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Abstract
In auditory cortex, temporal information within a sound is represented by two complementa-

ry neural codes: a temporal representation based on stimulus-locked firing and a rate repre-
sentation, where discharge rate co-varies with the timing between acoustic events but lacks

a stimulus-synchronized response. Using a computational neuronal model, we find that

stimulus-locked responses are generated when sound-evoked excitation is combined with

strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is gen-

erated when the net excitation evoked by the sound is weak, which occurs when excitation

is coincident and balanced with inhibition. Using single-unit recordings from awake marmo-

sets (Callithrix jacchus), we validate several model predictions, including differences in the

temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses be-

tween neurons with rate and temporal representations. Together these data suggest that

feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy

observed in auditory cortex.

Author Summary

How does our auditory system represent time within a sound? Previous work has demon-
strated that both the firing rate of neurons (rate code) and the timing of their stimulus-
evoked responses (temporal code) can be used by auditory cortical neurons to represent
temporal information. We investigated the underlying mechanisms of these two neural
representations using a computational model of a cortical neuron. We found that the tim-
ing and magnitude of inhibition determined whether neurons responded to an acoustic
stimulus using a rate or temporal code. Our model predicts several differences in the re-
sponse pattern of neurons using rate and temporal representations, which we next validat-
ed with electrophysiological data recorded from the auditory cortex of non-human
primates. Together these data suggest that feedforward inhibition provides a parsimonious
explanation of how rate and temporal representations are generated in auditory cortex.
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Introduction
Temporal processing is fundamentally important for perceiving and discriminating acoustic
stimuli [1,2]. Specifically, the timing between successive acoustic events is used by the auditory
system in the recognition of musical rhythms [3,4], human speech [5,6] and conspecific vocali-
zations [7,8]. When acoustic events occur in a sequence, our perception of this sequence de-
pends on the time interval between successive events. When inter-event time intervals are
longer than 25 ms, we perceive a stream of discretely occurring sounds, commonly referred to
as acoustic flutter [9,10]. At shorter time intervals, this percept changes from flutter to fusion;
the sensation of discretized events is lost and the resulting fused percept generally has a pitch
equal to the repetition rate of acoustic events [11]. The flutter/fusion perceptual boundary is
not unique to the auditory system. An analogous perceptual boundary occurs for both visual
stimuli (flicker/fusion) [12] and tactile stimuli (flutter/vibration) [13].

The dichotomous categorization of a sequence of brief sounds into the perceptions of flutter
and fusion is reflected in the corresponding neural representations of these sounds. Within audi-
tory cortex, a sequence of brief sounds, hereinafter referred to as an acoustic pulse train, is en-
coded with either a temporal or rate representation, for longer and shorter interpulse intervals
(IPIs), respectively [14–17]. A temporal representation is provided by neurons with envelope-
locked responses, referred to as “synchronized neurons”, reflecting their ability to synchronize
their spikes to each acoustic pulse (Fig. 1a). However, the temporal fidelity of this synchroniza-
tion degrades at shorter IPIs, with an encoding boundary near the flutter/fusion perceptual
boundary. In the perceptual range of fusion, synchronized neurons generally elicit only an onset
response, and thus cannot be used to discriminate between these shorter IPIs (Fig. 1b). In addi-
tion to synchronized responses, neurons can also produce “non-synchronized” responses to
acoustic pulse trains [14,17–19]. Non-synchronized neurons increase their firing rate monotoni-
cally with decreasing IPIs over the perceptual range of fusion without exhibiting envelope-
locked responses (Fig. 1b). While non-synchronized neurons are generally unresponsive at IPIs
in the range of flutter (Fig. 1a), the combined neural representations from synchronized and
non-synchronized neurons are sufficient to encode temporal information across a wide range of
IPIs, spanning the percepts of both flutter and fusion.

This dichotomy between synchronized and non-synchronized responses is not unique to
the auditory system; an analogous dichotomy exists in primary visual cortex for representing
spatially modulated stimuli [20–22]. When presented with drifting visual gratings, simple cells
synchronize their firing to individual bars of the gratings while complex cells produce a non-
synchronized discharge pattern. This difference is reflected in the organization of each cell’s re-
ceptive field- excitation and inhibition are spatially segregated in simple cells, but spatially
overlapping in complex cells. We reasoned that synchronized and non-synchronized responses
in auditory cortex could be generated by a similar relationship between excitation and inhibi-
tion, with the degree of segregation between these two inputs varying in the time domain, rath-
er than the spatial domain. To investigate this, we simulated an auditory cortical neuron using
an integrate-and-fire computational neuronal model [23–24], and measured how changing the
relative timing between excitatory and inhibitory inputs affected a neuron’s representation of
temporal information.

Results
We developed an integrate-and-fire computational model of an auditory cortical neuron [23],
based on previously reported data obtained using in-vivo, whole-cell recordings from rodent
primary auditory cortex [24] (see Methods). We tested our model with acoustic pulse trains
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spanning the perceptual range of flutter/fusion perception, with interpulse intervals (IPIs)
ranging between 3–75 ms. Each acoustic pulse was modeled as a change in the excitatory and
inhibitory conductance, governed by an alpha function with a 5 ms time constant (Fig. 2a,
Wehr and Zador 2003). Our model consisted of three parameters: 1) I-E delay- the temporal
delay between inhibitory and excitatory inputs, 2) I/E ratio- the ratio between the magnitude
of inhibitory and excitatory inputs, and 3) Excitatory input- the magnitude of the excitatory
input (Fig. 2a). To ensure that the parameters of our model were physiologically realistic, we

Fig 1. Schematic of synchronized and non-synchronized responses from auditory cortical neurons in response to acoustic pulse trains
generating flutter and fusion percepts. Each plot is subdivided (from top to bottom) into an illustration of the acoustic pulse train (gray), and the evoked
neural response from synchronized neurons (red) and non-synchronized neurons (blue). The inset plot in (a) shows a single acoustic pulse (5 kHz carrier
frequency). a. An acoustic pulse train generating a flutter percept (interpulse interval = 50 ms). b. An acoustic pulse train generating a fusion percept
(interpulse interval = 10 ms).

doi:10.1371/journal.pcbi.1004197.g001
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used a previously reported range of I/E ratio and I-E delay values obtained using intracellular
recordings from auditory cortical neurons [24]. While our model does not explicitly simulate a
specific cell-type or lamina of auditory cortex, the pattern of excitation combined with feedfor-
ward inhibition is consistent with the canonical circuitry of layer 2/3 auditory cortex, where
synchronized and non-synchronized neurons have been previously identified in marmoset au-
ditory cortex [14].

