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Sparse Adaptive Frequency Domain Equalizers for
Mode-Group Division Multiplexing
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Abstract—In this paper, we develop low complexity sparse
frequency domain equalizers (FDEs) that exploit the sparsity
that we observe in the graded index multimode fiber (GI-MMF)
multiple-input multiple-output (MIMO) channel. The sparse
channel impulse response is caused by the strong crosstalk at
the mode MUX/DEMUX and weak coupling in the fiber between
different mode groups (MGs). Two sparse FDE designs are
proposed in order to compensate the crosstalk with relatively low
computational complexity. The first method is based on a priori
knowledge of the channel impulse response, which is used to
generate a mask of taps with significant magnitudes. The second
method is based on the improved proportionate normalized least-
mean-square (IPNLMS) algorithm, where the active and non-
active taps are adjusted at different rates of convergence. The
computational complexity and the system performance of the
proposed algorithms are analyzed. It is shown that the sparse
FDEs offer low complexity relative to the sparse equalizers that
use delay buffers, while maintaining improved performance over
non-sparse equalizers in the presence of noise.

Index Terms—Sparse adaptive equalizer, mode-group multi-
plexing, active taps mask.

I. INTRODUCTION

IN order to meet the annual growth in traffic rate, space-
division multiplexing (SDM) has been widely studied re-

cently as the only known option to scale the network capacity
in a single fiber [1]. Multiplexing in both multicore [2] and
multimode fiber [3], [4] has been demonstrated, where the
coupling between the channels is cancelled by using MIMO
digital signal processing (DSP) [5]. Degenerate mode-group
division multiplexing (MGDM) using conventional GI-MMF
has been shown to offer relatively low coupling in the fiber due
to the large differential group delay (DGD) between individual
mode groups. MIMO DSP can be eliminated if the channels
are selectively launched into different mode groups by using
spatial light modulators (SLMs) [6], which can significantly
reduce the DSP complexity [7]. However, the crosstalk at the
mode MUX/DEMUX of MGDM systems still exists due to the
impairments of the SLM based optics system. Previously, we
have shown that the channel impulse response of degenerated
MGDM systems using GI-MMF is sparse as a result of
the strong crosstalk at the mode MUX/DEMUX and weak
coupling in the fiber [8]. Consequently, the total length of the
channel impulse response increases as the length or the DGD
of the fiber increases.
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Thus, for a conventional uniformly spaced tap-delay-line
equalizer, at least the same number of taps as the total num-
ber of channel coefficients in the sampled impulse response
are required to achieve reasonable performance. Hence, the
computational complexity increases significantly for longer
transmission distances resulting from the large value of the
DGD of the GI-MMF. However, due to the sparsity of the
channel, only a small portion of the tap coefficients are non-
zero or with significant magnitudes, while the rest are zero
or small. Various algorithms have been developed for sparse
channels aiming for low-complexity and cost, as well as
noise reduction [9]. A priori information based optimization
using the known channel impulse response can be used to
determine the optimal or sub-optimal selection of the active
tap positions [10], or an adaptive approach can be taken
using the IPNLMS algorithm. In this algorithm, different
convergence rates are applied on the active and inactive taps
during the update of the equalizer coefficients [11]. The sparse
equalizer design was first introduced for fiber SDM systems
by using a nonuniformally spaced tap-delay-line equalizer,
where the taps with small magnitudes were replaced by delay
buffers [12]. Based on this method, we proposed the delayed
FDE which reduces the computational complexity compared
with the delayed time domain equalizer (TDE) when the
tap length exceeds a certain number [8]. In both cases, a
priori knowledge of the channel is required, where the delays
and number of taps are manually selected by observing the
channel impulse response. Therefore, it is important to design
a sparse equalizer where the active taps can be selected either
automatically based on the training sequence or adaptively.
Furthermore, the complexity of the delayed FDE is still found
to be approximately twice higher than the conventional FDE.
Hence, it is desirable to develop sparse FDEs that fully exploit
the complexity reduction offered by the frequency domain
implementation.

