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a b s t r a c t

The United Kingdom has a vast scientific base across the entire Hydrogen and Fuel Cell

research landscape, with a world class academic community coupled with significant in-

dustrial activity from both UK-based Hydrogen and Fuel Cell companies and global com-

panies with a strong presence within the country. The Hydrogen and Fuel Cell (H2FC)

SUPERGEN Hub, funded by the Engineering and Physical Sciences Research Council

(EPSRC), was established in 2012 as a five-year programme to bring the UK's H2FC research

community together. Here we present the UK's current Hydrogen and Fuel Cell activities

along with the role of the H2FC SUPERGEN Hub.

Copyright © 2015, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy

Publications, LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The United Kingdom has a vast scientific base across the

entire Hydrogen and Fuel Cell research landscape. It boasts a

world class academic community coupled with significant

industrial presence from a growing number of UK-owned

firms alongside global companies with substantial UK pres-

ence in this area.
5850.
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d by Elsevier Ltd on behalf of

licenses/by-nc-nd/4.0/).
The Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub was

launched in May 2012 to bring together the UK's Hydrogen and

Fuel Cell research community. Led by Professor Nigel Brandon

(Imperial College, London) and funded by the Engineering and

Physical Sciences Research Council (EPSRC), the Hub has an

ethos of inclusiveness and openness to encourage collabora-

tion, not only across the Hydrogen and Fuel Cell landscape,

but also between academia, industry and government, linking

fundamental research through to commercialisation.
Hydrogen Energy Publications, LLC. This is an open access article under the

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:c.stockford@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2015.01.180&domain=pdf
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
http://creativecommons.org/licenses/by-nc-nd/4.�0/


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 5 5 3 4e5 5 4 3 5535
H2FC SUPERGEN has around 450 members working in

Hydrogen and Fuel Cell technologies. The Hub's core structure

comprises a Management Board of ten academics from seven

UK universities. They are supported by an Advisory Board of

representatives from around twenty key companies and

government departments working in Hydrogen and Fuel Cell

research and development. The Hub brings together the aca-

demic community through its Science Board of around 100-

based UK academics working in the area. The Hub is free to

join for anyone interested in Hydrogen and Fuel Cell activities,

from within the UK and internationally.

H2FC SUPERGEN disseminates academic research funding,

including funding for a series of White Papers aimed at inform-

ing policy makers and stakeholders about the role of Hydrogen

andFuelCells across a numberof areas, thefirst ofwhich is now

publically available [1] which details the role of Hydrogen and

Fuel Cells in providing affordable, secure low-carbon heat.

The Hub works closely with EPSRC, the UK's public funding
body for academic research, and holds workshops that are

open to academics and key industry and government stake-

holders to discuss the key priorities for funding. The Hub also

supports international engagement and, for example, recently

signed a Memorandum of Understanding (MoU) in the area of

Hydrogen and Fuel Cells with the Republic of Korea. The Hub

endeavours to expand our international collaboration further

in the very near future.

The Hub strongly believes in collaboration between

academia, industry and government. The UK has industrial

activity across the entire Hydrogen and Fuel Cell supply chain

andplaysapivotal role across SOFC (SolidOxide FuelCell), PEFC

(Polymer Electrolyte Fuel Cell) and AFC (Alkaline Fuel Cell)

development, detailed below. The Hub's industrial Advisory

Boardseeks toencompass thesekey stakeholders and includes;

Johnson Matthey, Rolls Royce Fuel Cell Systems, Ceres Power,

Intelligent Energy, ITM-Power, Energy Technologies Institute,

Ricardo plc, E4Tech, networks such as the Scottish Hydrogen

and Fuel Cell Association, UK Energy Research Centre, and

government departments and organisations including Depart-

ment of Energy and Climate Change, Technology Strategy

Board, EPSRC, Scottish Government and Scottish Enterprise.

Ceres Power specialises in SOFCs with a focus on fuel cell

stack technology. In 2013 Ceres Power partnered with South

Korea's largest boiler manufacturer, KD Navien, a major

exporter of boilers to the USA, for initial development and

product testing of amicro-CHP product for the Koreanmarket.

