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Structured sparsity approaches have recently received much attention in the statistics,
machine learning, and signal processing communities. A common strategy is to exploit or
assume prior information about structural dependencies inherent in the data; the solution
is encouraged to behave as such by the inclusion of an appropriate regularisation term
which enforces structured sparsity constraints over sub-groups of data. An important
variant of this idea considers the tree-like dependency structures often apparent in
wavelet decompositions. However, both the constituent groups and their associated
weights in the regularisation term are typically defined a priori. We here introduce an
adaptive wavelet denoising framework whereby a sparsity-inducing regulariser is mod-
ified based on information extracted from the signal itself. In particular, we use the same
wavelet decomposition to detect the location of salient features in the signal, such as
jumps or sharp bumps. Given these locations, the weights in the regulariser associated to
the groups of coefficients that cover these time locations are modified in order to favour
retention of those coefficients. Denoising experiments show that, not only does the
adaptive method preserve the salient features better than the non-adaptive constraints,
but it also delivers significantly better shrinkage over the signal as a whole.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

A key attraction of wavelets is their compressive repre-
sentation of data. This is fundamental to powerful non-
linear processing methods such as wavelet shrinkage
[1–3]. Early approaches often regarded wavelet coeffi-
cients as statistically independent. Further developments,
however, showed that for many applications involving
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real-world signals and images, performance improved
when the dependencies between coefficients were taken
into account [4–9]. Most of such methods typically
focussed on the persistency property which is often
apparent across wavelet scales. The simplest models
account for such statistical dependencies between parent
coefficients at a given level of the decomposition and their
child coefficients at the following level of finer resolution.
Although methods based on these models proved success-
ful in many applications such as denoising, compression,
and classification, some concerns remained about the
preservation of salient features in the signal, such as jumps
or sharp bumps [10]. In applications such as denoising or
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deconvolution these features are typically over-smoothed
which compromises the quality of the estimates. Some
attempts to improve performance under these conditions
explore total variation filtering [11,12], combined Tikhonov
and total variation regularisation [10] and decompositions
based on footprints of the discontinuities in the signal [13].

In this work we take advantage of the latest develop-
ments in regularised least-squares regression to promote
tree-structured sparsity on the denoised estimates. Unlike
previous tree-structured estimators [5,8,14–16], the
method proposed here uses a lasso-like algorithm with a
mixed-norm regulariser that induces structured sparsity
over an overcomplete representation. A novel signal-
driven approach is introduced to adapt the weights of
the regulariser. The ability of shift-invariant complex
wavelet transforms to detect salient features in the signal
is exploited to design a penalisation term which favours
estimated jumps or sharp bumps during the optimisation
process. We show that this results in a denoising approach
with better preservation of salient features.

The manuscript is organised as follows. In the remain-
der of the current section we provide motivation and
discuss the specific contributions of our work in the
context of the current literature. In Section 2 we offer an
overview of structured sparsity approaches and the dual-
tree complex wavelet transform. The proposed method is
introduced in Section 3. This considers both an oracle and
a practical approach to account for the occurrence of
salient features. In Section 4, results obtained in denoising
experiments show the advantage of the proposed adaptive
scheme over structured sparsity estimates set a priori. We
then close with the main conclusions and a discussion of
further work.

1.1. Motivation

Sparse representations have been at the core of many
signal processing methods in recent years [17,18]. Early
algorithms such as basis pursuit [19] and matching pursuit
[20] regarded coefficients as mutually independent, mean-
ing that each atom in the decomposition is selected
or discarded independently of its neighbours. In the signal
processing community, efforts to introduce structured
sparsity constraints were spurred by the compressed
sensing paradigm [21,22] which used prior knowledge
to reconstruct signals with fewer samples than classical
sampling theorems allowed. Model-based compressed
sensing has showed promise in this context [23–25]. These
early attempts, however, were based on non-convex or
greedy optimisation approaches. To achieve scalability
without compromising consistency, non-greedy convex
approaches are often desirable. To this end, regularised
approaches using mixed-norms have proven successful in
obtaining sparse estimates that retain an assumed depen-
dence structure [26,27].

It is important to note that most of the existing
wavelet/structured models deal with the persistency prop-
erty of the coefficients without taking into account any
additional information provided by the specific choice
of transformation or dictionary used to obtain the repre-
sentation [27–29]. Moreover, all of these dependence
structures are set a priori, and no further information
from the signal is used to adapt them. In denoising
applications, features with strong local high frequency
content are often over-smoothed by such methods.
This is due to the erroneous shrinkage or elimination of
coefficients at finer scale levels. On the other hand, when
regularisation parameters are set to favour data-fitting
much more than sparsity, the resulting estimates often
retain too many fine-scale coefficients and remain noisy.
1.2. Contribution

In this work, a new signal processing method is
developed that uses additional information, extracted
directly from the signal, to reinforce the a priori structured
sparsity constraints. To do so, we use the dual-tree com-
plex wavelet transform (DTCWT) as the sparsity inducing
transform together with a hierarchical mixed norm reg-
ulariser. The weights in the regulariser are adaptively
modified in order to help preserve salient features of the
analysed signal. This adaptive modification is driven by a
detection stage which aggregates information from the
different scales of the wavelet decomposition to infer
the locations of salient features in the signal. In this way,
the mixed norm regulariser, defined a priori, is tailored to
the observed signal.
1.3. Related work

