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a  b  s  t  r  a  c  t

Discontinuities  between  distinct  regions,  described  by  different  equation  sets,  cause  difficulties  for
PDE/ODE  solvers.  We  present  a new  algorithm  that eliminates  integrator  discontinuities  through  regular-
izing  discontinuities.  First,  the  algorithm  determines  the  optimum  switch  point  between  two  functions
spanning  adjacent  or overlapping  domains.  The  optimum  switch  point  is determined  by searching  for a
“jump  point”  that  minimizes  a discontinuity  between  adjacent/overlapping  functions.  Then,  discontinuity
is  resolved  using  an interpolating  polynomial  that  joins  the two  discontinuous  functions.

This  approach  eliminates  the  need  for  conventional  integrators  to either  discretize  and  then  link  dis-
continuities  through  generating  interpolating  polynomials  based  on  state  variables  or  to  reinitialize
state  variables  when  discontinuities  are detected  in an  ODE/DAE  system.  In  contrast  to conventional
approaches  that  handle  discontinuities  at the  state  variable  level  only,  the  new  approach  tackles  discon-
tinuity  at  both  state  variable  and the  constitutive  equations  level.  Thus,  this  approach  eliminates  errors

associated  with interpolating  polynomials  generated  at a state  variable  level  for discontinuities  occurring
in  the  constitutive  equations.

Computer  memory  space  requirements  for this  approach  exponentially  increase  with  the  dimension  of
the  discontinuous  function  hence  there  will  be  limitations  for functions  with  relatively  high dimensions.
Memory  availability  continues  to increase  with  price  decreasing  so this  is  not  expected  to  be a major
limitation.
. Introduction

A process can be thought of as a complex system that is
escribed by, mostly, continuous mathematical functions (alge-
raic or differential). Solution of these differential equations,
sually through integration, brings an insight into the behaviour of
he process under study. However, the continuity of these math-
matical functions is sometimes broken by internal or external
nfluences. Breakage of continuity occurs because of the tendency
f scientists to treat each process condition with differing constitu-
ive equations and/or boundary conditions. Once simulation shifts
rom one condition to another, the underlying equations change,
sually with no reservation to mathematical continuity. A rapid
hase shift or flow reversal represents an example of an internally
enerated discontinuity in ODE/DEA system whereas switching a

ump on/off can be considered as an external influence that raises

 mathematical discontinuity in the modelled system.
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Handling discontinuity through ODE/DAE solvers is performed
through two steps: discontinuity detection and discontinuity res-
olution; although some solvers combine the two  steps (Mao  &
Petzold, 2002).

The literature refers to the problem of locating a discontinuity
as discontinuity detection (Javey, 1988). Process simulators usually
couple their integrators with the modelling language. This coupling
eases detection of jump discontinuities.

Regardless of the form or source of discontinuity, it needs to be
resolved either before starting to integrate the ODE/DAE system
(if possible) or whenever it is encountered during the evolution of
integration process. Methods for the resolution of discontinuities
arising during integration of differential equations can be divided
into two types:

1. Type I tries to handle discontinuities using methods that are
usually integrated with the solver (integrator) of the ODE/DAE

system. Those methods are usually generic, irrespective of the
system to be modelled and handle discontinuities at the time
they are encountered during integration (or simulation). Most
literature on discontinuity detection and resolution covers this
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Nomenclature

ap specific area of the pellet
CT dimensionless total concentration
Cref

t total molar concentration
Dz axial thermal conductivity
kgl overall mass transfer coefficient
L column length

Nm
g number of fluid film mass-transfer units = 1−ε

ε
apkglL
uref

Pem mass Peclet number =
uref L

Dz
�s solid density
qref

i
maximum adsorbence of adsorbate i in adsorbent
pellet

Qi dimensionless adsorbence of adsorbate i in adsor-
bent pellet

uref reference velocity
U dimensionless velocity
�vi vector dimension at time instant i of simulation run
x dimensionless axial distance or x-dimension
y dimensionless concentration (mole fraction) or y-

dimension
<y> adsorbate dimensionless concentration (mole frac-

tion) in solid phase

Greek Letters
�  void fraction

�mi
mass capacity factor = 1−ε

ε

�sqref
i

Cref
t

� dimensionless time

Sub/superscripts:
f feed
p purge
i component index or simulation time instant

2

u
m

F
p

m mass
s solid

class (eg. Ellison, 1981; Javey, 1988; Mao  & Petzold, 2002; Park
& Barton, 1996).

. Type II handles discontinuities using knowledge about the pro-
cess to be modelled. It remodels the ODE/DAE system in a way
that eliminates discontinuities. Literature is very sparse in this
area (e.g. Borst, 2008; Brackbill, Kothe, & Zemach, 1992; Carver,
1978; Helenbrook, Martnelli, & Law, 1999).
Borst (2008) refers to the two types as discretization and reg-
larization, respectively (Fig. 1). He also points out that internal
odel discontinuities are better handled using type II methods

ig. 1. Transformation of a discontinuity into a regularization or a discretization
roblem. (Borst, 2008).
emical Engineering 62 (2014) 139– 160

irrespective of the solver integration routine. Surprisingly, both
classes use some form of an interpolation to convert a discontin-
uous region into a continuous one when dealing with internally
generated discontinuities. Externally generated discontinuities are
usually handled by re-initialization of the model equations and
their respective new initial and boundary conditions. In the forego-
ing discussion, we will briefly touch on recent literature covering
each of the categories.

1.1. Type I—Integrator based discontinuity resolution

Cellier (1979) demonstrated that the most efficient approach to
locating a state event is through discontinuity locking.  In disconti-
nuity locking the system of ODE/DAE is locked until the end of the
integration step regardless of the existence of a state event during
the step. After completion of the integration step that involves a
state event, the exact location of the state event is detected. Several
event location algorithms that use discontinuity locking mecha-
nism are reported and for a comprehensive review of state event
detection algorithms the reader may  refer to Park and Barton (Park
& Barton, 1996). Mao  and Petzold (2002) have introduced an event
detection algorithm that is based on regulating the integration step
size based on discontinuity functions that are appended to the DAE
system. Recently, Archibald, Gelb, and Yoon (2008) introduced a
state event detection algorithm that is based on polynomial anni-
hilation techniques. Their method relies on the difference of the
Taylor series expansions behaviour between continuous and non-
continuous intervals of the tested function.

Once a discontinuity is detected, it needs to be resolved before
the integrator passes it. Javey (1988) reports three methods for
resolving discontinuities. In all methods, the integrator checks the
sign change of a discontinuity-function after each integration step
as indication of having located a discontinuity:

1. Once the discontinuity is located, the integrator switches mod-
elling equations to those after the discontinuity and starts at the
end of the current step. This procedure is inaccurate as it accu-
mulates error each time a discontinuity is encountered. Mao  and
Petzold (2002) warn about mere stepping over discontinuities
without carefully handling them with some rigour.

2. Once the discontinuity is located, the integrator halves the step
and repeats the last integration step in a hope to resolve the
discontinuity. Resolution is generally achieved if the function is
continuous but the integrator may  fail to resolve the disconti-
nuity due to the use of a large integration step. Thus, repeating
the integration step with smaller step sizes, where the disconti-
nuity is detected should eventually reveal the continuity of the
function. This solution, although better than the first one, is still
considered inefficient because the integrator needs to iterate at
the discontinuity until an acceptable error tolerance is achieved.
If the acceptable error tolerance is not achieved after repeated
step-halving (usually because of an instantaneous discontinu-
ity), the integrator aborts integration. The method is then unable
to resolve the discontinuity (Carver, 1978).

3. Once the discontinuity is located, the integrator reinitializes
the differentiable variables using post discontinuity condi-
tions after interpolating differential and algebraic variable at
the discontinuity using a discontinuity function (an interpolat-
ing polynomial). It should be noted that this method implies
mathematical continuity of differential equations through the
discontinuity domain regardless of the validity of the result-
ing solution, as demonstrated by Cellier (1979). This method

is the most commonly adopted in recent integration routines
used for process simulation. The mismatch between the results
obtained using the interpolating polynomial and those obtained
when reinitializing the ODE/DAE system after crossing a
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discontinuity sometimes creates what is known as a sticky dis-
continuity. Sticky discontinuities occur because sometimes after
reinitializing the ODE/DAE system, the state of the differential
variables returns to the value it had before triggering the dis-
continuity resolution resulting in an infinite loop: locating the
discontinuity, interpolating to conditions after the discontinu-
ity, reinitializing ODE/DAE after the discontinuity, re-evaluating
discontinuity trigger and falling back to the same discontinuity,
interpolating to conditions after discontinuity, etc.

Two problems arise from Type I discontinuity resolution:

Re-initialization effort is directly proportional to the number of
DAE/ODE equations. Even if discontinuity is encountered in one
equation of the system, the integrator still needs to reinitialize
the entire system. This procedure is computationally expensive.
What is needed is an approach that detects and eliminates local-
ized discontinuities leaving the rest of the system’s continuous
functions intact.
Some integration routines use interpolating polynomials to
bridge discontinuous domains. The use of integrator-based inter-
polating polynomials can produce inaccurate results at and/or
after the discontinuous region. Park and Barton (1996) demon-
strate that sticky discontinuities arise because the interpolating
polynomial used by the integrator to overcome a ODE/DAE dis-
continuity may  land the ODE system at a point before the
discontinuity. This is mainly due to the difference in behaviours
between the ODE/DAE system and the interpolating polynomial
that is used to approximate its behaviour at the discontinuity
although the ODE/DAE system and the interpolating polynomial
share the same initial conditions at the location immediately
preceding the discontinuity. We  may  easily deduce that even if
the interpolating polynomial has managed to cross the disconti-
nuity, it will probably land at a location post the discontinuity
that is different from that corresponding to the course of the
ODE/DAE system. So, even when discontinuities are resolved
using integrator-based interpolating polynomials, the solution
post discontinuity loses accuracy. The error accumulates with
every discontinuity that is resolved.