Edinburgh based Hydrogen and Fuel Cell firm, Logan Energy,

delivers bespoke fuel cell CHP systems for clients across North

America and Europe including the installation of 300 kW

molten carbonate fuel cell powering The Crown Estate's £400

million 25 000m2 Quadrant 3 scheme in central London [2]. As

well as UK based companies, global companies are active in

the UK. The Australian firm Ceramic Fuel Cells Limited (CFCL)

launched its BlueGen SOFC micro-CHP unit with a scheme

offering fully financed BlueGen units for social housing,

schools and small businesses in the UK.

UK-based Intelligent Energy (IE) focuses on the develop-

ment of PEFCs across the stationary power, automotive and

consumer electronics sectors. IE led the HyTEC consortium to

introduceafleet of five zeroemission fuel cell electric taxis that

operate in London utilising a high efficiency PEFC and lithium
battery powered electric hybrid with a 250-mile driving range,

refuelled in less than 5min at a publically accessible refuelling

station at Heathrow Airport. The company also pioneered the

firstHydrogenFuel Cellmotorbike andhavedeveloped fuel cell

poweredUppmobile charger and are developing fuel cell back-

up generators within the telecom sector in India.

UK company AFC-Energy is the world leader in Alkaline

Fuel Cells and plays particular attention to stationary power

markets has had considerable success in Korea and leads the

FCH-JU funded projectAlkamoniawhich looks at ammonia as a

fuel source for alkaline fuel cells.

ITM-Power, based in Sheffield focuses on electrolysers and

has launched a first Power-to-Gas (P2G) plant to the Thüga

Group in Frankfurt, Germany [3]. They are the hydrogen fuel

partner in Hydrogen Island, a project based on the Isle of Wight

to demonstrate how a number of smart energy technologies to

demonstrate how a future energy system can be configured.

Hydrogen production, distribution and storage are areas

that have strong industrial support presence in the UK. Air

Products are building a 49 MW waste gasification plant at

Teesside in the North East of England, which can produce

either electricity or hydrogen from waste.

Additional UK firms that are producing fuel cell products

includeArcola Energy, FuelCell Systems, LightGreenPower and

BOC. The UK has also recently seen new innovative start-up

companies such as Ilika, Acal, Amalyst and Cella Energy.

There is strong and emerging interest in Hydrogen and Fuel

Cells in the automotive sector. UKH2Mobility is a cross cutting

industry egovernment programme consisting of three gov-

ernment departments and industrial representation from the

global carmanufacturing, infrastructure,utilityandgassectors.

In2013UKH2Mobility releasedPhase I of their studywhere they

explored the potential for Fuel Cell vehicles in the UK [4]. Lon-

don has fuel cell buses which are part of the EU funded project,

CHiCwhichoperate thesamewayasanyotherbus inoperation.

A similar bus project has recently been launched in Aberdeen.

The UK industry is represented by both the UK Hydrogen

and Fuel Cell Association and by the Scottish Hydrogen and

Fuel Cell Association. Hydrogen London provides a platform

for engagement with the Greater London Authority and has

facilitated educational initiatives as well as project proposals

and development.

At the Hub's core is a research programme that spans the

whole Hydrogen and Fuel Cell landscape incorporating

hydrogen production, storage, and systems, low temperature

fuel cells (Polymer Electrolyte Fuel Cells (PEFCs)), high tem-

perature fuel cells (Solid Oxide Fuel Cells (SOFCs)), policy and

economics, safety, and education and training with each one

of these research areas having an academic lead (see Fig. 1).

An overview of some of the fundamental research is detailed

in this article.
Fundamental research

Hydrogen systems

The main activity of the Systems group in the Hub involves

the integration of different hydrogen and fuel cell systems and

whole system modelling and optimisation.