Tree-structured estimators have been proposed earlier
for wavelet decompositions, both in the signal process-
ing and statistics communities [5,8,14–16]. They often
rely on orthonormal transforms and hard-thresholding
approaches. Following their success in machine learning
and statistics, generalised lasso-type algorithms have
received recent and growing attention for signal proces-
sing applications. The closest works are [29,30]. In [29], the
parent–child dependence of wavelet coefficients is coded
into overlapping groups, each of which comprises a
parent–child pair. A variable replication approach is taken
into account for different instances of a given coefficient
appearing in different groups and a regularisation term is
added to account for the dissimilarity of the replicates of
the same variable. Unlike the present work, their approach
uses the standard discrete wavelet transform (DWT) with-
out adding any additional information onto the structure
assumed a priori. In [30], a chain structure is assumed
to model the spectrogram of audio signals obtained from
their short-time Fourier transform representation. This
simple structure gives rise to a regularisation term that
is bounded above by a quantity which is simpler to
compute, allowing for an efficient minimisation–majorisa-
tion algorithm. It should be noted, however, that it is
suited for signals with emphasised band structures in their
spectrogram. On the other hand, edge information has
been used to aid image denoising [31] and reconstruction
under compressed sensing applications [32]. To the best of
our knowledge, however, such information has not been
used to adapt a structured regulariser as proposed here.
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2. Background

This work builds upon two main ideas: the use of
mixed-norm regularisers to obtain structured sparse
estimates and the use of the DTCWT as a signal analysis
tool to induce sparsity and locate salient features in the
signal, while retaining desirable properties such as shift-
invariance and low redundancy. We briefly examine these
two ingredients in the following sections.
Fig. 1. Group lasso with overlapping groups and its relationship with the
zero and non-zero patterns of the obtained estimates. The non-zero
pattern is obtained as the complement of the union of groups pushed to
zero, in this case f1;3g.
2.1. Regularised regression using structured sparsity
constraints

Sparse linear models have become very popular in
signal processing, machine learning and statistics. Their
purpose is to predict an output by using linear combi-
nations of only a small subset of the potential features
that could describe the data. In this context, ℓ1 regularisa-
tion has become a widely used tool to obtain estimation
and feature selection simultaneously. The strategy can be
stated as the solution of the convex optimisation problem

bθ ¼ arg min
θ

‖y�Aθ‖22þλ‖θ‖1: ð1Þ

In signal processing, the method is known as Basis Pursuit
[19], and the aim is to find a sparse representation bθ of a
signal Y in terms of the columns (or atoms) of an over-
complete dictionary A. In statistics, the method is known
as the Lasso [33]. In this case, A is a data matrix comprising
more variables than observations and the aim is to get a
sparse regression of the observations Y on the measure-
ments A.

The popularity of ℓ1 regularisation is largely due to the
existence of efficient algorithms to solve (1) and a large
body of supporting theory [33–39]. Nevertheless, in this
formulation every variable or feature is regarded indepen-
dent of the others. In practical situations, however,
estimation can benefit from additional a priori knowledge
regarding dependencies between sets of variables. Because
of this, attention has been given in recent years to regular-
isation problems that can accommodate such knowledge.

The most simple structure is the case in which we
know, a priori, that sets of variables should be considered
or discarded jointly from the linear model. Such a set of
variables can be regarded as a group. Let G denote the set
of groups, let θg refer to the subset of variables of θ in
group g and let wg be associated positive scalars acting as
weights. The optimisation problem reads [40]

bθ ¼ arg min
θ

‖y�Aθ‖22þλ ∑
gAG

wg‖θg‖q: ð2Þ

Common choices for q are f2;1g. The regulariserΩ1;qðθÞ ¼
∑gAGwg‖θg‖q is often referred to as a mixed-norm reg-
ulariser and it can indeed be verified that it induces
sparsity by deleting all the variables within a given group
simultaneously. When the collection G forms a partition of
the set of variables, the method is known as group lasso
[40] and it is easy to see that the subset of coefficients
shrunks to zero during estimation gives rise to a zero
pattern that is the union of some groups in G.
One way to generalise this formulation is to allow for
more flexible grouping schemes whereby groups are
allowed to overlap (i.e. such that G does not need to be a
partition of the set of variables) [26–28,41,42]. In this
case, the regulariserΩ1;qðθÞ ¼∑gAGwg‖θg‖q is still a norm,
provided all covariates belong to at least one group, and it
still induces complete groups of covariates to be set to
zero. Moreover, a variable in a group that is set to zero
during optimisation will be pushed to zero even if it
belongs also to other groups that are not set to zero. More
formally, it is shown in [27] that under very mild assump-
tions, the support of the solution bθ almost surely is the
complement of the union of some groups in G; that is,

suppðbθÞ ¼ ⋃
gAG0

g

 !c

¼ ⋂
gAG0

gc; ð3Þ

for some G0 � G. This situation is illustrated in Fig. 1. Sets of
non-zero patterns that can be represented as in (3) are
referred to as intersection-closed. There are some expected
structures that cannot be described appropriately by an
intersection-closed grouping scheme but which can be
modeled by union-closed families of supports [41,42].

Practical solution of the optimisation problem invol-
ving overlapping groups is more challenging computation-
ally and dedicated algorithms have been developed to
address this task [43–46]. In addition, the selection of
weights wg has a greater impact on the estimate in the
case of overlapping groups, since they have to mitigate not
only the unbalanced size of the groups but also the over-
penalisation of variables appearing in a greater number of
groups. Currently, principled rules to set the weights
optimally for these regularisers are not available.

2.2. Dual-tree complex wavelet transform

Despite its widespread use in applications, the standard
(real) DWT suffers from some important shortcomings
such as a lack of shift-invariance and the substantial
aliasing due to critical downsampling that affects perfect
reconstruction if some processing is applied to the coeffi-
cients. For image analysis, the standard DWT with real
wavelets also lacks directionality due to the standard
tensor product construction of multidimensional wavelets.
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The DTCWT provides a better alternative to deal with
those problems, while retaining simple computation and
low redundancy [47]. It seeks to provide a nearly analytic
wavelet transform using two real filter-bank trees, one
for the real part and other for the imaginary part of the
transform. These two real wavelet transforms use two
different sets of filters, each of compact support and
satisfying perfect reconstruction. The choice of filters for
each tree is not arbitrary, but they are designed to form an
approximate Hilbert pair, so that the resulting complex
wavelet transform is as close as possible to analytic.
Indeed, the design of the pair of filters is the key point
to the success of the transform, and several efforts have
addressed this topic [48–55]. The resulting transform is
near shift-invariant [56] and, of particular importance to
structured sparsity approaches, it has also been shown
that the magnitude of the coefficients is more strongly
dependent in inter-scale and intra-scale neighbourhoods
[47,57,58] than those of the DWT. Refer to [47] and
references therein for a comprehensive introduction to
the DTCWT and its properties.

