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Abstract

Given the ageing population in the UK, statistical modelling of cog-
nitive function in the older population is of interest. Joint models are
formulated for survival and cognitive function in the older population. Be-
cause tests of cognitive function often result in discrete outcomes, binomial
and beta-binomial mixed-effects regression models are applied to analyse
longitudinal measurements. Dropout due to death is accounted for by para-
metric survival models, where the choice of a Gompertz baseline hazard
and the specification of the random-effects structure are of specific interest.
The measurement model and the survival model are combined in a shared-
parameter joint model. Estimation is by marginal likelihood. The methods
are used to analyse data from the Cambridge City over-75s Cohort Study
and the English Longitudinal Study of Ageing.

Key words: Beta-binomial distribution, Cognitive function, Gompertz dis-
tribution, Survival analysis.
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1 Introduction

The structure of the UK population is changing, with a fast increase in the older
segments. In 1985, the percentage of the population aged 65 and over was 15%.
According to a projection by the Office for National Statistics, in the year 2035,
23% of the population will be comprised by individuals aged 65 years and over
(Office for National Statistics 2011). Most western societies face similar changes
in their population structure, although the pace of increase is faster in developing
countries than in developed countries (United Nations 2011). These structural
changes in society impose serious challenges to governments, and health and social
care services.

In ageing research, decline in cognitive function is of specific interest as it is
typical of the ageing process and often results in need for care. Statistical mod-
elling of cognitive function and its potential decline over time makes it possible
to describe cognitive function in older age, to understand it, and to predict it.

This paper proposes joint models for survival and cognitive function in the
older population. Dementia is at the extreme of the declining process and, in
clinical settings, part of its diagnosis involves the crossing of threshold values in
cognitive tests such as the Mini-Mental State Examination (MMSE, Folstein et
al. 1975). Typically, cognitive function is measured using a questionnaire test
with an integer scale. The MMSE is an example of this with a scale from 0 up
to 30. The proposed models cover a broad definition of cognitive impairment.
Instead of only modelling whether impairment is present or not, it is worthwhile
to model cognitive function on an extended scale.

Dropout due to death cannot be ignored when elderly are followed up with
respect to a process that is associated with ageing and the proximity of death.
Hence a joint model is needed for the process of interest and survival.

A good overview of past and current research in joint models is presented in
Chapters 13-16 of Longitudinal Data Analysis (Fitzmaurice et al. 2009). Typical
applications of joint models are statistical analyses of longitudinal measurements
in the presence of dropout during follow-up. If the dropout is related to the
longitudinal process of interest, then ignoring the dropout may bias statistical
results (Henderson et al. 2000). The joint models that will be presented in this
paper build upon an established framework; see Rizopoulos (2012). However,
model formulation is geared up to the specific features of modelling cognitive
function data in an older population. First, cognitive function is often measured
with a test resulting in an integer score. Non-linear mixed-effects models are
therefore investigated as alternatives to linear mixed-effects models where the
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conditional distribution of the outcome is continuous. Tests of cognitive function
often result in skewed distributions due to ceiling effects, and this further under-
mines the assumptions of linear mixed models (Proust et al. 2011). Second, non-
or semi-parametric modelling of the time-to-event is the default in many joint
models. However, when used in a joint model, semi-parametric survival models
have hardly any of the computational advantages that recommend their use in
isolation. In the present context, the event is defined as dropout due to death
and since prediction is of specific interest, parametric models will be formulated
where the choice of the parametric shape is part of the model comparison. The
Gompertz baseline hazard is especially useful in the context of ageing; see, for ex-
ample, Hougaard (2000, Section 2.2). For cognitive function, Van den Hout and
Matthews (2008) showed that a multi-state survival model for the onset of cogni-
tive impairment fitted better with Gompertz baseline hazards than with Weibull
baseline hazards. Third, delayed entry (left truncation) is an essential feature of
longitudinal data for ageing research when age is the time scale: individuals are
only in the data set if they survived up to the required baseline age of the study.

The general framework in the current paper is a shared-parameter model,
where the models for the longitudinal response and the hazard model are condi-
tionally independent given the random-effects. Shared-parameters models with
linear mixed-effects regression have been applied in, for example, longitudinal
HIV studies (De Gruttola and Tu 1994; Faucett and Thomas 1996). The pro-
posed models will extend the shared-parameter model by combining models for
discrete longitudinal response with parametric hazard models. The time scale
will be age. For the discrete response binomial regression and beta-binomial re-
gression models will be formulated. Marginal likelihood will be applied, where
the random effects are integrated out of the likelihood.

Section 2 introduces the joint models and Section 3 discusses maximum like-
lihood estimation, derivation of fitted values, and prediction. In Section 4, a
small simulation study is described. The applications are in Sections 5 and 6,
where data are analysed from the Cambridge City over-75s Cohort (CC75C) and
the English Longitudinal Study of Ageing (ELSA), respectively. Section 7 is the
conclusion.

2 Models

A joint model can be defined by specifying two constituent submodels which share
random effects. The following will define, firstly, a measurement model for the
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longitudinal response and, secondly, a hazard model for the event time. The data
for the first model consist of repeated measurements on individuals in the study,
the data for the second model consist of age at the baseline of the study and age
at death when observed during the follow-up.

We assume that the longitudinal response is discrete and ordinal, taking in-
teger values in {0, 1, ...,m}. For example, in the applications in Sections 5 and
6, the response is the observed sum score on a cognitive test with test-specific m
being the highest score attainable. For individual i, i = 1, ..., N , with longitudi-
nal response yi = (yi1, ..., yini

) at times (ti1, ..., tini
) the measurement model has

a linear predictor given by

ηij = β0i + β1itij + xijγ

β0i = β0 + b0i

β1i = β1 + b1i, (1)

where xij is a vector with covariate values at tij and no intercept, and the distribu-
tion of the random effects is assumed to be bivariate normal, i.e., bi = (b0i, b1i) ∼
N(0,Σ).