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 1 e The research methodology within the Hub core programme consists of nine work packages and are led by the

following academics: Professor Nigel Brandon, Imperial College (Director): Research Synthesis; Professor John Irvine, St

Andrews, (Co-Director), SOFC/ECs; Professor Ian Metcalfe, Newcastle (Co-Director), Hydrogen Production; Dr Tim Mays, Bath

(Co-Director), Hydrogen Storage; Professor David Book, University of Birmingham, Hydrogen Storage Materials/Education &

Training; Professor Paul Ekins, UCL, Socio-economics and Policy; Professor Anthony Kucernak, Imperial College, (PEFCs);

Professor Vladimir Molkov, Ulster, Hydrogen Safety; Professor Robert Steinberger-Wilckens, University of Birmingham,

Education and Training; Professor Nilay Shah, Imperial College, Hydrogen Systems.
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The widespread use of hydrogen as a future transport fuel

requires the development of an appropriate vehicular refuel-

ling supply chain. Similar to the existing petroleum supply

system, the future hydrogen infrastructure should include

production sites, storage facilities, delivery options, as well as

conversion and end-use applications. In addition, there

should be refuelling stations to support daily and seasonal

fluctuations in demand.

A hydrogen supply chain, shown in Fig. 2, is a network of

integrated facilities, or nodes, that are interconnected and

work together in a specific way. The network begins with

primary energy sources and terminates with fuelling stations.

Our Hydrogen Supply Chain (HSC) model [5e9] can be used

to optimise the design and operation of thewhole system over

a long term planning horizon. The model includes spatial

element (e.g. the region of interest such as the Great Britain

divided into a number cells) and multiple time scales (e.g.

decadal, seasonal, hourly).

The HSC model can be used to map out and analyse the H2

network configuration given certain levels of penetration of

fuel cell vehicles in the vehicularmarket. The example in Fig. 3

indicates that the existing petrochemical and petroleum

plants will play a vital role in satisfying the hydrogen demand

for transport. These existing plants are able to supply the

whole GB hydrogen demand in 2015e2020. In 2039e2044, new

facilities are needed to satisfy the large hydrogen demand.

Overall, the HSC model that is being developed by the

Systems group in the H2FC SUPERGEN Hub can provide

important insights on the development of the necessary
infrastructure for producing, storing and distributing

hydrogen to end-users.

Socio-economics

The Hub's socioeconomic research programme builds upon 10

years of UK hydrogen research from several institutions. This

has focused primarily on the technological potential and the

socio-economic challenges facing the large-scale deployment

of hydrogen, and culminated in the first academic book on the

socioeconomic challenges of hydrogen [10]. Much of this

research has concentrated on the role of hydrogen-powered

fuel cell vehicles in the UK, and globally, using energy sys-

tem models. Highlights include the development of two UK

spatial planning models for hydrogen delivery infrastructure

[11,12], (See Fig. 4) an appraisal of the importance of technol-

ogy learning for hydrogen vehicles in the global context [13],

and research on innovation [14] and future scenarios [15],

including using system dynamics modelling [16]. Recently,

learning curves have been incorporated into the UK MARKAL

energy systems model [17] and used to examine two high-

profile publications by vehicle manufacturers (the Coalition

and UK H2Mobility studies) [18].

Potential roles for Hydrogen and Fuel Cells in the wider

energy system have received increasing attention in recent

years. The potential for using the natural gas networks to

deliver hydrogen has been assessed [19,20] and the Hub

recently published a White Paper, aimed at policy makers,

that examines the role of hydrogen in secure, low carbon

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 2 e A hydrogen supply chain showing different technologies for producing, distributing, storing and dispensing

hydrogen to the end users.
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heating [1]. This paper shows that the cost of fuel cell CHP has

reduced substantially through innovation in recent years to

become cost-competitive with competing low-carbon tech-

nologies, while also avoiding some of the disadvantages of

alternative technologies (see Fig. 5).

The Hub has developed a new energy system model,

UKTM-UCL, which examines the potential benefits of inter-

seasonal hydrogen storage within the whole UK energy sys-

tem [21]. The new HYVE (Hydrogen's Value in the Energy

System) project builds on this research. It is assessing the

value of hydrogen for UK low-carbon electricity generation

and gas systems, and for the transport and industry sectors,

with the aim of identifying potential business cases for inte-

grating hydrogen into different parts of the UK energy system

in the future.

