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Abstract 

The overall purpose of this thesis is to develop a way to match diffusion and functional 

acquisition techniques in the spinal cord (SC) in order to offer a comprehensive assessment of 

factors responsible for functional and structural integrity. I began by optimising a pipeline to 

acquire and process spinal functional data and I finished by matching the functional information 

with that derived from diffusion imaging (DI) performed during the same scan session as fMRI. 

In order to characterize the interactions between local structural connections (derived from DI) 

and functional activation of the SC it has been necessary to develop an imaging protocol that 

acquires transverse SC images with both modalities, matching their spatial and geometrical 

characteristics. This is because transverse cord images possess the relevant anatomical 

information in terms of grey-white matter structure and allow better localisation of the 

functional response and structural properties within the spinal cord. My main contribution to the 

field has been: 

 

1. To demonstrate that it is possible to use the “ZOOM” sequence for spinal fMRI 

 

2. To characterize the signal obtained and the comparison of different image analysis 

approaches 

 

3. To propose a final pipeline for acquisition and analysis of spinal fMRI 

 

4. To demonstrate that there is a dependency of pathological functional and structural 

changes  

 

The same ZOOM-EPI sequence has been applied for all the functional studies reported in this 

thesis. The outcome of the optimisation for spinal fMRI has been matched by a DI protocol, 

using standard DI parameters for spinal microstructural characterization and constitutes the final 

MR protocol used in a pilot study including a group of healthy controls and a group of patients 
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affected by multiple sclerosis (MS). Based on the gathered experience and results from data 

acquired and analysed over the years I have concluded with some recommendations for future 

studies and development strategies for structural and functional MRI of the spinal cord. 
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CHAPTER 1 – PRINCIPLES OF MAGNETIC 

RESONANCE  IMAGING 

 

Introduction 

In this chapter, a description of physical properties of a single spin in a magnetic field is 

reported. Dynamics of spins in bulk material is also discussed and it is shown that, when a 

steady and homogeneous magnetic field       is switched on, it gives rise to a bulk magnetization 

      precessing around the direction of       with a characteristic frequency   , called Larmor 

frequency. Moreover, it is described how, applying a magnetic field       oscillating at the Larmor 

frequency, it is possible to drive the magnetization. Both classical and quantum mechanics 

approaches are reported and it is underlined that they both lead to the same results.  

Finally, Bloch equations describing the motion of       are reported and it is explained that the 

intensity of the signal depends on the density of nuclear magnetic moments generating       and on 

the rate (T1 and T2 relaxation times) at which the signal decays due to interactions between the 

spins and their surroundings.  
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1.1 - Magnetic properties of the atomic nucleus 

Magnetic Resonance Imaging (MRI) relies on a physical property, common to most nuclei, to 

have a spin angular momentum    not null. The measurable values of the projection of this 

momentum along any random direction, for example along the    axis, are:         

                                        These nuclei have got an associated 

magnetic moment: 

 

         

 

with   indicating the gyromagnetic ratio (that is a constant depending on the nucleus) and   

(~1.055×10-34 J·sec) is the Planck constant divided by 2π (Andrew, 1955; Abragam, 1961). The 

magnetic moment     is quantized as well along the    direction: 

 

         

 

Only those nuclei with a non-null magnetic moment can be investigated using MRI technique 

and, among these (
13

C, 
14

N,
 19

F,
 23

Na, 
31

P), the most popular atom being studied is the hydrogen 

atom 
1
H (I=1/2 and  /2π = 42.576 MHz/T). In the following sections, only the case of hydrogen 

nuclei, i.e. protons, will be dealt with.  

 

 

1.2 - Single spin dynamics 

According to the classical description of a proton (hydrogen nucleus) in a steady and 

homogeneous magnetic field      , time evolution of its spin can be described in terms of classical 

vectors (Rigamonti and Carretta, 2009). In this context, a nuclear magnetic moment     located in 

      precesses at the Larmor frequency    around the direction of       following the equation: 

Eq. 1.1 

Eq. 1.2 
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If another magnetic field      , rotating in the plane perpendicular to it, is switched on, then the 

magnetic moment     experiences a torque (             whose effect is to vary the angle between     

and      . If        varies with a frequency   ≠     then its effect on the motion of      is negligible, 

but if   =    , resonance occurs and the magnetic moment precesses around the direction of 

     . The motion equation of the system in the laboratory frame (   ,   ,    ) is described by the 

following equation:  

   

    

  
                             

 

The time-dependence of          can be removed considering a frame of reference (           )  

rotating with the same angular frequency of       around the direction of the    axis. In this 

rotating coordinates system        is static and, supposing it along the     axis, the equation of 

motion is given by:    

 

    

  
              

 

 
                               

 

In the rotating frame, the spin experiences an effective static magnetic field       and precesses 

around it (Fig. 1.1). There is resonance for   =     and        =        and the precession motion now 

occurs in the plane      . 

 

Eq. 1.3 

Eq. 1.4 

Eq. 1.5 
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According to quantum mechanics (Andrew, 1955; Abragam, 1961; Slichter, 1990; Rigamonti 

and Carretta, 2009), when a single proton (I=1/2) is in a steady and homogeneous magnetic field 

      applied along the z direction, two different energy levels are created, corresponding to    

 ±      . The energy of these two levels, called Zeeman levels, is:  

 

                                        

 

that implies: 

 

        
 

 
 

and 

        
 

 
 

 

   and    indicate the energy of the proton when    is, respectively, aligned and anti-aligned 

with the magnetic field      . The energy difference between these levels is: 

 

                   

Fig. 1.1: For      there is resonance and       =      . The magnetization       precesses around      .  
[adapted from: Carretta, 2007]. 

Eq. 1.6 

Eq. 1.7a 

Eq. 1.7b 

Eq. 1.8 
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where        is called Larmor frequency (Fig. 1.2).  

If a photon with energy    interacts with a proton in the energy level   , this proton will be 

excited to the energy level    . In other words, transition between Zeeman levels occurs when 

radiation whose frequency is equal to the energy separation between those levels is applied. 

  

 

Let us now consider the equations of motion for the components of the proton spin    when the 

aforementioned magnetic fields        and        are applied. These equations can be obtained, using 

the time-dependent Schrödinger equation, as expectation values of the spin components. Taking 

      along the    axis and       oscillating along the    direction, at resonance condition, reversing of  

   with respect to       occurs.  

Using the standard bra-ket notation of the quantum mechanics formalism (Dirac, 1930), any 

state |ϕ> of the spin    can be expressed as a linear combination of a state |↑> parallel to the    

axis and a state |↓> antiparallel to it: 

 

                                        |ϕ>  =     |↑>  +    |↓>  =      
 
 
   +      

 
 
   =   

  

  
    

 

with |    |
2
 +  |    |

2
 = 1, where |    |

2
 indicates the probability that the spin is aligned along the 

direction of       and |    |
2
 the probability that it is antiparallel to it.   

When the magnetic field       is switched on, the Hamiltonian energy function H expressing the 

interaction between the magnetic moment      and the field can be written as:  

 

Eq. 1.9 

Fig. 1.2: Splitting of the proton energy levels due to the application of the magnetic field        
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with  
 

 indicating the Bohr magneton, and    the spin angular momentum that is quantized along 

the    axis.  

The Schrödinger equation describing the spin motion:  

 

    
  ϕ   

  
       ϕ    

  

can be re-written as:  

 

    
   
   

      
 

           
  

  
  

 

that is: 

   

    
   
   

          
  

  
  

 

with     
 
         indicating the Larmor frequency. 

From the eigenvalues of   , it follows : 

 

   
   
   

        
  

   
  

 

that yields: 

 

                    

 

                

Eq. 1.10 

Eq. 1.12 

Eq. 1.13 

Eq. 1.14 

Eq. 1.15a 

Eq. 1.15b 

Eq. 1.11 
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and then:  

 

                     
          

  

  

                   
          

 

The expectation values of the components of the spin can now be calculated. Neglecting 

constant factors and setting the arbitrary initial phase equal to zero, results can be written in the 

following way:  

 

 ϕ        ϕ                                                       

 

indicating that the components of the spin    in the plane xy perpendicular to the direction of the 

applied magnetic field vary periodically with the Larmor frequency. The component    along 

the direction of       instead, does not change its value because it’s time-independent.  

If a magnetic field         :  

 

            
          

 

oscillating in the plane xy is switched on, the expectation values of the spin components could 

be calculated in a similar way. I report the results that come out from the Schrödinger equation 

considering the effect of          on the precessing spin. As done previously, neglecting constant 

factors and setting the arbitrary initial phase = 0:      

 

 ϕ        ϕ                         

 

 

                                

Eq. 1.16a 

Eq. 1.16b 

Eq. 1.17 

Eq. 1.18 

Eq. 1.19 

Eq. 1.20a 
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with    
 
     . These equations show that the motion of the spin    can be explained as 

resulting from the precession around the    axis at the Larmor frequency plus the rotation around 

the direction of      (t) at the frequency   . In the rotating frame of reference (             it 

corresponds to a rotation of     by an angle that depends on the duration of the RF pulse 

(Andrew, 1955; Abragam, 1961; Slichter, 1990; Rigamonti and Carretta, 2009).  

 

 

 

1.3 - Dynamics of spins in matter 

Let’s hereafter consider a hydrogen spins system of N weakly interacting spins, placed in a 

steady and homogeneous magnetic field       (Rigamonti and Carretta, 2009).  

At thermal equilibrium, attained after a relaxation time   , the spins occupy the 2 energy levels 

corresponding to the different allowed orientations of the nuclear spin    (Fig. 1.3). The spin 

population of each energy level is regulated by the Boltzmann statistics and is proportional to 

the exponential Boltzmann factor ‘exp(-E/  T)’, where E indicates the energy of the level (see 

Eq. 1.6),    is the Boltzmann constant (8,62·10
−5

 eV K
-1

) and T is the temperature (expressed in 

Kelvin).  

The population on each hydrogen energy level can be statistically evaluated as:  

 

    
 

 
   

  
            
    

 

    
 

 
   

  
             
    

 

Eq. 1.20c 

Eq. 1.21a 

Eq. 1.21b 

Eq. 1.20b 
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with: 

 

     
  

            
      

  
             
    

 

N+ indicates the lower energy level (Eq. 1.21a) corresponding to   = +1/2 (   with   = -1/2 

indicates the higher energy level; Eq. 1.21b) and Z in Eq. 1.22 is the partition function, 

commonly used in statistical mechanics for describing the properties of the system. 

 

 

 

Considering now the spins system placed in the field      , the macroscopic effect of the 

interaction is a macroscopic magnetic moment      , not null, aligned along the direction of the 

applied magnetic field and with intensity    :  

 

    
     

    
     

 
  

 

with: 

 

  
 

    
 

 
          

  
             

    

  

 

 

indicating the average statistical value of the single magnetic moment.  

Eq. 1.22 

Eq. 1.23 

Eq. 1.24 

Fig. 1.3: Sketch of the energy levels splitting for a system of hydrogen atoms when the magnetic field 

      is applied [adapted from: Rigamonti and Carretta, 2009]. 
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Eventually, it is possible to write:  

 

            
 

 

 

 

that allows us to apply the motion equation for single spin (Eqs. 1.3-1.5) to this macroscopic 

magnetic moment: 

 

      

  
                  

 

The previous Eq. 1.26, although falling within classical mechanics, holds in quantum mechanics 

too due to the fact that the expectation value of any physical observable evolves in time 

according to the classical equations of motion. The macroscopic magnetization, detected during 

the MRI scan, represents the expectation value of the magnetic moment of the spins system and 

this is the reason why the Eq. 1.26 (classical mechanics) can describe its temporal evolution 

(Rigamonti and Carretta, 2009). 

 

 

1.4 - Bloch equations and relaxation times     and     

In a real system, there are two important interactions whose effects cannot be neglected: the 

spin-spin and the spin-lattice interactions. Let’s consider the case in which the magnetization        

is on the xy plane (due to the application of       (t) ) and, once      (t) is switched off, it is 

returning aligned to      .  

Its components Mx, My, Mz evolve in time according to the following Bloch equations, 

accounting for both the Larmor precession and the motion towards the equilibrium condition 

(Andrew, 1955; Abragam, 1961; Slichter, 1990): 

 

Eq. 1.25 

Eq. 1.26 
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The    constant is called either spin-lattice relaxation time or longitudinal relaxation time and 

   is called either spin-spin relaxation time or transversal relaxation time. They reflect, on 

macroscopic scale, the microscopic effects of spin-lattice and spin-spin interactions.  

Integrating the Bloch’s equations (Eqs. 1.27) we obtain:   

 

              
  

 
    

and 

             
  

 
   

 

Eq. 1.28a shows that the longitudinal component Mz returns exponentially to equilibrium with 

characteristic time    (Fig. 1.4a). Eq. 1.28b shows instead that both the transversal components 

of the magnetization Mx and My decay exponentially to zero with characteristic time    (Fig. 

1.4b).  

Let’s discuss now qualitatively the mechanisms underlying the relaxation times    and   . The 

   relaxation time indicates how fast the thermal equilibrium of the whole system is attained, i.e.  

how fast the spins system exchanges its magnetic energy with the lattice (energy associated with 

the interaction between spins and magnetic field). The value of    is related to the population 

Eq. 1.27a 

Eq. 1.27b 

Eq. 1.27c 

Eq. 1.28a 

Eq. 1.28b 
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on the Zeeman levels and any change in    corresponds to a re-arrangement of the spins 

between these levels. 

 

 

 

 

Such re-arrangement implies that spins change their orientation in the field thus interacting with 

the surrounding lattice.  

The    relaxation time indicates how fast the interaction between spins can dephase their 

motion. When the magnetic field       is switched off, the motion of each spin is affected by 

dipolar interaction with the magnetic moments of the surrounding spins, i.e. by a dephasing 

local magnetic field. A global dephasing of the spins occurs, causing the transversal components 

     to decay to zero and resulting in the alignment of the magnetization       along the direction 

of      . However, transversal relaxation typically occurs in a time   
  shorter than    due to 

inhomogeneities in the static magnetic field       mainly caused by: geometrical imperfections of 

the magnet, perturbation of the magnetic field due to interaction with the sample and possible 

local field gradients. The relationship between   
  and    is expressed by:  

 

 

   
   

 

   
       Eq. 1.29 

Fig. 1.4: Exponential decay of the longitudinal (a) and transversal (b) components of the 
magnetization M0. After a time T1 the value of the longitudinal component is about 63% of M0 (a). 
After a time T2 the value of the transversal components is about 37% of M0 (b) [from: Rigamonti and 
Carretta, 2009]. 
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where      indicates the frequency range in which the Larmor frequencies of the spins are 

spread due to field inhomogeneities (Carretta, 2007; Rigamonti and Carretta, 2009). 
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CHAPTER 2 – SEQUENCES AND PRELIMINARY 

ASSESSMENT OF ZOOM-EPI TECHNIQUE 

 

Introduction 

After having discussed, in the previous chapter, the basic principles of magnetic resonance 

imaging, in this chapter the main EPI techniques commonly used to perform fMRI studies are 

briefly discussed and features of the ZOOM-EPI sequence are reported. The ZOOM-EPI 

sequence is investigated because it is the established sequence for spinal cord diffusion. 

Features of different image weighting and importance of temporal signal to noise ratio are 

discussed as well. So far, the ZOOM-EPI sequence using a reduced FOV has never been used to 

perform fMRI in the spine and for this reason, before applying it in the spine, I opted to test its 

performance in the brain. In this chapter, a comparison between functional results obtained 

using ZOOM-EPI with ones obtained using conventional Gradient Echo and Spin Echo EPI 

sequences is reported. This study is performed in the brain because brain-fMRI is an established 

technique, used for clinical purposes as well, and the aim of this study is to compare ZOOM-

EPI results with ‘established’ ones. 
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2.1 - Spin Echo and Gradient Echo sequences 

In MRI the decaying signal is not measured immediately after the Radio-Frequency (RF) pulse 

but it is recovered by refocusing the spreading-out spins with other RF pulses or with magnetic 

field gradients. The most common sequences used to perform functional scans are Spin-Echo 

(SE) and Gradient-Echo (GE) Echo Planar Imaging (EPI) sequences. Before discussing EPI 

technique (see section 2.2), let’s introduce SE and GE sequences. The basic SE sequence (Fig. 

2.1) is composed by a first π/2 excitation pulse followed, after a time interval  , by a second 

pulse π. The first pulse projects the magnetization into the transverse plane where, due to local 

field inhomogeneities, the relaxing spins start to dephase (Haacke et al., 1999; Carretta, 2007; 

Hashemi et al., 2012). The application at the time   = TE/2 of the π pulse refocuses the spins 

and, after an interval TE (called Echo Time) from the initial pulse, the magnetization is 

recovered despite reduced by a factor exp(−2 /  ) (Fig. 2.2). The π pulse eliminates the 

dephasing effects due to external magnetic field inhomogeneities and is usually indicated as 

refocusing or rephasing pulse. 

In Fig. 2.1, the timing diagram for SE sequences is depicted, showing the RF pulses, slice-select 

gradient, phase encoding gradient, frequency encoding (or readout) gradient and echo. The 

Repetition Time, indicated with TR, is the time between two subsequent π/2 excitation pulses. 

During one TR interval, only one phase-encoding step is performed (i.e. only one line in the k-

space is filled in). The acquisition time of an image instead, is proportional to the number of 

phase-encoding steps. This statement holds also for GE sequences that are described later in this 

section. A gradient in the negative direction is applied immediately after the slice selection. 

Every time a gradient is applied it dephase the spins and thus, after that the slice-select gradient 

has selected the slice, a negative gradient (opposite direction) must be applied in order to 

refocus the spins. Moreover, two ‘crusher’ gradients are applied at each side of the slice slice-

select gradient applied during the π pulse in order to achieve more accurate refocusing at time 

TE. In Fig. 2.1, it is also shown that the frequency encoding gradient has, at the beginning, an 

initial negative lobe that dephases the spins and that is followed by a positive lobe (gradient 

reversal) that rephases the spins. If the negative gradient lobe were not applied, the spins would 
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start to dephase when the frequency encoding gradient is switched on and at the time TE the 

spins would not be in phase. The application of the negative gradient (dephasing) just before the 

positive one allows the spins to refocus at the time TE if the area under the negative lobe is half 

the area under the positive lobe (Fig. 2.3). During data acquisition, the readout gradient rephases 

the spins in the first half of the readout and then the spins fan out in the second half.   

 

 

 

 

Fig. 2.1: Pulse sequence diagram for SE sequences.  

Fig. 2.2: Simplified illustration of the spins motion that generates the echo signal [from: Carretta, 
2007].  
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In Fig. 2.4 it is depicted the case of two gradients with the same area, although with different 

strength and duration, having the same effect on spins. However, the gradient b) has the 

advantage of being faster, a condition required to perform fast scanning (see section 2.2). 

                                     

 

 

GE sequences differ from SE ones in the way they refocus spins before data acquisition: SE 

sequences use RF pulses instead GE sequences use gradient reversals (Schmitt et al., 1998; 

Haacke et al., 1999).  

In GE sequences a flip angle smaller than π/2, causing an incomplete flipping of Mz into the xy 

plane, is used. In GE imaging, the π refocusing pulse is not used. The signal is dephased and 

then rephased (or recalled) later using a gradient applied in the readout direction before the 

frequency encoding (or readout) gradient. The result is to dephase the signal and then recall it at 

the time TE (Fig. 2.5). As explained above, the area under the negative lobe is half the area 

Fig. 2.3: Applying the negative gradient (dephasing) just before the positive one allows the spins to 
refocus at the time TE (i.e. when the echo is maximum). It is required that the area under the 
negative lobe is half the area under the positive lobe. 

Fig. 2.4: The gradient a) has twice the duration of the gradient b) but half the strength. The two areas 
(in grey) are identical and identical is their dephasing (or refocusing) effect on spins.  
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under the positive lobe. Due to lack of the π refocusing pulse, the rate of decay is now given by 

T2* instead of T2.  

 

 

 

 

2.2 - Echo Planar Imaging  

Echo Planar Imaging (EPI) is particularly suited for functional MRI because it is an ultrafast 

technique that allows acquiring whole volume images in a few seconds. This is a very important 

point because fast scanning is required to get a detailed description of neural events that are 

detected with fMRI. However, the drawback is that EPI sequences are very sensitive to field 

inhomogeneities and artefacts (Schmitt et al., 1998, Haacke et al., 1999; Hashemi et al., 2012). 

EPI sequences require high performance gradients, that can be switched on and off very quickly, 

and advanced hardware allowing fast signal processing. In conventional MRI sequences, a 

separate RF excitation is required for each data line (each phase encoding step) and thus, as 

reported in the previous section, the acquisition of an image takes as many TRs as the number 

of phase encoding steps or lines in the k-space. 

Fig. 2.5: Pulse sequence diagram for GE sequences.  
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In EPI sequences instead, the k-space is covered after a single RF pulse (‘shot’). They are called 

‘single shot EPI’ if they fill the k-space in just one shot and ‘multishot EPI’ if they use multiple 

excitations. However, this goal is achieved by rapidly reversing the readout gradient from 

positive to negative for a total of Ny times during a single T2* decay (lasting around 100msec), 

with Ny indicating the number of lines in the k-space. The readout gradient has a total of Ny/2 

positive lobes and Ny/2 negative lobes, with each lobe corresponding to a separate k-space line 

(and thus to a separate phase encoding step).  

In Fig. 2.6, the phase-encoding gradient is applied briefly only when the frequency encoding 

gradient is zero, that is when the k-space position is at either end of the kx axis (Fig. 2.7). This 

method is called ‘blipped phase encoding’. It is also shown that a series of echoes are produced 

and each is individually phase encoded (Fig. 2.6), so that the k-space can be covered in a single 

shot (or multiple shots). The number of echoes produced exploiting a single RF is called ‘echo 

train length’. 