In this paper, we propose two sparse FDEs with low com-
plexity for the degenerated MGDM systems. The first method
is the conventional FDE with an active taps mask, which is
obtained from the least squares (LS) tap coefficients combined
with a simple active tap selection method. The second method
is a sparse adaptive equalizer using the IPNLMS algorithm.
The performance of these two FDEs are compared, along with
the delayed TDE and FDE in a 2× 2 MGDM system using
a 28 Gbaud quadrature phase shift keying (QPSK) signal.
This paper is organized as follows: In section II, the channel
impulse response of the MGDM system is presented and the
complexity of different equalizers for the system is examined.
This is followed by the algorithms of the two proposed sparse
FDEs in section III. The system performance of different types
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Fig. 1. (a) Experimental setup. ECL: external cavity laser, PPG: pulse pattern
generator, DPMZ: dual parallel Mach-Zehnder modulator, VOA: variable op-
tical attenuator, ASE: Amplified spontaneous emission noise, DP-CoRx: dual
polarization coherent receiver. (b) Simplified block diagram of the MGDM
system with the offline DSP blocks. (i) LS equalizer. (ii) Data recovery. (iii)
LS channel estimation. S: transmitted signal; H: MIMO channel; R: received
signal w/o carrier phase; R′: received signal with carrier phase; W: tap-
delayed-line equalizer using LMS algorithm updated according to the CMA.
∆: delay buffers; Ŵ: tap-delayed-line equalizer using LS algorithm; Ŝ′′:
estimated signal with noise and carrier phase; ϕ: carrier phase; Ŝ′: estimated
signal S with carrier phase; Ĥ: estimated MIMO channel; Ŝ: estimated signal
S. M ↑: upsample by 2.

of equalizers is investigated in section IV. Finally, a conclusion
is given.

II. MIMO BASED DEGENERATE MGDM SYSTEM

Standard 28 Gbaud QPSK transmitters and receivers are
used for the 2×2 degenerate MGDM system as shown in
Fig. 1 (a). The in-phase (I) and quadrature (Q) components
of the QPSK signal are generated using the two data outputs
of a pulse pattern generator (PPG) to drive a dual parallel
Mach-Zehnder (DPMZ) modulator. Each output is a 28 Gb/s
data signal, which is derived from two interleaved 14 Gb/s
pseudo random binary sequences (PRBSs) of length 215 − 1.
A delay of 9980 symbols is inserted between the two output
signals to decorrelate the IQ components. The optical output
of the DPMZ is split into two channels and decorrelated with
a relative delay of 28 ns (738 symbols). The SLM based
MUX is only capable of launching the channels into two
MGs, LP0,1 (MG1) and an arbitrary higher order mode, here
LP0,2 (MG3), each in a single polarization [13]. The launched
signals are transmitted through an 8 km GI-MMF. At the
mode DEMUX, the optimal weighting of each degenerate
mode within the mode group is determined based on the
measured optical amplitude and phase of each mode within
the mode group and the resulting composite phase mask
is displayed on the SLM [6]. The optically demultiplexed
signals of different mode groups are combined with amplified
spontaneous emission (ASE) noise to vary the received optical
signal to noise ratio (OSNR), which is measured by an optical

spectrum analyzer (OSA). The noise loaded signal is then
detected by two integrated coherent receivers and an 8-channel
real time oscilloscope respectively. An OSNR compensation of
3 dB is incorporated into the measurements to account for the
fact that only a single polarization is transmitted, however all
optical noise is equally distributed to both polarizations as the
DP-CoRx (dual polarization coherent receivers) are used in
this experiment.

The 2×2 MIMO system shown in Fig. 1 (a) can be
represented in matrix notation as R = HS + N (see Fig. 1
(b)). Additional noise (ϕ) is introduced by the phase noise
of the transmit and local oscillator lasers and the frequency
offset between the transmitter and the receiver. Offline DSP
is employed for the data recovery (see Fig. 1 (b-ii)) and the
channel estimation (see Fig. 1 (b-iii)). The recovered data
sequence Ŝ is then correlated with the transmitted PRBS
pattern to reconstructed the transmitted signal, which is used to
emulate the training sequence for the channel estimation. The
LS method is subsequently employed to calculate the channel

impulse response of the system as Ĥ = RŜH
(
ŜŜH

)−1
[5].