The inverse of the logit link is µij = exp(ηij)/{1 + exp(ηij)} and the corre-
sponding binomial distribution for Yij has probability of success µij, with m the
number of trials. We have E[Yij|µij] = mµij and Var[Yij|µij] = mµij(1−µij). The
beta-binomial distribution for Yij also has probability of success µij, and m trials,
but has an additional variance parameter θ. It follows that E[Yij|µij] = mµij and
Var[Yij|µij] = mµij(1− µij){1 + (m− 1)θ/(1 + θ)}. Here it is assumed that θ is
the same unknown constant for all individuals.

In a fixed-effects model, the beta-binomial distribution can be used when
there is overdispersion with respect to a binomial distribution. If there is an
observation-specific random effect in a binomial regression model, then switching
to a beta-binomial model does not make sense as the overdispersion is dealt with
by the random effect. However, in a model for longitudinal data with individual-
specific random effects which are linked to more than one observation, using the
beta-binomial distribution can lead to improved data analysis.

The binomial regression model is a generalised linear mixed model (GLMM).
Since the beta-binomial distribution is not in the natural exponential family, the
beta-binomial regression is not a GLMM; see also Agresti (2002).

Next, we define the hazard model for death as the event of interest. In addition
to the covariate values, data for this model are ti1, the time individual i enters
the study, and ti, the time at which either death is observed (denoted by δi = 1),
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or death is right-censored (δi = 0).
The hazard model is a parametric regression model given by

h(t|βi) = h0(t) exp{g(α,βi, t) + x∗
iγ

∗}, (2)

where βi = (β0+b0i, β1+b1i) and x∗
i is a vector with covariate values and without

an intercept. Function g is used to include the random effects into the hazard
model with additional parameter α.

Examples of parametric specifications of the baseline hazard function h0(t)
are

Exponential: h0(t) = λ

Weibull: h0(t) = λτtτ−1

Gompertz: h0(t) = λ exp(ξt),

where λ > 0 and τ > 0. For numerical reasons, we will use the parametrisation
λ = exp(γ∗

0) for γ∗
0 ∈ R. There is no formal restriction ξ > 0. However, if

ξ < 0, then for t very large, the survivor function goes to exp(λξ−1) > 0, which
implies that the event does not occur for a proportion of the population. In the
applications in Section 6 where t is age in years, all estimated ξ are positive.

The hazard model defined by (2) allows for several specialisations. In joint
models where the hazard model is a semi-parametric Cox model, g(α,βi, t) is
often specified as α(β0i+β1it); see, for example, Diggle et al. (2009). For the above
parametric specifications of the baseline hazard, we make a few remarks—ignoring
the covariate effects for ease of presentation.

(a) Using g(α,βi, t) = α(β0i + β1it) and the Gompertz baseline hazard with
λ = exp(γ∗

0) implies

h(t|βi) = exp{γ∗
0 + ξt+ α(β0i + β1it)} (3)

= exp{γ∗
0 + αβ0i + (ξ + αβ1i)t}. (4)

Equation (3) shows that the model defines the risk of death as a function of t,
and allows this risk to change according to an individual-specific trajectory
for the longitudinal response. Equation (4) shows that the model is still
a Gompertz model. A possible model extension would be to use two α-
parameters leading to

h(t|βi) = exp{γ∗
0 + α0β0i + (ξ + α1β1i)t}, (5)

which separates the effect of the initial level of the trajectory at time t = 0
from the effect of the slope of the trajectory.
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(b) The exponential baseline hazard model with g(α,βi, t) = α(β0i + β1it) de-
fines a Gompertz hazard model h(t|βi) = exp{γ∗

0 + αβ0i + αβ1it}.

(c) The Weibull baseline hazard model with g(α,βi, t) = αβ0i defines a Weibull
model conditional on an individual-specific scale parameter:

h(t|βi) = λiτt
τ−1 for λi = exp(γ∗

0 + αβ0i). (6)

If g(α,βi, t) = α(β0i + β1it) is included in the log-linear part of (2), then
methods for time-varying covariates can be applied; see, e.g, Crowther et
al. (2013). An effect of β0i on the hazard can also be included to define an
individual-specific shape parameter:

h(t|βi) = λτit
τi−1 for τi = τ exp(α0β0i). (7)

Conditional on β0i, this is a Weibull model albeit not in the form of (2).
An advantage of this is that the conditional survivor function is in closed
form.

The interpretation of the α-parameter in specifications of (2) is similar to
the interpretation of regression parameters in the Cox model. For example
in (3), given individuals i and j at time t, if there is a one-unit difference
(β0i + β1it) + 1 = (β0j + β1jt), then exp(α) is the relative increase of the risk
associated with that one-unit increase. Thus, conditional on a time t, model (3)
is a proportional hazard model for the heterogeneity across individuals as mea-
sured by the random effects. In contrast, model (7) is a non-proportional hazard
model for the heterogeneity, where the interpretation of α is via the change in
the Weibull shape parameter.

The choice of the time scale is important in joint models. The applications
in this paper investigate cognitive change in the older population. Given the
association between ageing and cognitive change, the chosen time scale t is age.
In other applications, for example, in studies where individuals are followed-up
after a medical intervention, the chosen time scale will often be time since baseline.

In ageing research where older people are included in longitudinal studies
conditional on having reached a specified age, it makes sense to define t as age
minus the minimum age in the study. In the CC75C application, for example,
we define t as age minus 70 years and the interpretation of a joint model which
shares the random intercept by defining g(α,βi, t) = αβi0 is that information on
cognitive function at age 70 is associated with survival. Note that in this case a
model with g(α,βi, t) = αβi0 would not make sense if t is untransformed age.
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An alternative specification of the hazard in a joint model is to share the
random effect via the baseline hazard. Including covariate effects, this leads to

h(t|βi) = h0{t|g0(α0,βi, t)} exp(x∗
iγ

∗),

which includes Weibull model (7) as a special case, and can also be used to define
the Gompertz models.

The above framework allows for several extensions with respect to specifying
the effects of the random effects in the hazard model; see Rizopoulos (2012,
Chapter 5) for examples and further references.