.2. Type II—System impeded discontinuity resolution

In this section, we shed light on resolution of discontinuities
sing bridging functions that are derived from laws surrounding
he physical system or their approximation. The first published
ttempt was by Carver (1978). He appended the discontinuous
unctions to the ODE system after a slight transformation. Then,
e applied Gears algorithm (Gear, 1970) to detect discontinuities.
arver’s attempt was the only encountered attempt to generalize a
olution using Type II although the problem was still left discretized
i.e. no regularization functions used).

Brackbill et al. (1992) resolved a discontinuity resulting from the
ontact of two fluids at an interface point by a smooth interpolation
etween discontinuities using the following function:

(x) =

⎧⎪⎨
⎪⎩

C1 (FLUID1)

C2 (FLUID2)

0.5 ∗ (C1 + C2) (INTERFACE)

Helenbrook et al. (1999) criticized Brackbill’s approach as
ntroducing an error that is linearly proportional to the formed grid.

nstead they recommended replacing discontinuities with moving
oundaries that retain the interface region between the two fluids.

Borst (2008) emphasized that the use of regulating functions
erived from the physics of the problem (Type II) will better
emical Engineering 62 (2014) 139– 160 141

eliminate discontinuities than the sole use of Type I discretization
techniques. He attributes the enhancement to the increase in length
(or time) scale over that resulting from the use of discretization
techniques; as illustrated in Fig. 1. He illustrated the concept by
modelling fractures of solid material at their break points.

In this paper, we  provide a generic approach to Type II problems
that is problem independent. Once included within a simulation
package, this approach will eliminate the need for the simula-
tor integrator routine to reinitialize state variables whenever a
discontinuity is located. In addition, since the approach tackles dis-
continuities at their appropriate level, interpolating polynomials
resulting from this approach more resemble the accurate simula-
tion path than those generated by integration routine that resolve
discontinuities at state variable level only. The resolution is generic
enough to be adopted in:

1. implicitly defined discontinuities arising from discontinuous
constitutive equations but usually appear in state variables.

2. explicitly defined discontinuities that are formulated as bound-
ary conditions.

Although examples demonstrating the concept are drawn from
the field of chemical engineering, the concept applies to any
mathematically developed model that involves the use of logical
expressions in any field of science. Other examples, at which this
work might prove beneficial, include start-up and shut-down of
process units such as those reported by (Gani, Ruiz, & Cameron,
1986) and (Ruiz, Cameron, & Gani, 1988). The next section describes
the one-dimensional detection and resolution methods. This is then
generalized to two-dimensional problems which requires expla-
nation of overlapping regions, and then to n-dimensions (shown
in 3D using mesh-grid), followed by two examples: one involving
a fluid flow problem with two variables and the other involving
the regularization of initial and boundary conditions of a Pressure-
Swing-Adsorption (PSA) column.

2. One-dimensional discontinuity detection and resolution

Let us assume that we  have a composite function f that is defined
by two separate sub-functions f1(x) and f2(x) that span two  adjacent
domains [a′, b] and [a, b′], respectively:

f (x) =
{

f1 (x) , x ∈ [a′, b]

f2 (x) , x ∈ [a, b′]
(1)

For demonstration purposes, we will assume that a > a′. The
ideal situation for the modeller is to have a continuous compos-
ite function across the entire simulation domain regardless of the
sub-domains defining the respective sub-functions. To achieve this
situation, the switch between f1 and f2 has to occur at a changeover
(switch) location g satisfying the following condition (Fig. 2a):

f1 (g) = f2 (g) (2)

However, switch point g is seldom searched for, or even con-
sidered, when modelling. Instead the modeller usually opts for the
selection of a point g′ based usually on a widely adopted convention.
Such an arbitrary selection often raises a discontinuity between
sub-domains at any arbitrary switch point g′ as illustrated in Fig. 2a.
In such a case, the objective is to eliminate a discontinuity between
two intersecting functions spanning overlapping domains. In this
case, functions intersect and function domains overlap. Thus, there
exists a point g that satisfies (2).
When (2) is not satisfied, functions are said to be non-
intersecting as illustrated in Fig. 2b and c. For non-intersecting
functions, there is usually a location g, along the dimension of the
independent variable that minimizes the distance between the two
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Fig. 2. Forms of domain switch points between two functi

unctions and hence allows for a smoother jump. Jumping between
he two functions at any point other than g would result in an extra
ffort by the integration routine to resolve the discontinuity. Thus,
n such cases, the objective of this work is to minimize jump effort
etween two overlapping but non-intersecting functions spanning
verlapping domains. In this case respective functions’ domains
verlap (a < b). However, unlike case I, functions do not intersect.

The first objective of this work is to find the best switch point
 for any given set of two  overlapping functions, whether inter-
ecting or non-intersecting. The second objective is to eliminate
iscontinuities in non-intersecting functions by devising an inter-
olating polynomial at the location of the discontinuity between
he two functions. To achieve both objectives, the method is decom-
osed into discontinuity detection and discontinuity resolution
ub-problems.

.1. One-dimensional discontinuity detection

First, we must sort the ranges for the respective functions using
heir starting points in an ascending or descending order and then
ompare the location of the domain end of one function, (e.g. b for
1), with the domain start of its successor, (e.g. a for f2). If the end and
tart domain limits of two respective successive functions are equal
i.e. a = b), the discontinuity is said to be non-overlapping. Point g
s immediately identified for non-overlapping domains as g = a = b
s illustrated in Fig. 2b. Sorting and comparison will also immedi-
tely detect if sub-functions f1 and f2 do not satisfy the continuity

ssumed for the main function f spanning [a′, b′] as illustrated in
ig. 2d.

Having identified an overlap domain, to find g for overlap-
ing discontinuous functions, we will transform the problem into
d types of discontinuities between two adjacent domains.

an optimization problem. As an example, the overlap domain for
Fig. 2a and Fig. 2c is [a,b]. We  define a difference function:

e (x) =
∣∣f1 (x) − f2 (x)

∣∣ (3)

Our objective is to find a point g that minimizes e(x) over the
domain [a,b]. Since this is a fairly simple optimization problem, it
can be solved using any of the commercially available optimisa-
tion routines. A side advantage of this approach is that it would
accurately detect g for cases where functions intersect and overlap
(Fig. 2a) as the point where e(g) = 0.

Once g is detected, it can be immediately inserted into the log-
ical expression of the composite function; replacing any arbitrary
selected g′ by the modeller. For example, if the detection algorithm
resulted in locating a minimum jump effort point g between two
discontinuous functions f1 and f2, g can easily be inserted into the
final conditional statement as illustrated in (4):

If (x < g) then (Domain I)

f = f1(x)

Else if (x >= g) then (Domain II)

f = f2(x)

or

If (x <= g) then (Domain I)

f = f1(x)

Else if (x > g) then (Domain II)

f = f2(x)

(4)

For cases where functions intersect and overlap (Fig. 2a), a dis-
continuity detection algorithm is sufficient to grant at least smooth
continuity between the discontinuous functions but not their
respective first and second derivatives. For cases where functions
touch or overlap but do not intersect (Fig. 2b and c, respectively),
discontinuity detection algorithm might be sufficient if the sim-

ulation integrator routine is able to jump between the functions
without the need for reinitializing the state variables. As indicated
by Borst (2008), resolution of discontinuity using Type I discon-
tinuity handlers might not always be appropriate because of the
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Fig. 3. Location of mesh control points 

xhaustive need to reinitialize state variables and the fact that, in
ome cases, re-initialization might alter the solution path. Thus, we
ropose a discontinuity resolution algorithm to avoid falling into
tate-variable re-initialization.

.2. One-dimensional discontinuity resolution

Discontinuity resolution takes the form of bridging the two
iscontinuous domains through an interpolating polynomial, f3.
inear interpolation requires at least two points. However, we
ill attempt to link functions using a smooth interpolating poly-
omial preferably to the third degree. Linking functions with a
hird degree interpolating polynomial ensures continuity up to the
econd derivative of the interpolating function. To construct any
mooth polynomial, we need at least three points. One would think
hat three points are sufficient to construct the polynomial around
he discontinuity point. However, as we will demonstrate later, at
east four points are required in order to minimize first and sec-
nd derivatives’ discontinuities at the junction points between the
nterpolating polynomial f3 and the corresponding discontinuous
unctions f1 and f2.

To simplify computations, we will evenly separate the points by
n interval h from each other. Their exact locations will be relative
o the location of the discontinuity location (g) in the independent
ariable dimension. The location of the mesh control points, relative
o g, takes one of three forms depending on whether the function

as a minimum in the overlap domain ([a,b]):

If a minimum g ∈ (a, b) exists, mesh control points will be located
at distances g−1.5h, g−0.5h, g + 0.5h and g + 1.5h as illustrated in
e to the minimum jump-effort point g.

Fig. 3a. This selection of points’ locations ensures even distribu-
tion of the interpolating points on both sides of the point g.

• If the minimum g /∈ (a, b), then g must reside at one end of the
domain. If g is located at the start of the overlap domain (g = c),
mesh control points will be located at g, g + h, g + 2h and g + 3h as
illustrated in Fig. 3b.

• If g is located at the end of the overlap domain (g = b), mesh control
points will be located at g, g−h, g−2h and g−3h as illustrated in
Fig. 3c.

To perform a smooth transition, we need at least one point to lie
on each of the functions’ curves at the respective sides of the discon-
tinuity location. Let us call these points point 1 and point 2. Taking
Fig. 3a as an example for the case where g ∈ (a, b), the respec-
tive locations of points 1 and 2 will be (g − 1.5h, f2(g − 1.5h)) and
(g + 1.5h, f1(g + 1.5h)), respectively. Of course, one can argue that we
could also position the points at (g − 1.5h, f1(g − 1.5h)) and (g + 1.5h,
f2(g + 1.5h)). However, we should bear in mind that the sorting algo-
rithm, explained earlier, decides on the order of the functions based
on their span over the independent variable dimension.