Hydrogen production

The global hydrogen production stands at around 448 billion

m3 per year (40 billion kg per year) [22]. Hydrogen can be

produced through several pathways. Within the UK, most of

the hydrogen produced is from steam methane reforming

(SMR). According to the UK H2Mobility report the hydrogen

production mix that allows cost competitive hydrogen whilst

delivering significant CO2 emission reductions should be

predominately water electrolysis and SMR [4]. In this project

we are investigating chemical looping hydrogen production

that is used in SMR. Iron oxide is the typical oxygen carrier

material (OCM) used to split water via chemical looping as

several thermodynamically favourable oxidation states can be

utilised [21e26]. In this process the OCM is repeatedly reduced

by carbonmonoxide and then re-oxidised by water to produce

hydrogen. The product carbon dioxide and hydrogen are kept

separate by the inherent design of the chemical looping sys-

tem, which periodically exposes the OCM to the reducing or

oxidising agent. When selecting a suitable OCM it is important
to use a particle size that is not significantly greater than the

effective diffusional length scale of oxygen within the mate-

rial. This allows the whole capacity of the OCM to be utilised.

In other words, an OCM that can maintain a small particle

size, and thus a large surface area, is required. Iron oxide is

therefore not ideal as its diffusional length scale of oxygen is

believed to be quite short, and it suffers from thermal sinter-

ing at high temperatures (>800 �C). As a result it loses surface

area while increasing particle size such that its activity de-

creases with cycling [27,28]. These problems could be over-

come if the iron oxide (of sufficiently small particle size) were

embedded in a stablematrix (one that does not, e.g., undergo a

phase change) that has a long diffusional length scale for

oxygen. This matrix material does not in itself require a high

oxygen capacity but rather it provides a rapid oxygen transfer

pathway to access a distributed reserve of oxygen in the iron

oxide. We are employing the perovskite type material

lanthanum strontium ferrite as the matrix component to

encapsulate iron oxide particles of size 20e40 mm or smaller.

Hydrogen storage

The main focus of this element of the Hub's research is solid-

state storage, including physical storage of molecular or di-

hydrogen, H2, in nanoporous materials, such as activated

carbons [29], and chemical storage, for example in complex

hydrides such as magnesium borohydride, Mg(BH4)2 [30]. In

addition to materials chemistry aspects, the Hub's storage

research is also considered in a systems context (bridging

production and end use of H2) and is linked to practical issues

such as safety.

A key aim is to explore how solid-state systems compare

with established technologies, mainly state-of-the-art com-

pressed gas (70 MPa, 300 K), in particular to understand

whether there are benefits in terms of increased capacity and/

or less demanding operating conditions. The US Department

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 3 e (a) An example hydrogen demand trajectory for transport [6]; (b) optimal configuration of the H2 network for the

given target demand.
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of Energy (DoE) targets for onboard storage of hydrogen for

light-duty vehicles [31] are useful performance benchmarks.

For physical storage in nanoporous materials one of the main

research challenges is to meet capacity targets (ultimately

2.5 kW h kg�1 and 2.3 kW h L�1 on a system basis) at tem-

peratures approaching ambient. This problem is being
addressedwithin theHub by integrating capacious adsorbents

into high-pressure Type IV storage tanks that may operate at

close to 300 K, though may be charged cryogenically. As well

as capacity, the research challengeswith chemical storage are

also concerned with aspects such the kinetics of the uptake

and release of hydrogen. These kinetics for bulk materials

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 4 e Spatial distribution of UK hydrogen production and delivery infrastructure in 2050 from the Spatial Hydrogen

Infrastructure Model [12].
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often require relatively high temperatures (typically >400 K)

and may be slow. Materials developments are being made to

address these problems (and to approach appropriate US DoE

targets), for example by alloying, catalysis, and milling to

lower temperatures and increase rates of dehydrogenation.
Hydrogen safety

Hydrogen safety research in H2FC SUPERGEN is aimed at

studies of twomain technical issues for inherently safer use of

hydrogen systems and infrastructure. These are solutions for

reduction of separation distances and the directly related

problem of low fire resistance rating (FRR) of on-board storage.