Responses to pulse trains in real and simulated cortical neurons
We used two tests to classify neurons as synchronized or non-synchronized [14]. A synchro-
nized neuron was required to have statistically significant vector strength at the longest IPI test-
ed (Rayleigh statistic>13.8, P<0.001, at IPI = 75ms) [25]. Non-synchronized neurons were
required to have a discharge rate ratio greater than one (i.e. the discharge rates at shorter IPIs

Fig 2. Computational model of an auditory cortical neuron. Error bars indicate SEM. a. The acoustic stimulus (top) used in our neurophysiological
experiments was a narrowband acoustic pulse train. Each pulse was converted into an excitatory and inhibitory conductance in our computational model,
using an alpha function with a time constant of 5 ms (middle). Three parameters could be altered (I-E delay, E input, and I/E ratio). Above threshold changes
in the membrane voltage generated spikes (bottom), which could be further analyzed to measure the response properties of the simulated neuron. b.
Classification of neural coding regime based on the two criteria (dashed lines)- y axis: Rayleigh statistic at an IPI of 75 ms>13.8, x axis: Discharge rate
ratio>1. Neurons were classified as having a non-synchronized (o), synchronized (x), or mixed (+) response. c. Comparison of stimulus synchronization in
real (gray) and simulated (red) synchronized neurons across different IPIs (3–75 ms). d. Comparison of normalized discharge rate in real (gray) and
simulated (blue) non-synchronized neurons across different IPIs (3–75 ms).

doi:10.1371/journal.pcbi.1004197.g002
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had to be greater than at longer IPIs). If a neuron passed both of these criteria, it was classified
as having a mixed response (S1 Fig). Mixed response neurons have been previously reported in
auditory cortex [14], but at significantly lower proportions than either synchronized or non-
synchronized neurons. If a neuron did not pass either criterion, it was classified as having an
“atypical” response. In addition to these criteria, we only included neurons in our analysis with
pure tone evoked discharge rates in the range of 1 to 50 spk/s. Our lower bound of 1 spk/s was
to prevent the inclusion of neurons that were unresponsive. Our upper bound of 50 spk/s was
to only include neurons that had discharge rates representative of a typical auditory cortical
neuron [26] and avoid physiologically unrealistic responses. Using these criteria, we observed
that the vast majority of neurons (98%) generated by our model could be classified as having a
synchronized, non-synchronized, or mixed response (Fig. 2b).

In order to directly compare our computational model with real data, we reanalyzed a previ-
ously published dataset [15, 18, 26], composed of single-unit responses to acoustic pulse trains
from the auditory cortex of four awake marmosets (Callithrix jacchus) (see Methods). Using
the same criteria as in our computational model, 70% of units responding to our acoustic pulse
train stimuli (147/210 units) could be classified as having synchronized, non-synchronized or a
mixed response (Fig. 1, S1 Fig). The remaining neurons were more heterogeneous in their re-
sponse properties; generally being weakly stimulus synchronized (but not at an IPI of 75 ms)
and/or having an excited or suppressed response over a range of IPIs, with a tuning curve that
was bandpassed, all passed, or high passed (only IPIs in the range of flutter perception). We
also observed some of these less common response types in our model, including bandpassed
and inhibitory (S2 Fig).

Next we compared the rate and temporal representations generated by real and simulated
neurons. We observed that synchronized neurons, both real and simulated, were able to repre-
sent long IPIs using temporally locked responses (Fig. 2c), although simulated neurons had a
substantially better temporal fidelity. Non-synchronized neurons, both real and simulated, rep-
resented shorter IPIs using a rate code (Fig. 2d), in which their normalized discharge rate de-
creased monotonically between IPIs in the range of 3 and 25 ms (i.e. higher discharge rates at
shorter IPIs). Thus, the general features of temporal and rate representations produced by syn-
chronized and non-synchronized neurons, respectively, were preserved in our
computational model.

Model parameters underlying rate and temporal representations
What determines whether a neuron encodes an acoustic pulse train using a temporal and/or a
rate representation? We observed that synchronized, non-synchronized, and mixed responses
were generated within three distinct regions of the model’s parameter space (Fig. 3).

Synchronized neurons were more common when inhibition lagged excitation, and the mag-
nitude of inhibition was at least 40–50% stronger than the magnitude of excitation (Fig. 4a,
model with an I-E delay = 5 ms). Comparing synchronized neurons with a fixed I-E delay of
5 ms, we observed a highly significant correlation (r = 0.99, P<3.1x10-87, Spearman Correla-
tion, Fig. 4b) between the excitatory input strength and the Rayleigh statistic, the criterion we
used to measure the statistical significance of stimulus-synchronization. In other words, as the
strength of excitation increased, our confidence in the high fidelity of a synchronized neuron’s
temporal representation improved. This can be observed by comparing the responses of two
simulated synchronized neurons that differ in their excitation strength parameter (Fig. 4c-d).
While both of these examples of simulated neurons differ in the robustness of their temporal
representation, they closely match the general properties of real synchronized neurons
(Fig. 4e).

The Role of Inhibition in Encoding Temporal Information

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004197 April 16, 2015 5 / 25



In contrast to this, non-synchronized neurons were more common when the net excitation
was weak, which occurred for I/E ratios close to one (balanced excitation and inhibition) or
low I/E ratios in combination with a weak excitatory input (Fig. 5a, model with an I-E
delay = 0 ms). We observed a statistically significant correlation (r = 0.87, P<1.5 x 10-17, Spear-
man Correlation, Fig. 5b) between the net excitatory input (excitation-inhibition) and the dis-
charge rate ratio. In other words, as the magnitude of net excitation increased, short IPIs
evoked a higher discharge rate relative to the discharge rate at longer IPIs, effectively increasing
the dynamic range of the neuron’s rate code. This effect can be observed by comparing the
responses of two simulated non-synchronizing neurons that differ in their net excitation
(Fig. 5c-d). While both of these examples of simulated neurons differ in the dynamic range of
their rate representation, they closely match the general properties of real non-synchronized
neurons (Fig. 5e).

When the net excitation increased above a conductance of approximately 0.6 nS, non-
synchronized responses generally became mixed responses (Fig. 3, S1 Fig). Mixed responses
could occur when the excitatory input of a non-synchronized neuron increased in strength, or
alternatively when the inhibitory input of a synchronized neuron decreased in strength. In our
computational model, roughly equal proportions of synchronized, non-synchronized, and
mixed response neurons were generated (Fig. 3). This differs from our single-unit recordings,
for which mixed response neurons (10%, 14/147 neurons) were less frequently observed than
either synchronized or non-synchronized neurons. Because each parameter was uniformly dis-
tributed in our model, our results map the possible response types that can be generated, but
not their relative proportions. For example, we allowed simulated neurons to have pure tone
evoked discharge rates in the range of 1–50 spk/s, reflecting the range of discharge rates ob-
served in our real data. However while evoked discharge rates can reach more than 50 spk/s in
auditory cortex, lower discharge rates are more typical (median discharge rate = 16.4 spk/s).
Reflecting this, we observed that when our criteria for a physiologically realistic response was
lowered from 50 spk/s to 20 spk/s, the proportion of mixed response neurons decreased to
about 12%, matching the proportion found in our single-unit recordings (S3 Fig).