3 Maximum likelihood inference

3.1 Marginal likelihood

Let ω denote the vector with all the model parameters except the random effects.
The likelihood contribution of individual i conditional on truncation time ti1 is

Li(ω|yi, ti, T ≥ ti1) = p(yi, ti|T ≥ ti1,ω) =
p(yi, ti|ω)

p(T ≥ ti1|ω)
. (8)

The denominator in (8) is the survivor function evaluated at ti1 and can be derived
by integrating out the random effects, i.e.,

P (T ≥ ti1|ω) =

∫
P (T ≥ ti1|bi,ω)p(bi|ω)dbi. (9)

Assuming independence between the submodels conditional on random effects,
the numerator in (8) can be written as

p(yi, ti|ω) =

∫
p(yi|bi,ω)p(ti|bi,ω)p(bi|ω)dbi. (10)

Assuming independence of observations for the measurement model given individual-
specific random effects implies p(yi|bi,ω) =

∏ni

j=1 p(yij|bi,ω). For the hazard
model, it follows that

p(ti|bi,ω) = h(ti|bi,ω)δiP (T ≥ ti|bi,ω).

For a similar handling of left-truncation in the context of frailty models; see
Jensen et al. (2004) and Rondeau et al. (2006).
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The integrands in (9) and (10) consist of closed-form expressions for the mod-
els in Section 2. For example, for the Gompertz model (3) we have

P (T ≥ ti|bi,ω) = exp
[
−λiξ

−1
i {exp(ξiti)− 1}

]
,

where λi = exp(γ∗
0 + αβ0i) and ξi = ξ + αβ1i.

For the maximum likelihood estimation, the integrals in the log-likelihood
are approximated using Gauss-Hermite quadrature, where the two-dimensional
integrals are approximated by one-dimensional integrals each with 13 nodes for
the quadrature. To facilitate this approach, the bivariate normal distribution
in the log-likelihood is formulated by using two univariate normal distributions.
If Y ∼ N(µY , σ

2
Y ), and X ∼ N(µX , σ

2
X), then the density for (y, x) is equal to

ϕY |X(y|X = x)ϕX(x), where Y |X ∼ N(µY +ρ(σY /σX)(x−µX), σ
2
Y (1−ρ2)) and ρ

is the correlation of X and Y (Casella and Berger 2002, p. 177). For this reason,
we do not estimate Σ directly, but work with σ0, σ1, and ρ instead.

The logarithm of the likelihood is maximised in the software environment R
using the general-purpose optimiser optim, which uses the Nelder-Mead routine
for finding an optimum of a multi-dimensional function (R Development Core
Team 2011). The Nelder-Mead routine is chosen because it does not require
derivatives and it is robust in the sense that it is good at dealing with irregular
functions and rapidly changing curvature (Nelder and Mead 1965).

An alternative routine in optim is BFGS, which uses numerical gradients to
build up a picture of the surface to be optimised. BFGS is less robust, but can lead
to faster convergence. For the Nelder-Mead routine in optim we used the default
setting, except for the maximum number of iterations, which was increased in
some cases to obtain a report of successful convergence. The default setting in
optim for convergence is that the optimisation algorithm stops if it is unable to
increase the value of the likelihood by 1 × 10−8. Given the complexity of the
model, it is recommended to explore several sets of starting values to minimise
the risk of ending up with a solution which is a local maximum.

In the maximisation, all model parameters with a restricted parameter space
are transformed such that the resulting maximisation is over an unbounded pa-
rameter space. For example, σ0 > 0 is estimated by maximising over log(σ0), and
−1 < ρ < 1 is estimated by maximising over log{(1 + ρ)/(1 − ρ)}. The Hessian
and the delta method are used after maximisation to compute standard errors.

There are alternatives for using marginal likelihood to estimate random-effects
models. Methods such as restricted maximum likelihood and h-likelihood are
possible; see, for example, Lee et al. (2006) for a comparison of these methods.
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3.2 Fitted values

For the estimation of individual random effects, maximum a posteriori (MAP)
estimation is undertaken. As before, let ω denote the vector with all the model
parameters. The density of bi evaluated at the MLE of ω is given proportionally
by

p(bi|ti, ti1, δi,yi;ω= ω̂) ∝ p(ti|δi, bi;ω= ω̂)p(yi|bi;ω= ω̂)p(bi|ω= ω̂). (11)

The proportionality follows from ignoring the normalising constant, which is not
needed to estimate the random effects. For each i, random effects bi can be
estimated by maximising posterior (11) using a general-purpose optimiser such
as optim in R.

An alternative method to estimate the random effects is to construct a Markov
Chain Monte Carlo (MCMC) algorithm to draw values from (11). A basic
Metropolis algorithm with a normal distribution as the symmetric jump distribu-
tion can be used. From a chain of sampled values, means and confidence intervals
can be constructed for bi. Since a chain is needed for each i, this is a computa-
tionally intensive method. For the models in this paper, MAP as described above
is faster.

With estimated random effects, fitted values for the longitudinal outcomes
can be computed. It is recommended to plot observed trajectories versus fitted
trajectories for a subsample of individuals. This will help to assess structural
misfit if present.

Because observed data are not a random sample of the target population
due to the non-random dropout, residuals derived after fitting the model may
not follow their nominal distribution (Rizopoulos 2012). Nevertheless, we still
recommend plotting residuals to check for problems with model fit such as the
presence of outliers. Randomised quantile residuals can be used as proposed
by Dunn and Smyth (1996) in the context of generalised linear models. In the
absence of non-random dropout, the nominal distribution of quantile residuals is
the standard normal.

3.3 Prediction

Consider prediction of longitudinal response based upon available individual data.
Denote the response for individual i by ỹi. Let t̃ini

denote the age corresponding
to the last element of ỹi, and let t̃i1 denote the age corresponding to the first
element of ỹi. If there is just one outcome, then t̃i1 = t̃ini

. In order to be able
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to predict an individual trajectory from t̃ini
onwards, values of random effects

are needed. Given that data are available, it makes sense to derive the most
likely value of the random effects given the model parameter estimates and the
available data. We will use MAP estimation and estimate bi by those values
which maximise the conditional density

p(bi|, t̃i1, t̃ini
, δi=0, ỹi;ω= ω̂) ∝

p(t̃ini
|δi=0, bi;ω= ω̂)p(ỹi|bi;ω= ω̂)p(bi|ω= ω̂). (12)

Given estimated random effects, both survival and longitudinal response can be
predicted up to an assumed maximum age. This will be illustrated in the appli-
cations. Using MAP estimation implies that the uncertainty in the prediction of
survival and the longitudinal response does not included the uncertainty induced
by the estimated distribution for the random effects.

