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ABSTRACT 

Nanoindentation provides the ideal framework to determine mechanical properties of 

bone at the tissue scale without being affected by the size, shape, and porosity of the 

bone. However, the values of tissue level mechanical properties vary significantly 

between studies. Since the differences in the bone sample, hydration state, and test 

parameters complicate direct comparisons across the various studies, these 

discrepancies in values cannot be compared directly. The objective of the current study 

is to evaluate and compare mechanical properties of the same bones using a broad 

range of testing parameters. Wild type C56BL6 mice tibiae were embedded following 

different processes and tested in dry and rehydrated conditions. Spherical and 

Berkovich indenter probes were used, and data analysis was considered within the 

elasto-plastic (Oliver-Pharr), viscoelastic and visco-elastic-plastic frameworks. The 

mean values of plane strain modulus varied significantly depending on the hydration 

state, probe geometry and analysis method. Indentations in dry bone analysed using a 

visco-elastic-plastic approach gave values of 34 GPa. After rehydrating the same 

bones and indenting them with a spherical tip and utilizing a viscoelastic analysis, the 

mean modulus value was 4 GPa, nearly an order of magnitude smaller. Results 

suggest that the hydration state, probe geometry and the limitations and assumptions 

of each analysis method influence significantly the measured mechanical properties.  

This is the first time that such a systematic study has been carried out and it has been 

concluded that the discrepancies in the mechanical properties of bone measured by 

nanoindentation found in the literature should not be attributed only to the differences 

on the bones themselves, but also to the testing and analysis protocols.  

 

KEYWORDS: Nanoindentation, Bone, Visco-elastic-plastic, Viscoelastic, Oliver-Pharr, 

Hydration, probe geometry  



 
 

NOMENCLATURE 

AC  contact area 

Ci  creep function coefficients 

ER  reduced modulus 

E’  plane strain modulus 

f  viscous extent (G∞/ G0) 

G  shear modulus 

G0  zero-time shear modulus 

G∞   equilibrium shear modulus 

GI  incompressible shear modulus 

h  indenter displacement 

he  elastic displacement 

hmax  maximum displacement 

hp  plastic displacement 

hv  viscous displacement 

H  hardness, resistance to plastic deformation 

HC  contact hardness, resistance to total deformation 

P  indentation load 

Pmax  peak load 

S  stiffness 

t  time 

tC  creep hold time 

tR  rise time 

α1, α2, α3 dimensionless geometry constant 

ƞQ  indentation viscosity 

ν  Poisson’s ratio 

τi  viscous-elastic time constant 
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1. INTRODUCTION 1 

Bone has a hierarchical structure in which the organization of its constituents at smaller 2 

length scales determines the mechanical properties of the whole bone. At the tissue 3 

level (sub-mm length scale) bone is composed of a matrix of mineralized collagen 4 

fibrils and pores (vascular and lacunar). Unlike whole bone mechanical testing, 5 

analysis of mechanical properties at the tissue scale is not affected by the size, shape, 6 

and porosity of the bone, allowing for tissue level material properties to be determined. 7 

Nanoindentation is a widely used technique to determine the mechanical properties of 8 

bone at the tissue level (Guo and Goldstein 2000; Haque et al. 2003; Lewis and Nyman 9 

2008; Oyen 2010; Rho et al. 1997; Zysset et al. 1999). In nanoindentation, a probe is 10 

brought into contact with a surface, pushed into the material, and retracted, while the 11 

load (P), displacement (h) and time (t) are recorded. Based on these P-h-t curves, 12 

multiple models exist to extract mechanical properties depending on the deformation 13 

modes of the indented material. Bone is heterogeneous, anisotropic, viscoelastic and 14 

poroelastic and hence, various analytical and numerical models have been developed 15 

and adapted to determine its tissue level mechanical properties such as elastic 16 

modulus, hardness and effective (viscoelastic) viscosity (Isaksson et al. 2010; Mencik 17 

et al. 2009; Olesiak et al. 2009; Oyen 2006a). Indentations on bone with sharp probes 18 

result in plastic deformation; therefore, a viscoelastic-plastic (VEP) approach has been 19 

used for Berkovich indentations (Olesiak et al. 2009; Oyen and Cook 2003). In 20 

contrast, large spherical indenters may be used to maintain small indentation strains 21 

thus preventing yielding and plastic deformation, allowing for viscoelastic (VE) analysis 22 