For the case where g is located at the start of the overlap domain
(g = a), the respective locations of points 1 and 2 will be (g, f2(g))
and (g + 3h,  f1(g + 3h)). For the case where g is located at the end
of the overlap domain (g = b), points 1 and 2 will be located at
(g −3h,  f1(g − 3h)) and (g, f2(g)), respectively. Respective examples

of both cases are illustrated in Fig. 3b and c. Of course, the detection
algorithm argument still holds.

For the last two points (points 3 and 4), of the four point set, we
utilized the length of the line segment |AB|, defined by Eq. (5) and
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llustrated in Fig. 3d, to shift f3 function values at these points from
he respective discontinuous functions values. Since the location of
, on the independent variable dimension, corresponds to the point
hat exhibits minimum distance between the two functions f1 and
2 within the overlap domain, the length of the line segment |AB|
orresponds to that minimum distance.

As an example, let us take the case where g ∈ (a, b). The y-axis
alues of the points located at distances −0.5h and +0.5h from the
oint g will be calculated as the values of the functions at these
espective points after adding or subtracting a fraction p of |AB|. For
ower valued functions (e.g. f2), Point 3 would have the coordinates
g − 0.5h, f2 (g − 0.5h) + p|AB|). For higher valued functions (e.g. f1),
oint 4 would have the coordinates (g + 0.5h, f1 (g + 0.5h) − p|AB|).

AB| =
∣∣f1 (g) − f2 (g)

∣∣ (5)

Fritch and Carlson (1980) detail the necessary and sufficient
onditions to ensure monotonicity of the interpolating polynomial
ontrol points. Basically, they prove that in order to ensure a mono-
onically increasing or decreasing function, slopes of control points
hould have the same sign or a value of zero. To emphasise the same
oncept, the value of p should satisfy the condition in (6):

 ≤ p

|AB| ≤ 0.5 (6)

Naturally, providing a separate p value for each of the functions
1 and f2 would add to the degrees of freedom as long as they satisfy
he condition in (6). These two p values can act as tuning param-
ters to smooth the transition between f3 and the discontinuous
unctions f1 and f2. In addition, the original formulation of hermite
nterpolating polynomials (to be discussed later) uses a tension
arameter (t) that extends between 0 and 1. We  could use either t or

 to perfect the resulting interpolation curve. However, we  intend
o keep both parameters in order to smooth the transition between
he interpolating polynomial and the discontinuous functions.

To demonstrate the effect of the interpolation algorithm on the
ogical expression, let us consider the example in (4) and assume

 ∈ (a, b). After generating the four-point interpolating polynomial,
he logical statements above will be transformed into (7).

We should also note that, because of the uniqueness of the solu-
ion for one-dimensional functions, the devised procedure can be
un off-line prior to the start of the simulation run. Indeed, we  rec-
mmend embedding the algorithm into the modelling language
ompiler to automate generation of polynomials and their respec-
ive additional conditional expressions.

If (x < g − 1.5h) then (Domain I)

f = f1(x)

Else if (|x − g| ≤ 1.5h) then (Interpolating polynomial Domain)

f = f3(x)

Else if (x > g + 1.5h) then (Domain II)

f = f2(x)

End if

(7)

The algorithm can easily be extended to account for complex
ogical expressions such as (8) by solving for x.

If (w(x) = 0) then (Domain I)

f = f1(x)

Else if (w(x) > 0) then (Domain II) (8)
f = f2(x)

End if
Fig. 4. A four-point hermite interpolating polynomial between two intersecting uni-
dimensional functions using tension (t) = 0.

Lastly, an additional side benefit resulting from the use of the
line segment |AB| to locate the intermediate points at g − 0.5h and
g + 0.5h is that the locations of these points automatically coincide
with the locations of the respective functions f1 and f2 if f1 and
f2 posses a common intersection point since |AB|  = 0 in this case
regardless of the value of p. This benefit indicates that detection
and resolution algorithms can be integrated seamlessly without the
need to treat intersecting functions separately. Fig. 4 illustrates the
resulting interpolating polynomial of two intersecting functions.

2.3. Perfecting the connection and the bounding box problem

The smoothing of the transition between the interpolating poly-
nomial and the discontinuous functions can be transformed into
an optimization problem that minimizes first or second derivative
differences between the interpolating polynomial and the discon-
tinuous functions at Point 1 and Point 2. The optimization problem
can be formulated as

min  :
∣∣f ′−

P1 − f
′+
P1

∣∣+
∣∣f ′−

P2 − f
′+
P2

∣∣ min  :
∣∣f ′′−

P1 − f
′′+
P1

∣∣+
∣∣f ′′−

P2 − f
′′+
P2

∣∣
s.t. =

{
0 ≤ pi < 0.5

0 ≤ t ≤ 1
s.t. =

{
0 ≤ pi < 0.5

0 ≤ t ≤ 1
a. first order derivative optimization b. second order derivative optimization

(9)

If the derivatives of the discontinuous functions, appearing in
the cost function, are readily available, they can be directly evalu-
ated through the available expressions. Otherwise, any derivative
estimation numerical technique (e.g. secant method) can be used
to evaluate the required derivatives.

Once the position of the points is determined, we need to
connect them with a continuous interpolating function that is
preferably second order smooth to aid in calculation of Jacobian
and Hessian matrices when required by the numerical ODE/DAE
solver. Two  interpolation methods satisfy our criteria: cubic splines
and cubic hermite interpolating polynomials. However, we selected
hermite interpolating polynomials for the following reasons:

1. For the same set of interpolating points, cubic spline interpolat-
ing polynomials exhibit more overshoot than their cubic hermite
counterparts (Fritsch & Carlson, 1980).
2. Cubic hermite interpolating polynomials have one more degree
of freedom to better control the shape of the interpolating poly-
nomial (Bartels, Beatty, & Barsky, 1987; Kochanek & Bartels,
1984). This degree of freedom is granted by the extra tension
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Fig. 5. Comparison between 3, 4 and 5 contr

parameter (t). As the name implies, t is roughly a measure of
how stretched or lose is the connecting polynomial between the
mesh control points. Assuming that mesh control points are con-
nected through a thread, a t = 0 indicates a loose thread while a
t = 1 indicates a tightly wrapped thread. We  encourage using her-
mite interpolating polynomials for the extra degree of freedom
they provide. The discussion from this point onward will assume
the utilization of hermite interpolating polynomials.

Nevertheless, the reader should note that hermite interpolating
olynomials require two more additional mesh control points over
ubic splines as illustrated in Fig. 3a–c. Interpolation will still occur
etween the four control points discussed earlier. The additional
wo points only aid in forming the shape of the curve.

Let us now turn our attention to an issue that will further con-
train the value of the p parameter. At lower values of p and/or
ension parameter (t), the bounds of the interpolating polynomial
end to cross the maximum function boundaries set by the control
oints as illustrated in Fig. 5. This situation might not create an issue
or most discontinuous functions. However, certain types of discon-
inuous functions mandate proper bounding of the interpolating
olynomial to the upper and lower limits set by the control points.
or example, if x denotes valve opening and f(x) represents flow,
hen it would not be expected for the flow to arrive at its maximum
alue until valve opening reaches 100% (x = 1). An interpolating
olynomial that is not properly bounded will result in the unde-
irable situation leading to either a maximum flow before reaching

00% valve opening or worse leading to a negative flow before the
alve is fully closed. This problem is known as the bounding-box
roblem in computational geometry (Filip, Magedson, & Markot
986).
ts using a hermite interpolating polynomial.

To resolve the problem, we  need to bound the maximum and
minimum values of the interpolating polynomial to the values set
by control points 1 and 2 so that

f1
(

xP1

)
≤ f3 (x) ≤ f2

(
xP2

)
for xP1 ≤ x ≤ xP2 (10)

The solution to the problem comes straight forward from cal-
culus. To do so, the optimization routine needs to identify the
maximum and minimum values of f3(x), compare them to those
of control points 1 and 2, and finally, reject or accept the pair of (pi,
t) values based on adherence to condition (10).

2.4. Are four control points enough?

The discussion, so far, has assumed that we  need at least four
points to properly interpolate. However, we need a good jus-
tification to favour four points over three or five. This can be
demonstrated by considering the plots of the hermite interpolat-
ing polynomial for three, four and five interpolating points shown
in Fig. 5a–c.

When using a three-point interpolating polynomial, two  of
the points lie on the respective discontinuous functions. The
x coordinate of the third point corresponds to the minimum
jump effort location (g). The only degree of freedom available
to tune the curvature, excluding the hermite tension parameter,
is through the manipulation of the function value at the min-
imum jump effort point g. We  varied p/|AB| values from 0 to
0.5 relative to f1 and f2 in the upper and lower sections of the

figure, respectively. As illustrated in Fig. 5a, the drawback of a
three-point interpolating polynomial is that it always favours bet-
ter closure towards one of the discontinuous functions over the
other.
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ig. 6. An example illustrating applicability domains of two-dimensional overlappi

For the case of four control points, we omitted the g point and
elied only on two points separated by a distant h from each of
he sides of the minimum jump effort location g. The interpolating
unction values, at the junctions with f1 and f2 are fixed at the values
f their respective functions f1 and f2. We  used equal values of p to
istance interpolating function values at points 4 and 5. Thus, we
ave one degree of freedom (again excluding hermite tension) to
mooth the transition between the interpolating polynomial f3 and
he functions f1 and f2, namely, p. The common intersection point
etween all generated curves is purely curvature related and has
o relation to the g point discussed earlier.

For the case of five control points, we made use of the min-
mum jump effort location (g) to add the fifth point. The value
f the interpolating polynomial f3, at this point, is calculated and
xed at the mean of the two discontinuous functions f1 and f2
i.e. f3(g) = 0.5[f1(g) + f2(g)]). The values of the control points at the
unctions with f1 and f2 are assigned the respective values of the
unctions. The values of these two points are also fixed. We  also
sed constant values of p to distance the points located at g − h
nd g + h from their respective functions f1 and f2. We  plotted the
esulting interpolating values of p/|AB|  ranging from 0 to 0.5 in
ig. 5c.