Parameter uncertainty can be included in the prediction by simulation using
the maximum likelihood estimation. Consider the multivariate normal distribu-
tion with expectation equal to the maximum likelihood estimate of the parameter
vector and the covariance matrix equal to the estimated covariance matrix at the
optimum. From this distribution parameter vectors are sampled and for each of
these vectors prediction is undertaken. The resulting set of predictions will reflect
the uncertainty in the estimation of the model parameters.

4 Simulation study

A small simulation study was conducted to investigate parameter estimation for
the joint model. For the simulation, we choose model (3) defined by the beta-
binomial regression and the Gompertz hazard. Of specific interest is the inference
for the α-parameter and the number of nodes needed for the Gauss-Hermite
quadrature. Because the estimation by marginal likelihood is computationally
intensive, the investigation is limited with respect to the chosen sample sizes.

The joint model used in the simulation is given by

ηij = β0i + β1it

hi(t|βi) = exp{γ∗
0 + ξt+ α(β0i + β1it)},

where βi = (β0i, β1i) = (β0 + b0i, β1 + b1i), and the random-effect distribution for
(b01, b1i) is specified by σ0, σ1, and ρ; see Section 3.1. The variance parameter for
the beta-binomial distribution is θ.
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For the parameters we choose values close to the estimates in the CC75C
application in the next section. Specifically, we choose α = −0.40; see Table 1
for the chosen values of the other parameters. In line with CC75C, we assume
that the model describes cognitive function of individuals of 75 years and older.

In the simulation study, baseline age is in the range [75, 90]. The left trunca-
tion is taken into account by simulating longitudinal data for a large population
and then analysing a random sample of those individuals who survived up to the
truncation threshold.

To fix ideas, assume that the baseline of the study is the calendar year 2000.
Using the model, we first simulate yearly life-long trajectories of individuals who
are 75 years old in the calendar years 1985 up to 2000. In this simulation, the
survivors in 2000 are in the age range [75, 90]. From these survivors, we take a
random sample of size N and impose the follow-up according to the study design.
The follow-up is fixed to 3, 6, 9, 12, and 15 years after baseline 2000. Including
the baseline data, this means that an individual who does not die before 2015
has six observations.

Given specified parameters and an age range, data for an individual i are
simulated by drawing random effects βi0 and βi1 first. Using these effects the
longitudinal trajectory is simulated using the beta-binomial distribution. Next,
using the random effects again, the Gompertz parameters λi = λ + αβi0 and
ξi = ξ + αβi1 are defined and survivor function S(t) is computed for each grid
point t in a discrete grid for age. Using the cumulative distribution function
F (t) = 1 − S(t), age at death (discretised) is drawn by the using the inversion
method.

Reducing the number of nodes for the quadrature reduces the time needed
for the maximum likelihood estimation, but using not enough nodes can bias
results. After some explorative runs, we choose 13 nodes for the Gauss-Hermite
quadrature. Table 1 shows the simulation results for the choices N = 100, 200,
and 400.

As expected, there is a consistent reduction of the root mean square error
when N is increased. Distributions of estimated values are slightly skewed and
the median is chosen as the measure of location to asses the bias. Using the
median in a simulation study is not common. Its use in the current setting is
motivated by the limited number of repetitions (only 100) and the aim to minimise
the influence of outliers in the estimation of the parameters values. For N = 100,
the percentage bias shows that there is substantial bias for α. Also the correlation
parameter ρ is hard to estimate with N = 100. There is clear improvement for
these parameters when N is increased.
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Table 1: Simulation study for N = 100, 200, and 400. Results based on 100 simu-
lated data sets and estimation using 13 nodes in the Gauss-Hermite quadrature.
Bias is computed with the median as the measure of location. Notation: % for
percentage bias, rMSE for the root of the mean square error, and ⌈x⌉ for absolute
value less than x.

Estimation
N = 100 N = 200 N = 400

Value Bias % rMSE Bias % rMSE Bias % rMSE
β0 3.50 -0.083 2.4 0.308 -0.103 2.9 0.253 -0.048 1.4 0.211
β1 -0.20 -0.002 1.0 0.026 0.006 3.0 0.021 0.006 2.8 0.018
σ0 1.50 -0.025 1.7 0.276 -0.062 4.1 0.231 -0.053 3.5 0.177
σ1 0.10 -0.005 5.0 0.029 -0.008 8.0 0.022 -0.005 4.5 0.018
ρ -0.50 0.094 18.8 0.341 0.060 12.0 0.249 0.036 7.2 0.206
θ 0.02 -0.002 10.0 0.009 0.001 5.0 0.008 ⌈0.001⌉ ⌈0.1⌉ 0.006
γ∗ -2.60 -0.093 3.7 0.460 -0.107 4.3 0.405 -0.125 5.0 0.362
ξ 0.10 0.003 3.5 0.028 0.005 5.5 0.026 0.007 7.5 0.022
α -0.40 -0.057 14.2 0.157 -0.024 6.1 0.110 0.002 0.4 0.083

Comparing the percentage bias for N = 100 and N = 400, there is an un-
expected increase for some parameters, including ξ which is the effect of age.
However, with only 100 simulated data sets, some variation in the percentage
bias is to be expected. The overall results for N = 400 are clearly an improve-
ment compared to N = 100.