(Oyen 2005, 2006a, 2007). The method that is built into most commercial indentation 23 

systems is the Oliver – Pharr (OP) method (1992, 2004) to extract elastic-plastic 24 

properties, neglecting any contribution from time-dependent deformation. 25 
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All three approaches, elasto-plasic, viscoelastic, and visco-elastic-plastic, have been 26 

used to determine bone’s mechanical response, but the values of the plane strain 27 

modulus obtained from different studies vary significantly. In indentation of dry bone, 28 

where OP analysis was used, Chang et al. (2011) measured a modulus of 30.8 ± 2.0 29 

GPa using a Berkovich tip, while Bushby et al. (2004) found a modulus of 18.1 ± 2.4 30 

GPa with a spherical tip. The viscoelastic approach in wet bone, using spherical 31 

indentation, gave moduli as small as 2 GPa (Oyen et al. 2012).  Olesiak et al. (2009) 32 

obtained values of 24.78 ± 3.07 GPa in dry bone, utilizing sharp indentation and using 33 

the VEP model. Since the differences in the sample preparation, hydration state, and 34 

test parameters complicate direct comparisons across the various studies, these 35 

discrepancies in values could not be compared directly. 36 

The goal of the current study is to evaluate and compare mechanical properties of the 37 

same bones using a wide range of testing and analysis methods. The bone is indented 38 

both wet and dry, and after different embedding processes. Both spherical and 39 

Berkovich indenter probes are utilized, and data analysis is considered within the OP, 40 

VE and VEP frameworks. Thus, for the first time, direct comparisons of mechanical 41 

properties of bone measured by nanoindentation after following different testing and 42 

analysis protocols are available for analysis. 43 

2. MATERIALS AND METHODS 44 

Figure 1 shows an outline of the steps followed in the sample preparation and 45 

nanoindentation test. 46 

2.1. Specimen Preparation 47 

Tibiae from four 9 week-old female C57BL/6 mice were harvested and cleaned of 48 

surrounding soft tissue. One tibia from each mouse was cut transversally at the mid-49 

diaphysis using a low speed diamond saw (Isomet, Buehler GmbH, Germany). Half of 50 

one tibia from each mouse (four halves) were fixed in 70% ethanol for 48 hours, 51 
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dehydrated in a series of increasing concentrations of ethanol (80, 90 and 100% for 24, 52 

24 and 72 h respectively), and changed to a xylene solution (48 h).The bones were 53 

then infiltrated in pure methyl methacrylate (MMA +α-azo-iso-butyronitrile, VRW, UK) 54 

under vacuum for 24 hours. The MMA was changed for fresh MMA and infiltrated for 55 

other 24 hours. The four half tibiae were kept in a vacuum chamber and they were let 56 

to polymerize at room temperature for two weeks. 57 

The rest of the tibiae (one whole and one half from each mouse) were kept frozen at -58 

20°C in phosphate buffered saline (PBS) gauze. Before embedding the tibiae were 59 

thawed and dried in air for an hour, embedded in low viscosity epoxy resin (EPOTHIN; 60 

Buehler, Lake Bluff, IL, USA), and allowed to cure at room temperature for 24 hours. 61 

No vacuum chamber was used to minimize the infiltration of the epoxy in the bone. The 62 

whole tibiae were also sectioned transversally at the mid-diaphysis in order to have 12 63 

specimens (3 from each mouse) embedded in epoxy resin. 64 

All cross-sections were polished using increasing grades of carbide papers (from P600 65 

to P1200) and finally with diamond slurry of 3, 1, 0.25 and 0.05 µm particle size. The 66 

samples were cleaned ultrasonically with distilled water between each polishing step. 67 

2.2. Nanoindentation 68 

Nanoindentation studies were conducted on the tibia mid-diaphyseal cross-sections 69 

using the TI700 UBI (Hysitron, Minneapolis, MN, USA). A maximum load of 8 mN was 70 

applied longitudinally at a constant loading rate of 0.8 mNs-1 following a holding time of 71 

30 s (Figure 2). Nine indents were made in each specimen for each condition with a 72 

minimum spacing of 10 µm between indents. 73 

The indentation tests were first performed on the dry PMMA-infiltrated and epoxy-74 

embedded samples using a Berkovich diamond tip. Then the epoxy-embedded 75 

specimens were rehydrated in distilled water overnight and a second set of 76 

indentations with the same load protocol was carried out with the rehydrated samples. 77 
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Testing time for each sample was limited to 45 min to prevent sample drying. The 78 

same dry-wet procedure was followed for testing with a 55 µm radius spherical tip. This 79 

sphere size was chosen so that the contact areas were relatively small, for comparison 80 

with the Berkovich results, but sufficiently large to avoid plasticity during indentation.  81 