Fig 3. Dependence on input parameters of computational model. Classification of neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)]
across all three parameters (I-E delay, Excitatory input, and I/E ratio). If pure tone responses were less than 1 spk/s or greater than 50 spk/s, neurons were
considered to have responses outside the allowable range (cyan) and were not included in our analysis.

doi:10.1371/journal.pcbi.1004197.g003
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Fig 4. Simulated synchronized neuron. a. Classification of neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)] across two parameters
(Excitatory input and I/E ratio), with a fixed I-E delay of 5 ms. The two arrows indicate the parameters used for the simulated neurons in Fig. 4c (left arrow) and
Fig. 4d (right arrow). b. Dependence of Rayleigh statistic (at an IPI of 75 ms) on the amplitude of excitatory inputs in simulated synchronized neurons.
Spearman correlation coefficient: r = 0.99, P<3.1x10-87. c-e. Examples of simulated and real synchronized neurons. Each plot is subdivided into a raster plot
(left), IPI vs discharge rate plot (top right), and IPI vs vector strength plot (bottom right). The stimulus is played for 500 ms, which is indicated with the gray
rectangle in the raster plot. The dashed line in the IPI vs discharge rate plot indicates a significant evoked response above the spontaneous rate (2σ). Error
bars indicate SEM. c. Simulated neuron: I-E delay = 5 ms, E strength = 1.8 nS, I/E ratio = 2. d. Simulated neuron: I-E delay = 5 ms, E strength = 6 nS, I/E
ratio = 2. e. Real neuron (unit m2p31.1) from awake marmoset auditory cortex.

doi:10.1371/journal.pcbi.1004197.g004
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Comparison of model-based predictions and real neuronal responses
Using our computational model, we could make several predictions concerning how stimulus-
evoked responses may differ between synchronized, non-synchronized, and mixed-response

Fig 5. Simulated non-synchronized neuron. a. Classification of neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)] across two parameters
(Excitatory input and I/E ratio), with a fixed I-E delay of 0 ms. The two arrows indicate the parameters used for the simulated neurons in Fig. 5c (right arrow)
and Fig. 5d (left arrow). b. Dependence of discharge rate ratio on net excitatory input (excitation-inhibition). Spearman correlation coefficient: r = 0.87, P<1.5
x 10-17 in simulated non-synchronized neurons. c-e. Examples of simulated and real non-synchronized neurons. Each plot is subdivided into a raster plot
(left), IPI vs discharge rate plot (top right), and IPI vs vector strength plot (bottom right). The stimulus is played for 500 ms, which is indicated with the gray
rectangle in the raster plot. The dashed line in the IPI vs discharge rate plot indicates a significant evoked response above the spontaneous rate (2σ). Error
bars indicate SEM. c. Simulated neuron: I-E delay = 0 ms, E strength = 1.8 nS, I/E ratio = 1.3. d. Simulated neuron: I-E delay = 0 ms, E strength = 0.3 nS, I/E
ratio = 0. e. Real neuron: (unit m32q3.1) from awake marmoset auditory cortex.

doi:10.1371/journal.pcbi.1004197.g005
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neurons, which were testable in our dataset of real neurons. In our model, delayed inhibition in
synchronized neurons led to a positive net excitation concentrated at the onset of the synaptic
input (Fig. 6a), while balanced excitation and inhibition in non-synchronized neurons led to
weaker net excitation that was spread out over a longer time duration (Fig. 6b). Because of this
difference, an evoked response from a synchronized neuron only required a single acoustic
pulse, while the evoked response of a non-synchronized neuron required the temporal summa-
tion of inputs from multiple acoustic pulses. We reasoned that this difference should also be re-
flected in the temporal dynamics of the neuron’s response to acoustic pulse trains, with a
synchronizing neuron having a shorter latency to the onset of its response (minimum latency)
than a non-synchronizing neuron. We measured the minimum latency of acoustic pulse train
responses (see Methods), and found a statistically significant difference between synchronized
and non-synchronized neurons, within both our simulated and real neuronal populations
(Fig. 6c,d). In the simulated neuronal population, synchronized neurons had a mean minimum
latency of 10.8 ms, while non-synchronized neurons had a mean minimum latency of 16.6 ms
(Wilcoxon rank sum test, P< 1.4 x 10-89). A similar difference occurred in the real neuronal
population; synchronized neurons had a mean minimum latency of 18.1 ms, while non-
synchronized neurons had a mean minimum latency of 51.1 ms (Wilcoxon rank sum test,
P< 4.6 x 10-9). Like synchronized neurons, mixed response neurons are also capable of enve-
lope locking, with only a single acoustic pulse required to evoke a response. Based on this simi-
larity, we reasoned that the minimum latency should be similar between synchronized and
mixed response. We observed that mixed neurons had a mean minimum latency (simulated
neurons: 8.0 ms, real neurons: 16.2 ms) not significantly different from synchronized neurons
(Wilcoxon rank sum test, P = 0.053 (simulated), P = 0.30 (real)) and significantly different
from non-synchronized neurons (Wilcoxon rank sum test, P<3.1x10-75 (simulated),
P<1.1x10-5 (real)).

Using a similar reasoning, we hypothesized that the temporal dynamics of pure- tone re-
sponses should also differ between synchronized and non-synchronized neurons. Excitation
concentrated at the onset of the synaptic input in synchronized neurons should evoke an onset
response, while net excitation spread out over a longer time period in non-synchronized neu-
rons should produce a more sustained response. To examine this we calculated the onset/sus-
tained ratio to pure tones in our population of simulated and real neurons (see Methods),
where a value of 1 indicated a pure onset response and a value of 0.25 indicated a sustained re-
sponse. We observed a statistically significant difference between synchronized and non-
synchronized responses in both simulated and real neurons (Fig. 6e,f). In the simulated
neuronal population, synchronized neurons had a mean onset/sustained ratio of 0.69, while
non-synchronized neurons had a mean onset/sustained ratio of 0.18 (Wilcoxon rank sum test,
P< 6.1 x 10-124). A similar difference occurred in the real neuronal population; synchronized
neurons had a mean onset/sustained ratio of 0.60, while non-synchronized neurons had a mean
onset/sustained ratio of 0.25 (Wilcoxon rank sum test, P< 2.3 x 10-9). Thus, in both our real
and simulated neuronal populations, synchronized neurons tended to have onset responses to
pure tones, while non-synchronized neurons typically had sustained responses. This difference
was not due to a slightly longer latency response in non-synchronizing neurons, as we also ob-
served a statistically significant difference between synchronized and non-synchronized neu-
rons when the time window used to calculate the onset discharge rate was lengthened to 100 ms
(simulated neurons: P<1.61 x 10-115, real neurons: P<2.3x10-5, Wilcoxon rank sum test, see
Methods).

These data suggest that the temporal dynamics of a pure tone response (onset or sustained)
can be used to predict whether a neuron has a synchronized or non-synchronized response to
an acoustic pulse train. However, some neurons can change between an onset and a sustained
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response when a sound’s acoustic parameters are altered; a sustained response is generally
evoked by a preferred stimulus (best frequency and sound level) while an onset response can be
generated by non-preferred stimuli [27]. Thus a neuron that has a non-synchronized response
at its preferred sound level could theoretically switch to generate a synchronized response,
when the sound level is increased above its preferred level. This can be observed in an example
real neuron (see S4 Fig). When the sound level of a pure tone (at the neuron’s best frequency)
was varied, this neuron responded with a sustained response at 10 dB SPL, and with an onset
response at 70 dB SPL, causing a shift in the onset/sustained ratio from 0.4 to 0.8 respectively
(S4 Fig, a-b). In response to acoustic pulse trains, this same neuron produced a non-

Fig 6. Temporal dynamics of synchronized and non-synchronized neurons. a. Net excitation (excitatory-inhibitory conductance) for a single acoustic
pulse in a simulated synchronized neuron. I-E delay = 5 ms, E strength = 3 nS, I/E ratio = 1.5. b. Net excitation (excitatory-inhibitory conductance) for a single
acoustic pulse in a simulated non-synchronized neuron. I-E delay = 0 ms, E strength = 0.6 nS, I/E ratio = 0.9. c.Minimum latency distribution for acoustic
pulse train responses in simulated neurons. Mean: sync = 10.8 ms, nonsync = 16.6 ms, Wilcoxon rank sum test: P< 1.4 x 10-89. d.Minimum latency
distribution for acoustic pulse train responses in real neurons. Mean: sync = 18.1 ms, nonsync = 51.1 ms, Wilcoxon rank sum test: P<4.6 x 10-9. e.Onset/
sustained ratio distribution for pure tone responses in simulated neurons. Mean: sync = 0.69, nonsync = 0.18, Wilcoxon rank sum test: P< 6.1 x 10-124. f.
Onset/sustained ratio distribution for pure tone responses in real neurons. Mean: sync = 0.60, nonsync = 0.25, Wilcoxon rank sum test: P<2.3 x 10-9.

doi:10.1371/journal.pcbi.1004197.g006
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synchronized response at 10 dB SPL, and was able to synchronize to acoustic pulse trains with
IPIs above 20 ms when the sound level was elevated to 70 dB SPL (S4 Fig, c-d). The ability to
switch between different neural coding regimes was observed in approximately 44% of neurons
(8/18) tested with multiple acoustic pulse trains differing in sound level, frequency, or pulse
width.