The simulation study shows that the estimation by marginal likelihood is able
to reproduce the parameters that were used to generate the data. Choosing 13
nodes for the Gauss-Hermite quadrature seems to work well in this setting, but
should not be used as a general guideline; see, for example, Lesaffre and Spiessens
(2001). With only 100 simulated data sets, it is difficult to fully assess coverage
rates of confidence intervals, or to compare empirical standard deviations (of es-
timated model parameters) with the average of the standard errors (as estimated
from the model). However, looking tentatively at these statistics in the current
simulation study (not reported), there seems to be a consistent underestimation
of the standard errors. This aspect of the estimation needs more research. With
respect to the interpretation of the estimation in the application in the following
sections, reported 95% confidence intervals should be interpreted with care as
there may be some underestimation of the uncertainty.
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5 Cognitive function as a predictor in a survival

model for CC75C

The Cambridge City over-75s Cohort Study (CC75C, www.cc75c.group.cam.ac.
uk) is a UK population-based longitudinal study of ageing that started in 1985
with participants aged at least 75 years old in Cambridge city. Topics in the study
are dementia, patterns of cognitive change, depression and depressive symptoms,
socio-demographics and social contacts, falls and functional ability, and genetics.
Here we focus on the measuring of cognitive function using the Mini Mental State
Examination (MMSE). Because of the advanced age of CC75C participants at the
baseline in 1985, there were fewer than ten survivors in 2010. The data of these
survivors are not included in the current analysis. For all the other individuals,
death times are available.

We analyse data from N = 1932 CC75C participants. A subset of this sample
was analysed in Van den Hout et al. (2011) using years to death as the time scale
in a mixed-effects model. In the present context we use age as the time scale in
the joint model, which makes it possible to predict the process of interest.

With respect to the survey design, further interviews after baseline were con-
ducted on average 2, 7, 9, 12, 17, and 21 years later, and the frequencies of
the number of observations at baseline and the subsequent waves are 777, 485,
318, 196, 113, 37, and 6, respectively. Mean age at baseline is 81.4, median is
80.5. There are 698 men and 1234 women in the sample. The frequencies for
dichotomised number of years of formal education are 1518 and 414 for fewer
than ten years versus more than ten years.

The time scale t for the longitudinal MMSE outcome is age minus 70 years.
Hence the interpretation of intercept β0 is with respect to cognitive function at
70 years old. The time-to-event in the survival model is age of death minus 70
years, left truncated at age at baseline minus 70 years.

We are interested in how cognitive function changes over time, and how such
a change affects survival. Two binary covariates are used in the model for the
hazard: sex (0/1 for women/men) and educ (0/1 for fewer than ten years of
education/ten or more years). Model A is specified using a binomial regression
model and a Gompertz baseline hazard, where the sharing of the random effects
is defined in (2) and (3). The regression equations are

ηij = β0i + β1itij

h(t|βi) = h0(t) exp{α(β0i + β1it) + γ∗
1sexi + γ∗

2educi}
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= exp(γ∗
0 + αβ0i + (ξ + αβ1i)t+ γ∗

1sexi + γ∗
2educi}. (13)

For Model B, the binomial regression is replaced by a beta-binomial regression.
Model B is the better choice according to the Akaike information criterion: AIC
= 33467 versus AIC = 33289, respectively.

Restricted versions of Model B were also investigated. In Model BR1, the
baseline hazard is defined by h0(t) = exp{γ∗

0 + (ξ + αβ1i)t}, and in Model BR2,
the baseline hazard is h0(t) = exp(γ∗

0 + αβ0i + ξt). The log-linear model for the
covariates is as in (13). The models B, BR1 and BR2 have the same number
of parameters. AICs for BR1 and BR2 are 33462 and 33366, respectively. It is
interesting to see that Model BR2 which shares the random intercept performs
better than Model BR1 which shares the random slope. For CC75C, information
on cognitive function at t = 0, i.e., at age 70, has a stronger association with
survival than information on linear change after t = 0.

Models BR1 and BR2 have counterparts with Weibull specifications of the
baseline hazard, namely h0(t) = τit

τi−1 exp(γ∗
0), for τi = τ exp(αβ1i), and hi(t) =

τtτ−1 exp(γ∗
0+αβ0i), respectively; see remark (c) in Section 2. Pairwise, both these

models have higher AICs (33641 and 33451, respectively) than Models BR1 and
BR2. This indicates better performance of the Gompertz specification compared
to the Weibull.

Next Model C is defined by changing the hazard specification in Model B to

h(t|βi) = exp(γ∗
0 + α0β0i + (ξ + α1β1i)t+ γ∗

1sexi + γ∗
2educi}. (14)

Model C has AIC = 33273, and is with that the best model. According to
Model C, the random intercept for cognitive level at t = 0 and the random
slope for cognitive change are both important predictors for survival. The better
performance of Model C compared to Model B shows that the effects of the
random intercept and slope on survival are best described by estimating two
distinct α-parameters.

For Model C, the fit to individual data is depicted in Figure 1 for a random
subset of 16 individuals. Prediction is up to time of death, which is depicted by
the vertical grey line. Each graph in Figure 1 shows the fitted mean trajectory,
and ten sampled trajectories from the fitted beta-binomial distribution. Overall
the model seems to capture the observed trajectories well. In general, if there is
a large drop in observed MMSE scores, followed by a recovery, then there is some
misfit. This is a direct consequence of our modelling which implies a monotonic
mean trajectory for MMSE scores.
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Randomised quantile residuals are presented in Figure 2. For the fitted values
in the lower range of the MMSE there is a trend of more negative residuals. In
general, the observation of low MMSE scores tends to be less reliable and hence
harder to predict. A closer look at the residuals also shows that the model is not
good at capturing sudden drops in MMSE scores. There are six residuals smaller
than -6. These residuals are from fitting trajectories to data from five different
individuals. Two of these individuals have very low MMSE scores, and for the
other three low scores are observed together with high scores. An example is a
woman with a response trajectory given by (27, 0, 20), which—as a trajectory—is
an outlier. The zero in this trajectory may well be a data error. Overall, however,
the residuals do not show signs of structural misfit.