Echo Planar Imaging can be applied to both SE and GE sequences. For example, as shown in 

Fig. 2.6, a π/2 and a π pulses can be applied before the EPI module, in order to obtain SE 

contrast.  

s 

 

 

Fig. 2.6: Pulse sequence diagram for a SE EPI sequence. The EPI module is highlighted by the dashed 
line [adapted from: Bernstein et al., 2004]. 
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2.3 - Spin Echo ZOOM sequence 

All the spinal functional scans in this thesis were performed using the Spin Echo ZOnally-

magnified Oblique Multislice EPI (SE-ZOOM-EPI) sequence (Wheeler-Kingshott et al. 2002a, 

2002b; Wilm et al., 2009), with a reduced field of view for targeted areas of fMRI activations. A 

description of the ZOOM sequence follows.  

After the π/2 slice-selective pulse, the π pulse is applied obliquely at an angle β, rather than 

refocusing the entire plane excited by the π/2 slice selective pulse (Fig.2.8). A gap is required 

between the π/2 excitations to prevent the π pulse from inverting the inner volume of the 

neighbouring slice. If the distances from isocentre to the centre of the π/2 slice in the phase and 

slice directions respectively are y and z, then it can be shown that, to excite the same area, the π 

pulse must be applied at an offset, d, in the slice direction from isocentre of: 

 

        β          β  

 

Eq. 2.1 

Fig. 2.7: Sketch of the K-space trajectory for blipped EPI. For even echoes the trajectory is the 
opposite of that for odd echoes [from: Bernstein et al., 2004].  
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The resulting excited parallelogram can be considered as the desired rectangular inner volume 

(black area in Fig. 2.8) flanked by two triangular regions - the transition bands. Each of these 

transition bands is signal which would wrap around into the inner volume if the FOV in the 

phase- encoding direction were to be set equal to the inner volume. Instead, FOV(min), the 

minimum FOV over which data can be acquired without wrap-around artefacts in the inner 

volume, is the desired inner volume plus half of each transition band (Symms et al., 2000). 

Saturation bands are used to further reduce signal from the transition bands, reducing the size of 

FOV(min) and decreasing still further the required echo-train length. Tradeoffs can be made 

between distance to the next slice, size of transition band and inner volume size. A characteristic 

of ZOOM-EPI is the need for a slice gap between successively acquired slices. Contiguous 

slices are not possible with this implementation of the ZOOM sequence, but complete coverage 

can be obtained by separate, spatially interleaved acquisitions. The reduced FOV of our ZOOM-

EPI sequence allows high in-plane resolution on axial acquisitions, while maintaining a short 

EPI echo train that results in a reduction of susceptibility-induced artefacts. 

 

 

 

 

Fig. 2.8: Schematic sketch of the multislice ZOOM sequence. S90 (in green) represents the π/2  
excitation pulse slice thickness and S180 (in blue) the refocusing pulse slice thickness. The gap 
between acquired slices is indicated with GAP (in red) [adapted from: Wheeler-Kingshott et al., 
2002a]. 
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2.4 - T1, T2 and PD –weighted images 

The contrast of an image depends on both the TE and the TR used in the sequence. 

Each tissue is characterized by its own relaxation times and by hydrogen spin density ρ(H). The 

higher the number of spins per unit volume, the higher the signal that can be detected. 

Considering that each spin gives the same contribution to    (i.e. spin density is proportional to 

the magnetization) and that time evolution of the components of the magnetization drives the 

signal intensity, it can be written (Hashemi et al., 2012):  

 

         
 

  
  

 
      

 
  
      

The intensity (or contrast) of a tissue can be changed using different TRs and TEs in the 

sequence according to which kind of ‘weighting’ we are interested in.  

From Eq. 2.2, it follows that: 

 

1- Proton density-weighted (PD-weighted) images can be obtained using a long TR 

(compared with   ) and TE as short as possible. Signal dependence from the number of 

spins per volume unit is strong and the signal only slightly depends on relaxation times;    

 

2-   -weighted images have short TR (usually less than   /2) and TE as short as possible. 

Signal-dependence from    is strong. 

 

3-   -weighted images are featured by long TR (compared with   ) and long TE (TE ≈ 

  ). Signal dependence from    is strong. 

 

 

 

Eq. 2.2 
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2.5 - Temporal signal to noise ratio 

Dealing with functional MRI, it is important to aim at obtaining a temporal signal to noise ratio 

(TSNR) as high as possible because it is an indicator of sensitivity: the higher the TSNR the 

higher the sensitivity for detecting signal change.  

As reported by Murphy et al. (2007), TSNR is defined as: 

 

      
 

 
  

 

   
 
 

            
    

 

 

where   is the mean of the time series, σ is its standard deviation, N is the number of time points 

and xk  is the measured signal in a voxel.  

The theoretical relationship between TSNR and number of time points N needed to detect the 

size effect Eff (Fig. 2.9) is expressed by the formula (Murphy et al., 2007):   

 

   
 

      
  

         

            
  

 

 

 

where ‘erfc
-1

( )’ is the inverse of the complementary error function (that can be calculated using 

the dedicated MATLAB function ‘erfcinv’) having as argument the p-value used in the 

statistics. The letter R stands for the ratio between the number of volumes of stimulation and the 

total number of volumes acquired during the whole fMRI session. Nevertheless, this theoretical 

estimation is likely to be conservative, as found in previous results (Cohen-Adad et al., 2010).  

Referring to Eq. 2.3 and Eq. 2.4: 

 

1- TSNR is usually calculated during a resting state scan and the lower the signal variance 

throughout the time series the higher the TSNR (Eq. 2.3). TSNR is strictly related to 

physiological noise, whose effect is to cause signal fluctuations reducing the TSNR. If 

physiological noise is smaller, a smaller number of time points (Eq. 2.4) is required to 

Eq. 2.3 

Eq. 2.4 
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Eq. 2.5 

detect signal changes that are likely to be due to neuronal activity. 

 

2- After choosing a target size effect, Eq. 2.4 can be used to perform power analysis for 

calculating the number of volumes required to detect that very size effect. The critical 

role of TSNR for determining success of an experiment is evident (Eq. 2.4). 

 

 

 

 

Signal-to-noise ratio (SNR) instead, represents the strength of the single image signal over the 

noise in the absence of signal and does not give any information about either stability of the 

images throughout the scanning session or the temporal noise features.  

SNR of an MRI image is defined as:  

 

     
 

  
 

 

with S being the mean image signal intensity and σt  the thermal component of the noise. 

Theoretically, SNR could be made very high by enhancing the voxel size, but it would not 

improve sensitivity whether physiological noise is dominating the signal variance. Moreover, 

using large voxels would lead to too pronounced partial volume effects (PVE) (Weibull et al., 

Fig. 2.9: Theoretical relationship between TSNR and number of volumes N for different effect sizes 
using the threshold p = 0.05 [from: Murphy et al., 2007]. 
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2008). As reported in previous studies (Kruger and Glover, 2001; Bodurka et al., 2005; 

Triantafyllou et al., 2005), the physiological contribution to the noise is proportional to the 

voxel size and there is a threshold upon which a further gain in TSNR is limited by 

physiological noise, regardless of the SNR increase:    

 

      
   

           
 

Eq. 2.6 is plotted in Fig. 2.10 and shows that TSNR reaches a plateau with asymptotic limit 1/ λ, 

that depends on the tissue being imaged (Triantafyllou et al., 2005) but not on the magnetic field 

used (Krueger et al., 2001; Triantafyllou et al., 2005). The value of λ has been evaluated in the 

brain empirically and resulted: λ=0.011 for GM, λ=0.006 for WM (Kruger and Glover, 2001) 

and λ=0.021 for CSF (Bodurka et al., 2005). However, at small voxel size, where physiological 

noise is smaller, the relationship between TSNR and SNR is quite linear and thus an increase in 

SNR using a higher magnetic field would substantially translate to higher sensitivity to detect 

signal changes, without PVE drawbacks (Triantafyllou et al., 2005). For a given scanner 

hardware and using high spatial resolution, the only way to further increase statistical power is 

to acquire a higher number of volumes (Eq. 2.4).  

 

 

Eq. 2.6 

Fig. 2.10: Relationship between TSNR and SNR in grey matter using 1.5T, 3T and 7T scanners for 
voxel sizes of 1×1×1mm3, 2×2×2 mm3 and 3×3×3 mm3. The dashed line indicates this relationship in 
the absence of physiological noise [from: Murphy et al., 2007]. 



 

43 
 

2.6 - Brain fMRI: preliminary validation of SE-ZOOM-EPI 

sequence for fMRI purposes 

2.6.1 - Purpose  

The purpose of this study was to check the location of activations in the brain using SE-ZOOM 

EPI sequence. Functional activations in the brain detected using 3 different EPI sequences (GE, 

SE, SE-ZOOM) are studied. 

 

2.6.2 - Materials and Methods 

Subjects – For this study 5 healthy subjects (mean age 30±5 yrs, all right handed) were scanned.  

Imaging parameters – All scans were performed using a 3T MRI scanner (Philips Healthcare, 

Best, Netherlands) with a 32-channel head coil, studying the functional activity in the motor 

areas of the brain with a finger-tapping task (right hand) at 1Hz speed. The block design 

comprised 6 alternating epochs of rest and movement, each lasting 18 seconds, for a total of 84 

volumes. For each subject we performed the three EPI sequences: GE, SE and SE-ZOOM. The 

imaging parameters for the GE and SE sequences were: 30 slices per volume, TR=3000ms, 

TE=30ms, voxel size=1.15x1.17x5mm
3
 (reconstructed to 0.96x0.96x5 mm

3
), 

FOV=180x245mm
2
, image matrix=156x209. The imaging parameters for the SE-ZOOM 

sequence were: 9 slices per volume, TR=3000ms, TE=30ms, voxel size=0.94x0.97x5mm
3
 

(reconstructed to 0.79x0.79x5mm
3
), FOV=60x75mm

2
, image matrix=64x77. GE and SE were 

acquired with identical geometrical planning by aligning the axial-oblique slices with the 

anterior commissural – posterior commissural (ACPC) line. The SE-ZOOM slices were always 

centred axially around the typical motor areas, with the centre shifted by 30 mm along the X 

axis and 40 mm along the Z axis from the centre of the ACPC line (Fig. 2.11). 
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fMRI analysis  – Data were analysed using SPM8 software and statistical maps were obtained 

after standard geometrical analysis that included slice-timing, realignment and smoothing by 

three times the dimensions of the voxel with Gaussian kernel. The GE and SE acquisitions were 

also co-registered, and the corresponding activation maps overlaid using FSLview software for 

localization comparison. Given the partial brain coverage of the SE-ZOOM sequence, slice 

correspondence between GE, SE and SE-ZOOM images was visually assessed based on 

anatomical landmarks. Only the activations with a p-value<0.05 and cluster extent of 20 voxels 

were accepted. 

TSNR calculation – The TSNR for each sequence was calculated with MATLAB, for a resting-

state scan of one of the subjects, as the ratio between the mean time course signal throughout 

the voxel time-series and its standard deviation (Eq. 2.3). Results were obtained considering a 

sample of 10 voxels deemed within the grey matter.  

 

 

Fig. 2.11: Screenshot of the positioning of the 9 slices for SE-ZOOM 
sequence. 
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2.6.3 - Results 

For all subjects SE-ZOOM activations were detected in the motor cortex areas and 

demonstrated good anatomical correspondence with the overlapping activated areas from the 

more conventional GE and SE sequences (Fig. 2.12). For all subjects the SE-ZOOM showed 

more localized activation than the other two sequences but with a smaller voxel extent (Table. 

2.1). The regions of activation detected by SE-ZOOM remain always smaller than ones detected 

with both GE and SE. 

The TSNR calculated was (mean+/-std): 59.5+/-8.2 for GE, 49.3+/-6.1 for SE and 31.7+/-4.2 for 

SE-ZOOM. 

  

 

 

                                  

 

 

 

Fig. 2.12: Activations obtained using GE (top in red), SE (top in yellow) and SE-ZOOM sequences 
(bottom in green) in one subject. 

Table 2.1: Dimensions in mm3 of the activated motor cortex areas in all subjects using the three 
different sequences. 
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2.6.4 - Conclusion and Discussion  

Looking at Fig. 2.12, it might seem that SE-ZOOM has got a higher specificity to BOLD but 

this observation should be carefully examined. The voxel dimensions used for SE-ZOOM were 

smaller than ones used for GE and SE. We have to consider that higher resolution functional 

images might appear more localized because of smaller statistically significant areas and not of 

higher sensitivity. GE sequence has higher TSNR than both SE and SE-ZOOM. However, 

TSNR decreases using smaller voxels due to a reduction in SNR (see Eq. 2.6) that is 

proportional to the voxel volume (Triantafyllou et al., 2005). Considering the difference in 

voxel volume between the SE and SE-ZOOM acquisitions (the ratio is about 1.5), we can 

conclude that TSNR is comparable between the two sequences. However, a higher number of 

repetitions are needed to obtain a better signal averaging if smaller voxels are used. 

To conclude, this preliminary study confirmed the reliability of SE-ZOOM sequence using a 

reduced FOV for fMRI purposes.  

 

 

2.7 - Voxel Size 

In spinal fMRI high spatial resolution is required in order to limit partial volume effects (PVE) 

but using too small voxels doesn't allow to get enough signal. The voxel size used in the 

experiments included in this thesis, was a trade off between spinal dimensions and required 

signal and TSNR. Slice thickness of 4 mm was used in order to achieve an adequate amount of 

signal while allowing a high in-plane resolution of 1.19x1.19 mm
2
, suitable for spinal cord 

studies. The in-plane resolution was enough to discriminate between different tissue types, 

although the laminated structure of the spinal cord could not be discerned.  

Earlier report by Hyde et al. (2001) states that in the brain it would be preferable to use cubic 

voxels because cortical grey matter exhibits conspicuous tortuosity, and it seems axiomatic that 

PVE in fMRI can only be minimized by cubic voxels.  
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For the spinal cord instead, this issue is not a major concern due to the fact that spinal structure 

is more regular and less variable than other brain structures, e.g. the cortical surfaces (Maieron 

et al., 2007).  

 

 

2.8 - Imaging parameters 

All spinal data included in this thesis were acquired with a 3T MRI scanner (Philips Achieva 

TX, Best, Netherlands) using a 16 channel neurovascular coil. 

In this section I report the imaging parameters that were used to perform all the spinal functional 

studies presented in this thesis. Details concerning paradigm, stimulus delivery and slice 

prescription instead were not consistent between experiments and thus this information is 

provided later in the specific chapters. 

The chosen imaging parameters were: 

- TR=3600ms 

- TE=30ms 

- voxel size=1.19x1.19x4mm
3
 with 1mm gap between slices (reconstructed to 1.19x1.19x5mm

3
) 

- FOV=76x48 mm
2 

- acquisition matrix=64x40 

- 9 slices 

- 200 volumes 

- 5 dummy scans 

For spinal fMRI scans, a block design was always used and comprised 10 rest epochs 

alternating with 10 stimulus epochs, each lasting 36 seconds.  

The acquisition time was 12:22 min.  
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CHAPTER 3 – FUNCTIONAL MRI IN THE SPINAL 

CORD 

 

Introduction  

In the previous chapter the ZOOM sequence was tested in the brain and results confirmed its 

reliability for fMRI purposes.  

Before applying it in the spinal cord, let us discuss in depth the metabolic changes that underlie 

signal changes detected during a functional exam. In this chapter, after an anatomical 

description of the spinal cord, the BOLD and SEEP effects are introduced and put in context 

within a wide literature review. 
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3.1 - The spinal cord and its structure 

The spinal cord (SC) and the brain constitute the central nervous system (CNS). The spinal cord 

connects the brain to the nerves throughout the body and allows the transmission of neural 

signals. It is located in the vertebral canal and spans from the base of the skull to the upper part 

of the lower back. It is surrounded by cerebrospinal fluid (CSF) and is protected by the 

vertebrae, their ligaments and membranes. It has a segmented structure and can be divided into 

31 segments, each one characterized by a pair of spinal nerves entering the SC from each side. 

Its internal structure shows little indication of segmentation and is similar for all segments. 

From a spinal section it is possible to discern the grey matter (GM), featured by a butterfly or an 

‘H’ outline, surrounded by the white matter (WM). In the centre of the SC there is a small canal 

containing CSF. The GM is right/left symmetrical and has two posterior horns (PHs), also 

called dorsal horns, two anterior horns (AHs), also called ventral horns, and an intermediate 

zone. The PHs are mainly constituted of sensory neurons and the AHs of motor neurons 

(mainly). Motor neurons receive neural information from the brain and cause muscle to 

contract, sensory neurons instead, send to the brain neural information concerning stimuli from 

sensory organs. Other neurons, called interneurons, play an important role in local circuitry, 

connecting together different neurons within the SC. The neuron is a type of cell specialized in 

transmitting neural information and made up of a cell body (that includes the nucleus), several 

dendrites and a long axon. The dendrites are short branches that enter the cell body and receive 

neural information (electrical impulses) from other neurons. The axon is a single long branch 

that transmits neural signal to other neurons or muscles and is featured by myelin coating. The 

GM substance mainly comprises cell bodies, and WM is mainly composed of myelinated axon 

tracts. The WM contains the ascending (also called afferent) and descending (also called 

efferent) tracts that carry neural signal either up or down the SC (Standring et al., 2005). 

Moreover, there are glial cells (another class of cells) surrounding neurons, giving them 

physical support and specialized in supplying them with oxygen and nutrients. According to 

somatotopy (Standring et al., 2005), there is correspondence between receptors in an area of the 

body, usually indicated as ‘dermatome’, and a specific level of the SC that supply that 
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dermatome (Fig. 3.1 and Fig. 3.2). The great majority of spinal functional studies focus on the 

cervical enlargement (Fig. 3.2) that corresponds to the attachments of the nerves supplying the 

upper limbs and this is the spinal region that has been investigated in this thesis.  

 

 

                                                                

                         

                            

 

 

 

 

 

 

Fig. 3.1: Arrangement of the dermatomes on the anterior (A) and posterior (B) aspect of the 
upper limbs [from: Standring et al., 2005]. 

 



 

51 
 

 

 

 

                    

 

                      

 

Fig. 3.2: Correspondence between spinal nerves and vertebrae [from: http://www.my-ms.org/].  

http://www.my-ms.org/
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3.2 - Spinal vasculature 

It is important to bear in mind that functional MRI is an indirect measurement of neural activity 

and it does not represent an absolute measure of metabolic changes, due to the fact that it 

strongly depends on blood flow, blood volume and oxygenation.  

Before introducing in detail the mechanisms that underlie the signal changes investigated with 

fMRI, let us briefly depict the spinal cord vasculature. The SC contains a network of several and 

different blood vessels (Fig. 3.3). The network of superficial vessels that supply the spinal cord 

is made up of arteries, about 0.1 to 0.2 mm in diameter, that run parallel to the axis of the cord. 

These arteries are connected and form side branches that go through into the spinal cord. The 

median fissure, dividing left and right hemicords, also contains small arteries. The vessels 

penetrating deep inside the SC are smaller, with diameters of less than 50  m. Within the 

medulla of the cord, veins are mostly radial, have diameters of less than 50  m and take blood 

from these small vessels into larger vessels lying at the cord surface and in the anterior median 

fissure (Thron, 1988).   

 

                          

  

         

 

Fig. 3.3: For clarity reasons, veins are drawn only on the left side of the cord, arteries only on the 
right [from: Giove et al., 2004]. 
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3.3 - BOLD effect mechanism 

In 1990 Ogawa et colleagues (Ogawa et al., 1990a; 1990b; 1990c) published three pioneering 

studies on rats in which it was shown that detection of neuronal activity was possible by 

measuring change in the MRI signal (T2* changes) due to change in deoxyhaemoglobin 

concentration of cerebral vessels. This effect was called BOLD contrast (Blood Oxygen Level-

Dependent). 

Two years later, three independent research groups tested feasibility and reliability of the BOLD 

technique translating it from anaesthetized rats to awake humans and results demonstrated task-

related changes in the BOLD contrast (Bandettini et al, 1992; Kwong et al., 1992; Ogawa et al., 

1992) in the brain of all subjects. BOLD-contrast imaging, also called susceptibility-weighted 

functional MRI or, more commonly, functional MRI (fMRI), is currently a mainstay of 

neuroscience. Thousands of papers applying fMRI technique to investigate functional changes 

in vivo in a non-invasive way have been published ever since, although the complexity of the 

exact relationship between BOLD signal and the related neural activity is still a debated issue 

(Logothetis, 2008; Ekstrom, 2010; Kim and Ogawa, 2012).  

However, the BOLD theory relies on the following tenets: 

 

1- Metabolic changes, due to neural activity in response to an applied stimulus, give 

rise to an alteration of signal at voxel level that can be detected.  

 

2- Specific functions are localized at different areas of the brain and can be mapped 

at high spatial resolution exploiting the stimulus-induced signal change.   

       

The BOLD effect is related to a mismatch between an increase in local blood flow and an 

enhancement of oxygen consumption subsequent to neuronal firing. The haemodynamic 

response can be described as comprising three phases (Logothetis, 2008; Ekstrom, 2010; Kim 

and Ogawa, 2012). At the beginning there is a small decrease in image intensity called ‘initial 

dip’ due to the initial consumption of oxygen (immediately after neuronal activation) that is 
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followed by a large increase of signal intensity (the oversupply of oxygen is only partially 

balanced by an increase of deoxygenated blood) and finally there is an ‘undershoot’, that is a 

decrease of BOLD response before it slowly returns back to baseline (the blood volume takes 

still a little time to go back to normality after the oversupply of oxygen has ceased). The 

physical/chemical origin of the BOLD response can be explained in terms of magnetic 

properties of deoxygenated and oxygenated blood. Oxyhaemoglobin (Hb) contained in 

oxygenated blood is diamagnetic, like water, and doesn’t affect the surrounding magnetic field. 

On the contrary, deoxyhaemoglobin (dHb) is paramagnetic and causes a clearly measurable 

changing in the magnetic field reflected in a T2* reduction in the MRI signal. 