3. Proposed method

In this section we describe the overlapping-group lasso
approach for tree-structured wavelet estimators. We then
propose a way to estimate the salient features directly
from the signal and show that this affords the opportunity
to adaptively choose the weights. We then conclude the
section with a treatment of how these ideas can be
incorporated into an optimisation framework which solves
the structured sparse estimation problem for overlapping
groups of variables.

3.1. Overlapping-groups lasso with adaptive weights

The multiresolution nature of wavelet decompositions
allows one to think of parent coefficients at a given scale
level and child coefficients at the next finer scale level.
Wavelet decompositions possess two properties of great
interest to structural sparsity approaches: firstly, they are
typically sparse and secondly, coefficients in the same time
interval usually show a persistency property across scale
[5]. The persistency property means that the magnitude
of the child coefficients depends strongly on that of their
Fig. 2. (a) Grouping scheme for the proposed mixed-norm regularisation and
support is the complement of the union of the sets pushed to zero during optim
circles.
parent—a large/small parent usually implies a large/small
child. Such a dependence can be modelled as a set of trees,
each rooted at a wavelet coefficient from the coarsest scale
of the decomposition [28,59]. Let I be the set of indexes for
the coefficients θ: I↦C and let I0 � I be the subset of
indexes indicating the wavelet coefficients at the coarsest
scale. Furthermore, let gðiÞ be a subset of indexes of I
organised as a tree rooted at some index i, and let θgðiÞ
be the corresponding subset of coefficients in this tree.
Consider the collection of groups

G≔fgðiÞ: iA Ig: ð4Þ
We assume that the inter-scale dependence structure
between wavelet coefficients determines a forest-like
hierarchical structure MðθÞ, so that for all i; jA I, gðiÞ �
gðjÞ, gðjÞ � gðiÞ, or gðiÞ \ gðjÞ ¼∅, and

MðθÞ≔ �
iA I0

θgðiÞ: ð5Þ

This grouping scheme is illustrated in Fig. 2(a), where
circles represent coefficients of the wavelet representation
and rectangles represent the groups. For simplicity, only
one tree of the forest is shown in the figure. This nested
structure can be understood as an example of the compo-
site absolute penalties family and it allows one to obtain
estimates whose supports show the desired persistency
property. See [60] for a discussion of these types of
penalties. An example is shown in Fig. 2(b). Highlighted
rectangles show the groups pushed to zero during opti-
misation and the shaded circles show the variables set to
zero as a consequence. The support of the estimate is then
represented by the set of white circles, which is the
complement of the union of the groups set to zero during
the optimisation. This example illustrates that the hier-
archical structure defines a intersection-closed set of
supports, which can be then obtained solving a regularised
regression problem like (2); in particular,bθ ¼ arg min

θ
‖y�Aθ‖22þλ∑

iA I
wi‖θgðiÞ‖2: ð6Þ

Whilst the use of this structure and the associated mixed-
norm regulariser has already been proposed [28,27], we
note that the introduction of this structured regulariser
also requires the specification of the weights wi. Indeed,
although much less attention has been given to this topic, it
is well-known that the values of the weights in fact have an
(b) example of estimate induced by the adopted grouping scheme; its
isation which in turn sets to zero the coefficients represented by shaded
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important effect on determining the support of the resulting
estimates [26,27].

Motivated by this dependence on the choice of the
weights, we propose to adapt them from the a priori
specification by taking into account the salient features
of the analysed signal. In particular, we modify the weights
wg with the aim of achieving a better reconstruction
of jumps and bumps, which are often over-smoothed by
denoising algorithms.

To formalise the idea, let kAsuppðf Þ be a location of
interest, where the signal f presents a salient feature such
as a jump or a sharp bump. Let �Gk � G be the set of groups
containing coefficients θj;n related to k and let �wk be
the vector of associated weights. We define a shrinkage
operator on the weights P:wARþ-Rþ by

PðwiÞ � ~wi ¼
αiwi if gðiÞA �Gk;

wi otherwise;

(
ð7Þ

where αiA ½0;1�. For a given group g(i), ~wirwi and then
the shrunk weights allow the respective groups to be
penalised more weakly during the optimisation process.
In this way, coefficients related to salient features of
the signal can be favoured in the regularised estimation
process so that they are surely retained in the final
estimate.
3.2. Edge and ridge detection via DTCWT

We now focus on the practicalities of detecting and
locating these salient features. It is shown in [61] that
analytic complex wavelets (with a non-negative frequency
spectrum) can be used to extract edge-like and ridge-like
features from noise-free signals. Theoretically, at the limit
of the finest resolution, all the coefficients are zero except
those corresponding to the location of the features. More-
over, the phase of these limiting coefficients can be used to
distinguish between an edge-like or a ridge-like structure
at a given position of interest.

In practice, the edges and bumps can be estimated
by replacing the limiting process with an average of the
normalised complex coefficients over a finite number
of scales. This approach, nevertheless, has two important
limitations. The first is that an undecimated or interpo-
lated complex wavelet representation is required so that
the coefficients included in the average are well localised
in time in order for the detected locations of interest to be
accurate. The second limitation is perhaps more serious,
namely that the approach as stated currently does not take
into account noisy conditions. Thus, there is no guarantee
on the attainable performance when using it in noisy
scenarios.