Parameter estimates for Model C are presented in Table 2. The negative
value for estimated α0 implies that having better cognitive function at age 70 as
measured by the MMSE is associated with a smaller hazard and thus with better
survival. For estimated α1, the negative value implies that a less negative slope
for the change of MMSE over the years is associated with better survival. The
estimates of γ∗

1 and γ∗
2 show that being a woman and having had more education

are associated with better survival. Because of the α-parameters, these effects
for gender and education are adjusted for cognitive trajectory.

Even though the point estimates of the α-parameters are close in value, they
do not reflect similar strength in effect. Using the general Gompertz formulation
in Section 2, parameter α0 affects the λ-parameter, whereas α1 affect the ξ-
parameter. Consider individuals with the same hazard specification at age 70. If
the first does not experience a change in cognition, i.e., βi1 = 0, and the other
follows the fitted mean trend on the logit scale, i.e, βi1 = β̂1 = −0.135, then the
estimated relative increase in risk associated with the change is exp(−0.306 ×
−0.135t) = exp(0.041t) at t > 0. For example, at age 75, there is a relative
increase of 1.23.

Prediction is depicted in Figure 3 for a woman aged 85 with fewer than ten
years of education. Prediction in the present context is always with respect to
both survival and the process of interest. Prediction in Figure 3 is conditional
on current MMSE scores, in this case 28 and 20, and survival up to the time
of the prediction. Note that the latter score is associated with poorer survival,
and a bigger drop in mean MMSE scores over time than the former. The 95%
confidence bands in Figure 3 are derived from the maximum likelihood estimation
by simulation as explained in Section 3.3. The number of replications in the
simulation is 1000, and 2.5% and 97.5% quantiles were derived to create the 95%
confidence bands.
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Table 2: CC75C data analysis with Gompertz baseline hazard in Model C. Point
estimates (and 95%-confidence intervals) derived from the maximum likelihood
estimation.

Measurement model Survival model

β0 3.229 ( 3.089; 3.368) γ∗
0 -2.596 (-2.821; -2.372)

β1 -0.135 (-0.145; -0.126) γ∗
1 0.459 ( 0.360; 0.559)

σ1 1.300 ( 1.184; 1.428) γ∗
2 0.242 ( 0.123; 0.362)

σ2 0.083 ( 0.075; 0.092) ξ 0.083 ( 0.073; 0.094)
ρ -0.749 (-0.792; -0.699) α0 -0.462 (-0.531; -0.393)
θ 0.019 ( 0.016; 0.023) α1 -0.306 (-0.356; -0.256)

Figure 3 represents the prediction of a bivariate process. The prediction of the
MMSE trajectory on the right-hand side cannot be interpreted on its own since
that would imply immortality after the time of the prediction, which in this case
is 85 years old. For this reason, a grey scale was added to the graph to depict
predicted survival. The fading out of the gray illustrates that—given baseline age
85—predicting cognitive function up to a very old age is only relevant for a small
part of the population.

Prediction can also be based on more than one observation. To illustrate the
effect of cognitive decline on survival, consider again a woman with fewer than
ten years of education. If observed MMSE scores at ages 85 and 89 are both
28, then predicted survival probability at age 95 is about 0.5. But if observed
scores at the same ages are 28 and 20, then the predicted probability at age 95 is
about 0.2. In the latter case, the cognitive decline has a strong effect on predicted
survival.

The right-hand side panel of Figure 3 shows marginal trajectories conditional
upon survival up to age 85. On an individual level, it is of interest to predict
cognitive function conditional on survival up to a specified age in the future. For
example, for someone who takes the test at age 85, it is of interest to predict
MMSE performance at age 95 conditional on reaching that age. This prediction
can be undertaken in the same way as above using MAP estimation. For the
example, times t̃i1 and t̃i in (12) correspond to ages 85 and 95, respectively, and
ỹi contains one entry only, namely the MMSE score at age 85. The predicted
MMSE conditional on survival is higher than the marginal prediction. This is
because the marginal prediction takes into account the association between the
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increasing hazard of death and decreasing MMSE scores. For predicted MMSE
at age 95 given MMSE scores 28 and 20 at age 85, the differences are very small
(less than one MMSE unit). Differences increase with longer predictions. For
example, given an MMSE score 28 at age 75, marginally predicted score at 95 is
14.6, but predicted score conditional upon survival at 95 is 17.9.

6 Cognitive function in ELSA

To illustrate data analysis where the measurement model is of primary interest we
discuss briefly longitudinal data from the English Longitudinal Study of Ageing
(ELSA, www.ifs.org.uk/ELSA). The ELSA baseline (1998-2001) is a represen-
tative sample of the English population aged 50 and older. ELSA contains infor-
mation on health, economic position, and quality of life. Longitudinal data on
cognitive function are available in the waves 1 - 5 (2002-2011). Data from ELSA
can be obtained via the Economic and Social Data Service (www.esds.ac.uk).
We use data from individuals who are interviewed in wave 1, and thus ignore the
refreshments samples in wave 3 and 4.

There are a number of questions in ELSA that concern cognitive function.
Here we focus on the number of words remembered in a delayed recall from a
list of ten: “A little while ago, you were read a list of words and you repeated
the ones you could remember. Please tell me any of the words that you can
remember now.” The test score is equal to the number of words remembered
∈ {0, 1, . . . , 10}. We are interested in the effect of sex on cognitive change over
time when controlling for education.

There are 11828 individuals who are interviewed in wave 1. For the analysis
in this section, individuals who were interviewed only once with missing data on
the number of words recalled are not included. Likewise the individuals without
information on the year of birth are not included. In addition to the so-called core
sample members in ELSA, cohabiting spouses or partners of core sample members
are also included in ELSA. This inclusion is irrespective of the age of the spouse
or partner and because of this there are individuals who were younger than 50 at
baseline wave 1. Data from these younger individuals are ignored in the analysis
to ensure a representative sample of the population aged 50 and older. Lastly,
individuals with censored age at baseline are not included. The resulting sample
size is N = 10852.

Of the 10852 individuals, 1884 die during follow-up. In the joint model, this
dropout is modelled by using age of death as the time-to-event, left truncated at
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age at baseline. A dropout rate around 17% is too much to ignore in the data
analysis, especially in this case where the process of interest is associated with
ageing.

