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Abstract  

The neurokinin-1 receptor ‘knockout’ (NK1R-/-) mouse has been proposed as a preclinical 

model of Attention Deficit Hyperactivity Disorder (ADHD). Previous work from our group 

demonstrated that these mice are hyperactive, and display inattentiveness and impulsivity: the 

core signs of ADHD. The main aim of this thesis was to examine the predictive validity of the 

NK1R-/- mouse, by testing the effects of the ADHD treatments, guanfacine, atomoxetine and 

methylphenidate on ADHD-like behaviour, primarily in the 5-Choice Serial Reaction-Time Task 

(5-CSRTT).  

Guanfacine (0.1 mg/kg) improved attention in NK1R-/- mice, but not wildtypes, and did not 

affect anxiety-like behaviour in either genotype in the Elevated Plus Maze. This drug also 

reduced impulsivity in both genotypes at a higher dose (1 mg/kg), but this was likely secondary 

to its locomotor suppressant effect. Further studies revealed that the low dose of guanfacine 

improved spatial memory in NK1R-/- mice, but not wildtypes, in an object recognition task, but 

this effect was not mirrored by another alpha2-adrenoceptor agonist (medetomidine, at 1 – 

10 g/kg).  In contrast, atomoxetine had no effect on attention, but selectively improved 

hyperactivity and impulsivity in NK1R-/- mice, only, at doses of 3 and 10 mg/kg, respectively. 

Similarly, methylphenidate (10 mg/kg) reduced two types of impulsivity (motor impulsivity and 

behavioural disinhibition) in NK1R-/- mice, only, but had negligible effects on attention in either 

genotype, when tested in an extension of the 5-CSRTT, the 5-Choice Continuous Performance 

Task (5C-CPT).  

Based on literature suggesting ADHD and obesity can be comorbid, and the finding that 

NK1R-/- mice were smaller, but ate more than wildtypes during the 5-CSRTT and 5C-CPT tasks, 

the second aim of this thesis was to determine whether NK1R-/- mice had underlying 

differences in body composition. Carcass composition analyses revealed that the fat content of 

mice depended on an interaction between genotype and gender, but bone density was 

increased in NK1R-/- mice compared with wildtypes. Furthermore, a comparison between two 

types of carcass composition analyses revealed that dual energy X-ray absorptiometry (DEXA) 

may over-estimate body fat by approximately 10%. Overall these studies consolidate the 

predictive validity of the NK1R-/- mouse model of ADHD, and highlight a role for NK1Rs in 

growth and body composition.   
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Chapter 1. Introduction 

1.1 Attention Deficit Hyperactivity Disorder 

Attention Deficit Hyperactivity Disorder (ADHD) is characterized by three core behaviours: 

hyperactivity, inattention and impulsivity, as defined by the Diagnostic and Statistical Manual 

of Mental Disorders, Fifth Edition (DSM-V). The signs of ADHD have been described since the 

18th Century under various terminology, including ‘minimal brain damage’, ‘hyperactivity’ and 

‘hyperkinetic disorder’ (Lange et al. 2010). ADHD, as it is defined today, is one of the most 

commonly diagnosed childhood psychiatric disorders. Moreover, the number of diagnoses is 

increasing: rates increased by approximately 5.5% per year between 2003 and 2007 in the USA, 

and this rise has been reflected in increasing prescription rates of ADHD treatment medication 

(Pastor and Reuben 2008). ADHD is estimated to affect between 3-5% of children worldwide, 

although some studies estimate up to 16% in some communities, and it is about 2-3 times 

more common in males than females (Willcutt 2012). The highly variable, but increasing, 

prevalence rates have led to some controversy surrounding ADHD, in particular over whether it 

is being over- or under-diagnosed. Interestingly, approximately 65% of children carry their 

ADHD through to adulthood, suggesting either neurodevelopmental changes occur, or there 

are issues with diagnosis of children in the first place (Wender et al. 2001; Kessler et al. 2005; 

Polanczyk et al. 2007). A recent study showed that approximately 2.5% of the adult population 

could have ADHD (Simon et al. 2009). This is projected to lead to a loss of approximately 

144 million days of productivity per year, across 10 countries (de Graaf et al. 2008).  

Despite the controversy surrounding ADHD, there has been a general movement towards 

acceptance of the phenotype as a treatable disorder. This may in part be because of the 

physical differences that have been identified in the brains of children with ADHD (for review 

see Krain and Castellanos 2006). Children with ADHD have a reduced total brain volume, 

compared with age- and sex-matched controlls (Castellanos and Acosta 2004). The prefrontal 

cortex (PFC) has been shown to be significantly smaller in children with ADHD compared with 
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controls and their unaffected siblings (Durston et al. 2004), and there have also been reports of 

reductions in the size of the caudate putamen, cerebellum and corpus callosum (Castellanos et 

al. 2002; Durston et al. 2004; Hill et al. 2003; Hynd et al. 1991). Differences in the ratios of grey 

to white matter have also been reported, although these have not always been consistent 

(Filipek et al. 1997; Mostofsky et al. 2002, but see Sowell et al. 2003). 

 

Figure 1.1 – The subtypes of ADHD, as defined by their primary characteristic. 

Although significant brain abnormalities have been identified, these differences are not yet 

used diagnostically. Diagnosis centres around assessment of the key behaviours, hyperactivity, 

inattentiveness and impulsivity, and subtypes of ADHD can be specified according to the 

primary characteristic (see Figure 1.1) (van der Kooij and Glennon 2007). Currently, treatment 

medication is not determined by subtype, mostly because these subtypes are not ‘fixed’ and 

can change within an individual over time, but also because of a lack of evidence for differing 

treatment efficacy in different subtypes. The psychostimulant drugs, amphetamine and 

methylphenidate, are first-line treatments for the disorder, the latter being the most 

commonly prescribed medication for children with ADHD (Coghill et al. 2007). The prescription 

of psychostimulants to children provides some further controversy, although methylphenidate 

has a well-established safety profile and proven efficacy in reducing hyperactivity and 
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enhancing cognitive performance (Gibson et al. 2006). Methylphenidate cannot be prescribed 

to children under the age of 6, and has a surprisingly low abuse potential in patients it is 

prescribed to, given its pharmacology and action in brain areas involved in reward (Nutt et al. 

2007). In fact, patients treated with psychostimulants are around 6 times less likely to develop 

an addiction to any illicit substance (Nutt et al. 2007). However, the potential for patients to 

sell their medications on to others remains. There is evidence that methylphenidate can 

improve cognitive performance in control subjects, particularly during fatigue or repetitive 

tasks (Tomasi et al. 2011), and thus the misuse of prescribed medication may present a real 

problem (reviewed by Wilens et al. 2008). There is also an array of literature describing cases 

where stimulant medication is not optimally effective in ADHD patients, leaving some cognitive 

deficits, or being ill-tolerated in 20-30% of children (Coghill et al. 2007; Heal et al. 2009). There 

remains a need to find a non-stimulant alternative, with a low abuse potential and high efficacy 

in treating ADHD. 

There are currently three non-psychostimulant treatments approved for ADHD in the USA: 

atomoxetine (Straterra), a preferential noradrenaline reuptake inhibitor, and the 

2-adrenoceptor agonists, guanfacine (Intuniv) and clonidine (Kapvay). Although these 

drugs are all safe, they do not quite match up to the psychostimulants in terms of response 

rates (Heal et al. 2009). A wide range of drugs have also reportedly been used off-label to treat 

ADHD, including other noradrenaline reuptake inhibitors, antidepressants, Alzheimer’s disease 

medications, monoamine oxidase inhibitors and modafinil (De Sousa and Kalra 2012). 

Interestingly, the mode of action of the latter is yet to be established; although it has been 

shown that modafinil has the ability to increase synaptic noradrenaline, serotonin, dopamine 

and histamine concentrations in the brain (de Saint Hilaire et al. 2001; Ferraro et al. 2002; 

Madras et al. 2006), some of these effects are almost certainly produced via an indirect 

mechanism or an upstream site of action, and other neurotransmitters (including GABA and 

glutamate) may also be involved (see Gerrard and Malcolm 2007). 
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1.2 The pharmacology of ADHD treatments 

The psychostimulant, and non-stimulant, treatments for ADHD all act on the monoamingeric 

systems in the brain: amphetamine, methylphenidate and atomoxetine all inhibit the function 

of monoamine transporters, leading to increases in synaptic monoamine concentrations (see 

Table 1.1). The exception is guanfacine, which is an alpha2A-adrenoceptor agonist (for more 

information on guanfacine see Chapter 3).  

 
DAT 
(nM) 

NAT 
(nM) 

SERT 
(nM) 

VMAT 

(M) 
Reference 

d-Amphetamine (IC50) 400^ 59# >1000@ 2.1$ (Andersen 1989) 

Cocaine (IC50) 690^ 367# 389@ - (Andersen 1989) 

Methylphenidate (Ki) 34* 339* >10,000* - (Bymaster et al. 2002) 

Atomoxetine (Ki) 1451* 5* 77* N/A (Bymaster et al. 2002) 
Table 1.1 – Inhibition constant (Ki) and IC50 values for psychostimulants and atomoxetine at monoamine 
transporters. * Data from cell lines expressing recombinant DAT, NAT and SERT. Data from ^ rat striatal, # cortical 
and @ whole brain homogenates. Data from $ synaptic vesicles from rat striatum. 

Amphetamine and methylphenidate act as competitive inhibitors of the noradrenaline and 

dopamine transporters (NAT and DAT, respectively; for IC50/Ki values see Table 1.1). Unlike 

cocaine, these psychostimulants have relatively low affinities for the serotonin transporter 

(SERT). Atomoxetine preferentially inhibits the NAT, but has a higher affinity for the SERT than 

either psychostimulant.  

The three aforementioned ADHD treatments prevent the normal function of monoamine 

transporters. Normally, according to one hypothesis, endogenous monoamines are taken up by 

transporters via an “alternating access” mechanism, in which a conformational change in the 

protein flips the transporter from ‘outward facing’ to ‘inward facing’, and transfers the 

substrate from the extracellular- to the intracellular matrix (Forrest et al. 2008). This movement 

is dependent on co-transport of 2 Na+ ions and 1 Cl- ion (Rudnick and Clark 1993; Gu et al. 

1994). 

The co-transport of substrate with inorganic ions is a mechanism which is common to a group 

of approximately 300 structurally related transporters, known as solute carrier (SLC) proteins 
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(Amara and Kuhar 1993; Hediger et al. 2004). The SLC6 family comprises 16 neurotransmitter 

transporters including the DAT, NAT and SERT (Hediger et al. 2004). Within these 12 

transmembrane domain (TMD) proteins, amino acids in TMDs 1–3 and 9–11 are important in 

determining substrate affinity, whereas substrate translocation is thought to be determined by 

sequences in TMDs 5-8 (Amara and Sonders 1998).  

Action at the translocation site of the catecholamine transporters is one way in which 

amphetamine differs from methylphenidate and atomoxetine. Amphetamine is a substrate for 

the translocation site and competes with catecholamines for reuptake: hence it acts as a 

competitive reuptake inhibitor. However, unlike methylphenidate and atomoxetine, 

amphetamine is taken up by the transporters, and once in the cytosol, causes reverse transport 

(retrotransport) of the catecholamines across their transporters. This increases synaptic 

concentrations in an impulse-independent manner: hence amphetamine also acts as a 

catecholamine releasing agent (for review see Sulzer et al. 2005; Fleckenstein et al. 2007). 

 

 

Figure 1.2 – Chemical structures of amphetamine-like compounds 

 

Amphetamine is one of a group of chemically similar compounds known as 

arylalkylamines (see Table 1.2). Amphetamine also belongs to a class of 

‘amphetamines’, which includes other psychostimulants such as methamphetamine 

and MDMA (3,4-methylenedioxy-methamphetamine) (see Figure 1.2; this thesis 

refers to the compound, not the group). 
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Arylalkylamines 

Indolealkylamines Phenylalkylamines 

N-substituted 
tryptamines 
e.g. psilocin 

-alkyltryptamines 
e.g. 

-methyltryptamine 
(α-MeT) 

Ergolines 
e.g. lysergic 

acid 
diethylamide 

(LSD) 

Phenylethylamines 
e.g. mescaline 

Phenylisopropylamines 
e.g. amphetamine 

Table 1.2 – The classification of amine-containing compounds (Glennon 1999) 

In addition, amphetamine is a substrate for the vesicular monoamine transporter, VMAT2. 

According to the ‘weak base hypothesis’, the basic properties of amphetamine reduce the 

intravesicular pH gradient caused by an excess of protons (H+ ions) inside synaptic vesicles 

(Sulzer et al. 1992). VMAT2 relies on this acidic environment to actively transport 

catecholamines into the vesicles, in exchange for H+ ions (Rudnick and Clark 1993). Therefore, 

vesicles storing 104-105 times the concentration of cytosolic catecholamines (Sulzer and 

Edwards 2000) release their contents, increasing available cytosolic neurotransmitter for 

transport into the synapse (Sulzer et al. 1995). 

A third mechanism by which amphetamine can prolong increased catecholamine 

concentrations is by preventing their break down: amphetamine is a weak competitive inhibitor 

of the monoamine oxidase (MAO) enzymes, but has a higher affinity for MAOA than MAOB (see 

Sulzer et al. 2005). There have been proposals that, in addition to the three aforementioned 

established mechanisms, amphetamine also promotes dopamine synthesis and reduces DAT 

cell surface expression (Saunders et al. 2000; Larsen et al. 2002; Sorkina et al. 2003). 

Despite differences in mechanism between amphetamine and methylphenidate, it is 

interesting to note that both psychostimulants increase catecholamine efflux in vivo in a similar 

manner: although methylphenidate is markedly less potent, there is no ‘ceiling effect’ with 

increasing doses (Kuczenski and Segal 1997; Heal et al. 2008). On the other hand, the profile of 

atomoxetine does resemble a classic reuptake inhibitor: noradrenaline efflux is increased 

gradually and sustained, but a maximum is reached which cannot be overcome by increasing 

doses (Bymaster et al. 2002; Swanson et al. 2006). It should also be noted that although 

atomoxetine is relatively selective for the noradrenaline transporter (Bymaster et al. 2002), this 

drug has also been shown to act as an NMDA receptor antagonist at concentrations which may 
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be clinically relevant (Ludolph et al. 2010). All three of the aforementioned drugs increase 

extracellular catecholamines in the prefrontal cortex (PFC), but unlike the psychostimulants, 

atomoxetine causes no increase in extracellular dopamine in mesolimbic brain areas of rats 

(Bymaster et al. 2002; Carboni et al. 2003). 

Interestingly, the route of administration of these drugs may impact on their potency and 

behavioural effects; for example, it has been reported that orally administered 

methylphenidate increases locomotor activity and dopamine efflux in the nucleus accumbens 

of rats, to a lesser extent than the same dose administered intraperitoneally (Gerasimov et al. 

2000). It has also been reported that methylphenidate affects reinstatement of drug-seeking in 

different ways depending on the route of administration (Botly et al. 2008). 

1.3 The monoamines in ADHD 

Although the cause(s) of ADHD are still not understood, all currently approved treatments for 

the disorder target one or more of the monoamines (Cortese 2012), indicating either that these 

neurotransmitters are critically involved in the aetiology of ADHD, or that they influence the 

characteristic behavioural signs of the condition. As discussed below, drug studies, candidate 

gene studies and genetic manipulations in rodents have helped to elucidate how monoamines 

function abnormally in ADHD.  

1.3.1 Dopamine 

There is good evidence that dopamine plays a role in ADHD (for review see Sonuga-Barke 2005; 

Swanson et al. 2000). There are four dopaminergic pathways in the brain; the mesolimbic 

pathway projects from the ventral tegmental area to the nucleus accumbens (NAcc), the 

mesocortical pathway projects from the NAcc to the cerebral cortex, the nigrostriatal pathway 

projects from the substantia nigra to the striatum, and the hypothalamic-tubero infundibular 

pathway projects from the hypothalamus to the pituitary gland (van der Kooij and Glennon 

2007). The former two pathways, collectively known as the mesolimbocortical pathway, are 

thought to be involved in ADHD (Cardinal et al. 2004; van der Kooij and Glennon 2007). 
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However, there is still debate as to whether there is hypo- or hyperfunction of such pathways 

(Levy 1991; van der Kooij and Glennon 2007), as animal research has provided evidence for 

both. For example, one study demonstrated that hypofunction of mesolimbocortical circuits in 

rats is associated with increased impulsivity and susceptibility to drug addiction, which is 

noteworthy given the high level of comorbidity between unmedicated ADHD and substance 

abuse disorders (Dalley et al. 2007). On the other hand, another study found that impulsive 

behaviour was dose-dependently increased by infusions of amphetamine into the nucleus 

accumbens (Cole and Robbins 1987). These apparently opposed views could be explained by 

the ‘dual-pathway model’, which assumes differential involvement of cortical and subcortical 

brain regions in the expression of ADHD-like behaviour (Sonuga-Barke 2002). 

 

 

Copyright material removed 

 

 

Figure 1.3 – Illustrations of the dopaminergic, noradrenergic and serotonergic pathways in the brain. Taken from 
Schatzberg and Nemeroff 2009. 

Molecular genetics studies have corroborated the theory that dopamine function is abnormal 

in ADHD, by highlighting that gene mutations in the dopamine transporter (SLC6A3, aka DAT1), 

dopamine D4 (DRD4) and D5 (DRD5) receptor and catechol-o-methyltransferase (COMT) genes 

are associated with ADHD (Zhang et al. 2012). Although each of these gene associations carries 

small effect-sizes, this is supported by evidence that mice null for such genes display ADHD-like 

behaviour (Giros et al. 1996; van der Kooij and Glennon 2007; Gizer et al. 2009). 

On the whole, research investigating dopaminergic agents reports changes in impulsive, 

reward-driven behaviour, rather than in inattentive behaviour (Robbins 2002). Furthermore, 

drugs which selectively target dopaminergic pathways are less effective in alleviating the signs 

of ADHD than those affecting all three monoamine systems. For example, the dopamine 

reuptake inhibitor GBR-12909 and the D1 receptor antagonist, cis-flupenthixol, both had no 
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effect on reaction times of rats in the stop-signal reaction time test (a measure of response 

inhibition) (Eagle et al. 2007; Bari et al. 2009). This might imply the involvement of serotonin 

and noradrenaline in impulsivity to some extent.  

1.3.2 Noradrenaline 

There is convincing evidence to support the involvement of noradrenaline in the attentional 

aspects of this disorder, not least because every current treatment for ADHD directly affects 

extracellular noradrenaline concentrations. The main origin of noradrenergic neurones in the 

forebrain is the locus coeruleus (LC), which projects to a number of areas including the 

prefrontal cortical (PFC) regions mediating attention and working memory (Arnsten and Li 

2005; Sara 2009). As such, it is this neocortical projection which is thought to be dysfunctional 

in ADHD. One hypothesis is that a moderate concentration of extracellular noradrenaline is 

concordant with optimal cognition, whereas concentrations at either end of the classic bell-

shaped curve lead to worsened cognition (Aston-Jones and Cohen 2005).  

Furthermore, LC neurones exhibit both tonic and phasic patterns of activity: Aston-Jones and 

Cohen’s adaptive gain theory suggests that phasic LC activation facilitates attentive behaviour 

in complex, decision-based tasks, whereas tonic activation produces an increase in ‘gain’ (i.e. 

responsivity of target neurones) which underlies distraction on such tasks (Aston-Jones and 

Cohen 2005). In this theory, an increased release of noradrenaline at baseline increases gain, 

thus rendering the individual more distractible. Therefore it follows that ADHD treatments 

could increase acute release of noradrenaline, but lower baseline synaptic concentrations 

(Pliszka 2005).  

Additionally, candidate gene studies have highlighted associations between single nucleotide 

polymorphisms (SNPs) in the noradrenaline transporter gene (SLC6A2), and gene variants of 

the dopamine--hydroxylase (DBH) and alpha2A-adrenoceptor (ADRA2A) genes, and ADHD 

(Bobb et al. 2005; Gizer et al. 2009).  
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1.3.3 Serotonin 

The involvement of serotonin in ADHD is somewhat complicated by a large number of different 

subtypes of 5-HT receptor. Studies have highlighted the possibility that different constructs of 

impulsivity may be regulated by different subtypes of 5-HT receptor (Cardinal et al. 2004). 

Although there seems to be some role for serotonin in inhibitory control in particular, on the 

whole selective serotonin reuptake inhibitors (SSRIs) worsen the symptoms of ADHD (Verbeeck 

et al. 2009). It has been suggested that SSRI-induced increases in synaptic 5-HT levels feed 

forward to have a detrimental effect on dopamine function, which furthers the disruption 

already present in the ADHD brain (Damsa et al. 2004).  

Nevertheless, candidate gene studies have found associations between variants of the 5-HT 

transporter (SLC6A4), and the 5-HT receptor genes, HTR1B and HTR2A, and ADHD. Mice null for 

the HTR1B gene display increased aggressive and impulsive behaviours, and do not display 

hyperactivity upon amphetamine treatment (Saudou et al. 1994; Brunner and Hen 1997). 

Together, these studies provide some evidence to implicate abnormal serotonergic 

transmission in ADHD.  

1.4 Neurokinin-1 knockout mice 

Much of what is known about the aetiology of ADHD comes from studies of animals which 

exhibit ADHD-like behaviour. Mice lacking functional NK1 receptors (NK1R-/-) have recently 

been proposed as one such ‘model’ of ADHD. Before this proposal, the NK1 receptor had been 

identified as a possible therapeutic target for anxiolytic and antidepressant pharmaceuticals 

(Rupniak et al. 2001; Santarelli et al. 2001). However, NK1R antagonists were trialled for the 

treatment of major depressive disorder with little success:  the NK1R antagonist MK-869 

(aprepitant) was effective in preliminary placebo-controlled trials, but later failed in phase-III 

due to lack of efficacy (Keller et al. 2006; Ratti et al. 2011). Other NK1 (L-759274, R-673, 

casopitant) and NK2 (M274773, saredutant) receptor antagonists were trialled but similarly fell 

at stages up to and including phase-III (see Quartara et al. 2009). Aprepitant was later 
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successfully developed as an antiemetic: to date it, and its prodrug (fosaprepitant), are the only 

NK1R antagonists in use in the clinic (Martin et al. 2003). 

The theory that NK1R could be involved in ADHD was prompted by the finding that NK1R-/- 

mice exhibit locomotor hyperactivity, to a level around two-fold higher than the normal activity 

of wildtypes (Herpfer et al. 2005; Fisher et al. 2007; Yan et al. 2009). This hyperactivity is 

paradoxically reduced by the psychostimulants, amphetamine and methylphenidate (Yan et al. 

2009). Furthermore, wildtype mice treated with NK1R antagonists (RP67580 and L733060) 

exhibit the same hyperactivity, which is also prevented by amphetamine (Yan et al. 2009).  

Investigations into the cognitive performance and response control of NK1R-/- mice revealed 

that they also exhibit a higher incidence of inattentive and impulsive behaviours than wildtypes 

when tested in the 5-Choice Serial Reaction-Time Task (Yan et al. 2011). These findings 

together support the use of NK1R-/- mice to study the behavioural characteristics of ADHD in 

vivo. This thesis is centred on the aim of further characterising the translational aspects of the 

NK1R-/- mouse with respect to ADHD. 

1.5 Monoamine function in NK1R-/- mice 

Although the underlying changes in monoamines in ADHD are still not fully understood, rodent 

models of the disorder are thought to have better construct validity if they express 

monoaminergic abnormalities (Sontag et al. 2010). Neurokinin-1 receptor function influences 

monoaminergic neurotransmission, as evidenced by alterations in extracellular concentrations 

of all three monoamines in NK1R-/- mice (Herpfer et al. 2005; Fisher et al. 2007; Froger et al. 

2001; Yan et al. 2009). 

1.5.1 Dopamine 

NK1R-/- mice have reduced extracellular concentrations of dopamine in the PFC (Yan et al. 

2009). Evidence that systemic administration of the NK1R antagonist, RP67580, causes a 

reduction in dopamine efflux in the PFC of wildtype mice suggests that the hypodopaminergic 

state of NK1R-/- is a direct consequence of a lack of NK1R (Yan et al. 2009). However, in 
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another study the NK1R antagonist, GR205171, had no effect on dopamine efflux in this brain 

area (Zocchi et al. 2003). Moreover, dopamine efflux in the dorsal striatum of NK1R-/- mice is 

unchanged and systemic administration of amphetamine does not cause an increase in striatal 

dopamine in this brain area in NK1R-/- mice as it does in wildtypes (Yan et al. 2009). This is 

concordant with a report which suggested that infusion of an NK1R antagonist (L733060) into 

the striatum prevents a cocaine-induced increase in dopamine efflux in rats (Loonam et al. 

2003). 

1.5.2 Noradrenaline 

NK1R-/- mice have elevated concentrations of extracellular noradrenaline in the PFC during 

anaesthesia compared to wildtypes, but there is no such difference in awake animals (Herpfer 

et al. 2005; Fisher et al. 2007). This is in accordance with findings that treatment with an NK1R 

antagonist (GR205171) did not induce increases in extracellular noradrenaline in the PFC of 

awake mice (Zocchi et al. 2003), rats or gerbils (Renoldi and Invernizzi 2006). 

NK1R-/- mice do have a 70% reduction in [35S]GTPgammaS binding to activated 2A-ARs in the 

locus coeruleus, but the amount of noradrenaline transporter (NAT) protein in the PFC and LC 

is unchanged in these mice (Fisher et al. 2007). This is corroborated by the finding that the 

noradrenaline reuptake inhibitor, desipramine, had the same effect on noradrenaline efflux in 

wildtype and NK1R-/- mice (Herpfer et al. 2005). However, an increase in noradrenaline efflux 

induced by administration of RX821002 (an 2-AR antagonist), was attenuated by pre-

treatment with desipramine in NK1R-/- mice, only (Herpfer et al. 2005; Fisher et al. 2007). 

These findings suggest that somatodendritic 2A-ARs could be functionally desensitized in the 

locus coeruleus of NK1R-/- mice, as a cause or consequence of increased noradrenaline efflux. 

Moreover, Yan et al (2009) suggest that a lack of functional NK1R causes excessive 

noradrenergic transmission during low states of arousal (i.e. under anaesthesia), but a 

reduction in noradrenergic transmission during high arousal states (i.e. in response to stress).  
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1.5.3 Serotonin  

Serotonin efflux in the PFC of NK1R-/- mice does not differ compared to wildtypes (Froger et al. 

2001), and systemic administration of an NK1R antagonist does not increase extracellular 

serotonin in the PFC of rats (Lejeune et al. 2002). However, upon treatment with paroxetine (a 

selective serotonin reuptake inhibitor (SSRI)), serotonin efflux is increased in NK1R-/- mice to a 

greater extent than in wildtypes (Froger et al. 2001). Similarly, paroxetine treatment caused 

serotonin efflux that was twice as high in NK1R antagonist (GR205171) treated mice compared 

to vehicle controls (Guiard et al. 2005). 

Interestingly, treatment with the 5-HT1A antagonist, WAY100635, coupled with paroxetine 

treatment, increased prefrontal serotonin efflux in both genotypes to the same extent (Froger 

et al. 2001). In addition, radioligand binding studies revealed that the density of 5-HT1A 

receptor-binding was reduced in the dorsal raphe nucleus (DRN) of NK1R-/- mice (Froger et al. 

2001). These findings suggest that 5-HT1A receptors are functionally desensitized or 

downregulated in NK1R-/- mice, resembling the effects of chronic SSRI treatment. They further 

suggest that any increase in synaptic serotonin concentration is usually cleared by the 

serotonin transporter (SERT). Santarelli et al came to similar conclusions when testing NK1R-/- 

mice on a different background strain, suggesting the abnormal serotonergic transmission in 

these mice is a direct consequence of a lack of functional NK1R (Santarelli et al. 2001). 

1.6 Substance P and neurokinin receptors 

The neurokinin-1 receptor is the preferred receptor of substance P, a neuropeptide 

neurotransmitter which is found throughout the central and peripheral nervous system (Otsuka 

and Yoshioka 1993). The 11 amino acid peptide (see Figure 1.4) was sequenced in 1971, long 

after it was discovered in the 1930s by Von Euler and Gaddum (Von Euler and Gaddum 1931; 

Chang et al. 1971). It was originally suggested to be a sensory neurotransmitter when Lembeck 

discovered it was present in higher concentrations in dorsal than ventral roots of the spinal 

cord (Lembeck 1953). This theory was later confirmed by Otsuka and Konishi in 1975 (Otsuka et 

al. 1975).  



Chapter 1 

 

33 

 

 

Figure 1.4 – The amino acid sequence of the peptide, substance P.  

It is now acknowledged that substance P belongs to a family of neuropeptides called 

tachykinins, including substance P (SP), neurokinin A (NKA) and neurokinin B (NKB). The former 

two peptides are translated from alternative splicing of the preprotachykinin A gene (TAC1), 

and the latter is encoded by preprotachykinin B gene (PPT-B) (Otsuka and Yoshioka 1993). 

These three tachykinins preferentially bind to three receptors, which were discovered in the 

1980s (Iversen et al. 1982; Lee et al. 1982; Buck et al. 1984; Laufer et al. 1986). The order of 

potency of the tachykinins (see Table 1.3) was the main criterion used to define the three 

receptors; substance P preferentially binds to neurokinin 1, NKA to neurokinin 2, and NKB to 

neurokinin 3, although each also has a degree of affinity for the others (Maggi and Schwartz 

1997). 

Neurokinin Receptor Preferred ligand 

NK1 SP>NKA>NKB 

NK2 NKA>NKB>SP 

NK3 NKB>NKA>SP 
Table 1.3 – Relative affinities of the tachykinin peptides for their receptors 

The NK1R gene (TACR1 in humans) is 45-60 kb and is translated from five exons located in 

band 2, region 1, on the short arm of chromosome 2 (i.e. 2p12) in humans (Gerard et al. 1991). 

The translated protein produces a G-protein (guanine nucleotide binding) coupled receptor 

(GPCR) formed from 7 membrane-spanning domains (Yokota et al. 1989; Hershey and Krause 

1990). Activation of the receptor causes G-protein subunits to trigger three independent 

second messenger pathways, which have a range of effects on the cell including increases in 

intracellular calcium, arachidonic acid mobilization and increases in cyclic AMP (see Figure 1.5) 

(Quartara and Maggi 1997; Roush and Kwatra 1998). 
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Figure 1.5 – Schematic of NK1R-G-protein coupled second messenger signalling. PLA2: phospholipase A2; AA: 
arachidonic acid; AC: adenylyl cyclase; cAMP: cyclic adenosine monophosphate; PLC: phospholipase C; IP3: inositol 
1,4,5-trisphosphate; Ca

2+
: calcium: DAG: diacyl glycerol; PKC: protein kinase C. 

1.6.1 NK1R distribution 

The location of substance P and NK1Rs in the brain is telling of their potential role in various 

psychiatric disorders. In the rodent brain, NK1Rs are most densely distributed in subcortical 

areas: the cortex and hippocampus contain relatively low receptor densities.  

NK1Rs and substance P are densely expressed in the striatum, in both the caudate putamen 

(CPu) and the nucleus accumbens (NAcc). Both ligand and receptor are also highly expressed in 

the habenula, amygdala and locus coeruleus (Nakaya et al. 1994). However, there is a 

discrepancy between ligand and receptor abundance in some brain regions. For example, the 

substantia nigra has a high concentration of substance P, but a low density of NK1R. This 

mismatch could suggest that substance P diffuses through the extracellular fluid to reach areas 

in which NK1Rs are located, or that substance P binds to NK2/3Rs in areas lacking NK1Rs (see 

Herkenham 1987).  
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Structure 

Density 

Implications SP NK1R 

Cerebral cortex - + Higher function/cognition 

Striatum +++ ++++ 
Habit, action 

selection/suppression/reward 

Amygdala + ++ Fear/anxiety 

Habenula +++ ++ Affective processes 

Locus coeruleus ++ +++ Arousal/attention 

Substantia nigra ++++ - Movement 

Table 1.4 – SP (substance P) and NK1R densities in rat brain (modified from Otsuka and Yoshioka 1993; Nakaya et 
al. 1994). 

1.7 Involvement of substance P and NK1Rs in behaviour 

The behaviour of NK1R-/- mice is consistent with the localization of substance P and NK1Rs in 

key brain areas involved in mood, anxiety, stress and reward processing (Commons 2010; 

Mantyh 2002; Otsuka and Yoshioka 1993). 

1.7.1 Depression and anxiety 

The NK1R-/- mouse has been investigated in preclinical studies of depression (see Blier et al. 

2004; McLean 2005), following the primary finding that NK1R-/- mice exhibit behaviour similar 

to wildtype mice given an antidepressant (Santarelli et al. 2001). This is unsurprising, given that 

NK1Rs are located in areas such as the habenula, amygdala and other structures in the limbic 

system (Otsuka and Yoshioka 1993). On a similar axis, the role of NK1Rs in anxiety has also 

been extensively studied. NK1Rs are particularly prominent in brain areas involved in anxiety 

and the stress response, including the caudate putamen, nucleus accumbens, amygdala, 

habenula and locus coeruleus (Otsuka and Yoshioka 1993; Nakaya et al. 1994). There is a 

substantial amount of evidence to implicate NK1Rs in emotionality, which is summarized in 

Table 1.5. Despite large species differences in their affinity for NK1Rs (at least 70 times lower 

affinity in rat/mouse compared with guinea pig/gerbil) many of these studies have utilized 

NK1R antagonists (Rodgers et al. 2004; Rupniak et al. 2000). However, other methods have also 
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been used; for example, substance P concentrations in the PFC, and NK1R expression in the 

amygdala and hippocampus, are increased in olfactory bulbectomised mice, which show 

depressive-like behaviours (Roche et al. 2012).  

Reference Test Species/strain Compound Outcome 

Teixeira et al. 1996 EPM Mouse FK888 Anxiolytic 

Santarelli et al. 2001 RP67580 Anxiolytic 

Rodgers et al. 2004 NKP608 No effect 

Rupniak et al. 2001 Rat GR205171 No effect 

Guinea pig L-760735 No effect 

Varty et al. 2002 Gerbil MK-869 Anxiolytic 

L-742694 Anxiolytic 

CP-122721 Anxiolytic 

CP-99,994 Anxiolytic 

File 2000; Vassout et 
al. 2000 

Social interaction 
test 

Rat NKP608 Anxiolytic 

File 1997 CGP 49823 Anxiolytic 

Gentsch et al. 2002 Gerbil NKP608 Anxiolytic 

Cheeta et al. 2001 L-760735 Anxiolytic 

Santarelli et al. 2001 Separation-
induced 
vocalization 

Mouse RP67580 Anxiolytic/ 
antidepressant 

Rupniak et al. 2001 GR205171 Anxiolytic/ 
Antidepressant 

Rupniak et al. 2003 Rat GR205171 No enantiomer 
selectivity 

Kramer et al. 1998 Guinea pig L-733060 Anxiolytic/ 
Antidepressant 

Kramer et al. 1998 L-760735 Anxiolytic/ 
Antidepressant 

Steinberg et al. 2002 SSR240600 Anxiolytic/ 
Antidepressant 

Rupniak et al. 2001 
 

Tail suspension 
test 

Mouse GR205171 No effect 

Gerbil MK-869 Antidepressant 

L-733060 Antidepressant 

CP-122721 Antidepressant 

CP-99,994 Antidepressant 
Table 1.5 – Evidence for the role of the substance P–NK1R system in anxiety and depression 

Despite these seemly consistent findings, NK1R antagonists have not yet been proven to be 

successful antidepressants in the clinic. This is noteworthy, given that preclinical tests of 

‘depressive-like’ behaviour have been widely criticized, and may more accurately measure 
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behavioural despair and the behavioural response to a change in body temperature, in the case 

of the tail suspension and maternal separation tests, respectively (see Rupniak 2003). 

The case for NK1R antagonists having anxiolytic properties is also mixed; NK1R-/- mice display 

an anxiolytic phenotype on one background strain on the elevated plus maze (EPM) (Santarelli 

et al. 2001) but no such phenotype on others (Rupniak et al. 2001; Thorsell et al. 2010). 

Similarly, NK1R antagonists did have an anxiolytic effect in some rodent studies (Rupniak et al. 

2001; Santarelli et al. 2001), but not others (Rodgers et al. 2004; Rupniak et al. 2001; see 

Table 1.5). Conversely, NK1R agonists (i.e. substance P analogues) had an anxiogenic effect in 

the EPM (Bassi et al. 2007) and induced a conditioned place avoidance in rats (Elliott 1988), 

when infused in to the dorsal periaqueductal gray and ventricles of rats, respectively. It is 

difficult to separate the effects of NK1R antagonists on emotionality from the effects on 

‘stress’, as substance P has also been linked to the stress response (for review see Ebner and 

Singewald 2006). Swim stress and immobilization stress increase substance P release in the 

amygdala (Ebner et al. 2004), and cold stress increases substance P in the periaqueductal gray 

matter of rats (Xin et al. 1997). 