The resulting curves for four-point interpolating polynomials
Fig. 5b) provide similar degrees of curvature to those obtained

sing five-point interpolating polynomial (Fig. 5c). Thus, we may
omfortably conclude that a four-point interpolating polynomial is
ufficient to provide good closure between the interpolating poly-
omial and the discontinuous functions.
ctions f1 and f2 and the effect of conditional nesting on boundaries segregation.

2.5. Regularizing boundary and initial conditions

Discontinuities in boundary conditions usually take the form
presented in Fig. 2b (i.e. g = a = b). Because the overlap domain is
so small, any regularization will force f3 to lie outside the overlap
region. Moreover, since the switch between logical expressions (f1
to f3) or (f2 to f3) can be space, time or state variable dependent,
we cannot evenly distribute f3 span between f1 and f2. Even distri-
bution could violate state variable dependency. Thus, the solution
would be to insert an additional time interval to accommodate f3
between f1 and f2. This makes sense since the set of boundary con-
ditions at the overlap region does not coincide with any of the sets
of boundary conditions belonging to the discontinuous functions.

Regularizing the form in Fig. 2b can take one of the forms in
Fig. 3a–c. Using the forms presented in Fig. 3a and c would require
calculation of more control points at locations before f3 (points at
the left side of the g point when replacing the x-axis with a time
axis). The use of the form presented in Fig. 3b reduces the number of
points located to the left of the g point to only one point, namely the
additional control point required by the hermite interpolating poly-
nomial. We  should mention that accurate estimation of the value of
the state variable at this point is not very important. This is due to
the fact that the additional hermite control points are used to adjust
the shape of the resulting curve bounded by the four points dis-

cussed earlier. The algorithm would work with any arbitrary value
of the state variable at that point. However, accurate determina-
tion provides a better initial interpolation curve. After optimizing
the shape of the curve through (9), the final curve would have
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y) then
< ax) and (y > ay) then

 f1(x,y)
x < x < b’x)] then

 f2(x,y)

 < b’y) then
< bx) then

 f1(x,y)
x < x < b’x) and (y < by)] then

s.t. =
{

x ∈ [ax, bx]

y ∈
[
ay, by

] (13)
T.M. Alsoudani, I.D.L. Bogle / Computers 

etter closure at both ends of the interpolation region than a curve
ptimized with an arbitrary selection of the additional hermite con-
rol point. To accurately calculate the value of f1 at this point, the
ntegrator needs to pass through the control point and record a
napshot of the boundary condition values at that point. For time
vents, the event can be marked in integrator time-line. For state
vents, the integrator needs to switch to the branch of the logical
xpression containing the regularization function before realizing
he existence of a shift in boundary conditions. Then, it needs to
eturn back an interval h in time to record the snapshot. In both
ime and state event cases, such approaches add an extra unnec-
ssary burden on the integrator. To mask the problem from the
ntegrator, we allowed the integration routine to freely control inte-
ration step-size while taking snapshots of the time steps taken by
he integrator. Once the regular expression shifts to the regulariz-
ng function, the location of that hermite control point is calculated
hrough approximating past integration steps with an interpolating
olynomial. Although computationally exhaustive, we think this
pproach provides a better estimation of the past value of the state
ariable. To avoid such computations, we can assume the value of
he state variable at the left hermite control point to be equal to that
t the g point. This assumption is used to calculate the additional
ermite control point located to the right of the g point.

. Two-dimensional functions

So far, we have discussed tackling the problem for one dimen-
ional functions. What if z is a function of two  variables (e.g.

 = f(x,y)), where z poses one or more discontinuities along each of
he dimensions. The discontinuous function may  take a form like

(x, y) =
{

f1 (x, y) , x ∈ [a′
x, bx] , y ∈

[
a′

y, by

]
f2 (x, y) , x ∈ [ax, b′

x] , y ∈
[
ay, b′

y

] (11)

Assuming a′
x < ax ≤ bx < b′

x and a′
y < ay ≤ by < b′

y (Fig. 6a), if g′
x

nd g′
y are arbitrary selected as discontinuity boundaries along the

 and y dimensions, respectively, a possible pseudo code of (11)
ould be written as either of the forms in (12).

When dealing with two dimensional relations, discontinuities
re present as planes as illustrated in Fig. 6a. We  can deduce some
onclusions from projecting the domains of f1 and f2 into the x–y
lane. The discontinuity planes formed by using form (12a) are

llustrated in Fig. 6b. Similarly, the discontinuity planes formed by
sing form (12b) are illustrated in Fig. 6c. Notice that the differ-
nce in nesting of conditional statements only affects the resulting
utput within the overlap domain that is illustrated in Fig. 6a.

The solution strategy remains the same as for one dimension:
he problem is still decomposed into discontinuity detection and
iscontinuity resolution sub-problems.

If (a’x < x <g ’ x) then If (a’y < y < g ’
If  (ay < y < b’y) then If (a’x < x 

f(x,y)  = f1(x,y) f(x,y) =
Else  if [(ax < x) and (a’y < y <ay)] then Else if [(a

f(x,y)  = f2(x,y) f(x,y) =
End  if End if

Else  if (g ’ x < x < b’x) then Else if (g ’ y < y
If  (a’y < y < by) then If (a’x < x 

f(x,y)  = f2(x,y) f(x,y) =
Else  if [(x < bx) and (by < y < b’y)] then Else if [(b
f(x,y)  = f1(x,y) f(x,y) = f1(x,y)
End  if End if

End  if End if

(12a) (12b)
emical Engineering 62 (2014) 139– 160 147

3.1. Two-dimensional discontinuity detection

Before elaborating on the approach to handle discontinuity
detection and resolution in 2D, let us look at the how functions
overlap in two dimensional space. Fig. 6a illustrates the case where
there are overlaps between the two  functions in both domains. In
such cases the detection algorithm will detect an optimum switch
point for each of the domains respective overlap intervals. When
functions are adjacent to each other in one dimension and overlap
in the other, the overlap domain in Fig. 6a reduces to a line. In such
cases, the detection algorithm will only have one degree of free-
dom; that is to find the optimum switch point for the domain where
overlap exists. When functions are adjacent to each other in both
domains, the overlap domain reduces to a point in the projected
2D space. The detection algorithm has zero degrees of freedom in
this case and the resulting discontinuity locations will correspond
to the intersection point between the two  functions.

It should be noted that, in 2D problems, detection of optimum
switch points does not guarantee passage of the simulation trajec-
tory through these points. It only helps in formulating the logical
expression around the minimum jump effort point to aid in min-
imizing discontinuity while switching. This conclusion stimulates
us to questioning the credibility of the obtained conventional simu-
lation results when simulation trajectory does not pass through an
overlapping domain (shown as question marks in Fig. 6). When not
passing through an overlap domain, conditional expressions will
extrapolate the use of discontinuous functions regardless of extrap-
olation applicability. This statement holds for all logical expressions
involving the use of functions bounded by specified intervals. Since
conventional modelling packages do not provide an apparent fix
to this problem, it becomes the responsibility of the modeller
to either ensure that the selected functions cover the intended
unknown simulation bath, or to insert as many functions as pos-
sible (with differing domains) to cover a wider area to, hopefully,
minimize extrapolation. Thus, we think it is essential to include
the applicability domains of each logical branching expression as
part of the model input file. Then, the simulation package would
check whether the solution falls within the specified applicability
domains and flags an alert (or stops simulation execution) when
the simulation trajectory deviates from the applicable domains of
the branched logical expressions.

The detection of an optimum jump points for 2D functions can
be formulated as an extension of the 1D problem. For two  discon-
tinuous functions overlapping at [ax, bx] and [ay, by] in x and y
dimensions, respectively; the optimum switch point g(x,y) is found
through solving the optimization problem:

min  e (x, y) =
∣∣f1 (x, y) − f2 (x, y)

∣∣
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As we indicated in the 1D case, once the gx and gy locations
re determined, their values can be directly substituted into the
onstructed logical expression to minimize jump effort between
he two adjacent discontinuous functions. The model can, then, be
olved using any of the available integration packages. Neverthe-
ess, since detection of optimum switch points does not always
uarantee elimination of re-initialization of the ODE/PDE model
t the switch point or accuracy of integrator-based interpolated
olution afterwards, the need arises for a discontinuity resolution
lgorithm.

.2. Two-dimensional discontinuity resolution

Once overlap boundaries between the discontinuous functions
re determined through the detection algorithm, we need to inter-
olate between the discontinuous functions in order to eliminate
iscontinuity. We  propose two approaches and highlight their pros
nd cons.

The simplest approach (approach I) is to cover the entire over-
ap domain with an interpolating polynomial. Boundaries of the
nterpolating polynomial will correspond to those of the continu-
us function at the boundary location as illustrated in Fig. 7. The
act that the values of the interpolating polynomial at its bound-
ries match that of the neighbouring functions facilitates smooth

ransition in all directions.

However, this approach comes at a cost. For a fixed number of
ontrol points per dimension, interpolation mesh size is overlap-
omain size dependent. This means that mesh resolution will
decrease as the size of the overlap domain increases and vice versa.
Of course, increasing the number of control points for large over-
lap domains will resolve this problem but at heavy computational
cost. Thus, we  recommend adopting this approach for a relatively
small overlap domain size. A typical if structure using this approach
(based on Fig. 7a) is illustrated in (14).

Note that the logical expression well encapsulates the bounding
domains of the discontinuous functions. Thus, the last Else state-
ment is needed to indicate to the user that simulation trajectory is
deviating from the specified functions’ boundaries.