At baseline, there are 5946 women and 4906 men. Highest educational qual-
ification was dichotomised with value 1 for NVQ2/GCE O Level equivalent or
higher, and 0 otherwise. At baseline there are 4699 individuals with the higher
education level.

Our joint modelling starts with defining Model I, which includes binomial
regression and a Gompertz hazard. This model is given by

ηij = β0i + β1itij + γ1sexi + γ2educi + γ3(sexi×tij) + γ4yobi
h(t|βi) = exp{γ∗

0 + αβ0i + (ξ + αβ1i)t+ γ∗
1sexi + γ∗

2bmii},

where sex = 1 for men, and educ = 1 for the higher education level. Covariate
bmi is body mass index (BMI) grouped into < 20, 20 − 25, 25 − 30, 30 − 35,
35 − 40, 40+, with coded values -2, -1, 0, 1, 2, 3, respectively. Missing BMI
is imputed by the value 0 for the 25 − 30 group, which corresponds to median
BMI group at baseline. Higher values of bmi are probably associated with poorer
survival and bmi is therefore included in the hazard model. Covariate yob is year
of birth minus 1900, which is added to take into account a potential cohort effect.
Possible change of the gender effect over the age range is taken into account by
including the interaction in the binomial regression. Covariate sex is included
twice as we expect it to be explanatory for both cognitive function and survival.
The time scale t is age minus 49 years given that the minimum of observed age
at baseline is 50 years.

Model I has AIC = 162643.4. The model is extended by switching to beta-
binomial regression, which defines Model II with AIC = 162643.2. Model II
has one extra parameter but does not lead to a substantial AIC improvement.
Variance parameter θ in Model II is estimated close to the boundary of the
parameter space at 9.998 × 10−05. Because of this boundary solution for θ and
the minor difference in AICs, we select the more parsimonious Model I as the
better model.

The sample size combined with the integral approximation is computation-
ally intensive. For this reason, various models were investigated using a random
subset of a 1000 individuals. The Weibull hazard was compared with the Gom-
pertz hazard for a shared random-intercept model similar to the comparison in
Section 5. According to the AICs, the Gompertz hazard was the better choice
for the subset. By using a subset, this comparison of AICs is not based upon
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Table 3: ELSA data analysis. Estimated parameters for Model I with the Gom-
pertz baseline hazard. Point estimates (and 95%-confidence intervals) derived
from the maximum likelihood estimation.

Measurement model Survival model

β0 -1.618 (-1.771; -1.465) γ∗
0 -6.630 (-6.829; -6.431)

β1 -0.009 (-0.012; -0.006) γ∗
1 0.486 ( 0.395; 0.577)

γ1 -0.245 (-0.296; -0.193) γ∗
2 0.022 (-0.031; 0.075)

γ2 0.468 ( 0.440; 0.496) ξ 0.113 ( 0.107; 0.119)
γ3 0.001 (-0.002; 0.004)
γ4 0.033 ( 0.030; 0.036) α -0.112 (-0.176; -0.048)
σ1 0.491 ( 0.446; 0.541)
σ2 0.025 ( 0.022; 0.029)
ρ -0.235 (-0.417; -0.035)

all information available. The assumption underlying the comparison is that the
size of the subset is adequate to decide upon the best parametric shape.

For Model I, fit to individual data is depicted in Figure 4 for a random subset
of 16 individuals. Prediction is up to time of the last observation. Note that
the scale on the horizontal axis varies. Observed trajectories are fitted well.
The variability in the observed sum scores within individuals is captured by the
variance of the fitted distribution.

Table 3 presents the inference for the parameters for Model I. According to the
fitted model, the mean trend of cognitive function is downward (β̂1 = −0.009).

Both the fitted trajectories and the estimate β̂1 show a difference with the in-
ference for the CC75C data, where the downward trend was more pronounced.
There may be various reasons for this. Given the difference in minimal age at
baseline, it is to be expected that there is more cognitive decline among the
individuals in CC75C. Furthermore, the two cognitive tests in the longitudinal
studies are not the same. The MMSE used in CC75C is specifically developed as
a multifaceted test for cognitive impairment, whereas the recall test is testing just
one specific skill. Already from the limited data presented in Figures 1 and 4 it
is clear that the recall test in ELSA is more variable than the MMSE in CC75C.
Because of this, and the limited years of follow-up in ELSA, it is harder to detect
change of cognitive function over time at an individual level.
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Given that the estimated interaction (γ̂3) is close to zero, we interpret the
covariate main effects in the measurement model. There is a clear positive effect
of more education (γ̂2 > 0). Given the effect of education, there is an additional
gender effect: women (sex = 0) tend to be better at remembering words than
men (γ̂1 < 0). There is also an effect of year of birth, i.e., being born later is
associated with being better in remembering words (γ̂4 > 0). In general, birth
cohort effects on cognitive function remain an active research topic. For example,
Jagger et al. (2007) did not found any evidence of an effect in the UK Cognitive
Function and Ageing Study, but Christensen et al. (2013) did find an effect
for two Danish cohorts, where being born later is associated with better MMSE
performance.

In the survival model, the negative value for estimated α implies that better
performance in the word recall is associated with a lower hazard and ξ̂ > 0
implies that the hazard for death increases with age. Both these results are
according to expectation. There is also an expected gender effect: men have a
higher hazard compared to women of the same age (γ̂∗

1 > 0). The estimated
positive BMI effect (γ̂∗

2 > 0) is unexpected at first sight as it would imply that
for the current population, and controlling for gender, and for cognition via α,
a higher BMI is associated with better survival. However, it might be that this
protective effect of higher BMI is specific for an elderly population in the sense
that it reflects changing from underweight towards a more healthy weight. Either
way, the corresponding 95%-confidence interval implies that the estimated effect
does not differ from zero significantly.