3. DATA ANALYSIS 82 

3.1. Models 83 

After completing the indentation tests following the trapezoidal loading (Figure 2), P-h-t 84 

(Figure 3) plots were exported. Three different models (OP, VE and VEP) were used to 85 

fit the data and to extract mechanical properties of the material. 86 

 87 

3.1.1. Oliver-Pharr (OP)  88 

In the commonly used Oliver-Pharr approach (Oliver and Pharr 1992, 2004) the elastic 89 

modulus is calculated from the unloading curve based on the assumption that the 90 

unloading response is purely elastic. Due to the time-dependent behavior of bone, the 91 

unloading is viscoelastic; nevertheless, an attempt is made to limit the contribution of 92 

viscoelasticity by introducing 30s creep hold at peak load (Briscoe et al. 1998; 93 

Chudoba and Richter 2001; Feng and Ngan 2002). 94 

In the OP method, the stiffness at peak load (S) is calculated as the slope of the 95 

unloading curve. In the current study, 80% of the unloading curve has been used to 96 

obtain the slope. The contact area (Ac) is the projected area obtained via a calibration 97 

function. These two parameters are used to compute the reduced modulus: 98 

𝐸𝑅 =
𝑆√𝜋

2√𝐴𝑐
 [1] 
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The reduced modulus is a combination of indenter and sample material properties. 99 

However, since bone is far less stiff than the diamond tip with (E < 30GPa) the reduced 100 

modulus can be considered as the plane strain modulus (ER ~ E’) (Olesiak et al. 2009). 101 

The contact hardness or the mean supported contact stress is the peak load divided by 102 

the contact area. 103 

𝐻𝑐 =
𝑃𝑚𝑎𝑥

𝐴𝑐
⁄  [2] 

 104 

3.1.2. Viscoelastic Analysis (VE)  105 

Negligible plastic deformation occurs with spherical indenter tips provided that the 106 

indentation strain is smaller than the yield strain, allowing for the use of viscoelastic 107 

analysis (Oyen 2005, 2006a, 2007). In this method, a linear viscoelastic response and 108 

a non-decreasing contact area are assumed. For spherical indentations, the creep 109 

period (h-t during the holding time) is fitted by a generalized standard linear solid model 110 

(Figure 3.b):  111 

ℎ
3/2

(𝑡) =
3

8√𝑅
𝑃𝑚𝑎𝑥 [𝐶0 −∑𝐶𝑖exp⁡(− 𝑡 𝜏𝑖⁄ )𝑅𝐶𝐹𝑖

2

𝑖

] [3] 

Where the radius of the sphere, R, and the peak load, Pmax, are test parameters; and 112 

C0, Ci and τi are the fitting parameters. C0 and Ci represent the creep coefficients and 113 

τi(ƞi/Ei) are material time constants. In this study, two Kelvin-Voigt bodies and therefore 114 

two time constants (τ1, τ2) have been used to represent bone creep. The dimensionless 115 

ramp correction factor, RCFi, accounts for the fact that the loading is not instantaneous 116 

(rising time, tR > 0) and it is given by (Oyen 2007): 117 

𝑅𝐶𝐹𝑖 =
𝜏𝑖
𝑡𝑅
[exp(𝑡𝑅 𝜏𝑖⁄ ) − 1] [4] 
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From the obtained creep coefficients, the instantaneous G0 and long-time G∞ shear 118 

modulus for the incompressible ( = 0.5) case can be computed as: 119 

𝐺0 =
1

2(𝐶0 − ∑𝐶𝑖)
 [5] 

𝐺∞ =
1

2𝐶0
 [6] 

The ratio of these two extremes f = G∞ /G0 gives an idea of the extent of the time-120 

dependent deformation, where f = 1 signifies a perfectly elastic material and f = 0 a 121 

perfectly viscous material. 122 

Since in bone  = 0.3, the calculated incompressible ( = 0.5) zero-time shear modulus 123 

GI must be translated to Gυ via (Oyen 2005): 124 

𝐺𝜈 = 2𝐺𝐼(1 − 𝜈) [7] 

The plane strain modulus is obtained from the incompressible instantaneous shear 125 

modulus (Bembey 2006): 126 

𝐸′ =
2𝐺

1 − 𝜈
 [8] 