For 1D signals, it is well-known that jumps and ridges
give rise to strong persistency figures in their scalogram
when using the continuous wavelet transform [62]. This
behaviour is still noticeable when using a discrete wavelet
transform. Motivated by this, we propose to average the
magnitude of the wavelet coefficients throughout the
different scales to get the signatures. Since the DTCWT
provides a decimated representation, we interpolate the
magnitudes of the wavelet coefficients to match the
resolution of the finest scale.
3.2.1. A measure for relevant information
Let θ be the DTCWT of discrete signal f and let j ~θ j;nj be

the interpolated magnitude of the coefficient correspond-
ing to location n in time at the scale indexed by j. We
measure the amount of important information on f at
location n by a function δ: suppðf Þ-½0;1�

δðnÞ≔ ∏
J

j ¼ J0

γðj ~θ j;njÞ
 !1=ðJ� J0 þ1Þ

; ð8Þ

with γð�Þ being a normalisation function given by

γ θj;n
� �

≔
θj;n�min θj;�

max θj;� �min θj;�
: ð9Þ

At locations where the signal has a jump or a bump, δ is
close to 1. For noise-free scenarios, δ-0 at intervals where
the signal is smooth. In this case, J0 should be set to 1, in
order to include the coefficients at the finest scale of the
decomposition. In noisy scenarios, coefficients at the finest
scale can be noisy and averaging from scale J0 ¼ 2 can
prove useful. In addition, when the decomposition runs
up to a very coarse level, very little information can be
extracted from the coarsest scales about the location
of salient features. Indeed, for very smooth signals the
interpolated coefficients can become nearly constant at
the coarsest scales. The geometric mean given by Eq. (8)
shows small sensitivity to this effect because it depends
mostly on the coefficients whose magnitude is close to
zero [63].
3.2.2. Detection of points of interest
Given a threshold τAð0;1Þ and a minimum length of

interval r, we define the sets Kτ;rð1Þ;Kτ;rð2Þ;…;Kτ;rðSÞ to be
the collection of non-empty, non-intersecting, and non-
neighbouring intervals of length greater than r such that
δðnÞ4τ and where each set is simply connected (i.e. for
each s, the set Kτ;rðsÞ does not contain any gaps between
elements). Then, the set of S-many locations Kτ;r of the
salient features in f is given by the points where δðnÞ
attains its maximum value within each interval of Kτ;r;
that is,

Kτ;r≔ max
nAKτ;r ðsÞ

δðnÞ
� �S

s ¼ 1
:

The procedure to estimate the set of locations Kτ;r is
summarised in Algorithm 1. The detection of points of
interest as described above depends on the choice of
parameters τ and r. For fixed r, moving τ from 0 to 1
changes the pattern of connected sets Kτ;r . In particular, for
τ1oτ2, Kτ1 ;r*Kτ2 ;r but the set of detected locations Kτ2 ;r

can add a new element with respect to Kτ1 ;r if a local
minimum in δ is passed-through when going from τ1 to τ2.
If the new extremum is a local maximum due to noise
or an irrelevant fluctuation in δ, it will disappear as τ is
increased. On the other hand, if the added extremum
represents a location of a salient feature, it will persist
over a wide range of τ4τ2. As such, persistence of
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detected locations on the sequence fKτn ;rg, obtained using
a sequence of threshold values fτng, is an indicative of a
true salient feature in f. For this procedure to be useful in
general, we should define the sequence fτng to be adaptive
to the data, since the peaks in δ at the locations of interest
are less emphasised when the noise increases. To do so, we
propose to match fτng to a sequence of quantiles of δ and
look for the locations that persist in fKτn ;rg at least n0
times.

Algorithm 1. Detection of points of interest.
Inputs: f; r;n0.
Outputs: Kr;n0

procedure DETECTPOI ðf ; r;n0Þ
θ’DTCWTðf Þ
~jθj’InterpolateðjθjÞ
for all nAsuppðf Þ do
δðnÞ’Compute the geometric mean of ~jθj �;n ▹ see (8)

end for
fτqg’Compute quantiles of δ

for all τq do
Kτq ;r’fn: δðnÞ4τqg
for all Kr;τq ðiÞ do

Kτq ;rðiÞ’arg max
nAKτq ;r ðiÞ

δðnÞ

end for
end for
for all fKτq ;rðiÞg do
κi’Check persistence fKτq ;rðiÞgZn0

end for
Kr;n0’fκig

end procedure

3.3. Implementation

In this section we describe an algorithm to solve (6) and
a criterion to select the regularisation parameter λ.

3.3.1. Optimisation algorithm
Several numerical approaches have been proposed

to deal with the ℓ1;2 minimisation problem involving
overlapping groups [43–46,59]. In this work we solve (6)
using a proximal method based on Mureau–Yosida
regularisation [64]. Our presentation follows [64]. Let
Ω1;2 ¼∑iA Iwi‖θgðiÞ‖2 be the regularisation term in (6).
Under the Mureau–Yosida regularisation framework, the
regularisation associated with Ω1;2 for a given vARp is
given by

ϕλ vð Þ ¼ arg min
v

1
2
‖θ�v‖22þλΩ1;2

� �
; ð10Þ

for some λ40. Let πλð�Þ be a minimizer of (10) and let bθ be
an optimal solution to (6). Then, bθ satisfiesbθ ¼ πλτ ðbθþτA†ðy�AbθÞÞ; 8τ40; ð11Þ
with A† and A here denoting the DTCWT and its inverse
transformation, respectively. Eq. (11) affords the opportu-
nity to apply an accelerated gradient descent for solving
(6). The key point of the algorithm is the solution of (10). It
is shown that this minimizer has indeed an analytical
solution that can be found with Algorithm 2 (see [64] for
details).
Algorithm 2. Mureau–Yosida regularisation.
Inputs: vARp; grouping structure G, related weights fwig and λ40.
Outputs: πλðvÞ
procedure SOLVEMYTREE v; λ; G; fwig
λi’λwi

uL0 þ1’v
for i¼ L0 to 1 do ▹ Iteration runs from finest to coarsest

scale.
for all g(j) at scale i do

ui
gðjÞ’

0 if ‖uiþ1
gðjÞ ‖2rλj

‖uiþ1
gðjÞ ‖2�λj
‖uiþ1

gðjÞ ‖2
uiþ1
gðjÞÞ if ‖uiþ1

gðjÞ ‖24λj ;

8>>><>>>:
ð12Þ
forall
end for
πλðvÞ’u1

end procedure

3.3.2. Selection of the regularisation parameter
For practical applications, an important aspect to be

specified is the value of the regularisation parameter λ.
Although there exist well-established criteria for selecting
λ for the standard lasso and related problems when A is
orthonormal, such criteria do not apply for the case of
overlapping groups. In recent papers involving structured
regularisers with overlapping groups, selection of the
regularisation parameter has been done empirically using
simulations. For instance, in [30] a numerical study is
carried out to relate the value of λ with the expected
reduction of noise variance for uncorrelated white Gaus-
sian noise. The offered values depend on the choice of
block structure in the regulariser. In [10], a grid of values
for a pair of regularisation parameters is evaluated and the
best pair is selected graphically.