7 Conclusion

Joint models are presented for survival and discrete longitudinal outcomes in
ageing research. The applications concern cognitive function as measured with
discrete-valued tests. The statistical methods that are used build upon an es-
tablished framework for shared-parameter models, but extend this framework to
ageing research by specifying binomial and beta-binomial mixed-effects regression
models and by exploring the Gompertz baseline hazard as a parametric choice
for the survival model. In the model comparison for the CC75C data, the beta-
binomial model is more able to capture overdispersion than the binomial model.

As stated in Section 2, the choice of the time scale is important in joint models
for ageing research. Given the process of interest, it makes sense to use age as
the basic time scale. Combining this choice with parametric models means that
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estimated models can be used for prediction; see for instance Figure 3. In general,
prediction beyond the age range in the data is not without danger. CC75C include
data from centenarians, but age in the ELSA data as used in the current paper
only goes up to ninety. Hence, prediction based upon the model for ELSA should
be interpreted with care.

Closely related to the discussion in the current paper is the research based on
the terminal decline hypothesis. This hypothesis states that individuals in the
older population experience a change in the rate of decline of cognitive function
before death (Riegel and Riegel, 1972). Investigating this behaviour with age as
the time scale is problematic as it requires death as a reference point; see Van
den Hout et al. (2013) for change-point modelling using years-to-death as the
time scale.

The focus of the presentation in this paper is on statistical modelling. Re-
gression models are formulated such that various random-effects structures can
be specified. Model comparison is undertaken by applying the Akaike informa-
tion criterion. The resulting models can be used to detect risk factors for the
process of interest. Although the focus is on the modelling, we envisage that the
framework can form a basis for applications in health economics, where long-term
predictions are linked to cost functions. To enable prediction, parametric models
are specified, but the same framework can be used to investigate semi-parametric
models. As an example, the intercept-slope measurement model can be changed
to a model with a smooth spline for the effect of age. Given a fixed number of
knots for the spline, the general-purpose optimiser can be applied for maximum
likelihood estimation.

Our statistical methods provide an alternative to the model presented by
Proust-Lima et al. (2009), who discuss a joint model for cognitive function and
survival using latent classes. Proust-Lima et al. propose to transform the scores
on cognitive tests in order to deal with the skewness of the scores on the origi-
nal scale and to be able to use the linear mixed model framework for the latent
process underlying the manifest scores. This transformation hampers interpreta-
tion of the regression parameters. Our approach takes the scores at face value,
using the original scale of the tests. Nevertheless, also in our model there is a
transformation; interpretation of the parameters in the measurement model has
to take into account the logit link. Another difference with Proust-Lima et al.,
is that they do not consider the use of survival models with a Gompertz baseline
hazard. Their parametric choice is the Weibull.

In this paper, the sum score is the longitudinal outcome variable. The bino-
mial distribution assumption is not invalidated if there is variation in the success
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probabilities for the individual questions (McCullagh and Nelder, 1989, p. 103).
However, if there is dependency between the questions, then this violates the
assumption of independent Bernoulli trials. A solution would be to replace the
observed sum score by a latent variable which is linked to question-specific scores
via an item response theory model; see Fox (2010) who discusses a linear mixed-
effects model for longitudinal questionnaire data. A disadvantage of working with
the latent variable is increased model complexity and the lack of a straightforward
interpretation of the parameters for the regression model.

The joint models in this paper are estimated by maximising the marginal
likelihood, which implies integrating out the random effects. For linear measure-
ment models with time-independent random effects, Tsiatis and Davidian (2004)
show that the assumption underlying marginal likelihood is that the censoring
and timing of longitudinal measurement are uninformative. Their argument is
also valid for a model with a non-linear link between mean and linear predictor.

Estimating model parameters using marginal likelihood may not always be
the best approach. As an example, if the population consists of two classes,
where—within the same age range—one class is characterised by downwards tra-
jectories of longitudinal measurements and poor survival, and the other class by
stable trajectories and good survival, then the marginally fitted trend is not a
good representation of the trajectories in the data. However, we think that using
marginal likelihood works well for the applications in this paper. Given that the
observed individual trajectories show substantial variation across a wide age range
in the older population, the marginally estimated association between trends of
cognitive function and survival seems a good representation of the information
in the data. To use a fitted model for prediction conditional on individual data,
maximum a posteriori estimation can be used as shown at the end of Section 5.

We have specified the measurement model for the longitudinal outcome using
time-independent random intercept and random slope. In the words of Tsiatis
and Davidian (2004, p. 815), this specification implies that the “smooth trend
followed by the subject’s trajectory is an ‘inherent’ characteristic of the subject
that is fixed throughout time”. This allows us to investigate the association
between the dominant trend and survival. For the applications at hand, this
seems reasonable in the context of cognitive function as it allows us to ignore
within-subject fluctuations (such as good day/bad day variation). The association
is measured by the α-parameters which make it possible to investigate how the
random effects for the longitudinal trend are linked to the hazard of death.

The formulation of the joint model in this paper is general and we think that it
is applicable to a range of discrete-valued tests in ageing research. We advocate
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binomial and beta-binomial regression models for discrete-valued longitudinal
outcomes. Using mixed-effects linear models where the conditional outcome is
assumed to be normally distributed is problematic when the observed response
is limited to a finite set of integers, especially when the observed responses show
a ceiling effect.
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Figure 1: For CC75C data and Model C, observed MMSE (black circles) and
fitted trajectories for 16 individuals randomly chosen from those with 4 or more
observations. Black line for fitted mean trajectory, and grey lines for sampled
trajectories from the fitted distribution. Vertical line for time of death.
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Figure 2: For CC75C data and Model C, randomised quantile residuals versus
fitted values.
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Figure 3: Prediction of survival and mean MMSE score for a woman aged 85
with fewer than ten years of education and current score of 28 (solid lines) or 20
(dashed lines). Derived from Model C for CC75C, with 95% confidence bands
from MLE simulation with 1000 replications. Right-hand side: probability of
survival depicted by grey scale from black (probability 1) to white (probability
0).
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Figure 4: For ELSA data, observed sum score (black circles) and fitted trajectories
for 16 individuals randomly chosen from those with four or more observations.
Black lines for fitted mean trajectories, and grey lines for sampled trajectories
from the fitted distribution using a one-year grid.
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