3.1.3. Viscoelastic-Plastic Analysis (VEP) 127 

Sharp indentor tips, such as a Berkovich pyramid, result in plastic deformations and a 128 

viscoelastic-plastic analysis is appropriate (Olesiak et al. 2009). This method combines 129 

viscous, elastic and plastic quadratic elements in series (Figure 4.a) to model the full 130 

response of time-dependent materials (Oyen and Cook 2003). Using a trapezoidal 131 

loading function shown in Figure 1, the full VEP displacement-time (h-t) response is 132 

defined by equations 9-11 (Olesiak et al. 2009): the loading has a viscous-elastic-133 

plastic behaviour (hLOAD), the holding period is defined by a viscous response (hCREEP) 134 

and the unloading is viscoelastic (hUNLOAD). 135 
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 136 

The dimensionless geometric constants for a perfect Berkovich tip are α1 = 24.5, α2 = α3 137 

= 4.4 (Oyen and Cook 2003); tR, tc stand for the rising time and holding time 138 

respectively; k is the loading rate (k = Pmax/tR). Fitting the displacement time (h-t) curve 139 

to the full VEP solution allows for the direct extraction of the indentation viscosity (ηQ), 140 

plane strain modulus (E’) and hardness (H, resistance to plastic deformation). In 141 

addition, the contact hardness (Hc, resistance to all components of deformation) can be 142 

calculated for comparison purposes with the Oliver-Pharr hardness (Oyen 2006b). 143 

𝐻𝐶 =
𝑃𝑚𝑎𝑥

𝛼1(ℎ𝑣 + ℎ𝑒 + ℎ𝑝)
2 =

1

𝛼1 ((2𝑡𝑅/3)(𝛼3𝜂𝑄)
−1/2

+ (𝛼2𝐸′)
−1/2 + (𝛼1𝐻)

−1/2)
2 

[12] 

 144 

In the VEP model a linear creep rate is assumed for the entire hold period. However, 145 

this is only an approximation, and therefore only the steady-state creep was used to 146 

estimate the viscosity term: 147 

ℎ
𝐶𝑅𝐸𝐸𝑃

(𝑡) =
(𝑃𝑚𝑎𝑥)

1/2

(𝛼3𝜂𝑄)
1/2

(𝑡 − 𝑡1) + ℎ(𝑡1) [13] 

 148 

where  t1 is defined as t1 = tR + tc/6 to only consider the last 5/6 of the holding period 149 

and obtain a better fit of the curve. 150 

ℎ
𝐿𝑂𝐴𝐷⁡

(𝑡) = (𝑘𝑡)1/2 (
2𝑡

3(𝛼3𝜂𝑄)
1/2

+
1

(𝛼2𝐸′)
1/2

+
1

(𝛼1𝐻)
1/2

) t<tR  [9] 

ℎ
𝐶𝑅𝐸𝐸𝑃

(𝑡) =
(𝑘𝑡𝑅)

1/2

(𝛼3𝜂𝑄)
1/2

(𝑡 − 𝑡𝑅) + ℎ
𝐿𝑂𝐴𝐷

(𝑡𝑅) tR<t<tR+tC [10] 

ℎ
𝑈𝑁𝐿𝑂𝐴𝐷⁡

(𝑡) = (𝑘𝑡)1/2 (
𝑡𝑅

3/2 − (2𝑡𝑅 + 𝑡𝑐 − 𝑡)3/2

3/2(𝛼3𝜂𝑄)
1/2

+
(2𝑡𝑅 + 𝑡𝑐 − 𝑡)1/2 − 𝑡𝑅

1/2

(𝛼2𝐸′)
1/2

)

+ ℎ
𝐶𝑅𝐸𝐸𝑃

(𝑡𝑅 + 𝑡𝑐) 

t> tR+tC [11] 
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The nonlinear least-square curve-fit function in MATLAB (Mathworks, Natick, MA) was 151 

used to extract the mechanical properties from this 3-step process: i) ηQ was calculated 152 

by fitting the holding period; ii) knowing the indentation viscosity, E’ was obtained from 153 

the unloading curve; ii) finally, while these two parameters were held constant, the 154 

loading curve was used to compute H. The viscous time constant was defined as τQ = 155 

(ηQ/E’)
1/2 and represents the characteristic time scale of the material associated with 156 

the viscous-elastic-plastic response to indentation. 157 

3.2. Deformation partitioning 158 

From the OP model, the plastic (hp_OP) deformation could be approximated to the 159 

displacement at zero load at the end of the test. The elastic deformation (he_OP) could 160 

be defined as the difference between the maximum and final deformation. 161 

ℎ𝑝_𝑂𝑃 ≈ ℎ(𝑡𝑚𝑎𝑥) = ℎ𝑓𝑖𝑛𝑎𝑙 [14] 