An alternative approach (approach II) would be to track a two
dimensional trajectory vector �vn as simulation progresses and gen-
erate grid points of the interpolating polynomial once the logical
expression shifts to the branch containing the interpolating poly-
nomial as illustrated in Fig. 7b. The �vn vector tracks the coordinates
of the independent variables of the composite function as simu-
lation progresses. Full derivation of the underlining equations is
presented in the appendix.

In this approach, the mesh is constructed at the intersection
point between �vn and the overlap domain. The aim of the con-
structed mesh is to facilitate transition from the currently active
discontinuous function to the function towards which �vn is head-
ing. Once transition to the destination discontinuous function is
complete the rest of the overlap domain is considered as a seam-

less part of the destination discontinuous function. This approach
allows generation of variable grid sizes that are independent of
the size of the overlap domain and with a fixed number of control
points.
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If
[{(

a′
x ≤ x < ax

)
∧
(

ay < y < b′
y

)}
∨
{

(ax ≤ x ≤ bx) ∧
(

by < y  ≤ b′
y

)}]
then

f  (x, y) = f1(x, y)

Else  if
[{(

bx < x ≤ b′
x

)
∧
(

a′
y ≤ y ≤ by

)}
∨
{

(ax ≤ x ≤ bx) ∧
(

a′
y ≤ y < ay

)}]
then

f  (x, y) = f2(x, y)

Else if
[

(ax ≤ x ≤ bx) ∧
(

ay ≤ y ≤ by

)]
then

f  (x, y) = interpolate

Else

Print � �Illegal extrapolation′ ′

End if

(14)

The approach works well with one exceptional situation. This
ituation will arise when �vi changes direction, within the over-
ap domain, and returns back to the discontinuous function where
t originally came from as illustrated in Fig. 7b. Since the over-
ap domain, with exception of the interpolation region, has been
eplaced with the values of the destination discontinuous function

 discontinuity would probably occur at the boundaries of the over-
ap domain with the function where the vector has originally come
rom. Such a situation is solvable through formulating an additional
xit interpolating polynomial with the original function as illus-
rated in Fig. 7c. Note that even the entry region (cross-hatched) is
reated as a possible interpolating region to move back to f1 from
he overlap region. The fine-hatched region resembles the entire
rea at which interpolation might occur. However, the generated
esh will only cover the portion where �vi is headed as illustrated

n Fig. 7d. Note that this problem would never occur if approach I
s used because �vi will always fall in the region of the interpolat-
ng polynomial once it is inside the overlap region as illustrated in
ig. 7a. Two advantages arise from using approach II:

. It allows for variable size mesh, i.e. hx and hy can be arbitrary
selected as long as the resulting mesh does not cross the overlap
domain.

. Only four points are needed per interpolation dimension regard-
less of the size of the overlap domain.

However, more checks are needed in this approach over the
pproach I. A typical conditional structure pseudo code is illustrated
n (15).

.3. How legal is “illegal” extrapolation?

As we discussed earlier, extrapolation occurs when trying to
oin the two discontinuous functions by a polynomial that lies out-
ide their designated domains. This is illustrated in Figs. 2d and

 (domains marked by question marks) for 1D and 2D functions,
espectively. There are two reasons (cases) behind alerting the
odeller about illegal extrapolation:

. The extrapolation domain might be defined by a function
exhibiting a behaviour that is different from the behaviour of
the functions to be extrapolated. In such cases, extrapolation will
result in erroneous simulation output.

. Either or both of the functions to be linked might not be math-
ematically defined in the extrapolation region (e.g. division by
zero). In such cases control points 3 and 4 cannot be calculated
due to unavailability of function values at the location of these
points.

The modeller will obtain a less than accurate result in the first

ase. However, if the modeller is confident about the consistency of
he behaviour between the extrapolation region and the functions
o be extrapolated, he or she can simply alter domain boundaries
f the functions to append the extrapolated region to one of them,
emical Engineering 62 (2014) 139– 160 149

divide it between the two functions or, even better, append it to
both functions and rely on the detection optimizer to locate the
best transition point g.

As for the second case, the integrator will simply stop integrating
because the values of the functions at points 3 and 4 are dependent
on the respective values of functions 1 and 2. However, the depend-
ency can be broken by eliminating function evaluations at these two
points. We  should recall that function evaluations at points 3 and
4 are needed to calculate the amount of dip based on p parameter.
If some curvature smoothness at the junction points between the
interpolating polynomial and the discontinuous functions can be
sacrificed in quest for continuity, then the integrator can extrapo-
late between the values of the two discontinuous functions using
their respective boundaries that are adjacent to the extrapolation
domain.

As we might expect, the second solution will work for cases 1
and 2. However, it will not eliminate errors associated with the first
extrapolation case. So, it still becomes the modeller responsibility
to tackle the first case by inserting an appropriate function to define
the region that might otherwise be erroneously extrapolated.

3.4. Mesh generation

In order to interpolate, a mesh needs to be generated. For one-
dimensional problems, the mesh reduces to a one-dimensional set
of points. The 2D+ problems require an elaboration on mesh gen-
eration methods.

Mesh generation is approach dependent. Generating the mesh
using approach I is a fairly easy task since the mesh will cover the
entire overlap region. The values of the boundary points surround-
ing the overlap region will always correspond to the neighbouring
continuous functions adjacent to the overlap domain as illustrated
in Fig. 7a.

(15)

For approach II, mesh generation is more complex. The extra

complication arises from the tracking of �vi. We  will discuss four
methods to construct the mesh around the intersection of the
�vn with the discontinuity plane. We  will briefly explain each
method and provide our reasoning for selecting one of them. For
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Fig. 8. Four ways to construct a mesh

implicity, we will demonstrate examples using a discontinuity
lane orthogonal to x-axis.  However, the concept applies to dis-
ontinuities orthogonal to either of x- or y-axis.

The first method constructs a squared mesh around the disconti-
uity point as illustrated in Fig. 8a. Values of h

′
x and h

′
y are measured

ith respect to their respective x- and y-axes. The size of the mesh
s fixed. The distribution of the mesh control points along the sides
f �vn is dependent on the slope of the �vn.

The second method is similar to the first one with the excep-
ion that the size of the mesh is expandable in the direction
hat is perpendicular to the discontinuity plane. The advantage
f this method is that it allows for better distribution of the
ontrol points along each side of the �vn vector as illustrated in
ig. 8b. As can be deduced from the figure, vector �vn is almost
lways leaning towards one set of the mesh control points over the
ther.

The third method aligns the grid with the direction of �vn.
his method better distributes grid points along the sides of �vn,
ompared to the former two methods as illustrated in Fig. 8c.
ote that h

′
1 and h

′
2 are measured parallel and orthogonal to �vn,

espectively, but not relative to x- and y-axes. Since the grid is
ligned to �vn while the logical expression is based on a disconti-
uity that is orthogonal to either x- or y-axis, logical statements
round interpolation region become functions of the direction of
n. Since the generated mesh is not aligned with overlap domain,
t becomes a difficult task to superimpose the mesh on the logical

xpression.

The fourth method relies on fixing h′ along both dimensions
hile shifting lines parallel to the continuous domain to align

rid with �vn. Fig. 8d illustrates the concept for the case where
nd a vector-plane intersection point.

the x-dimension being the discontinuous one. The fourth method
resolves the drawbacks of the previous three methods. Thus, we
opted for implementing this method in grid construction.

4. N-dimensional functions

4.1. N-dimensional discontinuity detection

To generalize, for two n-dimensional discontinuous functions,
discontinuity detection detects the overlap region between the two
discontinuous functions. It also detects the optimum switch point
between the two  discontinuous functions. The position of the two
functions, relative to the overlap region and the location of the opti-
mum switch point, assists in formulating the logical expression. If
functions do not overlap in any of the dimensions, the algorithm
flags an error and simulation execution stops.

4.2. N-dimensional discontinuity resolution

Discontinuity resolution takes the form of an interpolating
polynomial that connects the two discontinuous functions. For one-
dimensional discontinuous functions, the interpolating polynomial
is best formulated around the minimum jump effort point.

For discontinuous functions of dimensions greater than one, the
solution can follow one of two approaches:
1. The first approach relies on constructing an interpolating poly-
nomial that covers the entire overlap region. This path is suitable
for relatively small overlap regions. For large overlap regions,
interpolating polynomial mesh resolution can be enhanced by
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enerated meshes in a 3D cuboid overlap domain.
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Fig. 9. Representation of the two types of g

increasing the number of control points at heavy computational
cost.

. The second approach constructs one mesh and possibly a sec-
ond one. The first mesh is constructed at entry to the overlap
region. It facilitates smooth transition between the active dis-
continuous functions, at the entry point of the overlap region,
and the destination one. Once transition occurs, the rest of the
overlap region is treated as if it were part of the discontinuous
function towards where the simulation vector is heading. In sit-
uations where the simulation vector reverts back to the function
where it originally came from, an exit mesh is constructed to
resolve discontinuity at exit location. This path has the advan-
tage of varying the mesh size based on user specification while
maintaining a fixed number of control points.

Fig. 9a and b illustrate mesh generation for an overlap-domain
etween two 3D discontinuous functions using approaches I and II
o discontinuity resolution, respectively.

The total required number of mesh points is an exponential
unction of the dimensions of the composite function and can be
alculated as

umber of mesh points  = mn (16)

where m is the number of control points per dimension and n is
he number of dimensions.

To ensure smooth transition between the two discontinuous
unctions, at least four control points are needed per dimension.
n case of hermite interpolating polynomials, six control points are
eeded per dimension. Fig. 10 illustrates the relationship between
he number of control points needed and the dimensions of the
omposite function. Although computational power and capacity
re machine dependent, we can deduce from the plot the existence
f a threshold beyond which computational power and/or machine
pace (memory or hard disk) becomes prohibitive. For example,
or a tenth dimension discontinuous function, a cubic spline would
equire a mesh composed of 1,048,576 points. That is a megabyte of
emory/disk space per discontinuity. The problem becomes worse
hen using hermite interpolating polynomials. For a tenth dimen-
ion discontinuous function, the hermite interpolating polynomial
equires 60,466,176 mesh points. This is about 58 megabytes of
emory/disk space (1 MB  = 220 bytes) per discontinuity encoun-

ered.
Fig. 10. A semi-log plot of number of mesh points required versus discontinuous
function dimension.