1.7.2 Reward processing/addiction 

Substance P and NK1Rs are expressed in the reward pathways of the brain, including in the 

NAcc, amygdala and VTA (Otsuka and Yoshioka 1993; Commons 2010), indicating their 

potential role in addiction (Schank 2014). NK1R-/- mice show a decreased preference for, and 

self-administer less, morphine and ethanol than wildtypes in conditioned place preference 

(CPP) and self-administration paradigms, respectively (Murtra et al. 2000; Ripley et al. 2002; 

Gadd et al. 2003; George et al. 2008; Thorsell et al. 2010). This effect on the rewarding 

properties of morphine is thought to be mediated by the amygdala: neurotoxin-induced loss of 

NK1R from the amygdala results in the same loss of place preference for morphine (Gadd et al. 

2003). Interestingly, polymorphisms in the TACR1 gene are associated with increased risk of 

alcoholism and sensitivity to alcohol-related cues (Seneviratne et al. 2009; Blaine et al. 2013; 

Sharp et al. 2014). 
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1.7.3 Cognition 

The lack of NK1Rs in cortical areas of the brain is consistent with reports suggesting NK1R-/- 

mice have no deficit in learning and memory: the rate of learning in NK1R-/- mice does not 

differ from wildtypes in the Morris water maze or fear conditioning paradigms (Morcuende et 

al. 2003), and NK1R-/- mice learn complex tasks such as the 5-Choice Serial Reaction-Time Task 

at the same rate as wildtypes (Yan et al. 2011). 

1.7.4 Social/sexual behaviour 

NK1Rs may also be involved in social and sexual behaviours, given the distribution of 

substance P and NK1Rs in the hypothalamus (Otsuka and Yoshioka 1993). NK1R-/- mice of both 

genders display decreased preference for the other gender’s pheromones, compared with 

wildtypes (Berger et al. 2012). Moreover, NK1R antagonism decreases investigation of female 

urine in male wildtype mice (Berger et al. 2012). Likewise, infusion of substance P into the 

medial preoptic-anterior-hypothalamic area facilitated copulatory behaviour in male rats 

(Dornan and Malsbury 1989). Despite these findings, de Felipe et al (1998) reported that 

NK1R-/- mice breed normally and do not show impaired maternal behaviour. 

1.7.5 ADHD 

Most recently, dysfunction of NK1Rs has been implicated in ADHD. NK1Rs are densely 

expressed in the striatum, a brain area involved in impulse and motor control (Otsuka and 

Yoshioka 1993). Moreover, NK1R-/- mice display hyperactivity, inattentiveness and impulsivity: 

the three diagnostic features of the disorder (Yan et al. 2010; Yan et al. 2011). The latter two 

behaviours can be tested in the 5-Choice Serial Reaction-Time Task (5-CSRTT). The 5-CSRTT was 

originally developed based on Leonard’s choice reaction time task (Leonard 1959), and is 

considered an analogue of the continuous performance task used in humans (Beck et al. 1956). 

John Evenden, Mirjana Carli and Trevor Robbins sought to develop an assay of different types 

of attentional processes, useful for quantifying the effects of pharmacological manipulations in 

rodents (Carli et al. 1983; Robbins 2002). Although the 5-CSRTT was initially developed for the 

rat, versions of the task are now widely used with mice (Humby et al. 1999) and even zebrafish 
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(Parker et al. 2013). The 5-CSRTT (see section 2.4.1) is one of the tests used most frequently in 

translational research into ADHD, and is an important tool in investigating ADHD-like 

behaviours in rodents. 

1.8 Other Rodent Models of ADHD 

There are a large number of existing rodent models of ADHD (Table 1.6). The more successful 

animal models are valid in terms of three different aspects; face validity, construct validity and 

predictive validity. Good face validity describes a similar phenotype in both the animal and 

human condition, construct validity describes the same underlying cause and predictive validity 

describes a similar response to therapeutics and therefore a prediction of what new 

therapeutics might do in the human condition (van der Kooij and Glennon 2007).  

1.8.1 Physical methods 

ADHD was originally termed “minimal brain damage”, and the first model of ADHD mimicked 

just that: intra-cisternal administration of 6-hydroxydopamine (6-OHDA) to neonatal rat pups 

was used to lesion dopaminergic and noradrenergic neurones, leading to hyperactivity in 

postnatal days 12-22 (Shaywitz et al. 1978). This hyperactivity could be augmented by 

simultaneous lesioning of serotonergic neurones by 5,7-dihidroxytryptamine (Brus et al. 2004). 

6-OHDA lesioned rats also show learning and memory deficits (Archer et al. 1988), mimicking 

the human condition. Although this model was the first to be proposed, it still stands as a 

suitable representation of human ADHD, particularly in terms of predictive validity. 

Methylphenidate, amphetamine and atomoxetine all attenuate the hyperactivity seen in the 

young rats (Shaywitz et al. 1978; Luthman et al. 1989; Moran-Gates et al. 2005). 

A number of other neurotoxins have been tested, with little success. So-called “cerebellar 

stunting” by means of methylazoxymethanol, alpha-difluormethylornithine (DFMO) or 

dexamethasone administration, has various outcomes, including the induction of hyper- or 

hypoactivity in rat pups, but on the whole does not produce the attentional or impulsive 

characteristics seen in ADHD (Ferguson 1996). Similarly, hippocampal damage induced by X-ray 
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irradiation can result in hyperactivity and learning deficits in rats, but whether impulsivity is 

also a characteristic is yet unknown (Diaz-Granados et al. 1994). Administration of 

amphetamine improves memory function in this model, but other ADHD treatments have not 

been tested (Highfield et al. 1998).  

1.8.2 Mouse Models 

Coloboma mouse 

One of the earliest genetically modified mouse models of ADHD to be created was the 

“coloboma” (Cm) mouse. This mouse has a mutation of the coloboma locus on chromosome 2, 

resulting in mutations in a number of genes including those coding for synaptosomal-

associated protein 25 (SNAP-25) and phospholipidase C (Hess et al. 1994). Heterozygote 

(Cm+/-) mice display hyperactivity and characteristic head bobbing, together with slowed 

development of normal reflexes (Heyser et al. 1995). In terms of construct validity, Cm mice 

have altered DA, 5-HT and NA function: striatal 5-HT, DA (and DA the metabolites, DOPAC and 

HVA) concentrations are diminished, whereas striatal NA concentration is increased. 

Furthermore, depletion of excess NA by a specific noradrenergic neurotoxin (DSP-4) reduces 

the prominent hyperactivity, as does amphetamine (Jones and Hess 2003). However, 

methylphenidate has the opposite effect, dose dependently increasing hyperactivity (Hess et 

al. 1996). It should also be noted that this mouse has significant dysmorphology of the eye, 

making it difficult to utilize any task which requires visual attention. Therefore experiments 

demonstrating impulsivity or inattention of Cm mice, of which there are few (but for example 

Bruno et al. 2007), should be carefully assessed.  

Dopamine transporter knockout/knockdown mouse 

Perhaps a more relevant genetic model is the dopamine transporter knock out mouse. Since 

alterations to the DAT gene have been associated with ADHD, and both methylphenidate and 

amphetamine primarily target the DAT, it seems appropriate to study the effects of knocking 

down or knocking out this gene (Swanson et al. 1998). One major downfall of the DAT KO 

mouse is that testing novel therapeutics may prove inconclusive given the lack of a possible 
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target protein. However, this has not prevented a large body of research into the DAT 

knockdown (DAT KD) and knockout (DAT KO) mouse. Homozygous DAT KO mice exhibit 

locomotor hyperactivity at around 5-6 times that of heterozygote or wildtype activity levels: 

this appears to be novelty driven since KO mice are approximately 12-fold more active in a 

novel environment (Gainetdinov et al. 1999). DAT KO mice also exhibit decreased spatial 

memory in an 8-arm radial maze, and interestingly, also showed another (albeit not diagnostic) 

trait of ADHD known as perseveration (Gainetdinov et al. 1999).  

DAT KO mice unsurprisingly show altered dopaminergic transmission: extracellular striatal DA 

concentrations are increased by approximately 5-fold, an increase which has a clearance rate 

300 times slower than in wildtype controls (Jones et al. 1998). Furthermore, both 

amphetamine and methylphenidate attenuate the hyperactivity exhibited by these mice: this is 

surprising given the lack of a primary functional target of both drugs (Jones et al. 1998; 

Gainetdinov and Caron 2001). However, possible explanations are that most of the DA in the 

PFC is cleared by the noradrenaline transporter (NAT), and amphetamine has as some affinity 

for all three monoamine transporters (Moron et al. 2002). Blockade of the 5-HT transporter, or 

agonist action at 5-HT receptors, also results in a reduction of the hyperactivity, suggesting the 

serotonergic system may also be important in mediating the effects of psychostimulants in this 

mouse (Gainetdinov et al. 1999). However, SSRIs have limited clinical efficacy in ADHD 

(Verbeeck et al. 2009), and so this aspect of the DAT KO mouse may not be predictive of human 

drug treatment outcomes. 

One disadvantage is that DAT KO mice exhibit growth retardation, and are more likely to die 

prematurely (only 68% survive past 10 weeks of age) (Giros et al. 1996). To overcome this 

problem, the DAT knock-down (KD) mouse was developed. These mice express DAT protein at 

about 10% of normal wildtype levels and have none of the developmental problems associated 

with complete DAT KO (Zhuang et al. 2001). However, they retain the hyperactivity in response 

to novelty and impaired response habituation of KO mice (Zhuang et al. 2001). DAT KD mice 

also exhibit perseverative motor patterns (Ralph-Williams et al. 2003) and more “risk taking” 

behaviour than wildtypes (Young et al. 2011), both of which are concordant with ADHD 

behaviour. Zhuang and colleagues found that both apomorphine (a D1/D2 receptor agonist) and 
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quinpirole (a D2 receptor agonist) attenuated the hyperactivity of the mice, as did 

amphetamine and methylphenidate (Zhuang et al. 2001). This, together with microdialysis and 

fast-scan cyclic voltammetry data showing increased extracellular DA and reduced DA 

clearance, respectively, suggests that these mice are hyperdopaminergic (Zhuang et al. 2001). 

To date, DAT KO and KD mice remain the most well-established mouse models of ADHD.  

New mouse models 

Other mouse models have been proposed, such as the intermittent REM (rapid eye movement) 

sleep deprived mouse (RSD), which shows explosive jumping behaviour, relieved in part by 

atomoxetine, and altered noradrenergic and dopaminergic transmission (Niijima et al. 2010). 

The proposal that G protein–coupled receptor kinase–interacting protein-1 (GIT1) knockout 

mice (GIT1-/-) model aspects of ADHD is supported by an association between single nucleotide 

polymorphisms (SNPs) within the gene and ADHD (Won et al. 2011). These mice display 

hyperactivity and learning deficits, both of which are relieved by amphetamine (Won et al. 

2011). This model is relatively new, and as such no data is available on the neurochemistry of 

GIT1-/- mice. One downfall of the GIT1-/- mouse is reminiscent of the DAT KO: only 50% of 

GIT1-/- mice survive postnatally, and surviving mice weigh 60-70% of normal wildtype mouse 

weight (Menon et al. 2010; Won et al. 2011). Nevertheless, preliminary data for this model look 

promising. 

A similar proposal has been made for Syn-CAM1-/- mice. Knockout of the SynCAM1 gene (a 

molecule involved in cell adhesion and synaptic differentiation) results in hyperactivity and 

disrupted activity in the sleep-wake cycle of mice, which is attenuated by amphetamine 

(Sandau et al. 2012). The neurochemistry and other aspects of the phenotype are yet to be 

published but, like the GIT1-/- mouse, this model approaches ADHD from a perspective other 

than disrupting monoamine function, which could give further insight into the disorder.  
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1.8.3 Rat Models 

Spontaneously Hypertensive Rat 

Perhaps the most well studied and documented rodent model of ADHD is the spontaneously 

hypertensive rat (SHR). The original strain of Wistar-Kyoto (WKY) rats was purposefully inbred, 

by selecting for high systolic blood pressure (Okamoto and Aoki 1963), the result being animals 

in which hypertension develops at around 10-12 weeks of age. Although there are, strictly 

speaking, no control animals, normotensive Wistar (Wi), Wistar-Kyoto (WKY) or Sprague-

Dawley (SD) rats are used as a “reference strain” in most studies of the SHR. However, studies 

have shown that using different reference strains can produce different results, and moreover, 

WKY rats themselves could display behavioural abnormalities (e.g. an abnormal stress response 

see Diana 2002), which limits their use as a control strain. Sagvolden and colleagues have 

developed this idea further, and proposed that WKY rats could model the predominantly 

inattentive subtype of ADHD (Sagvolden et al. 2009). 

Interestingly, SHRs exhibit traits of ADHD before they develop hypertension. Many studies have 

demonstrated that SHRs are hyperactive and impulsive (Sagvolden 2000), and show learning 

deficits in a range of tests including the radial arm maze (Wyss et al. 1992) and Morris water 

maze (Gattu et al. 1997; Gattu et al. 1997). Far fewer studies have examined the 

neurochemistry. One dual-probe microdialysis study showed that SHRs had reduced 

noradrenaline and increased dopamine efflux in the prefrontal cortex and striatum, 

respectively, compared with SD rats (Heal et al. 2008). The same study found that 

amphetamine induced a greater increase in extracellular noradrenaline concentration in the 

PFC of SHRs than SD rats, but the same increase in synaptic dopamine concentration in both 

strains (Heal et al. 2008).  

The behavioural effects of stimulants in the SHR are somewhat inconsistent: one study found 

that amphetamine attenuated the hyperactivity of SHRs (Myers et al. 1982), whereas 

methylphenidate is reported to be ineffective (van den Bergh et al. 2006), to worsen 

hyperactivity (Wultz et al. 1990; Amini et al. 2004; Barron et al. 2009) or to improve 

hyperactivity (Umehara et al. 2013).  Methylphenidate was also ineffective in one test of 
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impulsivity (Bizot et al. 2007), but effective in improving attention in an attentional set-shifting 

paradigm (Kantak et al. 2008). To date, only two studies have examined the effects of 

methylphenidate on SHRs performing the 5-CSRTT (van den Bergh et al. 2006; Dommett 2014): 

both reported methylphenidate to be ineffective, but Dommett (2014) reported that such 

studies are limited by difficulties in training this strain in this task. 

Other rat models 

Another rat strain proposed to model ADHD-like behaviour is the Naples High Excitability (NHE) 

rat. NHE rats were selectively bred based on exploratory behaviour in the Làt maze (a square 

maze). They display greater novelty-induced activity than their counterparts, Naples Low 

Excitability (NLE) rats (Sadile et al. 1993). Both NHE and NLE rats display attentional deficits 

compared to Naples random-bred rats (Gonzalez-Lima and Sadile 2000), but to date there have 

been no reports of impulsivity in these strains. One study suggested that sub-chronic 

methylphenidate may attenuate the hyperactivity, but not the attentional deficits, expressed 

by NHE rats in the Làt maze (Ruocco et al. 2010). Further exploration of this phenotype in other 

tests of cognition may strengthen the use of this model in ADHD research. 

Another method which has been used to investigate ADHD-like behaviour is to separate 

populations of animals into subgroups once their behaviour has been established, e.g. on a 

paradigm such as the 5-CSRTT. For example, rats can be selected for behaviour such as a high 

level of impulsivity, which is relevant not only to ADHD, but to many disorders involving 

impaired impulse-control. Studies have shown that methylphenidate and atomoxetine reduce 

impulsivity in high impulsive (HI) rats (Tomlinson et al. 2014), and atomoxetine improves 

response accuracy in poor performing but not high performing animals in the 5-CSRTT 

(Robinson 2012). This method of splitting animals in to different populations may be a useful 

tool in research, and could better represent ADHD as a heterogeneous disorder.  
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Table 1.6 – A summary of rodent models of ADHD.  = mimics human condition,  = contrasts with human condition, --- = unknown/not reported, A = altered  

neurochemistry. 

   Predictive Validity 

Model 

Face Validity Construct Validity Amphetamine Methylphenidate 

H
yp

e
ra

ct
iv

it
y 

In
at

te
n

ti
o

n
 

Im
p

u
ls

iv
it

y 

P
e

rs
e

ve
ra

ti
o

n
 

DA 
function 

5-HT 
function 

NA 
function 

H
yp

e
ra

ct
iv

it
y 

Im
p

u
ls

iv
it

y 

In
at

te
n

ti
o

n
 

H
yp

e
ra

ct
iv

it
y 

Im
p

u
ls

iv
it

y 

In
at

te
n

ti
o

n
 

NK1R-/-     A A A  x   --- --- 

6OHDA   --- --- A --- A  --- ---  --- --- 

Cerebellar 
stunting 

   --- --- --- ---  --- --- --- --- --- 

Hippocampal 
lesioning 

  --- --- --- --- ---  ---  --- --- --- 

Coloboma mouse    --- A A A  --- ---  --- --- 

DAT KO mouse     A A A  ---   ---  

DAT KD mouse  ---   A --- ---  ---  --- --- --- 

RSD mouse  --- --- --- A --- A --- --- --- --- --- --- 

GIT1-/-    --- --- --- --- ---   --- --- --- --- 
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1.9 ADHD comorbidities 

It is estimated that two thirds of children with ADHD also have a comorbid condition: ADHD is 

frequently comorbid with conditions such as substance abuse, mood, anxiety and bipolar 

disorders and Tourette’s syndrome (Madras et al. 2005). Figure 1.6 summarizes some of the 

key areas of overlap between ADHD and other conditions. These comorbidities can not only 

complicate diagnosis, but can influence treatment indications: for example, stimulants can 

worsen tics, whereas guanfacine can alleviate them (Pringsheim and Steeves 2011). Moreover, 

medication may prevent comorbid disorders developing: numerous studies have shown that 

untreated ADHD is a risk factor for substance abuse disorders in adulthood (for review see 

Wilens et al. 2003). This thesis will focus on ADHD with comorbid obesity. 

 

Figure 1.6 – ADHD comorbidities: adapted from Kooij et al. 2012. MDD; manic depressive disorder, SAD; seasonal 
affective disorder, PTSD; post-traumatic stress disorder, OCD; obsessive compulsive disorder. 
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1.9.1 ADHD and obesity 

There are strong, albeit counterintuitive, links between ADHD and obesity. Findings have not 

always been consistent, yet in the majority of studies in which the weight status of 

unmedicated ADHD patients was monitored, the results suggest that ADHD patients have a 

higher incidence of being overweight or obese. There is also a strong treatment effect, which is 

to be expected, as psychostimulants are renowned for decreasing appetite. In one study of 98 

children with ADHD, 23% of unmedicated patients were overweight, compared with just 6.3% 

of patients using pharmacotherapy (Curtin et al. 2005). Other studies on unmedicated patients 

have reported similar findings: Hubel et al found a higher BMI-SDS (body mass index standard 

deviation scores, or z-scores) in ADHD than in the control group of 8-14 year old boys, and 

Anderson et al found ADHD patients had higher BMI z-scores than controls (Anderson et al. 

2006; Hubel et al. 2006). Vice versa, studies have also found that obese patients have a higher 

incidence of ADHD (Altfas 2002; Erermis et al. 2004; Agranat-Meged et al. 2005; Fleming et al. 

2005). This bidirectional comorbidity could be explained by a number of theories;  

1) The characteristics of ADHD (impulsivity/inattention) contribute to a dysregulated eating 

pattern, i.e. ADHD leads to obesity 

2) Factors associated with obesity contribute to ADHD-like symptoms, i.e. obesity leads to 

ADHD 

3) ADHD and obesity share common biological underpinnings, i.e. both are caused by the same 

dysfunction of the brain 

4) ADHD and obesity coincide (i.e. occur in the same individuals), but are not related by 

aetiology. 

The neurobiology of obesity is complicated, as large numbers of hormones, gut peptides and 

neurotransmitters are involved in the regulation of food intake and body composition. 

However, of particular relevance to this thesis is the involvement of the monoamines.  

There is plenty of evidence to implicate the monoamines in the regulation of food intake and 

energy homeostasis. Historically, the use of anti-obesity agents targeting monoaminergic 
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systems began decades ago: the anorectic properties of benzedrine were first reported in the 

1930s, and drugs including amphetamine, methamphetamine, phentermine and 

benzphetamine were approved for the treatment of obesity before the 1960s (Nelson and 

Gehlert 2006). More recently, sibutramine (a selective combined serotonin and noradrenaline 

reuptake inhibitor) has been used as an effective anti-obesity drug. Sibutramine was withdrawn 

in 2011, due to its propensity to increase the risk of heart attack and stroke in patients with 

cardiovascular (CV) disease (James et al. 2010): an important consideration given the 

association between CV disease and obesity, and one main reason most monoamine uptake 

inhibitors are not successful in the clinic (see Nelson and Gehlert 2006). 

The relative contributions of serotonin and noradrenaline to the effects of anorectic drugs such 

as sibutramine are still unclear. Fluoxetine (a selective serotonin reuptake inhibitor) can 

decrease feeding and weight gain in rodents (Wong et al. 1988; Gamaro et al. 2008), but has 

little effect when used chronically in the clinical treatment of obesity (Ward et al. 1999; Suplicy 

et al. 2014). Phentermine (a preferential noradrenaline reuptake inhibitor) has been used as an 

anti-obesity drug for many years, and does appear to be effective (Kim et al. 2006; Kang et al. 

2010). However, the combination of uptake inhibition of both serotonin and noradrenaline 

could be key to the anorectic effects of stimulant/antidepressant drugs. One study of food 

intake in rats found that preventing reuptake of serotonin or noradrenaline alone, with 

fluoxetine or nisoxetine, respectively, did not reproduce the anorectic effects of sibutramine, 

but administration of both drugs together, did (Jackson et al. 1997). 

The role of dopamine has also been the subject of some interest. It has been suggested that 

dopamine is critical in mediating the rewarding properties of food: there are multiple lines of 

evidence which support a hypothesis that obesity is a result of disrupted dopamine-regulated 

reward circuits. In studies using positron-emission topography (PET) scanning techniques, DAT 

availability in the striatum of healthy volunteers is negatively correlated with BMI (Chen et al., 

2008), and D2 receptor density is decreased in obese individuals compared with healthy 

controls (Wang et al. 2001): a change which also correlates with increased BMI, and is 

reminiscent of a similar decrease observed in drug-addicted individuals (see Wang et al. 2004). 

Likewise, striatal D2 receptor availability is lower in obese Zucker rats than in lean controls 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166230/#B38
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166230/#B38
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(Hamdi et al. 1992; Thanos et al. 2008) and D2/3 receptor availability negatively correlates with 

body weight and cocaine preference in outbred Sprague-Dawley rats (Michaelides et al. 2012). 

This, and evidence that basal and electrically evoked striatal dopamine release from brain slices 

of obese ob/ob mice is lower than that from wildtypes (Fulton et al. 2006), suggest that striatal 

dopaminergic brain circuits could be critically involved in the regulation of food intake and the 

development of obesity. 

Interestingly, it has also been suggested that the NK1R/substance P system also plays a role in 

energy homeostasis: for instance, a peripheral-acting NK1R antagonist (CJ-12,255) reduced 

weight gain, insulin and leptin levels in mice fed a high fat diet (Karagiannides et al. 2008). 

Given the comorbidity between ADHD and obesity, and the possible involvement of NK1Rs, 

investigations into the weight and body composition of NK1R-/- mice could be useful in 

determining whether the TACR1 polymorphism is important in this disorder with respect to 

obesity. 

1.10 Aims of the thesis 

The aims of this thesis were broadly divided into two parts: the first aim was to test the 

predictive validity of the NK1R-/- mouse as preclinical ‘model’ of ADHD-like behaviour, and the 

second aim was to investigate whether the weight and body composition of NK1R-/- mice could 

give insight into the overlap between ADHD and obesity. 

The specific aims were; 

1. To investigate whether the ADHD treatments, guanfacine, atomoxetine and 

methylphenidate, alleviate the three core ADHD behaviours displayed by NK1R-/- mice, 

in the light-dark exploration box and the 5-Choice Serial Reaction-Time Task 

2. To investigate whether any changes in behaviour induced by guanfacine, atomoxetine 

and methylphenidate in these tests could be secondary to changes in emotionality or 

arousal/motor activity 

3. To determine whether the weight and body composition of NK1R-/- mice differs from 

wildtypes, on a normal diet and on a high fat (‘Western’-style) diet. 
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Chapter 2. General materials and methods 

2.1 Introduction 

This project examined the behaviour of wildtype and NK1R-/- mice in paradigms designed to 

study their cognitive and emotional responses to pharmacological manipulations. Two of the 

core behaviours (inattention and impulsivity) crucial for diagnosing ADHD are examined in the 

5-Choice Serial Reaction-Time Task (5-CSRTT), a method which was designed as a translational 

tool for studying human ADHD behaviour in rodents. Other behavioural tests which did not 

require extensive training of animals were used to assess hyperactivity, emotionality and 

cognition. 

In the second half of this project, the body composition of NK1R-/- and wildtype mice was 

compared in mice maintained on a normal diet, and those fed a high fat diet. The food intake of 

wildtype and NK1R-/- mice over the duration of the 5-CSRTT experiments was also examined. 

2.2 Animals 

All experimental procedures complied with the Animals (Scientific Procedures) Act, 1986 (UK) 

[2010/63/EU], and received local ethical approval at University College London. Experiments 

with animals were conducted by a person licenced and trained to carry out these procedures 

(Katharine Pillidge; PIL: 70/23865), under the appropriate project licence (PPL: 70/6886). 

Only mice were used in this project. Separate cohorts of animals were used for each 

experiment, unless otherwise specified. All behavioural experiments were carried out in dimly 

lit, sound-attenuated rooms. Cages of animals were brought to the experimental room and 

allowed to habituate to the new environment before the experiment began (see section 2.4). 

Animals were kept in the experimental room for the duration of testing. 
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2.2.1 Husbandry 

Only mice bred at University College London were used in this project. Mouse colonies were 

held in a facility at 21 ± 2°C, 45 ± 5% humidity, with a 12 h light/dark cycle (lighting increased 

gradually from 07.00 - 8.00 AM). Mice were group housed (cages of 2-5) and were given 

ad libitum access to food (2018 global Rodent Diet, Harlan) and water throughout, except 

where specified. The home cages incorporated environmental enrichment (cardboard tunnels, 

and nesting material (Aston-Pharma, London)) and were cleaned twice weekly (bedding: 

Litaspen Premium (Lillico)). Mice were used at 6 – 14 weeks of age at the start of all 

experiments, unless otherwise specified. Male mice were used in the behavioural tests, but 

males and females were used in the body composition analyses. This was because hormonal 

changes can influence the behaviour of females (for example, see Marcondes et al. 2001), and 

so larger numbers of mice would be needed to counteract the variability induced by these 

fluctuations. This was avoided in keeping with the aims of the NC3Rs. 

2.2.2 Generation of NK1R-/- mice 

The NK1R-/- mouse line was originally generated by homologous recombination of genetically 

modified 129/Sv mouse embryonic stem cells (ESC) into C57Bl6 blastocysts (de Felipe et al. 

1998). The NK1R gene was disrupted by insertion of a cassette containing an internal ribosome 

entry site, lacZ coding sequence, and a neomycin resistance gene expressed from its own 

promoter, into the StuI site in exon 1 of the gene (see Figure 2.1). Two targeted ESC clones 

were injected into C57Bl6 blastocysts, and chimeric male offspring were mated with C57Bl6 

females. The resulting heterozygous (NK1R+/-) C57Bl6 mice were then crossed to produce 

homozygous offspring (see Figure 2.2). NK1R-/- mice were then backcrossed with C57Bl6 mice 

for 10 generations. 
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Copyright material removed 

 

 

 

Figure 2.1 – Disruption of the NK1R gene, taken from (de Felipe et al. 1998). 

NK1R-/- mice were then backcrossed once on to an outbred MF1 strain (Harlan OLAC, Bicester, 

UK) resulting in mice with a genomic make-up of 25% 129/Sv, 25% C57Bl6 and 50% MF1. 

Homozygous wildtype and NK1R-/- mice from this colony have been bred separately for many 

generations. Recently, wildtype and NK1R-/- mice were re-crossed, to produce heterozygous 

offspring. Heterozygous mice were mated to create wildtype and NK1R-/- littermates, which 

have been used to study the effects of interactions between NK1R and early life environment.  
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Figure 2.2 – Generation of genetically modified NK1R-/- mice. 

In summary, three colonies (all with a mixed 129/Sv/ C57Bl6/ MF1 background) have been used 

in this project; 

1. Homozygous wildtype (NK1R+/+) mice from NK1R+/+ parents  

2. Homozygous ‘knockout’ (NK1R-/-) mice from NK1R-/- parents  

3. Wildtype (NK1R+/+) and ‘knockout’ (NK1R-/-) littermates from heterozygous (NK1R+/-) 

parents  
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Mice bred from homozygous breeding pairs were used in all experiments. The use of NK1R-/- 

and wildtype littermates from heterozygote breeders was limited to the 5-CSRTT experiments, 

and is detailed in the corresponding chapters. Sires and dams were mated between the age of 

2 and 8 months in all colonies, and allowed to have a maximum of 7 litters. Litter offspring 

were weaned at 3 weeks.  

2.2.3 Genotyping 

Mice from heterozygous parents were routinely genotyped at weaning. DNA from ear notches 

was used with a standardised polymerase chain reaction (PCR) protocol. Primers were used to 

amplify both the NK1R gene (NK1-F (forward) and NK1-R (reverse)) and the neomycin gene 

inserted via the cassette (NeoF and NK1-R), giving bands of 350 and 260 bases, respectively. For 

full genotyping methods see Appendix 1.  

 

Figure 2.3 – Example of a gel showing bands at 260 bases for NK1R-/-, 350 bases for wildtype (+/+) and both for 
heterozygous (+/-) mice. The negative (-ve) control was a mix of primers without any DNA, to control for 
contamination. 

2.3 Drugs 

Drugs used in experiments described in Chapters 3-6 were guanfacine hydrochloride (Sigma 

Aldrich, Dorset, UK), atomoxetine hydrochloride (Tocris Bioscience, Bristol, UK), medetomidine 

hydrochloride (Domitor 1mg/ml, Pfizer Limited, UK) and methylphenidate hydrochloride (Sigma 

Aldrich, Dorset, UK). All of these drugs were dissolved in sterile saline (0.9% NaCl solution) and 

injected in a volume of 10ml/kg throughout.  
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2.4 Behaviour 

2.4.1 5-Choice Serial Reaction Time Task 

Development of the 5-CSRTT 

Robbins and colleagues originally developed the 5-CSRTT using a ‘nine hole box’ version of the 

same test, with different configurations to find one which could quantify different aspects of 

cognition (Carli et al. 1983; Robbins 2002). The 5-CSRTT is now used to measure sustained 

attention, though it can be modified to test for selective or focused attention by the addition of 

interfering stimuli.  

Food deprivation 

The 5-CSRTT is an operant procedure: mice are given positive reinforcement in the form of a 

food reward when they respond correctly. In order to motivate mice to respond for this food 

reward, animals used in the 5-CSRTT were food restricted to 90% of their free-feeding weights. 

This restriction was induced gradually, and maintained carefully over the duration of the 

experiment.  

Previous measurements by the lab found that mice eat an average of 5.2 g of food per 24 h. 

This was used to estimate how much a mouse eats per hour, and so formed the basis of food 

deprivation. 

On day 1 of the experiment, mice were weighed to determine their free-feeding weight, and 

food was removed from the cages. During the first 4 days, mice were given a pre-determined 

mass of food to induce the deprivation gradually (see Table 2.1). Mice were not trained in the 

5-CSRTT during this first week. From the second week and throughout the study, mice were 

weighed every weekday morning before training/testing in the 5-CSRTT, and fed daily at 

16:00 h. 
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Day Food given (g per mouse) 

1 4.75 

2 3.90 

3 3.45 

4 3.00 
Table 2.1 – Food deprivation over the first week in the 5-CSRTT. 

After the first 4 days, feeding was adjusted and tailored to each cage of mice, in order to 

maintain mice at 90% of their original body weights. If a mouse’s weight dropped to below 

90%, the mouse was allowed ad lib feeding for 30 min for every 0.5 g under its target weight. 

This food was given after the mouse had completed its 5-CSRTT session for the day. If a mouse 

was underweight and deemed to be unwell, it was culled immediately. This was a rare 

occurrence, but details of mice that did not complete the study are given in the relevant 

chapters. 

Apparatus 

The apparatus, supplied by Med Associates (St. Albans, VT, USA) comprises four sound 

attenuated operant chambers with five equally-spaced apertures, incorporated in the left wall 

(see Figure 2.4). These holes can be illuminated independently, and interruption of an infrared 

beam across the hole scores ‘nose-pokes’ into each one. A magazine in the right wall, where 

rewards are delivered, can also be illuminated independently. Interruption of an infrared beam 

across the magazine initiates a ‘trial’. The procedure was controlled by a Smart Ctrl Package 

8IN/16OUT with an additional interface by MED-PC for Windows (Med Associates, St. Albans, 

VT, USA).  
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Figure 2.4 – A 5-CSRTT operant chamber. 

Behaviour in the 5-CSRTT 

A trial begins when the mouse nose-pokes into the magazine. One of five lights is then 

illuminated, signalling that the mouse should nose-poke into the illuminated aperture. There 

are 3 possible behavioural responses to the presentation of the cue light (see Figure 2.5). Mice 

can nose-poke into the illuminated target hole (correct), one of the other 4 un-illuminated 

holes (incorrect), or not nose-poke at all (omission). Mice may also nose-poke into one of the 5 

holes before any light stimulus is presented (premature response), which does not count 

towards the number of trials in the session. After an incorrect, omitted or premature response, 

the mouse is ‘punished’ with a 10 s timeout period (house light off), during which nose-pokes 

into the magazine have no effect. The mouse must then initiate the next trial by nose-poking 

into the magazine when the house light is turned back on. After a correct response, the mouse 

is rewarded with the delivery of 0.01 ml of 30% sweetened condensed milk solution at the 

magazine, which in itself initiates the next trial. The sequence continues until 100 trials have 

taken place, or the allocated time for that session is up.  
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Figure 2.5 – Behavioural responses to the presentation of a light cue in the 5-CSRTT 

After the session, the number of correct, incorrect, omitted and premature responses are used 

to calculate the 7 key variables (listed in Table 2.2). 

Behavioural Outcome Method of calculation 

Total number of trials 
completed  

Total correct responses + total incorrect responses + total 
omissions  

% Accuracy [correct responses/(correct + incorrect responses)]×100. 

% Omissions [total omissions/total number of trials]×100 

Premature responses Premature responses per 100 trials 

Latency to correct response Duration between onset of stimulus and a nose-poke in the 
correct hole 

Latency to collect the reward Duration between a nose-poke in the correct hole and 
collection of reward from the magazine 

Perseverative responses Number of unnecessary responses into the correct hole after 
the initial correct response, before collection of reward, per 
100 trials 

Table 2.2 – Behavioural outcomes in the 5-CSRTT 
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Training/testing 

For mice to learn how to navigate the 5-CSRTT correctly, substantial training is required. Mice 

were first habituated to the apparatus for three days (for details see Table 2.3). Thereafter, 

training began, and mice graduated through Stages 1 – 6 after fulfilling the criteria for the given 

stage. The parameters of the test (below) were changed to make the stages increasingly 

challenging; 

Stimulus duration (SD) - the length of time the aperture is illuminated for – decreases. 

Limited hold (LH) – the time after the target light is extinguished in which the mouse can still 

nose-poke to achieve a correct response – decreases. 

Inter-trial interval (ITI) – the time between initiation of a trial by magazine head-entry, to 

illumination of the target aperture – increases. 

Each training session lasted 30 min, unless the animal reached a total of 100 trials plus 

premature responses before that time, at which point the session was terminated. Mice were 

assigned to one of the four test chambers in a pseudo Latin-square design, and were run in the 

same box throughout. After reaching the criteria for a stable baseline on Stage 6 for at least 3 

consecutive days, mice were eligible for testing. 