ℎ𝑒_𝑂𝑃 = ℎ𝑚𝑎𝑥 − ℎ𝑝_𝑂𝑃 [15] 

In sharp indentations, the VEP model allows for the partitioning of the indentation 162 

response into independent elastic (he_VEP), plastic (hp_VEP) and viscous (hv_VEP) 163 

deformation components (Ferguson 2009). 164 

ℎ𝑚𝑎𝑥 = ℎ𝑒_𝑉𝐸𝑃 + ℎ𝑝_𝑉𝐸𝑃 + ℎ𝑣_𝑉𝐸𝑃 [16] 

Where each of the deformations can be defined as: 165 

ℎ𝑒_𝑉𝐸𝑃 =⁡√
𝑃𝑚𝑎𝑥

𝛼2𝐸′
 

[17] 

ℎ𝑝_𝑉𝐸𝑃 =⁡√
𝑃𝑚𝑎𝑥

𝛼1𝐻
 [18] 
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For spherical indentations with large radius, only elastic and viscous deformations are 166 

present. In the VE analysis, the displacement is defined as a function of the shear 167 

modulus. 168 

ℎ
3/2

(𝑡) =
3

16√𝑅

𝑃𝑚𝑎𝑥

𝐺
 [20] 

Hence, the displacement associated with the equilibrium modulus is the elastic 169 

displacement (he_VE), while the difference between this and the displacement 170 

associated with the instantaneous modulus represents the viscous deformation (hv_VE). 171 

ℎ𝑒_𝑉𝐸 = (
3

16√𝑅

𝑃𝑚𝑎𝑥

𝐺∞
)
2/3

 [21] 

ℎ𝑣_𝑉𝐸 = ℎ𝑒_𝑉𝐸 − (
3

16√𝑅

𝑃𝑚𝑎𝑥

𝐺0
)
2/3

 [22] 

 172 

3.3. Statististical evaluation 173 

Mean values and standard deviations of the mechanical properties of each specimen 174 

were computed. Normality tests were carried out between these means using Shapiro-175 

Wilk test. Dependent t-test was used to compare normally distributed data sets; 176 

Wilcoxon signed-rank test was used for non-parametric data. A difference was 177 

considered significant when p <.05. Statistical analysis was performed using SPSS (v. 178 

20, SPSS Inc., Chicago, IL). 179 

4. RESULTS 180 

Table 1 summarizes the mean values of the mechanical properties obtained from this 181 

study. From the VEP analysis, the plane strain modulus (E’), hardness (H),  contact 182 

ℎ𝑣_𝑉𝐸𝑃 =⁡√
𝑃𝑚𝑎𝑥

𝛼3𝜂𝑄
(
2

3
𝑡𝑅 + 𝑡𝐶) [19] 
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hardness (Hc), indentation viscosity (ηQ) and time constant (τ1) are measured, OP 183 

method gives the reduced modulus (ER, which in this case is equal to E’) and the 184 

contact hardness (Hc), while from the VE approach the plane strain modulus (E’) and 185 

the extent of viscosity (f) are calculated together with the time constants (τ1, τ2). 186 

The mean values of plane strain modulus, which is one parameter comparable across 187 

all models, vary significantly depending on the test method, as shown in Figure 5.  188 

Berkovich indentations on epoxy-embedded dry bones analyzed by VEP gave a mean 189 

plane strain modulus of 33.7 GPa; while after rehydrating the same bones and 190 

indenting them with a spherical tip and utilizing a VE analysis, the mean modulus value 191 

was nearly an order of magnitude smaller, at 4.1 GPa.  192 

4.1. Embedding medium 193 

No significant differences were found between the plane strain modulus and viscosity 194 

values of dry epoxy-embedded and PMMA-infiltrated samples across the models. 195 

However, the VEP model showed that the hardness was larger for PMMA-infiltrated 196 

samples (HPMMA = 2.57 ± 0.40 GPa) than for epoxy embedded ones (Hepoxy = 1.91 ± 197 

0.56 GPa). 198 

4.2. Hydration state 199 

Plane strain modulus was significantly greater in dry specimens than in rehydrated 200 

specimens in all the cases. The VEP model showed that the hardness and the viscosity 201 

term were also significantly higher in dry specimens (Hdry = 1.91 ± 0.56 GPa, ηQ, dry = 202 

2.53 ± 1.62 x 1015 Pa s2) than in their wet counterparts (Hwet = 0.47 ± 0.11 GPa, ηQ, wet = 203 