The approach proposed in this paper is based on theo-
retical results for regularised M-estimators with decom-
posable regularisers [65]. It is easy to see that the highly
structured regulariser used in (6) is decomposable in the
sense defined in [65]. Let bθλ denote the solution to (6) for a
given value of λ. It is shown in that paper that theoretical
guarantees on Jbθλ�θo J can be found provided

λZ2Ωn

1;2ð∇LðθoÞÞ; ð13Þ

whereΩn

1;2 stands for the dual of the regulariserΩ1;2, θ
o is

the true vector of coefficients under the tree-structured
model, and L is the loss function, which in this paper is the
squared-error loss. Following this, we require

λZ2‖wi‖ψgðiÞ‖2‖1; ð14Þ

with ψ the DTCWT of the noise η in the model y¼ Aθoþη.
Expression (14) is impossible to compute, since it

involves the DTCWT of the true noise η. Nevertheless,
we can use simulations to find a bound for λ according to
(14). The procedure involves generating a noise signal ηi
with variance σ2

η and picking the maximum of S¼
maxfwi‖ψgðiÞ‖2g using the non-adapted weights fwig. After
repeating the steps to obtain a large number of replicates
of S, the distribution of ~S ¼ 2S=σ is found to be invariant.
Thus, we can use a quantile of the distribution of S to set a
bound for λ that holds with high probability. For uncorre-
lated white Gussian noise and using the 0.95 quantile of
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the empirical distribution, we set λ¼ 0:568bσ , with bσ being
an estimate of the noise variance.

3.3.3. Overall algorithm
An overall algorithm to implement the proposed

method is shown in Algorithm 3, which joins the optimi-
sation steps and the procedure to detect the point of
salient features discussed in the current section. The
evolution of the objective function as the number of
iterations increases within the main loop in the denosing
algorithm is shown in Fig. 3. Shown curve corresponds to
the piecewise-polynomial signal from WaveLab [66], cor-
rupted with white Gaussian noise of variance σ2

η ¼ 4.
Similar evolutions are obtained for other types of signals
and noise levels. It can be seen that convergence is
monotone and little improvement is gained after 20
iterations. In Appendix A, the performance obtained with
λ chosen as explained in the previous section is com-
pared against the best performance obtained with
Algorithm 3 using a fine grid of values of λ. The influence
of r and n0 on the overall denoisng procedure is analysed
in Appendix B.

Algorithm 3. Adaptive tree-structured wavelet shrinkage.
Inputs: y; grouping structure G and related prior weights fwig.
Outputs: Denoised signal bz
procedure DENOISING y; G; fwig, r;n0

Kr;n0’DetectPoiðy; r;n0Þ ▹ see Algorithm 1.
�Gk’Find groups in G related to Kr;n0

Set x’Compute DTCWTðyÞbσ 2
’Estimate noise variance from x

α’Set shrinkage factor according to bσ
fwig’Adapt weightsfwig; fromð �Gk ;αÞ ▹ see (7).
λ’Setλ according to bσ ▹ see (14) and comments below it.
Set L¼ 1; ζ ¼ 1; ζp ¼ 0; xp ¼ x
repeat
β’ðζp�1Þ=ζ
s’xþβðx�xpÞ
G’Compute gradient from y; s
while ‖Aðx�sÞ‖224L‖x�s‖22do
v’s�G=L
x’SolveMYtreeðv; λ=L;G; fwigÞ ▹ see Algorithm 3
L’maxð2L; ‖ðx�sÞ‖22=‖Aðx�sÞ‖22Þ

end while
ðζ;ζpÞ’Updateðζ; ζpÞ

until convergencebθ’xbz’Compute IDTCWTðbθÞ
end procedure
4. Experiments and results

To assess the performance of the proposed method,
simulation studies were carried out using synthetic signals
from the WaveLab Toolbox [66], which have been used
extensively for benchmarking wavelet-based denoising
methods. The Blocks, Bumps, Piecewise-Regular (PR) and
Piecewise-Polynomial (PP) signals were chosen, since they
comprise smooth segments with jumps and bumps and
serve to illustrate the kind of signals targeted to by the
proposed method. All test signals were generated with
N¼1024 sample points. Independent and identically dis-
tributed white Gaussian noise was added to the signals, at
different SNR determined by the variance σ2

η of the noise.
Near-symmetric (13,19)-tap filters were used to compute
the first stage of the decomposition, while Q-Shift (14,14)-
tap filters were used for the rest of the scales. Preliminary
experiments with other combinations of filters showed
that the effect of this choice on the performance of the
proposed method was negligible for most of the tested
conditions. Decomposition was carried out up to level
L0 ¼ 7. Implementation of Algorithm 3 was done in
MATLAB. The optimisation code was adapted from [67]
to deal with complex variables. For the detection of salient
features, interpolation of coefficient magnitudes at each
scale was carried out using a cubic interpolator, although
the proposed method was not found sensitive to the type
of interpolator chosen.