A variable inter-trial interval (VITI; 2, 5, 10 or 15 s (delivered on a random schedule)) was used 

to test the mice. Mice were tested once weekly using the VITI (on Fridays) only if a stable 

baseline had been achieved on the 3 preceding consecutive days (Tues – Thurs). The first week 

of testing was with treatment-naive mice (‘NI-1’) only. In the following 5 weeks, mice were 

subject to VITI tests, 30 min after treatment with an intraperitoneal (i.p.) injection of drug or 

vehicle, or a second un-treated session (‘NI-2’). The drug/vehicle/ NI-2 sessions were 

counterbalanced across subjects, using a pseudo Latin-square. Each test session lasted 45 min, 

unless the animal reached a total of 100 trials plus premature responses before that time, at 

which point the session was terminated. Performance variables (listed in Table 2.2) were 

scored by the MED-PC program and stored online. 
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Stage Conditions Criteria for Passing 

Habituation 

30% condensed milk solution 
available on nose-poke into 
magazine.100% condensed 
milk placed inside all 5 holes 
on day 1 & 2. 
Magazine and hole-lights 
illuminated throughout 

None 
Mice advanced to next 
stage after 3 days 

Habyol  
(a non-
spatial 
version of 
5-CSRTT) 

 
All 5 holes illuminated 
constantly 
Liquid reward available from 
magazine upon nose-poke into 
any of the 5 holes 

>50 rewards 

For 2 consecutive days 
Maximum  of 10 days 
before progression 
regardless of 
performance 

 
SD LH ITI 

 

Stage 1 30s 30s 2s >30 correct responses For 2 consecutive days 

Stage 2 20s 20s 2s >30 correct responses For 2 consecutive days 

Stage 3 10s 10s 5s >50 correct responses For 2 consecutive days 

Stage 4 5s 5s 5s 

>50 correct responses 
>75% accuracy 
<25% omissions 
total trials – premature >100 

For 2 consecutive days 

Stage 5 2.5s 5s 5s 

>50 correct responses 
>75% accuracy 
<25% omissions 
 total trials – premature >100 

For 2 consecutive days 

Stage 6 1.8s 5s 5s 

>50 correct 
>75% accuracy 
<25% omissions 
 total trials – premature >100 

For 3 consecutive days 
and minimum of 7 days 

Variable ITI 1.8s 5s 
2, 5, 10 
or 15s 

N/A  

Table 2.3 – Training procedure used in the 5-CSRTT   
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2.4.2 5-Choice Continuous Performance Task 

It has been suggested that the 5-CSRTT represents a rodent version of the continuous 

performance task (CPT) which quantifies attention in humans by measuring their ability to 

determine whether or not a target letter had been presented in a sequence (Rosvold et al. 

1956). However, one key difference between the 5-CSRTT and the human CPT is that the CPT 

incorporates stimuli which require subjects to withhold their response (“non-signal” or “no-go” 

stimuli). Young and colleagues recently developed the 5-CSRTT to include trials in which all five 

apertures are simultaneously illuminated, and as such, the animal is required to withhold nose-

poking into any aperture in order to receive the reward (Young et al. 2009). This allows the 

assessment of response inhibition to irrelevant stimuli, as in the human CPT. 

The 5-Choice Continuous Performance Task (5C-CPT) followed the same general method as the 

5-CSRTT. However, key differences were in the training, and to some extent, the testing 

method; stimulus parameters and trial types were modified to resemble the methodology used 

by the Young group (Young et al. 2004; Young et al. 2009). These are discussed in detail below. 

The 5C-CPT used the same apparatus as the 5-CSRTT, but the MED-PC files used to run the 

training and testing computer programs were kindly donated by Jared Young (UCSD), and 

adapted to suit the equipment used here. 

Training  

Mice were food restricted to 90% of their free-feeding body weight, in the same way as 

detailed in Section 2.4.1. Habituation also followed the same protocol as in the 5-CSRTT, except 

mice had to reach 70 reinforcers on the ‘Habyol’ stage compared with 50 in the 5-CSRTT. 

Mice were then trained in the 5C-CPT according to the protocol detailed in  Table 2.4. Training 

differed from that used in the 5-CSRTT in terms of success criteria; in the 5C-CPT mice were 

required to react increasingly quickly to the stimulus light, whereas in the 5-CSRTT, mice were 

required to meet certain response criteria, such as a high %accuracy and low %omissions.   
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Another key difference between the 5C-CPT and the 5-CSRTT is the addition of ‘no go’ trials. 

These were trials in which all 5 holes were illuminated, and the mouse was required to 

withhold its response by not nose-poking into any hole. This resulted in two more behavioural 

outcomes (Figure 2.6), in addition to the ones shown in Figure 2.5. The no go trials were 

introduced after the mice had successfully learned how to respond in the 5-CSRTT (i.e. one 

stimulus light illuminated at a time).  

Other minor differences in the 5C-CPT compared to the 5-CSRTT were that the house light was 

continually off, with a 10 s timeout accompanied by the house light being illuminated in the 

5C-CPT (the opposite was true in the 5-CSRTT), and the milk reward was available for only 4 s, 

compared with no time limit in the 5-CSRTT. 

 

Figure 2.6 – Additional behavioural responses in the 5C-CPT.



 

 

 

6
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 Table 2.4 – The training procedure used in the 5C-CPT 

Stage Description Conditions Criteria for Passing 

Habituation 

 30% condensed milk solution available 
on nose-poke into magazine 
100% condensed milk placed inside all 
5 holes on day 1 & 2 
Hole-lights illuminated throughout 

None 
Mice advanced to next stage 
after 3 days 

Habyol  
 

A non-spatial version of 
the task 

All 5 holes illuminated constantly 
Liquid reward available from magazine 
upon nose-poke into any of the 5 holes 

>70 rewards 

For 2 consecutive days 
Maximum  of 10 days before 
progression regardless of 
performance 

  SD LH ITI  

Fixed ITI  
5-CSRTT 

SD gradually decreased 
from 20 to 2s, with a 
fixed inter-trial interval 

20, 10, 8, 4 
or 2s 

SD + 2s, to 
minimum 

of 5s 
5s 

Mean correct latency half that 
of the SD 
10 correct responses 

For 3 consecutive days at 
each SD 

VITI  
5-CSRTT 

SD remains at 2s, while 
the inter-trial interval 
becomes variable 

2s 5s 
3, 4, 5, 6 or 

7s 
>80% accuracy 
<40% omissions 

For 3 consecutive days 

VITI, 2:1 
5C-CPT 

‘No go’ trials are added 
in a 2:1 ratio of go: no go 
trials 

2s 5s 
3, 4, 5, 6 or 

7s 
>50% correct rejection For 2 consecutive days 

VITI, 5:1 
5C-CPT 

Ratio is increased to 5:1 
go: no go trials 

2s 5s 
3, 4, 5, 6 or 

7s 
Sensitivity index > 0 For 3 consecutive days 

Testing 
An extended (60 min) 
session with extended 
inter-trial intervals 

2s 5s 
7, 8, 9, 10 

or 11s 
N/A  C

h
ap

ter 2
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Testing 

Once mice had reached a stable baseline of performance in the 5C-CPT, mice were eligible for 

testing. Testing also differed from that used in the 5-CSRTT. In the 5C-CPT mice had already 

experienced variable inter-trial intervals (3 – 7 s). Therefore to challenge mice, an extended 

session was used (60 min/250 trials), with lengthened, variable inter-trial intervals (7 – 11 s).  

Behaviours in the 5C-CPT 

Behavioural measures were used to calculate the same variables as in the 5-CSRTT, with the 

addition of those listed in Table 2.5. 

Behavioural Outcome Method of calculation 

%False alarm (PFA) [Number of correct rejections/ (number of correct rejections + 
number of false alarms)] * 100 

% Hits (PH) [Number of correct responses/ number of correct responses + 
number of omissions)] * 100 

False alarm latency Latency to nose-poke on a no-go trial 

Sensitivity index PH – PFA/(2(PH+PFA))-(PH+PFA)2 

Table 2.5 – Additional behavioural outcomes in the 5C-CPT  

The difference between a ‘correct rejection’ and a ‘hit’ is determined by the type of trial (see 

Table 2.6 below). The sensitivity index takes both of these behaviours into account, with a 

positive sensitivity index being a high signal to noise detection rate, and a negative sensitivity 

index being a low signal to noise detection rate. For example, a mouse would need to have a 

high level of ‘hits’, and a low level of ‘false alarms’ to give a positive numerator in the 

sensitivity index equation.  

 Go Trial No Go Trial 

Response Correct response (hit) False alarm 

No response Omission (miss) Correct rejection 

Table 2.6 – Behaviours used to calculate the sensitivity index  
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2.4.3 Light-Dark Exploration Box 

The light-dark exploration box (LDEB) is one of many approach-avoidance conflict tests 

designed to evaluate emotionality, based on a conflict between animals’ innate curiosity to 

explore novel environments, and their aversion to brightly lit, open spaces (Crawley 1981). 

However, here, unlike in the light-dark test pioneered by Crawley, the light zone was dimly lit, 

to render it ‘novel’ but not strongly aversive. The LDEB consisted of two zones; a smaller, 

darker, black Perspex arena (15 cm x 20 cm, 4 Lux), and a larger, brighter, white Perspex arena 

(30cm x 20cm, 20 Lux), separated by a removable door. A grid of 5cm squares is marked on the 

floor, and used to score locomotor activity. Manually scoring behaviour allowed this test to be 

used as a measure locomotor activity and emotionality, although the latter has not been 

validated using this protocol. We have previously demonstrated that NK1R-/- mice display 

increased locomotor activity and decreased time in the light zone (Fisher et al. 2007), although 

a wide range of other behaviours, such as grooming or risk assessment behaviour, can be 

monitored.  

 

Figure 2.7 – The light-dark exploration box apparatus 

Method 

Mice were allowed to habituate to the test room between 10.00 – 13.00 h. At either 13.00 h or 

15.30 h, mice were placed in the dark zone of the LDEB for 60 min, injected with their allocated 

treatment or left untreated, and placed back in the dark zone for a further 30 min. Mice were 

then transferred to the light zone facing away from the door while the door was removed, 

allowing them to travel between the two zones. One wildtype and one NK1R-/- mouse were 
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tested alongside each other in adjacent LDEBs with the same treatment, to minimize any 

random confounding factors. Behaviour was recorded for 30 min by a video camera placed 

above the LDEB, and was later scored blind (see Table 2.7). Treatments were assigned in a 

randomized order.  

Behaviour Measurement method Indications 

Locomotor activity 
(lines per unit time) 

[Number of lines crossed per 
second in the given zone] 
x 1000 

Measure of spontaneous 
activity, corrected for time 
spent in the zone 

Time in light/dark zones 
Time spent with all 4 paws in 
the zone 

Could indicate anxiety-like 
behavior (unvalidated) 

Number of returns to the 
light zone 

Number of times the mouse 
returns with all 4 paws to the 
light zone 

Could indicate anxiety-like 
behaviour and/or locomotor 
activity (unvalidated) 

Latency to leave the light 
zone 

Latency to leave the light zone 
the first time 

Could indicate active 
avoidance (unvalidated)  

Table 2.7 – Behavioural outcomes in the LDEB and their indications 

2.4.4 Elevated Plus Maze 

The elevated plus maze (EPM) is another approach-avoidance conflict test that is used 

specifically to measure anxiety, giving a behavioural response which can be modulated in a 

bidirectional manner (Lister 1987). It has the advantage of being an ethological approach, 

which requires no training or painful stimuli. The EPM, built from Perspex, consists of two 

‘open’ (5 cm x 30 cm, 2 mm wall height) and two ‘closed’ arms (5 cm x 30 cm, 16 cm wall 

height), arranged in a ‘plus’ shape, elevated 30cm above the floor. The animal is placed in the 

centre, and allowed to explore the maze. A large number of factors can influence behaviour on 

the plus maze; procedural factors (height above the floor, light intensity, repeated testing) 

organismic variables (background strain, gender, age) and prior stress (e.g. other anxiety tests) 

(for review see Rodgers and Dalvi 1997). To that end, the plus maze was performed in low level 

lighting (10 Lux), at the same time of testing as the LDEB, with mice age-matched as closely as 

possible.  
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Figure 2.8 – The elevated plus maze apparatus. 

Table 2.8 – The behavioural outcomes in the EPM and their possible indications 

 Method 

 Mice were allowed to habituate to the test room between 10.00 – 14.00 h, and were tested 

between 14.00 – 16.00 h on the EPM. Mice received an intraperitoneal injection of either 

vehicle or drug, 30 min prior to testing, or received no injection. Treatments were assigned in a 

randomized order. A single mouse was tested at one time: the mouse was placed in the centre 

Behaviour Description Indication 

%Time on the open arms  
 

[time on open / 
(time on open + time on closed)] 
* 100 

Longer time indicates 
decreased anxiety 
(Pellow et al. 1985) 

Number of whole body 
entries to the open arms 

All four paws in the open arms Increased number indicates 
decreased anxiety 
(Pellow et al. 1985) 

Number of whole body 
entries to the closed arms 

All four paws in the closed arms Indicator of activity level 
(Rodgers and Johnson 
1995) 

Number of head entries to 
the open arms 

Head only enters open arm Increased number could 
indicate decreased anxiety 
(unconfirmed)  

%Time in centre square [time in centre / total time] * 100 Unknown/unconfirmed 
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of the 4 arms, facing between an open and closed arm, and allowed to explore the maze for 

5 min. The plus maze was cleaned between tests with 70% EtOH. Behaviour (see Table 2.8) was 

recorded by a video camera above the maze, and was later scored blind.  

2.4.5 Novel object recognition/location 

The spontaneous object recognition task, or novel object recognition (NOR) test utilizes the 

characteristic of rodents to explore a novel object in preference to a familiar one. Ennaceur and 

Delacour first tested this phenomenon in 1988: they found that rats, when exposed to two 

objects, one of which they had previously seen, could discriminate between the two by 

preferentially exploring the unfamiliar, or novel, object (Ennaceur and Delacour 1988). The 

NOR test has a number of advantages over other tests of memory in rodents. Firstly, it utilises 

spontaneous behaviour, and as such requires no lengthy training protocol. The spontaneity of 

the behaviour also abolishes the need for food restriction or negative reinforcement, which, in 

the case of pharmacological and genetic manipulations, can cause a confounding effect on the 

results. It is also similar to visual recognition tests used in non-human primates and humans, 

allowing inter-species comparisons. The test can be manipulated to investigate a number of 

different types of memory, as well as novelty seeking and attention. 

Here, we have utilized two versions of the test; 1) the novel object recognition (NOR) paradigm 

to test for short term, declarative memory and/or novelty seeking, and 2) the novel location 

test (NOL) to test for spatial memory. In the NOR task, two identical objects are presented to 

the subject for a given time period. One object is then replaced by a novel object, similar in size 

but different in colour, texture and shape to the original object, and the animal is allowed to 

explore again, after a predetermined time frame.  

In the NOL test, two identical objects are used, but between the two trials the location of one 

of the objects is moved. This test requires the presence of cues in the environment, although 

there is evidence that mice can navigate the NOL test based on the position of the overhead 

camera, alone (Murai et al. 2007). Here we used a piece of laminated black card placed against 

one of the walls of the arena to allow spatial navigation.  
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Figure 2.9 – Objects used in the novel object recognition tasks 

Objects used in these tests were miniature painted wooden ‘penguin’ skittles, plastic pencil 

sharpeners and glass bottles filled with blue dye. Objects used as the novel object, and objects 

used in the NOL were counterbalanced to account for any inherent aversion or preference for 

any of the objects.  

 

Figure 2.10 – Mice behaving in the novel object recognition task 

Method 

Mice were brought to the testing room at 10.00 h, and tested between 14.00 – 16.00 h. On 

day 1, mice were allowed to habituate to an empty arena (the same arena as the light zone of 

the LDEB) for 30min. On day 2, mice were introduced to the arena with two identical objects, 

and allowed to explore for 10 min. After an inter-trial interval of 1 h, mice were reintroduced to 

the arena with one of the objects replaced by a novel object (for the NOR) or one of the objects 
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moved to a novel location (for the NOL), and allowed to explore for a further 10 min. Mice 

were injected with vehicle or drug 30 min before the first session on day 2.  

 

Figure 2.11 – Protocol used in the novel object recognition (top) and location (bottom) tasks. 

The following behaviour was recorded in the test sessions by a digital video camera, and scored 

blind: 

 Time exploring the novel object in seconds (N) 

 Time exploring the familiar object in seconds (F) 

 Number of times the mouse returned to the novel object 

 Number of times the mouse returned to the familiar object. 

A discrimination index was also calculated according to the following equation: 

Discrimination index = (N-F) / (N+F) 

The discrimination index gives a value between -1 and +1, with chance level being zero, positive 

values showing preference for the novel object and negative values showing preference for the 
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familiar object. In all cases exploration of objects was defined as attention directed at the 

object, sniffing, touching or nose pointed at, and within 2 cm of the object. Climbing on, 

walking past and gnawing the object were excluded, in line with previous studies (Leger et al. 

2013). 

2.5 Body Composition Analysis 

Body composition analysis was completed on each of two cohorts of animals; lean animals and 

those fed a high fat diet. Two methods of analysis were used: dual energy X-ray absorptiometry 

(DEXA) analysis was performed on whole carcasses, and chemical analysis was performed on 

samples of milled carcass. Chemical analysis on cadavers remains the most accurate and 

precise method for determination of body composition, and is considered to be the gold 

standard method.  

2.5.1 DEXA 

DEXA analysis is a method used clinically to determine bone density and fat mass in humans. It 

is a non-invasive technique, and multiple measurements can be taken over time. DEXA uses 

specialized software and X-ray beams at two different energy levels to discriminate between 

fat, lean tissue and bone. When fired at the subject, the lower energy beam (35kV, 500A) is 

absorbed mainly by soft tissue, and the higher energy beam (80kV, 500A) is absorbed by 

bone. The X-rays which are not absorbed by the subject are measured by the machine, and the 

ratio of attenuation of the high to low energy X-rays allows the machine to calculate the body 

composition of the subject. 

DEXA machines have recently been adapted to measure the body composition of rodents and 

small animals. Animal carcasses or anaesthetized subjects can be used: if it is the latter, 

multiple measurements can be taken. This is particularly advantageous in drug studies, where 

the effect of drug can be measured over time. Several studies have investigated the precision 

and accuracy of these rodent DEXA machines: it seems that results are consistently precise and 
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reliable, but accuracy can be poor, particularly in terms of body fat (Nagy et al. 2001; 

Brommage 2003; Iida-Klein et al. 2003; Johnston et al. 2005).  

Here, DEXA analysis was performed with the Lunar Piximus II Densitometer (GE Medical 

Systems, Madison, WI, USA) under supervision of a trained operator. First, a ‘phantom’ mouse 

of known composition was used to calibrate the machine. Then, thawed mouse carcasses were 

scanned individually on the Piximus II machine. Mice were positioned in the detectable area, 

and the machine performed three scans of each subject. The resulting output to a computer 

was an average of the three scans.  

 

Figure 2.12 – Computer output from a DEXA scan of (A) the “phantom” mouse and (B) an example of a test 
subject. ROI: region of interest, BMD: bone mineral density, BMC: bone mineral content.  

2.5.2 Chemical Analysis 

Chemical analysis was completed in four separate parts, to determine water, ash, fat and 

protein content. 
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Water 

Mice were frozen at -80°C for at least 5 h after the DEXA scanning. Frozen carcases were then 

kept on a freeze dryer (Heto PL9000) for 2 weeks using a shelf temperature of 25°C. Freeze 

drying converted ice (solid H2O) in the frozen carcasses directly to water vapour (gaseous H2O) 

by sublimation (see Figure 2.13). This prevented melting and allowed all water to be vaporised 

and removed. 

 

Figure 2.13 – Phase diagram of water. 

After freeze drying, mouse carcases were weighed and stored in sealed jars in drying cabinets 

to prevent water reabsorption prior to subsequent analyses. Water content was defined as: 

%water in mouse = 100 – ((weight of dried carcass / weight of carcass) * 100) 

Dried carcases were milled on a Buchi Mixer B-400 homogeniser, and samples of the ground 

carcases were used in subsequent analyses.  

Ash 

Carcass ash was determined on freeze dried samples. Samples weighing ~1g were placed in 

silica crucibles, and fired at 600°C for 6 hours in a muffle ashing furnace (Carbolite, OAF 11/1). 
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Crucibles were left to cool in drying cabinets, and then reweighed. Residual ash was used to 

calculate the ash content of the sample, and of the original carcass using the determined water 

content: 

%ash in sample = (sample weight after ashing/sample weight before ashing) * 100 

%ash in mouse = %ash in sample * ((100 – %water content of mouse)/100) 

ash (g) in mouse = (%ash in mouse * mouse weight)/100 

Fat 

Carcass fat content was determined by a modified Soxhlet extraction protocol. Samples of 

carcass (~1g) were weighed into cellulose extraction thimbles (Whatman 26mm x 60mm: 2800-

266), and plugged with approximately 0.5 g of cotton wool. 90ml of petroleum ether (Fisher 40-

60°C: P/1760/17) was used to extract the fat from each thimble using a Tecator Soxtec HT2 

system (Foss, UK) /Tecator Soxtec 2050 system (Foss UK Ltd, Wheldrake, UK), with a modified  

manufacturers protocol (35 min extraction, 30 min wash and 10 min dry). Fat extraction 

occurred as boiling solvent (petroleum ether) dissolved lipids in the sample, which were then 

collected as the solvent was evaporated (see Figure 2.14). Extracted fat was weighed and 

calculated as a percentage of the dried sample. Carcass fat in the original carcass was then 

calculated using the determined water content: 

%fat in sample = (weight of fat in cup/sample weight) * 100 

%fat in mouse = %fat in sample * ((100 – %water content of mouse)/100) 

fat (g) in mouse = (%fat in mouse * mouse weight)/100 
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Figure 2.14 – The Soxhlet fat extraction method (taken from www.foss.dk)   

Protein 

The protein assay used a Kjeldahl method, using an acid titration to determine nitrogen 

content.  

Digestion 

Carcass samples (0.3-0.4g) were weighed into Kjeldahl test tubes, and digested for 1 hour at 

420°C, using a Tecator 2012 (FOSS, UK) digestion block in the presence of 10 ml of 

concentrated sulphuric acid (Fisher S/9240/PB17), two Kjeltab CQ catalyst tablets (containing 

potassium sulphate and copper sulphate) and one Antifoam S tablet (sodium sulphate and 

silicone antifoam, Thompson & Capper) to prevent acid boiling over. A FOSS 2001 Scrubber 

Unit with sodium hydroxide solution and water was attached to the top of the test tubes to 

neutralize and remove any acidic waste gases produced by the reaction. 

amino acids + H2SO4  (NH4)2SO4 + CO2 + SO2 + H2O 
(s)               (aq)      (aq)       (g)    (g)  (g) 
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Distillation 

Cooled samples were distilled, one at a time by a Tecator 2020 distilling unit /FOSS 2200 Kjeltic 

Auto Distillation unit (FOSS, UK). 40ml of concentrated (10M) sodium hydroxide (Fisher 

J/7800/21) and 20ml water were added to the digested sample, and steam was bubbled 

through. The sample was distilled into 30ml of Kjeldahl receiver solution (4% boric acid with 

bromocresol green/methyl red indicator, Fisher K/0200/21). The addition of sodium hydroxide 

neutralized the acid and produced ammonia, which was ‘captured’ by distillation into the 

receiver solution: 

Liberation of ammonia 

(NH4)2SO4 + 2NaOH  Na2SO4 + H2O + 2NH3 

(aq)           (aq)           (aq)          (aq)     (g) 
Capture of ammonia 

H3BO3 + NH3  NH4
+ + H2BO3

- 

(aq)      (g)        (aq)      (aq) 
 
 

Titration 

Each sample was titrated with 0.1M volumetric grade hydrochloric acid (Fisher J/4350/17), to a 

colour change end point: 

NH4
+ + H2BO3

- + HCl  NH4Cl + H3BO3 

1 mole of HCl used = 1 mole of NH4 in sample = 1 mole of nitrogen in sample 

The volume of acid needed to neutralize the alkaline ammonium solution is proportional to the 

concentration of ammonium ions in the solution, which is proportional to the concentration of 

nitrogen in the sample, which is proportional to the sample protein (amino acid) content.  

Therefore, the volume of acid used in the titration can be used to calculate the mass of 

nitrogen, and hence, protein, in the sample: 

Moles = concentration (M) x volume (L) 

Moles HCl = 0.1M * volume used in titration (L) 
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mass = moles * RMM 

mass of nitrogen = moles * 14.0067 (RMM of nitrogen) 

Protein content is given as: 

%protein in sample = %nitrogen = (mass of nitrogen / mass of sample)*100 

%protein in mouse = %protein in sample * ((100 – %water content of mouse)/100) 

protein (g) in mouse = (%protein in mouse * mouse weight)/100 

2.6 Statistics 

Graphs were generated using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA). 

Statistical analyses were performed using InVivoStat software (Clark et al. 2012). 

The sample sizes for behavioural experiments were estimated using the Mead’s resource 

equation, and were kept to a minimum in keeping with the aims of the NC3Rs. 

2.6.1 Single Measures Analyses 

For single measures analyses, two or three-way analyses of variance (ANOVA) were used. 

Factors are detailed in the relevant Chapters.  

2.6.2 Repeated Measures Analyses 

For repeated measures (RM) analyses, InVivoStat uses a mixed-model approach. The mixed-

model approach was chosen because it allows the user to choose how the within-animal 

correlations are modelled: this can be in three different ways (see Table 2.9), each with its own 

assumptions. Moreover, the mixed-model approach, as opposed to the ANOVA-based 

approach, deals with missing data more effectively: in ANOVA, if an animal misses a response, 

all the data points from that animal are excluded from the analysis. 
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Within-animal correlation model Assumptions 

Compound symmetric covariance 
structure 

- Assumes sphericity, i.e. variances are the same 
at all time points 

- Suitable for small sample sizes 

Autoregressive structure 

- Assumes the variability is the same across all time 
points, but the strength of the covariance 
between responses depends on the distance 
between them, i.e. responses close in time will 
have a stronger covariance 

- Suitable for equally spaced time points 

Unstructured 

- Does not assume sphericity 
- The strength of the covariance between any pair 

of repeated measures is the same 
- Suitable for large sample sizes only 

Table 2.9 – Models of within-animal correlations in a mixed-model analysis of repeated measures data 

All experiments in this thesis used a compound symmetric covariance structure. This structure 

assumes sphericity of the variance-covariance matrix. Instead of Mauchley’s test of sphericity 

(which is inaccurate in cases where the sample sizes are small, as is the case in most animal 

experiments), the ‘predicted vs. residuals’ plot in InVivoStat was used to ascertain the best 

level of sphericity. This was achieved by transforming (square-root, log10 or arcsine) data as 

appropriate. 

Parametric analyses also assume the data are normally distributed. Where this assumption was 

violated, a rank transformation was applied; that is, the data were ranked, as for a non-

parametric analysis, and the assigned ranks then underwent the parametric test. 

2.6.3 Post-hoc analyses 

A main effect of one of the variables, or an interaction between them, in the first analysis was 

used as criteria for progression onto post-hoc analysis. Post-hoc analyses were planned 

comparisons: comparisons were made using the least square (i.e. predicted means) rather than 

the observed means (which can lead to false positives when multiple comparisons are being 

made).  
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2.6.4 Correlation analyses 

In Chapter 7, Pearson’s correlation analyses were performed as a measure of the linear 

correlation between independent measures of body composition. The correlation coefficient 

(R2) was used to determine the strength of the relationship in each case. 
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Chapter 3. The effect of guanfacine on 

hyperactivity, inattention and impulsivity in 

NK1R-/- and wildtype mice 

3.1 Introduction 

The noradrenergic system could play a critical role in the aetiology of ADHD (see Biederman 

and Spencer 1999). As discussed in Chapter 1, psychostimulant treatments for ADHD target 

noradrenergic neurones. Moreover, the only approved, non-stimulant treatments are either a 

noradrenaline reuptake inhibitor (atomoxetine), or 2-adrenoceptor agonists (guanfacine and 

clonidine). The first 2-adrenoceptor agonist to be tested as an ADHD treatment was clonidine, 

after its success in treating Tourette’s syndrome (Cohen et al. 1979; Hunt et al. 1985). 

Guanfacine was originally used as an anti-hypertensive agent in the late 1970s, but prompted 

by extensive evidence for the beneficial effects of clonidine in treating ADHD (Dubach et al. 

1977; Cohn and Caliendo 1997), guanfacine was developed as a treatment for this disorder 

with the aim of fulfilling a need for a longer-acting and better tolerated compound (Hunt et al. 

1985; Chappell et al. 1995). The FDA (Food and Drug Administration) approved guanfacine for 

the treatment of ADHD in 2009, after two randomized, double-blind, placebo controlled studies 

revealed its safety and efficacy in treating the disorder (Biederman et al. 2008; Sallee et al. 

2009).  

3.1.1 Noradrenergic neurotransmission 

Noradrenaline acts at adrenoceptors (ARs), which were among the first G-protein coupled 

receptors (GPCRs) to be cloned (Kobilka et al. 1987). They are divided into three groups; 

1-ARs (1A, 1B, 1D), 2-ARs (2A, 2B, 2C) and -ARs (1, 2, 3). Originally, the 1 and 

2 receptors were classified by their presumed respective post- and presynaptic locations 

(Langer 1974). However, a more accurate distinction was later made according to their 
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pharmacological profiles (Bylund et al. 1994; Ruffolo and Hieble 1994): i.e. it is now known that 

2-ARs are located at both presynaptic and postsynaptic sites.  

 

 

 

 

Copyright material removed 

 

 

Figure 3.1 – Sequence homology of alpha2-adrenoceptors. Taken from Saunders and Limbird 1999. 

The amino acid sequence of 2-AR subtypes is homologous throughout the 7 transmembrane 

regions of the GPCRs, but heterogeneous in the intra- and extracellular loops (see Figure 3.1). 

The subtypes also differ in their post-translational modifications (e.g. glycosylation; see Figure 

3.1), although the significance of this is not yet understood, given that agonist selectivity is 

determined by the third cytoplasmic loop (Eason and Liggett 1996). 

The mRNA of 2A-ARs is present in the midbrain, hypothalamus, amygdala, cerebral cortex, 

hippocampus, and is particularly prominent in the locus coeruleus and brain stem nuclei 

controlling blood pressure (Nicholas et al. 1993; Wang et al. 1996). Similar to 2A-ARs, 

2C-ARs are expressed in the basal ganglia, hippocampus and cerebral cortex, whereas 2B-AR 

expression is limited to the thalamic nuclei (Scheinin et al. 1994).  

The expression of 2A-ARs in noradrenergic cells of the locus coeruleus suggests that this 

subtype may primarily function as an autoreceptor. However, 2A-ARs are also present in brain 

areas innervated by LC neurones, suggesting the receptor also has an important role at 

postsynaptic sites (Scheinin et al. 1994). This is supported by evidence that the sedating 

properties of clonidine are due to activation of presynaptic 2-ARs, whereas the mydriasis 

response is mediated by postsynaptic 2-ARs (Heal et al. 1989; Heal et al. 1995). 
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The main origin of noradrenergic terminals in the brain is the locus coeruleus (LC), which 

projects to almost all brain areas, including the prefrontal cortices (PFC), with the exception of 

the majority of the basal ganglia (see Figure 3.2). The noradrenergic system is strongly 

implicated in arousal, attention and vigilance (Harley 1987; McCormick 1989; Sara and Segal 

1991): the PFC plays a critical role in high-level cognitive functions that are often impaired in 

ADHD, and so it is the neocortical projection which is thought to be dysfunctional in this 

disorder. One hypothesis is that a moderate level of noradrenergic transmission is concordant 

with optimal cognition, whereas peaks in noradrenaline release due to high stress situations 

can lead to worsened cognition (Robbins and Arnsten 2009; Arnsten 2011; Del Campo et al. 

2011).  
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Figure 3.2 – Schematic diagram of a sagittal section through the rat brain, showing noradrenergic projections from 
the locus coeruleus (LC). Anterior olfactory nucleus (AON), ansa peduncularis–ventral amygdaloid bundle system 
(AP-VAB), brainstem nuclei (BS), cingulum (C), corpus callosum (CC), cerebellum (CER), central tegmental tract 
(CTT), cortex (CTX), dorsal bundle (DB), dorsal periventricular system (DPS), entorhinal cortex (EC), fornix (F), 
fasiculus retroflexus (FR), hypothalamus (H), hippocampal formation (HF), medial lemiscus (ML), mamillothalamic 
tract (MT), olfactory bulb (OB), pretectal area (PT), reticular formation (RF), septum (S), spinal cord (SC), stria 
terminalis (ST), tectum (T), thalamus (TH). Modified from Moore and Bloom 1979; Sara 2009.  

3.1.2 Guanfacine and clonidine 

Treatment with an 2-AR agonist could help normalize arousal and attention in ADHD by 

modifying the noradrenergic system. Guanfacine and clonidine both have some efficacy in 

alleviating the signs of ADHD, although the two drugs have slightly different 

behavioural/physiological profiles: guanfacine is a weaker hypotensive and sedative, but more 

potently enhances cognition (Arnsten et al. 1988). This profile better lends itself to ADHD, and 

as such, guanfacine is now the 2-AR agonist of choice in treating this disorder. The difference 
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between the two drugs could be explained by their slightly different pharmacological profiles: 

clonidine is only a partial 2-AR agonist, but guanfacine is a full agonist which is approximately 

6-fold more selective for 2-ARs than it is for 1-ARs (Jarrott et al. 1983). Moreover, 

guanfacine is selective for the 2A over the 2B/C subtypes (Uhlen and Wikberg 1991). 

Nevertheless, extended release versions of both guanfacine (Intuniv ) and clonidine 

(Kapvay ) are approved treatment options. Furthermore, both agonists can be used as an 

adjunctive therapy to psychostimulants, as the therapeutic effects are additive, but side-effects 

are resolved, e.g. insomnia caused by psychostimulants can be relieved by somnolence caused 

by guanfacine (Childress 2012). 

3.1.3 Aims 

The first objective of this study was to investigate whether guanfacine ameliorates the deficits 

in cognitive performance and response control that are expressed by NK1R-/- mice in the 

5-CSRTT, in line with its efficacy in treating ADHD. A second objective was to establish whether 

or not guanfacine prevents the locomotor hyperactivity of NK1R-/- mice. However, animals’ 

emotional status (anxiety-like behaviour) can confound measures of locomotor activity (see 

Wilcock and Broadhurst 1967; Stanford 2007; Stanford 2007). This is especially important for 

studies on the effects of guanfacine on motor behaviour because this drug is used to treat 

anxiety, which is a common comorbid disorder in ADHD (Sobanski 2006). Therefore, we tested 

mice in the light-dark exploration box, to measure sponatenous locomotor activity and take 

note of any changes in emotional status. 

3.2 Methods 

3.2.1 Light-Dark Exploration Box 

The LDEB was used as described in Chapter 2, section 2.4.3. Doses of guanfacine were chosen 

based on a survey of recent literature (see Appendix 2). Guanfacine (0.1, 0.3 or 1 mg/kg, i.p.), 

vehicle (saline) or no injection was administered 30 min before mice were transferred to the 

light zone. Treatments were assigned in a counterbalanced order. Mice were then allowed to 
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move freely between the two zones while their behaviour was recorded for 30 min with a video 

camera. Behaviour (listed in Table 2.7 in Chapter 2) was later scored blind. Because the activity 

of mice in the LDEB declined progressively to reach a ‘floor’ by approximately 15 min, only the 

first 10 min of activity after transfer to the light zone were used in the statistical analysis. 

3.2.2 5-Choice Serial Reaction Time Task 

The 5-CSRTT followed the protocol described in Chapter 2, section 2.4.1. Wildtype and NK1R-/- 

mice from homozygous breeding colonies (homs) and NK1R-/- and wildtype littermates (hets) 

were used in this experiment (see Table 2.7). The use of wildtype and NK1R-/- littermates was 

part of a larger study examining the effects of maternal and early life environment, which is 

outside the scope of this thesis. All mice were 6-8 weeks old at the start of training. 

Genotype 
Number 

used (‘n’) 
Number of breeding 
pairs derived from 

Start weight 
(g: mean ± SD) 

WT hom 6 2 32.2 ± 1.9 

NK1R-/- hom 6 2 29.1 ± 1.7 

WT het 6 
} 4 

35.9 ± 4.2 

NK1R-/- het 6 32.5 ± 1.8 
Table 3.1 – Details of mice used in the 5-CSRTT experiments 

This 5-CSRTT experiment utilized the VITI (variable inter-trial interval) to challenge the response 

control and cognitive abilities of the mice. This test prevents the use of interval-timing, and has 

been utilized to draw out genotype differences, in particular in premature responding.  

The mice were first tested in two no injection (NI-1) sessions (one VITI and one long inter-trial 

interval (LITI)). The findings of these initial tests in naive mice are reported elsewhere (Porter et 

al. 2015). After the initial NI-1 sessions, mice were tested once-weekly, 30 min after treatment 

with either guanfacine (0.1, 0.3 or 1 mg/kg, i.p.), vehicle (saline) or no injection (NI-2). Each 

mouse received each treatment once, and the treatments were assigned using a pseudo-Latin 

square design, to account for any effects of repeated testing and possible long term drug 

effects. One wildtype and one NK1R-/- mouse failed to graduate through to the testing phase 

of the experiment, and were dropped from the experiment. 



Chapter 3 

 

87 

 

3.2.3 Statistics 

Data were analysed as described in Chapter 2, section 2.6. In the LDEB, two-way ANOVAs were 

performed on raw or, if the sample variances were not uniform, transformed data, using the 

main factors of genotype and drug treatment. First, the ANOVA compared the factors across all 

groups (uninjected, vehicle and drug). A main effect of either factor, or an interaction between 

them, allowed progression to further analysis. Second ANOVAs compared uninjected controls 

versus vehicle injected controls (main effect of ‘injection’), and vehicle versus drug doses (main 

effect of ‘drug’).  Where there was a main effect of genotype, injection or drug, or interactions 

between the factors, post-hoc LSD tests were performed.  