A 215 twofold oversampled sequence is used to estimate the
1024-sample-long channel impulse response and the result is
plotted in Fig. 2. The large central impulse in h11 and h22
represents the amount of energy that remains in the same mode
group as it is selectively launched, which corresponds to the
ideal channel response. The remaining impulses, mainly in the
anti-diagonal matrices, are caused by the strong crosstalk at
the mode MUX/DEMUX. For example, the impulse located
at the time of 0 ns in h21 represents the crosstalk from LP0,2

to MG1 at the mode DEMUX as it propagates at the same
speed as the ideal channel impulse in h11. As the magnitudes
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of the taps between the impulses that arise from the coupling
at the MUX/DEMUX are approximately 35 dB lower than the
central impulse due to the weak coupling between the MGs in
the fiber, it can be considered as a sparse channel. The DGD
of the fiber can be calculated from the separation between the
impulses, which is approximately 0.36 ns/km for MG2 and
0.61 ns/km for MG3.

In order to undo the crosstalk and coupling in the MIMO
system, the length of the uniformly spaced adaptive equalizer
W is required to be at least the same length as the channel
impulse response. As a result, the computational complexity,
which is defined as the total number of complex multipli-
cations per symbol per mode, increases as a function of
the transmission distance. The complexity of various types
of equalizers are calculated and plotted in Fig. 3 using the
estimated DGD above. The sparse equalizers offer a com-
plexity reduction compared with the conventional TDE, as
shown by the delayed TDE and the delayed FDE in Fig. 3,
where the inactive taps with small magnitudes are replaced
by the delay buffers. In general, the FDEs have a significant
advantage of lower complexity over the TDEs when the
transmission distance is greater than 0.5 km. This is due
to the high efficiency of the fast Fourier transform (FFT).
The FFT size is also optimized as a power of two in the
plot, which provides the lowest complexity. Ideally, if the
DGDs between the degenerate modes in each mode group
are zero, the complexity of the delayed equalizers should
remain constant for a given number of multiplexed mode
groups in the system. The reason is that the coupling in
the GI-MMF is weak, therefore expanding the transmission
distance mainly introduces extra low magnitude coefficients
in the sparse channel response. However, due to impairments

Transmission Distance (km)

10-1 100 101 102 103

C
o

m
p

le
x
it
y
 (

#
 c

o
m

p
le

x
 m

u
lt
s
/s

y
m

b
o

l/
m

o
d

e
)

102

103

104

TDE

FDE & FDE with mask

Delayed FDE

Delayed TDE

IPNLMS

Fig. 3. Computational complexity per symbol per mode for various types of
equalizers.

FFT

IFFT

·········

FFT

UH

IFFT

·········

000

FFT

∑ W(k+1)

Delay

W(k)

μ

000

CMA

u0

FFT

IFFT

·········

FFT

UH

IFFT

·········

000

FFT

000

CMA

∑

μ1 μL-1μ0

wk

1
wk

L-1
wk

0

wk+1

1
wk+1

L-1
wk+1

0

Delay

u1 uL-1

m1m0 mL-1

u-L u-2 u-1

u0 u1 uL-1

u-L u-2 u-1

e0 e1 eL-1

y0 y1 yL-1

e0 e1 eL-1

y0 y1 yL-1

u0 u1 uL-1 u0 u1 uL-1

фk
0

фk
1
фk

L-1
фk

0
фk

1
фk

L-1

ф’k
0
ф’k

1
ф’k

L-1

(a) (b)

E(k) E(k)

W(k)