0.50 ± 0.28 x 1015 Pa s2). 204 

4.3. Deformation partitioning 205 

The elastic, plastic and viscous deformations and deformation fractions for each 206 

condition are summarized in Figure 6. Both in Berkovich and spherical indentations, the 207 

total deformation increases from dry to rehydrated conditions. However the deformation 208 
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partitioning depends on the method used to analyze the same data. Similar 209 

deformation trends are found in VEP and OP approaches: elastic deformation does not 210 

vary significantly when rehydrating the samples, while plastic and viscous deformations 211 

increase; unlike the viscous deformation fraction, elastic and plastic fractions vary 212 

significantly from dry to rehydrated conditions. The VE model shows the highest elastic 213 

and viscous deformations, showing a significant increase in both deformations from dry 214 

to wet conditions. In contrast, the values of elastic and viscous fractions analyzed by 215 

VE do not depend on the hydration state. 216 

5. DISCUSSION 217 

In this study, systematic investigations of the effect of a wide range of indentation 218 

testing methodological options were considered for indentation of the same bone 219 

samples. The results show that the measured mechanical properties depend on the 220 

hydration state of the samples, the probe geometry and the model used to analyze the 221 

data. As shown in Figure 7, the plane strain modulus values obtained in this study are 222 

comparable to the wide range of values found in literature. In sharp indentations, 223 

Chang et al. (2011) measured plane strain modulus of 31 GPa for B6 mice femur 224 

embedded in epoxy. Lopez-Franco et al. (2011) found modulus of 22 GPa in NTG mice 225 

femur submerged in water. Bushby et al. (2004) had modulus of 18 GPa for equine 226 

bone embedded in PMMA indented using a spherical tip. Spherical indentations on fully 227 

rehydrated equine bone gave modulus as small as 2 GPa (Oyen et al. 2012) after 228 

analyzing the data using a viscoelastic approach. Until now, these discrepancies in 229 

values were considered to be mainly the result of the differences on the bones 230 

themselves. However, this study demonstrates that different methods give different 231 

results even on the same bone. 232 

 233 

 234 
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5.1. Wet vs dry bone 235 

As shown in Fig. 5, plane strain modulus was significantly higher in dry specimens than 236 

in rehydrated specimens in all the cases. This tendency is in accordance with literature 237 

(Bushby 2004; Hoffler 2005; Bembey 2006a, 2006b). The deformation partitioning 238 

(Figure 6.a) showed that in all the cases the total deformation is bigger when 239 

rehydrating the bone. It must be noted that the wet samples considered here were not 240 

immersed in fluid while testing, and therefore the differences in values of fully 241 

rehydrated samples might be larger than the ones currently measured. All the methods 242 

trend in the same direction showing the capability of nanoindentation to capture 243 

differences in hydration states.  244 

5.2. Probe geometry 245 

One of the most important experimental selections is that of probe geometry, which has 246 

been shown to influence the indentation response. Berkovich indentors have a sharp 247 

tip and the transition from elastic to plastic behavior happens almost instantaneously, 248 

indicated by the deformation partitioning which shows a plastic deformation fraction of 249 

60-80% (Figure 6.b). In contrast, spherical tips allow extended elastic to plastic 250 

transition, which can be easily detectable by plotting P-h curves in logarithmic scale 251 

(Oyen, 2011). Figure 8 shows that in the beginning the load is proportional to the 252 

displacement instead of following the P~h3/2 elastic law. A curve parallel to the P~h line 253 

is associated with plastic behavior of the material. However, from the mechanics point 254 

of view, the response cannot move from a plastic regime to an elastic one. This means 255 

that the indenter tip detected the contact surface too early and this induced a first 256 

regime where the load and displacement were proportional. Hence, the measured 257 

contact displacement is overestimated and so is the contact area. This might cause an 258 

underestimation in the plane strain modulus value (Zhang et al. 2008). In the current 259 

study, the data was rejected if the initial roughness curve exceeded 5% of the 260 

maximum load. Nevertheless, roughness is the likely one cause of discrepancies 261 
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between the Oliver-Pharr results for bone tested in the same condition—wet or dry—262 

with the two different tips.  263 

Figure 6.b shows the viscous, plastic and elastic deformation fractions – hv/hmax, hp/hmax 264 

and he/hmax- for both probe geometries. In Berkovich indentations the viscous 265 

deformation fraction is less than 10%. Hence, even if Oliver-Pharr method does not 266 

capture time-dependent deformation, the deformation fractions for VEP and OP are 267 

similar. On the other hand, in spherical indentations the viscous deformation is about 268 