In the 5-CSRTT, two- or three-way repeated measures (RM) analyses used ‘genotype’ as the 

between-subjects factor and ‘drug’ as the within-subjects factor. The third factor was either 

‘colony’ or ‘time of day’. Because ‘time of day’ (AM session/PM session) can influence 

behaviour in the 5-CSRTT (Yan et al. 2011; Weir et al. 2014), this factor was also investigated. 

Where there were main effects of ‘time of day’, it was used as a blocking factor in the analysis, 

such that any variability within the data caused by time of day was taken into account, but not 

studied independently. This was possible because there were no time of day*drug interactions, 

i.e. drug treatment had the same effect on behaviour regardless of time of testing. Where 

there were no main effects of time of day, this factor was collapsed. Here, there was no 

interaction between ‘colony’ and ‘drug’ in any variable, and so the ‘colony’ factor was 

collapsed. A main effect of ‘genotype’ or ‘drug’, or an interaction between them, was used as 

criterion to post-hoc pairwise comparisons. 

Analyses of both experiments were performed on raw or transformed data (arcsine, log10 or 

square-root), whichever gave the best homogeneity of variance in the ‘predicted vs. residuals’ 

plot in InVivoStat. The ‘normal probability plot’ in InVivoStat was used to test whether the data 

were normally distributed.  If not, a rank transformation was applied, i.e. the data were ranked 

as for a non-parametric analysis, and were then subject to the parametric test. The 

transformation applied is noted in square brackets throughout. Statistical significance was set 

at P<0.05. 
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3.3 Results 

3.3.1 Guanfacine reduces activity of mice in the Light-Dark Exploration Box 

Compared with untreated wildtypes, NK1R-/- mice were hyperactive in the light zone of the 

LDEB [[SQRT]geno: F(1,16)=4.75, P=0.044; NI, WT vs. KO: P=0.024, Figure 3.3A]. However, vehicle 

injection alone was sufficient to abolish this hyperactivity [VEH, WT vs. KO; P=0.561]. An 

apparent hyperactivity in the dark zone just missed the criterion for statistical significance 

[[SQRT]geno: F(1,16)=3.79, P=0.069, Figure 3.3B]. 

Guanfacine reduced locomotor activity in the light zone [[SQRT]drug: F(3,32)=15.19, P<0.001]: at 

the highest dose, activity was decreased in both genotypes [VEH vs. GFC1, WT: P=0.007, 

NK1R-/-: P<0.001, Figure 3.3A]. The same effect was seen in the dark zone [[SQRT]drug: 

F(3,30)=5.07, P=0.006, Figure 3.3B]. However, an apparent reduction in locomotor activity in the 

dark zone was statistically significant in NK1R-/- mice, only [VEH vs. GFC1, WT: P=0.068, KO: 

P=0.002]. 

Guanfacine also reduced the number of returns to the light zone in both genotypes 

[[SQRT]drug: F(3,32)=4.99, P=0.006, Figure 3.3C]. This was apparent at 0.1 mg/kg and 1 mg/kg in 

NK1R-/- mice [VEH vs. GFC0.1: P=0.017, VEH vs. GFC1: P=0.005], but only at 1 mg/kg in wildtype 

animals [VEH vs. GFC1: P=0.023].  

NK1R-/- mice spent less time in the light zone than wildtypes [[RANK]geno: F(1,32)=4.75, 

P=0.037] but this was unaffected by guanfacine [[RANK]drug: F(3,32)=2.05, P=0.127, Figure 3.3D]. 

However, the drug increased the latency to leave the light zone [[LOG10]drug: F(3,30)=4.21, 

P=0.013 Figure 3.3E], but this was evident only in NK1R-/- mice [VEH vs. GFC1: P=0.039]. 

However, the effect of guanfacine overall did not depend on genotype in any measure. 
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Figure 3.3 - The effects of guanfacine (0.1, 0.3 and 1 mg/kg, i.p.), vehicle (saline) or no injection (NI) on A: activity 
per unit time in the light zone, B: activity per unit time in the dark zone, C: time in the light zone, D: number of 
returns to the light zone, E: latency to leave the light zone in wildtype (white bars) and NK1R-/- mice (grey bars) in 

the light-dark exploration box. Data show mean  SEM. Lines linking bars indicate statistical significance of P<0.05 
and * P<0.05 versus vehicle within genotype. n=5.  
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3.3.2 Wildtype and NK1R-/- mice learn the 5-CSRTT at the same rate  

Both genotypes took the same length of time to learn the 5-CSRTT [[RAW]geno: F(1,20)=1.32, 

P=0.264, Figure 3.4A], and this was unaffected by time of day or colony. Wildtypes and NK1R-/- 

mice took an average of 46.5 and 38.2 days to reach testing, respectively.  

3.3.3 Guanfacine has bi-directional effects on omission errors in NK1R-/- 

mice 

There were no differences in %omissions between the genotypes overall [[SQRT]geno: 

F(1,18)=3.40, P=0.082, Figure 3.4B] and, over the whole dose range, both genotypes responded 

to guanfacine in the same way [[SQRT]drug*geno: F(3,49)=1.33, P=0.276]. However, this drug had 

bidirectional effects on this behaviour [[SQRT]drug: F(3,49)=48.00, P<0.001]. The lowest dose 

(0.1 mg/kg) of guanfacine selectively reduced %omissions in NK1R-/- mice in comparison with 

vehicle-treated NK1R-/- mice [VEH vs. GFC0.1: P=0.004] and with drug-treated wildtypes 

[GFC0.1, WT vs. KO: P=0.049]. The highest dose of guanfacine (1 mg/kg) increased %omissions 

in both genotypes to a similar extent [VEH vs. GFC1, WT: P<0.001, KO: P<0.001]. 

Another measure of attention, %accuracy, was also reduced by guanfacine [[ARCSIN]drug: 

F(3,49)=3.57, P=0.020, Figure 3.4C], but this effect did not depend on genotype 

[[ARCSIN]drug*geno: F(3,49)=0.49, P=0.692]. 

3.3.4 Guanfacine attenuates premature responding in wildtype and NK1R-/- 

mice 

NK1R-/- mice expressed more %premature responses than wildtypes overall, as previously 

reported [[SQRT]geno: F(1,18)=8.39, P=0.010, Figure 3.4D]. Guanfacine reduced the frequency of 

this behaviour, [[SQRT]drug: F(3,49)=9.45, P<0.001], and this effect was apparent at the highest 

dose of drug (1 mg/kg), only [VEH vs. GFC1, WT: P=0.012, KO: P<0.001]. However, the effect of 

the drug did not depend on genotype [[SQRT]drug*geno: F(3,49)=0.39, P=0.759]. 
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3.3.5 Guanfacine does not affect perseveration 

Perseveration did not depend on genotype [[SQRT]geno: F(1,19)=1.31, P=0.267, Figure 3.4E] and 

guanfacine had no effect on this behaviour [[SQRT]drug: F(4,66)=0.80, P=0.528]. Moreover, the 

two factors did not interact [[SQRT]geno*drug: F(4,66)=0.95, P=0.440].  

3.3.6 Guanfacine blunts behaviour in measures of arousal and motivation  

The total number of trials, latency to correct response and latency to magazine were blunted by 

guanfacine in both genotypes (Figure 3.4F, G and H). Guanfacine decreased total trials 

[[ARCSIN]drug: F(3,49)=3.84, P=0.015], and increased both latencies overall [Latency to correct; 

[LOG10]drug: F(3,49)=16.47, P<0.001. Latency to magazine; [[RANK]drug: F(3,49)=39.42, P<0.001]. 

The effect of guanfacine did not depend on genotype in any of these measures.   
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Figure 3.4 – A: The total number of days taken to reach testing criteria in the 5-CSRTT by wildtype and NK1R-/- 
mice, and the effects of guanfacine (0.1, 0.3 and 1 mg/kg, i.p.) on B: total number of trials, C: %accuracy, D: 
%omissions, E: premature responses, F: perseveration, G: latency to correct response and H: latency to magazine, 

compared with vehicle (saline) and no injection (NI-2). Data show mean  SEM. n=9-10 per group. Lines linking 
bars indicate statistical significance of P<0.05, * indicates P<0.05 versus vehicle within genotype.   
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3.4 Discussion 

The aim of these experiments was to test the prediction that the effects of guanfacine on 

ADHD-like behaviours displayed by NK1R-/- mice mirror those seen in ADHD. In line with this 

prediction the results suggest that guanfacine reduces locomotor activity, improves attention 

and reduces impulsivity in NK1R-/- mice. However, the cognitive effects depend on dose, and 

the effects on impulsivity in particular may be secondary to a reduction in arousal.  

3.4.1 Effects of guanfacine on hyperactivity 

The results of the LDEB are consistent with our previous findings: naïve (uninjected) NK1R-/- 

mice are hyperactive compared with wildtypes (Herpfer et al. 2005). This is consistent with 

findings that acute administration of NK1R antagonists (L733060 or RP67580) induces 

locomotor hyperactivity in wildtype mice (Yan et al. 2010). Together these results strongly 

suggest functional NK1R are necessary for normal regulation of motor activity. However, 

vehicle injection alone was sufficient to abolish this hyperactivity. The interaction between the 

substance P/NK1R system and the response to stress has been well documented (Ebner and 

Singewald 2006). For example, acute stress or a novel arena, such as the light zone of the LDEB, 

increases noradrenaline release (Dalley and Stanford 1995; McQuade et al. 1999), but NK1R 

antagonists blunt this noradrenergic response (Renoldi and Invernizzi 2006; Ebner and 

Singewald 2007). How this interaction (between NK1R and the stress response) affects 

locomotor activity remains unclear, but the result presented here confirms that it is important 

to include an uninjected control when studying the behaviour of NK1R-/- mice. 

Guanfacine reduced locomotor activity in both genotypes in the LDEB. This finding was 

corroborated by the results of the 5-CSRTT: guanfacine reduced measures of arousal (number 

of trials and both measures of latency) in both genotypes. Together this suggests that 

functional NK1R are not necessary for this response, at least when guanfacine is administered 

at a high dose, and the response can be attributed to the sedative effects of the drug (for 

review see Scheinin et al. 1989). Guanfacine is a less potent sedative than its sister drug, 

clonidine (Arnsten et al. 1988), and as such is used in preference to clonidine in treating ADHD. 
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Nevertheless, in the clinic, somnolence, sedation and fatigue are the most frequent reasons for 

discontinuation of guanfacine therapy (Faraone et al. 2013; Hirota et al. 2014). 

The lowest dose of guanfacine reduced locomotor activity and number of returns to the light 

zone in NK1R-/- mice, but not in wildtypes, suggesting that NK1R-/- mice could be more 

sensitive to the drug at low doses. NK1R-/- mice have disruptions to noradrenergic signalling, 

including increased extracellular noradrenaline in the prefrontal cortex under anaesthesia and 

an augmented release of noradrenaline induced by a local pulse infusion of CSF with 

concentrated (80mM) K+ in awake animals (Fisher et al. 2007; Yan et al. 2009; Yan et al. 2010), 

which could explain a difference in sensitivity to guanfacine. In line with the results reported 

here, guanfacine (1 mg/kg) reduces the activity of spontaneously hypertensive rats (SHRs) 

without affecting their control (WKY and Wistar rat) strains (Langen and Dost 2011), suggesting 

that SHRs are also more sensitive to guanfacine. The proposal that ADHD patients, particularly 

those with TACR1 polymorphisms, could also be more sensitive to guanfacine than healthy 

subjects merits further investigation. 

Although Crawley originally developed a light-dark test as a screen for anxiolytic drugs (Crawley 

1981), in the present experiment, the apparatus was dimly lit (DZ: 4 lux, LZ: 20 lux) so as to 

render the light zone novel, but not strongly aversive. Animals were also habituated to the dark 

zone for 90 min, to enable them to recover from the stress of transfer to the apparatus (Dalley 

and Stanford 1995). Anxiolytics have not been tested with this arrangement or protocol, which 

would be necessary to validate any conclusions drawn about the effect of drugs on anxiety in 

this test. However, in this test, guanfacine did reduce the number of crosses between the light 

and dark zones, which could suggest an anxiogenic effect of the drug. In contrast, guanfacine 

reduced active avoidance (i.e. increased latency to leave the light zone), suggesting an 

anxiolytic effect. The likely explanation for both is that these behaviours were secondary to a 

reduction in arousal: mice simply moved more slowly, and moved between the two zones less 

frequently. This is corroborated by the finding that guanfacine had no effect on time spent in 

the light zone. Therefore it cannot be concluded from this experiment alone that guanfacine 

has an effect on anxiety-like behaviour, and moreover, any effects on locomotor activity are 

unlikely to be secondary to an effect on emotionality.  
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3.4.2 Guanfacine improves attention in NK1R-/- mice, only 

In mice, sustained attention is best described in the 5-CSRTT by omission errors (Amitai and 

Markou 2010). Mice appear to have better entrainment to the light cue than rats, that is to say, 

that after failing to attend to the light cue, mice tend to withhold their response, instead of 

guessing (thus making an omission instead of an incorrect response). Therefore omission errors 

can be used as a good measure of attention in mice, whereas in rats, accuracy is a more 

appropriate measure (Amitai and Markou 2010). This theory is corroborated by the extremely 

high level of accuracy (~96%) in both genotypes at baseline. 

Unlike in our previous studies (Yan et al. 2011; Dudley et al. 2013), here, NK1R-/- mice did not 

display an inattentive phenotype at baseline. The explanation for the difference may relate to 

normal variation within populations of animals, or relate to our previous report that repeated 

testing improves performance in the 5-CSRTT (Weir et al. 2014) (it should be noted that mice 

had already been tested in NI-1 in this experiment).  

Nevertheless, at the lowest dose studied here, guanfacine selectively improved attention, by 

way of reducing omission errors in NK1R-/- mice, only. This improvement was modest (~7% c.f. 

vehicle), but is unlikely to be explained by a change in animals’ state of arousal because, at this 

dose, guanfacine did not affect the latency to correct response or the total number of trials 

completed in the 5-CSRTT. Numerous preclinical studies have dissociated the sedative and 

cognitive effects of α2-AR agonists (Arnsten et al. 1988; Franowicz and Arnsten 1998; Jakala et 

al. 1999), for instance, the spatial working memory of rhesus monkeys was improved at a dose 

of guanfacine that had no sedative or hypotensive effects (Arnsten et al. 1988). This finding is 

also consistent with the improvement in attention when SHRs are tested in an operant 

conditioning task (Sagvolden 2006). Similarly, in tests of vigilance and working memory, 

activation of α2A-AR enhances performance of both rats and monkeys in delayed-alternation 

(Carlson et al. 1992) and delayed-response tasks (Arnsten et al. 1988), respectively. Low doses 

of α2A-AR agonists improve cognitive performance, particularly in animals with either artificial 

depletion of cortical noradrenaline (Milstein et al. 2007) or in older animals showing significant 

natural loss of this neurotransmitter (Arnsten et al. 1988). 
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An improved attention subscale score has been reported in ADHD patients upon GXR 

(guanfacine extended release) treatment, especially when given chronically (Biederman et al. 

2008; Sallee et al. 2009; Sallee et al. 2012; Newcorn et al. 2013), or in combination with a 

psychostimulant (Wilens et al. 2012). One study has also reported that when ADHD patients are 

tested after GXR treatment, they similarly show an improvement on ADHD rating-scales, but no 

reduction in reaction speed in a Choice Reaction-Time test compared to placebo (Kollins et al. 

2011). 

A similar improvement was not seen in response accuracy. As stated above, accuracy is 

arguably an alternative index of attention (Robbins 2002), but here the extremely high level of 

accuracy at baseline may have prevented any improvement being detected. An improvement 

may be observable if more challenging task parameters are used, for example, shortening the 

stimulus duration (see Amitai and Markou 2011). There are disparate reports on the effects of 

guanfacine on this measure. Whereas accuracy was increased in one preclinical study of aged 

macaques (O'Neill et al. 2000), there was no such response in a human study of cognitive 

performance (Jakala et al. 1999). Conversely, depletion of cortical noradrenaline impairs 

accurate responding in rats performing the 5-CSRTT (Carli et al. 1983) and stop signal reaction-

time task (Bari et al. 2011). 

By contrast, the highest dose of guanfacine (1 mg/kg) increased omission errors (i.e. reduced 

attention) in both genotypes. This impairment is most likely explained by the well-documented 

sedative effects of this drug (Van der Laan et al. 1985; Jakala et al. 1999): both response 

latencies and the total number of total trials were blunted at this dose, in both genotypes. This 

is mirrored by studies of rats performing the 5-CSRTT, in which guanfacine and medetomidine 

(another 2-AR agonist) increase omission errors (Sirvio et al. 1994; Fernando et al. 2012). The 

neural mechanisms behind this are unclear, but corroborate the theory that noradrenergic 

signalling strongly influences prefrontal cortical regions mediating attention and working 

memory (for review see: Arnsten and Li 2005; Robbins and Roberts 2007). Moreover, the 

classic bell-shaped treatment / response curve applies: too much or too little cortical 

noradrenaline leads to suboptimal cognition.  
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The beneficial effects of guanfacine are thought to be mediated primarily by post-synaptic 

α2A-ARs located in the prefrontal cortex (PFC). Indeed, deficits in working memory in mice with 

functional ablation of α2A-ARs are not relieved by guanfacine (Franowicz et al. 2002). However, 

guanfacine could also reduce inattentiveness by activating somatodendritic α2A-ARs, in the 

locus coeruleus (LC). This nucleus, which is the sole source of noradrenaline in the PFC 

(Loughlin et al. 1982), receives inputs from both GABAergic and glutamatergic projection 

neurones, from the prepositus hypoglossi (PH) and nucleus paragigantocellularis (PGC), 

respectively (Ennis and Aston-Jones 1989; Aston-Jones et al. 1991). Whereas GABAergic 

neurones tonically inhibit LC neurones, glutamate triggers their burst-spiking in response to 

sensory stimuli (Foote et al. 1980; Ennis and Aston-Jones 1988; Kawahara et al. 1999). Although 

the mechanism which renders NK1R-/- mice more sensitive to guanfacine was not investigated 

here, it has been reported that antagonism or functional ablation of NK1R blunts this 

GABAergic inhibition (Maubach et al. 2002; Ebner and Singewald 2007), and so such 

disinhibition could disrupt the noradrenergic  response to guanfacine.  

 

Figure 3.5 – Schematic of GABAergic and glutamatergic inputs to the locus coeruleus (LC), from the prepositus 
hypoglossi (PH) and nucleus paragigantocellularis (PGC), respectively, showing NK1R localization.  

3.4.3 Guanfacine reduces impulsivity 

The findings regarding premature responses are concordant with previous reports from this 

group: NK1R-/- mice were more impulsive than wildtypes, although this was not evident unless 
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mice had experienced an injection, reiterating the connection between NK1R and stress (see 

Ebner and Singewald 2006). 

Guanfacine reduced impulsivity in both genotypes: at the lower, non-sedative doses (0.1-

0.3 mg/kg), guanfacine’s effects on impulsivity were not statistically significant, but the high 

dose (1 mg/kg) decreased impulsivity in wildtype and NK1R-/- mice. Evidently, this 

improvement does not depend on functional NK1R but could be secondary to a non-specific 

inhibition of motor behaviour. Since the low doses of guanfacine did affect attention, this also 

suggests that impulsivity and attention are controlled by different neurocircuitry, although one 

may influence the other. This corroborates findings by Dudley et al (2013), which suggested the 

same inconsistency between inattentiveness and impulsivity. 

Reports have indicated that guanfacine improves impulsivity in rodents. However, these 

reports are remarkably similar to our own: High Impulsive and Low Impulsive rats displayed 

decreases in impulsivity in the 5-CSRTT upon guanfacine treatment, but these were similarly 

accompanied by increases in response latencies (Fernando et al. 2012). In contrast, 

atipamezole (an 2-AR antagonist), increased the number of premature responses made by 

rats in the 5-CSRTT (Jakala et al. 1992). Other paradigms measuring impulsivity, such as the 

stop signal reaction-time task, have produced similar results: guanfacine reduces impulsivity, 

but this is in parallel with slowed reaction speeds (Bari et al. 2009).  

It is important to note that impulsivity is not a unitary construct. If a non-specific blunting of 

behaviour also explains the efficacy of this drug in the clinic, then it is possible that forms of 

impulsivity relying on motor activity are more likely to be attenuated than those which are 

based on cognition. However, it was recently reported that local infusion of guanfacine into the 

ventral hippocampus of rats causes an improvement in impulsive choice (the considered 

choosing of small, immediate rewards over larger, delayed rewards) without affecting response 

latencies, in a delay discounting task (Abela and Chudasama 2014). This improvement was not 

mirrored by dopaminergic agents, suggesting the effects were due to 2A-AR stimulation, 

rather than downstream effects on dopamine. Similarly, rhesus monkeys treated with 

guanfacine chose larger, delayed rewards over smaller, immediate rewards, in an impulsive 
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choice paradigm (Kim et al. 2012), suggesting that ‘top-down’ effects could certainly underlie 

the efficacy of this drug in the clinic.  

Here, the improvement in impulsivity was likely because this test is one of motoric impulsivity, 

and guanfacine simply reduced motor behaviour. Therefore it may be of interest to test 

NK1R-/- mice in an impulsive choice paradigm, such as the delayed discounting test, to 

determine whether guanfacine could also improve impulsive behaviour which is not 

determined by motor activity.  

3.5 Highlights 

 NK1R-/- mice display hyperactivity and impulsivity in the LDEB and 5-CSRTT, 

respectively. 

 NK1R-/- mice show an abnormal stress response, confirming the involvement of 

substance P and NK1Rs in stress. 

 Guanfacine is a potent inhibitor of arousal; high doses lead to non-specific blunting of 

behaviour in both experiments. 

 Guanfacine can improve attention at low doses, but on the whole leads to decreased 

attention in the 5-CSRTT. 

 Guanfacine improves impulsivity, but this may be secondary to decreased arousal. 
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Chapter 4. The effects of alpha2-adrenoceptor 

agonists on anxiety and spatial memory 

4.1 Introduction 

The results of Chapter 3 indicated that a low dose (0.1 mg/kg) of guanfacine reduced locomotor 

activity and improved attention in NK1R-/- mice, only, in the LDEB and 5-CSRTT, respectively. 

The possibility that these results were underpinned by changes in anxiety-like behaviour and 

spatial working memory (SWM) is worth investigating, not least because ADHD can be 

comorbid with anxiety (Sobanski 2006) and deficits in SWM (Vance et al. 2013). 

4.1.1 Anxiety 

Anxiety describes a normal emotion, which can persist chronically or reach pathological levels. 

Anxiety is common in psychiatric conditions but can also be found independently. The term 

anxiety broadly refers to two categories; ‘state’ and ‘trait’ anxiety. The former refers to acute 

bouts of anxiety (i.e. situational anxiety), that may be associated with a stressor, and that 

declines once the stressor is removed. The latter refers to a chronic anxious state which may be 

heritable, such as in generalized anxiety disorder (GAD). The two categories are separable, in 

part by their respective pharmacology and therapeutics: for example, MAO inhibitors will 

prevent panic attacks, but have little effect on baseline anxiety between attacks (Nutt 1990). 

This Chapter will refer to ‘trait’ anxiety throughout as it generally discusses the phenotype of 

NK1R-/- mice.  

The pharmacology of anxiety is complex, but interesting given that drugs can actually cause, as 

well as relieve, anxiety. Benzodiazepines and tricyclic antidepressants were the first classes of 

drugs to be used to treat GAD, but their use is limited by safety and tolerability issues; selective 

serotonin reuptake inhibitors and pregabalin are now the first-line treatments for GAD (Both et 

al. 2014). 
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4.1.2 The noradrenergic system in anxiety 

Considerable attention has also been given to  and  adrenoceptor agents, because of well-

established links between the noradrenergic system and anxiety. Redmond and Huang were 

the first to describe that electrical stimulation of the locus coeruleus (LC) evokes behavioural 

responses in primates which are indicative of increased anxiety or fear (Redmond et al. 1976). 

Moreover, these responses could be alleviated by clonidine (an 2-adrenoceptor agonist) 

(Redmond and Huang 1979). In contrast, lesions to LC projections lead to a reduction in 

fear/anxiety-related behaviour in rats (Verleye and Bernet 1983). In humans, 2-adrenoceptor 

agonists, which reduce LC activity, also reduce the fear-potentiated startle response (Kumari et 

al. 1996), whereas 2-adrenoceptor antagonists have the opposite effect (Morgan et al. 1993). 

Gray and McNaughton later proposed that anxiolytic drugs of all types act on a ‘behavioural 

inhibition’ system, which mainly comprises the septo-hippocampal system (SHS) (Gray and 

McNaughton 2003). It was suggested that the rhythmic burst firing of the SHS (known as theta 

activity) is disrupted by anxiolytics, and lesions to the SHS produce qualitatively similar 

behaviour as anxiolytic drugs (McNaughton and Gray 2000). It was hypothesized that 

noradrenergic inputs to the hippocampus (solely from the LC) act as a ‘gate’ of this theta 

activity, as lesions to the dorsal ascending noradrenergic bundle (DNAB) also reproduce the 

effects of anxiolytic drugs (McNaughton and Gray 2000). By this token, it might be expected 

that stimulation of 2-adrenoceptor (2-AR) autoreceptors yields an anxiolytic effect, by 

reducing noradrenergic tone.  

However, the evidence for the involvement of 2-ARs in anxiety in a preclinical setting remains 

mixed. For example, studies have shown that 2-AR antagonists produce anxiogenic effects 

(Handley and Mithani 1984; Pellow et al. 1985; Uzsoki et al. 2011) or no effect at all (Durcan et 

al. 1989). Similar discrepancies have been reported for 2-AR agonists: Uzsoski et al (2011) 

found guanfacine to be anxiogenic in rats on the elevated plus maze (EPM), whereas in another 

study, guanfacine was anxiolytic in SHRs on the EPM, but without effect in WKY and Wistar 

rats, even though all strains displayed the same level of anxiety at baseline (Langen and Dost 

2011). The latter finding might imply that guanfacine has different effects in normal animals, 
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and those which express behavioural abnormalities, which is of interest given the findings 

reported in Chapter 3.  

Although reviewing the efficacy of 2-adrenoceptor (2-AR) agonists for the treatment of 

anxiety in the clinic is beyond the scope of this thesis, there is some evidence that clonidine 

and guanfacine are efficacious for this indication: for example, clonidine reduces anxiety in 

panic disorder (Nutt 1989; Uhde et al. 1989) and in withdrawing alcoholics (Glue and Nutt 

1987). Guanfacine may be efficacious in treating post-traumatic stress disorder (PTSD) (Connor 

et al. 2013) and ADHD with comorbid PTSD (Connor et al. 2013).  

4.1.3 ADHD and anxiety are comorbid 

The fact guanfacine is used as a treatment for both ADHD and anxiety disorders is interesting, 

given that the two are often comorbid (Sobanski 2006). This might suggest that the circuitry 

involved in both is overlapping. Of adults with ADHD, 40-60% are estimated to suffer from an 

anxiety disorder at some point in their life (Sobanski 2006). Despite this statistic, few studies 

have examined the impact one disorder has on the other. However, there is some evidence for 

an interaction between the two: Manchini et al (1999) report that patients with anxiety 

disorders have an earlier age of anxiety onset and more severe anxiety if they had childhood 

ADHD. There is also evidence that this relationship is bidirectional: ADHD patients with 

comorbid anxiety had more pronounced attentional deficits than those without comorbid 

anxiety (Sobanski 2006). 

4.1.4 Anxiety is modulated by rodent strain  

Any discrepancies between the findings of preclinical research (for review see Haller and Alicki 

2012) may arise from a whole host of factors, but a particular factor to consider in rodent tests 

of anxiety is background strain. Studies have repeatedly shown that strain influences anxiety, 

sometimes to a greater extent than anxiolytic/anxiogenic drugs (for review see Crawley et al. 

1997; Sartori et al. 2011). The NK1R-/- mouse has been bred on a variety of different 

background strains since its creation (see Table 4.1). Studies of these other NK1R-/- mice have 

used different tests in addition to the EPM, such as measuring ultrasonic vocalizations and tail 
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suspension tests (Rupniak et al. 2001; Santarelli et al. 2001), but these tests have not been 

validated as a screen for anxiolytics. The results of Chapter 3, and those reported in Fisher et al. 

(2007), suggest that NK1R-/- mice display a slightly anxiogenic phenotype, since they spend less 

time in the light zone of the LDEB than wildtypes. However, the same limitation applies: the 

LDEB has not been validated as a screen of anxiolytic drugs with the current protocol. To that 

end, it is of interest to determine the anxiety-like phenotype of NK1R-/- mice on the current, 

mixed background strain, in the EPM.  

Background strain Findings Reference 

129/SvEv ↑ time on EPM open arms  (Santarelli et al. 2001) 

J129/C57  No difference in time on EPM open arms (Rupniak et al. 2001) 

 
129/Sv/C57Bl6 x MF1 

No difference in time on EPM open arms (Murtra et al. 2000) 

↓ time on EPM open arms  Unpublished observations 

↓ time in the light zone of the LDEB (Fisher et al. 2007) 

Table 4.1 – Summary of findings regarding the anxiety state of NK1R-/- mice on different background strains. ↑ or 
↓ indicates increase or decrease, respectively, compared to wildtypes of the same background strain. 

4.1.5 Spatial memory 

Although in the clinic, guanfacine’s efficacy is generally discussed in terms of effects on 

inattention, the majority of preclinical work on guanfacine has revolved around ‘spatial working 

memory’ (SWM). Spatial memory refers to an individual’s ability to remember the location and 

orientation of objects/surroundings in an environment. Working memory is generally 

synonymous with short term memory, and involves executive (top down) control/processing of 

temporarily held information in order to complete goal-directed actions. SWM is a combination 

of the two: an executive function dependent on recall of spatial information. 

Arnsten and colleagues report that guanfacine improves SWM in rhesus monkeys (Franowicz 

and Arnsten 2002; Arnsten and Jin 2012; Kim et al. 2012) and mice (Franowicz et al. 2002). 

What is more, guanfacine can alleviate SWM deficits when they are induced by different 

methods: phencyclidine and hypobaric hypoxia-induced deficits in rats’ SWM were both 

improved by 2-AR agonist (guanfacine and clonidine) treatment in separate studies (Jentsch 



Chapter 4 

 

105 

 

and Anzivino 2004; Marrs et al. 2005; Kauser et al. 2014). These studies strongly suggest that 

activation of 2-ARs is involved in optimum SWM (reviewed in Arnsten 2011). 

This is interesting given that spatial working memory is disrupted in ADHD (Vance et al. 2013), 

and guanfacine alleviates inattentiveness in ADHD (Faraone et al. 2013). Impairments in SWM 

in ADHD may be a result of decreased attention, or indeed vice versa: selective attention may 

depend on SWM. To that end, it is of interest to examine the spatial memory of NK1R-/- mice. 

If deficits in attention in the 5-CSRTT are a result of impaired SWM, it might be expected that 

their spatial memory is also disrupted.  

4.1.6 Aims 

The first aim of these experiments was to investigate whether NK1R-/- mice (on the current, 

mixed background strain) display an anxiogenic phenotype, and moreover, whether guanfacine 

reduces anxiety-like behaviour at a dose (0.1 mg/kg) which reduced locomotor activity of these 

mice in the LDEB (see Chapter 3).  

The second aim was to investigate whether NK1R-/- mice display deficits spatial memory. To 

determine whether any deficit in spatial memory was a result of a general disruption to 

memory function, we also tested the recognition memory of these mice. An additional aim was 

to determine whether the guanfacine-induced improvement in attention displayed by NK1R-/- 

mice in the 5-CSRTT (reported in Chapter 3) was underpinned by an improvement in spatial 

memory.   

4.2 Methods 

4.2.1 Elevated Plus Maze 

 The elevated plus maze (EPM) was performed as described in Chapter 2, section 2.4.4. Mice 

were treated with either vehicle (saline), guanfacine (0.1 mg/kg) or no injection, 30 min before 

testing. Treatments were assigned in a counterbalanced order. The dose of drug was chosen 

based on the results presented in Chapter 3: specifically, 0.1 mg/kg guanfacine improved 
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attention in NK1R-/- mice, only, but did not affect locomotor activity of either genotype. Mice 

were tested one at a time: the mouse was placed in the centre square of the plus maze, always 

facing between an open and closed arm, and allowed to explore the maze while its behaviour 

was recorded for 5 min. The maze was cleaned between each test with 70% ethanol. Behaviour 

(see Table 2.8 in Chapter 2) was later scored blind. 

4.2.2 Novel object recognition and location  

The novel object recognition (NOR) and location (NOL) protocol followed that described in 

Chapter 2, section 2.4.5. One wildtype and one NK1R-/- mouse were always tested 

simultaneously to minimize the effects of any nuisance factors, and all apparatus was cleaned 

with 70% ethanol between tests. Objects used were counterbalanced to avoid any potential 

inherent aversion to the objects confounding the results.  

Experiment 1: Naïve mice 

The first experiment used naive mice, only, in the NOR and NOL. The two object recognition 

tests were counterbalanced, and each mouse completed both tests over 2 consecutive days 

(see Figure 4.1).  

 

Figure 4.1 – Sequence of events in the novel object tests in naive mice 

Experiment 2: The effects of guanfacine 

Once baseline object recognition in the two genotypes had been established, the effects of 

guanfacine on object recognition were studied. In this experiment, mice completed either the 

NOR, or the NOL (not both), to avoid carryover effects of the drug, and because of a general 

observation from the first experiment that mice explore objects less with repeated testing. 

Mice received vehicle (saline) or guanfacine (0.1 mg/kg, i.p.) 30 min before the first trial, and 

drug treatments were assigned in a counterbalanced fashion. The dose of guanfacine tested 
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was based on the finding reported in Chapter 3, that 0.1 mg/kg guanfacine improves attention 

in NK1R-/- mice, only.  

Experiment 3: The effects of medetomidine 

To determine whether the effects of guanfacine on spatial memory observed in Experiment 2 

were due to activation of alpha2A-adrenoceptors, another alpha2-adrenoceptor agonist, 

medetomidine, was tested. Because guanfacine only affected behaviour in the NOL in 

Experiment 2, medetomidine was tested in wildtypes and NK1R-/- mice in the NOL test, only. 

Medetomidine (1, 3 and 10 g/kg, i.p.) or vehicle (saline) was administered 30 min before the 

first trial, and drug treatments were counterbalanced. Doses of medetomidine were based on a 

survey of recent literature (see Appendix 3). 

In all experiments, an index of discrimination was used to determine whether mice explored 

the novel object/location at a greater than chance level, and to take into account any 

differences in total time exploring the objects. 

Discrimination Index = (N – F) / (N + F) 

Where ‘N’ is the time exploring the novel object/location, and ‘F’ is the time exploring the 

familiar object/location. This gives a value between -1 and +1, with chance level being zero, 

positive values showing preference for the novel object and negative values showing 

preference for the familiar object.  

4.2.3 Statistics 

Data were analysed as described in Chapter 2, section 2.6. In the EPM, two-way ANOVAs were 

performed using the main factors of ‘genotype’ and ‘drug treatment’. First, the ANOVA 

compared the factors across all groups (uninjected, vehicle and drug). Where there was a main 

effect of ‘genotype’ or ‘drug’, or an interaction between them, post-hoc LSD tests were 

performed to determine the difference in individual groups.  

The NOR and NOL tests were analysed in two different ways, depending on the measurement: 

repeated measures analyses were performed to investigate the main factors of ‘genotype’ and 



Chapter 4 

 

108 

 

‘drug’, using the repeated factor of ‘object’, when comparing exploration of the novel and 

familiar objects. Two way ANOVAs were performed using ‘drug’ and ‘genotype’ as main factors, 

when analysing the discrimination index. 

Analyses of both experiments were performed on raw or transformed data (arcsine, log10 or 

square-root), whichever gave the best homogeneity of variance in the ‘predicted vs. residuals’ 

plot in InVivoStat. The ‘normal probability plot’ in InVivoStat was used to test whether the data 

were normally distributed.  If not, a rank transformation was applied, i.e. the data were ranked 

as for a non-parametric analysis, and were then subject to the parametric test. The 

transformation applied is noted in square brackets throughout. Statistical significance was set 

at P<0.05. 
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4.3 Results 

4.3.1 NK1R-/- mice display an anxiogenic phenotype in the EPM 

In the EPM there was a clear difference between the genotypes in the baseline level of anxiety 

(Figure 4.2). NK1R-/- mice displayed more anxiety-like behaviour than wildtypes in all measures 

(Table 4.2). There were no differences, however, in the baseline level of activity between the 

genotypes (as measured by entries to the closed arms), or in the time spent in the centre 

square. 

4.3.2 Guanfacine does not affect anxiety-like behaviour in wildtype and 

NK1R-/- mice 

Guanfacine had no effect on the measures of anxiety-like behaviour in the EPM, or on activity, 

and did not interact with genotype (Table 4.2).  