Inside a macromolecule of dHb there is iron (Fe2+) in a paramagnetic high-spin state (S = 2), 

due to the fact that four of its six outer electrons are not coupled, and the global effect is to 

make dHb a paramagnetic indogenous contrast. When dHb combines with oxygen, iron receives 

electrons that switch it to a low spin state (S = 0) that make Hb diamagnetic (Pauling and 

Coryell, 1936). Neuronal activity elicits a reduction in dHb concentration in the venous blood in 

the surroundings of the activated areas. Due to dHb paramagnetic properties, its reduction 

corresponds to a smaller distortion of the local magnetic field, resulting in a slower dephasing of 

local protons. As a consequence of that, there is an increase in T2* that means higher T2-

weighted MR signal. In the next paragraph the haemodynamic-metabolic changes underpinning 

the signal enhancement are commented in detail and, furthermore, it is discussed how BOLD 

effect is driven by a non-intuitive decrease of dHb concentration in the activated areas. 

 

 

3.4 - Metabolic response to neural activity 

As stated in the previous paragraph, the physiological basis of the BOLD effect relies on an 

uncoupling between local increase of blood flow and oxygen consumption due to neural firing. 

The oxygen extraction fraction (OEF) is the ratio of oxygen consumed to oxygen delivered by 
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flowing blood. During resting state OEF does not vary, but if it was constant even during neural 

activation it wouldn't be possible to detect the BOLD signal (Raichle et al., 2001). 

Since the 1980s, experiments in the brain performed using positron emission tomography (PET) 

confirmed that during resting state the values of cerebral blood flow (CBF, that is also called 

perfusion, indicates the millilitres of blood that are delivered to each gram of tissue in a second) 

and of metabolic rate of oxygen consumption (CMRO2, that indicates the number of moles of 

oxygen consumed per gram of tissue per second) are proportional to each other. During neural 

activity instead, there is a mismatch between flow and oxidative metabolism (Fox and Raichle, 

1986). Fick's principle, relying on the conservation of mass, states that the oxygen consumption 

of the body is given by the rate of blood flow through the lungs multiplied by the difference in 

oxygen concentration between arterial and venous blood. Applying the Fick’s principle to the 

spine, CMRO2 and CBF are connected by the following formula (Tofts, 2005):   

 

CMRO2 = YA [CBF × 4(Hb
TOT

)] – YV [CBF × 4(Hb
TOT

)] = (YA – YV) [CBF × 4(Hb
TOT

)] 

 

CMRO2 is given by the blood flow multiplied by the total (oxygenated plus deoxygenated) 

concentration of haemoglobin (HbTOT, measured in moles per millilitre of blood) and by the 

difference between the oxygen saturation levels for arterial (YA) and venous (YV) blood. With 

oxygen saturation is meant the percentage of haemoglobin molecules that are in the oxygenated 

state. The factor 4 in the previous formula (Eq. 3.1) takes into account the fact that each 

haemoglobin molecule can transport 4 oxygen molecules. As reported by Tofts (2005), during 

resting state (in the brain): YA ≈ 1 and YA ≈ 0.6. The difference (YA – YV) = (1 – YV) represents 

the oxygen extraction fraction (OEF). The Fick’s principle yields important information about 

physiological change in CBF or blood oxygenation once that HbTOT and YA are constant.  

Differentiating equation (Eq. 3.1) it results (Tofts, 2005):  

 

      

     
  
    

   
   

   

     
  
    

   
  
    

   
 

 

Eq. 3.1 

Eq. 3.2 
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During neural activation an increase of CMRO2 occurs together with an increase of CBF and a 

decrease of OEF (that is YV has increased). The increase of the oxygenation level of the venous 

blood is the effect detected by BOLD functional technique. Similar calculations are performed 

by Kim and Ogawa (2012) as well. Fox and Raichle (1986) reported, during a somatosensory 

task, an increase in CBF (and glucose consumption) of about 30% and an increase of only 5% in 

oxygen consumption in the brain. Studies performed on animals assessed as well significant 

localized haemodynamic-metabolic changes in the spinal cord elicited by stimulation (Marcus et 

al., 1977; Sasaki et al., 2002; Brieu et al., 2010). 

A hypothesis to explain this uncoupling between blood flow and oxygen metabolism was 

suggested by Buxton and Frank (1997) that proposed a model in which a large flow 

enhancement is needed in order to create an oxygen concentration gradient between capillaries 

and mitochondria that finally leads to an increase in oxygen flux from capillaries to neurons.  

Buxton and Frank (1997) derived the following formula relating OEF and CBF:  

 

                    
                                   

 

where CBF0 and OEF0 stand for the resting values, while CBF and OEF for the values during 

activation. Assuming that HbTOT and YA don’t vary and substituting Eq. 3.3 into Fick’s equation, 

it yields:  

 

     

       
   

   

      
   

          
        

    
 

 

Eq. 3.4, that is plotted in Fig. 3.4, shows that a large flow increase is required in order to allow a 

little increase in oxygen metabolism. Although this model is a simplified version of what really 

happens, it is useful to explain the changes in blood flow and oxygen consumption that give rise 

to the BOLD effect. It is worth pointing out once more that, although in the original papers the 

mechanisms underlying the BOLD response referred to the brain, those very same mechanisms 

are valid in the spine as well. Notwithstanding the literature about spinal cord blood flow 

Eq. 3.4 

Eq. 3.3 
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(SCBF) is extremely limited compared with CBF, since the BOLD contrast depends on changes 

in blood flow and on magnetic properties of haemoglobin, the method is applicable both to 

brain and spinal cord (Yoshizawa et al.; 1996). 

 

 

                     

 

 

3.5 - Anomalies in the spinal BOLD effect: SEEP effect 

According to results obtained stimulating femoral and sciatic nerves in dogs, sheep and lambs 

(Marcus et al., 1977), there is an increase (up to 50%) in blood flow delivery in the ipsilateral 

grey matter of the spine. Moreover, in ipsilateral white matter and contralateral spine no 

significant increase in blood flow was detected. These findings were commented by the authors 

hypothesizing a high localized metabolic response elicited by spinal neural activity. Other 

studies performed in the cervical (Sasaki et al., 2002) and lumbar (Brieu et al., 2010) spinal 

cords of rats using intrinsic optical imaging techniques confirmed the localization of neural 

activity and of haemodynamic response elicited by peripheral nerve stimulation. Accordingly, 

applying and extending the principles of brain fMRI to the spinal cord seems a logical step. The 

first functional study assessing the feasibility of this technique applied to human spinal cord was 

performed in 1996 by Yoshizawa and colleagues. Ever since, SC fMRI has been used as a 

Fig. 3.4: Percentage change in oxygen metabolism vs the required percentage change in cerebral 
blood flow for a variety of resting oxygen extraction fraction values [from: Tofts, 2005]. 
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research tool to investigate spinal function in healthy controls and patients undertaking different 

kinds of sensory and motor tasks, but much more research is required to translate it to clinical 

use (Wheeler-Kingshott et al., 2014; Stroman et al., 2014). The literature about spinal fMRI is 

still very limited compared to that in the brain, due to low reproducibility and several technical 

challenges that must be tackled (Giove et al., 2004; Stroman, 2005; Wheeler-Kingshott et al., 

2014). The classic model of the BOLD contrast in the brain as described by Bandettini et al. 

(1994) predicts that fractional signal intensity change  S, in T2
*
-weighted data, can be 

approximated by the formula:   

 

  

 
           

 

   
     

 

TE being the Echo Time,   (1/T2
*
) the change in relaxation rate and with T2 replacing T2

*
 for 

Spin Echo imaging. This model relies on the assumptions that the signal change is small and its 

decay is characterized by a unique transverse relaxation rate. It has also been described as the 

signal changes detected from blood vessels are larger and do not follow this linear model. 

Anatomically, most of the vessels which penetrate into the spinal cord have sub-millimetric 

diameters and the larger vessels lie just on the surface and within the anterior median fissure. In 

grey matter of the spinal cord there are only tissues and small vessels, therefore the BOLD 

changes should follow this linear model. 

In 2001 Stroman et al. (2001a) carried out an fMRI study in the brain on 12 healthy volunteers 

with a visual paradigm at 1.5 T and 3 T using SE and GE (EPI) sequences. They found that 

fractional signal changes are similar in magnitude with SE and GE data at relatively short echo 

times. They reported that the intercept values extrapolated to TE=0 were 0.66% to 1.0% with 

SE-EPI, and 0.11% to 0.35% with GE-EPI. They hypothesized that the non-zero intercept 

values that deviate significantly from the accepted BOLD model, might be the result of a non-

BOLD component of the signal change during neuronal activity. They proposed a Signal 

Enhancement by Extravascular water Protons that was named SEEP effect. Other studies 

followed (Stroman et al. 2001b, 2002a, 2002b, 2003a, 2003b, 2005a, 2005b; Figley et al. 2010), 

Eq. 3.5 
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supporting the SEEP hypothesis. For example, Stroman et al. (2001b, 2002a) investigated 

contrast changes in the cervical spine of healthy controls over a range of echo times using a 

single-shot fast SE sequence. They found that fractional signal change extrapolated to TE=0 

was roughly 2.5% (Fig. 3.5). They hypothesized that in addition to the BOLD effect there is a 

baseline signal change which occurs together with neuronal activation. The other option would 

be that BOLD response in the spinal cord is a non-linear function of TE and the intensity change 

diminishes rapidly at lower TEs. 

 

 

 

 

 

The BOLD effect is an established technique used to detect neuronal firing and it is usually 

studied (in the brain) using T2
*
-weighted Gradient Echo pulse sequences with Echo-Planar 

Imaging readouts (GE-EPI). The BOLD effect can be detected using T2-weighted Spin Echo 

(TSE and SE-EPI) sequences as well but with less sensitivity. As reported by Menon et al. 

(1993) and by Bandettini et al. (1994) in their studies in the brain, SE sequences are 2 times less 

sensitive than GE sequences at the optimal TEs (TE= T2
*
 and TE=T2) in detecting the BOLD 

contrast. If TE is different from T2
*
 or T2, SE sequences can be 3.5 times less sensitive than GE 

sequences. 

Fig. 3.5: Fractional signal changes observed in the cervical spinal cord as a function of TE. Data are 
average values from 15 healthy volunteers scanned at 1.5T using a SE sequence. The solid line 
demonstrates the result of fitting with a nonlinear model, whereas the dashed line demonstrates 
a linear fit to data with TE=33ms only [from: Stroman et al., 2002a]. 
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In the spinal cord the ratio of signal changes with GE data to those with SE data is about 1 to 1 

and it is not in agreement with the BOLD theory (Stroman, 2005). Stroman et al. (2003a, 2003b, 

2005b) performed studies in the brain using PD-weighted sequences at short TE (21, 23ms) and 

found that in each experiment the signal enhancement was always around 2%, even using 

different magnetic fields (B=0.2T, 1.5T, 3T). He concluded that this intensity enhancement was 

not dependent on the field strength and therefore could not be due to the BOLD effect (Gati et 

al., 1997). 

Moreover, Stroman et al. (2003b, 2005b) compared the regions of neuronal activation obtained 

with GE sequences and with SE sequences and found that areas of SEEP activity are 

immediately adjacent to areas of BOLD activity, with very little overlap. These studies seemed 

to confirm a non-BOLD contribution to signal enhancement due to neuronal activity. 

Adding a few more details about Eq. 3.5, let us refer to Eq. 2.2 and rewrite it as: 

 

   ρ     
 

  
  

 
      

 
  
         

 
  
  

 
  

 

being ρ     the proton density, TR the repetition time, T1 the longitudinal relaxation time, S0 the 

signal at the echo time TE=0 (T1 dependent term) with T2 replacing T2
*
 for Spin Echo imaging. 

The fractional signal change during activation can be expressed as:  

 

  

 
   

   

  
          

 

  
    

 

In Eq. 3.7 the signal enhancement is due to the term in Eq. 3.6 plus a TE-independent term that 

depends on spin density changes and includes contribution from inflow effects (T1). However, 

in the BOLD theory, spin density can be considered constant and inflow effects, more evident 

for T1-weighted imaging, can safely be neglected for typical EPI-acquisition with TR >1 sec 

(Gao and Liu, 2012). 

 

Eq. 3.7 

Eq. 3.6 
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3.6 - Criticism about SEEP effect 

Early studies concerning the characterization of functional MRI in the spine were carried out on 

healthy volunteers by Yoshizawa et al. (1996), Stroman et al. (1999), Madi et al. (2001), Backes 

et al. (2001). They all used a hand motor task to look for activated voxels in the cervical spinal 

cord. They used GE sequences with TE between 40-50msec at 1.5T and TE around 30msec at 

3T because these are the ones typically used in the brain. They concluded that fMRI in the 

spinal cord is feasible even if there are many difficulties that this technique implies. 

The SEEP effect was first hypothesized by Stroman et al. (2001a, 2001b) and relies on proton-

density weighted imaging (see section 2.4). Worldwide there are just a few groups investigating 

spinal fMRI and there are controversies concerning different methodological approaches. At 

present, the blood-oxygen-level-dependent (BOLD) contrast is the mainstay of fMRI 

neuroimaging and the SEEP effect has been viewed more recently with scepticism. Jochimsen 

et al. (2005), for example, argued about the correlation between the increase of water proton 

density and neuronal activity. They performed fMRI experiments in the brain using a SE-EPI 

sequence with short TEs on a 3T scanner and their results did not confirm the hypothesis of a 

significant increase in extravascular proton density at TE=0. They found that the fMRI signal 

change vanishes if extrapolated to TE=0 and concluded that the SEEP effect is negligible. They 

proposed an alternative explanation of the results that Stroman et al. (2001a, 2003a, 2003b) 

obtained using SE sequences with short TEs. They suggested an artificial offset in functional 

contrast due to the inclusion of false positives generated by the low threshold used to detect the 

activated voxels. They claimed the SEEP effect was generated purely by the particular strategy 

of evaluating fMRI data and did not reflect any physical effect. Nonetheless, this study cannot 

explain the ability to measure changes in proton density at very low magnetic field strengths 

(0.2 Tesla) as reported by Stroman et al. (2003a), Geng Li et al. (2005), and Man Cheuk Ng et 

al. (2006). Furthermore, it does not preclude the possibility of proton density changes in 

different areas from ones where neuronal activity is detected with the BOLD contrast. Stroman 

et al. (2005b) in a further study replied to Jochimsen's experiment, questioning the accuracy of 

the applied methods. In Jochimsen's study, fMRI scans in the brain were carried out on 8 
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healthy volunteers. Each subject was scanned at 4 different TEs (9, 19, 29, 39msec) during 

different sessions using a visual paradigm. An fMRI scan with TE=80 msec was acquired as a 

reference to create a fixed mask of activated voxels to compute signal changes for the fMRI 

scans performed with the shorter TEs. Stroman's group pointed out that those masked voxels 

activated at TE=80msec and more sensitive to the BOLD effect, wouldn't be activated at short 

TEs because the SEEP effect (more important at small TEs because of the proton-density 

weighting) is elicited in different areas. Stroman et al. (2005b) confirmed a previous finding by 

his own group (Stroman et al., 2003b): areas of SEEP activity are immediately adjacent to areas 

of BOLD activity, with very little overlap. Moreover, Jochimsen's group results were derived 

from masks consisting of all activated voxels with p<0.005 at TE=9msec and reported an 

average signal enhancement of about 0.75% on an average over 65 activated voxels in the visual 

cortex of 6 out of 8 volunteers. If all the voxels activated at the different TEs were included in 

the analysis, the extrapolation value at TE=0 was 0.82+/-0.07% that is consistent with the value 

of 1.03+/-0.19% reported by Stroman et al. (2001a) using a 3T scanner. 

Figley et al. (2010) contested Jochimsen's study applied Bonferroni correction on about 1700 

voxels which was too harsh. They concluded that Jochimsen's experiment relied on assumptions 

that reduced the sensitivity of data to non-BOLD effects. 

Other criticisms about SEEP effect were directed by Yacoub et al. (2003) and Jin et al. (2006) 

that, using SE sequences, investigated the non-linear TE-dependency of signal changes and 

found results similar to Stroman’s findings. Yacoub et al. (2003) performed a functional study 

at 4T and 7T in the brain of healthy controls and Jin et al. (2006) at 9.4T in the brain of cats. 

Both studies found that the application of flow-crushing gradients, removing vascular signal 

contributions, could make linear the TE-dependent signal change. Eventually, they both claimed 

that the non-linearity behaviour was due to a change in blood vascularity rather than to an 

increase in extravascular spin density. 

The terms ‘BOLD signal’ and ‘fMRI signal’ are often used synonymously, although there are 

other functional methods that do not rely on changes in deoxyhaemoglobin concentration in 

blood vessels, and SEEP effect is one of these. SEEP effect has been suggested to be a non-

haemodynamic fMRI method that exploits the signal from the fluid that is pushed out of the 
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cells during cellular swelling related to neural activity. Another non-haemodynamic method was 

reported in the brain by Le Bihan and colleagues (Le Bihan et al., 2006; Le Bihan, 2007) that, 

using high b-value diffusion-weighted fMRI, claimed to detect changes in activity-related 

cellular swelling. There are other functional haemodynamic techniques used to detect 

neurovascular and neurometabolic changes correlating with neuronal activity, such as VASO  

(VAscular-Space-Occupancy) fMRI (Lu et al., 2003, 2012, 2013) and ASL perfusion (Detre et 

al., 2002; Borogovac et al., 2012) and investigate changes in blood volume and blood flow.  

However, Stroman et al. (2014) suggested that, depending on the way a spinal functional study 

is performed, neuronal activity is detected as a combination of BOLD and SEEP contrasts 

whose contributions vary according to the used MRI parameters. Nevertheless, the optimal 

combination of parameters to obtain the best combination of sensitivity, localization, contrast 

and reliability is not known.  

The SEEP effect is still debated in literature, and not completely accepted by the scientific 

community. Although there are studies performed with different techniques (Hennig et al., 

1995; Ohta et al., 1996; Fujita et al., 1997; Darquié et al., 2000) that seem not to deny the 

possibility of an increase in water concentration (due to an increase in cells size) elicited by 

neuronal activation, there are others (Kim and Ogawa, 2012) that report that there is no clear 

evidence whether this phenomenon can be exploited to map neuronal activity and, in particular, 

if it provides a valid alternative to BOLD effect in the spinal cord.   
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CHAPTER 4 – PREPROCESSING 

 

Introduction 

Functional MRI of the spinal cord has shown to be technically feasible using different methods 

(Yoshizawa et al., 1996; Stroman, 2005; Brooks et al., 2008; Bouwman et al., 2008; Cohen-

Adad et al., 2010). Nevertheless, performing fMRI in the spinal cord requires appropriate 

modifications of standard brain fMRI protocols and obtaining good results is not 

straightforward due to several issues, such as: small cross-sectional size of the spinal cord grey 

matter, susceptibility artefacts, lack of dedicated software, physiological noise (Giove et al., 

2004; Stroman, 2005, 2014; Leitch et al., 2010; Wheeler-Kingshott et al., 2013). Considering 

spinal fMRI just an extension of fMRI in the brain and thus applying the same pre-processing 

steps performed in the brain might not be correct. This issue should not be underestimated 

because results may be biased by how data are analyzed. Regrettably, there is no standard 

pipeline (Cadotte et al., 2012; Wheeler-Kingshott et al., 2014) for analysing functional spinal 

data and this causes several limitations in comparing results from studies that use different 

analysis methods. 

This chapter focuses on work that I performed on developing pre-processing steps of spinal 

fMRI data: realignment, slice-timing and smoothing. The aim was to evaluate the most suitable 

analysis pipeline for functional datasets in the spine, giving a critical opinion (based on in-vivo 

results) of both advantages and drawbacks of each step.  
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4.1 - Effects of realignment 

This is the first of 3 sections (4.1 - 4.3) in which different studies are reported, aiming at 

evaluating the best strategy to be adopted in the analysis pipeline. 

The first pre-processing step that I am going to deal with is realignment. Changes in signal 

intensity over time in any voxel can be caused by motion and this is a serious confound for 

fMRI. Despite cooperative subjects and restraints on their movements, it is not possible to keep 

subjects perfectly still. There will always be displacements of up to several millimetres. In the 

spine, movement is an important issue, more than in the brain, due to the fact that the spine is 

located close to lungs and heart and so it can be easily affected by their movements. The time 

evolution of each activated voxel, represented by a time-series, is related to neuronal activity 

underlying the blood oxygen-level-dependent response. Realignment is needed in order to study 

how signal changes throughout the acquisition of different volumes but, regrettably, there is not 

any standardized method to realign spinal cord volumes. Without considering the inter-subject 

realignment that is hindered by lack of commercial software including a spinal template, even 

the intra-modality intra-subject realignment is questionable.  

 

4.1.1 - Purpose  

To assess the best way to realign a functional dataset acquired in the spine. 

 

4.1.2 - Materials and Methods  

Aiming at finding the best way to realign the volumes of a functional dataset I measured the 

TSNR in 20 voxels in the spinal cord of 5 subjects that undertook a resting-state scan.  ZOOM 

sequence was used and the imaging parameters were those reported in section 2.8. 

The slices were prescribed transverse to the cord and the central slice was always placed in the 

middle of the C6 spinal segment. The TSNR was calculated using 3 different realigning 
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methods that can be found in published papers:  

 

1) 3D rigid-body realignment with 6 degrees of freedom using SPM software (Valsasina et 

al., 2008, 2010; Agosta et al., 2009a, 2009b; Nejad et al., 2014). 

 

2) 3D rigid-body realignment of cropped images with 6 degrees of freedom using SPM 

software (Nash et al., 2013). 

 

3) 2D slice-wise realignment with FSL (flirt) software (Brooks et al., 2008, 2012; Cohen-

Adad et al., 2010; Cohen Adad and Wheeler-Kingshott, 2014; Stroman et al., 2014) 

allowing corrections for translations in the x,y plane and rotations along the z axis. 