According to our computational model (Fig. 3), when either a synchronized neuron’s inhib-
itory input was reduced or a non-synchronized neuron’s excitatory input was increased, the
neural coding regime changed to a mixed response (i.e. non-synchronized for short IPIs and
synchronized for long IPIs). This implies that mixed response neurons had a larger net excita-
tion than either synchronized or non-synchronized neurons, which we reasoned should mani-
fest as a larger pure tone evoked response. We observed that for the simulated neuronal
population, mixed neurons had a significantly higher discharge rate to pure tones than either
non-synchronized and synchronized neurons (Fig. 7a, mixed = 29.7 spk/s, nonsync = 13.9 spk/
s, sync = 3.3 spk/s; Wilcoxon rank sum test, P< 1.2 x 10-76, Bonferroni corrected). We also ob-
served a significant difference between non-synchronized and synchronized neurons (Wil-
coxon rank sum test, P< 6.9 x 10-96, Bonferroni corrected). We found a similar effect in our
real neuronal population- mixed neurons had a significantly higher discharge rate to pure
tones than either synchronized or non-synchronized neurons (Fig. 7b, mixed = 51.3 spk/s,
nonsync = 22.5 spk/s, sync = 18.3 spk/s; Wilcoxon rank sum test, P< 0.003, Bonferroni cor-
rected). While non-synchronized neurons had a slightly higher pure tone evoked response to
pure tones than synchronized neurons, this difference was not statistically significant (Wil-
coxon rank sum test, P = 0.58, uncorrected). Compared with real neurons, simulated synchro-
nized neurons generally had lower firing rates. One potential reason for this is a higher
percentage of simulated neurons receiving very strong inhibition than in our real neuronal
population. However, we still observed both onset and sustained pure tone responses in simu-
lated neurons, representative of typical real synchronizing neurons. Strong delayed inhibition
(e.g. an I/E ratios of 2) typically generated onset responses with delayed suppression, while
more moderate delayed inhibition (e.g. an I/E ratio of 1.4) typically generated onset responses
with sustained activity (S5 Fig).

Fig 7. Discharge rates acrossmixed, synchronized, and non-synchronized neurons.Mean discharge rates for simulated (left) and real (right) neuronal
populations, grouped according to their neural coding regime: synchronized (red), non-synchronized (blue), and mixed (green). Error bars indicate SEM.
Wilcoxon rank sum test: * P<0.003 Bonferonni corrected, ** P<1.2x10-76 Bonferonni corrected, NS = not significant (P>0.05 uncorrected). a. Pure tone
responses of simulated neurons. b. Pure tone responses of real neurons.

doi:10.1371/journal.pcbi.1004197.g007
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We also hypothesized that the strength of a neuron’s inhibitory input would impact its tem-
poral fidelity. Delayed inhibition suppresses random spiking that can occur between acoustic
pulses; the resulting stimulus-locked response has a higher vector strength, thus providing a
better temporal representation of the acoustic pulse train. As synchronized neurons have stron-
ger delayed inhibition than mixed response neurons, synchronized neurons should therefore
have higher vector strengths. However, this comes at a cost, as delayed inhibition prevents the
response to a second acoustic pulse during the brief period that the neuron is suppressed. Thus
mixed response neurons (which have less inhibition) should be able to stimulus synchronize at
shorter IPIs than synchronized neurons. As predicted, we observed that for our simulated neu-
ronal population, synchronized neurons had higher maximum vector strengths than mixed re-
sponse neurons (Fig. 8a, sync = 0.93, mixed = 0.79; Wilcoxon rank sum test, P< 3.3 x 10-52, see
Methods), while mixed response neurons had lower stimulus synchronization limits (Fig. 8b,
sync = 10.2 ms, mixed = 7.7 ms; Wilcoxon rank sum test, P< 1.3 x 10-43). We observed a simi-
lar trend for our real neuron population- synchronized neurons had higher maximum vector
strengths than mixed response neurons (Fig. 8c, sync = 0.68, mixed = 0.60; Wilcoxon rank sum

Fig 8. Temporal fidelity of synchronized andmixed neurons.Only simulated neurons with an excitatory input strength between 3–6 nS were used in this
analysis, such that synchronized and mixed neurons had a similar distribution of excitatory levels. a.Max vector strength distribution for acoustic pulse train
responses in simulated neurons. Mean: sync = 0.93, mixed = 0.79, Wilcoxon rank sum test: P< 3.3 x 10-52. b. IPI synchronization limit distribution for
acoustic pulse train responses in simulated neurons. Mean: sync = 10.2 ms, mixed = 7.7 ms, Wilcoxon rank sum test: P< 1.3 x 10-43. c.Max vector strength
distribution for acoustic pulse train responses in real neurons. Mean: sync = 0.68, mixed = 0.60, Wilcoxon rank sum test: P = 0.16. d. IPI synchronization limit
distribution for acoustic pulse train responses in real neurons. Mean: sync = 25.7 ms, mixed = 13.4 ms, Wilcoxon rank sum test: P< 0.02.

doi:10.1371/journal.pcbi.1004197.g008
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test, P = 0.16), while mixed response neurons had lower stimulus synchronization limits
(Fig. 8d, sync = 25.7 ms, mixed = 13.4 ms; Wilcoxon rank sum test, P< 0.02). Although we
only observed a statistically significant difference between synchronized and mixed response
neurons for the stimulus synchronization limit and not maximum vector strength, this may be
due to the limited number of mixed response neurons that we were able to record from
(n = 14). These results suggest that blocking inhibition (e.g. by adding a GABA-A antagonist
such as Gabazine [28]), effectively decreasing the I/E ratio, should decrease a neuron’s vector
strength while increasing its stimulus synchronization limit. However, the relationship between
inhibition and temporal fidelity is more complex. While for simulated neurons with the same
excitatory input strength, the stimulus synchronization limit of synchronized neurons de-
creased as the I/E ratio increased (P<0.001, Spearman correlation coefficient), we did not ob-
serve a statistically significant trend between the stimulus synchronization limit and I/E ratio
in mixed response neurons (P>0.05, Spearman correlation coefficient).

In our computational model, the time-varying conductance used to simulate the neuron’s
synaptic input was simplified to only approximate the AMPA and GABA-A currents evoked
by the acoustic pulse train, with a time-constant of 5 ms [24] (see Methods). The synchroniza-
tion limit of simulated neurons was also sensitive to this time constant; increasing this time
constant (S6 Fig, a-d) or adding an additional NMDA-based conductance (S6 Fig (e-f) [29], see
Methods) shifted the synchronization limit of simulated neurons to longer IPIs (mean syn-
chronization limit: sync = 15.9 ms, mixed = 15.3 ms).