4.1. DTCWT vs DWT

A key characteristic of the proposed method is the use
of the DTCWT instead of the DWT. In this subsection we
illustrate the benefits of this choice. A simulation was run
to assess the performance of the proposed tree-structured
estimators for both DTCWT and DWT decompositions,
using the same grouping structure for both of them. Both
the adaptive methodology exploiting detection of salient
features (A-DTCWT and A-DWT) and the alternative
methods with the weights of the groups fixed a priori
were assessed (F-DTCWT and F-DWT). In addition, for the
adaptive structured estimators, results obtained using the
oracle locations of salient features (O-DTCWT and O-DWT)
were included in order to explore whether the choice of
transformation affects the detection of salient features, the
denoising process or both of them. The results of 100
experiments were averaged to assess the performance
of each method. In each run, all the methods pro-
cessed the same signal so that noise variability between
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realisations does not contribute to a difference in perfor-
mance between the methods. To avoid the influence of the
choice of the regularisation parameter for the adaptive
methods, a set of 1000 uniformly spaced samples of λ in
the interval ½0;λmax� were tried out for each method at
each run. λmax is such that for λ4λmax, the resulting
estimate is a zero vector. λmax was estimated in each run
using the algorithm proposed in [64]. Only the best
estimate across the different values of λ was picked as
the result corresponding to the run, both for DTCWT and
DWT-based methods.

Obtained results are shown in Fig. 4. Reconstruction errors
for σ2

η ¼ 4 only are reported, since very similar figures are
obtained for other signal to noise ratios. It can be seen that
methods using the DTCWT significantly outperform alterna-
tives of the same algorithms that use the DWT. Furthermore,
it can be seen that the difference in performance between
O-DTCWT and A-DTCWT is roughly the same as between
O-DWT and A-DWT, albeit the O-DTCWT clearly outperforms
O-DWT. Thus, the main benefit of the DTCWT over the DWT
lies in the signal denoising step and not in the detection of
salient features. These results, together with the fact that the
magnitude of the (near shift-invariant) DTCWT coefficients
have stronger dependence in inter-scale and intra-scale
neighbourhoods than those of the DWT, suggest that the
assumed tree-structured models are better suited to DTCWT
decompositions than to DWT.
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Fig. 5. Detection of salient features for the Piecewise-Regular signal
4.2. Accuracy of the edge/ridge detection method

Examples of obtained results are shown in Figs. 5 and 6.
The variance of noise increases from left to right in each
figure, starting with the noise-free condition in panel (a).
In each panel, the upper box shows the analysed signal,
the middle-box shows the estimated δ and the box at the
bottom shows the detected locations. The choice of the
minimum length of interval r and minimum persistence n0
for each signal remained fixed across the different noise
level. In particular, values r¼4 and n0 ¼ 7 were used for
both signals, and fifteen different values of τ were used to
assess persistence. It can be seen that for the noise-free
conditions and the first noisy conditions, the algorithm
achieves perfect detection of the points of interest. For the
most severe noisy condition, the algorithm introduces
some false positives, two in the case of the PR signal and
only one for the PP signal. The rate of false positives can be
controlled by modifying the values of r and the minimum
persistence n0. An increase in any of them, most notably in
n0, reduces the number of detections. As a trade-off, some
points of interest will be missed.

ROC curves were constructed to facilitate assessment of
the performance of the salient feature detector. For a given
noise level, the detection algorithm was run with r taking
values in f1;3;5;7;9g and n0 taking integer values from 1
to 50. The set of thresholds fτng used to evaluate
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Fig. 6. Detection of salient features for the PP from WaveLab. (a) Noise-free condition; (b) σ2η ¼ 4; (c) σ2η ¼ 9.
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persistence of candidate locations was determined using a
regular grid of fifty points in the interval ½Q0:50;Q0:95�. Each
point in the ROC curve gives the true positives rate (TPR)
and the false positives rate (FPR) for a given value of the
persistence parameter n0, averaged over 500 replicates of
the experiment. Fig. 7 shows the ROC curves obtained for
PR and PP signals, for three different noise levels. For both
signals, it can be seen that the detection ability degrades
with increasing noise levels, as showed by the maximum
attained values of TPR. It is important to clarify that these
low TPR are in fact due mostly to detection of salient
features in locations close to the true ones. Computation of
the TPR is sensitive to these displacements of the detected
points relative to the true ones. Nevertheless, when plot-
ting such detections like in Figs. 5 and 6, they are usually
not noticeable. It can be seen also that the different choices
of the parameter r lead to very similar ROC curves.
Comparing the figures obtained for both signals shows
that better performance is achieved for the PP signal; this
suggests that jumps are easier to detect than bumps.

A study of the influence of the choice of parameters r
and n0 on the performance of the overall denoising process
as proposed in Algorithm 3 is left to Appendix B.

4.3. Denoising

To illustrate the effect of weight adaptation in the
mixed-norm regulariser, denoising results were obtained
using the following methods: (i) proposed method with
locations of salient features given by an oracle (O-DTCWT);
(ii) proposed method with locations of salient features esti-
mated by the proposed detection algorithm (A-DTCWT);
(iii) regularised method using the same structured prior
but with weights fixed in advance (F-DTCWT); and



Table 1
Performance of denoising algorithms for synthetic signals.

Error σ2η ST F-DTCWT O-DTCWT A-DTCWT

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Blocks signal
‖z�bz‖1=‖z‖1 1 0.3238 (0.0224) 0.1742 (0.0235) 0.1411 (0.0213) 0.1475 (0.0235)

4 0.4594 (0.0356) 0.3182 (0.0425) 0.2666 (0.0412) 0.2811 (0.0391)
9 0.5621 (0.0351) 0.4362 (0.0593) 0.4029 (0.0617) 0.4218 (0.0709)

‖z�bz‖2=‖z‖2 1 0.1011 (0.0031) 0.0666 (0.0019) 0.0581 (0.0017) 0.0588 (0.0022)
4 0.1479 (0.0052) 0.1182 (0.0035) 0.0887 (0.0028) 0.0941 (0.0049)
9 0.1881 (0.0064) 0.1650 (0.0062) 0.1219 (0.0057) 0.1310 (0.0080)

Bumps signal
‖z�bz‖1=‖z‖1 1 0.1509 (0.0105) 0.0631 (0.0077) 0.0434 (0.0067) 0.0423 (.0104)