 

 Main effect Post-hoc: WT vs. NK1R-/- 

Behaviour Genotype Drug 
Drug* 

Genotype 
NI Veh GFC 

%Time on open 
arms 

F(1,24)= 23.38 
P<0.001 

F(1,16)=0.32 
P=0.578 

F(1,16)=0.87 
P=0.365 

P=0.009 P=0.002 P=0.044 

Number of entries 
to open arms 

F(1,24)= 42.32 
P<0.001 

F(1,16)=2.32 
P=0.147 

F(2,24)=0.37 
P=0.551 

P=0.001 P=0.002 P=0.001 

Number of head 
entries to open 
arms 

F(1,24)=14.94 
P<0.001 

F(1,16)=0.01 
P=0.938 

F(1,16)=1.59 
P=0.226 

P=0.048 P=0.179 P=0.004 

Number of entries 
to closed arms 

F(1,24)=2.64 
P=0.117 

F(1,16)=1.36 
P=0.260 

F(1,16)= 0.39 
P=0.543 

--- --- --- 

%Time in centre 
square 

F(1,24)=2.08 
P=0.162 

F(1,16)=0.06 
P=0.815 

F(1,16)=1.01 
P=0.330 

--- --- --- 

Table 4.2 – The results of statistical analyses on measures of anxiety in the EPM, showing main effects of genotype 
and drug, and post-hoc comparisons showing genotype differences, only. P values in bold show P<0.05. ---: not 
applicable.  
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Figure 4.2 – The effects of guanfacine and vehicle injection in NK1R-/- (grey bars) and wildtype (white bars) mice 
on A: %time spent in the open arms, B: number of entries to the closed arms, C: number of entries to the open 
arms, D: %time spent in the centre section of the elevated plus maze and E: number of head entries to the open 

arms. Data show mean  SEM. * P<0.05, n=5.  
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4.3.3 Wildtype and NK1R-/- mice have intact recognition and spatial 

memory 

The NOR and NOL tests in naïve mice revealed that both genotypes had intact recognition and 

spatial memory. In the NOR, both genotypes spent more time exploring the novel object 

[[SQRT]object: F(1,14)=41.24, P<0.001, Figure 4.3], and made more returns to the novel object 

[[SQRT]object: F(1,14)=27.95, P<0.001]. The same result was seen in the NOL in terms of time 

exploring [[SQRT]object: F(1,10)= 12.21, P=0.006] but not number of returns [[SQRT]object: 

F(1,10)=2.55, P=0.141]. On the whole there were no differences between the genotypes, but 

there was a genotype difference in number of returns to the novel object in the NOR 

[[SQRT]geno: F(1,14)= 5.28, P=0.038], such that NK1R-/- mice made more returns to both objects 

(i.e. were more active overall).  

Because mice completed both the NOR and NOL in a counterbalanced fashion, direct 

comparisons between the two tests were valid. Comparison of the NOR and NOL showed that 

the discrimination index was overall higher in the NOR than the NOL [[RAW]type of test: F(1,24)= 

15.00, P<0.001, Figure 4.4], but this was independent of genotype [[RAW]geno*type of test: 

F(1,24)=0.06, P=0.804], such that both genotypes performed better in the NOR than the NOL. 
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Figure 4.3 – Time exploring objects (A: NOR and B: NOL) and number of returns to objects (C: NOR and D: NOL) 
made by NK1R-/- and wildtype mice in the novel object recognition and novel object location task. Data show 

mean  SEM. * P<0.05, n=6-8.  
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Figure 4.4 – Recognition (NOR) and spatial memory (NOL) memory of NK1R-/- and wildtype mice as determined by 

an index of discrimination. Data show mean  SEM. * P<0.05, n=6-8.  
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4.3.4 Guanfacine has no effect on recognition memory, but improves spatial 

memory in NK1R-/- mice 

When guanfacine was tested in mice in the NOR, all mice spent more time exploring the novel 

object than the familiar one, and made more returns to the novel object (Table 4.3, Figure 4.5). 

This was independent of genotype and drug treatment, and these factors did not interact. 

Guanfacine also had no effect on the index of discrimination in either genotype. 

In the NOL, all mice explored the novel object more than the familiar one (see Table 4.3). 

However, the effect of drug on the discrimination index just missed statistical significance 

[[RANK]drug: F(1,12)=4.43, P=0.057]. Nevertheless, the effect of guanfacine did depend on 

genotype [[RANK]drug*geno: F(1,12)=5.00, P=0.045]. NK1R-/- mice treated with guanfacine 

displayed enhanced spatial memory compared to vehicle treated NK1R-/- mice (NK1R-/-, VEH 

vs. GFC: P=0.010) and compared to guanfacine-treated wildtypes (GFC, WT vs. KO: P=0.023).  

NOR Main effect Genotype Object Drug 

Time spent exploring objects 
F(1,12)=0.37 

P=0.552 

F(1,12)=73.84 

P< 0.001 

F(1,12)=0.11 

P=0.747 

Number of returns to objects 
F(1,12)=0.12 

P=0.740 

F(1,12)=32.77 

P<0.001 

F(1,12)=0.12 

P=0.7401 

Discrimination Index 
F(1,12)=0.71 

P=0.415 
N/A 

F(1,12)=0.03 

P=0.859 

NOL     

Time spent exploring objects 
F(1,12)=1.61 

P=0.229 

F(1,12)=114.59 

P<0.001 

F(1,12)=0.02 

P=0.893 

Number of returns to objects 
F(1,12)=4.23 

P=0.062 

F(1,12)= 52.83 

P<0.001 

F(1,12)=0.61 

P=0.452 

Discrimination Index 
F(1,12)= 2.09 

P=0.1737 
N/A 

F(1,12)=4.43 

 P=0.057 

Table 4.3 –The results of statistical analyses on behaviour in the NOR and NOL tests, showing main effects of 
genotype, object and drug. P values in bold show P<0.05.  
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Figure 4.5 – The effects of guanfacine (0.1 mg/kg) on time spent exploring objects (A: NOR and B: NOL), the 
number of returns to objects (C: NOR and D: NOL), and an index of discrimination (E: NOR and F: NOL) in NK1R-/- 

and wildtype mice. Data show mean  SEM. * P<0.05, n=4. 
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4.3.5 Medetomidine improves spatial memory in wildtype mice 

When medetomidine was tested in mice in the NOL test, all mice spent more time exploring the 

novel object [[SQRT]object: F(1,24)= 231.63, P<0.001, Figure 4.6], and made more returns to the 

novel object [[RAW]object: F(1,24)= 84.48, P<0.001]. There were no effects of drug or genotype 

on the time spent exploring, or the number of returns. However, in the index of discrimination, 

the effect of medetomidine was bidirectional, and depended on genotype [[RAW]drug*geno: 

F(3,24)= 2.91, P=0.05]: a low dose (1 g/kg) of medetomidine facilitated spatial memory in 

wildtypes compared with vehicle, although this just missed significance (WT, VEH vs. MED1: 

P=0.052). However, medetomidine impaired memory at a high dose (10 g/kg) in wildtypes, 

inducing a genotype difference, such that NK1R-/- mice had better spatial memory than 

wildtypes (MED10, WT vs. KO: P=0.037).  

  



Chapter 4 

 

116 

 

Time exploring objects

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

0

5

10

15

******
*** ***

*** ***
***

*
T

im
e
 e

x
p

lo
ri

n
g

 o
b

je
c
ts

 (
s
)

Number of returns

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

Fam
ili

ar

N
ove

l

0

5

10

15

20

25

*
***

*** ****
***

*

N
u

m
b

e
r 

o
f 

re
tu

rn
s

Discrimination Index

VEH MED1 MED3 MED10

0.0

0.2

0.4

0.6

**

**

D
is

c
ri

m
in

a
ti

o
n

 I
n

d
e
x

P=0.052

A

B

C

WT VEH

WT MED 1

WT MED 3

WT MED 10

NK1R-/- VEH

NK1R-/- MED 1

NK1R-/- MED 3

NK1R-/- MED 10

 

Figure 4.6 – The effects of medetomidine (1, 3 and 10 g/kg) on A: time exploring objects, B: number of returns to 
objects, and C: an index of discrimination in wildtype and NK1R-/- mice in the novel object location test. Data 

show mean  SEM. * P<0.05, n=4.  
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4.4 Discussion 

The aims of these experiments were two-fold. The first aim was to determine whether NK1R-/- 

mice display an anxiogenic phenotype which could be alleviated by guanfacine. This hypothesis 

was borne out in part, as NK1R-/- mice displayed more anxiety-like behaviour than wildtypes. 

However, guanfacine had no appreciable effect on any measure of anxiety-like behaviour in the 

EPM, mirroring the results of the LDEB in Chapter 3.  

The second aim was to determine whether NK1R-/- mice display deficits in recognition and 

spatial memory, in the NOR and NOL tests, respectively, which could be relieved by 2-AR 

agonists. This hypothesis was also partly supported by the results: NK1R-/- mice did not display 

any memory deficits, but 2-AR agonist treatment facilitated spatial memory, particularly in 

NK1R-/- mice. 

4.4.1 NK1R-/- mice display an anxious phenotype 

In the elevated plus maze, NK1R-/- mice displayed an anxiogenic phenotype compared with 

wildtypes. NK1R-/- mice spent less time (~17% vs. 44% in wildtypes) on the open arms, and 

made fewer entries to the open arms, than wildtypes. This mirrors the results from Chapter 3, 

in which NK1R-/- mice spent less time in the light zone of the LDEB than wildtypes. It is also 

consistent with previous reports that NK1R-/- mice express greater active and passive 

avoidance of the light zone of the LDEB (Herpfer et al., 2005; Fisher et al., 2007). Perhaps 

surprisingly, there was no difference between the time NK1R-/- and wildtype mice spent in the 

central square: an area which can be thought of as “protected”, and thus it might be expected 

anxious NK1R-/- mice would spend more time in the central square than wildtypes (Rodgers 

and Dalvi 1997). However, NK1R-/- mice made fewer head entries to the open arms than 

wildtypes when situated in the central square, suggesting these mice were more cautious 

overall.  

The results of this study do contrast with other studies of NK1R-/- mice (Santarelli et al. 2001). 

Although many factors, such as age, gender, maze height, prior exposure to novelty and light 

intensity affect baseline anxiety (Rodgers and Cole 1993) and will differ between studies, the 
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effect of functional ablation of the NK1R gene on anxiety-like behaviour seems to depend 

largely on background strain. Mice lacking NK1Rs on a 129/SvEv background spend a greater 

proportion of time on the open arms of an EPM than wildtypes (Santarelli et al. 2001). By 

contrast, NK1R-/- mice on a J129/C57 or a 129/Sv x C57BL/6 x MF1 hybrid background do not 

(Murtra et al. 2000; Rupniak et al. 2001). The effect of background strain on the temperament 

of rodents is well documented. For example, a comparison of 15 different mouse strains using 

the EPM found that anxiety levels differed greatly across the strains: BALB/cByJ mice being the 

least, and AKR/J mice being the most anxious (O'Leary et al. 2013). Here, it seems that 

behaviour of mice depends on an interaction between NK1R and the genetic background of the 

animal. 

Guanfacine did not affect anxiety-like behaviour of either genotype in EPM. This also 

corroborates the finding from Chapter 3 that guanfacine did not affect the time spent in the 

light zone by either genotype in the LDEB. Moreover, changes in the behaviour of NK1R-/- mice 

in the LDEB, 5-CSRTT and novel object paradigms upon guanfacine treatment are unlikely to be 

secondary consequences of a change in anxiety-like behaviour. However, this finding does 

contrast with a report that this drug reduces anxiety-like behaviour of SHR, but not Wistar or 

WKY control rats, in the EPM (Langen and Dost 2011). This difference could relate to the fact 

that guanfacine has been developed as an anti-hypertensive (Jerie 1980), and by definition, 

SHRs are hypertensive animals, which could render them more susceptible to the effects of 

guanfacine. 

4.4.2 NK1R-/- mice show intact recognition and spatial memory 

Both wildtype and NK1R-/- mice displayed intact recognition and spatial memory when tested 

in the novel object recognition and location tasks, respectively. This is unsurprising, given that 

studies have consistently demonstrated NK1R-/- mice learn complex tasks (e.g. the 5-CSRTT 

and Morris water maze) with the same ability as wildtypes (Morcuende et al. 2003; Yan et al. 

2011). For the most part, there were no genotype differences in the length of exploration of 

the objects, but when there were, NK1R-/- mice explored objects for longer, or made more 
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returns to objects, than wildtypes. This may be a reflection of the hyperactivity of NK1R-/- 

mice, or an increase in exploratory behaviour, i.e. novelty seeking.  

One limitation of using approach-avoidance conflict tests (e.g. the light-dark box and elevated 

plus maze) is that it is impossible to tell whether a mouse is spending more time in the novel 

arena because it is less anxious, or because it has an enhanced curiosity for novel 

environments. These results, together with those from the EPM and LDEB, suggest that NK1R-/- 

mice are more anxious and have a slightly higher tendency to ‘novelty seek’, i.e. they spend 

less time in aversive areas than wildtypes, but actually spend slightly more time exploring new 

objects which are not aversive. 

What was also clear from the experiments with naive animals, was that mice generally had 

better recognition than spatial memory: that is, they discriminated between objects better in 

the NOR than the NOL. The reason for this difference remains to be seen. It may be that the 

environmental cues were not clear enough to allow spatial navigation, although this seems 

unlikely because it has been reported that mice can navigate using an over-head camera, alone 

(Murai et al. 2007). It could also be that mice were using olfactory cues to distinguish between 

objects in the NOR, although this also seems unlikely as objects were carefully cleaned 

between tests. Another possibility is that spatial memory and recognition memory are 

depended on processes in distinct brain areas, such as the hippocampus (Broadbent et al. 

2004) and PFC (Cassaday et al. 2014), respectively, such that the protocol (10 min test/ 1 h 

interval) allowed better recognition memory consolidation than it did spatial memory 

consolidation. Whatever the explanation, the difference between the tests could be further 

explored by changing variables in the two tests, such as the type of visual cues and length of 

time between sessions.  

4.4.3 Alpha2-AR agonists improve spatial memory 

The most striking finding from the object recognition experiments was that guanfacine 

selectively improved spatial memory in NK1R-/- mice, whereas recognition memory in both 

genotypes, and spatial memory in wildtypes, remained unaffected. In contrast, medetomidine 

improved spatial memory in wildtypes only: a response that was only evident at the lowest 
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dose (1 g/kg). This confirms that both 2-AR agonists improve spatial memory, albeit at 

specific doses and in a genotype-dependent manner. Even though the test used here is, strictly 

speaking, one of short-term spatial memory rather than spatial working memory per se, the 

two may be close enough in nature to show comparable changes. 2-AR agonists do improve 

spatial working memory (SWM): for example, in tests of vigilance and working memory, 

activation of α2A-ARs enhances performance of both rats and monkeys in delayed-alternation 

(Carlson et al. 1992) and delayed-response tasks (Arnsten et al. 1988). However, this is not 

always replicable: guanfacine failed to improve SWM in one study of aged non-human primates 

(Decamp et al. 2011). These effects are likely to be mediated by 2-ARs, rather than 1-ARs, 

because 1-AR agonists, administered systemically or by local infusion into dlPFC, impair SWM 

in monkeys (Arnsten and Jentsch 1997; Mao et al. 1999). 

The differences between guanfacine and medetomidine reported here could be due to their 

subtype-selectivity: guanfacine is selective for the 2A-AR subtype (Kd values of 19.9 and 

344nM for 2A- and 2C-AR subtypes, respectively) (Uhlen and Wikberg 1991; Uhlen et al. 

1992), whereas medetomidine is non-subtype selective. It seems the effects of 2-AR agonists 

on SWM are due to actions at the 2A-AR subtype: improvements in spatial working memory 

in rhesus monkeys are reversed by the 2A-AR antagonist, idazoxan (Franowicz and Arnsten 

2002; Arnsten and Jin 2012; Kim et al. 2012), and mice with functional ablation of α2A-ARs 

display deficits in working memory, which are not relieved by guanfacine (Franowicz et al. 

2002). However, in contrast, 2C-AR -knockout mice also display deficits in spatial memory 

(Bjorklund et al. 2001), but this is improved by dexmedetomidine (Tanila et al. 1999; Bjorklund 

et al. 2001). Similarly, 2C-AR overexpression impairs water maze learning in mice, and this is 

alleviated by non-subtype selective 2-AR antagonists (Bjorklund et al. 

1998; Bjorklund et al. 2000). Together this evidence suggests that the 

2C-AR subtype can modulate SWM, but this subtype is not necessary for 

the SWM-enhancing effects of adrenoceptor agents.   

Another explanation for the difference between the two agonists 

could lie in their affinities for imidazoline receptors (I1 and I2). The 
Figure 4.7 – Chemical structure 
of the imidazole ring 

http://upload.wikimedia.org/wikipedia/commons/3/31/Imidazole_structure.png
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structure of medetomidine contains the imidazole ring (see Figure 4.7), whereas guanfacine 

does not. Moreover, imidazoline I2 receptors (I2Rs) are involved in medetomidine-induced 

impairment of long term potentiation (LTP: a mechanism underpinning learning and memory) 

in the hippocampus (Takamatsu et al. 2008). This could explain why, at a high dose (10 mg/kg), 

medetomidine actually impaired memory in wildtypes. The hypothesis that imidazoline 

receptors play a role in spatial memory merits further investigation. 

Although the NK1R-/- mice tested here did not display any deficits in spatial working memory, 

the genotype difference in response to 2-AR agonists suggests that there is some interaction 

between NK1R and 2-ARs, which affects spatial memory. As discussed in Chapter 3, 

antagonism or functional ablation of NK1R blunts GABAergic inhibition of locus coeruleus 

neuronal firing (Maubach et al. 2002; Ebner and Singewald 2007). Moreover, NK1Rs are located 

on noradrenergic neurones of the LC itself (Chen et al. 2000; Santarelli et al. 2001). This could 

explain why systemic injection of the NK1R antagonists, WIN 51708 and CP 96345, prevents a 

clonidine-induced reduction in spiking of LC neurones in rats (Blier et al. 2004). However, if 

NK1R antagonism reduces the response to 2-AR agonists, it might be expected that mice with 

functional ablation of NK1Rs are less sensitive to 2-AR agonists. This is certainly the case for 

medetomidine: this drug had no effect on the spatial memory of NK1R-/- mice, but had clear 

effects in wildtypes. However, this was not the case for guanfacine. This leads to the inference 

that there is something exceptional about guanfacine, and perhaps by extension, the 2A-AR 

subtype, in NK1R-/- mice. Indeed, Fisher et al reported a 70% reduction in [35S]GTPgammaS 

binding to 2A-ARs in the locus coeruleus of NK1R-/- mice (Fisher et al. 2007). Although the 

mechanism by which guanfacine improved spatial memory in NK1R-/- was not investigated 

here, this genotype difference in 2A-ARs could merit further investigation. 

Studies of working memory in the most well established model of ADHD, the Spontaneously 

Hypertensive Rat (SHR), have given inconsistent results (Sontag et al. 2013). Mook et al found 

that SHRs had better working memory in a radial arm maze, whereas Wyss et al demonstrated 

12 month old (i.e. aged) SHRs had impaired memory in the same test compared to control 

strains (Wyss et al. 1992; Mook et al. 1993). 
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The results presented here are particularly interesting given reports showing that children and 

adults with ADHD have deficits in verbal and spatial working memory (Hervey et al. 2004; 

Martinussen et al. 2005; Vance et al. 2013). This executive dysfunction may form the basis of 

what is described in diagnosis as ‘inattention’, or indeed vice versa: spatial working memory 

could depend on selective attention. One functional MRI study suggested the latter could be 

true: Postle et al (2006) argue that spatial working memory is dependent on selective spatial 

attention, rather than recall of information. 

The results presented in this Chapter suggest that guanfacine could be a better treatment 

option than non-subtype selective 2-AR agonists, for improving spatial memory/attention, 

particularly in a subset of ADHD patients carrying the TACR1 gene polymorphism(s). 

4.5 Highlights 

 NK1R-/- mice display an anxiogenic phenotype compared to wildtypes on a mixed 

129/Sv/C57Bl6 x MF1 background strain. This could be because of an interaction 

between background strain and loss of functional NK1R. 

 NK1R-/- mice do not show recognition or spatial memory deficits in tests of short-term 

memory. 

 Guanfacine, at a dose to which NK1R-/- mice are more sensitive (reported in 

Chapter 3), has no effect on anxiety-like behaviour of NK1R-/- or wildtype mice. 

 The same dose of guanfacine improved short-term spatial memory in NK1R-/- mice, 

only, in an object recognition task. This could help explain guanfacine’s efficacy in 

treating cognitive abnormalities (particularly inattention) in ADHD. 

 Medetomidine also induced a genotype difference in spatial memory, but had no effect 

on NK1R-/- mice. The difference between the two 2-AR agonists is likely due to 

subtype selectivity, or differential actions at imidazoline receptors.  
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Chapter 5. The effects of atomoxetine on 

hyperactivity, inattention and impulsivity in 

NK1R-/- and wildtype mice 

5.1 Introduction 

5.1.1 Atomoxetine  

Atomoxetine is a preferential noradrenaline reuptake inhibitor, which was originally trialled 

and marketed as ‘tomoxetine’ for the treatment of depression (Zerbe et al. 1985). 

Development was discontinued after a large scale trial in which the effects of atomoxetine 

could not be separated from those of placebo (Blier 2006). Nevertheless, atomoxetine 

(Straterra ®) was re-presented as a treatment for ADHD in 1996, and FDA approved in 2002 

(Preti 2002). Atomoxetine is efficacious in reducing all three signs of ADHD in 

children/adolescents (Wilens et al. 2006; Hazell et al. 2011) and adults (Faraone and Glatt 

2010). However, this drug does fall slightly short of the psychostimulants in terms of patient 

response rates: 70-80% of patients respond to psychostimulants, compared with approximately 

50-60% for atomoxetine (see Heal et al. 2009). 

Atomoxetine is marketed as a non-stimulant alternative to methylphenidate, despite both 

drugs being reuptake inhibitors. Atomoxetine inhibits the human noradrenaline (NAT), 

serotonin (SERT) and dopamine (DAT) transporters with Ki values of 5, 77 and 1451 nM, 

respectively, whereas methylphenidate preferentially inhibits the DAT (Ki values: 34 nM at DAT, 

339 nM at NAT and >10,000 nM at SERT) (Bymaster et al. 2002). Both drugs increase 

extracellular catecholamines in the prefrontal cortex (PFC), but unlike the psychostimulants, 

atomoxetine causes no increase in extracellular dopamine in mesolimbic areas (Bymaster et al. 

2002; Carboni et al. 2003). This minimizes the abuse potential of the drug in comparison with 

stimulants. Indeed, atomoxetine is not reinforcing in drug discrimination studies on rats 

(Swanson et al. 2006) or monkeys (Sacchetti et al. 1999), and does not facilitate self-
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administration in non-human primates (Bymaster et al. 2002; Gasior et al. 2005) (for full review 

see Hudson et al. 1999). Moreover, there have been no reports of atomoxetine misuse in 

humans.  

5.1.2 Atomoxetine in rodent models of ADHD 

The effects of atomoxetine on the cognitive performance and response control of outbred 

rodents in the 5-CSRTT are remarkably consistent. In Long Evans, Lister-hooded and Sprague-

Dawley rats, the drug reduces premature responses (impulsivity) (Blondeau and Dellu-

Hagedorn 2007; Robinson et al. 2008; Paterson et al. 2011; Fernando et al. 2012; Robinson 

2012), but has negligible effects on omissions (attention). Where omissions are increased, they 

are generally accompanied by increased response latencies, indicating a drug effect on arousal 

or motivation for the task (Baarendse and Vanderschuren 2012; Sun et al. 2012). The same 

pattern has even been reported in zebrafish performing a modified version of the 5-CSRTT: 

atomoxetine attenuated premature responses while response latencies and omissions were 

unaffected (Parker et al. 2014).  

Similarly, the locomotor activity of hyperactive rodents is reduced by atomoxetine (Moran-

Gates et al. 2005; Tamburella et al. 2012). However, unlike psychostimulants, the drug does not 

increase the locomotor activity of normal subjects.  

5.1.3 Aims 

With the continued aim of testing the predictive validity of the NK1R-/- mouse, the aim of 

these experiments was to determine whether the ADHD treatment, atomoxetine, alleviates the 

hyperactivity and impulsivity/inattentiveness displayed by NK1R-/- mice, in the LDEB and 

5-CSRTT, respectively. 
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5.2 Methods 

5.2.1 Light-Dark Exploration Box 

The LDEB was used as described in Chapter 2, section 2.4.3. Doses of atomoxetine chosen were 

based on a survey of recent literature (see Appendix 4). Atomoxetine (1, 3 or 10 mg/kg, i.p.), 

vehicle (saline) or no injection was administered 30 min before mice were transferred to the 

light zone. Behaviour in the two zones was recorded for 30 min with a video camera, and 

scored blind.  

5.2.2 5-Choice Serial Reaction-Time Task 

The 5-CSRTT followed the same protocol as that described in section 2.4.1. The training and 

drug-free testing (NI-1) part of the protocol was a repeat of the experiment described in 

Chapter 3, which was designed to test the effects of breeding strategy on behaviour. Mice from 

both homozygous breeding colonies (homs) and NK1R-/- and wildtype littermates (hets) were 

used in this experiment (see Table 5.1). Mice started training at 6-8 weeks old. As in Chapter 3, 

the mice were first tested using two NI-1 sessions (one VITI and one long inter-trial interval 

(LITI)). These tests in naive mice are reported elsewhere (Porter et al. 2015). 

Genotype 
Number 

used (‘n’) 
Number of breeding 
pairs derived from 

Start weight 
(g: mean ± SD) 

WT hom 6 2 31.3 ± 2.6 

NK1R-/- hom 6 2 30.3 ± 1.9 

WT het 6 
4 

33.2 ± 2.6 

NK1R-/- het 6 32.0 ± 2.4 
Table 5.1 – Details of mice used in the 5-CSRTT experiment 

After the initial NI-1 sessions, mice were tested once-weekly, 30 min after treatment with 

either atomoxetine (0.3, 3 or 10 mg/kg), vehicle (VEH) or no injection (NI-2). The doses of 

atomoxetine used in this experiment were informed by the results of the LDEB: specifically, a 

lower dose (0.3 mg/kg) was chosen instead of the 1 mg/kg dose, in order to test whether any 

cognitive effects of the drug could be dissociated from a reduction in locomotor activity. Each 

mouse received each treatment once, and the treatments were assigned using a pseudo-Latin 
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square design, to account for any effects of repeated testing and possible long term drug 

effects. Two wildtypes (one hom and one het) and one NK1R-/- (hom) mouse failed to graduate 

through training in the 5-CSRTT. 

5.2.3 Statistics 

Raw or transformed data from the LDEB and 5-CSRTT were analysed in the same way as 

described in Chapter 3, section 3.2.3. Statistical significance was set as P<0.05. In the LDEB one 

NK1R-/- mouse from the vehicle group was excluded from the analysis, because it was an 

outlier (i.e. greater than 3 standard deviations away from the mean) in nearly every 

behavioural measure. Activity of mice decreased to a ‘floor’ level by about 15 min, and so, as in 

Chapter 3, only the first 10 min of recorded activity were used in the analysis. 

 In the 5-CSRTT there was no interaction between colony and drug in any variable, so the 

‘colony’ factor was collapsed. Where there were main effects of time of day, time of day was 

used as a blocking factor in the analysis, such that any variability within the data caused by time 

of day was taken into account, but not studied independently. This occurred here in %accuracy, 

%omissions and perseveration. This was valid because there were no time of day*drug 

interactions, i.e. drug treatment had the same effect on behaviour regardless of time of day. 

Where there was no effect of time of day, data were collapsed on this factor. 

5.3 Results 

5.3.1 Atomoxetine reduces activity in wildtype and NK1R-/- mice 

(Figure 5.1) 

NK1R-/- mice were hyperactive in the light zone [[RAW]geno: F(1,15)=13.69, P=0.002, WT vs. KO, 

NI: P=0.004], and a similar trend was observed in the dark zone [[RAW]geno: F(1,15)=7.06, 

P=0.018, WT vs. KO, NI: P=0.081]. However, the hyperactivity in the light zone was no longer 

apparent after a vehicle injection [WT vs. KO, VEH: P=0.097].  
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Atomoxetine reduced the activity both genotypes, overall, in the light zone [[RAW]drug: 

F(3,31)=3.84, P=0.019] and dark zone [[LOG10]drug: F(3,29)=4.69, P=0.009]. The high dose 

(10 mg/kg) reduced locomotor activity of wildtypes and NK1R-/- mice in both the light [LZ, VEH 

vs. ATX10, WT: P=0.043, KO: P=0.023] and dark zones [DZ, VEH vs. ATX10, WT: P=0.039, KO: 

P=0.021] compared to vehicle. 

Atomoxetine also reduced the number of returns to the light zone [[LOG10]drug: F(3,31)=4.13, 

P=0.014] in both genotypes. However this reached significance in NK1R-/- mice, only, at 

10 mg/kg [VEH vs. ATX10, KO: P=0.001] and 3 mg/kg [VEH vs. ATX3, KO: P=0.008]. Atomoxetine 

had no effect on time spent in the light zone [[RAW]drug: F(3,31)=0.09, P=0.964] or on the 

latency to leave the light zone [[LOG10]drug: F(3,29)= 1.78, P=0.1738]. The effect of atomoxetine 

did not depend on genotype in any measure. 
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Figure 5.1 The effects of atomoxetine (1, 3 and 10 mg/kg, i.p.), vehicle (saline) or no injection (NI) on A: activity 
per unit time in the light zone, B: activity per unit time in the dark zone, C: time in the light zone, D: number of 
returns to the light zone, E: latency to leave the light zone in wildtype (white bars) and NK1R-/- mice (grey bars) in 

the light-dark exploration box. Data show mean  SEM. Lines linking bars indicate statistical significance of 
P<0.05. N=5. 
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5.3.2 Wildtype and NK1R-/- mice learn to perform the 5-CSRTT at the same 

rate 

Mice learned the task in the same number of days regardless of genotype [[RAW]geno: 

F(1,19)=0.10, P=0.754]. Wildtypes took an average of 35.3 days, and NK1R-/- took an average of 

36.8 days (Figure 5.2A). However, mice of both genotypes from the homozygous colony 

learned the task faster than those from the heterozygous colony [[RAW]colony: F(1,19)=4.51, 

P=0.047]: an average of 31.3 and 40.5 days, respectively. Time of day did not affect the rate of 

learning.  

5.3.3 Atomoxetine attenuates premature responding in NK1R-/- mice but 

not wildtypes (Figure 5.2E) 

NK1R-/- mice did not display an impulsive phenotype in this experiment: there was no 

difference between the genotypes in the rate of premature responding overall [[SQRT]geno: 

F(1,13)= 0.44, P=0.520]. Atomoxetine reduced %premature responses [[SQRT]drug: F(3,55)=2.89, 

P=0.044], and this main effect did not depend on genotype [[SQRT]drug*geno: F(3,55)=0.76, 

P=0.521]. However, post-hoc analysis revealed that atomoxetine reduced premature responses 

in NK1R-/- mice, only, at 10 mg/kg [VEH vs. ATX10, KO: P=0.006].  

5.3.4 Atomoxetine lengthens the latency to reward, but not to correct 

response (Figure 5.2G & H) 

The latency to correct response [[RANK]geno: F(1,19)=0.60, P=0.448] and to magazine 

[[RANK]geno: F(1,19)=0.74, P=0.400] were the same in both genotypes, overall. Atomoxetine 

increased the latency to magazine [[RANK]drug: F(3,55)= 10.59, P<0.001], at the highest two 

doses in both genotypes [VEH vs. ATX3, WT: P=0.033, KO: P<0.001; VEH vs. ATX10, WT: 

P<0.001, KO: P<0.001]. However, atomoxetine had no effect on the latency to correct response 

[[RAW]drug: F(4,74)=1.85, P=0.128]. Another measure of motivation, the number of trials 

completed, was unaffected by genotype [[ARCSINE]geno: F(1,13)=0.89, P=0.363] or drug 

[[ARCSINE]drug: F(4,51)=0.89, P=0.479].  
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5.3.5 Atomoxetine has no effect on accuracy, omission errors or 

perseveration (Figure 5.2C, D & F) 

There was no difference between the two genotypes in %accuracy [[RAW]geno: F(1,18)=0.06, 

P=0.816], %omissions [[SQRT]geno: F(1,18)=0.03, P=0.865] or perseveration [[LOG10]geno: 

F(1,18)=0.00, P=0.979]. Moreover, atomoxetine had no effect on these behaviours in either 

genotype (see Table 5.2). 

Main effect Drug Geno*Drug 

%Accuracy [RAW] F(4,74)=0.24, P=0.914 F(4,74)=0.05, P=0.996 

%Omissions [SQRT] F(4,74)=0.27, P=0.897 F(4,74)=0.05, P=0.996 

Perseveration [LOG10] F(4,74)=0.99, P=0.418 F(4,74)=0.18, P=0.949 

Table 5.2 – The results of the statistical analyses of behaviour in the 5-CSRTT  
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Figure 5.2 – A: The total number of days taken to reach testing criteria in the 5-CSRTT by wildtype and NK1R-/- 
mice, and the effects of atomoxetine (0.3, 3 and 10 mg/kg, i.p.) on B: total number of trials, C: %accuracy, D: 
%omissions, E: premature responses, F: perseveration, G: latency to correct response and H: latency to magazine, 

compared with vehicle (saline) and no injection (NI-2). Data show mean  SEM. n=9-11 per group. Lines linking 
bars indicate statistical significance of P<0.05, * indicates P<0.05 versus vehicle within genotype.  
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5.4 Discussion 

The aim of these experiments was to determine whether atomoxetine alleviates the ADHD-like 

behaviours displayed by NK1R-/- mice. Atomoxetine reduced hyperactive/impulsive behaviours 

in NK1R-/- mice, at doses which did not affect wildtypes, but had no effect on attention in 

either genotype. These findings broadly replicate those reported on tests of this drug in 

outbred rats performing the 5-CSRTT, and further add to the predictive validity of the NK1R-/- 

mouse. 

5.4.1 Atomoxetine prevents hyperactivity 

In this LDEB experiment, NK1R-/- mice were hyperactive compared to wildtypes, but this was 

no longer evident after mice had experienced an injection: strikingly, this exactly replicates the 

findings reported in Chapter 3, suggesting that this aspect of the behavioural phenotype is a 

robust one. Atomoxetine reduced the locomotor activity of NK1R-/- mice, and other measures 

of activity (number of returns to light zone, latency to leave light zone), at a dose (3 mg/kg) 

which did not affect wildtypes. These behaviours were observed without any corresponding 

reduction in the time spent in the light zone, which would be expected if there was an 

appreciable effect on animals’ emotionality.  

The genotype difference in the locomotor response to atomoxetine is consistent with its effects 

in other rodent models of ADHD, including spontaneously hypertensive (SHR) rats, trimethyltin 

chloride-treated (TMT) rats (Tamburella et al. 2012) and 6-OHDA-lesioned rats (Moran-Gates et 

al. 2005), but is at odds with a report that the drug did not affect hyperactive DAT-KO mice 

(Del'Guidice et al. 2014). One possible explanation is that the effects of atomoxetine are 

baseline dependent. Because of a floor effect, greater activity at baseline could be more 

vulnerable to a reduction than a low baseline. 

Another explanation could be that NK1R-/- mice are more sensitive to noradrenergic 

manipulations: consistent with this is the finding, discussed in Chapter 3, that NK1R-/- mice are 

more sensitive to the 2-adrenoceptor agonist, guanfacine, in the same behavioural tests. This 

theory is supported by neurochemical evidence for an underlying difference in noradrenergic 
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neurotransmission in the two genotypes (Herpfer et al. 2005; Fisher et al. 2007). The possibility 

that the noradrenergic response to atomoxetine differs in NK1R-/- and wildtype mice warrants 

further investigation. 

5.4.2 Atomoxetine reduces impulsivity 

Unlike in our previous studies (Yan et al. 2011; Dudley et al. 2013), NK1R-/- mice did not display 

an impulsive phenotype at baseline (NI-2) in this study. This is likely due to the use of two 

colonies of mice, as NK1R-/- mice bred from heterozygous parents do not show the same 

impulsivity as those bred from inbred homozygous parents (see Porter et al. 2015). Despite this 

limitation, atomoxetine (10 mg/kg) reduced premature responding in NK1R-/- mice, but had no 

effect in wildtypes. This was accompanied by an increased latency to collect the reward in both 

genotypes, suggesting that the drug may reduce arousal or motivation for the task. However 

this seems an unlikely explanation, since other indicators of arousal/motivation (latency to 

correct response and %omissions) were not increased in parallel, and this would occur in 

NK1R-/- mice, only, if the reduction in premature responses was secondary to reduced arousal 

in these mice. 

These results are supported by consistent reports that atomoxetine reduces impulsivity in 

outbred rats performing the 5-CSRTT, usually without affecting measures of attention 

(Robinson et al. 2008; Baarendse and Vanderschuren 2012) (see Table 5.3). Studies utilizing 

different populations of animals report that the drug is particularly effective in reducing 

premature responding in animals that display high impulsivity at baseline (e.g. high impulsive 

(HI) rats) (Blondeau and Dellu-Hagedorn 2007; Fernando et al. 2012; Tomlinson et al. 2014). 