 

In developing 3) I implemented a 2D-realignment procedure using FSL software (FLIRT) 

commands wrapped together using MATLAB (or, in an equivalent way, using C++). Only 

translations in the x,y plane and rotations along the z axis were allowed, as suggested by Cohen-

Adad et al. (2009b).  

 

4.1.3 - Results  

I have reported results from the different realignment methods in Table 4.1. These 

measurements were obtained from voxels of grey matter (spotted on the mean images) and 

averaged over the five subjects. 

Within each method, TSNR results were similar between the subjects. The best way to realign 

images was the 2D-realignment that guaranteed an average TSNR of 12.4 (+/-1.0). Cropping 

images resulted the worst way to realign images, with an average TSNR of 7.3 (+/-0.6) and the 

3D full-image realignment had an average TSNR of 8.2 (+/-0.6).  
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4.1.4 - Conclusion and Discussion  

2D-realignment optimized the motion-correction for axial spinal cord image series.  

3D-realignment instead, visually checked, didn't look good: there was a loss of data at edges of 

the volumes and the slice at the top and the one at the bottom appeared incomplete (Fig. 4.1). At 

the beginning, I opted to discard these slices and to consider in the analysis only the central 

ones, but then I deemed the possibility that these ones also might be realigned incorrectly. 

Results in Table 4.1 refer to the analysis with SPM8, as done in previous papers (Valsasina et 

al., 2008, 2010; Agosta et al., 2009a, 2009b; Nejad et al., 2014), however, I performed TSNR 

calculations in one subject using both SPM8 and FSL and results showed negligible differences.  

Recently, there is a trend toward performing slice-by-slice realignment in the spine (Brooks et 

al., 2008, 2012; Cohen-Adad et al., 2010; Cohen Adad and Wheeler-Kingshott, 2014; Stroman 

et al., 2014) although 3D-realignment is still accepted (Valsasina et al., 2008, 2010; Agosta et 

al., 2009a, 2009b; Nash et al., 2013; Nejad et al., 2014). 

In particular, in a recent paper by Nash et al. (2013), 3D rigid-body motion correction was 

performed after cropping the images and accounting only for the area included within the spinal 

cord. A criticism might be that realignment algorithms usually exploit spatial information from 

distinguishable structures (bones, muscles, tissues) included in the FOV but lying outside the 

cord. Due to the subtle contrast in functional images between different tissues within the cord 

and  to  the  small area  of  it,  masking  the  cord might  hinder  the realigning  process  and  this  

Table 4.1: TSNR obtained in the subjects using the 3 different realigning methods. Mean values and 
standard deviations are reported as well. 
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procedure might not be correct. Furthermore, functional scans were masked using an anatomical 

scan as reference but it was not reported whether the anatomical scan was only used as visual 

reference or it was included into an automatic processing. However, in the pilot study I 

performed, images were cropped in such a way to include a slightly larger region, comprising 

spinal canal and bones too (Fig. 4.2). This was made in order to facilitate the detection of the 

spine by the realigning algorithms that work minimizing the sum of squares of the image 

difference between a pair of images (Woods et al., 1992; Friston et al., 1995). Nevertheless, 

results were inadequate.  

 

 

Slice-by-slice realignment is recommended because it takes into account non-rigid motion of 

structures through the slices and thus it is more suitable than a 3D rigid-body motion-correction. 

Fig. 4.1: Incomplete image of a slice at the bottom of a volume after applying 3D realignment using 
SPM8. 

Fig. 4.2: Example of cropped image used for testing the 3D realignment. 
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Theoretically, slice-wise realignment could be performed using SPM8 too, modifying a 

MATLAB file called ‘SPM_realign.m’ included in the SPM8 package. The 2D-realignment 

option resulted to be the most suitable in the spine and will be applied to all functional datasets 

analysed in the following of this thesis. Nevertheless, it is important to underline that too large 

movements might invalidate the realignment, because of the local spatial distortions in the 

spinal shape due to the change in location within the magnetic field (Jezzard and Clare, 1999). 

 

 

4.2 - Effects of slice-timing 

Slice-timing correction involves the correction of differences in timing across different slices 

acquired at different times within the same volume. It is usually considered optional and not a 

main issue of the pre-processing analysis, in fact, there are spinal functional studies: 

 

1- Performing slice-timing correction (STC) as the first step of the analysis (Cohen-Adad 

et al., 2009a). 

 

2- Not performing slice-timing but adding time-derivatives (TD) in the GLM instead 

(Cohen-Adad et al., 2010). 

 

3- Not mentioning about slice-timing at all (Govers et al., 2007; Brooks et al., 2008).  

  

4.2.1 - Purpose  

To assess the influence of timing corrections comparing results from the GLM analyses in terms 

of the t-values.  

 

4.2.2 - Materials and Methods  
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Five volunteers were scanned using the ZOOM sequence and the imaging parameters were 

those reported in section 2.8. Functional scans were performed with sensory stimulation of the 

palm of the left hand of each subject with a pointed object at the rate of about 5 Hz. The block 

design comprised 10 rest epochs alternating with 10 stimulus epochs, each lasting 36 seconds.  

The 9 slices were prescribed transverse to the cord and the central slice was always placed in the 

middle of the C6 spinal segment (Fig. 4.3). I have tested each of the 3 approaches mentioned 

above, i.e.: using slice-timing correction (STC), adding time-derivatives (TD) to the GLM and 

applying no corrections to the data (UN). 2D-realignment was applied to all datasets and 

movement parameters were included in the GLM analyses. Only the activated voxels deemed 

inside the spinal cord were considered in the results. Results were evaluated comparing the t-

values: the best method gave the largest t-values, reflecting the best fit of the model to the 

experimental data. 

 

 

 
 

4.2.3 - Results  

Most of the activated voxels found using the different methods overlapped.  

Using STC, in all subjects the number of activated voxels inside the spinal cord was very close 

to one obtained not applying any corrections (Fig. 4.4). For 3 subjects, the mean t-values 

obtained with these two approaches (STC and UN) were identical within the error bars of one 

Fig. 4.3: Localization of the slices. 
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standard deviation (Fig. 4.5). In two cases instead, the mean t-values obtained applying STC 

were slightly higher.  

For 4 subjects, activated voxels obtained applying TD were the same as the case in which no 

correction was performed (Fig. 4.4) and the mean t-values were very similar for all subjects 

(Fig. 4.5). 

 

 

 

 

 

 

 

 

 

Fig. 4.4: Number of activated voxels within the SC of the 5 subjects obtained using Slice Timing 
Correction (STC), Temporal Derivatives (TD) and not applying any correction (UN). 

Fig. 4.5: Histograms of the mean t-values for the activated voxels within the SC of the 5 
subjects obtained using Slice Timing Correction (STC), Temporal Derivatives (TD) and not 
applying any correction (UN). 
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4.2.4 - Conclusion and Discussion  

At this stage of the analysis we are not really interested in the spatial localization of the 

activated voxels. Any comments about it are postponed to the next chapters, where a more 

complete pre-processing pipeline will be performed.  

Both STC and TD had a negligible influence on the final results. Neither using STC nor TD 

changed meaningfully the number of activated voxels (and their location) and their significance. 

In conclusion, I opted to not perform any time correction to the datasets acquired in this thesis 

due to the fact that this pre-processing step does not offer any advantage. 

In a similar study performed in the brain (Sladky et al., 2011), at both single-subject and group 

levels, a few TRs and paradigm designs have been tested. In this paper the authors suggest to 

perform slice-timing correction (at single-subject level) because ‘it can suppress bias in 

quantitative parameter estimates (β values)’. Moreover, they report that choice to use 

derivatives is arguable and does not have a significant influence on the results. 

In the study I performed instead, only the TR and paradigm design that I would use in the rest of 

my thesis were considered. Although I have discussed the results in terms of t-values (t) instead 

of β values, the underlying idea is the same as in Sladky’s et al. paper (2011). The role of the 

parameter estimate in the statistics, also called the estimated β value, will be discussed in detail 

later in this thesis (section 5.1). 

However, it is possible to obtain t from a parameter estimate considering the uncertainty in its 

estimation (standard error, SE):  

 

    
β

    β 
 

 

In conclusion: β, t and p-value give information about how well the model fits the data for a 

certain voxel. If a voxel does not present activation, the β value is not significantly different 

from zero. In such a case, the evaluated t is lower than the significance threshold. In other 

words, probability that the time course of that voxel is driven by neural activity is lower than the 

Eq. 4.1 
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threshold. For the present study: t=2.35 corresponding to p-value<0.01 (uncorrected) threshold 

was considered. 

 

 

4.3 - Effects of smoothing 

In the literature, there are several studies reporting the effect of smoothing on functional 

datasets, pointing out at both advantages and drawbacks (Geissler et al., 2005; Friston et al., 

2006; Triantafyllou et al., 2006; Jo et al., 2007; Weibull et al., 2008). 

Smoothing involves a convolution of the fMRI data with a 3D Gaussian kernel of specified full-

width at half-maximum (FWHM) and its effect is to replace the value of each voxel with the 

weighted average over its surrounding region. It results in a blurring of the image and in a more 

pronounced spatial correlation within the data. 

Smoothing is commonly used for several reasons: to increase the SNR (signal-to-noise ratio), to 

make the error distribution more normal to comply with the GLM (General Linear Model) 

assumption, to improve spatial overlap by blurring over minor anatomical differences and 

registration errors (Worsely and Friston, 1995; Friston et al., 2006). 

In general, smoothing is highly recommended (Friston et al., 2006) in group studies because it 

reduces the variation between different subjects, increasing the overlap of activated areas across 

subjects. Dealing with single subject studies in the spinal cord instead, usefulness of smoothing 

is still debated. Some researchers prefer to smooth spinal datasets, although using different 

Gaussian kernel sizes (Madi et al., 2001; Cohen-Adad et al., 2007; Kong et al., 2012), others do 

not apply any smoothing instead (Stracke et al., 2005; Valsasina et al., 2008, 2010; Agosta et 

al., 2009a, 2009b; Summers et al., 2010; Xie et al., 2012). 

 

4.3.1 - Purpose  

To show the effect on the statistical maps of smoothing the spinal functional data.  
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4.3.2 - Materials and Methods   

This study, including 5 subjects, was performed using the ZOOM sequence with the imaging 

parameters reported in section 2.8. Functional paradigm and slices prescription were the same as 

in section 4.2. 2D-realignment was applied to all datasets and movement parameters were 

included in the GLM analyses.  

 

4.3.3 - Results   

A comparison between results obtained applying 2 mm FWHM smoothing and no-smoothing is 

shown in Fig. 4.6.  

     

 

 

 

Fig. 4.6: Activations detected in the 5 subjects applying 2 mm FWHM smoothing (in yellow) and no-
smoothing (in red) overlaid on the mean image. The slice number refers to Fig. 4.3. 
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4.3.4 - Conclusion and Discussion  

As underlined in the previous subsection 4.2.4, a deeper analysis of the elicited neuronal activity 

will be discussed later, after introducing physiological regressors to model the structured noise.  

The main drawback about smoothing the images is the reduction of spatial resolution.  

I chose to report only the results obtained applying a small amount of smoothing because a 

larger amount would make the activation blobs too large to be deemed real on anatomical basis 

(see below).  

The images from the proposed pilot study suggest that smoothing spinal images may be a 

disadvantage. This statement is supported both experimentally and theoretically by the 

following reasons. Smoothing might cause activation blobs to spread both in and through the 

spine, making really difficult to draw any conclusion about reliability of neuronal activity. Due 

to the small size of the spine, the location of activated voxels needs to be as much accurate as 

possible, as false activations in the CSF might be only a few voxels far from plausible neuronal 

activity in the grey matter. Furthermore, considering an axial spinal image, neuronal activity is 

expected to have an extent of about 3-4 mm
2 
(Standring et al., 2005) and thus, using voxels with 

in-plane dimensions of 1.19 x 1.19 mm
2
 (the one that I used), only 2 or 3 voxels would be 

expected to be activated. Blurring images makes the dataset prone to partial volume effects and 

may result in shifting of activation and merging of distinct blobs of activation (Lindeberg et al., 

1999; Mikl et al., 2008). Reasonably, the approach that I would suggest is to apply smoothing 

small enough that it doesn't reach across the white matter to incorporate CSF signal in the grey 

matter signal, and big enough that you should get a slight SNR improvement. Unfortunately, 

spatial specificity in the spinal cord is easily lost, even applying a small amount of smoothing 

(Fig. 4.6). Two activated voxels (or two distinct blobs of activation) will merge into one if their 

distance is less than twice the FWHM of the Gaussian kernel used. It should be also noted that 

an increase in SNR might have a negligible benefit if spatial specificity is lost, especially when 

there are such small regions to be investigated. Moreover, if the filter width is set too small, 

there is practically no positive effect on the SNR while the spatial resolution is reduced.  

For all these reasons, I have opted not to smooth the datasets analysed in the next chapters. 
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CHAPTER 5 - PHYSIOLOGICAL NOISE 

 

Introduction 

Another important aspect of signal fluctuations is given by the cardiac- and respiration-related 

physiological noise. After having discussed preprocessing steps in chapter 4, here physiological 

noise is tackled. A theoretical basis is introduced and different methods aiming at reducing 

structured noise are discussed. To begin with, a discussion upon the general linear model and its 

usefulness in the functional analysis is reported. Two studies are presented in this chapter. The 

first one includes a comparison between results obtained applying a RETROICOR-like method 

and the DRIFTER algorithm. The second one is a test-retest reliability study analysed with the 

pipeline developed in chapter 4 and including both CSF regressors and physiological (cardiac 

and respiratory) denoising. The literature concerning the topics investigated in each study is 

revised before presenting the study.    
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5.1 - General Linear Model 

The general linear model (GLM) has been used for over 20 years to analyse functional datasets 

and, because of its simplicity, it is still pivotal in fMRI statistical analysis.  

A GLM is used to fit a model to the experimental data. A good fit means a high probability for 

the activation to be stimulus-induced. The model is a pattern that data are expected to follow 

and, in case of block design, this model is given by the convolution of an input function, 

mimicking the spike of synaptic activity, and a boxcar function that is different from zero 

during the stimulation periods. The maths behind the convolution will be dealt with more in 

detail in section 6.2. 

The GLM theory relies on the assumption that experimental data can be expressed by additions 

and subtractions of known data (independent variables), that are weighted with appropriate 

coefficients, and an error function. The error function is characterized by a zero mean Gaussian 

distribution (Friston et al., 2006; Poline and Brett, 2012) and contains the variability of the 

experimental data that is not explained by the independent variables. 

The GLM is usually reported using its elegant matrix formulation:  

 

            

  

In Eq. 5.1 the data matrix Y (that represents the observed response) is given by the product of 

the design matrix X (also called independent variables, including all the explanatory variables) 

and the matrix β (containing all the scalar parameters) plus an error matrix. The response (also 

called dependent variable) can thus be described in terms of a linear combination of explanatory 

variables weighted with the β coefficients (plus an error term). These explanatory variables, 

represented by the columns of the design matrix, are often referred to as regressors or covariates 

and each of them models a cause of the data (Smith, 2004; Friston et al., 2006; Poline and Brett, 

2012). 

After having described the variables embedded in the GLM, let’s now consider a specific 

example that allows us to rewrite Eq. 5.1 in terms of a system of equations and to better 

Eq. 5.1 
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understand the matrix notation used. The voxels in the images are statistically processed by 

SPM8 software using a univariate approach (i.e. the model is applied to each voxel in the same 

way) and this allows us to refer to just one voxel. Considering a certain voxel denoted by the 

index j (with j=1, ... , J), let us suppose to measure the value of a response variable Y related to 

that voxel (e.g. the signal) in all the scanned volumes.  

Let us indicate with Yj(t) the function corresponding to the variable throughout all the time 

points:  

   

                         

 

where xj(t) stands for the model, β for a coefficient and ej(t) is the error function.  

Eq. 5.2 is a very simple case, but if the model is made up of k =1, ... , K (K<J) explanatory 

variables, at a generic time point it is possible to write: 

 

         
 
                                           

 

The previous Eq. 5.3 refers to just one observation, however, considering all J indices, it 

follows: 

  

            
 
                                           

                                               

           
 
                                            

                                                  

           
 
                                            

 

The system of equations above (Eq. 5.4) can be written in the equivalent matrix form: 

Eq. 5.2 

Eq. 5.3 

Eq. 5.4 
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that is the expanded expression for Eq. 5.1, showing explicitly that each of the K columns of the 

model represents a regressor and each row refers to a different observable. The error functions 

are independent and Gaussian distributed. 

The GLM can be used to regress out the covariate corresponding to a confounding variable (also 

called extraneous variable, confound or confounder) that correlates with both dependent and 

independent variables and whose effect is misleading for the purposes of detecting stimulus-

induced neuronal activity. Time evolution of functional signal in an activated voxel throughout 

all the volumes can be affected by sources of noise whose effects cannot be neglected. A GLM 

allows us to rule out, or at least reduce, these unwanted effects. This is the case of physiological 

noise or movement that can be accounted for introducing appropriate regressors into the 

experimental design (i.e. the paradigm convolved with a HRF). 

 

 

5.2 - Upon the cardiac-gated technique 

As reported in previous studies (Dagli et al., 1999; Piche et al., 2009), the main contribution to 

physiological noise has got cardiac origins and for this reason, such contribution cannot be 

neglected in the analysis. Cardiac-gating consists of acquiring a slice a few hundred 

milliseconds after a heart peak but before the following peak, in such a way to reduce the 

cardiac-related signal variability. 

However, it introduces additional signal variance due to T1-effects and implies further 

corrections not easy to work out using available software for functional analysis. Furthermore, 

heart rate could correlate with the experimental paradigm giving false statistical activations 

(Tousignant-Laflamme et al., 2005).  

Eq. 5.5 
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Guimaraes et al. (1998) and Malinen et al. (2006) performed studies employing cardiac-gating 

techniques that resulted in a longer acquisition time because of the dependence of the duration 

of scanning session on subjects’ heart pace instead of on the TR. 

They suggested a formula to correct (in each voxel) for the different amount of recovered 

longitudinal relaxation related to different TRs, that is usually referred to as T1-effect(s) or 

partial saturation effect(s).  

The proposed formula is:  

 

                 
  

  
    

  
   

 

where:      is the measured signal for the i-th voxel and the n-th acquisition,      is the 

maximum signal in the absence of T1 relaxation, tn is the time between the volumes n-th and (n-

1)-th, T1,n is the longitudinal relaxation time for the tissue included in the n-th voxel. However, 

this approach is tricky and has limitations in the assumption of a single T1 value for each voxel, 

neglecting possible partial volume effects. Moreover, this issue might be worsened by a not 

accurate realignment. In most functional studies a constant TR is used and cardiac-induced 

variations of the signal are minimized by incorporating an appropriate physiological regressor 

into the GLM analysis. The basic idea underpinning the cardiac regressor (Hu et al., 1995) relies 

on the possibility to associate a unique cardiac phase to each slice and thus, to relate the cardiac 

pulse to the signal variability. This method will be discussed in detail in section 5.6. 

 

 

 

 

Eq. 5.6 
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5.3 - Upon the breath-holding technique 

In early papers breath-holding technique has been used (Stroman et al., 1999; Stroman and 

Ryner, 2001), however, it is wiser trying to model the signal fluctuations caused by respiration 

rather than asking subjects to hold the breath many times within a scanning session. Firstly, not 

all the subjects undertaking breath-holding, and especially patients, are able to perform it 

correctly, i.e. keeping always the same volume of air during the repeated breath-holdings. 

Secondly, another issue concerns variations of depth and rate of breathing that result in blood 

flow and oxygenation changes. As reported by Van den Aardweg et al. (2002), changes in 

respiration are related to fluctuations in the level of CO2 that, having vasodilator properties, may 

cause either vasodilation or vasoconstriction, depending on concentration. Moreover, it has been 

assessed that respiration elicits motion of the chest, causing magnetic field inhomogeneities (Raj 

et al., 2001; Brosch et al., 2002) and thus signal changes.  

As reported in the next section 5.4, different techniques aiming at reducing the physiological 

fluctuations of MRI signal due to respiration have been developed, however, most of them rely 

on the histogram-based method (Glover et al., 2000) that will be discussed in detail in the 

sections 5.6 and 5.8.   

 

 

5.4 - Literature: overview of physiological denoising 

As previously mentioned, results obtained in the spinal cord fMRI have often been 

controversial. The reason can be sought in the way the different experiments were performed. 

The choice of the sequence and imaging parameters used is of primary importance but there are 

also other important aspects that cannot be neglected, such as the type of stimulus and its 

duration, frequency, interstimulus interval, stimulus intensity and the number and timing of 

rest/activation epochs (Cadotte et al., 2012). All of these factors can affect the activity of spinal 

neurons, as reported in classical electrophysiology experiments by Wall et al. (1979). The post-



 

82 
 

processing of functional data is another issue that is still controversial. It has been demonstrated 

that applying physiological regressors that model the effect of physiological noise aids the 

identification of neuronal activation improving discrimination of activation and reducing false-

positive detection. Such a technique was developed by Glover et al. (2000) and further on 

implemented via a general linear model (GLM) approach by Restom et al. (2006). This 

technique that allows the correction of physiological motion effects was named RETROICOR 

(RETROspective Images CORrection). The correction method assumes that the time series in a 

pixel is corrupted by additive physiological noise. Respiration effects and cardiac pulsatility can 

induce signal modulations in functional MR image time series that increase noise and degrade 

the statistical significance of activation signals (Glover et al., 2000). RETROICOR-like 

methods aim at reducing these physiological additive noise components fitting with low-order 

Fourier series expansions the cardiac and respiratory traces recorded during the fMRI 

acquisition and removing their effects from images. In order to achieve this purpose the cardiac 

and respiratory phases associated to each slice within the respective cardiac and respiratory 

cycles have to be computed.  

So far, different approaches have been studied independently by different groups, each one 

developing the method in a slightly different way. I quote, for example, the studies by Lund et 

al. (2006), Stroman (2006), Brooks et al. (2008), Deckers et al. (2006), Särkkä et al. (2012). 