Testing of plane nozzles demonstrated that separation dis-

tances could be shortened by an order of magnitude if plane
nozzles of thermally activated pressure relief device (TPRD)

are used instead of a round nozzle of the same cross-section

area. Numerical studies with plane nozzles reproduced the

experimental data. The switch-of-axis phenomenon was

reproduced showing that the longest axis of the plane jet in a

far field beyond the shock structure is perpendicular to the

longest axis of the plane nozzle [32]. This knowledge will be

applied in design of innovative TPRD and their location to

reduce deterministic separation distances and avoid

impingement of hydrogen jet fire of a wheel assembly to

comply with existing regulations.

An ‘unexpected’ result was obtained during comparison of

a separation distance from an unignited release (size of

flammable envelope, i.e. distance from the source to the lower

flammability limit of 4% by volume of hydrogen in air) against

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 5 e Fuel cell micro-CHP system cost reductions in Japan (EneFarm) and South Korea [1].

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 5 5 3 4e5 5 4 35540
three separation distances from a jet fire from the same

source of a leak [33]. While the ‘third degree burns’ distance is

practically equal to the flammable envelope size, the ‘pain’

and ‘no harm’ distances are longer. This implies that sepa-

ration distances have to be assessed for ignited releases (jet

fires) rather than unignited leaks. This is valid unless sepa-

ration from fireball, blast wave and missiles (including a

vehicle itself) are longer. Reliable techniques for assessment

of these separation distances have yet to be developed and

validated to be used in the hydrogen safety engineering

framework [34].

The preliminary study of FRR at Ulster has demonstrated

the importance of standardisation of the bonfire fire heat

release rate (HRR). Current regulations (GTR-2013) do not

require a fixed HRR but require a temperature exceeding

590 �C at three points under the tank. This requirement can be

achieved at different HRR. Numerical simulations demon-

strated that the decrease of HRR from 350 to 75 kW results in

the increase of FRR by more than an order of magnitude.

Clearly, the GTR-13 bonfire test protocol has to be updated.

Another result is the possibility to increase the FRR of the tank

by using a resin with higher melting/glassing point.

These safety studies are contributing to the development

of innovative safety strategies and engineering solutions

within H2FC SUPERGEN.

PEFC

PEFCs are at a stage of maturity where commercial exploita-

tion is starting. However, there is a complex interaction be-

tween cost, performance and longevity which still needs to be
optimised. Crucial to achieving such an optimisation is

improved understanding of the relationship between perfor-

mance and degradation.

A number of degradation mechanisms known to operate

within fuel cells are relatively poorly understood and para-

meterised. These degradation processes are: a) Corrosion of

catalyst supports, microporous layers and GDLs during

startup/shutdown and fuel starvation [35] [36]; b) Thinning of

the electrolyte due to chemical degradation initiated by

hydrogen peroxide and thermal effects [37]; c) Poisoning of

catalysts by environmental contaminants (especially as the

catalyst loading is decreased) [38].

Crucial to understanding and modelling these degradation

issues is measurement of the underlying physical processes

as a function of relevant operating conditions (temperature,

pressure, humidity, reactant concentrations). Once these

measurements have been made, material parameters may

then be extracted (mass transport coefficients, diffusion co-

efficients, absorption constants, kinetic rate constants etc)

which can be used to produce well parameterised models of

fuel cell operation. These may be used to suggest approaches

which negate the problem or to guide operation of PEFC sys-

tems away from “dangerous” operating conditions.

For example, one newly developed technique that has

arisen out of research in this SUPERGEN project is a simple

and precise ex-situ optical imaging method which allows

imaging of reactant transport within fuel cell components.

This approach is applied to measure oxygen concentration (as

ozone) across the face of a pseudo fuel cell catalyst layer, with

a serpentine design flow field [39]. This simple experimental

technique is shown to be a powerfulmethod in understanding

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Fig. 6 e Oxygen concentration (as ozone) distribution through a flow field and gas transport layer (see right hand images for

cross-section and plan-section of experiment). The six images on the left hand side show experimental images of light

generation, highlighting those regions in which reactant permeation through the gas transport medium is enhanced.