Impact of spontaneous rate on computational model
Our computational model operated with a fixed spontaneous rate (~4 spk/s), close to the medi-
an spontaneous rate encountered in our real neuronal population (3.8 spk/s). To generate a
spontaneous rate, we added Gaussian noise to the excitatory and inhibitory conductances of
the neuron. If the amplitude of this Gaussian noise was increased, the spontaneous rate in-
creased monotonically (Fig. 9a). We next examined how sensitive our computational model
was to changes in spontaneous rate. We examined spontaneous rates covering the entire range
observed in our real neuronal population (0–40 spk/s) and found that the model parameters
for generating synchronized and non-synchronized neurons were similar, albeit with a slight
shift in the threshold I/E ratio for observing synchronized responses (Fig. 9b,c). We next exam-
ined how robust each neuronal representation (sync, non-sync, mixed) was across varying
spontaneous rates (0–40 spk/s), and observed that a large fraction of synchronized (67%) and
non-synchronized (52%) neurons did not change their neural coding regime across the entire
range of spontaneous rates tested (Fig. 10, S7 Fig). In contrast to this, only 15% of mixed re-
sponse neurons showed a similar invariance (Fig. 10).

The addition of internal neuronal noise (see Methods), which generated the neuron’s spon-
taneous rate, was critical for our computational model. Removing this noise from our model al-
most completely eliminated non-synchronized responses, although mixed and synchronized
responses were still preserved (S8 Fig). Furthermore, the non-synchronized responses generat-
ed in the absence of added noise had the unusual behavior of stimulus synchronizing at short
IPIs, which was not a property of non-synchronized responses in our real and simulated neuro-
nal populations (S8 Fig). Increasing the temporal jitter of synaptic inputs (S9 Fig) generated
non-synchronized responses more typical of real neurons, while maintaining synchronized re-
sponses. While our model’s ability to generate non-synchronized responses required a source
of internal noise (or sufficient temporal jitter of synaptic inputs), other methods of generating
internal noise also produced similar results, including injecting noise as a current into the
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Fig 9. Impact of spontaneous rate on computational model. a. Relationship between spontaneous rate of simulated neuron and the amplitude of the
Gaussian noise added to the excitatory and inhibitory conductances. The arrow indicates the amplitude of noise used for the simulated neurons in analyses
conducted in Figs. 2–8. The gray dashed lines indicate spontaneous rates of 0 spk/s (bottom) and 40 spk/s (top). b-c. Classification of neuron-type [non-sync (o),
sync (x), mixed (+), atypical (square)] for two different spontaneous rates: a low spontaneous rate (b) of 0 spk/s (noise input of 3x10-8) and a high spontaneous
rate (c) of ~40 spk/s (noise input of 6x10-8). Responses outside the allowable range (pure tone response between 1–50 spk/s) are indicated in cyan.

doi:10.1371/journal.pcbi.1004197.g009
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integrate-and-fire model to simulate background synaptic activity [30] (S10 Fig) and adding
Gaussian noise to the membrane potential spiking threshold [31] (S11 Fig).

Discussion
Temporal information within an acoustic signal can be represented in auditory cortex by a tem-
poral representation of envelope-locked responses and/or a rate representation where discharge
rate varies with interpulse interval [32]. Here we propose that the timing and magnitude of in-
hibition relative to excitation determines whether a neuron uses a temporal and/or rate repre-
sentation. Using a computational model of an auditory cortical neuron, we found that
synchronized responses were generated when strong inhibition lagged excitation. This created
a stimulus-locked response at long interpulse intervals (IPIs), but an onset response followed
by suppression at short IPIs. Conversely, non-synchronized responses were generated when ex-
citation and inhibition were concurrent and balanced, which resulted in weak net excitation.
This produced an input that was too weak to generate a response to a single acoustic pulse, but
for sufficiently short IPIs (such that two or more pulses occurred within the neuron’s temporal
integration window), the net excitation was sufficient to evoke a response. As the IPI duration
was shortened further, more acoustic pulses occurred within the neuron’s temporal integration
window and evoked a higher discharge rate, in turn creating a monotonic relationship between
discharge rate and decreasing IPI. Thus non-synchronized neurons act as “integrators”, while
the envelope-locked responses of synchronized neurons behave as “differentiators”. It is impor-
tant to note that although non-synchronized neurons encode temporal rates in the range of
pitch perception [33–35], they are insensitive to periodicity, and thus do not encode pitch sa-
lience [18] and may instead be generating a sensation more akin to roughness perception [36].

The parameters of our computational model were based on previously reported intracellular
data from rodent auditory cortex [24], and consistent with intracellular data reported by other
laboratories [37–41]. Based on the relationship between excitation and inhibition used to gen-
erate temporal and rate representations in our computational model, we were able to make sev-
eral testable predictions including differences in the temporal fidelity, discharge rates and
temporal dynamics of evoked responses, which were subsequently confirmed in our real neuro-
nal population. One important observation supporting our model was that changes in the

Fig 10. Invariance of response type across varying spontaneous rates. Response type invariance across varying spontaneous rates (between
0–40 spk/s). Model parameters yielding one response type across all spontaneous rates tested are indicated [non-sync (o), sync (x), mixed (+)]. Model
parameters where neurons changed between response types (e.g. sync! non-sync) are shown in cyan.

doi:10.1371/journal.pcbi.1004197.g010
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timing and strength of inhibition, occurring when sound level or frequency were altered [40],
could shift a real neuron’s response between synchronized and non-synchronized (or vice-
versa). While this indicates that a neuron’s neural code is not fixed, it is important to note that
other potential mechanisms, such as synaptic facilitation and depression [42–44], recurrent
connections [45–46], lateral connections [30,47], dendritic computation [48], or other non-
linear neuronal properties [49] could also potentially contribute to the generation of synchro-
nized and non-synchronized responses, and are not directly ruled out by our model. Using
synaptic depression and facilitation, Rabang and Bartlett [50] have demonstrated an alternative
method for generating temporal and rate representations; large inputs with synaptic depression
create synchronized responses while weak inputs with mixed plasticity (synaptic depression of
AMPA receptors and synaptic facilitation of NMDA receptors) generate mixed and non-
synchronized responses. While synaptic facilitation and depression likely play a central role in
temporal processing, we have demonstrated in our computational model that in the absence of
synaptic facilitation and depression, feedforward inhibition is sufficient to generate many of
the properties of temporal and rate representations observed in auditory cortex.