Lund et al. (2006), assuming that the cardiac cycles do not change dramatically over a TR, 

computed the physiological regressors within a RETROICOR-like framework using the 

acquisition time of the first slice in a volume and applying the same parameters to all slices in 

the volume. They found that this method allowed a substantial reduction in the structured noise 

in fMRI residuals. Nonetheless, it does not take into account the rate-changing in heart beat that 

is a source of phase variation.  

Stroman (2006) decomposed recorded physiological data into their constituent signals by 

principal component analysis (PCA) and afterwards included them in a GLM. The phases of the 

cardiac and respiratory cycles were different at the time of acquisition of each slice. Results of 

this study showed that no specific improvements were detected including respiratory regressors 

in the GLM and they concluded that cardiac effects are the main source of physiological noise 
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in spinal cord imaging. It might be that the Turbo Spin Echo sequence that they used enabled 

them to obtain images that were less sensitive than Gradient-Echo sequences to respiration-

related susceptibility differences. This method was further optimized by Figley and Stroman 

(2009) with Turbo Spin Echo sequences mainly for cardiac-related noise. A database of 100 

spinal fMRI datasets was analysed with and without adding the regressors in the GLM. Results 

obtained regressing out the cardiac-related noise showed an increase in specificity (5–6%) and 

sensitivity (15–20%) to neuronal activity.  

Brooks et al. (2008) presented a RETROICOR-based method comprising a total of 37 

regressors. They modelled the cardiac effects using the sine/cosine values of the principal 

frequency and the next two harmonics. The respiratory trace was instead modelled using just the 

fundamental and the first harmonic frequency. Moreover, additional multiplicative sine/cosine 

terms were added to the Fourier expansion accounting for interactions between cardiac and 

respiratory effects. As reported in a previous study by Friese et al. (2004), spinal EPI data might 

present a structured noise due to interaction of cardiac and respiratory effects. Finally, they 

added three further regressors to account for: CSF effects, rate and depth of breathing (RVT-

Respiration Volume per unit Time) and temporal derivative of RTV (for small variations of the 

haemodynamic response function). All regressors were then used in the GLM included in the 

FSL package. Results confirmed the capability of this method to remove physiological noise. 

Nonetheless, as noted by the authors themselves, the inclusion of a large number of regressors 

in the GLM reduces statistical power for potentially limited advantages in terms of additional 

noise modelling. Furthermore, each regressor will not be totally independent from stimulus-

derived regressors and this might affect the sensitivity to detect activations. In a paper by 

Deckers et al. (2006) a selective averaging filter (SAF) method is presented. The method was 

applied to 6 healthy volunteers to regress out cardiac and respiratory noise using Gradient-Echo 

EPI sequences in the brain. Performance was found to be at least equivalent to the previously 

published RETROICOR methods. Physiological signals are expanded in terms of a finite 

impulse response (FIR) basis set of the phase values (similar to what RETROICOR does with 

Fourier series). Imaging data are averaged according to their acquisition time relative to the 

nearest respiratory and cardiac event; that is all MRI data that are in the same interval of 
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acquisition time relative to, for example a cardiac peak or an end-inspiration, are averaged. This 

selective averaging results in a suppression of signals whose timing does not correlate with the 

event (including random noise). Recently, Kong et al. (2012) reviewed different model-based 

physiological noise correction techniques for spinal cord fMRI in the framework of the GLM. 

They applied thermal pain and punctate stimuli to elicit spinal cord activations with Gradient-

Echo-based BOLD acquisitions. Results pointed out that: 

 

 Using 32 nuisance regressors obtained modelling the cardiac and respiratory trace 

by the RETROICOR-like approach presented by Brooks et al. (2008) gave best 

results in terms of residuals after model fitting, number of activated voxels inside 

the cord and F-test results, if compared with the selective averaging filter (SAF) 

method. 

 CSF regressor could explain a significant amount of unmodelled signal variance 

and increase activation statistics. 

 Including motion correction parameters from 2D realignment as nuisance regressors 

increased the number of activated voxels inside the spinal cord. 

 Including regressors that accounted for variations in heart beat (HR) and the rate 

and depth of respiration (RVT) reduced the number of activated voxels inside the 

cord due to non-zero correlation with the task.   

 

It was also suggested using pre-whitening in addition to physiological noise correction in order 

to remove additional non-white noise from the data.  

All studies quoted above confirm that there is not a standardized way in applying physiological 

regressors, anyway results always seem to confirm the utility of regressing out physiological 

noise. 
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5.5 - The DRIFTER software 

Recently, Särkkä et al. (2012) introduced a model-based Bayesian method for estimating and 

removing cardiac-related and respiratory-induced effects from functional MRI images 

presenting it as a practical SPM8 toolbox called DRIFTER. The idea underlying this method is 

to separate the original signal into the following components: 

 

1) the BOLD component (the cleaned activation-related signal) that is a slowly varying 

signal 

 

2) the physiological (cardiac and respiratory) noise components that are considered as 

stochastic resonators with multiple harmonics 

 

3)  white noise 

 

This separation is done for each voxel in the image and the 'cleaned' fMRI volumes can be 

analysed with the GLM in SPM8 software. 

This method uses the interactive multiple models (IMM) algorithm to estimate frequency 

trajectories of physiological noise components. The estimated frequency trajectories are then 

used together with a Kalman Filter and RTS (Rauch-Tung-Striebel) smoother algorithms to get 

a separation of the fMRI signal into its aforementioned components (Särkkä et al., 2012).  

This method has been tested on simulated and experimental data in the brain, and results have 

been compared with ones obtained using the RETROICOR method. It is shown that DRIFTER 

algorithm can fit the physiological data better than a RETROICOR-like method, coping with 

rapidly varying signals, especially in the case of time-varying amplitude and give better signal-

to-noise-ratio. Nevertheless, the DRIFTER toolbox has not been tested in the spinal cord yet.  

In the section 5.9, the performance of a RETROICOR-like method and of the DRIFTER 

algorithm are compared and discussed, but before that, let’s explain in detail how to obtain the 

regressors from the physiological traces recorded during the fMRI scan.  
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5.6 - Cardiac and respiratory slice-wise regressors 

As mentioned in sections 5.2 and 5.3, most of the techniques used to deal with physiological 

noise account for cardiac and respiratory effects and rely on the fact that a unique cardiac and a 

unique respiratory phases can be associated to each slice (Glover et al., 2000). The theory relies 

on the assumption that any physiological process can be considered quasi-periodic, i.e. it is 

characterized by a finite number of (incommensurable) frequencies that are determined by a 

cardiac and a respiratory phase for each slice (Hu et al., 1995; Glover et al., 2000). The term 

‘phase’ is used to indicate the position of a slice within a cardiac or respiratory cycle. 

The cardiac phase associated to the slice acquired at the time   is defined as: 

 

           
         

           
 

 

where t1 is the time of the R-wave peak preceding   and t2 is the time of the following R-wave 

peak. The cardiac phase varies from 0 to 2π in the interval between two subsequent R peaks and 

goes back to 0 with the next cardiac cycle, assigning a unique value to each slice (Fig. 5.1). 

 

 

This approach was developed to deal with the cardiac component of the physiological noise and, 

in the early papers (Hu et al, 1995; Le and Hu, 1996), the same method was used to find the 

Eq. 5.7 

Fig. 5.1: Schematic illustration of the cardiac phase    for the slice acquired at the time   (vertical 
black line) between the two R-wave peaks t1 and t2. The cardiac trace is shown in red.  
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respiratory phase as well. A few years later, Glover et al. (2000) suggested a more complex 

histogram-based approach to calculate respiratory phases that accounts not only for the timing 

of the slice acquisition during the inhalation or exhalation events, but also for the depth of 

breathing. If R( ) is the amplitude of the respiratory trace normalized to (0,Rmax), then a 

histogram-equalized transfer function between R( ) and the respiratory phase  
 
    can be 

defined as :    

 

        
     

        
    

    
 

   

        
   

     
  

  
  

 

where   indicates the time corresponding to the acquisition of the slice, the term  ‘     
  

  
 ’ is 

the sign function distinguishing inspiration (dR/dt > 0) from expiration (dR/dt < 0) and ‘H(b)’ 

indicates a histogram that considers the amplitude of the respiratory trace and each of the 100 

bins that the interval (0,Rmax) is divided into. The term ‘         
    

    
 ’ on the numerator of Eq. 

5.8 stands for an integer-rounding operation.  

Let’s now refer to Fig. 5.2 and let’s describe in more detail the steps that need to be done for 

obtaining the respiratory phases. The respiratory trace needs to be recorded during the whole 

experiment and the time corresponding to each slice acquisition must be evaluated from the 

traces of the gradients that are recorded as well and included in the physiological file (for more 

details about the physiological file, see section 5.8). The respiratory trace needs then to be 

normalized and the interval (0,Rmax) is divided into 100 regular intervals (bins). A histogram 

H(b) can now be created. The b-th bar of this histogram contains the number of recorded points 

of the respiratory trace that are included in the b-th bin. In Fig. 5.2 the recorded points of the 

respiratory trace corresponding to the b-th bin are shown in red and indicated by red arrows. 

This picture shows also a slice that was acquired at the time  , while the respiratory trace had an 

amplitude that was included in the b-th bin. The respiratory phase       corresponding to this 

slice can be calculated summing up all the bars of the histogram H(b) up to the bin 

Eq. 5.8 
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corresponding to the acquisition time of the slice, and then dividing by the sum of all histogram 

values (Fig. 5.3).  

This ratio indicates a phase varying from 0 to π whose sign depends on the inspiratory (+) or 

expiratory (-) modality of the subjects’ breathing at the time  .  

 

 

 

 

 

 

 
Fig. 5.3: Schematic illustration of the histogram H(b). The respiratory phase of the slice acquired at the 
time corresponding to the b-th bin can be represented as the ratio between two regions of the 
histogram, as indicated in the formula reported in the picture. 

 

Fig. 5.2: Schematic illustration explaining how to obtain the H(b) histogram. Respiratory peaks, slice 
acquired at the time   and normalised respiratory amplitude are depicted. The recorded points of 
the respiratory trace corresponding to the b-th bin are shown in red and indicated by red arrows. 
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Once that both  
 
    and  

 
    have been calculated for the slice, the physiological noise 

‘        ’ can be expanded in terms of a low-order Fourier series: 

 

               
            

            
            

            

 

   

 

 

where M is the number of harmonics used in the series and the indices c and r indicate the 

cardiac and respiratory components. Glover et al. (2000) reported that it is not useful to take 

M>2. To summarize, using the physiological data, accurately recorded in synchrony with the 

fMRI scan, it is possible to regress out cardiac and respiratory noise by including the 

corresponding slice-wise regressors in the GLM. 

 

 

5.7 - The CSF regressor 

I added also a CSF regressor in the GLM as the number of false positives can be further reduced 

implementing a regressor that accounts for noise arising from CSF pulsatility (Brooks et al., 

2008; Cohen-Adad and Wheeler-Kingshott, 2014). A CSF mask was drawn using FSLview on 

the mean image obtained from the realigned volumes of each dataset and then applied to all 

realigned volumes. Custom-made MATLAB codes were then used to extract mean values of the 

CSF time course to use as the CSF regressors. Each mask was accurately drawn in order to 

include only voxels that were deemed CSF. In the count of activated voxels, only those in the 

spinal cord within the CSF mask were taken into account. 

 

 

 

 

Eq. 5.9 
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5.8 - How to obtain the cardiac and respiratory 

regressors from the physiological traces 

Once downloaded, the physiological file (called 'SCANPHYSLOG.log') can be read so that the 

columns corresponding to the cardiac and the respiratory traces are plotted using MATLAB 

(Fig. 5.4) together with the traces corresponding to the 3 gradients waveforms (Gx, Gy, Gz). 

 

 

 

Every 2msec a point is acquired (500 Hz is the sampling frequency) and when the three 

gradients work simultaneously a slice is acquired in about 140ms. All the slices are featured by 

the same pattern that is due to the gradients (Fig. 5.5). 

 

 

 

Fig. 5.4: Example of plot of the physiological file downloaded from the scanner showing the 
patterns of the gradients (vertical lines in green and black) and the physiological traces (the black 
curve is the respiratory trace and the red one, smaller, is the cardiac trace; see Fig. 5.6). 

Fig. 5.5: Plot of the traces of the gradients during the acquisition of 3 slices. Different colours are 
used for each gradient (Gx in green, Gy in red, Gz in black). 
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Plotting the traces is important in order to check out if they are correctly recorded as it is 

essential for modelling physiological noise. Good traces look quite regular, with heart rate 

varying from 50 to 70 beats per minute and the average respiratory cycle taking between 3 and 4 

seconds (depending on the subject). If movement-related peaks or sudden spikes appear in the 

traces (Fig. 5.6), it might be a good idea to apply one of the following suggestions.  

 

 

 

 

Firstly, some sort of smoothing to the data might be used. For instance, I have applied the 

Savitzky-Golay filter (sliding polynomial fit) using the MATLAB function ‘sgolayfilt’ and 

results were good. A Savitzky-Golay filter (Savitzky and Golay, 1964) minimizes the least-

squares error in fitting a polynomial to frames of data, preserving the shape of the peaks. A local 

polynomial regression around each point is performed and a new smoothed value replaces each 

data point. The Savitzky-Golay filter was successfully employed by Glover et al. (2000) as well.  

 

   

Fig. 5.6: Plots of the cardiac (in red) and respiratory (in black) traces from the physiological file 
downloaded from the scanner. Regular recording is displayed in the figure at the top and irregular 
recording is shown in the figure at the bottom. 
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Secondly, one can tweak the parameters in the toolbox. The dynamic noise spectral densities for 

the IMM model can help the signal adopting, and the drift term noise dynamics parameter can 

account for movement drift. 

Lastly, one can try to tweak the noisy parts of the reference signal manually, because the 

frequency estimate at those points will not play any major role. However, the fMRI data will 

probably be bad too if the subject has been moving a lot at some point of the recording. Thus, as 

a rule of thumb, in case an adjustment to the traces is required: on one side, I would make sure 

that the reference signal is of some quality (smoothing or tweaking), and on the other, I would 

modify the DRIFTER parameters to better account for the case.  

Recording of physiological traces must be synchronized to the acquisition of the images in such 

a way to be able to determine when, within the scanning session, a certain slice has been 

acquired. It is useful to monitor live the traces while the scanner is working in order to stop it 

whenever something goes wrong with the recording and to restart to scan after fixing the issue.   

Going through the traces it is clear that the slices start to be acquired after the initial warming up 

of the gradients (that are recorded as well) and the dummy scans. Every single pulse from the 

scanner is recorded, it does not matter what it is, and looking at the trace it is not 

straightforward to determinate when the first slice in the first volume is acquired. 

Noticing that the scanner stops immediately after the acquisition of the last slice (in the last 

volume), it is better to start counting the slices backward from the very last one. In the sequence 

I used, 9 slices and 200 volumes were acquired, corresponding to a total of 1800 slices. Each 

slice was counted using a custom-made mat-file that spotted the maximum of the Gz gradient 

(Fig. 5.5) occurring always at the same time within the interval (about 140 ms) during which the 

slice was acquired (i.e. about in the middle of it, although different choices are acceptable).  

A cardiac regressor relies on the detection of the heart peaks within the cardiac trace and on the 

possibility to locate the acquisition of each slice within the corresponding heart cycle. Working 

with well-shaped peaks makes things easier, otherwise it is possible to smooth the trace in an 

appropriate way. However, if the cardiac trace is irreparably corrupted, for example due to 

abrupt movements of the subject’s hand/finger, the cardiac information concerning the slices 

acquired during the ‘corrupted’ time interval is lost. DRIFTER software instead, is more 
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flexible due to the fact that its algorithm is based on cardiac frequency-detection and thus the 

accurate peak-detection of any RETROICOR-like method is no more required.  

Analogous considerations stand for the respiratory trace.  

Following the information from Glover’s paper (2000), I created MATLAB codes based on the 

steps below:  

 

1)  Plotting the cardiac trace and checking it visually 

 

2)  Smoothing the trace in order to make peak detection easier 

 

3)   Applying Eq. 5.7 

 

4)   Collecting sines of the calculated cardiac phases into a column and cosines into   

another 

 

5)  Collecting sines and cosines concerning the second harmonic in the same way 

 

The resulting columns are the regressors we were looking for, ready to be entered into the GLM. 

Referring to cardiac noise and considering the matrix expression of the GLM (Eq. 5.5) each 

slice is associated with a column of cosines and one of sines for each harmonic of the Fourier 

expansion that is applied. If the terms up to the second order are considered, it results into 4 

columns of regressors for each slice. In the GLM one can fit as many lines as the number N of 

volumes and thus each regressor must have N lines, however, regressors concerning different 

slices can be used simultaneously in the GLM without interfering with each other in case they 

are orthogonal. Usually this is not a big issue, however, orthogonality between vectors may be 

checked with SPM and, if needed, obtained with MATLAB.  

Similar considerations stand for respiratory phases that, although obtained by a different 

procedure and applying Eq. 5.8 instead of Eq. 5.7, yield analogous regressors made up of N 
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lines each and containing cosines and sines of the respiratory phases up to the desired term of 

the Fourier expansion.  

Nevertheless, as reported by Brooks et al. (2008), including a large number of terms in the GLM 

reduces the degrees of freedom that is reflected by a reduced statistical power without 

significant gain in terms of noise modelling. 

 

 

5.9 - Performance of the different methods  

5.9.1 - Purpose  

To investigate the application of physiological denoising on three fMRI spinal datasets. 

 

5.9.2 - Materials and Methods  

Cardiac and respiratory traces were recorded during each fMRI scan using a pulse oximeter 

applied on the index finger (of the resting hand) and a respiratory belt fastened around the 

abdomen of the subject. Sequence and imaging parameters have already been described in 

section 2.8. A sensory stimulus was delivered over the palmar surface of the thenar eminence of 

the left hand (C6 dermatome; see Fig. 3.1) using a custom made MR-compatible electric 

rotating brush (see section 7.2 for more details). The block design comprised 10 epochs of rest 

alternating with 10 epochs of stimulation, lasting 36 seconds each (see section 2.8). The 9 slices 

were prescribed transverse to the cord and the central slice was always placed in the middle of 

the C6 spinal segment (Fig. 5.7), however, due to specificity of the stimulated dermatome, only 

the 6 central slices have been analysed for each volunteer (see section 7.2 for more details). 2D-

realignment was applied to all datasets and a CSF regressor was always added in the GLM 

included in SPM8. Results were obtained with p<0.01 (uncorrected) threshold.  
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Three different methods were tested: 

 

1) Including cardiac and respiratory slice-wise regressors (RETROICOR method) in the 

GLM  

 

2) Including the cardiac and respiratory traces in the DRIFTER software 

 

3) Applying neither DRIFTER software nor the RETROICOR method to the data 

 

 

 

 

In 2), realignment has been applied after applying DRIFTER software. As suggested in previous 

studies (Birn et al., 2006; Brooks et al, 2008; Cohen-Adad et al., 2010), the best correction 

increases significance of activations, reflecting the best fit of the model to the experimental data 

and reducing the physiological variance of the residuals.   

 

 

Fig. 5.7: Localization of the slices. Only activations localized in the 6 central slices (from slice 3 to 
slice 8) covering the whole C6 segment were considered. 

 



 

96 
 

5.9.3 - Results   

Results are reported in Fig. 5.8. When no physiological correction was applied to the data, 

random activations were found outside the SC, especially in the CSF (subjects 1 and 3). Only in 

one case (in slice 7 for subject 3), one activated voxel was detected within the SC. For one 

subject (subject 2), activated voxels were detected neither inside nor outside the SC. For all 

subjects, applying physiological corrections increased the number of activated voxels within the 

SC and decreased the number of activated voxels outside the SC. A larger number of activated 

voxels inside the SC was detected for all subjects using DRIFTER software. Activations were 

found both ipsilaterally and contralaterally for both the DRIFTER and RETROICOR methods. 

The activated voxels, obtained with the two methods, never overlapped except for 1 case (in 

slice 8 for subject 3). For all subjects, the t-values of the activated voxels detected with the two 

correction methods were comparable. However, for all subjects, the t-values obtained using 

DRIFTER software were slightly bigger, on average, than those obtained using the 

RETROICOR method (about 5%). 

 

 

 

 

Fig. 5.8: Activations in the 3 subjects obtained using the RETROICOR method (a; in red) and the 
DRIFTER software (a; in green) corrections. Yellow voxels (a) indicate overlapping between results 
obtained with the two different approaches. Activations obtained without applying any 
physiological correction are displayed for each subject as well (b; in light-blue). Activations are 
overlaid on the mean image. Slice numbers refer to Fig. 5.7. 
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5.9.4 - Conclusion and Discussion 

The following criteria were used to evaluate the outcome: 

1-  number of activated voxels detected within and outside the SC;  

2-  laterality of neural activity;  

3-  t-values of the activated voxels within the SC. 

The worst results were obtained without applying any physiological correction. No reliable 

neural activity was detected for any subject because activated voxels were always located 

outside the SC (except for 1 voxel in slice 7 for subject 3). Results obtained using the DRIFTER 

software were better than those obtained with the RETROICOR method.  

Using DRIFTER a larger number of activated voxels inside the SC and a smaller number 

outside the SC were found. Assuming that activated voxels outside the SC are false positives, 

the reduction of their number corresponds to a reduction of false positives. Moreover, an 

increase of the number of activated voxels detected inside the SC, induce to think that 

DRIFTER software allowed the detection of neural activity better than the RETROICOR 

method.  

Let’s now discuss about variability of neural activity detected applying the two different 

physiological denoising methods. Activated voxels obtained with the 2 methods never 

overlapped (except for 1 voxel in slice 8 for subject 3),  although in a few cases the activated 

voxels detected with the 2 methods were neighbouring or very close. However, bearing in mind 

that we are comparing single voxels locations and not large clusters of activation as it is done in 

the brain, we can deem that regions of neural activity were spotted using both the methods.  