25% of the total deformation. The P-h curves in logarithmic scale (Figure 8) have 269 

shown that there was no plasticity induced in spherical indentations but the deformation 270 

partitioning in the OP case shows that the plastic deformation is dominant. This reflects 271 

the limitations of the Oliver-Pharr method to measure mechanical properties of time-272 

dependent materials. 273 

5.3. Embedded versus infiltrated 274 

The embedding protocol did not result in significant differences between the plane 275 

strain modulus and viscosity values across the models. This demonstrates that 276 

nanoindentation measures local properties of bone. However, the VEP model showed 277 

that the hardness was higher for PMMA-infiltrated samples. Unlike in epoxy samples, in 278 

PMMA samples, a vacuum chamber was used to infiltrate the resin into the bone 279 

pores, which could contribute to an increase in hardness. 280 

5.4. Analysis method: assumptions and limitations 281 

Bone is heterogeneous, anisotropic, viscoelastic, and poroelastic, with a viscoelastic 282 

unloading curve (Oyen and Cook 2003). OP analysis cannot capture the viscous 283 

behavior of bone. The VEP is a single time constant model and its prediction capability 284 

is limited when indenting a hierarchical material with different time scales such as bone 285 

(Wang and Lloyd 2010). The VE model with two time constants gives a better 286 

approximation of the creep hold period than the VEP model. The time constants give 287 
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information about the time scales of deformation in the material relative to the time 288 

frame of the experiment. 289 

All three models for data analysis here are based on the same fundamental elastic 290 

contact mechanics for indentation (Sneddon 1965). The extension of elastic to VE (Lee 291 

and Radok 1960) is the approach containing the most direct adaptation of elastic 292 

contact mechanics, and that containing the fewest simplifying assumptions. Once 293 

plastic deformation is included, the picture gets more complicated. While Oliver-Pharr 294 

has been shown to be accurate for stiff materials, it overestimates modulus values for 295 

polymeric materials (Ngan et al. 2005; Tranchida et al. 2007), in part because of the 296 

time-dependent deformation in polymers (including bone). The VEP model used here 297 

has the most a priori assumptions. VEP assumes that the viscous, plastic and elastic 298 

deformations are in series and that the creep is linear, which is too simple to capture 299 

the more complex, multiple time constant behavior observed in bone. This results in 300 

modulus values that are the greatest when compared with either a viscoelastic or OP 301 

approach. A tendency towards modulus overestimation was observed when this model 302 

was used for characterization of polymers as well (Oyen and Cook 2003). Therefore, 303 

VEP is useful for comparison of groups within studies, but further development of this 304 

model is required before quantitative material properties can be determined.  305 

Each of the analytical models considered here is fit to different parts of the indentation 306 

load-displacement-time response. The most direct differences observed here were for 307 

spherical indentation using Oliver-Pharr, which is a fit only to the unloading data, and 308 

VE, which is a fit only to the load-hold data. The reasons for the large discrepancy 309 

between the obtained modulus values in these two cases certainly requires further 310 

detailed study in the future, but the most likely explanation is the failure of OP to 311 

account for viscoelastic deformation during unloading. This study provides the most 312 

direct evidence yet of the extent of this effect in materials with time-dependent 313 

mechanical behavior. While many studies have advocated for a hold period at peak 314 
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load to “exhaust” viscoelastic deformation and minimize the effect during unloading, the 315 

results here demonstrate that this approach does not provide reliable quantitative data 316 

on bone nanoindentation. Similar results were achieved by Oyen and Ko (2007) after 317 

using the VEP model to generate two load-displacement curves for plane strain 318 

modulus that differed by a factor of 2 and resulted in equivalent unloading stiffness 319 

which would lead to a difference in modulus of only a factor of 1.2. 320 

Summarizing, the OP method could be used for a fast identification of relative 321 

differences in the elastic modulus between samples. The VEP model provides an 322 

estimation of the elastic, plastic and viscous contributions to the bone material behavior 323 

in sharp indentations. And the VE approach can be used to analyze the creep behavior 324 

of bone when there is no plasticity induced.  325 

6. CONCLUSIONS 326 

This is the first time that the same bones have been tested systematically following 327 

different testing and analysis options. This study demonstrates that the tissue level 328 

mechanical properties of bone measured by nanoindentation depend not only on the 329 

sample itself, but also on the hydration state, probe geometry and data analysis 330 

method. This is why it is complicated to compare values from different studies and care 331 

must be taken when choosing the experimental and analytical options. The current 332 

work shows that nanoindentation is capable of capturing trends in the mechanical 333 

properties. It provides the framework to compare tissue level mechanical properties of 334 

different type of bones, such as bones of different ages or pathologies.  335 
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FIGURE CAPTIONS 