Similarly, atomoxetine is more effective when impulsivity is increased by manipulating the task 

parameters, for example, by extending the inter-trial interval (ITI) (Paterson et al. 2011; 

Baarendse and Vanderschuren 2012). A low level of impulsivity at baseline (15 – 20% 

premature responses) in this study may explain why a relatively high dose of atomoxetine was 

needed to see an effect, compared with other studies (see Appendix 4); atomoxetine could be 

more effective when baseline impulsivity is high. However, Robinson (2012) reports that 

atomoxetine is efficacious when impulsivity is low under baseline conditions and when 
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impulsivity is increased when the task is made more challenging (e.g. by extending the ITI, 

reducing the stimulus duration or adding a distracter stimulus).  

As the aforementioned studies used outbred rats, it might be expected that atomoxetine would 

reduce impulsivity in wildtypes, as well as in NK1R-/- mice. However, this was not the case; 

although atomoxetine reduced impulsivity in a genotype independent manner overall, this 

reduction was statistically significant in NK1R-/- mice, only. This finding is difficult to reconcile 

with the literature, as only one study to date has examined the effect of atomoxetine in an 

animal model of ADHD, the SHR, in the 5-CSRTT, and this study did not include a control strain. 

This study found no effect of atomoxetine at any dose (0.1 – 5 mg/kg), in any behavioural 

measure (Dommett 2014). However, this study was limited by a number of factors including a 

lack of positive drug control and a high animal drop-out rate. Further tests would be needed to 

confirm whether atomoxetine reduces impulsivity in wildtypes as well as NK1R-/- mice, as the 

results presented here could be a consequence of testing a limited dose range, or a low level of 

impulsivity in wildtypes at baseline.   

These studies have all used acute doses of the drug. One study examining the effects of chronic 

atomoxetine treatment in adolescent Long-Evans rats found that chronic dosing had little 

effect: when tested in the 5-CSRTT, impulsivity was reduced by atomoxetine in both the chronic 

vehicle-, and chronic drug-treated groups (Sun et al. 2012).  

To date, atomoxetine is the only noradrenaline reuptake inhibitor (NRI) clinically indicated for 

ADHD. However, preclinical tests using another preferential NRI, reboxetine, have given similar 

results to atomoxetine, suggesting a common mechanism. For example, Robinson (2012) found 

that reboxetine (0.1 and 0.3 mg/kg) reduced premature responding in outbred Lister-hooded 

rats performing the 5-CSRTT, and improved accuracy in animals which performed poorly at 

baseline. Similarly, Liu et al found that the beneficial effects of reboxetine on impulsivity were 

prevented by treatment with an alpha2-adrenoceptor antagonist (RX821002) but not an 

alpha1-adrenoceptor antagonist (prazosin) (Liu et al. 2009); a noteworthy finding given the 

results reported in Chapter 3, that guanfacine, an alpha2-adreoceptor agonist, also reduces 

impulsivity. 
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It is interesting to note that reboxetine is clinically indicated for the treatment of major 

depressive disorder, but reduces impulsivity with a striking resemblance to atomoxetine (Liu et 

al. 2009; Robinson 2012). However, a recent meta-analysis suggested that, much like 

atomoxetine, this drug may lack efficacy in treating depression (Sepede et al. 2012). On the 

other hand, it is widely accepted that other successful antidepressants such as desipramine and 

nortriptyline exert their effects by blockade of noradrenaline reuptake (Brunello et al. 2002). A 

key difference between atomoxetine/reboxetine and other noradrenergic antidepressants is 

that the latter contain the tricyclic moiety (hence the name, tricyclic antidepressants), and 

exert anticholinergic, adrenergic and histaminergic side effects (such as arterial hypotension 

and dry mouth) (Dell'Osso et al. 2011). Conversely, reboxetine and atomoxetine, are relatively 

‘pure’, and lack any appreciable affinity at other receptor sites, such as 5-HT2A, H1 receptors, 

1-adrenoceptors or muscarinic receptors, which the tricyclics do bind to (Cusack et al. 1994; 

Wong et al. 2000). Nevertheless, studies have suggested that both reboxetine and desipramine 

could be useful in the treatment of ADHD (Biederman et al. 1989; Wilens et al. 1996; 

Ghanizadeh 2014). 
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Reference Dose Species/strain 5-CSRTT test Omissions 
Premature 
responses 

Latencies 

(Baarendse and 
Vanderschuren 
2012) 

0.3, 1 and 3 mg/kg Rat/ Lister-
hooded Baseline ↑ n.s. ↑ 

   
LITI ↑ ↓ ↑ 

(Robinson et al. 
2008) 

0.6, 1 and 3 mg/kg Rat/ Lister-
hooded Baseline n.s. ↓ 

n.s. 
 

(Robinson 2012) 0.3 mg/kg Rat/ Lister-
hooded  Baseline ↑ ↓ n.s. 

   
VITI n.s. ↓ ↑ 

   
LITI n.s. ↓ ↑ 

(Paterson et al. 
2011) 

0.5, 1 and 2 mg/kg Rat/ Long Evans 
VITI n.s. ↓ n.s. 

(Navarra et al. 
2008) 

0.1, 0.5 and 
1 mg/kg 

Rat/ Long Evans 
VITI Not reported ↓ ↑ 

(Sun et al. 2012) 1 mg/kg/day  
for 14 days 

Rat/ Long Evans CHRONIC ATX in adolescence 
before 5-CSRTT training 

n.s. effect on 
baseline 

n.s. effect on 
baseline 

n.s. effect on 
baseline 

   ACUTE challenge with ATX 
(after chronic VEH) 

↑ ↓ ↑ 

   ACUTE challenge with ATX 
(after chronic ATX) 

↑ (to lesser extent 
than VEH group) 

↓ ↑ 

Table 5.3 – The effects of atomoxetine on behaviour of outbred rats performing the 5-CSRTT. ↑ indicates increase, ↓ indicates decrease and n.s. indicates no significant 
difference compared to control (vehicle) condition. LITI; long inter-trial interval, VITI; variable inter-trial interval, ATX; atomoxetine, VEH; vehicle. 
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5.4.3 Atomoxetine has no effect on attention 

In measures of attention (%omissions and %accuracy), here, atomoxetine had no effect on 

either genotype. However, other preclinical studies have reported that atomoxetine improves 

response accuracy in rats (Baarendse and Vanderschuren 2012; Robinson 2012), but on the 

whole, this drug tends to increase %omissions (Baarendse and Vanderschuren 2012; Sun et al. 

2012). This suggests that, in rats at least, attention is best represented in the 5-CSRTT by 

response accuracy, rather than whether the animal makes a response or not (i.e. %omissions), 

which may better represent motivation and/or arousal. In mice, the situation is complicated by 

the extremely high level of accuracy at baseline: a possible explanation of why here, 

atomoxetine had no detectable effect on this measure. This result highlights a limitation of 

using mice in the 5-CSRTT, or an aspect of the test which does not translate well between mice 

and humans, as inattentiveness is consistently reduced by atomoxetine in clinical studies 

(Wilens et al. 2006; Faraone and Glatt 2010; Hazell et al. 2011). 

5.4.4 Mechanism of action  

The mechanism underlying these behavioural responses to atomoxetine is likely to depend on 

catecholaminergic neurotransmission. Although atomoxetine is ~300-fold more selective for 

the NAT than the DAT in vitro, systemic administration of this drug increases synaptic 

concentrations of both noradrenaline and dopamine in the prefrontal cortex (PFC) of outbred 

rats and SHRs (Bymaster et al. 2002; Heal et al. 2009; Ago et al. 2014). This limited, impulse-

dependent increase is consistent with its actions as an uptake inhibitor. Local infusion of 

atomoxetine into the PFC also increases extracellular concentrations of both catecholamines, 

suggesting the effect, at least in part, could be locally mediated (Bymaster et al. 2002). This is 

corroborated by findings that atomoxetine increases c-Fos expression in the PFC, but not the 

striatum of mice (Koda et al. 2010). 

One explanation for the increase in dopamine is that, in the PFC, most of the up-take of 

dopamine could be through the NAT. This explanation has been proposed because NAT 

inhibitors reliably increase extracellular dopamine, and 6OHDA lesions of the dorsal 

noradrenergic bundle (DNAB) prevent this effect (Carboni et al. 1990; Di Chiara et al. 1992; 
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Yamamoto and Novotney 1998). This is supported by evidence from genetically modified mice: 

the efficacy of cocaine to inhibit dopamine uptake into synaptosomes was normal in DAT 

knockout mice, but reduced by 70% in NAT knockout mice (Moron et al. 2002).This explanation 

seems plausible, because the DAT is sparsely expressed in the PFC (Sesack et al. 1998) 

compared with the NAT (Gehlert et al. 1993; Schroeter et al. 2000), and interestingly, the NAT 

has a higher affinity for dopamine than the DAT (Giros et al. 1994; Gu et al. 1994). Consistent 

with this hypothesis, local application of alpha2-adrenoceptor agonists and antagonists, reduce 

and increase, extracellular concentrations of both catecholamines in the PFC, respectively 

(Gresch et al. 1995). Controversially, it has also been suggested that dopamine is co-released 

with noradrenaline in this brain area, although it is not clear whether this is related to the 

ectopic uptake of dopamine by the NAT (Devoto et al. 2001; Devoto and Flore 2006; Devoto et 

al. 2008). 

It has been hypothesized that atomoxetine’s blockade of the NAT increases extracellular 

noradrenaline and dopamine in the PFC, which activates postsynaptic alpha2-adrenoceptors 

and D1 receptors, respectively, to enhance executive function (Arnsten and Li 2005; Gamo et al. 

2010). As discussed in Chapters 3 and 4, optimum activation of prefrontal alpha2-

adrenoceptors is particularly important in attention and spatial working memory (Arnsten et al. 

1988; Franowicz et al. 2002). Impulsivity, on the other hand, may be mediated by both 

prefrontal and striatal brain areas. For example, the nucleus accumbens (NAcc) could be 

critically involved in response control: this nucleus receives dense dopaminergic inputs from 

the ventral tegmental area, but only the shell region is innervated by LC noradrenergic 

neurones (Berridge et al. 1997; Delfs et al. 1998). It follows that microinfusions of atomoxetine 

into the shell, but not the core, regions of the NAcc decreased premature responding in rats 

performing the 5-CSRTT (Economidou et al. 2012). Conversely, the beneficial effect of 

atomoxetine on impulsivity in terms of stopping in the stop signal reaction time task (SSRT) (as 

opposed to waiting in the 5-CSRTT) could be mediated by the dorsal prelimbic and orbitofrontal 

cortices (Bari et al. 2011). This implies that the effects of systemic atomoxetine on impulsivity 

may be mediated by multiple neural circuits, and, given that impulsivity is not a unitary 

construct, could depend on the type of impulsivity exposed by the task.  
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Other evidence implicates prefrontal serotonin in inhibitory control: systemic administration or 

local infusion of 5-HT2A receptor antagonists (ketanserin or M100907, respectively), into the 

mPFC of rats decreases premature responding in the 5-CSRTT (Dalley and Roiser 2012; Passetti 

et al. 2003; Winstanley et al. 2003). Although atomoxetine is only approximately 10-fold more 

selective for the NAT than the SERT, there have been no reports of increased cortical 

serotonergic efflux with systemic atomoxetine treatment. Thus, the effects of atomoxetine on 

impulsivity are unlikely to be mediated directly by cortical 5-HT receptors.  

However, there is some evidence to suggest that another amine neurotransmitter plays a role 

in the behavioural effects of atomoxetine. Histamine is well-known to regulate the sleep-wake 

cycle and arousal, but it may also be involved in cognition. Histamine (H1 or H2) receptor-

deficient mice show impaired learning and memory in a range of tests (Schneider et al. 2014). 

Atomoxetine increases extracellular histamine in the PFC, in normal rats and in SHRs (Horner et 

al. 2007; Liu et al. 2008), and so could facilitate cognitive processes through H1R or H2R 

activation. This possibility warrants further investigation, as histamine receptors could 

represent a novel therapeutic target. 

5.5 Highlights 

 Atomoxetine, an established treatment for ADHD, reduced hyperactive and impulsive 

behaviours in NK1R-/- mice but not wildtypes, and had no effect on attention in either 

genotype. 

 The reduction in impulsivity is unlikely to be explained by a change in animals’ 

motivation for the task, but could relate to parallel changes in motor activity. 

 NK1R-/- mice could be more sensitive to noradrenergic manipulations than wildtypes 

because of underlying differences in their neurochemistry. 

 Atomoxetine may exert its effects by increasing extracellular catecholamines or 

histamine. 

 Atomoxetine may be most suitable for the hyperactive-impulsive subtype of ADHD. 
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Chapter 6. The effects of methylphenidate on 

inattention and impulsivity in NK1R-/- and 

wildtype mice 

6.1 Introduction 

The psychostimulants, amphetamine and methylphenidate, are currently the first-line 

treatments for ADHD (Leonard et al. 2004). Amphetamine was discovered in 1887, and has 

historically been used to treat a wide variety of medical conditions including nasal congestion, 

depression, obesity, narcolepsy and ADHD. Methylphenidate was first synthesized in 1944 by 

Leandro Panizzon. The compound was marketed as a treatment for lethargy and chronic 

fatigue in 1954 as Ritalin, named after Panizzon’s wife, Marguerite or ‘Rita’ for short (Lange et 

al. 2010). However, it was most efficacious in reducing the signs of ADHD. Since its approval, 

the prescription of methylphenidate has steadily increased over the years alongside the 

increasing acceptance of ADHD as a psychiatric disorder (Lange et al. 2010). Despite being 

approved around 60 years ago, when safety regulations were less stringent, methylphenidate 

maintains a good safety record (Godfrey 2009). Moreover, meta-analysis reveals that 

psychostimulants are still more efficacious than non-stimulant options: approximately 70% of 

patients respond to psychostimulant treatment (Faraone et al. 2006).  

In the clinic, stimulants can be delivered through a variety of formulations, including osmotic 

release oral systems (OROS), tablets, capsules and transdermal patches. Combinations of active 

and inactive isomers, as well as immediate and extended release (XR), and pro-drug 

formulations also increase the number of options available (see Antshel et al. 2011). These 

options allow doctors to better tailor the active window of the drug to patients’ needs. 

Moreover, the XR and pro-drug formulations have further reduced the abuse potential of the 

stimulants. However, a demand for non-stimulant alternatives remains. Many patients 

experience intolerable side effects with stimulants, such as loss of appetite, abdominal pain, 

insomnia and headaches (Spencer et al. 2005), or are not eligible because of treatment 
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contraindications: stimulants are inadvisable in patients with tic disorders, tachycardia, 

anorexia or bipolar disorder (Kolar et al. 2008). 

6.1.1 Methylphenidate in rodent models of ADHD 

Both psychostimulants robustly increase extracellular catecholamines in a dose-dependent 

manner in corticostriatal brain areas in rats (Kuczenski and Segal 1997; Bymaster et al. 2002) 

and mice (Koda et al. 2010), but the effects of methylphenidate on ADHD-like behaviour of 

rodents can vary. In the only two studies of methylphenidate in SHRs performing the 5-CSRTT, 

doses of 0.1, 1 and 10 mg/kg (i.p.) (van den Bergh et al. 2006) and 1, 2 and 3 mg/kg (oral) 

(Dommett 2014) were ineffective in modifying any aspect of behaviour. Methylphenidate was 

also ineffective in SHRs in a delay discounting task (Wooters and Bardo 2011). However, doses 

of the drug in the same range improved learning in SHRs in a Morris water maze (10 mg/kg) 

(Guo et al. 2012) and in an attentional set shifting task (2.5 and 5 mg/kg) (Cao et al. 2012). 

In normal, outbred rodents, methylphenidate induces hyperactivity, whereas in rodent models 

of ADHD, the drug should reduce baseline hyperactivity. Methylphenidate actually increases 

the activity of SHRs at doses which increase activity in control strains (Wultz et al. 1990; Amini 

et al. 2004), but decreases activity at doses which have no effect in control strains (Umehara et 

al. 2013). A reduction in activity has also been reported in the DAT KO mouse at doses which 

induce hyperactivity in wildtypes (Gainetdinov et al. 1999). 

6.1.2 Psychostimulants in the NK1R-/- mouse 

We have previously reported that both amphetamine and methylphenidate prevent the 

hyperactivity of NK1R-/- mice (Yan et al. 2010): amphetamine reduces the activity of NK1R-/- 

mice to that of wildtypes, whereas after methylphenidate treatment, the hyperactivity of 

NK1R-/-mice is no longer apparent. Amphetamine also increased impulsivity, but reduced 

perservation, in NK1R-/- mice in the 5-CSRTT (Yan et al. 2011). In terms of neurochemistry, 

NK1R-/- mice display an abnormal response to amphetamine: the drug does not induce an 

increase in extracellular dopamine in the dorsal striatum of these mice, as it does in wildtypes 
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(Yan et al. 2010). The effects of methylphenidate on cognition and neurochemistry are yet to 

be tested. 

6.1.3 The 5-Choice Continuous Performance Task 

In this experiment, methylphenidate was tested in mice performing the 5-Choice Continuous 

Performance Task (5C-CPT). The 5C-CPT is a refinement of the 5-CSRTT: it utilizes original, 

5-CSRTT-type trials where one cue light is illuminated, but the key difference is that it also 

incorporates ‘no-go’ trials, where all five cue lights are illuminated simultaneously, signalling 

that the animal should withhold any response. The 5C-CPT was developed in the mouse as an 

analogue of human continuous performance tasks (Young et al. 2009), and is described as 

measuring ‘vigilance’: the ability to correctly discriminate between signal and non-signal 

stimuli. The no-go trials also provide a measure of impulsivity: on these non-signal trials, mice 

are required to withhold any response. Inability to withhold a response is termed ‘behavioural 

disinhibition’ (Young et al. 2011): this is different to the premature responding discussed in 

Chapters 3 and 5. The two types can be distinguished, because impulsivity is not a unitary 

construct. Different types of impulsivity have been classified in a number of ways by different 

researchers (see Evenden 1999), but most seem to be variations on three constructs; 

timing/motor impulsivity (i.e. premature responding), behavioural disinhibition (i.e. making a 

response when one should not be made), and delayed reward/impulsive choice (i.e. the 

choosing of small, immediate rewards over large, delayed rewards). The former two types of 

impulsivity, together with a measure of vigilance, are tested here to further characterize the 

NK1R-/- mouse and the effects of methylphenidate on cognition. 

6.1.4 Aims 

The aim of this experiment was to further characterise the predictive validity of the NK1R-/- 

mouse by testing whether the first-line ADHD treatment, methylphenidate, reduces two types 

of impulsivity and improves vigilance in these mice.  
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6.2 Methods 

6.2.1 5 Choice Continuous Performance Task 

Only mice from homozygous breeding colonies were used in this experiment. 12 wildtypes and 

12 NK1R-/- mice started training at 6-8 weeks of age. Wildtypes were from two, and NK1R-/- 

mice were from three breeding pairs. Mice were assigned to the four test chambers, 

counterbalancing for genotype, time of day and cage. The training protocol then followed that 

described in section 2.4.2. One wildtype failed to graduate through training, and so was 

excluded from the testing phase.  

This 5C-CPT experiment utilized extended VITI (variable inter-trial interval; 7, 8, 9, 10, and 11 s) 

sessions. The mice were first tested after no injection (NI-1: to be reported elsewhere), and 

then, at once-weekly intervals, tested 30 min after treatment with either methylphenidate (3, 

10 or 30 mg/kg, i.p.), vehicle (VEH) or no injection (NI-2). Each mouse received each treatment 

once, and the treatments were assigned using a pseudo-Williams’ Latin square design, to 

compensate for any effects of repeated testing and possible long term drug effects. The doses 

were based on a pilot study of methylphenidate in the 5-CSRTT, in which there was no effect of 

the drug at doses of 0.5, 2.5 and 5 mg/kg (unpublished observations), and a literature search 

(see Appendix 5). The behavioural outcomes (see section 2.4.2) were stored online. Sensitivity 

Index (SI) was also calculated, according to the following formula, to measure ‘vigilance’, i.e. 

the ability to correctly distinguish between signal and non-signal stimuli: 

SI = PH – PFA/(2(PH+PFA))-(PH+PFA)2 

Where PH (%hits) is [(correct responses/ correct responses + omissions) * 100], and PFA (%false 

alarms) is [(correct rejections/ correct rejections + false alarms) * 100]. 

6.2.2 Statistics 

Raw or transformed data were analysed as described in section 2.6. The number of days taken 

to progress through training were analysed using a one way ANOVA with ‘genotype’ as the 

factor. For the 5C-CPT test data, two- or three-way repeated measures (RM) analyses used 
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‘genotype’ and ‘time of day’ as between-subjects factors and ‘drug’ as the within-subjects 

factor. Where there was no main effect of time of day, this factor was collapsed. Firstly, the 

analysis compared all 5 groups (NI, VEH, MPH3, MPH10 and MPH30). A main effect of 

‘genotype’ or ‘drug’, or an interaction between them, was used as the criterion to progression 

to further analysis. Secondly, the effect of drug (MPH3, 10 and 30) was compared with vehicle: 

all main effects of drug and drug*genotype interactions that are reported are based on the 

results of this second comparison. Post-hoc pairwise comparisons were used to confirm 

differences between individual groups. Statistical significance was set at P<0.05. 

6.3 Results 

There were no main effects of time of day, and no interactions between time of day and any 

other factor, for any variable. Therefore, the data were collapsed across time of day.  

6.3.1 NK1R-/- mice learn the 5C-CPT faster than wildtypes 

The number of days to reach the criteria for testing was divided into two sections; the number 

of days taken to learn the 5-CSRTT aspect of the task, and the number of days taken to learn 

the ‘no-go’, i.e. 5C-CPT, aspect of the task (Figure 6.1). There was no genotype difference in the 

time it took mice to learn each of these sections individually [days to pass 5-CSRTT: [SQRT] 

F(1,21)=3.04, P=0.096, days to pass 5C-CPT: [RANK] F(1,21)=2.92, P=0.102], but NK1R-/- mice took 

fewer days to reach the end of training overall [[SQRT] F(1,21)=9.03, P=0.007, Figure 6.1C]. 

6.3.2 Methylphenidate reduces attention in wildtypes 

There were no genotype differences in %accuracy overall [[RANK]geno: F(1,21)=2.65, P=0.117, 

Figure 6.2A], and methylphenidate had no effect on %accuracy [[RANK]drug: F(3,60)=1.88, 

P=0.143]. 

There were no differences in %omissions between the genotypes overall [[SQRT]geno: 

F(1,21)=0.59, P=0.452, Figure 6.2B], or at NI-2 [WT vs. KO: P=0.356]. Methylphenidate increased 

%omissions in both genotypes [[SQRT]geno*drug: F(3,63)=2.09, P=0.110; drug: F(3,63)=143.19, 
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P<0.001]. However, at 10 mg/kg, %omissions were increased in wildtypes [VEH vs. MPH10: 

P=0.026] but not NK1R-/- mice [VEH vs. MPH10: P=0.402]. At the highest dose (30 mg/kg), 

%omissions were increased in both genotypes [VEH vs. MPH30, WT: P<0.001, KO: P<0.001].  

6.3.3 Methylphenidate reduces impulsivity in NK1R-/- mice, only 

There was no genotype difference in premature responses overall [[SQRT]geno: F(1,21)=0.01, 

P=0.918, Figure 6.2C], or at NI-2 [WT vs. KO: P=0.983]. However, NK1R-/- mice responded with 

fewer false alarms than wildtypes overall [[RAW]geno: F(1,21)=9.15, P=0.006, Figure 6.2D], but 

this just missed statistical significance at NI-2 [WT vs. KO: P=0.085]. 

Impulsivity was attenuated by methylphenidate: the drug reduced %premature responses 

[[SQRT]drug: F(3,63)=18.95, P<0.001] and this did not depend on genotype overall 

[[SQRT]geno*drug: F(3,63)=1.30, P=0.281]. However, 10 mg/kg MPH reduced premature 

responses in NK1R-/- mice only [VEH vs. MPH10: P=0.021]. The highest dose of the drug 

(30 mg/kg) reduced premature responses in both genotypes [VEH vs. MPH30, WT: P<0.001, KO: 

P<0.001]. 

Similarly, %false alarms were attenuated by methylphenidate [[RAW]drug: F(3,63)=41.11, 

P<0.001], in a genotype independent manner [[RAW]geno*drug: F(3,63)=0.36, P=0.779]. 

However, as with premature responses, 10 mg/kg methylphenidate reduced false alarms in 

NK1R-/- mice only [VEH vs. MPH10: P=0.005] and 30 mg/kg methylphenidate reduced false 

alarms in both genotypes [VEH vs. MPH30, WT: P<0.001, KO: P<0.001]. 

6.3.4 Methylphenidate increases vigilance in NK1R-/- mice, but worsens 

vigilance in wildtypes 

The sensitivity index (SI) calculation takes into account omissions, correct responses and false 

alarms, to give a measure of vigilance (Figure 6.3A). NK1R-/- mice had a higher SI (i.e. were 

more vigilant) than wildtypes overall [[RAW]geno: F(1,21)=4.47, P=0.047], but no genotype 

difference was evident at NI-2 [WT vs. KO: P=0.519]. Methylphenidate reduced the SI 

[[RAW]drug: F(3,60)=3.57, P=0.019] in a genotype-independent manner [[RAW]geno*drug: 
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F(3,60)=1.960, P=0.130]. However, at 10 mg/kg, a genotype difference (WT<KO) was evident in 

the SI which was not present at any other dose [WT vs. KO: P=0.003]. 

6.3.5 Methylphenidate prevents perseveration in NK1R-/- mice  

NK1R-/- mice displayed more perseverative responses overall [[LOG10]geno: F(1,21)=8.31, 

P=0.009, Figure 6.3B]. Methylphenidate reduced perseveration [[LOG10]drug: F(3,63)=11.29, 

P<0.001], but just missed the criterion for a genotype-dependent effect [[LOG10]geno*drug: 

F(3,63)=2.71, P=0.053]. All doses of methylphenidate reduced perseveration in NK1R-/- mice 

[VEH vs. MPH3: P=0.017, MPH10: P=0.003, MPH30: P<0.001], but none had any effect in 

wildtypes. 

6.3.6 Methylphenidate has a genotype-dependent effect on motivation for 

the task 

NK1R-/- mice completed more trials overall [[RANK]geno: F(1,21)=4.61, P=0.044, Figure 6.3C]. 

Methylphenidate affected the total trials completed in a genotype-dependent manner 

[[RANK]geno*drug: F(3,63)=12.58, P<0.001]: methylphenidate increased the number of trials 

completed by wildtypes at all doses (bar 30 mg/kg, which just missed significance) [VEH vs. 

MPH3: P=0.049, MPH10: P<0.001, MPH30: P=0.055], but 30 mg/kg methylphenidate reduced 

the number of trials completed by NK1R-/- mice [VEH vs. MPH30: P<0.001]. 

6.3.7 Methylphenidate slows reaction speeds, particularly in wildtypes 

 Methylphenidate increased the latency to correct response in a genotype-dependent manner 

[[RANK]geno*drug: F(3,60)=4.84, P=0.004, Figure 6.3D]. NK1R-/- mice took longer to respond 

correctly than wildtypes [[RANK]geno: F(1,21)=20.29, P<0.001], but this genotype difference was 

ablated by the high dose of methylphenidate, as the drug lengthened reaction times in 

wildtypes only [VEH vs. MPH30, WT: P<0.001, KO: P=0.461].  

Similarly, NK1R-/- mice had a longer to latency to false alarms than wildtypes [[RANK]geno: 

F(1,21)=11.33, P=0.003, Figure 6.3E], and methylphenidate lengthened this measure 

[[RANK]drug: F(3,56)=2.75, P=0.050]. The latency to false alarms was lengthened in wildtypes at 
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10 mg/kg and 30 mg/kg, only [VEH vs MPH10: P=0.50, MPH30: P=0.048]. However, this 

response was not genotype-dependent overall [[RANK]geno*drug: F(3,56)=0.54, P=0.658].  

There was a trend to a genotype difference overall in the latency to magazine [[RANK]geno: 

F(1,21)=3.54, P=0.074, Figure 6.3F]. However, in this measure, methylphenidate reduced reaction 

speeds in both genotypes [[RANK]geno*drug: F(3,60)=1.36, P=0.265; drug: F(3,60)=7.92, P<0.001]. 

This was evident in both genotypes at 10 mg/kg [VEH vs. MPH10, WT: P=0.002, KO: P<0.001], 

but only in NK1R-/- mice at 3 mg/kg and 30 mg/kg [VEH vs MPH3: P=0.040, MPH30: P<0.001].  
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Figure 6.1 – Time taken to graduate through training in the 5-CSRTT (A) and 5C-CPT (B) sections of the 5C-CPT 
experiment by wildtype (white bars) and NK1R-/- mice (grey bars). C: Days taken to pass training criteria in total 

(i.e. A + B). ** P<0.01. Data show mean  SEM. n=11-12 
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Figure 6.2 – The effects of methylphenidate (3, 10 and 30 mg/kg), vehicle (VEH) and no injection (NI-2) on A: 
%accuracy, B: %omissions, C: %premature responses and D: %false alarms in the 5C-CPT, in wildtype (white bars) 
and NK1R-/- mice (grey bars). * P<0.05 vs. vehicle within genotype. Connected bars denote P<0.05. Data show 

mean  SEM. n=11-12. 
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Figure 6.3 – The effects of methylphenidate (3, 10 and 30 mg/kg), vehicle (VEH) and no injection (NI-2) on A: 
sensitivity index, B: perseveration, C: total number of trials, D: latency to correct response, E: latency to false 
alarm and F: latency to magazine in the 5C-CPT, in wildtype (white bars) and NK1R-/- mice (grey bars). * P<0.05 vs. 

vehicle within genotype. Connected bars denote P<0.05. Data show mean  SEM. n=11-12.  
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6.4 Discussion 

The aim of this experiment was to determine whether the first-line ADHD treatment, 

methylphenidate, reduces impulsive and inattentive behaviour in NK1R-/- mice performing the 

5C-CPT. Overall, the findings suggest that methylphenidate robustly reduced impulsivity in 

NK1R-/- mice, at a dose which increased inattention in wildtypes. As discussed below, these 

changes are unlikely to be due to reduced motivation for the task at this dose of drug, but at a 

higher dose, the drug could have decreased motivation and/or ability to carry out the task, 

particularly in wildtypes. Interestingly, the most potent effect of methylphenidate was on 

perseveration: all three doses of the drug prevented perseveration in NK1R-/- mice, but had no 

effect in wildtypes.  

6.4.1 The 5C-CPT  

Here, the 5C-CPT was used as an extension of the 5-CSRTT: it utilized novel ‘no-go’ trials to 

further challenge the vigilance and response control of mice. In this experiment, NK1R-/- mice 

took fewer days to reach testing criteria than wildtypes. It could be that NK1R-/- mice coped 

with the extra step (‘no-go’ trials) better than wildtypes. Although the reason for this is unclear, 

it seems a likely explanation, as NK1R-/- mice expressed fewer false alarms than wildtypes in 

the testing phase.  

The reason that NK1R-/- mice were not impulsive in this cohort, either in terms of premature 

responses or false alarms, remains to be explained. This could be because of the training 

method used: variable inter-trial intervals (VITI) were used in the training phase of the 

experiment, whereas previously (in Yan et al. 2011 and Dudley et al. 2013), the first time mice 

experienced a VITI was during testing. It could be that in this experiment, mice had been 

trained to a higher degree, i.e. impulsivity had decreased with repeated testing (see Weir et al. 

2014). This is corroborated by the results for %accuracy, which also improved with repeated 

testing (Weir et al. 2014): here it was around 99%, whereas in the 5-CSRTT, %accuracy is usually 

around 95% (see Chapter 3 or 5). This may not be a great difference, but could signify the 

overall level to which mice had learned the task.  
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6.4.2 Methylphenidate improves impulsivity in NK1R-/- mice 

One important point to note is that the results of this experiment corroborate the proposal 

that this task measures two distinct types of impulsivity; motor impulsivity (%premature 

responses) and behavioural disinhibition (%false alarms) (Young et al. 2009; Young et al. 2011). 

This is inferred because NK1R-/- mice displayed a similar incidence of, or more, premature 

responses than wildtypes, but fewer false alarms, suggesting the two are distinct behaviours. A 

similar finding was reported in a study which used 5,7-dihydroxytryptamine (5,7-DHT)–lesioned 

rats, suggesting not all measures of impulsivity correlate with each other (Winstanley et al. 

2004). However, methylphenidate reduced both forms of impulsivity, at 10 mg/kg, in NK1R-/- 

mice but not wildtypes. At the highest dose, impulsivity was attenuated in both genotypes, but 

omitted responses were also increased (to around 80%) in both genotypes, indicating that this 

dose was outside of the beneficial dose-range. 

One study comparable to this one, found that methylphenidate reduced impulsivity in rats 

deemed ‘high impulsive’ in the 5C-CPT, but increased impulsivity in ‘low impulsive’ rats, i.e. the 

effects were baseline dependent (Tomlinson et al. 2014), as was the case in a stop signal 

reaction time task (SSRT) (Eagle et al. 2007). The results presented here mirror this in part: 

NK1R-/- mice had a slightly higher baseline of premature responding than wildtypes (although 

this was not statistically significant), which was attenuated by methylphenidate. At odds with 

this proposal is the finding that NK1R-/- mice also expressed fewer false alarms than wildtypes, 

yet methylphenidate further reduced this. The latter result actually strengthens the predictive 

validity of the NK1R-/- mouse, as the effect of methylphenidate was not baseline dependent, 

but genotype dependent.  

The use of these two different tests of impulsivity together suggests something about the 

neurobiology of this behavioural trait. As discussed previously, impulsivity is multi-faceted 

construct: different forms of impulsivity can be measured independently in different tests 

(Dalley and Roiser 2012), and could be separable by their neurobiological underpinnings. 

Abnormal serotonergic and/or dopaminergic transmission is believed to be involved in all forms 

of impulsivity, and the two neurotransmitters may interact (Winstanley et al. 2005; Oades 

2007). Here, impulsivity is discussed either in terms of “stopping” (i.e. on a SSRT, or go/no-go 
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task), “waiting” (i.e. in the 5-CSRTT) or “choice impulsivity” (i.e. in a delayed discounting 

paradigm), although these categories can even be further subdivided.  

Rodent studies have consistently suggested that the monoaminergic systems are involved in 

impulsive behaviour: for example, psychostimulants improve stopping in the SSRT (Feola et al. 

2000; Eagle and Robbins 2003; Eagle et al. 2007). In contrast, psychostimulants generally 

increase impulsivity when waiting is involved (Cole and Robbins 1987; van Gaalen et al. 2006; 

Blondeau and Dellu-Hagedorn 2007), as we have previously reported for amphetamine in the 

5-CSRTT (Yan et al. 2011). This effect is reversed when premature responding is not punished 

(Bizarro et al. 2004). Interestingly, the effect of psychostimulants on choice impulsivity may 

depend on interactions between dopamine and serotonin, because the capacity for 

amphetamine to reduce impulsivity of rats in a delay-discounting paradigm is attenuated when 

brain 5-HT is depleted (Winstanley et al. 2003; Helms et al. 2006). 

Dopamine efflux is reduced in the prefrontal cortex (PFC) of NK1R-/- mice (Yan et al. 2009), 

which could be indicative of why the response to methylphenidate differed in these mice. 

However, because dopamine is taken up by the noradrenaline transporter in the PFC, and 

methylphenidate increases efflux of both catecholamines (Bymaster et al. 2002; Berridge et al. 

2006), it is difficult to separate the relative contribution of cortical dopamine to the 

behavioural response to this drug. Nevertheless, the effect of methylphenidate on rats 

performing a stop-signal reaction time task (SSRT) is not attenuated by the dopamine D1/D2 

receptor antagonist, -flupenthixol (Eagle et al. 2007), suggesting the involvement of a non-

dopaminergic mechanism in impulsivity to some extent.  

Serotonin may be critical for some forms of impulsivity, but not others. For example, 5,7-DHT-

depletion of 5-HT increases waiting impulsivity in rats performing the 5-CSRTT (Harrison et al. 

1997; Harrison et al. 1999), but neither 5-HT depletion nor 5-HT reuptake inhibitors have any 

effect on stopping in a SSRT (Bari et al. 2009; Eagle et al. 2009). However, it should be noted 

that serotonin is strongly implicated in stopping on a go/no-go task, suggesting that this type of 

impulsivity can be further subdivided into ‘action restraint’ (on the go/no-go task) and ‘action 

cancellation’ (on the SSRT) (Eagle et al. 2008). Furthermore, 5-HT depletion has no effect on 

impulsive choice in a delayed discounting paradigm (Winstanley et al. 2004). In either case, 
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methylphenidate has a negligible affinity for the serotonin transporter and does not increase 

extracellular serotonin concentrations in the PFC of rats (Bymaster et al. 2002). Although 

downstream effects cannot be ruled out, the main mechanism of action of the drug is unlikely 

to be serotonergic.  