Nonetheless, several activated voxels detected with the two methods were located in different 

regions of the SC, both ipsilaterally and contralaterally. Using both the methods, however, a 

larger ipsi- than contra-lateral activity was found for all subjects, as it was expected. About the 

reliability of a single activated voxel instead, we cannot draw any definitive conclusion due to 

the fact that, in different subjects, the spinal nerves may enter the spinal cord in slightly 

different areas (within the same vertebral segment) due to slight anatomical differences between 

the subjects (Standring et al., 2005). Lastly, higher (on average) t-values for the activated voxels 



 

98 
 

obtained using DRIFTER were evaluated, indicating a better fit of the model to the 

experimental data.       

To conclude, results suggest that DRIFTER software might be better than the RETROICOR 

method for reducing physiological noise. 

However, it must be noted that in the paper where the DRIFTER software is introduced (Särkkä 

et al., 2012), DRIFTER performance is tested on just one brain and no realignment is applied to 

the images. In Särkkä's paper, images are not registered and this might not be a serious issue in 

the brain, considering that the extent of the activation areas is usually much bigger than one or 

two voxel-width (there might be any issues with activated voxels that lie on the edge of the 

activated areas). In the spine instead, just a few voxels are activated and realignment is 

recommended. A questionable issue might be whether to realign before or after applying 

DRIFTER software. Realignment 'destroys' information contained in the data due to linear 

interpolation and so it might be better to realign after filtering. Conversely, supposing that the 

images move forward by one voxel width, temporal filtering on the original data might cause 

large signal change due to movement filtered out. The contrast that should have been used for 

motion correction has been changed. I decided to apply DRIFTER before realigning because I 

calculated that, analysing images in this way, the temporal standard deviation was always 

reduced. However, from a critical point of view, the importance of being able to model a 

physiological signal is that when you have a regressor or filter that hopefully captures the 

temporal dynamics of the phenomenon, it will pull out even the bit of noise that was added to a 

voxel time-course during motion correction.  
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5.10 - The analysis pipeline 

After having tested different kinds of preprocessing steps, I optimized the analysis pipeline for 

functional datasets in the spinal cord. This pipeline was applied to all the functional studies 

presented in the following chapters of this thesis.  

This pipeline can be summarized as follows: 

 

1) Applying DRIFTER software to clean up the signal from cardiac and respiratory 

related noise on the fMRI time series 

 

2) Applying 2D slice-wise realignment with FSL software to the output of DRIFTER 

 

3) Drawing a CSF mask on the mean image and applying this mask to all the realigned 

volumes in the dataset, aiming at obtaining a CSF regressor 

 

4) Performing statistical analysis with SPM8 using p=0.01(uncorrected) threshold and 

including in the GLM both CSF regressor and movement regressors (3 for each 

slice which is considered). 

 

MATLAB files were created for developing and optimizing each of the previous steps.   
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5.11.1 - Literature upon test-retest reliability 

In the literature, many spinal functional studies use different motor and sensory tasks and 

perform different data analyses to infer neural activation. However, there is still an important 

issue that hasn't been dealt with in an adequate way: reproducibility of functional activations.  

Repeated studies give information about the extent at which two measurements are in agreement 

and quantify how reliable results are. They are performed to assess the variability of measures, 

aiming at investigating the feasibility of a method or technique. 

Although there are several papers mentioning low reproducibility in terms of both amplitude 

and location of BOLD signal (Backes et al., 2001; Brooks et al., 2008; Giove et al., 2004; 

Govers et al., 2007; Stroman, 2005; Wheeler-Kingshott et al., 2013; Zhao et al., 2008), to date, 

the literature lacks reporting test-retest reliability results. As a general rule, it would be really 

useful if research groups would produce information about reproducibility of their methods 

because this would promote faster progress in functional MRI in the spine. Although it is not 

possible to claim exactly the same pattern of activation for different subjects, due to the fact that 

nerve roots and dermatomes too can vary from subject to subject (Standring et al., 2005), one 

would expect to find consistent areas of neuronal activity within the spinal cord of the same 

subject undertaking the same exam twice under the same conditions.  

In functional studies in the brain, reproducibility has been investigated and reported in many 

papers but results, depending on the task and brain region, are still controversial. Just to quote a 

few of them, Vul et al. (2009) stated that brain fMRI results have a reliability around 0.7, 

Lieberman and al. (2009) around 0.9 and Jabbi et al. (2009) wrote that it could be as high as 

0.98. Other studies were more critical about this topic instead. Duncan et al. (2009) reported that 

the percentage of overlapping between activated voxels in 45 volunteers scanned twice, varies 

between 25% and 65% depending on the statistical threshold used.  

Brannen et al. (2001) reported an overlapping of only 37% of activated voxels (phonologic 

generation task) and Rutten et al. (2002) reported even slower percentage of common voxels 

performing a verb generation (24%) and a naming task (21%).  
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Spinal fMRI reproducibility has not been addressed in the literature. In my experience, it is a 

quite troublesome topic of conversation as well and, for most researchers, it is not clear how 

reliable their results are. Low reliability is basically due to difficulty in distinguishing true task-

related neural activations from noise. 

Only two spinal fMRI papers mention the reproducibility of their study. As a metric of spinal 

fMRI activation, Bouwman et al. (2008) measured the amplitude of BOLD signal change, 

Stroman et al. (2005a) instead, visually checked the activated areas in the spine (although with 

arguable results). These two different approaches aimed at investigating different aspects of 

reproducibility, depending on the variability over time of a certain feature. Recent work (in the 

brain) showed that activation volume is a more robust measure than BOLD signal change as a 

metric for neuronal activation (Bhattacharyya et al., 2014) and I opted to test the reproducibility 

of spinal fMRI following this approach.  

 

 

5.11.2 - Methods to evaluate test-retest reliability 

To quantify neuronal activity (in the brain), two common metrics are the Dice coefficient and 

the Jaccard index. Their main limitation is the high dependence on the statistical threshold used 

in the analysis (Duncan et al., 2009). For both the metrics: the value 1 corresponds to a total 

overlapping of the activated areas in the first and second scans and the value 0 to a total 

separation of the activated areas in the two scans.  

The Dice coefficient is given by: 

 

        
        

      
 

 

and the Jaccard index is calculated as:  

 

Eq. 5.10 
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Where Voverlap indicates the overlapping cluster and V1 and V2 stand for the clusters that are 

activated during the first and the second scan. 

The Dice coefficient can be imagined as the number of overlapping voxels divided by the 

average number of activated voxels across both sessions. 

The Jaccard index instead, gives the percent of the total number of activated voxels that are 

shared between the two scans. These methods rely on the exact overlapping of clusters of 

activation, but in the spinal cord this approach seems to be too conservative due to the fact that 

only a few voxels are usually activated. Although smoothing the images might enhance the 

reproducibility of a study, drawbacks in terms of loss of spatial specificity would be important 

to consider (see section 4.3).  

A further method of reproducibility, used only in the first papers (in the brain) but then 

disregarded, was counting the total number of significant voxels in the first and the second 

scans. A misleading event would be that different activated areas might produce the same 

number of activated voxels (Cohen et DuBois, 1999). As a matter of curiosity, I report that 

Bennet and Miller (2010), reviewing the literature about cognitive tasks (the less reproducible 

ones in the brain), found an average cluster overlap of 29%, corresponding to RDice=0.45 and 

RJaccard=0.29.  

Regrettably, so far there is no overview of functional reliability in the spine and so researchers 

do not know what to expect from it, therefore my contribution to the field has been to assess the 

single subject reproducibility in a small pilot study. 

 

 

 

Eq. 5.11 
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5.12 - Test-retest reliability study 

5.12.1 - Purpose  

The purpose of this study was to discuss the localization of those voxels that showed activation 

(p=0.01, uncorrected) in both the first and the second scans. Results from a test-retest reliability 

study involving 3 healthy volunteers scanned twice are reported. 

 

5.12.2 - Materials and Methods  

The first and the second scans were performed on each volunteer in different days. A localized 

sensory stimulus was delivered using an MR-compatible custom-built rotating brush and 

applied to the C6 dermatome over the palmar surface of the thenar eminence of the left hand. 

Sequence and imaging parameters have already been described in section 2.8. The 9 slices were 

prescribed transverse to the cord and the central slice was always placed in the middle of the C6 

spinal segment (Fig. 5.7). Only the six central slices were analysed for each volunteer (see 

section 7.2). Physiological traces were recorded and the analysis pipeline described in section 

5.10 was applied. 

For each subject, due to the very limited number of activated voxels per slice, it is more 

practical and reliable to visually compare the activations between the two scans instead of using 

the Dice coefficient or the Jaccard index that are supposed to evaluate any overlaps between 

blobs of activation. It should be reminded that in the brain thousands of voxels are taken into 

account, within the spinal cord instead, there are about 70 voxels per slice. 

Due to the issues mentioned before, counting only overlapping clusters of activation seemed to 

be a too restrictive approach and thus I opted to compare, for each subject, the activated voxels 

included in each hemicord. 

 

 



 

104 
 

5.12.3 - Results   

Activations were found inside the spinal cord in all subjects and, in particular, each subject 

presented a similar ipsilateral activity in the slice 5 during both the first and the second scans 

(Fig. 5.9). It is worth mentioning that this slice was acquired in the middle of C6 segment (Fig. 

5.7). Comparing the test and re-test scans of each subject, other quite similar activations can be 

individuated: 

 

1) Subject 1:  in the slices 3 and 4 (contralaterally), in the slice 8 (ipsilaterally) 

 

2) Subject 2:  in the slices 4 and 7 (contralaterally) 

 

3) Subject 3:  in the slices 4 and 8 (ipsilaterally), in the slices 3 and 7 (contralaterally) 

 

   

 

       

 

 

Fig. 5.9: Activated voxels found in the 3 subjects during the first (a) and the second (b) scans. Left 
and right hemicords are divided by a central line. In subject 1 (a) two voxels in the slice 8 and one in 
the slice 6 are deemed in the CSF. In subject 3 (a and b) one voxel in the slice 4 is deemed in the CSF. 
Slice numbers refer to Fig. 5.7. 
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5.12.4 - Conclusion and Discussion  

To summarize, although it is not easy to quantify the reproducibility of a functional study 

performed in the spinal cord, results from this study showed a few interesting conclusions:  

 

1) For each subject, common patterns of activation were found both ipsilaterally and 

contralaterally during the test and re-test scans. 

 

2) Ipsilateral activity was confirmed in the middle of C6 segment in all the subjects.    
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CHAPTER 6 - HAEMODYNAMIC  RESPONSE  

FUNCTION(s) 

 

Introduction 

The relationship between local neural activity and subsequent changes in the blood flow is 

called neurovascular coupling (NC). Apart from the technical issues (susceptibily artefacts, low 

signal, physiological movements, lack of dedicated software), NC also may be a factor 

contributing to reduce sensitivity to detect neuronal changes task related. The magnitude, 

extension and localization of blood flow changes depend on changes in neural activity through a 

complex sequence of events associated with both neurons and vascularity. Functional MRI is a 

vascular-based technique that relies on the NC to infer neural activity and modelling neural 

activity in different ways might lead to different results. So far, there are not so many studies 

investigating this issue, however, there are a few works that might suggest the need for a deeper 

investigation about NC in the spine.  

In this chapter, importance of Haemodynamic Response Function (HRF) is explained in detail 

and a HRF, different from that commonly used in both the brain and spine, is tested. 
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6.1 - Neurovascular coupling as a confound in fMRI 

The physiological process that triggers signal changes linked to neural activity (Logothetis and 

Wandell, 2004) presents the same features in the brain and the spine (Giove et al., 2004; 

Stroman, 2005). However, neurovascular coupling (NC) in the spinal cord might differ from the 

brain, due to differences in vascularity that might give rise to different blood flow, different 

blood volume and different oxygen supply, resulting in a different functional response. The 

exact features of functional response are still unclear. Marcus et al. (1977) reported that 

measurements of spinal cord flow in dogs, sheep and lambs showed blood flow to the cervical 

and lumbosacral spinal segments to be 40% higher than flow to the thoracic cord. Futhermore, a 

local blood flow enhancement around 50% was detected in the ipsilateral grey matter while no 

significant changes in blood flow were detected neither in the white matter nor in the 

contralateral side. The localization of the spinal vascular response was confirmed in rats too 

(Brieu et al., 2010). Nix et al. (1976) reported that the vascular response in the cord in rats was 

‘brisker’ than in the brain, while the responses to hypoxia were similar. From all these studies it 

can be inferred that physiological regulation of blood flow in the brain and in the spine might be 

only qualitatively similar to each other and a deeper investigation would be required. 

Furthermore, it is well known that functional response depends on factors such as age (Richter 

and Richter, 2003) and vascular health (D’Esposito et al., 2003). Coffee consumption implies 

vascular changes too, being caffeine a vasoconstrictor (Chen and Parrish, 2009). Moreover, 

neurovascular coupling can also depend on the duration of the performed task. In fact, due to 

habituation, there is a decrease in neural firing although the coupling mechanism doesn't change 

(Bandettini et al., 1997). Generally, being fMRI an indirect effect of neural activity, effects 

should be compared between different groups only if the NC can be considered identical across 

those groups. On the other hand, difference between responses may reflect differences in NC or 

oxygen consumption rather than in neuronal activity (Reynell and Harris, 2013). 
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6.2 - The Haemodynamic Response Function  

Literature about the SEEP effect in the spinal cord is very limited, hence this section focuses on 

the BOLD effect. As already discussed in chapter 3, during neural activity there is an increase in 

oxygen and nutrients demand supplied by the blood flow. This delivery of blood, named 

Haemodynamic Response (HR), can be modelled using a function called Haemodynamic 

Response Function (HRF). Generally, in standard fMRI analysis, a model is fitted to the data in 

order to detect the effect we are interested in, for example, the task that has been performed. The 

aim of statistical analysis is to identify those voxels whose time-varying signal matches the 

predicted response, obtained convolving the HRF with the predicted neural activity. The HRF 

can be evaluated from event-related experiments (Josephs et al., 1997; Friston et al., 1998) and 

the predicted neural activity is usually a boxcar function that equals zero over the resting 

periods. The convolution, assumed to be linear and time-invariant, is the transformation that 

mediates between neural firing and BOLD response and constitutes the cornerstone for inferring 

neural activity using the GLM (see section 5.1). 

In a nutshell, the vascular system can be depicted as a kind of 'machine' that has neural 

activation as input and the corresponding BOLD response B(t) as output. Considering neural 

activity featured by a stimulus function sj(t) (with each j indicating a single stimulus), we can 

write: 

 

                                            

 

Due to the linearity, the BOLD response can be expressed as: 

  

                       
 

 

 

 

Eq. 6.2 is a convolution integral that characterizes the BOLD response in the linear and time-

invariant assumptions. The function h(t) is the aforementioned HRF representing the BOLD 

Eq. 6.1 

Eq. 6.2 
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response elicited by neural activity. Let's now consider a more rigorous mathematical approach 

that allows us to explain the fMRI response in terms of the GLM. 

Let us now consider another equation, that follows from Eq. 6.2 (Josephs et al., 1997):  

  

                        
 

 

                             

 

Eq. 6.3 explains that, taking a single voxel within the spine, the response yi(t) in that voxel is 

given by the convolution of the stimulus function s(t) with a specific HRF that is indicated by 

hi(t), plus a residual ei(t) that includes any other source of variability in the signal in that voxel. 

Let’s write hi(t) in terms of a basis function expansion:  

 

           

 

   

        

 

where N is the number of the x b(t) functions and βi,b  are the weighting coefficients.  

Eq. 6.3 and Eq. 6.4 can be combined and it yields: 

 

                  

 

 

      

 

   

           

 

that is the result we were looking for, i.e. the BOLD effect expressed in terms of a GLM. To 

show it in the common matrix form, let’s substitute into eq. 6.5 the stimulus function s(t) that 

can be any generic function of time, for example, considering a delta-like function it results:  

 

                    

 

   

      

 

Eq. 6.3 

Eq. 6.4 

Eq. 6.5 

Eq. 6.6 
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that corresponds to the following matrix for the GLM: 

 

        

 

Eq. 6.7 has already been dealt with in section 5.1.    

The choice of an appropriate HRF is important because the right model would correctly predict 

the outcome of the experiment, a wrong one instead would lead to misleading results. The 

theory relies on the assumptions that the functional BOLD response changes slowly compared 

with the neural activity that drives it and that the signal increases with the enhancement of the 

ratio oxy-/deoxy- haemoglobin (Friston et al., 2006). In the brain, the canonical HRF is usually 

used and the parameters that model it have been experimentally evaluated using event-related 

designs (Josephs et al., 1997). After a small initial dip lasting 1-2 sec (not always detected), the 

canonical HRF reaches its maximum about 6 seconds after the onset of the stimulation (Buxton, 

2001; Lindauer et al, 2001). When the oxygen surplus is no more needed, blood flow returns 

slowly to the baseline with a characteristic undershoot.  

However, in the literature there are several papers reporting that the BOLD signal in the brain 

can vary between subjects and even within the same subject when anatomically different areas 

are involved in neuronal activity (Aguirre et al., 1998; Huettel and McCarthy, 2001; 

Handwerker et al., 2004; Ances et al., 2008). There are a few examples of parametric functions 

with a plausible shape (Boynton et al., 1996; Clark et al., 1998; Cohen, 1997; Dale and 

Buckner, 1997; Friston et al., 2006) whose parameters can be chosen in such a way to adjust the 

HRF according to specific brain regions. Nevertheless, the canonical HRF (implemented for 

example in the matfile 'spm_hrf.m' in the SPM toolbox) is usually employed. The literature on 

spinal fMRI is much more limited than that in the brain and spinal studies are usually performed 

using the canonical HRF (Fig. 6.1). This HRF is a two-gamma parametric function that can be 

written in the following mathematical form: 

 

       
 

  
 

  

 
   

     
  

 
    

 

 
 

 

  
 

  

 
   

     
  

 
 Eq. 6.8 

Eq. 6.7 
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with 0<t<T. In Eq. 6.8 there are two contributions: the first one models the peak that is reached 

in the time           , and the other models the delay of the undershoot with         

   .  

In the SPM software the following default parameters are used: 

 

a1 = 6 , delay of response relative to onset (in seconds);        

 

a2 = 16 , delay of undershoot relative to onset (in seconds);    

 

b1 = 1 , dispersion of response;               

 

b2 = 1 , dispersion of undershoot;             

 

c  =  6  , ratio of response to undershoot;    

 

And the length of the HRF is set to 32 seconds since the onset.   

 

 

6.3 - The spinal HRF   

In the literature, only a few papers report an estimate of a HRF suited for the spinal cord 

(Stroman and Ryner, 2001b; Brown et al., 2007; Giulietti et al. 2008).  

Stroman and Ryner (2001b) found that in the cervical spinal cord the functional response is 

slower than in the brain. They reported that the maximum was attained between 20-30sec using 

a motor and proprioceptive task (squeezing ball) and after 15sec from the onset using a sensory 

stimulus (repeated air-puffs).  

Brown et al. (2007) used both a thermal nociceptive stimulus and a motor stimulus (fist 

clenching) to evaluate the HRF and optimize their functional protocol. Using the thermal 

stimulus they could not obtain clear results and they did not report any parameters. Using the 

motor task instead, they reported: a time to response peak of 8sec, a time to undershoot peak of 
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25 sec and a ratio of response to undershoot of 6sec. The length of the HRF is shown to be 

approximately 30 seconds since the onset.  

Giulietti et al. (2008) assessed the linearity of the response for motor stimuli (squeezing ball) 

lasting from 15 to 42 sec and reported that the peak of the signal was attained after 9sec from 

the onset. Furthermore, they found a ratio of response to undershoot of 8.7 and they reported 

that 30 sec sampling was just adequate to follow the whole evolution of the HRF.     

Although the aforementioned results are not exactly in agreement with each other, they suggest 

that the spinal functional response might be slower than in the brain, with a larger ratio of 

response to undershoot. The duration of the HRF instead, seems to be similar to that in the 

brain. 

 

6.3.1 - Purpose  

To compare activations obtained with the classical HRF and a spinal HRF (SC-HRF) whose 

parameters have been chosen in agreement with the available spinal literature.  

 

6.3.2 - Materials and Methods 

An fMRI scan was performed using the same sensory paradigm, imaging parameters and 

prescription described in section 5.12. The analysis pipeline described in section 5.10 was 

applied. The sensory stimulus was applied on the right hand of 3 healthy controls. The 

parameters in the HRF were chosen according to an average between results reported in the 

papers mentioned above (Stroman and Ryner, 2001; Brown et al., 2007; Giulietti et al. 2008).  

The following parameters were used (see Fig. 6.1):  

 

 a1 = 10 , delay of response in seconds [average between the results found by:  Stroman 

and Ryner, 2001; Brown et al., 2007; Giulietti et al., 2008) 

 

 a2 = 25 , delay of undershoot in seconds (Brown et al., 2007) 
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 b1 = 1 , dispersion of response 

 

 b2 = 1 , dispersion of undershoot        

 

 c  =  7.4  , ratio of response to undershoot (average between the results from Giulietti et 

al., 2008 and the results from Brown et al., 2007) 

 

The length of the HRF used in the brain was kept because deemed adequate (32 seconds). The 

parameters b1 and b2 were kept as in the brain because they are not mentioned in any paper. The 

best model should fit the date in such a way to produce higher t-values (Handwerker et al., 

2004) and more somatotopically appropriate activations.  

 

6.3.3 - Results 

In each subject, only a few voxels within the SC were activated in both cases using the two 

HRFs: three voxels in subject 1 and one voxel each for subjects 2 and 3. For these voxels, the 

corresponding t-values did not change significantly but in one case it resulted higher using the 

SC-HRF (t-value=3.39) instead of the canonical HRF (t-value= 2.63). Notwithstanding, for each 

subject, the number of activated voxels within the SC remained very similar using the two 

HRFs, changing at most of one voxel, and there is no evident improvement in activation 

specificity using one HRF in particular. Considering all subjects, the overall number of activated 

voxels outside the SC is reduced using the SC-HRF, indicating a possible corresponding 

reduction of false activations (Fig. 6.2).  