Figure 1:  

Outline of the methods. Tibiae of four B6 mice were harvested and cut in half. One of 

the halves was dehydrated in ethanol and infiltrated with PMMA using vacuum. The 

other three halves were dried in air and embedded in epoxy resin. The PMMA samples 

were tested only in dry conditions and the epoxy ones in dry and wet conditions. For 

each condition, nine indents were made both with a Berkovich indentor and a sphere. 

Figure 2:  

Trapezoidal load function. Loading to the peak load (Pmax = 8 mN) during rise time (tR = 

10 s) with a creep hold (tc = 30 s) before unloading. Same loading and unloading rate 

(k = Pmax/tR). 

Figure 3:  

Load-displacement (a) and displacement-time (b) plots obtained after applying the 

trapezoidal loading protocol in Figure 2 on a rehydrated sample using a Berkovich 

indenter probe. 

Figure 4:  

Rheological model for (a) VEP on loading (adapted from Oyen and Cook 2003); and (b) 

VE during creep hold. 

Figure 5:  

Mean plane strain modulus and standard deviations for Berkovich indentations 

analyzed by VEP and OP and spherical indentations modeled with OP and VE in dry 

and rehydrated conditions. 

Figure 6:  

Viscous hv, plastic hp, and elastic he mean deformations (a) and mean deformation 

fractions (b) of Berkovich and spherical indentations in dry and rehydrated conditions. 

Figure 7:  

Comparison of the mean plane strain modulus of the current study (outlined) with other 

studies on dry and wet bone indented using Berkovich and spherical indenter probes. 

The analysis method used in each study is specified (OP, VE or VEP). The values 

obtained in this study for the same bones are comparable with the wide range found in 

the literature for different animal bones.  

Figure 8:  

Logarithmic curve of P-h data for a spherical indent on dry bone embedded in epoxy 

together with P~h (plastic behavior) and P~h3/2 (elastic behavior) curves.  
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TABLES 

  Berkovich Sphere (55µm) 

  VEP OP VE OP 

Dry 
pmma 

E’ [GPa] 36.4 ± 9.0 22.9 ± 3.7 7.2 ± 2.6 15.4 ± 3.7 

H [GPa] 2.57 ± 0.40    

Hc [GPa] 0.93 ± 0.06 0.93 ± 0.07  0.17 ± 0.05 

ȠQ (x 1015) [Pa s2] 2.96 ± 1.86    

f = G∞/G0   0.63 ± 0.04  

τ1, τ2 [s] 277.2 ± 64.7  
2.0 ± 0.8 
19.6 ± 14.6 

 

Dry 
epoxy 

E’ [GPa] 33.7 ± 6.4 20.1 ± 3.9 6.6 ± 2.0 11.6 ± 1.7 

H [GPa] 1.91 ± 0.56    

Hc [GPa] 0.75 ± 0.16 0.74 ± 0.19  0.15 ± 0.05 

ȠQ (x 1015) [Pa s2] 2.53 ± 1.62    

f = G∞/G0   0.54 ± 0.13  

τ1, τ2 [s] 252.0 ± 73.4  
2.0 ± 0.7 
18.8 ± 11.5 

 

Wet 
epoxy 

E’ [GPa] 27.5 ± 6.5 11.5 ± 2.0 4.1 ± 1.4 9.2 ± 2.4 

H [GPa] 0.47 ± 0.11    

Hc [GPa] 0.26 ± 0.04 0.23  ± 0.03  0.10  ± 0.04 

ȠQ (x 1015) [Pa s2] 0.50 ± 0.28    

f = G∞/G0   0.51 ± 0.08  

τ1, τ2 [s] 133.3 ± 39 .0  
2.0 ±  0.6 
17.3 ± 9.0 

 

 

Table 1: Summary of means and standard deviations of tissue mechanical properties 
according to the probe geometry and data analysis method. E’ is plane strain modulus; 
H is hardness (resistance to plastic deformation; Hc is contact hardness (resistance to 
deformation); ηQ is indentation viscosity; f represents the elastic fraction (viscous, 0 ≤ f 
≤ 1, elastic); and τ1, τ2 are viscoelastic time constants (one time constant for VEP and 
two for VE). 
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