Secondary flow near flow field corners enhances light generation.
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the performance of flow field, gas transport layer (gas diffu-

sion layer) andmicroporous layers. This new approach allows

direct imaging of flow under lands due to pressure gradients

between the adjacent channels and non-laminar effects due

to secondary flow around U-turns, Fig. 6.
SOFC/SOEC

SOFCs offer high electrical efficiency and are well suited to

static power generation as they offer fuel flexibility and can

run on fuels such natural gas, biogas, shale gas and coal gas as

well as hydrogen. They offer high electrical efficiency even at

the kWe scale and are ideal for combined heat and power

operation due to the high quality of the heat produced. Solid

Oxide Electrolysis Cells (SOECs) are closely related to SOFCs,

and offer high efficiency hydrogen (and potentially syngas via

CO2 and steam electrolysis) production. Key challenges for

SOFCs (and SOECs) relate to cost, durability, optimisation of

interfaces, performance, and sustainability of materials. In

this project, we focus on two critical issues; development and

application of in-situ tools to understand durability, and new

materials to alleviate concerns over materials supply.

Work is progressing on developing a novel rig for Raman

measurements on operational single cells [40,41]. We also

apply three dimensional characterisation and modelling of

SOFC materials eg using X-ray tomography extending prior

work to characterise themicrostructure of a single phase LSCF

cathode at 700 �C [42,43]. This approach is being extended to

the widely used composite SOFC cathode materials, and the

modelling framework previously developed to predict the

electrochemical performance of Ni-cermets will be extended

to these LSCF composite materials.
Concerns grow relating to future availability of the mate-

rials required to deliver a significant SOFC/SOEC infrastruc-

ture, eg limited availability of Rare Earth elements. SOFCs/

SOECs use large amount of lanthanides, especially in the air

electrode materials. Two approaches are considered for more

sustainable and cheaper structures, firstly reducing lantha-

nide content and secondly replacing the air current collector

(80% cathode vol) with Ln-free materials.
Education and training

The area of education in theHubproject is represented through

the Centre for Doctoral Training (CDT) in ‘Fuel Cells and their

Fuels’ at the University of Birmingham. CDTs are the main in-

strument through which the UK government supports PhD

training. ‘Cohorts’ of ten to fifteen students per year are trained

over an integrated four-year programme startingwith one year

of taught coursesandmini-projects, followedby theusual three

yearsofdoctoral studies.Theparticipationof theuniversities of

Nottingham and Loughborough, Imperial College London, and

University College London, as well as Ulster University and a

variety of different schools across the universities gives the

educational programme a highly interdisciplinary character.

Across the Hub and its associated PhD students are sup-

ported financially in taking part in the CDTmodules offered at

University of Birmingham by the five Hub partners and Uni-

versity of Ulster. The modules include basic and advanced

courses on subjects related to H2FC technologies. These are

organised as one week of intensive training, including tuto-

rials and often also laboratory work. This activity allows stu-

dents across the UK to attend specialised courses that will

offer extra value in their PhD training.

http://dx.doi.org/10.1016/j.ijhydene.2015.01.180
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Through the Hub, an annual Researcher Conference is

organised that gives students and researchers the possibility

to display their work. This activity aims at further integrating

the UK research activities in H2FC by especially targeting PhD

students and young researchers. The second conference ac-

tivity, the Fuel Cell and Hydrogen Technical Conference, is

held annually in Birmingham. It brings together industry

presentations and academic talks and serves as a basis for

showcasing new research, discussing (inter)national FCH

employment, and displaying current developments in in-

dustry. At a networking level, it supplies a platform for in-

dustry, academia, and also the funding bodies to interact.

The Joint European Summer School on Fuel Cell and

Hydrogen Technology (JESS) is currently being organised by

Research Centre Juelich, the Danish Technical University, and

University of Birmingham. It builds on the EU project TrainHy

run from 2010 to 2012. In the context of the CDT the modules

of JESS are being coordinated to fit both the requirement of the

UK CDT and the JESS so that specialised courses given by

internationally leading researchers complement the taught

part of the CDT training.
Conclusion

The UK has a very active academic and industrial research

base in Hydrogen and Fuel Cells, from fundamental research

to key players in industry. H2FC SUPERGEN endeavours to

produce and facilitate world class fundamental research

across the entire Hydrogen and Fuel Cell landscape and link

through to the point of commercialisation. A collaborative

approach between and within academia, industry and gov-

ernment is essential in bringing commercialisation of fuel

cells and hydrogen into full fruition.
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