The t-values resulted on average higher using the SC-HRF for all subjects, in detail: 

 

1- For subject 1 there was a mean t-value increase of 4% (2.75 vs 2.86) 

2- For subject 2 there was a mean t-value increase of 2% (2.66 vs 2.72) 

3- For subject 3 there was a mean t-value increase of 8% (2.50 vs 2.70) 
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Fig. 6.2: Activations in the 3 subjects using the canonical HRF (in red) and the spinal HRF (in light-blue). 
Yellow voxels indicate overlapping between results obtained with the two different HRFs.  

Fig. 6.1: Canonical HRF (dashed line) and spinal HRF used in this study.  
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6.3.4 - Conclusion and Discussion  

The proposed spinal HRF, obtained with the mean values published in 3 dedicated papers, 

demonstrated to be a possible alternative to the classical HRF for spinal fMRI. Although the 

limited number of subjects of this study, an average increase in t-values of activated voxels and 

a reduction of false activations, despite small, are useful to improve the feasibility of functional 

MRI. Results of this study seem to confirm that in the spine, as reported in the aforementioned 

papers (Stroman and Ryner, 2001; Brown et al., 2007; Giulietti et al. 2008), functional response 

might be slower than in the brain and featured by a larger ratio of response to undershoot (Fig. 

6.1). Therefore, results suggest that spinal HRF is a topic that would be worth to investigate in 

more detail, however, given the limited number of papers that characterize the spinal HRF, the 

datasets in the following chapters will be analysed using the canonical HRF, also in line with 

most of the spinal fMRI literature.   
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Chapter 7 - SPINAL FMRI WITH MOTOR AND 

SENSORY STIMULI 

 

Introduction  

Spinal fMRI studies use a number of stimuli and there is not a strong preference for motor or 

sensory paradigms. In this chapter I therefore assess the spinal functional response in two 

settings: a motor paradigm (finger-tapping) and a sensory paradigm (brushing). 

In the first part of this chapter motor-related activity using a finger-tapping paradigm is 

investigated on healthy controls. In the second part instead, a similar study developing a sensory 

paradigm is reported. In both studies, analysis is performed according to the methods described 

in section 5.10 and the imaging parameters are the same reported in section 2.8. Features of the 

signal, such as TSNR and average signal change, are evaluated. Results are reported as single 

subjects study and not as group study due to lack of a standardized spinal template. 
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7.1 - Spinal functional study with motor paradigm 

7.1.1 - Purpose  

The purpose of this study was to investigate motor-related activity in the spinal cord using a 

finger-tapping paradigm.  

 

7.1.2 - Materials and Methods 

Subjects – For this study 8 healthy volunteers were scanned but 2 datasets were discarded 

because the subjects moved too much and the corresponding physiological traces were not 

usable. Therefore, only 6 volunteers were analysed. All subjects were right-handed, 3 women 

and 3 men (mean age +/- std = 36.3 +/- 8.2).  

 

Imaging parameters – All scans were performed with the 3T scanner using the 16-channel 

neurovascular coil. The imaging parameters were those reported in 2.8, i.e.: TR=3600ms, 

TE=30ms, voxel size=1.19x1.19x4mm
3
 with 1mm gap between slices (reconstructed to 

1.19x1.19x5mm
3
), with a FOV=76x48 mm

2
 and an acquisition matrix=64x40, 9 slices, 5 

dummy scans, 200 volumes. Scan coverage extended from the upper limit of C6 to the lower 

limit of T1 vertebral segments. The slices were always centred transverse to the cord and the 

central slice was always placed in the middle of the C7 spinal segment (Fig. 7.1). For each 

subject, left (L-H) and right (R-H) hands performed the finger-tapping task in separate, 

consecutive fMRI sessions, the order being randomized between subjects. The block design 

comprised 10 epochs of rest alternated with 10 epochs of activation, each lasting 36 seconds. 

Flow compensation was used in order to reduce artefacts from cerebrospinal fluid (CSF) flow. 

For each subject, the cardiac trace was recorded using a pulse oximeter applied to the index 

finger and the respiratory trace using a pneumatic belt placed on the abdomen (diaphragm).  
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TSNR calculation – The TSNR was calculated with MATLAB, for a resting-state scan of one 

of the subjects, as the ratio between the mean time course signal throughout the voxel time-

series and its standard deviation. Drifter and 2D-realignment were applied to the images. 

Results were obtained considering a sample of 20 voxels within the spinal cord that was 

identified on the mean image. TSNR was then used for power calculations (see section 2.5) to 

determine the required number of volumes to detect a target size effect of 2.5%. 

 

Average signal enhancement – Average signal enhancement was calculated as [Weibull et al., 

2008; Cohen-Adad and Wheeler-Kingshott, 2014]: 

 

                     
                      

              
          

 

fMRI analysis  – Analysis was performed according to the methods described in section 5.10: 

Physiological noise correction: The DRIFTER toolbox was applied to clean up the time-series 

from physiological noise due to cardiac pulsation and respiration (Särkkä et al., 2012). 

 

Motion correction: Slice-by-slice motion correction was performed using FSL software as 

discussed previously (see section 4.1), allowing 3 degrees of freedom. Only translations along 

the    and the    axis and rotations in the xy plane were considered, it resulted in 3 movement 

regressors for each slice (translation in x and y and rotation along the z axis). Custom-made 

MATLAB codes were created in order to obtain slice-wise movement regressors from 

rototranslation matrixes to be included in the GLM implemented in SPM8.  

 

CSF pulsation: A CSF mask was drawn using FSLview on the mean image obtained from the 

realigned volumes of each dataset and then applied to all realigned volumes. Custom-made 

MATLAB codes were then used to get a CSF regressor out of the mean values of the CSF time-

course.  

Eq. 7.1 
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Statistical analysis: SPM8 software was used to perform statistical analysis (GLM) and results 

are reported with p<0.01(uncorrected) threshold significance. 

For the activated voxels, signal changes and mean time-series course have been calculated using 

MATLAB. Furthermore, the ipsi- or contra-lateral location of neural activity was assessed for 

C6, C7 and T1 spinal segments. Results are reported as single subjects study and not as group 

study due to lack of a standardized spinal template. 

 

7.1.3 - Results  

Quality of cervical cord images was good and without any distortions.  

The calculated TSNR was 15+/-3.   

Using Drifter software the mean TSNR increased about 25% if compared with its average value 

calculated over 5 subjects without applying any physiological correction (subsection 4.1.3). 

The number of volumes acquired was chosen according to Eq. 2.4. It has been calculated that 

with a mean TSNR of 15, a p-value of 0.01 and the block design that was used in this study, the 

number of volumes required to allow the detection of size effect (eff) as small as 2.5% (or 

larger) was 189. 

Mean signal enhancements and associated standard deviations were evaluated for R-H: 3.17 +/- 

1.05, and L-H: 2.99 +/- 0.90. For activated voxels inside the SC, the average time series course 

is reported in Fig.7.4. Fig. 7.2 shows the overall number of activated voxels found both ipsi- and 

contra- laterally in the C6, C7 and T1spinal segments, i.e. where the involved nerves enter the 

spinal cord (see Fig. 3.1 and Fig. 3.2). Slices 1, 2 and 3 were included in T1 vertebral level; 

slices 4, 5 and 6 in C7; slices 7, 8 and 9 in C6 (Fig. 7.1). Activations were detected on both 

ipsilateral and contralateral sides of the SC for all subjects at all levels (Fig. 7.3), however, 

ipsilateral activity was larger than contralateral in each spinal segment considering all subjects 

(Fig. 7.2). Activated voxels that were not located within the SC (but in the CSF) were neglected 

in the analysis.     
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Fig. 7.1: Localization of the slices. Slices 1,2 and 3 were included in T1 vertebral level; slices 4,5 and 
6 in C7; slices 7,8 and 9 in C6. 

 

Fig. 7.2: Total number of ipsilateral (in yellow) and contralateral (in blue) activated voxels over 
all subjects in C6, C7 and T1 spinal segments, considering both right and left stimulation. 
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Fig. 7.3: Activations in the 9 slices for all subjects for right (in red) and left (in green) hand 
finger-tapping. Activated voxels are overlaid on the mean image. Slice order refers to that 
shown in Fig. 7.1. 

Fig. 7.4: Average signal time course for the activated voxels inside the SC for both right and left 
hand stimulus. 
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7.1.4 - Discussion  

The target size effect (2.5%) was chosen by looking through the literature (Giove et al., 2004; 

Stroman, 2005; Govers et al., 2007; Summers et al., 2010; Stroman et al., 2014). 

Sometimes the calculated signal was lower than what expected applying Eq. 2.4. A possible 

reason might be a size effect underestimation due to partial volume contributions throughout the 

time-series and, however, the theoretical estimation in Eq. 2.4 is likely to be conservative as 

found in previous results (Cohen-Adad et al., 2010). 

The average time course evaluated for the activated voxels inside the SC fits the predicted 

neural activity (Fig.7.4), confirming the neuronal origin of the detected signal.  

Uncorrected p-value thresholds were used, as performed in previous studies (Moffitt et al., 

2005; Brooks et al., 2008; Cohen-Adad et al., 2009a, 2010).  

From Fig. 7.3 it is not straightforward to locate activated voxels in either the dorsal or the 

ventral horns of the spinal cord, however, results show that finger-tapping task triggers both 

motor and sensory neurons. This may be due to sensory feedback, however, the majority of 

ipsilateral activations in the grey matter was expected. Activity was detected at different levels 

of the spinal cord reflecting the fact that a wide range of neurons was involved in the task 

(Backes et al., 2001; Govers et al., 2007). The signal enhancement detected during activity is in 

agreement with results reported in a previous study using the same task (Govers et al., 2007). 

Also (Govers et al., 2007), it was not possible to spot a reliable pattern of task-related activity 

by comparing activations in different subjects. There are a few possible causes of the different 

distribution of neuronal activity between subjects, for example, variations in performing the task 

(despite immobilization of the arm and the request to stay as still as possible). Furthermore, 

finger-tapping could elicit an additional slight flexion of the wrist or even an activation of 

certain muscles without movement (Govers et al., 2007). Lastly, rhythm and extension of the 

movement might have affected results too. However, the location of the detected neuronal 

activity (spinal cord segment C6, C7 and T1) is in agreement with the anatomical location of the 

neurons that activate the muscles in use. 
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7.2 - Spinal functional study with sensory paradigm  

7.2.1 - Purpose  

The purpose of this study was to assess how a tactile stimulation at specific dermatome can 

trigger fMRI activity in corresponding neuronal regions of the spine.  

 

7.2.2 - Materials and Methods 

Subjects – Ten healthy controls, 3 women and 7 men (mean age = 34.9+/-6.8), participated in 

this study. They were all right-handed.  

 

Imaging parameters – Sequence and imaging parameters were the same described in subsection 

7.1.2. The only differences were the applied stimulus and the positioning of the slices. All 

volunteers were scanned with a paradigm that involved localized sensory stimulation of the C6 

dermatome (see Fig. 3.1) over the palmar surface of the thenar eminence, using a custom made 

MR-compatible electric rotating brush. The surface area of stimulation was about 1x1 cm
2
 and, 

for each subject, left (L-H) and right (R-H) hands were stimulated in separate, consecutive fMRI 

sessions. The slices were always centred transverse to the cord and the central slice was always 

placed in the middle of the C6 spinal segment (Fig. 7.5). Flow compensation was used in order 

to reduce artefacts from cerebrospinal fluid (CSF) flow. Pulse oximeter was used to gather heart 

cycle data. A pneumatic belt placed on the abdomen (diaphragm) was used to record the 

respiratory trace. 

 

TSNR  calculation – TSNR was calculated, as explained in subsection 7.1.2, on one volunteer.  

 

Average signal enhancement – Signal changes were evaluated as described in subsection 7.1.2 

(see Eq. 7.1). 
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fMRI analysis  – Analysis was performed according to the methods described in section 5.10 

and already applied in section 7.1. In the current study, due to the specific dermatome that was 

stimulated, only activations localized in the 6 central slices (from slice 3 to slice 8; Fig. 7.5) 

covering the whole C6 segment (with the upper slice at the bottom of C5 segment and the lower 

slice at the top of C7 segment) were considered. A larger number of slices was acquired to make 

sure to include the whole C6 segment for all subjects, despite different spinal lengths.  

 

7.2.3 - Results  

Quality of cervical cord images was good and without any distortions.  The TSNR calculated 

was 16+/-3. Although in Fig. 7.6 all the activated voxels are displayed, only those deemed 

inside the SC have been included in the analysis. For these voxels, the calculated average signal 

change and associated standard deviation was 3.99+/-1.40 for L-H and 3.55+/-0.90 for R-H. The 

average time course of the signal in the activated voxels within the SC, for both L-H and R-H, 

has been plotted using MATLAB software and it is shown in Fig. 7.7. All activated voxels 

(p<0.01 uncorrected) in the 6 analysed slices are shown for each volunteer in Fig. 7.6. In all 

volunteers activations were found inside the spinal cord and, generally, both ipsi- and 

contralaterally. In Fig. 7.8 the histogram shows the number of activated voxels ipsilateral and 

contralateral for each slice considering both R-H and L-H stimulation over all subjects. There is 

a predominant overall number of ipslaterally activated voxels, however, contralateral activated 

voxels were found as well during most scans (Fig. 7.6). Activity was found in both anterior and 

posterior horns of the spine (Fig. 7.6). 
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Fig. 7.5: Locatization of the 9 slices. The slices were always centred transverse to the cord and the 
central slice was always placed in the middle of the C6 spinal segment. 
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Fig. 7.6: Activations in the 6 central slices for the 10 subjects for right (in red) and left (in green) 
hand stimulation. Activated voxels are overlaid on the mean image. Slice order refers to that 
shown in Fig. 7.5. 

Fig. 7.7: Average signal time course for the activated voxels inside the SC for both R-H and L-H 
stimulus. 
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7.2.4 - Discussion  

The mean TSNR was in good agreement with the result obtained in section 7.1. This was 

expected because the sequence and imaging parameters used in this study were the same as in 

section 7.1.  

The signal changes that were found in this study are in agreement with those reported in other 

studies, where a mean signal increase spanning from 3 to 5% has been detected (Yoshizawa et 

al., 1996; Stroman and Ryner, 2001; Stroman et al., 2002a,b; Govers et al., 2007; Maieron et al., 

2007). 

Consistency between the plot of the signal in activated voxels throughout the time-series and the 

stimulation paradigm indicates correlation between the detected neuronal activity and the 

applied stimulus. 

Activations during a sensory stimulation can be found ipsi- and contra-laterally as reported by 

previous studies (Giove et al., 2004; Summers et al., 2010) and the large number of interneurons 

Fig. 7.8: Total number of ipsilateral (in yellow) and contralateral (in blue) activated voxels over all 
subjects in the 6 analyzed slices, considering both right and left stimulation. Slice numbers refer to 
Fig. 7.5. 
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that are involved in response to the applied stimulus (Heimer, 1988) may be activated and give 

rise to detected signal changes.   

Besides expected posterior neuronal activity, anterior activity was found too. Notwithstanding 

the stimulation was not nociceptive, it is possible that both the thumb may move as a reflex in 

response to the vibrational stimulus that has been applied for 36 consecutive seconds in each 

block, or that sensitive afferent modulated anterior spinal activity.  

The overall number of activated voxels inside the spine, considering all subjects, is always 

greater in ipsilateral than in contralateral side of the SC for all slices. It is interesting to notice 

that the ratio between the number of ipsi- and contra- lateral activated voxels is particularly 

high, compared with the other slices, at slice 5 (ratio ipsi/contra = 2.3) and slice 6 (ratio 

ipsi/contra = 2). These two slices are placed in the top part of the C6 vertebral level, where the 

nerve supplying the stimulated dermatome enters the spinal cord. This appropriate somatotopic 

neuronal activity supports reliability of results. 

In the literature there are other studies that detected differences in activity ipsilateral and 

contralateral to stimulus lateralization (Stroman et al., 1999; Madi et al., 2001; Stroman and 

Ryner, 2001; Stroman et al., 2002), however, activation tended to be found on both right and 

left hemicords. Moreover, there are also studies that were not able to measure any lateralization 

effect in activation (Backers et al., 2001; Govers et al., 2007). The methods applied in the 

present study allowed the detection of a reliable segmental response that arose concomitant to 

neuronal activity elicited by stimulation. 

 

 

7.3 - Conclusion 

In this chapter motor and sensory tasks have been applied to volunteers and results showed 

more consistent activations using the sensory task. Results showed that delivering the stimulus 

to an area of skin corresponding to a specific dermatome improves specificity of the task and 

this specificity is reflected in the spinal functional response. Motor tasks are usually more 

affected by task-related motion than sensory tasks. Subject motion that correlates with the 
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performed task can reduce sensitivity to detect significant task-related effects. Small 

movements, even of submillimetre amplitude, that may involuntarily occur in the arm during 

finger-tapping, may affect the experimental results. Moreover, it is wise to discard the data if the 

subject cannot properly undertake the requested task. This may be the case of certain patients 

that are movement-impaired because of any disease. Sensory tasks, not requiring any movement 

of the subjects, are theoretically 'safer' from this point of view. However, a sensory task where a 

change in the tone of the muscles is involved, may be affected by task-related motion due to 

involuntary movements of those muscles, resulting in detection of false task-related activity. 

Changes in muscle tone or body posture induced by the task might reduce the sensitivity due to 

an increase in the variance throughout the time-series (Cohen Adad and Wheeler-Kingshott, 

2014).  

To conclude, I decided to apply the sensory task developed in section 7.2 to MS patients too and 

results are reported in the next chapter. 
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CHAPTER 8 – FUNCTIONAL-STRUCTURAL 

RELATIONSHIP IN THE CERVICAL SPINAL CORD: 
APPLICATION TO MULTIPLE SCLEROSIS 
 

Introduction 

After having assessed the spinal functional response using both motor and sensory tasks and 

having obtained more consistent results using the sensory paradigm, in this chapter that very 

same paradigm is delivered to both controls and MS patients. 

Performing functional and structural scans in the spinal cord is technically challenging because 

of several issues such as small voxel dimensions, lack of signal, lack of dedicated software, 

susceptibility-changes related artefacts and distortions, movement and physiological confounds 

[Stroman, 2005; Stroman et al., 2014]. It is even more challenging to set up fMRI and DWI/DTI 

protocols that are affected by distortions in a similar way in order to be able to compare 

structural and functional information more precisely. In this chapter I propose a protocol 

tackling these issues, where the same SE-ZOOM-EPI sequence is employed to excite a reduced 

FOV for both diffusion and functional scans with identical voxel dimensions and prescriptions. 

Results obtained in a group of patients affected by multiple sclerosis are compared with those 

obtained in a group of healthy controls. This study presents a few technical 'firsts' for the spinal 

cord, such as: using a reduced field-of-view sequence to perform a fMRI experiment, applying 

DRIFTER software to clean up the functional signal and describing functional asimmetry by a 

lateralization index (LI).  
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8.1 - Investigation of functional-structural correlation 

changes in multiple sclerosis using a reduced field-of-

view 

 
8.1.1 - Background 

The spinal cord is a key site of pathology in multiple sclerosis (MS) [Bot and Barkhof, 2009; 

Lukas et al., 2013]. Being a clinically and functionally eloquent pathway, lesions or damage to 

the cord can have profound clinical sequelae. However, a complete understanding of the 

relationships between the pathophysiological changes in the cord and clinical disability is 

incomplete. Recently, there has been a growing interest in measuring spinal cord function and 

white matter microstructure using MRI (Wheeler-Kingshott et al., 2013; Stroman et al., 2014). 

These techniques are likely to provide important insights into cord pathophysiology in MS and 

have been pioneered by only a few groups around the world. Despite the very limited literature, 

functional MRI has been reliably applied to explore spinal cord functionality in MS patients 

during tactile and proprioceptive tasks (Agosta et al., 2008a, 2008b, 2009b; Valsasina et al., 

2010, 2012). These studies have demonstrated that fMRI can detect important changes in the 

cord (such as abnormal patterns of activation) due to MS but much research needs still to be 

done in order to confirm these results aiming at translation from technical development to 

clinical applications. Consistency between different studies is important to determine the 

reliability of the results before adoption into the clinical setting. Diffusion weighted imaging 

(DWI) is a technique sensitive to microstructural properties of tissue through its sensitivity to 

water molecules displacement. Over the past decade, it has been successfully developed and 

applied to the spinal cord more consistently than fMRI; in particular the number of diffusion 

tensor imaging (DTI) studies of the human spinal cord has considerably increased thanks also to 

specific acquisition strategies being now offered on clinical scanners such as reduced field of 

view methods.  
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8.1.2 - Purpose   

Investigating correlations between functional and diffusion data in the spinal cord and assessing 

differences between two groups of controls and MS patients.  

 

8.1.3 - Materials and Methods  

Subjects - Twelve healthy controls (HC) without any history of neurologic disease and twelve 

MS patients gave informed consent to participate in this study.  

Two HC and three MS datasets were discarded because visual assessment determined that the 

subjects moved too much during the acquisition of either fMRI (and/or the corresponding 

recorded physiological traces were not usable) or DWI scans.  

This study was therefore performed on 10 HC (6 male and 4 female; Mean Age+/-SD: 35.3+/-

7.2) and 9 MS patients (3 male and 6 female; Mean Age+/-SD: 41.4+/-8.5). All subjects were 

right-handed. The median EDSS score of the patients was 4 (range = 1–7), four of them were 

secondary progressive MS and the remaining five were relapsing-remitting MS patients. 