One might think that we  could use sparse matrix algebra to con-
serve memory. However, this is not possible since we only have four
or six points per dimension, all of which contribute to the shape
of the interpolation curve, resulting in a very dense matrix. Yet,
some solutions can help reducing the implications of this problem
or eliminating it. For example, the number of dimensions can be
reduced if any dimension exhibiting constant values throughout
the interpolation region is omitted from the interpolation mesh.
Also, since usually hard disk space is more abundant than memory,
the entire mesh can be saved in a computer hard drive using binary
files to accelerate simulation program access to these mesh-point
files. Lastly, instead of generating the mesh once at the first entry
to the interpolation region and saving it, the simulation routine
can opt to generate the mesh at each interpolation run and dispose
it immediately after the composite function value is computed to
free memory/hard disk space. The latter resolution saves a tremen-
dous amount of disk space by dynamically allocating mesh space to
compute function values and freeing the space once the function
value is computed. However, additional CPU time is required to
construct the exact same mesh at every function evaluation within

the interpolation region. Of course, a combination of one or more of
the above resolutions will result in a more efficient and/or robust
algorithm by taking into consideration CPU speed and the amount
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f available memory and hard disk spaces for each machine the
lgorithm is implemented on. For example, the simulation routine
an be programmed to:

. Generate interpolation mesh only once in memory when mem-
ory space is abundant.

. Once memory occupied space reaches a specified maximum,
the simulation routine switches to storing a one-time generated
mesh in the machine hard drive.

. If hard drive space is limited or has reached a critical level, the
routine shifts to dynamically creating and destroying meshes at
each function evaluation inside the interpolation region.

To further enhance efficiency, the routine can be programmed
o optimize memory utilization by loading lower dimension func-
ions’ meshes into memory while saving higher dimension ones to
ard disk. The prior knowledge of the dimension of each composite

unction will assist the simulation routine in calculating the maxi-
um  amount of occupied hard disk/memory space beyond which

ynamic allocation and destruction of interpolation meshes (bullet
) should be used instead of a single-time generated mesh (bullets

 or 2).
Such a resolution is hardware dependent. Thus, below certain

achine hardware specifications and based on computed mesh
ize for each interpolating polynomial in a simulation model, the
imulation routine can flag an error message prior to starting sim-
lation run indicating the inability to run the model on a specified
achine. However, we think modern hardware capabilities extend

ar beyond such minimum specifications.
Last, it is good to shed some light on whether this work elim-

nates the need for implicit integrators. The answer is no. Taking
ig. 3 as an example, we notice that slope changes are very evident
etween each of the sub-functions and their respective interpo-

ating polynomial. An explicit integration routine with a fixed
ntegration step size can easily overlook these slope changes, even
n a regularized composite function, resulting in sever simulation
rrors. Of course, minimizing integration step length might resolve
he issue but at the cost of increased simulation run-length. The
se variable integration step-size in implicit integrators ensures
he adjustment of the step-size as and when required. Larger inte-
ration steps are used when integration error is within bounds.
henever integration error exceeds the bounds, integration step

s halved and error is recalculated. The implicit integration routine
djusts integration step size when moving between discontinuous
ub-functions and their respective interpolating polynomial. Thus,
he use of implicit integration routines is still favoured even after

odel regularization.

. The algorithm

Algorithm implementation is programming language depend-
nt as it involves either modification of conditional statements
r a complete rewrite of the discrete composite function to reg-
larize it. In compiler-based modelling languages such as gPROMS
PSE Enterprise, 2012), we recommend impeding the code within
anguage compiler. However, this solution might not be feasible
or general purpose modelling languages such as MATLAB or GNU
ctave or even general purpose imperative languages such as C++,
ORTRAN or Pascal. In such cases, the programmer can write his/her
ustom code to iterate through discretized composite functions and

ransform them to their regularized counterparts.

Fig. 11 illustrates a simplified flowchart diagram of the algo-
ithm. A simplified step-by-step procedure that should be executed
y the modelling language follows:
emical Engineering 62 (2014) 139– 160

STEP-01: Start simulation run
STEP-02: Check for the availability of any functions containing
logical expressions or standalone logical expressions involving
continuous variables (i.e. of real or float types) inside original
model code.
STEP-03: Search for an optimum switch point that minimizes the
difference in values between any two  sub-functions within their
overlap domain.
STEP-04: Adjust the standalone logical expression or the one
within the composite function to account for the new switch point.
STEP-05: If resolution is enabled by the modeller, reconstruct a
regularized logical expression from the discretized one (recom-
mended).
STEP-06: Repeat STEP 2 and STEP 3 until all logical expressions
within modeller’s code are handled.
STEP-07: Start Integration and Initialize variables.
STEP-08: Integration routine advances integration step if final
integration step is not reached.
STEP-09: Update −→vi for each composite regularized function.
STEP-10: If composite regularized function parameters are not
within the interpolation region, calculate function f value using
the provided discontinuous sub-function that lies within the active
domain. If parameters are within the overlap domain, check if this
is the first entry to the overlap region in order to generate the inter-
polation grid. If the grid is already generated, use interpolating
polynomial f3 to calculate f.
STEP-11: Repeat STEPS 8–11 until simulation completes.

6. Examples and discussion

6.1. Example 1: Regularizing discontinuity in heat transfer
coefficient calculation

We  implemented the detection and resolution algorithms in a
C++ code. Then, we linked the compiled code to a gPROMS (PSE
Enterprise, 2012) reactor model through gPROMS Foreign Object
Interface (FOI). The gPROMS reactor model is a simplified model
representing the reactor unit from the Patent by Minkkinen, Mank,
and Jullian (1993). Catalyst reaction and adsorption constants
are obtained from Barrer and Sutherland (1956). Simplified one-
dimensional hermite interpolation code is presented by Bourke
(2011). Breeuwsma (2011) presented a general C++ and Java codes
for multidimensional interpolation that can be used in conjunction
with any one-dimensional interpolation method. We combined the
codes of Bourke and Breeuwsma to formulate our C++ multidimen-
sional hermite interpolation routines.

We tested the effect of transition from laminar to turbulent flow
regimes on the wall heat transfer coefficient. For laminar flow, we
used the simplified constant heat-flux equation of Nud = 4.364. We
assumed that Reynolds number ranges from 0 to 2310. For turbulent
flow we  used the Gnielinski correlation (Kreith, 2000):

Nud =
(

f/2
)

(Red − 1000) Pr

1 + 12.7
(

f/2
)1/2 (

Pr2/3 − 1
)
[

1 +
(

d

L

)2/3
]

(17)

where:

f = [1.58 ln (Red) − 3.28]−2

2, 300 < Red < 106
0.6 < Prd < 2, 000

0 < d/L < 1
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A plot of Nud versus Re and Pr for laminar and turbulent flow
regimes is illustrated in Fig. 12.
ig. 11. A simplified flowchart illustrating flow of the algorithm presented in this w
ess  preferred one.

Thus, Nusselt number can be expressed as⎧⎪⎨ 4.34 1 < Red < 2310
ud =⎪⎩
(

f/2
)

(Red − 1000) Pr

1 + 12.7
(

f/2
)1/2 (

Pr2/3 − 1
)
[

1 +
(

d

L

)2/3
]

2300 < Red < 1
Solid lines represent the more preferred path while the dashed line represents the
06, 0.6 < Prd < 2000
(18)
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Table 1
Reported simulation time for several runs using varying discretization nodes.

No. of discretization nodes Time (s) Time (s) Time (s) Time (s) Time (s)

Base case Conventional Conventional This work This work
Absolute Above base Absolute Above base

10  37 38 1 42 5
20  4 7 3 8 4
50  8 11 3 11 3

100  9 20 11 17 8
200  14 34 20 28 14
300  21 50 29 41 20
400  29 69 40 55 26
500  35 82 47 66 31
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Table 2
Regression results for correlating simulation run length with number of discreti-
zation nodes.

Slope Intercept Correlation coefficient
ig. 12. A plot of Nusselt number versus Prandtl and Reynolds numbers for Laminar
nd  Turbulent flow regimes.

We  expect to observe a decline in the time required to perform
 simulation run, when using the approach presented in this work
hen compared with conventional simulation reinitialization pro-

edures. Since the developed reactor model discretizes axial space
o convert PDEs to ODEs, we intend to use the number of discreti-
ation points as a variable to test our theory. We  expect our code to
est perform at large numbers of discretization points. The perfor-
ance should approach that of conventional simulation techniques

s the number of discretization points is reduced. This is due to the
act that the number of equations requiring initialization is directly
roportional to the number of discretization points.

To establish a baseline for our analysis and to eliminate the bias
ntroduced by every simulation run on the analysis, we recorded

achine time taken to complete a constant velocity simulation that
oes not pass through any discontinuities for a set of axial discre-
ization nodes that span from 10 to 500 as outlined in Table 1. To
liminate any variance in reported data (due to interfering machine
ackground tasks) we repeated each run three times and reported
he average outcome of the three runs on the table. We  should
lso mention that the reported base case is based on conventional
imulation runs. We  noticed a consistent additional one second
hen using FOI to report base case results. We  think the additional

ne second is attributed to initiation and termination of the link
etween gPROMS and the FOI. We  should also mention that results
n Table 1 are generated using a single lumped heat transfer coeffi-
ient that is based on feed conditions for the entire reactor length.
lso, simulation runs were performed on a machine equipped with
n Intel i5 processor, 4 GB RAM and running a Linux operating sys-
em.