Fig. 4. (a) The FDE with an active taps mask. (b) The IPNLMS FDE. u:
inputs; y: outputs; e: error; φ: cross-correlation between inputs and error
signals; w: equalizer coefficients (time domain); W: equalizer coefficients
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during the fiber fabrication process, the DGD between the
degenerate modes in each mode group is not negligible as
shown by the pulse width of the impulses in Fig. 2. Therefore,
the required number of taps still increases as a function of
the transmission distance for the delayed equalizers due to the
broadening of the impulses in the channel response. In order to
approximate the necessary active taps in each of the impulses
at different distances, a value of 0.22 ns/km is used for the
calculation in Fig. 3. The details of the complexity of different
equalizers are shown in appendix A. It should be noted that the
lowest complexity among all the equalizers is achieved by the
conventional uniformly spaced FDE, which is approximately
twice lower than the delayed FDE. However, as shown in [8],
the performance of the conventional FDE is degraded by the
noise accumulated from the inactive taps.

III. SPARSE FDE

In the following section, we introduce two sparse FDEs,
which eliminate the noise accumulation while maintaining low
complexity when compared to the conventional FDE. In this
paper, the overlap-save method with 50 % overlap is used in
the FDEs, as shown in Fig. 4 [14]. For an equalizer with a
length of L, the linear convolution of the tap inputs and the tap
weights of the equalizer is performed in the frequency domain
as:

yT(k) = last L elements of IFFT [U(k)W(k)], (1)

where W and U denotes the FFT of the zero-padded tap-
coefficient vector w and the inputs u respectively. Both of
the proposed algorithms are applied on the cross-correlation
signals (φ) between the inputs (u) and the errors (e), which
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can also be calculated in the frequency domain as:

φ(k) = first L elements of IFFT [UH(k)E(k)], (2)

where the cost-function of the Least-Mean-Square (LMS)
algorithm is defined as |e|2 =

(
1− |y2|

)2
according to the

constant-modulus algorithm (CMA) [14].

A. FDE with an active taps mask

The accumulated noise can be eliminated by masking the
taps, where the outputs of the taps with small magnitudes
are set to zero [15]. In order to implement the mask in the
FDE with the same complexity as the conventional FDE, we
propose a method with only extra logical AND operations
(∧). The two inputs of the AND gate are the cross-correlation
signal φ and the active taps mask m as shown in Fig. 4 (a). In
this case, only the taps with significant magnitude are updated
every iteration of the LMS equalization by:

W(k + 1) = W(k) + µFFT

[
φ(k) ∧m

0

]
, (3)

The mask m in eq. (3) is a sparse matrix containing 1s in
the position of the active taps and 0s elsewhere (see Fig. 5
(b)). Since the AND operation is used instead of additional
multiplications, the complexity of the FDE with an active taps
mask follows the same trend as the conventional FDE in Fig. 3.

Various algorithms have been proposed to obtain the optimal
position of the active taps based on a priori information of
the channel [10]. Instead of complex computation to find the
optimal solution, here we propose a simple method as shown
in Fig. 5. First the tap coefficients are estimated by using a
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Fig. 5. The magnitudes the tap coefficients of the equalizer from input 2 to
output 1 (w12). (a) LS equalizer. (b) Active taps mask with Nm = 288. (c)
FDE using a mask as shown in (b).

training sequence and the LS algorithm as shown in Fig. 1
(b-i):

Ŵ = Ŝ′R′
H
(
R′R′

H
)−1

. (4)

The magnitudes of the taps of one of the 2× 2 equalizer are
plotted in Fig. 5 (a). A total number of 215 training symbols
with twofold oversampling is used in the LS algorithm to get
a close estimation to the optimum coefficients according to the
Wiener-Hopf equation [14]. The tap position is then sorted by
the magnitudes of the tap coefficients, and the first Nm taps
with the highest magnitudes are set to 1 while the rest are
set to 0 to form the active taps mask as displayed in Fig. 5
(b). The mask is subsequently applied in eq. (3) for the tap
update of the FDE. The tap coefficients after the convergence
of the adaptive FDE with a total number of 288 active taps
is displayed in Fig. 5(c). The performance of this scheme is
shown in section IV. There are three groups of active taps
at around index 250, 400 and 500, which corresponds to the
two selectively launched MGs, i.e. MG1 and MG3 and the
intermediate mode group (MG2). The inactive taps between
these three impulses are mostly removed while some residual
taps remain, which are used to compensate the weak coupling
in the fiber.