While non-synchronized responses have been reported in several different species (e.g.
monkey [14,17–18], cat [19], and rat [51]), many previous studies have only reported stimulus-
synchronized responses in auditory cortex. Our model provides several suggestions why this
may be the case. First, many previous studies have used anesthetized animals to investigate
temporal processing in auditory cortex. Because non-synchronized responses are generated by
weak net-excitation, usually by concurrent excitation and inhibition, any anesthesia related de-
crease in excitation or increase in inhibition would further decrease the neuron’s net excitation,
potentially silencing non-synchronized responses [52–54]. Because synchronized neurons have
delayed inhibition, they would be less affected by anesthesia, as a large variety of I/E ratios and
E strengths will still generate a synchronized response (Fig. 3). The second issue that may re-
duce the number of non-synchronized responses observed is related to stimulus optimization.
For a given neuron, an optimal stimulus can produce a sustained response, while a non-
optimal stimulus will often only produce an onset response [27], the latter likely resulting from
delayed inhibition. As delayed inhibition will most likely generate a synchronized response,
rather than non-synchronized, there may be a large bias towards observing synchronized re-
sponse when the non-optimal sound level or frequency is used. The third issue is the choice of
temporally modulated acoustic stimuli used by the experimenter. For example, when using si-
nusoidal amplitude modulated tones [26,55–56] the pulse duration changes with modulation
frequency, in contrast to acoustic pulse trains that have fixed pulse durations. While non-
synchronized neurons do not respond to single pulses at long IPIs for an acoustic pulse train,
this would likely change when the pulse duration is sufficiently lengthened, providing enough
excitatory drive for the neuron to spike and resulting in synchronization at low
modulation frequencies.

Finally, it is important to acknowledge several caveats with our computational model. First,
our study directly compares single units from awake marmosets with simulated neurons gener-
ated by a neuronal model that is based on intracellular recordings from ketamine-anesthetized
rats [24]. Because ketamine is an NMDA antagonist, our model is based primarily on AMPA
and GABA-A receptors. Using only synaptic inputs with a short time-constant (5 ms), approxi-
mating AMPA and GABA-A receptors, our model was able to simulate the major types of neu-
ral representations (synchronized, non-synchronized, and mixed), as well as two atypical types
(inhibitory and bandpassed). We observed that adding NMDA receptors to our model,(see S6
Fig, e-f) shifted the synchronization boundary to longer IPIs, and closer to the synchronization
limit observed in real synchronizing neurons. It’s important to point out that our model was
not able to capture the complete diversity of responses observed in auditory cortex. Most
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notably, we did not observe unsynchronized responses in the flutter range, which have been
previously reported in auditory cortex, albeit more commonly in the rostral and rostrotem-
poral fields [15–16]. These responses are similar to non-synchronized responses described
here, except that the encoding range of IPIs is between 20–125 ms (perceptual range of flutter),
rather than 3–25 ms (perceptual range of fusion), and that the relationship between IPI and
discharge rate can be either positive or negative monotonic. Given that these responses are
more common outside of primary auditory cortex, and have a longer latency response [15], a
two-stage model may be required to generate this type of neural representation. Next, our
model was only accurate in representing the neural responses observed in auditory cortex to
acoustic pulse trains (Gaussian windowed tones), which have a fixed bandwidth over the com-
plete range of IPIs tested. Other acoustic stimuli, such as sinusoidal amplitude modulated
(sAM) tones, that change their spectral bandwidth and pulse duration with modulation fre-
quency, cannot be represented accurately by our model, however the addition of new parame-
ters that account for the spectrum of the acoustic stimulus [47] and/or the adaptation of
synaptic inputs [42] would likely provide further improvements to our description of temporal
processing in auditory cortical neurons.

In spite of these caveats, our model provides a parsimonious explanation for the neural cod-
ing dichotomy of synchronized and non-synchronized responses observed in auditory cortex.
One key implication of these results is that if excitation and inhibition can be independently
manipulated, which is possible using molecular genetic techniques such as optogenetics [57], a
neuron’s neural representation can theoretically be switched between synchronized and non-
synchronized. In a behaving animal, this provides a powerful paradigm to directly test the audi-
tory percepts generated by temporal and rate-based neural representations.

Methods

Ethics statement
The electrophysiology data in this report comprised of previous published datasets [15,18,26]
collected at Johns Hopkins University (Laboratory of Xiaoqin Wang). All experimental proce-
dures were approved by the Johns Hopkins University Animal Use and Care Committee and
followed US National Institutes of Health guidelines.

Computational model
An integrate-and-fire computational neuronal model was simulated in MATLAB using the fol-
lowing equation, using parameters obtained fromWehr and Zador [24]:

Vtþ1 ¼ � dt
C
½get ðVt � EeÞ þ git ðVt � EiÞ þ grestðVt � ErestÞ� þ Vt

with C = 0.25 nF and grest = 25 nS.
Each acoustic pulse was simulated as the summation of 10 excitatory and 10 inhibitory syn-

aptic inputs [24], each temporally jittered (Gaussian distribution, σ = 1 ms). Each synaptic
input was modeled as a time-varying conductance fit to an alpha function:

gðtÞ ¼ Ate�at

with a time constant 5 ms and an amplitude determined by the excitatory input parameter of
the model (ranging from 0.3 to 6 nS). A 10 ms delay was added to the synaptic input to simu-
late the delay between peripheral auditory system and auditory cortex. The reversal potential
for the excitatory and inhibitory inputs were 0 mV and -85 mV respectively. A timestep of
0.1 ms was used for the simulation.
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Our model consisted of three parameters: 1) I-E delay- the temporal delay between inhibito-
ry and excitatory inputs, 2) I/E ratio- the ratio between the magnitude of inhibitory and excit-
atory inputs, and 3) Excitatory input- the magnitude of the excitatory input. The first two
parameters (I-E delay and I/E ratio) spanned the entire range of values measured intracellular-
ly, previously reported by Wehr and Zador [24] [I-E delay: -2 to 7 ms, I/E ratio: 0 to 2]. Physio-
logically realistic values for excitation magnitude (3rd parameter) [spanning values of 0.3 nS to
6 nS] were determined by calculating the discharge rate of simulated neurons to a pure tone
stimulus. For a simulated neuron to be included in our analysis, we required an evoked pure
tone response (greater than 1 spk/s) without having a response greater than 50 spk/s (to avoid
physiologically uncommon or unrealistic levels of excitation). The only change to our model if
extending this boundary to higher discharge rates would be the inclusion of more synchronized
and mixed response neurons, with even higher evoked discharge rates.

Gaussian noise was added to the model using three methods: 1) noise added to the time-
varying excitatory and inhibitory conductances to simulate random channel fluctuations, 2)
noise added to the current to simulated background synaptic activity contributing to the spon-
taneous rate, or 3) noise added to the membrane potential based spiking threshold.

NMDA channels were added to the model only for S6 Fig (e-f.) The time constants used for
the alpha function governing the time varying conductance for the NMDA channel was 63 ms
(fast component) and 200 ms (slow component), with a peak amplitude ratio of 0.88:0.12 (fast:
slow). The ratio of the peak amplitude between the AMPA channel (time constant of 5 ms) and
NMDA channel was 1:0.3 (AMPA:NMDA) [29].

Pure tone responses. Pure tone stimuli were generated in the model by convolving a step
function (duration of tone) with a single acoustic pulse. Pure tones were 200 ms in duration.

Generation of spontaneous rate. To generate a spontaneous rate, Gaussian noise was
added to the excitatory and inhibitory conductances (μ = 0). In all analyses, unless otherwise
noted, σ = 4x10-8. The range of σ used in all experiments was between 3x10-8 and 6x10-8

(see Fig. 9a). As an alternative method of generating a spontaneous rate, Gaussian noise (μ = 0,
σ = 1 mV) was added as an injected current (S10 Fig) or Gaussian noise (μ = 0, σ = 3 mV) was
added to the membrane potential spiking threshold, normally set at -45 mV (S11 Fig).

Discharge rate calculation. The mean spontaneous rate was subtracted from all calcula-
tions of the discharge rate for simulated and model neurons. The thresholds of>1 spk/s and
<50 spk/s for simulated neurons includes the subtraction of the mean spontaneous rate.