After establishing the base case, we applied a sinusoidal input to
he feed velocity that crosses Reynolds boundary of 2300 between

he two correlations ten times. Results obtained are plotted in
ig. 13. With the exception of the reported time using ten dis-
retization nodes, the rest of the points closely resemble straight
ines. Excluding the point corresponding to ten discretization nodes
Conventional 0.15869 3.40857 0.9992
This work 0.12263 4.78063 0.9993

(explained later) and applying regression analysis between the
number of discretization nodes and the absolute simulation run
length for the conventional case and this work yields the tabulated
results in Table 2. The slopes resulting from the regression analy-
sis represent the run length time per discretization node. Dividing
the slope resulting from this work (0.12263) by the slope resulting
from conventional runs (0.15869) provides the fractional run length
time elapsing from this work per elapsed run length of conventional
runs (0.7728). The results show that using the approach provided
in this work results in about 23% saving in run length time over
conventional discontinuity handling techniques at least for 2D dis-
continuous functions. Of course, the same conclusion would have
been achieved had we directly regressed run length time for con-
ventional discontinuity handlers against the results obtained in this
work bypassing the inclusion of discretization nodes in regression
analysis.

As it appears from the figures and supported by the computa-
tional results, there is a consistent drop in the reported simulation
time when using the new approach for two dimensional discontin-
uous functions. Also, the new approach becomes more attractive as
the number of the state variables, to be initialized, increases.

As the number of state variables decreases, both approaches to
resolving discontinuity report closer simulation times. However,
since initialization itself introduces errors in the solution, the new
approach still holds the advantage of not reinitializing any state
variables.

As illustrated in Fig. 13a, there is a sudden increase in the
reported time when using ten discretization points. This sudden
increase in simulation time is mainly attributed to the decline in
discretization resolution. As the number of space discretization
points decreases, the integrator is forced to take smaller integra-
tion steps in order to meet the specified error tolerance criteria for
a successful integration step.

6.2. Example 2: Regularizing boundary and initial conditions of a
PSA unit

Pressure swing adsorption (PSA) processes are considered
among few of the processes that exhibit continuous dynamics from
the moment they are started until they are shut down. Any PSA
column undergoes a sequence of steps whereby inlet and exit

valves are automatically opened and closed or products are redi-
rected through switch valves. Feeds are introduced at some steps
and products are collected at either the same step or at differ-
ent steps. Ruthven, Farooq, and Knaebel (1994) and Yang (1997)
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Fig. 13. Simulation Run Length versu

iscuss general concepts of PSA units. We  modelled the PSA unit
resented by Minkkinen et al. (1993) for the separation of iso-
rom normal paraffins. The underlying differential equations for the
ynamic distributed parameter system are outlined and discussed
y Silva, Silva, and Rodrigues (2000). A simplified isothermal set of
odel equations is used to demonstrate the concept. The gas phase

omponent mass balance is presented in (19) and the solid phase
omponent mass balance is presented in (20). Velocity distribution
cross the vessel is obtained by solving the overall mass balance
quation assuming that total concentration is a function of time
nly. The underlying ODE is presented in Eq. (21). All presented
quations are in the normalized form.

1
Pem

∂2yi

∂x2
+ ∂ (Uyi)

∂x
+ ∂yi

∂�
+ yi

CT

∂CT

∂�
+ �mi

CT

∂Qi

∂�
= 0 (19)

∂Qi

∂�
= Nm

g

�mi

CT 〈yi − yi〉 (20)

T
∂U

∂x
+ ∂CT

∂�
+

n∑
i=1

�mi

∂Qi

∂�
= 0 (21)
No mass exchange is assumed between adjacent solid phase pel-
ets (adsorbent). The adsorbent only exchanges mass with the gas
ber of internal discretization nodes.

phase. Thus, Eq. (20) can simply be substituted into (19) to obtain
an overall mass balance around the vessel. The gas phase compo-
nent mass balance is a PDE that requires two  boundary conditions
in addition to the initial condition. Boundary conditions at both
ends of the vessel change from Nuemann to Robin and vice versa
depending on the active PSA step as illustrated in Fig. 14.

At any time instant during the simulation, a velocity profile is
obtained through solving a one dimensional Dirichtlet boundary
ODE in space only. However, the location of the boundary condition
is PSA step dependent as illustrated in Fig. 14.

Each step undergone by a PSA column possesses differ-
ing boundary conditions that uniquely identifies the step from
its sister steps as illustrated in Fig. 14. The switch from one
step to the other is either time dependent (e.g. adsorption and
desorption steps) or state variable dependent (e.g. pressurization
and de-pressurization). Regardless of the solver used, conven-
tional solution of PSA column differential equations requires
re-initialization of the ODE/DAE system at the start of each step
in the sequence. The model repeats the cycles until a desired maxi-
mum  number of cycles is reached or an error tolerance is reached on
exit concentrations at the end of either depressurization or desorp-
tion step signifying the reach of a cyclic steady state. A typical
conventional if structure that controls transitions between steps
is illustrated in (22).
(22)

In this work, we linked the boundary conditions for any two
consecutive steps through the use of 1D hermite interpolating
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Fig. 14. Velocity and component balance boundary conditions for each of Skarstrum PSA cycles.
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ig. 15. Comparison between a discretized and a regularized PSA cycle illustrating 

he  arrows indicate cycle direction.

olynomials as illustrated in (23) for velocity boundaries and (24)
nd (25) for concentration boundaries at each side of the PSA col-
mn.

At each time step, a velocity profile is obtained through solv-
ng an ODE equation with one boundary condition. However, the
ocation of the boundary condition is PSA cycle step dependent.
o, in order to regularize velocity boundaries, we had to calculate
he entire velocity profile in the FOI and then pass it to gPROMS

odel. Otherwise, we would be forced to discretize velocity distri-
ution in gPROMS model. The velocity profile is calculated using

n ODE solver provided by GNU Scientific Library (GSL, 2011) and
hen transferred to gPROMS model through gPROMS FOI. All For-
ign Object and Foreign Object Interface codes are programmed
sing C++ programming language.
e time span for each of the cycle steps and valve opening/closure span for w = 10 s.

U|x=0  or x=1 = f
(

TimeCycle

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

U|x=1 = 0 0 ≤ TimeCycle ≤ T1

Interpolate T1 < TimeCycle < T2

U|x=0 =
(

Uf /Uref

)
T2 ≤ TimeCycle ≤ T3

Interpolate T3 < TimeCycle < T4

U|x=1 = 0 T4 ≤ TimeCycle ≤ T5

Interpolate T5 < TimeCycle < T6

Up

(23)
⎪⎪⎪⎩U|x=1 = −
Uref

T6 ≤ TimeCycle ≤ T7

Interpolate T7 < TimeCycle < T8
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∂yi

∂x
|x=0 = f

(
TimeCycle

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

U|x=0(yf
i
−  yi|x=0)  0  ≤ TimeCycle ≤  T1

Interpolate  T1 <  TimeCycle < T2

U|x=0(yf
i
−  yi|x=0)  T2 ≤ TimeCycle ≤  T3

Interpolate  T3 <  TimeCycle < T4

0  T4 ≤ TimeCycle ≤  T5

Interpolate  T5 <  TimeCycle < T6

(24)
⎪⎪⎪⎩ 0  T6 ≤ TimeCycle ≤  T7

Interpolate  T7 <  TimeCycle < T8

Fig. 16. Evolution of pressure, velocity and concentration curv
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∂yi

∂x
|x=1 = f

(
TimeCycle

)
=
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⎪⎪⎪⎪⎪⎪⎪⎪

0 0 ≤ TimeCycle ≤ T1

Interpolate  T1 <  TimeCycle <  T2

0 T2 ≤ TimeCycle ≤ T3

Interpolate  T3 <  TimeCycle <  T4

0 T4 ≤ TimeCycle ≤ T5

Interpolate  T5 <  TimeCycle <  T6

(25)
⎪⎪⎩U|x=1(y
i

−  yi|x=1)  T6 ≤ TimeCycle ≤ T7

Interpolate  T7 <  TimeCycle <  T8

es over time for discretized and regularized PSA models.
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localized to resolve discontinuity at its origin leaving other model
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where:

T1 = TimePressurization Step
T2 = T1 + w
T3 = T2 + TimeAdsorption Step
T4 = T3 + w
T5 = T4 + TimeDepressurization Step
T6 = T5 + w
T7 = T6 + TimeDesorption Step
T8 = T7 + w

Borst (2008) refers to the length of the regularization function
ith the symbol w as illustrated in Fig. 1. Since the overlap domain

s small enough to apply approach I to discontinuity resolution, one
an easily relate w to h with the formula in (26).

 = 3h (26)

There is always a physical meaning to the length (time span)
f the regularizing function. In the PSA example, w refers to the
mount of time it takes the valve to move from fully closed (0%) to
ully open (100%) or vice versa. The valve travel speed can easily be
alculated as:

 = 100%
w

(27)

From (27), we can easily deduce that w = 0 (a discretized model)
orresponds to a valve exhibiting an infinite speed. This is unreal-
stic. Moreover, with a regularized model, the modeller can study
he effect of valve speed on process performance by varying w and
ossibly optimizing process performance through manipulating w.
hus, with regularization, we are able to add one more parame-
er to the PSA unit optimization problem. This addition couldn’t
ave been brought into the optimisation problem had we used a
iscretized model.

We ran the PSA column for one cycle using w = 10 s and
ompared the output with the discretized model. To equalize
he length of the cycle for the discretized model with that of
he regularized model, we appended the first two  regulariza-
ion periods to the adsorption step of the discretized model.
he third and fourth regularization periods are appended to the
esorption step of the discretized model. Fig. 15a illustrates the
ontribution of each step time span to the total cycle time when
sing conventional PSA modelling techniques. In our example,
ach of pressurization and depressurization steps takes about
9 s while each of adsorption and desorption steps takes about
31 s including the appended 20 s to equalize total cycle time for
onventional work with that in this work. Fig. 15b adds the con-
ribution of valve opening/closure time of 10 s to the total cycle
ime.