B. IPNLMS method

When the channel impulse response is not available at the
receiver of the system, it is important to develop a sparse
adaptive equalizer, where the magnitudes of the inactive taps
are further reduced adaptively. Instead of using a constant step-
size parameter µ for all the taps, the values of µ vary based
on the inputs and the tap coefficients in the IPNLMS as:

µl(k) =
µ0L · gip,l(k)∑L−1

j=0 |u(k − j)|2gip,j(k) + δIPLMS

, (5)

where, 0 < µ0 < 1/L is the overall step-size factor, L
is the equalizer length, and δIPLMS is the regulation factor
proportional to the power of the inputs u. The parameter
gip,l(k) is the gain distributor which adjusts the step sizes
of the individual taps of the equalizer according to:

gip,l(k) =
1− β
2L

+ (1 + β)
|wl(k)|

2||w(k)||1 + ε
. (6)

Parameter −1 ≤ β < 1 controls the amount of proportionality
in the IPNLMS algorithm [11]. We can see from eq. (6), for
β = −1, gip,j(k) = 1/L, which means all the taps are updated
with the same step size. When the value of β increases, the
second term in eq. (6) gets larger, therefore the taps with higher
magnitudes (|wl(k)|) are updated faster than those with lower
magnitudes. Hence, the inactive taps remain suppressed close
to their initial values, which are set to zeros at the start of the
equalization. This is desirable for sparse channels with long
impulse response but small number of taps with significant
magnitudes as the noise introduced by the inactive taps in the
equalizer is reduced.

Similar to the method in section III-A, the variable step
size for each tap is introduced through the cross-correlation
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Fig. 6. The magnitudes the tap coefficients of the equalizer from input 2 to
output 1 (w12). (a) LS equalizer. (b) IPNLMS equalizer with β = −1. (c)
IPNLMS equalizer with β = −0.3.

function as shown in Fig. 4 (b). However, the updates of the
equalizer are changed from eq. (3) to:

W(k + 1) = W(k) + FFT

[
φ(k) ◦ µ

0

]
, (7)

where µ = [µ0, µ1, · · · , µL−1] and the symbol ◦ represents the
entry-wise product. As shown in Fig. 4 (b), the updates of the
tap coefficients are performed in the time domain in order to
save an extra FFT. Using the notations in appendix A, 2M2L
extra real multiplications are required compared with the con-
ventional FDE. If we consider one complex multiplication can
be carried out using only three real multiplications, the added

complexity on top of the FDE in eq. (9) is
2ML

3(N − L+ 1)
.

However, for the 2 × 2 MGDM system with M = 2, this
number is negligible compared with the FDE complexity.
Hence, the complexity of the IPNLMS is approximately the
same as the conventional FDE as shown in Fig. 3. The
extra complexity can be further reduced by switching the
equalizer from the IPNLMS to the FDE with a mask after
the convergence. While the locations of the active taps can be
decided by the IPNLMS coefficients instead of using the LS
algorithm with a priori information of the channel.

The resulting magnitudes of the w12 taps are shown in
Fig. 6. The magnitudes of the coefficients derived from the
LS algorithm are plotted in Fig. 6 (a) as a reference. It is seen
that when β = −1, the magnitudes of the inactive taps are
approximately 5 dB higher than the case of the LS algorithm.
When the value of β increases, the level of the noise floor is
reduced accordingly. We have found that the best performance
is achieved by the adaptive sparse equalizer for the given
MGDM system when β = −0.3 and the corresponding
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magnitudes of taps are plotted in Fig. 6 (c). Comparing the tap
coefficients in Fig. 5 (c), a similar result is observed, where the
magnitudes of the inactive taps are significantly suppressed.