 

MRI protocol  -  All subjects were scanned with a protocol of 2 fMRI sessions and one DWI 

scan followed by a 3D fat-suppressed fast field echo (3D-FFE) sequence. All scans were 

performed on a 3T MRI scanner (Philips Achieva TX, Best, Netherlands) with a 16 channel 

neurovascular coil. The fMRI paradigm comprised a block design of 10 rest epochs alternating 

with 10 stimulus epochs, each lasting 36 seconds. A localized sensory stimulus was delivered 

using an MR-compatible custom-built rotating brush and applied to the C6 dermatome over the 

palmar surface of the thenar eminence. For each subject, left and right hands were stimulated in 

separate, consecutive fMRI sessions, the order being randomized between subjects. The 

paradigm was optimised employing a sensory task that could be used on patients with 

movement impairment, not able to perform properly motor tasks involving the upper limbs. 

Functional scans were acquired using SE-ZOOM-EPI sequence, with a reduced field of view for 
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targeted areas of fMRI activations. The imaging parameters were TR=3600ms, TE=30ms, voxel 

size=1.19x1.19x4mm
3
 with 1mm gap between slices (reconstructed to 1.19x1.19x5mm

3
), with a 

FOV=76x48mm
2
 and an acquisition matrix=64x40, 9 slices, 5 dummy scans, acquisition time 

was 12:22 min. The slices were prescribed transverse to the cord and the central slice was 

always placed in the middle of the C6 spinal segment (Fig. 8.1). Cardiac and respiratory traces 

were recorded with a pulse oximeter and a diaphragmatic belt. The overall volume covered 

included the whole C6 segment, and most of the C5 and C7 segments, depending on individual 

spinal lengths. The same SE-ZOOM-DTI sequence was used for diffusion images matching the 

fMRI protocol, using the same prescription and imaging parameters mentioned above, apart 

from the following: TE = 52 ms and TR = 9 RRs (cardiac gated). The DWI protocol comprised 

30 b = 1000 s mm
-2

 DWI volumes with gradient directions evenly distributed over the sphere 

and 3 non–DWI (b = 0) volumes. The total acquisition time for the DWI scan was about 8-9 

mins, depending on heart rate. All subjects were asked to remain as still as possible for the full 

duration of the scan session and to not respond in any way during the sensory stimulation. 

Furthermore, aiming at limiting involuntary movements, subjects were applied neck padding 

and the stimulated hand was immobilized by a custom-made restraint.  

 

Data analysis - All data were analysed in subject space so results are reported for each 

individual participant. 

 

fMRI - Functional datasets were processed according to the following pipeline. 

Physiological noise reduction - The DRIFTER toolbox implemented in SPM8 software was 

applied to clean up the time-series from physiological noise due to cardiac pulsation and 

respiration (Särkkä et al., 2012).  

 

Motion correction - Slice-by-slice motion correction was performed allowing 3 degrees of 

freedom and implemented using MATLAB codes to wrap FSL (FLIRT) software command 
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lines (see section 4.1). Only the six central slices, covering the whole C6 segment plus the 

bottom of C5 and the top of C7, were taken into account in the analysis (Fig. 8.1).  

 

CSF pulsation - A CSF mask was drawn using FSLview on the mean image obtained from the 

realigned volumes of each dataset and then applied to all realigned volumes (see section 5.7). 

Each mask was accurately drawn in order to include only voxels that were deemed CSF (Fig. 

8.4a,b). SPM8 software was used to perform statistical analysis (GLM) of functional images. In 

the count of activated voxels, only those within the SC and excluded by the CSF mask, were 

taken into account (Fig. 8.4a,b).  

 

Statistical analysis (fMRI) - Functional results were obtained using a p=0.01 uncorrected 

threshold, as reported by previous spinal fMRI studies (e.g. Moffitt et al., 2005; Brooks et al., 

2008; Cohen-Adad et al., 2009, 2010; Eippert et al., 2009; Stroman et al., 2011).  

 

Average signal enhancement - Average signal enhancement was calculated as described in Eq. 

7.1 in subsection 7.1.2. Time courses corresponding to the activated voxels in the same subject 

were averaged and signal change was calculated over the baseline. Then the signal intensity 

time course from each subject was averaged across all the subjects. 

 

Lateralization index - An overall lateralization index (LI) to assess asymmetry in the activation 

response when stimulating either hand of each subject was defined as:    

LI = total number of ipsi-lateral / total number of contra-lateral activated voxels.  

Lateralization indexes for right (LI_R) and left (LI_L) hand stimulation were also separately 

calculated in a similar way for each subject, considering the ratio ipsi-/contra- lateral activated 

voxels within each run. 

 

DWI - Diffusion-weighted datasets were processed with the following steps. 
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DTI fitting - The Camino toolbox (Cook et al., 2006) was used to process diffusion data to 

calculate fractional anisotropy (FA) values. 

 

Quantitative maps analysis - JIM 6.0 software (Xinapse system, www.xinapse.com) was used to 

draw regions of interest (ROIs) in the posterior column white matter (PCWM) and to outline left 

and right hemicords (LH and RH) and the whole spine (WS) on the b0 images of each subject 

(Fig. 8.4c). The mean and standard deviation (SD) of FA were calculated for all ROIs, i.e. 

PCWM, WS, LH and RH (Fig. 8.4c). 

 

Statistical analysis (DWI) - SPSS software was used to compare means and assessing 

functional-structural correlations. The following methods were used: the Whitney Mann U test 

to compare means, the Spearman's rank correlation coefficient for correlations and the Paired-

Sample T test to compare means between right and left hand.  

 

8.1.4 - Results 

Activity was detected in all subjects (Table 8.1 and Table 8.2).  

The number of significantly activated voxels in the ipsi- and contra-lateral location for each 

subject (Fig. 8.2 and Fig.8.3) was assessed by their location within the LH and RH ROIs. In the 

majority of subjects ipsilateral activation was dominant (Table 8.1 and Table 8.2). In the 

controls (Table 8.1), the activated voxels were mostly ipsilateral for both right hand stimulation 

(in 7 cases out of 10) and left hand stimulation (in 8 cases out of 10). In one case LI_R was 

smaller than 1 and in two cases it was equal to 1. In two cases LI_L was equal to 1. The LI 

coefficient is also reported for each subject and there is a majority of overall ipsilateral 

activations in 9 cases out of 10. In one subject instead, an equal number of ipsi- and contra- 

lateral activated voxels was found. In the patients as well (Table 8.2), majority of activated 

voxels was mostly ipsilateral for both right hand stimulation (in 6 cases out of 9) and left hand 

stimulation (in 9 cases out of 9). In three cases LI_R was equal to 1. 

http://www.xinapse.com/
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The average signal change averaged across all active voxels inside the cord of the 10 controls 

(Fig. 8.5) and of the 9 MS patients (Fig. 8.6) is reported. Mean signal enhancements and 

associated standard deviations were the following: for controls [Right hand: 3.74+/- 1.29%, and 

Left hand: 3.30+/-1.13%] and for patients [Right hand: 3.32+/- 1.00% and Left hand: 3.60+/-

1.28%]. Mean values were similar between right and left hand and between different groups. 

 

                                                  

 

 

 

     

 

 

Fig. 8.1: Localization of the slices. 
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Fig. 8.2: Activations in the 6 central slices for the 10 controls for right (in red) and left (in 
green) hand stimulation. Activated voxels are overlaid on the mean image. Slice order refers 
to that shown in Fig. 8.1. 
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Fig. 8.3: Activations in the 6 central slices for the 9 MS patients for right (in red) and left (in 
green) hand stimulation. Activated voxels are overlaid on the mean image. Slice order 
refers to that shown in Fig. 8.1. 
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Table 8.1: Number of both ipsi- and contra- laterally activated voxels for right (R_ipsi-contra) and 
left (L_ipsi-contra) hand stimulation for the 10 HC. Values of lateralization index are reported for 
right (LI_R) and left (LI_L) hand stimulation and for both of them (LI). Means and standard 
deviations are reported too. 

Fig. 8.4 : Spinal activity in one of the subjects for left (a; in green) and right (b; in red) hand 
stimulation overlaid to the mean image. The number of the slice refers to Fig.1. In the count of 
activated voxels, only those within the SC and excluded by the CSF mask, were taken into account 
The blue rectangles show the voxels considered for the CSF mask. In c) it is shown an example of the 
b0 images associated with the same slices and overlaid the LH (in yellow) and the PCWM (in red) 
masks. 
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Fig. 8.5: Average time course of all activated voxels within the spinal cord of 10 controls for both 
right and left task. Activation epochs are indicated by black lines. 

Fig. 8.6: Average time course of all activated voxels within the spinal cord of 9 MS patients for both 
right and left task. Activation epochs are indicated by black lines. 

Table 8.2: Number of both ipsi- and contra- laterally activated voxels for right (R_ipsi-contra) and 
left (L_ipsi-contra) hand stimulation for the 9 MS patients. Values of lateralization index are 
reported for right (LI_R) and left (LI_L) hand stimulation and for both of them (LI). Means and 
standard deviations are reported below. EDSS value also is reported for each subject. 
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Lateralization indices (LI_R, LI_L, LI) are reported for each control (Table 8.1) and each 

patient (Table 8.2). Results showed differences in mean LI between MS patients and HC. 

Calculated values for the lateralization indices (Mean+/-SD) were: for controls [LI_R = 1.80+/-

0.90, LI_L = 2.16+/-1.26 and LI = 1.69+/-0.46] and for patients [LI_R = 2.33+/-1.62, LI_L = 

3.12+/-1.10 and LI = 2.49 +/- 0.75]. Neither signal enhancements for right and left hand 

stimulation nor lateralization indexes LI_L and LI_R analyzed with the paired-sample T test 

showed statistically significant difference. The EDSS value for each patient is also reported in 

Table 8.2. Values of FA were calculated in both groups for each ROI, i.e. WS, LH, RH, PCWM 

and the mean values and standard deviations are shown in the box plots in Fig. 8.7. For the 

controls, the following values of fractional anisotropy were calculated (Mean+/-SD): 

FA_WC=0.66+/-0.03, FA_RH=0.66+/-0.03, FA_LH=0.65+/-0.03, FA_PCWM=0.76+/-0.04. 

For the patients instead, the following values were found (Mean+/-SD): FA_WC=0.59+/-0.07, 

FA_RH=0.58+/-0.06, FA_LH=0.59+/-0.06, FA_PCWM=0.67+/-0.06. Correlations between LI 

and FA were evaluated for MS and HC regarding the posterior column white matter 

(PCWM),each hemicord (LH, RH) and the whole cord (WS). 

 

 

 

 

Greater LI in MS patients (i.e. more ipsilateral than contralateral activity) was associated with 

lower fractional anisotropy calculated in PCWM (p=0.025) (Fig. 8.8) and it strongly correlated 

with the EDSS (p=0.002) (Fig.8.9). No other significant correlations were found.  

Fig. 8.7: Mean values of fractional anisotropy (FA) calculated for the 10 controls (HC, in green) and 
the 9 MS patients (MS, in red) referring to 4 different kinds of ROIs covering: whole cord (WC), right 
hemisphere (RH), left hemisphere (LH) and posterior column white matter (PCWM). 
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Fig. 8.8: Correlation between fractional anisotropy (FA) calculated in the posterior column white 
matter (PCWM) for MS patients and overall lateralization index (LI) [p=0.025; R2linear=0.631]. 

Fig. 8.9: Correlation in MS patients between EDSS and overall lateralization index (LI) [p=0.002; 
R

2
linear=0.773]. 
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8.1.4  -  Conclusion and Discussion  

The signal changes that were found in this study for the controls are in agreement with those 

reported in chapter 7 using the same paradigm and imaging parameters. The mean time-course 

of the activated voxels within the SC confirmed detection of task related neuronal activity. 

The signal changes for MS patients were in agreement too with those published in MS studies 

that reported mean values between 3% and 4% (Agosta et al., 2008a, 2008b, 2009b; Valsasina 

et al., 2010, 2012).  

This study successfully presented a method for obtaining structural and functional information 

from the cervical spinal cord with a protocol using fMRI and DWI sequences characterised by 

the same geometrical distortions. The method was successful in introducing a few original 

contributions, both from the acquisition and analysis point of view: i) using a spin echo EPI 

gradient-based reduced FOV sequence in a spinal fMRI experiment, ii) applying DRIFTER 

software physiological noise correction of the BOLD signal in the spine and iii) introducing a LI 

to describe functional asymmetry in the spine and using it to investigate possible structural 

correlations. The DTI acquisition and the diffusion parameters analysis are currently used in our 

research group and have been reported in a recent publication (Kearney et al., 2014). 

The DTI protocol had the same geometrical properties as the fMRI therefore the scans were 

inherently aligned to each other, apart from possible minimal movement of the subject. 

This study assessed whether in healthy subjects functional response depends on fractional 

anisotropy and correlated LI with this structural parameter for a number of ROIs. Results 

showed that in HC these are not coupled, hence, at least at cord level, these structural and 

functional properties are independent in healthy tissue or require a much higher sample size to 

be revealed. Moreover, results showed that there is indeed a correlation between functional 

impairment and structural damage.  

Greater lateralization of functional activity detected in MS patients was found to be associated 

with FA reduction in the posterior column. White matter in the posterior column constitutes an 

important sensory pathway, important for tactile, pressure and vibration sensations (Standring et 

al., 2005). PCWM reduction may be due to lesions in this pathway. It could be hypothesized 
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that in the spine an enhancement of lateralized neural activity contributes to limit the functional 

impact of MS related damage.  

EDSS scale is a method for quantifying disability due to MS and is an indicator of severity of 

the disease. The higher the EDSS index, the higher the impact of multiple sclerosis on patient’s 

life, reflecting a more severe damage. The fact that a higher EDSS was associated with a higher 

LI may indicate that a larger ipsilateral neural activity is likely to compensate a more severe 

damage due to the disease.  

Both the correlations discussed above, seem to suggest that adaptive changes remodeling 

functional activity occur in the spinal cord as a compensatory phenomenon in MS, in order to 

limit the clinical consequences of tissue damage. 

Let’s now discuss the variability of the detected functional activity and what the implications 

are for the use of spinal fMRI in the clinical setting. 

The interpretation of the functional results obtained for each subject of this study is not 

straightforward. This is due to both low reproducibility and inter-subject variability of the 

results. Although the reproducibility of the applied methods, tested in a previous section of this 

thesis (section 5.12), gave encouraging outcome, the variability of neural activity between 

subjects is an important issue that needs to be considered. Different subjects, even if healthy 

controls, might present slightly different anatomical features. Although the spinal nerves 

supplying the C6 dermatome enter the spinal cord at the C6 vertebral segment, the exact 

location of these nerves may change between subjects within a vertebral segment spanning a 

few centimetres. For this reason, the neural activity detected in different subjects by applying 

the same sensory stimulus, might even occur in different slices. Moreover, even the extent of 

the activated area might change between subjects (Standring et al., 2005). In order to make 

easier the interpretation of any functional abnormality due to the disease it would be very useful 

to have a table reporting reference values from healthy controls, in such a way to compare these 

values with those obtained in an exam. Regrettably, such a table does not exist yet. 

To conclude, the results obtained in this study warrant further investigations in patients with 

neurological conditions such as MS where both structural and functional data are recorded. The 
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proposed strategy using geometrically matched protocols makes these studies feasible and easier 

to analyse and interpret.  
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Chapter 9 – CONCLUSIONS AND FUTURE 

DIRECTIONS 

 

9.1 - Conclusion 

The purpose of this thesis was to define a functional and structural protocol to study spinal cord 

alterations, which could merge information from different modalities. Given the different stages 

of functional and structural MRI of the spine, in this thesis I have discussed and tackled several 

issues about spinal fMRI, investigating more in depth aspects that have been often reported only 

superficially in the literature. After an introductory part concerning magnetic resonance 

principles, I tested the ZOOM-EPI sequence using a reduced FOV in the brain to assess its 

performance in fMRI studies and then I have applied it to the spinal cord. This is the first time 

that this sequence has been applied to perform fMRI in the spine. Due to the very limited 

literature, there is no established pipeline suggesting how to analyse spinal functional datasets 

and different research groups perform analyses in a subjective way, possibly biasing results and 

hindering comparisons between different studies. 

In chapter 3, after an anatomical description of the spinal cord, I discussed the physiological 

mechanisms that underpin the signal change as a consequence of functional activation. The 

BOLD and SEEP effects were introduced and put in context within a wide literature review.  

In chapter 4, I developed an analysis pipeline testing all the preprocessing steps that can be 

found in the literature. Results have shown that: 2D-realignment guarantees the higher TSNR, 

neither slice timing nor temporal derivatives are decisive for detecting functional activations, 

smoothing spinal datasets may have more drawbacks than advantages. This pipeline has then 

been applied to all datasets in this thesis.  

In chapter 5, I discussed and compared the performances of both RETROICOR-like methods 

and DRIFTER software to remove physiological noise due to cardiac pulsation and respiration. 

This is the first time that DRIFTER software was tested in the spinal cord. After assessing the 
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better performance of DRIFTER software, this was applied to all the functional studies included 

in this thesis. A CSF regressor, accounting for CSF pulsation, was always included in the 

analysis. Reproducibility of spinal fMRI is an issue not usually reported in current literature, 

especially at single subject level. In chapter 5, I tested the reproducibility of the methodology I 

proposed in individual subjects and results obtained from test and re-test scans on 3 healthy 

subjects showed common patterns of activity both ipsilaterally and contralaterally.  

In chapter 6, I tested the performance of an alternative spinal HRF showing how it constitutes a 

valid alternative to the canonical HRF and that it would be worth investigating this issue, 

underestimated in the literature, in greater depth.  

In chapter 7, I performed two functional studies on healthy subjects aiming at investigating 

neuronal activity in response to a motor and a sensory task. TSNR was reported and signal 

changes were in agreement with the literature (Yoshizawa et al., 1996; Stroman and Ryner, 

2001; Stroman et al., 2002a,b; Govers et al., 2007; Maieron et al., 2007). In both experiments a 

predominant overall number of ipsilaterally activated voxels was found, however, a minority of 

contralateral activated voxels also was detected for most scans. Due to small spinal dimensions, 

it was not straightforward to locate activated voxels in either the dorsal or ventral horns of the 

spinal cord, however, results showed that the applied methods strongly reduced the number of 

false activations found both in the CSF and outside the spinal cord, increasing reliability of 

those activations detected within the cord. Furthermore, results showed that a localised sensory 

task (delivered with a custom made MRI compatible rotating brush) is more suitable than a 

motor task (fingertapping) to detect lateralization capability in the spinal cord. Moreover, this 

sensory paradigm could be delivered passively to all subjects, without requiring them to 

perform any task, limiting the risk of involuntary task related movement. For these reasons, this 

sensory stimulus was chosen for being applied to MS patients too.  

In chapter 8, I reported a multimodal study including both controls and MS patients. The same 

ZOOM-EPI sequence, employed to perform diffusion and functional scans with identical voxel 

dimensions and geometrical prescription, allowed  more precise comparisons between structural 

and functional information. The mean signal changes for healthy controls were in agreement 

with those found in chapter 7 and, for MS patients, they were consistent with values reported in 



 

149 
 

the literature. In most subjects ipsilateral activation was dominant. Results showed differences 

in mean lateralization (LI) index between MS patients and controls. Greater LI in MS patients 

(i.e. more ipsilateral than contralateral activation) was associated with lower posterior column 

white matter fractional anisotropy and it strongly correlated with the EDSS.  

In conclusion, the initial purpose of this PhD project has been fully achieved by: demonstrating 

that it is possible to detect functional activation using ZOOM-EPI, already used for DI, 

developing a robust analysis pipeline, tackling important technical issues, assessing the 

feasibility of the technique with different stimuli and, finally, presenting a multimodal protocol 

suitable for investigating correlations between functional and diffusion data acquired in the 

cervical spinal cord of both healthy controls and MS patients. 

 

 

9.2 - Future directions 

Although, at present, SC fMRI technique is not ready to be applied in the clinical setting, in 

future, the clinical applications of SC fMRI might be really helpful to patients suffering from 

spinal injuries or spinal diseases, assessing the grade of functional damage and the response to 

an applied treatment. Furthermore, spinal fMRI might aid clinical diagnosis and surgical 

planning for several neurological and psychiatric conditions (Detre, 2006; Jezzard and Buxton, 

2006; Matthews et al., 2006; Owen and Coleman, 2008). Recently, functional studies have been 

performed as group studies (for statistical strength), including resting state experiments too, on 

both volunteers and patients (Wei et al., 2010; Brooks et al, 2012; Barry et al., 2014; Eippert et 

al., 2014; Nejad et al., 2014). However, although group analysis adds to literature on SC-fMRI, 

at the current state of art this kind of study does not add further information aiming at the 

translation to the clinical setting. The first aim that should be achieved, in my opinion, is an 

improvement of spinal fMRI reliability at single subject level and the establishment of an 

acknowledged analysis pipeline for single subjects studies. Moreover, so far, the papers 

published on spinal fMRI investigate only activations in the cervical segments, except for a few 
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studies performed in the lumbar spine in humans (Kornelsen et al., 2004; Moffitt et al., 2005) 

and animals (Zhao et al., 2008; Cohen-Adad et al., 2009a). Although the ZOOM sequence used 

in this study proved to be valuable, strategies to use reduced FOV imaging with gradient or RF 

based methods should be compared for both functional and structural MRI. This was beyond the 

scope of this thesis but given the promising results obtained, further investigation of sequence 

designs is warranted. One major hurdle for spinal fMRI and DI is the development of efficient 

coils to detect signal. While for brain applications there has been an expansion of multi-channel 

coils, for spinal cord imaging we are still using the standard coils with a limited number of 

receive arrays. To increase reliability of both functional and structural imaging of the spine, 

higher SNR would be greatly beneficial, built together with strategies to limit motion and 

improve patient comfort. This is an aspect of spinal imaging that was not investigated at all 

during this thesis as it was beyond the scope of this work.  

Hopefully, developing new analysis techniques, new sequences and dedicated software, might 

make possible to apply spinal fMRI to all the spinal segments and to improve its reliability too, 

allowing the translation to the clinical setting. 
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