Pressure and boundary velocity evolution curves are illustrated
n Fig. 16a and b for the discretized and regularized models, respec-
ively. Inlet concentration profiles for normal pentane and normal
exane are illustrated in Fig. 16c and d for the discretized and reg-
larized models, respectively. Pressure evolution curves are added
o all Fig. 16a–d because it is a main characteristic in separating
teps of a PSA cycle. The span of the regularization functions is
ighlighted in grey in Fig. 16b and d.

The evolution of concentration curves clearly indicates the exist-
nce of a difference between the discretized and the regularized
odels of the PSA column.
. Summary and conclusions

A new approach to resolving discontinuities in dynamic sim-
lation is presented. The method has two parts: discontinuity
emical Engineering 62 (2014) 139– 160

detection and discontinuity resolution. The approach uses her-
mite polynomials to bridge the discontinuities and it is shown that
four interpolating points give smoother curvature than three while
more than four give no extra benefit. The approach is shown to
work in problems with many dimensions. It is generic enough to
be adopted in solving any ODE/DAE system involving discontinu-
ities in either state variables and/or their respective constitutive
equations.

Discontinuity resolution completely eliminates re-initialization
of state variables because it treats and bridges discontinuities at
their local origin whether the origin is a state variable or a constitu-
tive equation. Elimination of reinitialization reduces simulation run
length by 23%. The reduction in simulation run-length is attributed
to the localized treatment of the discontinuity at its origin instead
of reinitializing entire model equations to resolve a local disconti-
nuity. Nevertheless, this reduction is not the major achievement of
work. This work achieves two  other goals that were not present in
previous works in this field:

1. Regularization more resembles reality than mere re-
initialisation of variables because it takes into account the
time and/or spacial factors between state changes. States
transit through time and space from their initial to final
values. Failing to take this fact into account jeopardises
model accuracy. This failure is clearly evident in conventional
model variables’ re-initialization as we presented in PSA unit
example.

2. Sticky discontinuities result from the use interpolating poly-
nomials that do not represent the model to bridge model
discontinuities as outlined earlier. Even if the integration rou-
tine manages to overcome sticky discontinuities, the generated
error between the equations representing the actual model and
those used by the approximating interpolating polynomial might
lead to misleading simulation results. This work completely
eliminates the use of integrator-based polynomials to bridge
discontinuities by relying on interpolating polynomials that are
derived from model equations with strict adherence to bounds
that match both ends of interpolating polynomial to its adjacent
discontinuous sub-functions.

To reduce computational time, it is preferable to construct inter-
polation mesh only once and save the mesh in computer memory
or disk. However, as the number of dimensions increase, more
memory/disk space is needed to save the location of the mesh
interpolating points. Thus, a system programmer might be forced
to compromise computational efficiency in order to accommo-
date a model in the available machine space by reconstructing
meshes when interpolating and destroying them immediately
afterwards.

Type I discontinuity resolution is the conventional attempt to
resolving a discontinuity. However, it does not bring the pieces
back together. It either jumps over a discontinuity through reini-
tialization of entire model equations or approximates the model
at the discontinuity location with an interpolating polynomial that
is not properly bound by model equations and is probably created
at the wrong model level. This work resolves these deficiencies by
bringing some of the pieces back together. The interpolating poly-
nomial is derived from the mathematical model, properly bounded
by model bounds, generated at the exact discontinuity level and
equations intact. An extra step beyond the scope of this work would
be to entirely eliminate the use of discretized models and regu-
larizing functions as illustrated in the example by Abadpour and
Panfilov (2009).
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ppendix A. Three-D vector tracking and mesh generation
quations for approach II

Although the discussion is illustrated using a 3D function, the
pproach is applicable to functions of any dimension.

.I Three-D vector tracking

Let us assume that at time t0, the 3D function f initializes at x0,
0 and z0 coordinates of their respective axes in a region bounding

1. The resulting starting point is P0(x0, y0, z0, f(x0, y0, z0)). Since
(x0, y0, z0) can be calculated at any P(x, y, z), we  do not need to
rack function values. As the simulation advances by one step to
1, the coordinates of another point P1(x1, y1, z1) are identified. The
ocations of these two points are sufficient to determine the trajec-
ory vector v1 that is accurate to time t1 only. Using linear algebra
otation, vector v1 can be written as:

1 = �P0P1 =

⎡
⎢⎣

x1 − x0

y1 − y0

z1 − z0

⎤
⎥⎦ (A.1)

Now, let us transform the logical expression into a discontinuity
lane. A plane can be uniquely identified through either:

. a point inside the plane and a vector orthogonal to that plane,

. or through three non-collinear points inside the plane. In this
case the vector in case 1 is calculated using the three non-
collinear points.

We  will define the plane using the second case. To start, we need
o locate arbitrary points PA(xA,yA,zA), PB(xB,yB,zB) and PC(xC,yC,zC)
ocated inside the discontinuity plane. We  will demonstrate the
rocedure for the discontinuity plane cutting the x dimension. Since
he plane is cutting the x dimension at x = xn, the x-coordinates of
he three points will take the value of xn. The discontinuity plane is
xtending infinitely in all coordinates. This extension allows us to
elect arbitrary values for the y coordinates yA,yB and yC and the z
oordinates zA, zB and zC. So, the coordinates of the points become:

PA (xA, yA, zA)

PB (xB, yB, zB)

PC (xC, yC, zC )

(A.2)

here xA = xB = xC = xn. A check for non-co-linearity needs to be
erformed before proceeding to the next step. If the points are iden-
ified as collinear, then another set of arbitrary values for yA, yB, yC,
A, zB and zC needs to be assumed and the above procedure is to
e repeated. Once points pass the non-collinearity test, �vp that is
rthogonal to the discontinuity plane is obtained via multiplying
ectors �PAPB with �PAPC (or any similar combination) as vector cross
roduct. Thus,

p = �PAPBx�PAPC =

⎡
⎢⎣

xB − xA

yB − yA

zB − zA

⎤
⎥⎦ x

⎡
⎢⎣

xC − xA

yC − yA

zC − zA

⎤
⎥⎦ =

⎡
⎢⎣

(yB − yA) (zC − zA) −
(zB − zA) (xC − xA) −
(xB − xA) (yC − yA) −

Since the general equation of any plane passing through point(
a
)

0(x0, y0, z0) and orthogonal to �v b
c

is:

(x − x0) + b (y  − y0) + c (z  − z0) = 0 (A.4)
− zA) (yC − yA)

 xA) (zC − zA)

− yA) (xC − xA)

⎤
⎥⎦ =

⎡
⎢⎣

avp

bvp

cvp

⎤
⎥⎦(A.3)

Fig. A.1. Progression of �vi towards a discontinuity plane.

we could easily formulate the equation of the discontinuity
plane as one of the equations in (A.5):

avp (x − xA) + bvp (y − yA) + cvp (z − zA) = 0 (A.5a)

avp (x − xB) + bvp (y − yB) + cvp (z − zB) = 0 (A.5b)

avp (x − xC ) + bvp (y − yC ) + cvp (z − zC ) = 0 (A.5c)

using points PA(xA, yA, zA), PB(xB, yB, zB) or PC(xC, yC, zC) as an
example.

Next, we  need to find the intersection point of the line, directed
by v1 that is passing through P0 and P1, with the discontinuity plane
defined by Eq. (A.5). To do this, we  need to write the equation for
this line in the form

x = x0 + (x1 − x0) � (A.6a)

y = y0 + (y1 − y0) � (A.6b)

z = z0 + (z1 − z0) � (A.6c)

Substituting (A.6) into (A.5), we get:

avp (x0 + (x1 − x0) � − xA) + bvp (y0 + (y1 − y0) � − yA)

+ cvp (z0 + (z1 − z0) � − zA) = 0 (A.7)

Equation (A.7) has only one unknown (�). Solving for � and sub-
stituting the resulting value into (A.6), we  obtain the intersecting
point of the line P0P1 with the discontinuity plane. Since the vector
will intersect the plane at time tn, we will call the intersection point
Pn(xn, yn, zn). The discussion is illustrated in Fig. A.1.

A.2 Mesh generation using approach II

Next, we need to construct the coordinates of the 64-point inter-
polating polynomial. To do so, we will rely on the direction of

the �P0P1 vector. The idea is to generate 4 planes that are parallel

to the discontinuity dimension and separated by a distance h along
the discontinuous dimension as illustrated in Fig. 9B for an inter-
section at z plane. Since we assumed intersection at x-plane, the
planes will be separated by a distance hx. Hence, the x dimensions
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ig. A.2. The behaviour of a 2D interpolating polynomial demonstrating the conti
iscontinuous axis. (CP = Control Point).

f the four discontinuous planes become: xn, xn + hx, xn + 2hx and
n + 3hx if �vn is entering the overlap domain from the left end. If �vn

s entering the overlap domain from the right end, the x dimen-
ions of the 4 discontinuous planes become: xn, xn − hx, xn − 2hx

nd xn − 3hx. Since we are aiming for a symmetrical distribution of
ontrol points around the �vn vector, we need to calculate the coor-
inates of the other dimensions (y and z) for the points lying on �vn

ector and having the 4x-coordinates mentioned above. To do so,
e will calculate a new � for each of the newly generated x-values:

�xn+1hx
= (xn + 1hx − x0)

(x1 − x0)
(a)

�xn+2hx
= (xn + 2hx − x0)

(x1 − x0)
(b)

�xn+3hx
= (xn + 3hx − x0)

(x1 − x0)
(c)

or

�xn−1hx
= (xn − 1hx − x0)

(x1 − x0)
(a)

�xn−2hx
= (xn − 2hx − x0)

(x1 − x0)
(b)

�xn−3hx
= (xn − 3hx − x0)

(x1 − x0)
(c)

(A.8)

Next we substitute the newly obtained � values into Eq. (A.6) to
et the other coordinates of the points at which �vn intersects with
ther planes. Last, we construct a mesh of sixteen points surround-
ng each of the four newly calculated points on �vn. Fig. A.2 illustrates
he concept when applied to 2D discontinuous functions.
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