Electrophysiological recordings and acoustic stimuli
Our electrophysiology data in this report comprised of previous published datasets [15,18,26].
For these datasets, we performed single-unit recordings with high-impedance tungsten micro-
electrodes (2–5 MO) in the auditory cortex of four awake, semi-restrained common marmosets
(Callithrix jacchus), a new-world primate species. Action potentials were sorted on-line using a
template-matching method (MSD, Alpha Omega Engineering). Experiments were conducted
in a double-walled, soundproof chamber (Industrial Acoustic Co., Inc.) with 3-inch acoustic
absorption foams covering each inner wall (Sonex, Illbruck, Inc.). Acoustic stimuli were gener-
ated digitally (MATLAB- custom software, Tucker Davis Technologies) and delivered by a
free-field speaker located 1 meter in front of the animal. This physiological data was collected
at Johns Hopkins University (Laboratory of Xiaoqin Wang).

Recordings were made primarily for the three core fields of auditory cortex (177/210
neurons)- primary auditory cortex (AI), the Rostral field (R), and the Rostrotemporal field
(RT), with the remaining neurons recorded from surrounding belt fields. For each single unit
isolated, the best frequency (BF) and sound level threshold was first measured, using pure tone
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stimuli that were 200 ms in duration. We next generated a set of acoustic pulse trains, where
each pulse was generated by windowing a brief tone at the BF by a Gaussian envelope. Inter-
pulse intervals (IPIs) ranged from 3 ms to 75 ms (3, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75 ms). Acoustic pulse train stimuli were 500 ms in duration, and all intertrial in-
tervals were at least 1 s long. Each stimulus was presented in a randomly shuffled order with
other stimuli, and repeated at least five times for all neurons, and at least ten times for about
55% of neurons (115/210). Stimulus intensity levels for acoustic pulse trains were generally
10–30 dB above BF-tone thresholds for neurons with monotonic rate-level functions and at the
preferred sound level for neurons with non-monotonic rate-level functions.

Data analysis
Classification of neural representation. We used two tests to classify neurons as synchro-

nized or non-synchronized [14]. A synchronized neuron was required to have statistically sig-
nificant vector strength at the longest IPI tested (Rayleigh statistic>13.8, P<0.001, at
IPI = 75ms). Non-synchronized neurons were required to have a discharge rate ratio greater
than one (i.e. the discharge rates at shorter IPIs had to be greater than at longer IPIs). If a neu-
ron passed both of these criteria, it was classified as having a mixed response. Conversely, if a
neuron did not pass either criterion, it was classified as having an “atypical” response. Thus
neurons could be classified as having a synchronized, non-synchronized, mixed, or atypical re-
sponse type, or alternatively not be included in our analysis as a result of being unresponsive
(<1 spk/s to pure tones) or having a physiologically unrealistic response (>50 spk/s to pure
tones). Synchronized neurons were not required to have a pure tone response greater than 1
spk/s.

In our real neuronal population, neurons were considered to have significant response, and
included for further analysis if they pass the criteria for synchronized, non-synchronized,
mixed, or atypical response type. Neurons not classified as synchronized, non-synchronized, or
mixed response, were only included in our analysis (as an atypical response) if they responded
to acoustic pulse trains; the criteria for this was a significant vector strength for two neighbor-
ing IPIs and/or firing rate significantly above or below (2 σ) the spontaneous rate for two
neighboring IPIs.

Vector strength was calculated using the following equation:

VS ¼ ð1=nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin 2pti

IPI

� �
Þ2 þ ðcos 2pti

IPI

� �
Þ2

s

Where VS = vector strength, n = number of spikes, ti = time of ith spikes (relative to previous
acoustic pulse), and IPI = interpulse interval

For Fig. 8, vector strength and IPI synchronization limit were calculated for all simulated
neurons with excitatory inputs between 3–6 nS. This restricted range was used so that our com-
parison between synchronized and mixed response neurons was based on a similar level
of excitation.

Rayleigh statistic was calculated using the following equation: 2n(VS)2

where n = number of spikes, and VS = vector strength
Values of the Rayleigh statistic greater than 13.8 were considered statistically significant

(P< 0.001) [25].
Discharge rate ratio. The firing rate at an IPI of 3 ms divided by the maximum firing rate

for all IPIs in the range of 35 ms and 75 ms.
Minimum latency calculation. The minimum latency was the first 2 ms time bin where

the discharge rate was greater than 3 σ above the spontaneous rate and at least 2 spikes had
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occurred [26]. The two successive time bins (2–4 ms, 4–6 ms) also were required to have dis-
charge rates greater than 3 σ above the spontaneous rate. All evoked response to acoustic pulse
trains with discharge rates greater than 2 σ above the spontaneous rate were pooled together
and included in this calculation.

Onset/sustained ratio. this ratio was calculated as follows:

Onset=sustained ratio ¼ S½0�50 ms� = S½0�200 ms�;

where S[t1-t2] is the number of spikes in the time window of t1 to t2 (relative to the onset of the
pure tone). A value of 1 indicated an onset response (all spikes occurred within the first 50 ms),
while a value of 0.25 indicated a sustained response.

Supporting Information
S1 Fig. Examples of mixed responses from real and simulated neurons. Each plot is subdi-
vided into a raster plot (left), IPI vs discharge rate plot (top right), and IPI vs vector strength
plot (bottom right). The stimulus is played for 500 ms, which is indicated with the gray rectan-
gle in the raster plot. The dashed line in the IPI vs discharge rate plot indicates a significant
evoked response above the spontaneous rate (2 σ). Error bars indicate SEM. a.Mixed response,
real neuron. b.Mixed response, simulated neuron (I-E delay = 3 ms, E strength = 3.6 nS, I/E
ratio = 1.3).
(EPS)

S2 Fig. Examples atypical responses (bandpassed and inhibitory) from real and simulated
neurons. Each plot is subdivided into a raster plot (left), IPI vs discharge rate plot (top right),
and IPI vs vector strength plot (bottom right). The stimulus is played for 500 ms, which is indi-
cated with the gray rectangle in the raster plot. The dashed line in the IPI vs discharge rate plot
indicates a significant evoked response above the spontaneous rate (2 σ). Error bars indicate
SEM. a. Atypical response (bandpassed), real neuron. b. Atypical response (bandpassed), simu-
lated neuron (I-E delay = 0 ms, E strength = 3 nS, I/E ratio = 1.4). c. Atypical response (inhibi-
tory), real neuron. d Atypical response (inhibitory), simulated neuron (I-E delay = 0 ms, E
strength = 3 nS, I/E ratio = 5, noise input = 5x10-8, spont rate = 19 spk/s).
(EPS)

S3 Fig. Effect of discharge rate criterion on mixed responses. a. Proportion of synchronized,
non-synchronized, and mixed response neurons when the criterion for maximum discharge
rate to a pure tone response is varied between 50 and 20 spikes/sec. b-c. Classification of
neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)] across two parameters (Ex-
citatory input and I/E ratio), with a fixed I-E delay of (b) 0 ms and (c) 5 ms using a criterion of
the maximum discharge rate to a pure tone being less than 20 spk/s. d. Classification of
neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)] across all three parameters
(I-E delay, Excitatory input, and I/E ratio) using a criterion of the maximum discharge rate to a
pure tone being less than 20 spk/s. If pure tone responses were less than 1 spk/s or greater than
20 spk/s, neurons were considered to have responses outside the allowable range (cyan) and
were not included in our analysis.
(EPS)