 “Stopping” 
SSRT/ Go/No-Go 

“Waiting” 
5-CSRTT 

“Choice” 
Delay Discounting 

Dopamine augmentation 
(e.g. amphetamine) 

↓ ↑ ↓ 

Serotonin depletion    
(e.g. 5,7-DHT-lesions) 

No effect or ↑ ↑ --- 

Table 6.1 – A summary of the effects of increasing extracellular dopamine concentrations and decreasing 
extracellular serotonin concentrations on the three types of impulsivity. ↓ impulsivity is improved, ↑impulsivity 
is increased, --- inconclusive. 

Another property of methylphenidate to consider is the drug’s ability to increase histamine 

release (Horner et al. 2007). As discussed in Chapter 5, histamine could contribute to the 

regulation of cognitive processes (Schneider et al. 2014). Studies examining the effects of 

histamine in the 5-CSRTT corroborate the theory that histamine is involved in impulsivity: the 

histamine H3 receptor antagonist, ciproxifan (which increases histamine release (Esbenshade et 

al. 2008)), reduced premature responding, and increased %accuracy in Lister-hooded and Long 

Evans rats performing this task (Ligneau et al. 1998; Day et al. 2007). Although histamine is 

renowned for its regulation of sleep, these effects were apparent without any effects on 

response latencies, i.e. there was no evidence of sedation.  

6.4.3 Methylphenidate attenuates perseveration in NK1R-/- mice 

Methylphenidate was particularly efficacious in attenuating the perseveration displayed by 

NK1R-/- mice: all three doses reduced perseveration in these mice, but not wildtypes. We have 

also previously reported that amphetamine reduced perseveration in NK1R-/- mice in the 

5-CSRTT (Yan et al. 2011).  

Although the distinct behaviour that ‘perseveration’ describes is not yet fully understood, it has 

been suggested that it could be a form of ‘checking’, which is common in patients with 
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obsessive compulsive disorder (OCD). This is noteworthy given the overlap between ADHD and 

OCD (Geller 2006). Another suggestion is that this behaviour could be a type of ‘tic’, 

reminiscent of those seen in Tourette’s syndrome: a disorder which can also be comorbid with 

ADHD (Ludolph et al. 2012). However, the pharmacology of perseveration does not support this 

theory: methylphenidate (reported here) and amphetamine (Yan et al. 2011) improve this 

behaviour in NK1R-/- mice, but these drugs are reported to worsen tics, or even induce the 

onset of tics, in the clinic (Erenberg 2005). Similarly, guanfacine is effective in reducing ADHD 

with comorbid tics (Bloch et al. 2009), but guanfacine had no effect on perseveration in 

NK1R-/- mice (Chapter 3).  

In any case, it is remarkable that the lowest dose of methylphenidate (3 mg/kg) did not affect 

measures of attention or impulsivity, but did reduce perseveration. At the very least, this 

suggests that perseveration is controlled by different neurocircuitry/neurochemistry than the 

key ADHD behaviours. If perseveration does represent a ‘checking’ behaviour, the results 

presented here suggest that methylphenidate could be a useful treatment option for patients 

expressing this type of obsessive/compulsive checking. Moreover, methylphenidate could be 

particularly effective in alleviating this behaviour in a subset of ADHD patients with TACR1 

polymorphisms.  

6.4.4 Methylphenidate reduces attention in wildtype mice  

At the same dose (10 mg/kg) which reduced impulsivity in NK1R-/- mice, attention 

(%omissions) was reduced in wildtypes, but not NK1R-/- mice. This effect on %omissions, 

combined with the result for %false alarms, equated to a genotype difference in vigilance when 

measured by the sensitivity index (taking %omissions and %false alarms into account), such 

that NK1R-/- mice were more vigilant than wildtypes. Another measure of attention, response 

accuracy, remained unaffected by methylphenidate at any dose. As discussed in Chapters 3 

and 5, this is likely due to a) the high level of %accuracy at baseline, and b) attention being 

better represented by %omissions in mice. The increase in %omissions at 10 mg/kg in wildtypes 

is unlikely to be explained by reduced motivation for the task, as other measures of motivation 

(total number of trials, latency to correct response/magazine) either did not change, or 
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suggested increased motivation for the task at this dose. Others have reported that 

methylphenidate has no effect on attention (%accuracy) (Paterson et al. 2011) or increases this 

measure in rats (Paine et al. 2007). The difference between these studies and the results 

reported here could suggest that methylphenidate has distinct effects on rats and mice, or that 

the 5-CSRTT does not provide a sensitive measure of the effects of methylphenidate on 

attention in mice.  

At the highest dose (30 mg/kg), methylphenidate increased omissions in both genotypes. At 

this dose, motivation could be reduced, as the latency to correct response was increased in 

wildtypes. Conversely, the latency to reward was reduced in NK1R-/- mice, but this is likely to 

be explained by the reduction in perseveration, as mice did not spend time ‘perseverating’ 

before collecting the reward. Stimulants have been used as appetite suppressants since the 

1950s (Fernstrom and Choi 2008). Moreover, a common side effect of methylphenidate in 

humans is reduced appetite, and so reduced appetitive motivation for the task could certainly 

explain the behaviour observed when mice were tested with the highest dose of drug.  

6.5 Highlights 

 NK1R-/- mice did not display impulsivity in terms of ‘stopping’ (%false alarms) in the 

5C-CPT. 

 Methylphenidate reduced impulsivity in terms of waiting (%premature responses) and 

stopping (%false alarms) in NK1R-/- mice at a dose which had no effect on these 

measures in wildtypes.  

 The catecholaminergic response to methylphenidate could underpin the reduction in 

impulsivity observed here, but the effects of this drug on extracellular histamine 

concentration could also contribute to the behavioural profile of this drug. 

 At the highest dose tested, methylphenidate blunted all forms of behaviour in both 

genotypes, and could have reduced motivation for the task. 

 Methylphenidate was most effective in reducing perseveration in NK1R-/- mice, 

suggesting this drug could be most useful for alleviating this trait in ADHD patients with 

TACR1 polymorphisms. 
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Chapter 7.  Investigating the body composition of 

wildtype and NK1R-/- mice 

7.1 Introduction 

In Chapters 3, 5 and 6, the 5-CSRTT and 5C-CPT were used to examine the behavioural 

abnormalities of NK1R-/- mice. The results were mostly discussed in terms of neurochemistry. 

However, other important factors to consider are the weight and food intake of these mice 

compared with wildtypes, especially given that the 5-CSRTT and 5C-CPT are operant tasks in 

which mice respond for an appetitive reward. The NK1R-/- mice used in the experiments 

detailed in Chapters 3, 5 and 6 were smaller than their wildtypes counterparts, as were those in 

the experiments reported in (Dudley et al. 2013), yet it has been suggested that ADHD can be 

comorbid with obesity (Cortese et al. 2008). 

7.1.1 ADHD and obesity 

Comorbidities between ADHD and other psychiatric disorders have been investigated 

extensively. However, the overlap between ADHD and medical conditions such as obesity is less 

clear. Obesity, defined as a BMI (body mass index) greater than 30, is a highly prevalent 

condition in the Western world. Globally, 35% of adults over 20 years old were overweight, and 

12% were obese, in 2008 (www.who.int/gho/en). Obesity is considered one of the most 

common indirect causes of morbidity. It is difficult to define the cross-over between ADHD and 

obesity because of many confounding factors, for example, psychiatric conditions comorbid 

with ADHD, e.g. depression, anxiety or drug addiction, may also influence weight. Despite these 

limitations, evidence does suggest an association between ADHD and obesity in 

children/adolescents (Waring and Lapane 2008) and adults (Cortese et al. 2013). 

The incidence of ADHD in obese individuals varies widely from study to study: estimates vary 

from 13% to 58%, compared with about 5% in the general population (Altfas 2002; Erermis et 

al. 2004; Agranat-Meged et al. 2005; Fleming et al. 2005). This relationship is also bidirectional. 
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Studies on the weight status of individuals with ADHD have similarly shown that these patients 

have higher BMI-SDS (standard deviation scores, or z-scores) than controls (Curtin et al. 2005; 

Anderson et al. 2006; Hubel et al. 2006).  

 This link between ADHD and obesity is somewhat counterintuitive: it might be expected that a 

hyperactive individual is more likely to be underweight than overweight. Nevertheless, 

inattentiveness and impulsivity may influence an individual to gain weight, more so than 

hyperactivity might induce weight loss. A number of mechanisms of how ADHD and obesity 

overlap have been proposed (see section 1.9.1), however, no study has, to date, investigated 

the temporal relationship between ADHD and obesity: such longitudinal studies would be 

necessary to determine which theory is most likely. 

7.1.2 Weight and food intake of NK1R-/- mice  

If any of the aforementioned theories of the overlap between ADHD and obesity also apply to 

NK1R-/- mice, it might be expected that these mice have a disrupted metabolism and/or eating 

pattern. The food intake of mice was monitored and controlled over the duration of the 

5-CSRTT/5C-CPT experiments (see Appendix 6): from these data it is clear that NK1R-/- mice 

need to eat more in relation to their body weight, than wildtypes, to maintain the same weight. 

NK1R-/- mice could have a faster metabolism, which could affect their appetite when food is 

restricted. They could also have underlying differences in body composition. However, in the 

5-Choice tasks, mouse weight and food intake are controlled. It would therefore be of interest 

to examine the body composition of wildtype and NK1R-/- mice under normal feeding 

conditions.  

We might expect a hyperactive animal to be leaner, despite consuming more food. However, if 

NK1R-/- mice follow the same paradox that is seen in ADHD, they may have increased 

percentage body fat compared with wildtypes. By the same token, a high fat (“Western”) diet 

could induce a greater weight and body fat gain in NK1R-/- mice than wildtypes, as a diet rich in 

fat is particularly obesogenic in humans (Mozaffarian et al. 2011). 
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7.1.3 Gender differences in ADHD with comorbid obesity 

In behavioural studies female mice were avoided, because changes in behaviour due to 

hormonal fluctuations necessitate the use of more animals to reduce variation in the results. 

Moreover, the process used to measure the stage of oestrous cycle is highly stressful. However, 

there is limited evidence to suggest that the association between ADHD and obesity is gender-

dependent. One study found that an association between obesity and ADHD behaviours was 

only present in adolescent females (van Egmond-Frohlich et al. 2012), and others have 

reported stronger risk of comorbidity in females than males (Kim et al. 2011; Byrd et al. 2013). 

For this reason, it is also of interest to compare the body composition of both male and female 

mice. 

7.1.4 Body composition analyses 

In this Chapter, the body composition of wildtype and NK1R-/- mice of both genders, fed a 

normal or a high fat diet, was examined. This analysis was carried out by two different, but 

comparable methods. The ‘gold standard’ remains chemical composition analysis: each 

component of the animal’s carcass is analysed separately using analytical chemistry. Dual 

energy X-ray absorptiometry (DEXA) analysis is commonly used in a clinical setting to diagnose 

osteoporosis (see Chapter 2, section 2.5.1), but has recently been back-translated for use in 

rodents. Here, both of these techniques are used in parallel to allow comparisons to be made 

between the two. Moreover, chemical analysis is used with the aim of further validating DEXA 

as an accurate and precise method of measuring body composition in rodents. 

7.1.5 Aims 

The first aim of these experiments was to test the prediction that NK1R-/- mice might have a 

higher body fat percentage than wildtypes, under normal conditions and after exposure to a 

high fat “Western” diet. In doing this, these experiments also aimed to determine whether 

females are more susceptible to changes in weight and body composition than males, as may 

be the case in ADHD. The second aim of these experiments was to further test the validity of 
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the use of DEXA in a preclinical setting, by comparing the results of DEXA analysis with chemical 

composition analysis. 

7.2 Methods 

7.2.1 Normal diet  

Mice were weaned on to a normal diet (2018 global Rodent Diet, Harlan; see Appendix 7) at 

3 weeks old. At 6 weeks (1 day) of age, nose to tail lengths were measured before the mice 

were culled by a Schedule 1 method. Carcasses were frozen at -20°C until the analysis.  

7.2.2 High fat diet 

A separate batch of mice was weaned at 3 weeks of age, onto a diet in which 45% of the 

calories derived from fat (Research Diets, NJ, USA). The constituents of the diet and their 

calorific values are given in Appendix 8. Animals were maintained on this diet for 28 days and 

were weighed daily. The food hopper was also weighed daily to determine food consumption. 

The amount of food consumed by each cage of mice was divided by the number of mice in that 

cage, to give the weight of food consumed per mouse. This was used to calculate a ratio of 

food eaten to body weight. At the end of the 28 days (at 7 weeks of age) mice were culled and 

nose to tail lengths measured as above. Carcasses were frozen at -20°C until needed.  

In both cases mice were group housed, and had ad libitum access to water and the respective 

diet. 

7.2.3 Body composition analyses 

Body composition analyses were performed as described in Chapter 2, section 2.5. DEXA 

analysis was performed on whole carcasses of mice, and chemical analysis was performed on 

samples of milled, freeze-dried carcasses. 



Chapter 7 

 

163 

 

DEXA 

The DEXA analysis gave data for; 

 Total tissue mass (TTM; g)  Bone area (BA; cm2) 

 Tissue area (TA; cm2)  Bone mineral content (BMC; g) 

 Fat mass (FM; g)  Bone mineral density (BMD; g/cm2) 

 %Fat   

Chemical analysis 

The results of the chemical analysis were used to calculate; 

 %Water   %Ash 

 %Fat  %Protein 

7.2.4 Statistics 

The weight and food intake of mice over 28 days on a high fat diet were analysed using 

repeated measures analyses, with between-subjects factors of ‘genotype’ and ‘gender’, and 

within-subjects factor of ‘day’. First, the analysis compared the 4 groups: if there was a main 

effect of either genotype or gender, the analysis progressed to a second comparison of each 

gender separately. Post-hoc LSD tests revealed differences between the genotypes on 

individual days.  

Single measures ANOVA was used the main factors of ‘genotype’ and ‘gender’ to analyse the 

results of the body composition studies. A main effect of either of these factors, or interaction 

between them, was used as the criterion for progression to post-hoc comparisons in the LSD 

test. The comparisons between DEXA and chemical analysis were performed using Pearson’s 

correlation analysis and linear regression.  
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7.3 Results 

7.3.1 Wildtype and NK1R-/- mice gain weight at the same rate on a high fat 

diet (Figure 7.1) 

Over 28 days of ad lib access to high fat diet, the weight gain (Figure 7.1A) of mice depended 

on gender, such that females weighed less than males [[RAW]gender: F(1,33)=103.12, P<0.001], 

and to some extent, on genotype, though this just missed the criterion for significance 

[[RAW]geno: F(1,33)=3.83, P=0.059]. These two factors did not interact [[RAW]geno*gender: 

F(1,33)=1.15, P=0.292]. However, female wildtype mice weighed less than NK1R-/- females on 

days 1 - 16 and 24 – 28, but at no point did the weight of the two genotypes differ in males.  

The mass of food eaten (Figure 7.1B) reflected the differences in weight: males ate more food 

than females over the 28 days [[RAW]gender: F(1,7)=28.77, P<0.001], but mice ate the same 

amount regardless of genotype [[RAW]geno: F(1,7)=1.39, P=0.278]. However, a difference 

between wildtype and NK1R-/- mice was evident on a few individual days. 

When the ratio of ‘food eaten to body weight’ was calculated (Figure 7.1C), wildtype and 

NK1R-/- mice ate the same amount of food in proportion to their body weight [[SQRT]geno: 

F(1,33)=0.1, P=0.749]. The mass of food eaten in proportion to body weight was also 

independent of gender [[SQRT]gender: F(1,33)=0.24, P=0.624], and the two factors did not 

interact [[SQRT]geno*gender: F(1,33)=0.98, P=0.329]. However, mice did eat progressively less 

food over the 28 days, relative to their weight [[SQRT]day: F(26, 858)=53.46, P<0.001].  
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Figure 7.1 – A: Weight gain, B: food eaten, and C: ratio of weight to food eaten by wildtype and NK1R-/-, male and 
female, mice over 28 days of access to a high fat diet. n=8-10 per group in A and C, n=2-3 cages per group in B. 

Data shows mean  SEM. * P<0.05 wildtype versus NK1R-/- within gender.  
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7.3.2 NK1R-/- mice are smaller than wildtypes (Figure 7.2) 

Weight 

On a normal diet, NK1R-/- mice weighed less than wildtypes [[RANK]geno: F(1,36)=5.75, P=0.022]. 

This did not depend on gender [[RANK]geno*gender: F(1,36)=0.79, P=0.380], but did reach 

statistical significance in males [WT vs. KO: P=0.026], not females [WT vs. KO: P=0.293]. 

Females also weighed less than males in both genotypes [WT: P<0.001, NK1R-/-: P=0.001]. 

 By contrast, by the end of 28 days on a high fat diet, male NK1R-/- mice weighed the same as 

male wildtypes [[RANK]geno: F(1,33)=5.24, P=0.029; male WT vs. KO: P=1.000]. Moreover, female 

NK1R-/- mice weighed more than female wildtypes [female WT vs. KO: P=0.002], such that 

overall, weight depended on an interaction between genotype and gender 

[[RANK]geno*gender: F(1,33)=5.59, P=0.024]. Females of both genotypes weighed less than 

males [[RANK]gender: F(1,33)=130.1, P<0.001]. 

Size 

On a normal diet, NK1R-/- mice were smaller (nose to tail length) than wildtypes in both 

genders [[RANK]geno: F(1,36)=53.97, P<0.001]. However, males and females were the same size 

as each other [[RANK]gender: F(1,36)=0.25, P=0.623]. This was replicated in the tail length: males 

and females had the same tail length, but NK1R-/- mice had much smaller tails than wildtypes 

[[RANK]geno: F(1,36)=51.70, P<0.001; gender: F(1,36)=0.01, P=0.919]. A similar pattern was 

observed in mice fed a high fat diet: NK1R-/- mice of both genders were smaller than wildtypes, 

in terms of nose to tail length [[RAW]geno: F(1,33)=9.75, P=0.004] and tail length [[RAW]geno: 

F(1,33)=19.87, P<0.001]. However, in this cohort, females were smaller than males in both 

measures [nose-tail: [RAW]gender: F(1,33)=25.59, P=0.001; tail: [RAW]gender: F(1,33)=7.01, 

P=0.012]. 

Body Mass Index (density) 

When BMI was taken as a pseudo measure of ‘density’ (i.e. grams per cm2), the same pattern 

was evident in both groups of mice: NK1R-/- mice had a higher BMI than wildtypes in the 



Chapter 7 

 

167 

 

normal diet [[[RANK]geno: F(1,36)=14.55, P<0.001] and the high fat diet groups [RANK]geno: 

F(1,33)=26.66, P<0.001]. Females also had a lower BMI than males in both groups [normal diet 

[RANK]gender: F(1,36)=160.31, P<0.001]; HFD [RANK]gender: F(1,33)=179.06, P<0.001]. 
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Figure 7.2 – Weight (A & B), length (C & D), tail length (E & F) and body mass index (BMI: G & H) of wildtype (white 
bars) and NK1R-/- mice (grey bars) after access to a normal or high fat diet. n=8-10, * P<0.05, ** P<0.01, 

*** P<0.001 NK1R-/- versus wildtype, ^ P<0.05, ^^ P<0.01, ^^^ P<0.001 male versus female. Data show mean  
SEM.  



Chapter 7 

 

168 

 

7.3.3 DEXA analysis of body fat (Figure 7.3) 

DEXA estimated the total tissue mass, tissue area and fat content of the animals. In mice fed a 

normal diet, the total tissue mass of mice depended on genotype [[RANK]geno: F(1,36)=36.17, 

P<0.001] and gender [[RANK]gender: F(1,36)=105.97, P<0.001]: overall, NK1R-/- mice were 

smaller than wildtypes, and females were smaller than males. Tissue area also depended on 

genotype and gender, and these two factors interacted [[RANK]geno*gender: F(1,36)=4.68, 

P=0.037]: NK1R-/- females were smaller than wildtype females [P=0.001], but this was not the 

case in males [P=0.644]. After exposure to a high fat diet, the genotype difference was lost 

[[LOG10]geno: F(1,33)=0.40, P=0.531], but females still had a lower total tissue mass than males 

[[LOG10]gender: F(1,33)=209.72, P<0.001], independent of genotype [LOG10]geno*gender: 

F(1,33)=3.02, P=0.092]. Tissue area was also smaller in females [[RAW]gender: F(1,33)=50.87, 

P<0.001]. There was a trend towards a genotype difference in tissue area overall [[RAW]geno: 

F(1,33)=3.23, P=0.08]: NK1R-/- females were larger than wildtype females [WT vs. KO: P=0.049], 

but no difference was observed in males after exposure to a high fat diet. 

The mass of fat in mice on a normal diet was the same in both genotypes [[RANK]geno: 

F(1,36)=0.15, P=0.699], but since NK1R-/- mice had a lower total tissue mass, this translated to a 

higher %fat in NK1R-/- mice [[RANK]geno: F(1,36)=12.1, P=0.001], in males [WT vs. KO: P=0.002], 

but not females [WT vs. KO: P=0.138]. In mice fed a high fat diet, this genotype difference was 

lost: %fat was the same in males and females [[RAW]gender: F(1,33)=1.04, P=0.316], and in 

wildtypes and NK1R-/- mice [[RAW]geno: F(1,33)=0.10, P=0.753]. Fat mass was also independent 

of genotype [[LOG10]geno: F(1,33)=0.00, P=0.951], but was lower in females than males 

[[LOG10]gender: F(1,33)=34.47, P<0.001].  
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Figure 7.3 – DEXA estimates of the tissue area (A & B), tissue mass (C & D), fat mass (E & F) and %fat (G & H) of 
wildtype (white bars) and NK1R-/- mice (grey bars) fed a normal and high fat diet. n=8-10, * P<0.05, ** P<0.01, 

*** P<0.001 NK1R-/- versus wildtype, ^ P<0.05, ^^ P<0.01, ^^^ P<0.001 male versus female. Data show mean  
SEM.  
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7.3.4 DEXA analysis of bone density (Figure 7.4) 

The results of the DEXA bone analysis revealed that, on a normal diet, NK1R-/- mice had a 

smaller bone area than wildtypes [[RANK]geno: F(1,36)=5.95, P=0.020], and this was independent 

of gender [[RANK]geno*gender: F(1,36)=0.01, P=0.943]. However, in mice fed a high fat diet, 

bone area was determined by both genotype and gender [[RAW]geno*gender: F(1,33)=6.30, 

P=0.017]. Female wildtypes had a smaller bone area than female NK1R-/- mice [WT vs. KO: 

P=0.001], but no genotype difference was evident in males [WT vs. KO: P=0.957]. 

Bone mineral content depended on an interaction between genotype and gender in mice fed a 

normal diet [[RANK]geno*gender: F(1,36)=8.04, P=0.008] and mice fed a high fat diet 

[[RAW]geno*gender: F(1,33)=6.85, P=0.013]. Female wildtypes had a lower bone mineral content 

than male wildtypes in the normal diet [WT male vs. female: P<0.001] and high fat diet groups 

[WT male vs. female: P<0.001]. In the normal diet group there was a genotype difference in 

males [WT vs. KO: P<0.001], in the high fat diet group there was a genotype difference in 

females [WT vs. KO: P=0.016]. 

As a result of these differences, bone mineral density (BMD: bone mineral content per square 

centimetre), depended on an interaction between genotype and gender in the normal diet 

group [[RANK]geno*gender: F(1,36)=24.70, P<0.001], but not the high fat diet group 

[[RAW]geno*gender: F(1,33)=2.34, P=0.136]. In mice fed a normal diet, NK1R-/- males had lower 

BMD than wildtype males [WT vs KO: P<0.001], but the opposing difference in females just 

missed the criterion for significance [WT vs KO: P=0.056].  In mice fed a high fat diet, female 

wildtypes had a lower bone mineral density than male wildtypes [WT male vs. female: 

P<0.001], but no gender difference was present in NK1R-/- mice [KO male vs. female: P=0.227]. 
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Figure 7.4 – DEXA estimates of the bone area (A & B), bone mineral content (C & D)  and bone mineral density  
(E & F) of wildtype (white bars) and NK1R-/- mice (grey bars) fed a normal and high fat diet. n=8-10, * P<0.05, 
** P<0.01, *** P<0.001 NK1R-/- versus wildtype, ^ P<0.05, ^^ P<0.01, ^^^ P<0.001 male versus female. Data show 

mean  SEM.  
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7.3.5 Chemical analysis of body composition (Figure 7.5) 

The chemical analysis was divided into four main areas: water, fat, protein and ash. 

Water 

In mice fed a normal diet, there was an overall difference between the genders [[RANK]gender: 

F(1,36)=6.69, P=0.014] in relative water content, and this did not depend on genotype 

[[RANK]geno*gender: F(1,36)=2.81, P=0.103]. However, female wildtypes had a lower %water 

content than male wildtypes [P=0.005], but there was no difference in NK1R-/- mice [P=0.524]. 

The water content of mice which had been on a high fat diet depended on an interaction 

between genotype and gender [[RAW]geno*gender: F(1,33)=10.31, P=0.003]: NK1R-/- males had 

lower %water than wildtype males [WT vs. KO: P<0.001], but no difference was evident in 

females [WT vs. KO: P=0.365]. 

Fat 

The differences in %fat were, on the whole, the opposite of those observed for %water. 

Relative fat content depended on gender in the two genotypes in both the normal diet 

[[RANK]geno*gender: F(1,36)=10.22, P=0.003] and high fat diet [[RAW]geno*gender: F(1,33)=10.44, 

P=0.003] group. In the normal diet group, wildtype females had a higher %fat than wildtype 

males [male vs. female: P<0.001], but no difference was evident in NK1R-/- mice [male vs. 

female: P=0.982]. The same difference was apparent in the high fat diet group: a gender 

difference was evident in wildtypes [WT vs. KO: P<0.001] but not NK1R-/- mice [WT vs. KO: 

P=0.859]. In the normal diet group a genotype difference (WT>KO) was apparent in females 

[WT vs. KO: P=0.009], but in contrast, the opposite genotype difference (WT<KO) was evident 

in males in the high fat diet group [WT vs. KO: P=0.003]. 

Protein 

Protein content depended on gender in both the normal diet group [[RANK]gender: 

F(1,36)=15.33, P<0.001], and high fat diet group [[RANK]gender: F(1,33)=53.35, P<0.001], such that 

females had a lower %protein content than males in both genotypes in the high fat diet group 
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[WT male vs. female: P<0.001; KO male vs. female: P<0.001], and in wildtypes in the normal 

group [WT male vs. female: P<0.001]. 

Ash 

Gender was also the main cause of differences in terms of %ash, in mice fed a normal diet 

[[RANK]gender: F(1,36)=29.40, P<0.001], and high fat diet [[RANK]gender: F(1,33)=39.49, P<0.001]. 

This was evident in both genotypes in both groups [male vs. female: normal diet, WT: P=0.006; 

KO: P<0.001; high fat diet, WT: P<0.001; KO: P<0.001].  
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Figure 7.5 – Chemical analysis of %water (A & B), %fat (C & D), %protein (E & F) and %ash (G & H) of wildtype 
(white bars) and NK1R-/- mice (grey bars) fed a normal or high fat diet. n=8-10, * P<0.05, ** P<0.01, *** P<0.001 
NK1R-/- versus wildtype, ^ P<0.05, ^^ P<0.01, ^^^ P<0.001 male versus female. 
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7.3.6 DEXA analysis over-estimates %fat  

The results of the DEXA and chemical analysis were compared using a correlation analysis 

(Figure 7.6). There was a linear relationship between %fat as calculated by DEXA and by 

chemical analysis (R2=0.617, P<0.001). However, DEXA over-estimated %fat by about 9%: 

Body fat (%) = 1.32 * DEXA fat (%) - 9.16 

The relationship between bone mineral content (g) and ash (g) was also linear (R2=0.792, 

P<0.001). DEXA underestimated bone mineral content by a negligible amount: 

Body ash (g) = 0.607 * DEXA bone mineral content (g) + 0.039 

As DEXA estimates total tissue mass (TTM) by analysis of fat and bone mass, TTM was also 

compared with actual mouse weight. There was a linear relationship between TTM and mouse 

weight (R2=0.874, P<0.001), but DEXA underestimated tissue mass by 3.63g: 

Mouse weight (g) = 1.13* DEXA TTM (g) + 3.63 
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Figure 7.6 – Comparison of %fat (A), bone/ash (B) and mass (C) as measured by DEXA and chemical analysis. Line 
represents best-fit. n=77.  
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7.4 Discussion 

The aim of the experiments detailed in this Chapter was to investigate whether there are 

underlying differences in body composition between NK1R-/- mice and wildtypes of both 

genders. The results confirmed that NK1R-/- mice are smaller, and weigh less, than wildtypes of 

the same gender. However, NK1R-/- mice were denser than wildtypes in a measure of ‘BMI’. In 

lean animals fed a normal diet, there were small genotype differences in fat content, which 

depended on gender, when measured by the gold-standard analysis technique (chemical 

analysis). When mice were fed a high fat diet (HFD), these differences followed the same 

pattern, but all mice had a higher body fat content. DEXA analysis of fat correlated reasonably 

well with chemical analysis, but significantly over-estimated fat content. Despite this, DEXA 

analysis of bone was accurate and precise. Bone density depended on interactions between 

genotype and gender, and all mice had a higher bone density after access to a HFD.  

Analysis of the data collected over the duration of the 5-CSRTT/5C-CPT experiments (see 

Appendix 6) revealed that NK1R-/- mice needed to eat more, relative to their body weight, than 

wildtypes, to maintain the same weight. However, there are a number of factors which could 

have affected the weight of mice in the 5-CSRTT/5C-CPT tasks, such as the amount of milk 

reward obtained in the task, age and energy expenditure. These factors were effectively 

accounted for, as the mass of food mice were given depended on their weight. Therefore to 

investigate body composition, mice were given ad libitum access to either a normal diet or a 

high fat diet. 

7.4.1 Body fat  

When measured by the gold standard of carcass analysis, body fat depended on interactions 

between genotype and gender in both the normal diet and high fat diet groups of mice. 

Although the two diet groups are not directly comparable, mice on a high fat diet had a 3-5% 

higher fat content than those on a normal diet. Nevertheless, the same pattern was evident in 

both diet groups: NK1R-/- males had increased %fat compared to wildtypes, whereas NK1R-/- 

females had decreased %fat compared to wildtypes. The same pattern could have been evident 
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because there was no difference between the genotypes or genders in the amount of high fat 

diet they consumed, relative to body weight. 

The literature generally suggests that the substance P (SP)/NK1R system acts to reduce fat 

storage and weight gain (Miegueu et al. 2013). Tac1−/− mice, which lack substance P and 

neurokinin A (as both are alternatively spliced from the same gene: see Chapter 1, section 1.6), 

show reduced weight gain and reduced circulating leptin and insulin in response to a HFD 

(Karagiannides et al. 2011). Karagiannides et al also report that NK1R antagonists reduce 

weight and adiposity, and improve insulin signaling in obese ob/ob mice (Karagiannides et al. 

2008). Moreover, NK1R antagonists prevent weight gain and fat accumulation in normal mice 

on a HFD (Karagiannides et al. 2008). This is in opposition to the results reported here: NK1R-/- 

males gained more fat than wildtypes on a HFD, and the opposite genotype difference 

(WT>NK1R-/-) in female mice on a normal diet was ablated in those on a HFD.  

The reason for this difference is not clear, but could relate to a mismatch between functional 

ablation of NK1Rs from birth, and acute antagonism of NK1Rs (likely at less than 100% receptor 

occupancy). However, these findings do support the theory that NK1R-/- mice resemble ADHD 

patients, in so far as these subjects are more prone to increased adiposity/obesity on a 

‘Western’ (high fat) diet. The hypothesis that a subset of ADHD patients with TACR1 

polymorphisms have a higher risk of developing obesity is worth investigating. 

Another interesting factor is the difference between male and female mice. The studies 

examining the effect of NK1R antagonists on weight gain of mice on a HFD discussed above 

used male mice, only. To date, no study has examined the influence of the SP/NK1R system on 

the adiposity of male mice compared with females. There is limited literature describing the 

relationship between the SP/NK1R system, adiposity and gender. However, there are reports of 

interactions between SP/NK1Rs and gender which could relate to the differences in adiposity 

observed here. Tac1 mRNA-expressing neurones are found in the medial preoptic area, arcuate 

nucleus and ventromedial nucleus of the hypothalamus (Harlan et al. 1989; Marksteiner et al. 

1992; Maeno et al. 1993), areas which are strongly implicated in food intake and energy 

homeostasis (see Williams et al. 2001). Importantly, some evidence suggests that expression of 

this Tac1 mRNA could be under hormonal control. Exposure of ovariectomised rats to 
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oestrogen (estradiol benzoate) up-regulates Tac1 mRNA in the hypothalamus (Brown et al. 

1990), specifically in the ventromedial nucleus (Akesson 1994). Similarly, although not directly 

linked to energy homeostasis, estradiol has also been reported to increase NK1R expression in 

rat pancreatic acinar cells, giving another example of sexual dimorphism in the SP/NK1R 

system. 

A gender difference has also been reported in humans: one PET study using a labelled NK1R 

antagonist ([¹¹C]GR205171) found that women had a lower density of NK1Rs in the thalamus 

than men (Engman et al. 2012). These studies hint that hormonal control of NK1R gene 

expression could influence the role of NK1R, not only in energy homeostasis and control of 

adiposity, but in many their many functions in the CNS and periphery. It could also help to 

explain why females with ADHD may be more susceptible to comorbid obesity (Kim et al. 2011; 

van Egmond-Frohlich et al. 2012; Byrd et al. 2013). This is an area which could benefit from 

further research, as better understanding of the hormonal control of the SP/NK1R system could 

lead to improved, targeted treatments for ADHD and/or obesity.  

7.4.2 Bone density 

As with %fat, a similar pattern was observed in both the HFD and normal diet groups: bone 

mineral density (BMD) was lower in male NK1R-/- mice than male wildtypes, but this was not 

the case in females. However, in the HFD group, the genotype difference in males was no 

longer statistically significant. Moreover, all mice which had been on a HFD had a higher BMD 

than those on a normal diet. 

The result that NK1R-/- mice had a lower BMD than wildtypes is noteworthy, as we might 

expect hyperactive NK1R-/- mice to have an increased BMD, given that exercise is widely 

accepted to increase bone mass (Behringer et al. 2014). The reason for the genotype difference 

could be due to the influence of NK1Rs on bone metabolism. NK1Rs are present in bone cells, 

and substance P immuno-reactive (SP-IR) axons innervate bone and surrounding tissues (Goto 

et al. 1998). SP-IR axons appear in development at a stage which coincides with mineralization 

of long bones (Gajda et al. 2005), and thereafter, substance P could act at NK1Rs on osteoblasts 

to stimulate osteogenesis and bone mineralization (Goto et al. 2007, but see Liu et al. 2007). 
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One study also demonstrated that substance P dose-dependently increased the rate of 

proliferation of chondrocytes (cartilaginous cells), via actions at NK1Rs (Opolka et al. 2012).This 

could explain why, in male NK1R-/- mice at least, bone mineral density was decreased 

compared to wildtypes.  

Despite this evidence for the role of NK1Rs in bone formation and mineralization, little is 

known about their role in bone disorders and pathologies. Even less evidence is available to link 

bone pathologies (e.g. osteoporosis) with ADHD, as the two areas are not generally 

overlapping. However, there is some evidence for an increased risk of bone fractures in ADHD 

(Chou et al. 2014) although whether this relates to physiological changes or behavioural deficits 

(hyperactivity, inattention or impulsivity) remains unknown. Nevertheless, the results 

presented here suggest that bone density may be decreased in ADHD, at least in a subset of 

patients carrying the TACR1 polymorphism.  

Another interesting result was that mice which had been on a HFD had a higher bone density 

than those on a normal diet. This could in part be explained by the fact that these mice were 

one week older than the mice on a normal diet, as bone mineral density increases with age, up 

to a certain point. A high fat diet has actually been reported to lower bone density (Li et al. 

1990; Ward et al. 2003; Lac et al. 2008). However, these studies often include other dietary 

manipulations, such as high sucrose or low mineral content, which can confound the effects of 

the fat content alone. One study comparing the effects of a high fat diet of different types (e.g. 

saturated fatty acids versus poly unsaturated fatty acids (PUFAs)) found that the femurs of rats 

fed a diet rich in PUFAs were stronger than those of rats fed normal chow (Lau et al. 2010). This 

seems logical because the weight gain resulting from the HFD increases load on the bones, 

thereby increasing bone strength and density. This could be the case here, as mice on a HFD did 

weigh more than those on a normal diet. 

In humans increasing adiposity actually decreases bone density, when weight is corrected for 

(Dimitri et al. 2010; Kawai and Rosen 2010), although the reason for this remains unknown. No 

studies have, to date, examined the bone density of normal, compared with obese, ADHD 

patients. This is an important piece of information, not least because there is some evidence 

that ADHD medications affect bone density (Komatsu et al. 2012; Poulton et al. 2012). The 
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question of whether obese ADHD patients should therefore not be prescribed 

psychostimulants is one worth further investigating. 