The learning curves of the two proposed methods are plotted
in Fig. 7. The mean square errors (MSE) are calculated over
each block of data, which is equal to the FFT size, as a 50 %
overlap save method is used. For the sparse IPNLMS, the
fastest convergence rate is achieved for β = −0.3. However,
the value of µ is required to be much smaller (µ′0 = 0.1µ0)
than the other equalizers in the figure in order to assure the
convergence of the algorithm. The convergence rate decreases
as β increases, and for β = −1, the MSE converges at
the same rate as FDE with a mask containing constant 1s
(Nm = NFFT ), which operates equally as the conventional
FDE. It is clearly seen that the FDE with an active taps mask
also converges faster when the number of active taps (Nm) is
reduced. It should be noted that three discrete stages of the
µ parameter are also adapted in the equalizer to improve the
steady state performance as indicated in Fig. 7.

IV. SYSTEM PERFORMANCE

The performance of the system using the conventional TDE
and FDE is compared by plotting the Q2 factor as a function
of the total number of taps at a received OSNR of 16.8 dB
(see Fig. 8). There are two discrete steps in the curve of
the TDE when the equalizer length increases beyond 322
and 546 taps for MG1, and 224 and 546 taps for MG3,
which corresponds to the equalizer lengths that are required to
include the pre/post-cursors in the channel impulse response as
shown in Fig. 2. The required equalizer length is twice longer
than the delay due to the DGD in order to allow for both
pre/post-cursor responses to be compensated. The degradation



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

9.2

9.4

9.6

9.8

10

10.2

10.4
(a)

Q
2
 (

d
B

) 
o
f 
M

G
3

0 200 400 600 800 1000
9

9.2

9.4

9.6

9.8

10

10.2

10.4
(b)

Number of equalizer taps or N
m

Q
2
 (

d
B

) 
o
f 
M

G
1

 

 

TDE

FDE

FDE Mask

IPNLMS

Fig. 8. Q2 factor for (a) MG3 and (b) MG1 as a function of the total number
of taps (or active taps for the FDE with mask). OSNR = 16.8 dB

of the performance shown as the decrease of the Q2 factor
between the two steps is due to the introduction of noise in
the equalizer arising from the inactive taps between the central
and the pre/post-cursor impulses. The performance of the FDE,
shown in Fig. 8, follows the same trend as the TDE, which
indicates that it also suffers from noise added from the inactive
taps. In addition, the best performance of the conventional
TDE can not be achieved using the FDE, as the number of taps
is constrained to a power of 2 to achieve high FFT operational
efficiency.

As discussed in section III, the noise arising from the
inactive taps can be removed by using sparse equalizers. In
order to compensate the channel impulse response, the total
number of taps for both the FDE with an active taps mask
and the IPNLMS algorithm are chosen as 1024. Here, the
Q2 factor is plotted against the total number of active taps
(Nm) for the masked FDE. The highest Q2 factor is achieved
with approximately 288 active taps distributed at different
locations of the equalizer as shown in Fig. 5 (b). The best
performance of the system is achieved when the number of
active taps is sufficient for the pulse width of each impulses
in the channel response. As the number of active taps increases
beyond the optimum number, the performance is degraded
gradually as the additional active taps only introduce noise.
The performance of the IPNLMS method is also shown in
Fig. 8, where the proportional parameter β = −0.3. In this
equalizer the inactive taps are adaptively suppressed, resulting
in the same performance as the FDE with an optimum number
of the active taps. Overall, both schemes give an improvement
of approximately 0.2 dB compared with the conventional FDE
of the same length.

As the sparsity is affected by the noise level in the channel
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response, it is important to investigate the performance of the
sparse FDEs at different values of the OSNR. The bit error
rate (BER) as a function of the OSNR is plotted in Fig. 9. It
can be seen that both the IPNLMS and the mask method work
at different OSNR regions. The BER curve of the conventional
FDE is also shown in Fig. 9. However, the improvement gained
by using the sparse FDEs is relatively small (∼ 0.2 dB) and
can only be distinguished by the linearly fitted lines (solid line
for the conventional FDE, dotted line for the sparse FDEs).
Also, we can see that the IPNLMS provides a slightly better
performance over the FDE with an active taps mask, especially
in the high OSNR region. This is attributed to the fact that the
optimum number of active taps may vary at different OSNRs
and is required to be adjusted accordingly. While in Fig. 9, a
constant number of 288 is used for all the values of the OSNR.