4 0.2206 (0.0185) 0.1194 (0.0165) 0.0812 (0.0127) 0.0871 (0.0048)
9 0.2876 (0.0263) 0.1717 (0.0205) 0.1189 (0.0174) 0.1282 (0.0256)

‖z�bz‖2=‖z‖2 1 0.1249 (0.033) 0.0714 (0.0018) 0.0661 (0.0017) 0.0656(0.0020)
4 0.1742 (0.0060) 0.1309 (0.0039) 0.1009 (0.0038) 0.1015 (0.0048)
9 0.2255 (0.0090) 0.1857 (0.0060) 0.1353 (0.0060) 0.1384 (0.0075)

Piecewise-regular signal
‖z�bz‖1=‖z‖1 1 0.1989 (0.0194) 0.1435 (0.0371) 0.1333 (0.0086) 0.1333 (0.0086)

4 0.2953 (0.0220) 0.2476 (0.0281) 0.2059 (0.0314) 0.2101 (0.0357)
9 0.3477 (0.0245) 0.3165 (0.0470) 0.2617 (0.0042) 0.2669 (0.0196)

‖z�bz‖2=‖z‖2 1 0.0644 (0.0026) 0.0614 (0.0037) 0.0617 (0.0014) 0.0621 (0.0021)
4 0.1045 (0.0041) 0.1044 (0.0052) 0.0941 (0.0033) 0.0945(0.0031)
9 0.1355 (0.0056) 0.1224 (0.0042) 0.1112 (0.0061) 0.1151 (0.0083)

Piecewise-polynomial signal
‖z�bz‖1=‖z‖1 1 0.1897 (0.0176) 0.1091 (0.0871) 0.0871 (0.0151) 0.0871 (0.0151)

4 0.3010 (0.0471) 0.1934 (0.0256) 0.1663 (0.0267) 0.1786 (0.0290)
9 0.3953 (0.0685) 0.2619 (0.0433) 0.2436 (0.0410) 0.2516 (0.0491)

‖z�bz‖2=‖z‖2 1 0.0812 (0.0025) 0.0642 (0.0019) 0.0572 (0.0016) 0.0573 (0.0017)
4 0.1207 (0.0043) 0.1135 (0.0040) 0.0891 (0.0041) 0.0918 (0.0057)
9 0.1519 (0.0062) 0.1319 (0.0056) 0.1181 (0.0050) 0.1219 (0.0074)
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(iv) standard soft-thresholding algorithm as proposed in
[2] (ST). Results for ST were included as a baseline, to help
appreciate whether the added complexity of the proposed
method was worth the gain in efficiency. Performance is
measured as both the J � J1 and J � J2 of the reconstruc-
tion errors, averaged over 100 replicates of the experi-
ment. Informed by the ROC analysis in Section 4.1, the
parameters that control the detection of salient features
were set to r¼4 and n0 ¼ 7, with persistence measured
using 15 different values of τ sampled regularly on the
interval specified by the quantiles Q0:5 and Q0:95. This
choice for n0 ¼ 7 proved convenient for all signals and all
noise levels, representing a good compromise between
TPR and FPR. Other combinations of ðr;n0Þ are similarly
capable, as shown in Appendix B.

For all the methods except ST, initial values of the
weights were set according to the cardinality of each
group, using1 wg ¼ jθgj1=4. These weights remained fixed
for F-DTCWT but were modified using information
from the location of salient features for O-DTCWT and
A-DTCWT. For the adaptive methods, given the locations
of the salient features, the weights of the corresponding
groups in the regulariser were shrunk using αg ¼min
1 j � j here denotes cardinality.
ð1; bσ=σ0), with σ0 ¼ 4, bσ ¼MAD=0:6745, and MAD being
the median absolute value of the appropriately normalised
wavelet coefficients at the finest resolution, as proposed
for the standard ST method [2]. With this choice of αg, in a
noise-free scenario the weights wg related to the locations
of salient features are set close to zero, while in very noisy
scenarios the weights will remain unchanged.2

Results are shown in Table 1. For Blocks, Bumps and PP
signals, it can be seen that the proposed method involving an
adaptive regulariser outperforms the other alternatives for all
the tested conditions, both when using ‖ � ‖1 or ‖ � ‖2 as the
measure of performance. It is important to note that these
conclusions are valid for the adaptive regulariser based on
oracle information as well as for the adaptive approach using
the proposed algorithm to detect the locations of the salient
features of the signal. Indeed, results show that the practical
method achieves scores very similar to those for the oracle
version and the difference between them is not significant for
moderate levels of noise. This can be visualised in Fig. 8, which
shows boxplots of the obtained reconstruction errors when
the variance of the noise is σ2

η ¼ 4. It is clear from the figure
2 Note that αg should be such that it favours retention of involved
groups, but not force it. In this sense, for very mild noisy conditions, it
might be appropriate to lower bound the value of αg.
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Fig. 9. Example with real EMG signal.
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Table 2
Average denoising results for 100 fragments of EMG picked at random.

σ2η ¼ 4 ST F-DTCWT A-DTCWT

Error measure Mean (SD) Mean (SD) Mean (SD)

‖bz�z‖2=‖z‖2 0.347 (0.062) 0.260 (0.017) 0.173 (0.017)

‖bz�z‖1=‖z‖1 0.345 (0.059) 0.266 (0.054) 0.212 (0.076)
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that results obtained with the practical implementation
are almost identical to those achieved when the locations of
the salient features are known. In addition, variance of the
obtained errors is similar for the proposed method and
standard soft-thresholding for all tested conditions. It is
interesting to note that, although experiments have consid-
ered Gaussian noise only, neither the overall method nor the
strategy to select λ assumes this condition.

