random utility models suitable for nonparametric microeconometric

analysis.

The synopsis of these conditions emphasizes the view that microeconometric modelling of

demand acknowledging unobserved preference heterogeneity requires additional restrictions on

preferences, beyond those imposed by microeconomic theory.
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A Example: Non-existence of joint density

Consider the following random utility model: U(x1, x2, ε) = min{x1 + x2, εx1 + 1
2
x2}, where

supp(ε) = (1
2
, +∞). Indifference curves associated with this random utility model are kinked,

and the location and angle of the kink are determined by ε. Depending on relative prices px1/px2

and given any income m, various types of solutions to the consumer’s utility maximization

problem can arise. Interior solutions for px1/px2 ∈ (1, 2ε) are characterized by
x̄?
2

x̄?
1

= 2(ε − 1)

and yield x̄?
i = (2(ε − 1))i−1m/(px1 + 2(ε − 1)px2), i = 1, 2; set-valued solutions arise when

either px1/px2 = 1, in which case x?
1 + x?

2 = u?, where u? = m/(px1 + px2) and x?
1 ∈ [x̄?

1, m/px1 ],

x?
2 ∈ [0, x̄?

2]; or when px1/px2 = 2ε, in which case εx?
1 + 1

2
x?

2 = u? = m/2px2 and x?
1 ∈ [0, x̄?

1],

x?
2 ∈ [x̄?

2,m/px2 ]; corner solutions arise when px1/px2 < 1 or px1/px2 > 2ε.

Now suppose that for a consumer with income m = 27, consumption choices x1 = 3 and

x2 = 18 are observed at prices px1 = 3, px2 = 1. Assuming the consumer maximizes U(x1, x2, ε),

this could either be a corner solution, in which case one infers ε1 = 4; or it could be an element of

a set-valued solution, in which case one infers ε2 = 3/2. This amounts to a lack of identification

of the structural model. If, in the spirit of revealed preference type comparisons, the price

of good one changes to px1 = 1, then ε1 induces another solution in the set x1 ∈ [3, 27] and

x2 = 27− x1, while this ε2 induces a solution in the larger set x1 ∈ [27/2, 27] and x2 = 27− x1.

Note that, in fact, given px1 = px2 = 1 any choice pair {(x1, x2) : x1 ≤ 27/2, x1 + x2 = 27}
can be induced by a continuum of values of ε, namely all ε ≥ 1

2
x2

x1
+ 1 ≥ 3

2
. This implies that

any such (x1, x2) is observed with positive probability induced by ε, Pr(ε ≥ 1
2

x2

x1
+ 1). This is a

deficient probability probability model, since x1 and x2 are continuous choice variables, but do

not have a joint density.

B Example: Function ψ(·) satisfying Gale Nikaido and

Mas-Colell Conditions

Consider the functionψ(ε) = exp(Aε), where ε ∈ E ⊂ RJ−1 and A is a (J −1)× (J −1) matrix.

The Jacobian of ψ(ε) is

∇εψ(ε) = [ψ(ε) ◦A1., . . . , ψ(ε) ◦AJ−1.] ,

13



where Aj., j = 1, . . . , J − 1, is the jth column of A.

Suppose A is triangular, with positive diagonal elements. Then, ∇εψ(ε) is triangular as well

and, since ψ(ε) has positive elements a.s., has positive diagonal elements, and the same is true

for every principal submatrix of A and ∇εψ(ε). Hence, ∇εψ(ε) and its principal submatrices

have determinants which equal their traces and hence are positive. Consequently, ψ(ε) also

satisfies the weaker Mas-Colell conditions.
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