V. CONCLUSION

The channel impulse response of the MGDM system using
conventional GI-MMF is shown to exhibit a sparse response.
Two sparse FDEs are introduced for MIMO DSP, one that uses
a fixed mask determined using a training sequence to estimate
the channel response and another that uses a blind adaptive tap
weight update. The computational complexity of the FDE with
an active taps mask is the same as the conventional FDE as
only logical AND gates are used. However, a priori knowledge
of the channel is required to generate the mask. Although, ex-
tra real multiplications are required for the IPNLMS algorithm,
which can adaptively equalize the sparse channel without a
training sequence, the increase in complexity is negligible,
especially for a small number of channels. In addition, the
accumulated noise from the taps with small magnitudes is
eliminated by using the sparse FDEs. A fast convergence rate



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

is achieved by the IPNLMS FDE. An improvement of approxi-
mately 0.2 dB in Q2 factor is demonstrated by the sparse FDEs
compared with the non-sparse equalizers at different values
of the OSNR. Similar channel impulse responses have also
been discovered in other SDM systems arising from the mode
mixing at splice points, which means that the sparse FDE can
also be employed to reduce the equalizer induced noise and
maintain low computational complexity in these systems as
well. As GI-MMF has been widely deployed in data centers
due to its low cost, the MGDM system using sparse equalizer
can be very useful to meet the growing demand of capacity
for these short reach high data capacity applications.

APPENDIX A
CALCULATION OF THE COMPUTATIONAL COMPLEXITY

The complexity in this paper is calculated as the total
number of complex multiplications per symbol per mode.
For the conventional TDE with M MIMO channels and an
equalizer with L T/2 fractional-spaced taps, to obtain one
output symbol of each mode, M2L multiplications are needed.
M multiplications are then required for computing the errors
and M2L multiplications are needed for the update of the
tap coefficients. Therefore the complexity for the conventional
TDE CTDE is expressed as [14]:

CTDE =
M2 · L+M +M2 · L

M
= 2ML+ 1 (8)

For the conventional FDE with a block size of N−L+1 and
an FFT size of N , 2M2N multiplications and 2M FFTs and
M inverse FFTs (IFFTs) are needed for calculating N−L+1
output symbols for each channel. M (N − L+ 1) multiplica-
tions and M FFT are required for the error calculation. 2M2N
multiplications and α·2M FFTs/IFFTs are needed for updating
the tap coefficients, where α = 2 for the constrained FDE and
α = 0 for the unconstrained FDE. Thus, the complexity of the
conventional FDE CFDE can be derived as [5]:

CFDE =

[
4MN + (N − L+ 1) + (4 + 2αM)CFFT

]
N − L+ 1

(9)

The complexity of the delayed TDE is the same as the con-
ventional TDE for a given number of sub-equalizer tap length.
Meanwhile the masked FDE is the same as the conventional
FDE since AND operation is used instead of additional mul-
tiplications. The added complexity of the IPNLMS algorithm

is
2ML

3(N − L+ 1)
for the entry-wise product.

For the delayed FDE with B sub-equalizers and B − 1 de-
lays, 2M2NB multiplications and 2MB FFTs and M IFFTs
are needed for calculating N −L+1 output symbols for each
channel. The same number of multiplications and FFTs/IFFTs
are needed for the error calculation as the conventional FDE
and 2M2NB multiplications and α · 2MB FFTs/IFFTs are
needed for updating the tap coefficients. Thus, the resulting
complexity for the delayed FDE CDFDE is:

CDFDE =
[
4MNB + (N − L+ 1)

+ ((2B + 2) + 2αMB)CFFT

]
÷ (N − L+ 1) (10)
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