S4 Fig. Example of a real neuron (unit m32q47.1) switching between synchronized and
non-synchronized response modes. a. Raster plot of rate-level response (pure tone at neuron’s
best frequency played at sound levels -10 to 70 dB SPL). Bolded values on y-axis indicate sound
levels used for example 1 and example 2 in b. b. Dependence of onset/sustained ratio on sound
level of pure tone. c-d. Each plot is subdivided into a raster plot (left), IPI vs discharge rate plot
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(top right), and IPI vs vector strength plot (bottom right). The stimulus is played for 500 ms,
which is indicated with the gray rectangle in the raster plot. The dashed line in the IPI vs dis-
charge rate plot indicates a significant evoked response above the spontaneous rate (2σ). Error
bars indicate SEM. c. A non-synchronized response at a sound level of 10 dB SPL (example 1).
d.A synchronized response at a sound level of 70 dB SPL (example 2).
(EPS)

S5 Fig. Pure tone responses in simulated synchronized neurons. For each simulated neuron,
the raster plot (above) and PSTH (below) are shown for a 200 ms duration pure tone played at
time 0. a. Example onset response with delayed suppression: I-E Delay = 5 ms, Excitatory
strength = 6 nS, I/E ratio = 2. b. Example onset response with sustained activity, I-E Delay =
5 ms, Excitatory strength = 2.4 nS, I/E ratio = 1.4.
(EPS)

S6 Fig. Dependence of synchronization limit on conductance time constant. Simulated syn-
chronizing neuron with I-E delay = 5 ms, excitatory strength = 3 nS, I/E ratio = 1.7. a. Raster
plot of acoustic pulse train response, 5 ms time constant used for input conductance. b. Raster
plot of acoustic pulse train response, 10 ms time constant used for input conductance. c. Raster
plot of acoustic pulse train response, 20 ms time constant used for input conductance. d. Com-
parison of vector strength across three different time constants used for input conductance. e.
Raster plot of acoustic pulse train response for a simulated neuron with both AMPA and
NMDA currents. f. Vector strength for a simulated neuron with both AMPA and
NMDA currents.
(EPS)

S7 Fig. Examples of rate and temporal representations invariant to changes to the sponta-
neous rate. Each plot is subdivided into a raster plot (left), IPI vs discharge rate plot (top
right), and IPI vs vector strength plot (bottom right). The stimulus is played for 500 ms, which
is indicated with the gray rectangle in the raster plot. The dashed line in the IPI vs discharge
rate plot indicates a significant evoked response above the spontaneous rate (2σ). Error bars in-
dicate SEM. a. Example simulated synchronized neuron, low spontaneous rate (I-E delay =
5 ms, E strength = 3 nS, I/E ratio = 2, noise input = 3x10-8, spont rate<0.1 spk/s). b. Example
simulated synchronized neuron, high spontaneous rate (I-E delay = 5 ms, E strength = 3 nS, I/E
ratio = 2, noise input = 6x10-8, spont rate = 40.1 spk/s). c. Example simulated non-synchronized
neuron, low spontaneous rate (I-E delay = 0 ms, E strength = 0.6 nS, I/E ratio = 0.3, noise
input = 3x10-8, spont rate<0.1 spk/s). d. Example simulated non-synchronized neuron, high
spontaneous rate (I-E delay = 0 ms, E strength = 0.6 nS, I/E ratio = 0.3, noise input = 6x10-8,
spont rate = 39.4 spk/s).
(EPS)

S8 Fig. Requirement of added neuronal noise for the generation of non-synchronized re-
sponses. a. Classification of neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)]
across all three parameters (I-E delay, Excitatory input, and I/E ratio) using a noise input of 0
(spont rate = 0). If pure tone responses were less than 1 spk/s or greater than 50 spk/s, neurons
were considered to have responses outside the allowable range (cyan) and were not included in
our analysis. Non-synchronized responses were rare, and had the atypical behavior of synchro-
nizing at short IPIs (see b). b. Example of an atypical non-synchronized response (vector
strength not significant at an IPI of 75 ms) that is generated when the noise input is zero (spont
rate = 0 spk/s). Although it is not a criterion for a non-synchronized response, the vector
strength is typical not significant across all IPIs. However, for this example neuron, a signifi-
cant vector strength is observed for IPIs between 10 and 15 ms. The plot is subdivided into a
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raster plot (left), IPI vs discharge rate plot (top right), and IPI vs vector strength plot (bottom
right). The stimulus is played for 500 ms, which is indicated with the gray rectangle in the ras-
ter plot. The dashed line in the IPI vs discharge rate plot indicates a significant evoked response
above the spontaneous rate (2σ). Error bars indicate SEM.
(EPS)

S9 Fig. Addition of increased temporal jitter of inputs to computational model.Other than
increased temporal jitter of synaptic inputs (uniform distribution, σ = 8.7 ms), no other sources
of noise were added to the model. a. Classification of neuron-type [non-sync (o), sync (x),
mixed (+), atypical (square)] across all three parameters (I-E delay, Excitatory input, and I/E
ratio) using the temporal jitter of inputs as a source of noise. If pure tone responses were less
than 1 spk/s or greater than 50 spk/s, neurons were considered to have responses outside the al-
lowable range (cyan) and were not included in our analysis. b. Example of a non-synchronized
response with identical parameters to the example neuron displayed in S8 Fig. The plot is sub-
divided into a raster plot (left), IPI vs discharge rate plot (top right), and IPI vs vector strength
plot (bottom right). The stimulus is played for 500 ms, which is indicated with the gray rectan-
gle in the raster plot. The dashed line in the IPI vs discharge rate plot indicates a significant
evoked response above the spontaneous rate (2σ). Error bars indicate SEM.
(EPS)

S10 Fig. Basic response types observed when Gaussian noise (μ = 0, σ = 1 mV) was added as
an input current for a source of internal neuronal noise. a. Classification of neuron-type
[non-sync (o), sync (x), mixed (+), atypical (square)] across all three parameters (I-E delay, Ex-
citatory input, and I/E ratio) using a different method of adding noise to the model. Pure tone
responses were less than 1 spk/s or greater than 50 spk/s, neurons were considered to have re-
sponses outside the allowable range (cyan) and were not included in our analysis. b. Example
simulated synchronizing neuron: I-E delay = 5 ms, E strength = 3.6 nS, I/E ratio = 2. c. Example
simulated non-synchronizing neuron: I-E delay = 0 ms, E strength = 0.3 nS, I/E ratio = 0.
(EPS)

S11 Fig. Basic response types observed when Gaussian noise (μ = 0, σ = 3 mV) was added to
themembrane spiking threshold for a source of internal neuronal noise. a. Classification of
neuron-type [non-sync (o), sync (x), mixed (+), atypical (square)] across all three parameters
(I-E delay, Excitatory input, and I/E ratio) using a different method of adding noise to the
model. Pure tone responses were less than 1 spk/s or greater than 50 spk/s, neurons were con-
sidered to have responses outside the allowable range (cyan) and were not included in our anal-
ysis. b. Example simulated synchronizing neuron: I-E delay = 5 ms, E strength = 2.4 nS, I/E
ratio = 2. c. Example simulated non-synchronizing neuron: I-E delay = 0 ms, E strength = 0.6
nS, I/E ratio = 0.5.
(EPS)
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