4.4. Example with real data

Fig. 9 shows the performance of the proposed method
in suppressing noise from a real electromyographic (EMG)
signal of a healthy person. The signal was taken from the
Physionet data bank.3 Uncorrelated white Gaussian noise
of variance σ2

η ¼ 4 was added to the standardised EMG.
To aid visualisation, only a segment cut at random from
the whole signal was used in the experiment. It can be
seen that ST oversmoothes the signal significantly, thus
loosing many details. The estimated signal using F-DTCWT
preserves more details than ST but a reduced dynamic
range, especially in the peaks and bumps, is still evident.
On the contrary, the A-DTCWT estimate better preserves
details and dynamic range of the main features of the
signal. For this example, the relative ℓ2-norm of the
reconstruction error is 0.421 for ST, 0.319 for F-DTCWT
and 0.172 for A-DTCWT. For ‖z�bz‖1=‖z‖1, obtained
results for the shown example are 0.425 for ST, 0.289 for
F-DTCWT and 0.169 for A-DTCWT. Both measures show
the superiority of the proposed method for this denoising
task. To check that the obtained results are not a conse-
quence of a favourable choice of fragment of the EMG
signal, 100 replicates of the experiment were run, each
with a segment of length N¼1024 cut at random from the
whole signal. Averaged results can be seen in Table 2,
showing the same trend as for the realisation shown
in Fig. 9.

5. Conclusions and further work

In this work we have introduced an adaptive structured
wavelet shrinkage estimator. In the proposed method, the
weights in a hierarchical structured regulariser are mod-
ified in order to favour the retention of coefficients related
to the locations of salient features in the signal. The
detection of such locations is carried out using information
extracted from the wavelet decomposition. Denoising
experiments with synthetic and EMG signals showed that
the adaptive scheme outperforms the non-adaptive
3 http://physionet.org/physiobank/database/emgdb/.
structured estimators. These results encourage the exten-
sion of the adaptive scheme to images, in order to improve
preservation of edges in denoising applications. Further
extensions could also involve relaxing the hierarchical
structure to allow for more general dictionaries to replace
the DTCWT used in the present work. Alternatively a
union-of-basis-framework could be introduced to catch
different features in the signal.
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Appendix A. Influence of the selection of λ

The goodness of the proposed procedure to select the
value of the regularisation parameter λ is assessed. The
reconstruction error obtained with the proposed λ is
compared to the minimum reconstruction error achieved
using a fine grid of values of λ. The rest of the parameters
were set as described in Section 4.3. The ℓ2-norm of the
error is used for comparison. Results of 50 experiments
were averaged to get the reported results. A set of 1000
uniformly spaced samples of λ in the interval ½0; λmax� were
tried out for each method at each run. λmax is such that for
λ4λmax40, the resulting estimate is a zero vector. λmax

was estimated in each case using the Algorithm proposed
in [64].

Obtained results are shown in Fig. A1. O-best and
A-best denote results corresponding to the best choice of
the regularisation parameter when using the true location
of the salient features or estimated ones, respectively.
For methods O-best and A-best, only the best estimate
across the different values of λ was picked as the result
corresponding to the run. Results for the non-adaptive
tree-grouped estimator are also included for comparison.
It can be seen that the difference in performance between
the best selection of λ and the one proposed here is always
significantly smaller than the difference in performance
between the non-adaptive alternative F-best and the
adaptive one A-DTCWT. This result shows the advantage
of adaptation beyond the fine tunning of the regular-
isation parameter. Furthermore, for methods A-DTCWT
and A-best that do not use oracle information about
the location of salient features, it can be seen that the
difference in performance between them is smaller than
for O-best versus O-DTCWT. When noise increases, it can
be seen also that the difference in performance between
A-best and A-DTCWT is indeed smaller than the difference
between O-best and A-best. This suggests that the perfor-
mance of the denoising method is more sensitive to the
correct detection of salient features than to the deviation
of the proposed value for λ from its optimal choice.

http://physionet.org/physiobank/database/emgdb/
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Moreover, the overall performance of the adaptive method
due to practical implementation constraints is still signifi-
cantly better than the performance of tree-structured
estimators with the regulariser fixed a priori. These results
indicate that, at a very modest cost to simplicity, the
suggested procedure for selecting λ is suitable for practical
applications.
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Fig. A1. Performance of the introduced denoising algorithm using the proposed
best achievable performance estimated using a fine grid of 1000 values of λ in

Fig. B1. Influence of parameters for detection of salient features on the overall p
noise variance increases from left to right.
Appendix B. Influence of the parameters r and n0

The effect of the parameters ðr;n0Þ on the accuracy of the
detection stage of the method was assessed in Section 4.2.
Here, the influence of these parameters on the final outcome
of Algorithm 3 is addressed. A simulation was run using the
synthetic signals considered in Section 4, corrupted with
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selection method for the regularisation parameter λ, compared with the
the interval ð0; λmaxÞ. (a) Blocks; (b) Bumps; (c) PP.

roposed denoising method. (a) Blocks; (b) Bumps; (c) PP. For each signal,
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uncorrelated white Gaussian noise. Results of 50 experiments
were used to get the reported results. For each run, the
regularisation parameter was set as discussed in Section 3.3.2
and a grid of values ðri;njÞ was evaluated for the detection
stage. For each pair of parameter values, the resulting
reconstruction error measured in the ℓ2-norm was stored.

Averaged results over the 50 runs are shown in Fig. B1.
It can be seen that for all signals and noise levels, denoising
performance suffers for large values of the persistence
parameter n0 and radius r. These large values account for
situations where only large isolated peaks in δðnÞ are
detected increasing the number of false negatives. When
the noise is weak, there is little effect of the choice of ðr;n0Þ
on the denoising result; a wide range of values of the para-
meters, except the largest ones, obtain very similar recon-
struction errors. When the signal to noise ratio becomes
small, as in the situation in the plots on the right of Fig. B1,
small values of n0 and r also affect negatively the denoising
performance. This is expected, since this leads to an increase
in the false positive rate of the detection stage, meaning that
noisy coefficients are forced to be preserved during shrink-
age. Nevertheless, figure shows that there is a wide range of
values in the middle of the grid so that, for a fixed choice
around (r¼4, n0¼6), the performance is good and near the
best one regardless of the signal and noise level.
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