7.4.3 DEXA versus chemical analysis 

The results for percentage body fat differed when measured by the two techniques. Here, we 

report that DEXA analysis overestimates %fat by approximately 9%. This is strikingly similar to 

the 10% reported in the literature (Nagy et al. 2001; Brommage 2003; Iida-Klein et al. 2003; 

Johnston et al. 2005), confirming that all rodent DEXA machines are inaccurate to the same 

degree. The same studies also questioned the precision of DEXA analysis: here the correlation 

between %fat by DEXA and %fat by gold standard chemical analysis gave an R2 value of 0.617, 

suggesting reasonable precision. However, the lack of absolute precision meant that the 

conclusions from the DEXA experiments reported here did not match exactly with the 

conclusions from the chemical analysis. This is likely because the differences in %fat between 

the experimental groups were small (a maximum of ~4%). It could also be because the mice 

analysed here were quite lean (less than 10% fat), and perhaps below the threshold at which 

DEXA can precisely predict %body fat. Brommage (2003) reports a much higher correlation 

(R2 = 0.94) when animals are between 3 to 49% body fat, and reports that DEXA would be 

completely precise in predicting the body fat of a hypothetical animal of 100% body fat. 

Brommage suggests that DEXA machines were calibrated for this hypothetical, 100% fat animal, 

and are inaccurately calibrated for low percentage body fat. This means that the lower the 

body fat, the less accurate and precise DEXA is in predicting body fat content (see Figure 7.7). 
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Figure 7.7 – Precision and accuracy of DEXA analysis of %fat. Dotted line represents correlation obtained if DEXA 
and chemical analysis measurements were identical. 

Despite this bone mineral content and ash measured by DEXA and chemical analysis, 

respectively, did correlate well, suggesting that the result for bone mineral density is accurate 

and precise. Together, these results suggest that DEXA is a useful tool in the analysis of bone, 

or analysis of body composition using animals with high fat content. DEXA also has the 

advantage that it can provide multiple measures over time on the same subject, which 

chemical analysis cannot. 

7.5 Highlights 

 Body fat content of mice depends on an interaction between genotype and gender. 

However, male NK1R-/- mice could reflect the paradox observed in ADHD: these 

individuals are hyperactive, but actually have a higher body fat content. 

 The bone density of NK1R-/- mice is lower than wildtypes, possibly due to the 

involvement of NK1Rs in bone mineralization and homeostasis. 

 The possibility that ADHD patients with TACR1 polymorphisms are more susceptible to 

comorbid obesity, and/or bone fractures, could be worth investigating. 
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 DEXA analysis of fat in rodents is limited by the inaccurate calibration of DEXA 

machines. Here, all mice were relatively lean, and may have been below the threshold 

at which DEXA can reliably predict percentage body fat. 

 DEXA analysis of bone appears to be accurate and precise. 
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Chapter 8. General discussion 

ADHD is a common childhood psychiatric disorder, characterized by signs of inattention, 

impulsivity and hyperactivity, which can persist into adulthood. Although ADHD is treatable 

with psychostimulant drugs (amphetamine and methylphenidate), there remains a need for 

better tolerated medications with lower abuse potential. Diagnosis of the disorder can be 

problematic, as it centres around behaviour which can be evident in normal individuals. 

Moreover, ADHD is often comorbid with a wide variety of other psychiatric and medical 

disorders, such as anxiety, depression, obesity and substance abuse disorders, which can 

complicate diagnosis and limit treatment options available. 

There have been many preclinical rodent ‘models’ of ADHD proposed. These models should 

show good face validity, construct validity and predictive validity, in order to be a useful 

preclinical tool for research into the disorder. The most well-characterised rat and mouse 

models, respectively, are spontaneously hypertensive rats (SHRs) and dopamine transporter 

(DAT) knockout mice. However, neither model is without its limitations: SHRs are limited by a 

lack of true control strain, and in mice, knockout of the DAT gene is lethal in 32% of animals 

over the age of 10 weeks (Giros et al. 1996). 

 The abnormal behaviour displayed by NK1R-/- mice (hyperactivity, inattention and impulsivity) 

has been proposed to resemble that seen in ADHD (face validity) (Yan et al. 2011). In addition, 

these mice have alterations in dopaminergic, noradrenergic and serotonergic transmission (see 

Yan et al. 2009) and polymorphisms in the TACR1 gene are associated with ADHD in humans 

(construct validity) (Sharp et al. 2009; Yan et al. 2010; Sharp et al. 2014). The first aim of this 

thesis was to test the predictive validity of the NK1R-/- mouse. 

The psychostimulants (amphetamine and methylphenidate) alleviate the hyperactivity of 

NK1R-/- mice, but amphetamine did not completely prevent the impulsivity or inattention 

displayed by these mice (Yan et al. 2010; Yan et al. 2011). Here, the aim was to determine 

whether methylphenidate does alleviate the inattention and impulsivity, and whether 

guanfacine and atomoxetine (two non-stimulant alternative ADHD treatments) alleviate all 
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three behaviours, displayed by NK1R-/- mice. Two rodent analogues of human continuous 

performance tasks (the 5-CSRTT and the 5C-CPT) were used to test sustained attention and 

response control (impulsivity). These tests were used because continuous performance tasks 

are used to test ADHD-like behaviour in humans, and they are amongst the most informative 

cognitive tests in rodents.  

The light-dark exploration box was used to assess hyperactivity, and simultaneously highlight 

any potential changes in emotionality, which could affect behaviour. To further test the effect 

of guanfacine, in particular, on emotionality and spatial memory, the elevated plus maze and 

object recognition tests were also used, respectively. 

The second aim of this thesis was to further investigate the body composition of NK1R-/- mice, 

since the result of the 5-CSRTT and 5C-CPT experiments suggested that these mice have 

abnormal body weight and food intake. In light of evidence that ADHD and obesity can be 

comorbid, the body composition of mice maintained on a high fat ‘Western’-style diet was also 

assessed.  

8.1 Key findings 

In Chapter 3, guanfacine was effective in reducing ADHD-like behaviour in NK1R-/- mice. 

However, this was strongly dependent on dose of the drug: a low dose was sufficient to 

increase attentiveness and reduce hyperactivity in NK1R-/- mice, only. At higher doses the drug 

reduced behavioural measures of arousal in both genotypes, and consequently reduced 

impulsivity, suggesting that this may be how the drug functions in ADHD. The results of 

Chapter 4 confirmed that the effects of low dose guanfacine were not secondary to changes in 

emotionality, as measured by behaviour on the elevated plus maze, but could be a result of 

improved spatial memory. Spatial working memory is thought to be impaired in ADHD, and 

guanfacine could alleviate deficits in attentiveness through reversing these impairments. 

Another 2-adrenoceptor agonist, medetomidine, also improved spatial memory, but this drug 

was effective only in wildtypes. The difference between the two drugs is likely due to 
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2-adrenoceptor subtype selectivity, and could be further investigated with the use of an 

antagonist.  

Another noteworthy finding, reported in Chapter 4, was that NK1R-/- mice on the current, 

mixed background strain (129/Sv/C57Bl6 x MF1), display increased anxiety-like behaviour in the 

elevated plus maze, as evidenced by reduced time on the open arms: this is supported by the 

finding that NK1R-/- mice also spend less time in the light zone of the LDEB than wildtypes 

(reported in Chapters 3 and 5). This behaviour could be a result of an interaction between a 

loss of functional NK1R and background strain. Interestingly, the results of the object 

recognition experiments suggest that, when the environment is not aversive, NK1R-/- mice 

actually spend slightly more time exploring both objects than wildtypes.  

Contrary to guanfacine’s effects on attention, in Chapter 5 it was discovered that atomoxetine 

selectively improved impulsivity in NK1R-/- mice, but had no effect on attention. This effect was 

not due to a reduction in motivation for the task, but was paralleled by a drug-induced 

reduction in hyperactivity in NK1R-/- mice. Atomoxetine consistently reduces different types of 

impulsivity in preclinical rodent studies, suggesting that this aspect translates well between 

rodents and humans. Our results suggest that atomoxetine may be best suited for the 

hyperactive/impulsive subtype of ADHD.  

Together, the results of Chapters 3, 4 and 5 suggested that NK1R-/- mice are more sensitive 

than wildtypes to manipulations of the noradrenergic system. This could relate to previous 

reports that noradrenergic signalling is disrupted in these mice (Herpfer et al. 2005; Fisher et al. 

2007). Moreover, an interesting possibility is that ADHD patients, particularly those with TACR1 

polymorphisms, could similarly be more sensitive to non-psychostimulant alternative ADHD 

treatments, guanfacine and atomoxetine, than healthy controls. 

In Chapter 6, methylphenidate was tested in an extension of the 5-CSRTT, the 5C-CPT. 

Methylphenidate was particularly efficacious in attenuating the perseveration displayed by 

NK1R-/- mice. Although NK1R-/- mice did not display impulsivity on the novel ‘no-go’ trials at 

baseline, methylphenidate reduced both types of impulsivity measured in this task in NK1R-/- 

mice. The drug also reduced attention in wildtypes, but not NK1R-/- mice, at the same dose, 
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suggesting that overall NK1R-/- mice benefitted from methylphenidate treatment whereas 

wildtypes did not. This is reminiscent of our previously published experiments in which 

methylphenidate reduced the hyperactivity of NK1R-/- mice, but increased the activity of 

wildtypes (Yan et al. 2010). These findings together provide good support for the predictive 

validity of NK1R-/- mice, as methylphenidate remains the first-line treatment for ADHD, and 

perhaps the most important test of a preclinical model of the disorder.   

From the results of the three 5-Choice experiments reported here, it is clear that behavioural 

variables in these tests should be studied in concert. This is because all these variables are 

linked: conclusions about the effect of a drug or a genetic modification cannot be drawn from 

the results of one variable alone. For instance, guanfacine reduced premature responses in 

both genotypes, but latencies to respond were increased, suggesting that motor activity and/or 

arousal was blunted. Similarly, methylphenidate appeared to decrease the latency to magazine 

in NK1R-/- mice, but the drug also reduced perseveration, and so in this case, the likely 

explanation is that these mice were able to reach the magazine more quickly because they 

were not ‘perseverating’.  

 

Figure 8.1 – Diagram showing how variables measured in the 5-Choice tasks interact 
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This use of multiple measurements in the same animal can be advantageous, as they give a 

broader understanding of the effects of a drug. Overall, the results of Chapters 3 – 6 suggest 

that the NK1R-/- mouse does have good predictive validity in these measures. However, the 

dose of drug is an important factor, as NK1R-/- mice may be more sensitive to ADHD 

treatments: dissociable effects on cognition and motor behaviour can only be detected at 

doses which are not at either end of the dose-response curve. 

The 5-Choice tasks do have some other limitations. As they are operant tasks, mice are largely 

motivated by an appetitive reward. This means that, although measures of motivation can be 

taken into account, motivational status is critical in determining behaviour. Importantly, it has 

been suggested that ADHD may be underpinned by a type of reward-deficiency syndrome, in 

which the perceived value of rewards is decreased (Luman et al. 2010). Moreover, human 

continuous performance tasks are not motivated by food rewards, so this aspect of the task 

does not translate well to humans. 

Throughout the 5-CSRTT and 5C-CPT tasks, the weight and food intake of mice was closely 

monitored. The finding that NK1R-/- mice weigh less than wildtypes, but eat more in 

proportion to their body weight to maintain the same weight, suggested that there might be an 

interesting underlying difference in the body composition of the two genotypes. Chapter 7 

aimed to further elucidate the underlying differences in the body composition of mice on a 

normal diet, and on a high fat “Western” diet. The latter was chosen because of reports of an 

overlap between ADHD and obesity in Western countries (Cortese et al. 2013). 

The body composition analyses used two different methods; DEXA and chemical carcass 

analysis. Both have their relative advantages and disadvantages, but chemical analysis is 

considered the gold standard measure. The chemical carcass analysis reported in Chapter 7 

suggested that NK1R-/- mice had lower, or similar, %fat at baseline, but had similar or 

increased %fat on a high fat diet, compared with wildtypes. These results are contradictory to 

reports that NK1R antagonists reduce body fat (Karagiannides et al. 2008), but are in line with 

the prediction that NK1R-/- mice resemble ADHD patients, in so far as there is a higher rate of 

obesity in these patients. The interaction between genotype and gender in %fat of mice is also 
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notable, given reports that there is a gender difference in obesity rates in ADHD (Kim et al. 

2011; van Egmond-Frohlich et al. 2012; Byrd et al. 2013). 

The results of Chapter 7 also suggested that NK1R-/- mice have a lower bone density than 

wildtypes. This is surprising, given that these mice are hyperactive, and exercise generally 

increases bone density. However, it could be because NK1R-/- mice are smaller, and thus the 

load on their bones is lower. In concordance with this explanation is the finding that mice fed a 

high fat diet were heavier, and had a higher bone density, than mice fed a normal diet. 

Nevertheless, the influence of NK1Rs on bone metabolism cannot be ruled out: there is some 

evidence to suggest that the actions of substance P on NK1Rs in bone cells increase bone 

mineralization (Goto et al. 2007). 

In a comparison of DEXA and chemical analysis, DEXA was found to be reasonably precise, but 

results were inaccurate: in particular %fat was overestimated by approximately 10%. However, 

bone measurements (e.g. bone mineral density) did appear to be accurate and precise. These 

findings support the use of DEXA to measure bone density (its use in the clinic), but suggest 

that rodent versions of the machines require more accurate calibration before they can reliably 

be used in a preclinical setting. 

8.2 Validity of the NK1R-/- mouse ‘model’ of ADHD 

One of the main aims of this project was to test the predictive validity of the NK1R-/- mouse as 

a ‘model’ of ADHD; that is, to test whether the behavioural response of NK1R-/- mice to ADHD 

treatments resembles that of ADHD patients. However, this approach assumes that NK1R-/- 

mice express the behavioural deficits expressed by individuals with ADHD at baseline (face 

validity). Yan and colleagues first reported that NK1R-/- mice expressed hyperactivity, 

inattention and impulsivity in 2010 and 2011, and this has since been replicated (see Dudley et 

al. 2013; Porter et al. 2015). However, upon first inspection of the results reported in this 

thesis, not all aspects of this phenotype appear to have been replicated in these experiments.  
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8.2.1 Hyperactivity 

In Chapters 3 and 5, the spontaneous locomotor activity of NK1R-/- and wildtype mice was 

tested acutely in the LDEB. In both experiments, naïve NK1R-/- mice were hyperactive 

compared to wildtypes, replicating previous findings (Yan et al. 2010). This aspect of the 

phenotype is perhaps the most robust; NK1R-/- mice have now been shown to be hyperactive 

in a number of paradigms, including a 24 hour measure (Porter et al. 2015). Moreover, this 

hyperactivity is apparent in mice bred from inbred, homozygous parents, and from 

heterozygous parents (Porter et al. 2015), suggesting that it is a direct consequence of a lack of 

NK1R. Support for this hypothesis comes from the finding that NK1R antagonists can induce 

hyperactivity in wildtype mice (Yan et al. 2010). In the results reported here, it is striking that 

hyperactivity was apparent in naïve mice, but not in those that had received an injection, in 

both experiments, suggesting that this behavioural response is also a robust one.  

8.2.2 Impulsivity and inattention 

Chapters 3 and 5 reported the results of experiments in which NK1R-/- and wildtype mice were 

tested in the 5-CSRTT; the test in which it was first discovered that NK1R-/- mice express 

impulsivity and inattention (Yan et al. 2011). From these results it appears that this cognitive 

phenotype was not present in these cohorts of mice. However, there are a few possible 

explanations for this discrepancy. Firstly, and perhaps most importantly, mice used in these 

experiments were bred using two different strategies; 1) using the same inbred, homozygous 

breeding lines as those used for the experiments reported by Yan et al (2011), and 2) using 

heterozygous parents, producing wildtype and NK1R-/- mice that were littermates. Porter et al 

(2015) reported the results of a comparison between the two breeding strategies; it was found 

that mice bred from heterozygous parents do not display the impulsivity expressed by NK1R-/- 

mice from inbred, homozygous parents, suggesting that this behaviour is a result of an 

interaction between a lack of functional NK1R and environment, or that the inbreeding of these 

mice has resulted in behavioural abnormalities which cannot fully be attributed to a lack of the 

primary gene of interest.  
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A second explanation comes from the fact that the results reported here are from mice that 

had been tested previously (in NI-1), and it is now known that impulsivity and inattention are 

reduced with repeated testing (Weir et al. 2014). This seems to be a likely explanation, as the 

incidences of premature responses and omissions were particularly low in these experiments. A 

final explanation could be that this cognitive phenotype is subject to normal fluctuations, i.e. it 

is present in some groups of animals but not others. However, Porter et al (2015) recently 

reported the results of a 5-CSRTT experiment using the same test procedure as that used by 

Yan et al (2011), in which NK1R-/- mice (from homozygous breeding lines) were both impulsive 

and inattentive. 

It should also be noted that mice were tested for impulsivity and inattention in the 5C-CPT 

paradigm (reported in Chapter 6), and NK1R-/- mice did not display an increased rate of 

premature responses, false alarms or omissions in this experiment. However, this was the first 

time NK1R-/- mice had been tested in this paradigm, and the protocol for the 5C-CPT differed 

considerably from the 5-CSRTT protocol (see Chapter 2), such that the two are not readily 

comparable. However, as discussed in Chapter 6, a likely explanation for the lack of 

impulsive/inattentive phenotype in this experiment is that mice were trained using a VITI 

schedule, and as such, are likely to have learned the task in a different way, and possibly to a 

higher degree than in the 5-CSRTT.  

Another point to consider is that the effects of NK1R antagonists on impulsivity and inattention 

are complicated by the effects of these drugs on L-type calcium channels (see Dudley et al. 

2013; Weir et al. 2014). Dudley et al (2013) reported that the L-type calcium channel 

antagonist, nifedipine, exacerbates inattention and improves impulsivity, more potently in 

wildtypes than NK1R-/- mice performing the 5-CSRTT. This renders it difficult to determine the 

effects of NK1R antagonists on behaviour that aren’t attributable to influences on L-type 

calcium channel opening (Dudley et al. 2013; Weir et al. 2014). 
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8.2.3 Pharmacological phenotype 

Despite the apparent lack of impulsive/inattentive phenotype of NK1R-/- mice in the series of 

experiments reported here, these mice did display a remarkable ‘pharmacological phenotype’ 

in most, if not all, experiments. NK1R-/- mice were more sensitive to guanfacine (0.1mg/kg), 

atomoxetine (3 – 10 mg/kg) and methylphenidate (10 mg/kg) than wildtypes in terms of the 

effects of these drugs on hyperactivity, impulsivity and/or inattention. This means that, despite 

the apparent lack of ADHD-like behaviour displayed by NK1R-/- mice in some experiments, the 

predictive validity of these mice is good, and therefore these animals could be useful in further 

investigations into potential novel treatments for this disorder.  

8.3 Future directions 

8.3.1 Studies in NK1R-/- mice 

These experiments have detailed the behavioural responses to ADHD treatments in NK1R-/- 

and wildtype mice. One next logical step would be to determine the neurochemical responses 

to the same drugs. An amphetamine-induced increase in dopamine release is blunted in the 

striatum of NK1R-/- mice compared to wildtypes (Yan et al. 2010), and based on the behaviour 

of NK1R-/- mice reported here, it might be hypothesized that these mice also display an 

abnormal neurochemical response to methylphenidate. Similarly, noradrenergic signalling is 

disrupted in NK1R-/- mice, and these mice are more sensitive to guanfacine and atomoxetine, 

suggesting that these drugs would also induce an abnormal noradrenergic response. 

To further test the specificity of each of the drugs used here on the ADHD-like behaviour they 

were found to be most effective in relieving, it might be of interest to test each treatment in 

NK1R-/- mice in different paradigms examining that behaviour. Atomoxetine was found to be 

most effective at reducing hyperactive/impulsive behaviours, and so it may be worthwhile 

testing this drug in paradigms such as the 5C-CPT or SSRT to determine its effects on different 

types of impulsivity. Likewise, methylphenidate reduced impulsivity more potently in NK1R-/- 

mice than wildtypes, and so it may be of interest to test this drug at a wider dose range, or 
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when administered by different routes, as this has been shown to affect behavioural outcomes 

(e.g. see Botly et al. 2008). Guanfacine also appeared to have a more specific effect on 

attention than hyperactivity/impulsivity, and so paradigms such as the T-maze, 8-arm radial 

maze or Morris water maze could be used to further expand on these results. 

One limitation of the NK1R-/- mouse is that most published reports on the behaviour of these 

mice have studied animals bred from homozygous inbred lines, rather than wildtype and 

NK1R-/- littermates. The recent report published by Porter and colleagues (2015) suggests that 

some aspects of the behaviour of NK1R-/- mice could be attributable to an interaction between 

genotype and environment/breeding strategy. Whether breeding strategy affects all behaviour 

in the same way is an important question to answer here, as well as in all studies using 

genetically modified mice, as early life environment certainly affects behaviour, and this could 

be particularly important in ADHD (Mill and Petronis 2008). However, although the results 

reported here revealed that the responses to the drug treatments were not influenced by 

breeding strategy, future studies should be conducted on mice bred using the two different 

methods, to enable the best understanding of their behaviour.  

The finding that NK1R-/- mice have similar, or increased, %fat compared to wildtypes on a high 

fat diet is in contrast with previous reports suggest that NK1R antagonists reduce fat and 

weight gain in rodents. This could be further investigated, by chronic use of NK1R antagonists, 

NK1R antagonists which don’t cross the blood-brain barrier or by employing a conditional 

knockout of the NK1R gene.  Background strain could also influence physiology as well as 

behaviour, so testing NK1R-/- mice bred on different background strains or from heterozygous 

versus homozygous parents could also help elucidate the influence of NK1Rs on adiposity. It 

might also be of interest to examine the effects of NK1R antagonists on weight in the clinic. 

However, this may prove to be difficult as the only such drugs available clinically are indicated 

as anti-emetics. 
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8.3.2 Clinical research 

The results of the experiments reported here suggest that the TACR1 polymorphism in humans 

could render this subset of ADHD patients more sensitive to ADHD treatments. To that end, it 

might be of interest to conduct a large-scale study on the efficacy of the ADHD treatments, 

guanfacine, atomoxetine and methylphenidate, in patients with and without TACR1 

polymorphisms. If these patients are more sensitive to such treatments, this could aid a step 

towards ‘personalised medicine’, whereby physicians may be better able to tailor treatments to 

the genotype of the patient.  

Similarly, the results of Chapter 7 suggest that the NK1R (TACR1) gene could be an important 

factor in the development of obesity. It would be interesting to investigate whether 

unmedicated ADHD patients with TACR1 polymorphisms are more likely to be obese. If this is 

the case, this might provide a novel therapeutic target for the treatment of ADHD with 

comorbid obesity in this subset of patients.  

8.4 Final conclusions 

Overall, the results presented in this thesis further add to the predictive validity of the NK1R-/- 

mouse as a preclinical tool for the study of ADHD-like behaviour. The results suggest that these 

mice are more sensitive to ADHD treatment medications, and all of the treatments tested here 

(guanfacine, atomoxetine and methylphenidate) reduce the incidence of one or more ADHD 

behaviours in these mice. However, each drug could be more suited to a particular subtype of 

ADHD, for example, atomoxetine may be most suitable for the hyperactive/impulsive subtype, 

and guanfacine to the inattentive or combined subtype. Additionally, the results presented 

here suggest that the NK1R gene may be important in the regulation of food intake and fat 

storage, and support reports that there is an overlap between ADHD and obesity, which 

requires further investigation.  
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Appendix 1. Genotyping  

Genotyping was completed in 3 stages; DNA extraction, amplification and visualization. 

DNA extraction 

 Ear notches taken with a 2mm ear punch provided the DNA for the sample. 

 75l of alkaline lysis reagent (25mM NaOH, 0.2mM disodium EDTA in ultra-pure water) 

was added to each DNA sample 

 Samples were heated at 95°C for 30 min, then cooled to 4°C 

 75l of neutralizing reagent (40mM Tris-HCl in ultra-pure water) was added to each 

sample 

 Samples were frozen at -20°C until needed 

DNA amplification (PCR) 

Reagent Volume (l) per sample 

Thermopillic DNA Polymerase 10X, 
Mg2+-free Reaction Buffer (Promega) 

2.6 

dNTP (Promega) 0.6 

25mM MgCl2 1.7 

NK1-F primer 
(5’-CTGTGGACTCTAATCTCTTCC-3’) 

1.4 

NK1-R primer 
(5’-ACAGCTGTCATGGAGTAGATAC-3’ ) 

1.4 

NeoF primer 
(5’-GCAGCGATCGCCTTCTATC-3’) 

1.4 

UPH20, nuclease-free H2O 9.9 

Taq DNA polymerase 0.1 

 Master mix was made up on ice, using volumes scaled up for the number of samples. 

 19l of master mix was added to 5l of sample 
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 3 control samples were prepared (one wildtype, one NK1R-/- and one nuclease-free 

water only) 

 Samples were then run on a PCR thermocylcer (PTC-100 Programmable Thermal 

Controller, MJ Research, Boston, USA)  which ran the following program; 

 

Step Temperature (°C) Duration 

1 95 5min 

2 60 30s 

3 72 30s 

4 94 30s 

5 Steps 2-4 are cycled 35 times 

6 60 30s 

7 72 5min 

8 Samples held at 4°C 

Gel electrophoresis & visualization  

 5l loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF and 30% glycerol) 

is added to each sample 

 15l of sample is loaded into wells in a 2% agarose (2g agarose in 100ml 0.5M Tris-

borate-EDTA (TBE) buffer (National Diagnostics, Hull, UK)) containing 8l ethidium 

bromide  

 5l 1kB ladder (Bioline, London, UK) was loaded into the first well in each row 

 The tank was filled with 500ml TBE buffer and samples were run at 110-120mV using a 

FEC105 Voltage Power Pack for approximately 1 h  

 The gel was visualized and photographed with an ultraviolet transilluminator plate 

(UVP Ltd, Cambridge, UK) 
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Appendix 2. Doses of guanfacine 

Reference Route Dose 
Pre-

treatment 
time 

Species/strain 
Type of 

experiment 
Effective 

Doses 

(Masse et 
al. 2006) 

i.p. 0.06 and 
0.125mg/kg 

45min Mouse/Swiss  Anxiety – four 
plate test 

0.06, 
0.126mg/kg 

(Szot et al. 
2004) 

i.p. 0.1mg/kg 30min Mouse/129/SvEv 
x C57Bl6 

Epilepsy/seizure 
activity 

0.1mg/kg  

(Archer and 
Fredriksson 
2003) 

s.c. 0.1, 0.3, 1 
and 3mg/kg 

None Mouse/C57Bl6 Parkinsonian 
locomotor 
behaviour 

1mg/kg 

(Franowicz 
et al. 2002) 

i.p. 0.0001, 
0.001, 0.01, 
0.1, 1, or 
10mg/kg 

1hr  Mouse/C57Bl6 Cognition/working 
memory – T-maze 

1mg/kg 

(Langen 
and Dost 
2011) 

i.p. 0.3 and 
1mg/kg 

30min Rat/ SHR/WKY Elevated plus 
maze, open field 

0.3, 1mg/kg 
 

(Le et al. 
2011) 

i.p. 0.125, 0.25, 
and 
0.5 mg/kg 

1hr Rat/Wistar Alcohol self-
administration 

0.5mg/kg  

(Sagvolden 
2006) 

i.p. 0.075, 0.15, 
0.3 and 0.6 
mg/kg 

30min Rat/ SHR/WKY ADHD behaviour – 
2 lever choice test 

0.3, 
0.6mg/kg 

(Jentsch 
2005) 

i.p. 0.01, 0.05 
or 
0.1mg/kg 

20min Rat/ SHR/WKY ADHD behaviour – 
lateralized 
reaction time 
task/visuospatial 
attention 

None 

 

Date: October 2011. Key words: “guanfacine” and “rat” or “mouse”. Search engine: Pubmed 
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Appendix 3. Doses of medetomidine 

Reference Route Dose 
Pre-

treatment 
time 

Species/strain 
Type of 

experiment 
Effective 

Doses 

(Bjorklund et 
al. 2001) 

s.c. 5 – 10 

g/kg 
 

20 min Mouse/C57Bl6 Memory (T maze 
/ 8 arm radial 
maze) 

5g/kg 

(Tanila et al. 
1999) 

s.c. 1, 3, 

5g/kg 

20 min Mouse/ C57Bl6 Memory (T maze) 5g/kg  

(Sallinen et al. 
1998) 

s.c. 10g/kg 20 min Mouse/ C57Bl6 Locomotor 
activity 

10g/kg 
 

(Sirvio et al. 
1992) 

s.c. 0.3, 0.9, 
3, 

9g/kg 

30 min Rat/ Wistar Memory (step 
through passive 
avoidance task & 
water maze) 

0.3, 0.9, 
3, 

9g/kg 

(Laarakker et 
al. 2010) 

i.p. 5g/kg 30 min Mouse/ B6 and 
A/J 

Stress (forced 
swim) 

5g/kg 

(Rago et al. 
1991) 

s.c. / 
i.p. 

0.5 - 

10g/kg 

15 / 30 min Rat/ Wistar & 
mouse/ NMRI 

Anxiety (EPM) None 

(Votava et al. 
2005) 

i.p. 5, 10, 20. 

40g/kg 

30 min Mouse/ ICR 
albino 

Locomotor 
activity 

20 & 

40g/kg 
 

 
Date: November 2013. Key words: “medetomidine” or “dexmedetomidine” and “rat” or 
“mouse”. Search engine: Pubmed 
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Appendix 4. Doses of atomoxetine 

Reference Route Dose 
Pre-

treatment 
time 

Species/strain 
Type of 

experiment 
Effective Doses 

(Koda et al. 
2010) 

i.p. 1 or 
3mg/kg  

None Mouse/ ICR  Locomotor 
activity  

None 

(Tsuchida 
et al. 2009) 

i.p. 1mg/kg None Mouse/ 
Slc:ICR 

Locomotor 
activity 

None  

(Bruno and 
Hess 2006) 

i.p. 1 – 
20mg/kg 

None Mouse/ 
Coloboma & 
C3H/HeSnJ 
control 

Locomotor 
activity 

All doses 

(O'Keeffe et 
al. 2012) 

i.p. 3mg/kg 30 min Mouse/ 
C57BL/6 

Circadian 
rhythms 

3mg/kg  

(Balci et al. 
2008) 

i.p. 1, 3 and 
10mg/kg 

30 min Mouse/ C3H Interval timing 3 and 10mg/kg  

(Gould et 
al. 2005) 

i.p. 0.2, 2 
and 
20mg/kg 

30 min Mouse/ 
C57BL/6J 

Pre-pulse 
Inhibition 

0.2, 2 and 20mg/kg 
 

(Davis and 
Gould 
2007) 

i.p. 0.2 or 
2mg/kg 

20 min Mouse/ 
C57BL/6 

Cognition 2mg/kg  

(Tamburella 
et al. 2012) 

i.p. 1, 3 and 
6mg/kg 

? Rat/ SHR  Cognition & 
locomotor 
activity 

1, 3 and 6mg/kg 

(Janak et al. 
2012) 

i.p. 1mg/kg 45 min Rat/ Sprague 
Dawley  

Drug seeking 
(self-
administration) 

1mg/kg 

Date: March 2012. Key words: “atomoxetine” and “rat” or “mouse”. Search engine: Pubmed 
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Appendix 5. Doses of methylphenidate 

Reference Route Dose 
Pre-

treatment 
time 

Species/strain 
Type of 

experiment 
Effective 

Doses 

(Yan et al. 
2010) 

i.p. 2.5mg/kg 30min Mouse / 
NK1R-/- 

Locomotor activity  2.5mg/kg 

(Kaczmarczyk 
et al. 2013) 

i.p. 2.5mg/kg 45min Mouse 
/C57BL/6J 

Learning/memory 2.5mg/kg 

(Yamashita et 
al. 2013) 

i.p. 30mg/kg None Mouse 
/C57BL/6J x 
129Sv/J 

Cliff avoidance 
reaction (CAR), 
pre-pulse 
inhibition 

30mg/kg 

(Keck et al. 
2013) 

i.p. 0.3, 3, 5, 
10, 20 
and 
30 mg/kg 

30min Mouse / 
C57BL/6J x 
129/Ola 

Locomotor 
activity, novel 
object recognition 

5, 10, 20, 
30mg/kg 

(Griffin et al. 
2013) 

i.p. 1.25 
mg/kg 

15min Mouse 
/C57BL/6J 

Drug-
discrimination, 
locomotor activity 

1.25mg/kg 

(Zhu et al. 
2012) 

i.p. 0.75, 1.5, 
3.5 and 
7.5mg/kg 

None Mouse 
/C57BL/6J 

Locomotor activity 3.75 and 
7.5mg/kg 

(Flood et al. 
2010) 

i.p. 10, 30 
and 
100mg/kg 

30min Mouse 
/DBA/2 

Pre-pulse 
inhibition 

30 and 
100mg/kg 

(Rhodes and 
Garland 
2003) 
 

i.p. 15 and 
30mg/kg 

None  Mouse 
/Hsd:ICR 
strain 

Locomotor activity 15 and 
30mg/kg 

(Koike et al. 
2009) 

i.p. 1 and 
3mg/kg 

30min Mouse /ICR Anxiety (EPM) 3mg/kg 

Date: January 2014. Key words: “methylphenidate” and “mouse”. Search engine: Pubmed 
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Appendix 6. Weight and food intake of mice in the 

5-CSRTT and 5C-CPT 

To track animals’ weights over the duration of the 5-CSRTT/5C-CPT, mice were weighed every 

weekday, and fed differing amounts to maintain a constant weight. Only data from mice from 

homozygous breeding pairs were used in this analysis: mice in one cage were fed together, and 

cages of mice bred from heterozygous breeding pairs contained both wildtype and NK1R-/- 

mice, such that the food consumption of the two genotypes could not be separated. Mouse 

weights and food weights were averaged over each week. These measures were used to 

calculate how much food was eaten per gram of mouse weight (mouse weight : food weight 

ratio). The data were analysed with a repeated measures approach, using ‘week’ as the within-

subjects factor, and ‘genotype’ as the between-subjects factor.  

Wildtype mice were larger than NK1R-/- mice, and maintained a higher weight throughout the 

experiment [[LOG10]geno: F(1,46)=21.33, P<0.001]. The amount of food consumed decreased 

over time [[SQRT]week: F(19, 222)=95.97, P<0.001], but depended on genotype 

[[SQRT]geno*week: F(19,222)=3.83, P<0.001], such that by the final 5 weeks, NK1R-/- mice 

consumed more food than wildtypes. When corrected for mouse weight, the genotype-

dependent effect on food consumed [[SQRT]geno*week: F(19,222)=3.66, P<0.001] was evident 

with a difference apparent in the latter 6 weeks of the experiments.  
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Figure i – The weight (A), food intake (B) and food : weight ratio (C) of wildtype (open circles) and NK1R-/- mice 
(closed circles) over 20 weeks of the 5-CSRTT and 5C-CPT experiments (presented in Chapters 3, 5 and 6). Data 
show mean SEM. n= 24. Bars indicate P<0.05.  
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Appendix 7. Ingredients and calorific value of the 

normal diet 

The diet (2018 Global rodent diet) all mice were fed (apart from where specified) was obtained 

from Harlan, UK. 

 Percentage of weight (%) kcal (%) 

Protein 18.6 24 

Carbohydrate 71.7 58 

Fat 6.2 18 

Fiber 3.5 0 

Total 100 100 

kcal/g 3.1  

Ingredients   

Ground wheat   

Ground corn   

Wheat midds   

Soybean meal   

Corn gluten meal   

Brewer’s yeast   
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Appendix 8. Ingredients and calorific value of the 

High Fat Diet 

The high fat diet used in Chapter 7 was from Open Source Diets, New Brunswick, NJ, USA. 

 Percentage of weight (%) kcal (%) 

Protein 24 20 

Carbohydrate 41 35 

Fat 24 45 

Fiber 11 0 

Total 100 100 

kcal/g 4.73  

Ingredient weight kcal 

Casein, 30 Mesh 200 800 

L-Cystine 3 12 

Corn Starch 72.8 291 

Maltodextrin 10 100 400 

Sucrose 172.8 691 

Cellulose, BW200 50 0 

Soybean Oil 25 225 

Lard*  1598 

Mineral Mix S10026 10 0 

DiCalcium Phosphate 13 0 

Calcium Carbonate 5.5 0 

Potassium Citrate, 1 H2O 16.5 0 

Vitamin Mix V10001 10 40 

Choline Bitartrate 2 0 

FD&C Red Dye #40 0.05 0 

Total 858.15 4057 

*Typical analysis of cholesterol in lard = 0.72 mg/gram. 
Cholesterol (mg)/4057 kcal = 167.8 
Cholesterol mg/kg = 195.5 


