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POSTERIOR PROPRIETY IN BAYESIAN EXTREME VALUE

ANALYSES USING REFERENCE PRIORS
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Abstract: The Generalized Pareto (GP) and Generalized extreme value (GEV) dis-

tributions play an important role in extreme value analyses, as models for threshold

excesses and block maxima respectively. For each of these distributions we consider

Bayesian inference using “reference” prior distributions (in the general sense of pri-

ors constructed using formal rules) for the model parameters, specifically a Jeffreys

prior, the maximal data information (MDI) prior and independent uniform priors

on separate model parameters. We investigate the important issue of whether these

improper priors lead to proper posterior distributions. We show that, in the GP

and GEV cases, the MDI prior, unless modified, never yields a proper posterior

and that in the GEV case this also applies to the Jeffreys prior. We also show that

a sample size of three (four) is sufficient for independent uniform priors to yield a

proper posterior distribution in the GP (GEV) case.

Key words and phrases: Extreme value theory, generalized extreme value distribu-

tion, generalized Pareto distribution, posterior propriety, reference prior.

1. Introduction

Extreme value theory provides an asymptotic justification for particular fam-

ilies of models for extreme data. Let X1, X2, . . . XN be a sequence of indepen-

dently and identically distributed random variables. Let uN be a threshold,

increasing with N . Pickands (1975) showed that if there is a non-degenerate lim-

iting distribution for appropriately linearly rescaled excesses of uN then this limit

is a Generalized Pareto (GP) distribution. In practice, a suitably high thresh-

old u is chosen empirically. Given that there is an exceedance of u, the excess

Z = X − u is modelled by a GP(σu, ξ) distribution, with threshold-dependent

scale parameter σu, shape parameter ξ and distribution function

FGP (z) =

{
1− (1 + ξz/σu)

−1/ξ
+ , ξ 6= 0,

1− exp(−z/σu), ξ = 0,
(1.1)

where z > 0, z+ = max(z, 0), σu > 0 and ξ ∈ R. The use of the generalized

extreme value (GEV) distribution (Jenkinson, 1955), with distribution function

FGEV (y) =

exp
{
− [1 + ξ(y − µ)/σ]

−1/ξ
+

}
, ξ 6= 0,

exp {− exp[−(y − µ)/σ]} , ξ = 0,
(1.2)
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where σ > 0 and µ, ξ ∈ R, as a model for block maxima is motivated by con-

sidering the behaviour of Y = max{X1, . . . , Xb} as b→∞ (Fisher and Tippett,

1928; Leadbetter et al., 1983).

Commonly-used frequentist methods of inference for extreme value distribu-

tions are maximum likelihood estimation (MLE) and probability-weighted mo-

ments (PWM). However, conditions on ξ are required for the asymptotic theory

on which inferences are based to apply: ξ > −1/2 for MLE (Smith, 1984, 1985)

and ξ < 1/2 for PWM (Hosking et al., 1985; Hosking and Wallis, 1987). Alterna-

tively, a Bayesian approach (Coles, 2001; Coles and Powell, 1996; Stephenson and

Tawn, 2004) can avoid conditions on the value of ξ and performs predictive infer-

ence about future observations naturally and conveniently using Markov chain

Monte Carlo (MCMC) output. A distinction can be made between subjective

analyses, in which the prior distribution supplies information from an expert

(Coles and Tawn, 1996) or more general experience of the quantity under study

(Martins and Stedinger, 2000, 2001), and so-called objective analyses (Berger,

2006). In the latter, a prior is constructed using a formal rule, for use when

no subjective information is to be incorporated into the analysis. There is dis-

agreement about appropriate terminology for such priors: we follow Kass and

Wasserman (1996) in using the term reference prior.

Many such formal rules have been proposed: Kass and Wasserman (1996)

provides a comprehensive review. In this paper we consider three priors that have

been used in extreme value analyses: the Jeffreys prior (Eugenia Castellanos and

Cabras, 2007; Beirlant et al., 2004), the maximal data information (MDI) prior

(Beirlant et al., 2004), and the uniform prior (Pickands, 1994). These priors

are improper, that is, they do not integrate to a finite number and therefore

do not correspond to a proper probability distribution. An improper prior can

lead to an improper posterior, which is clearly undesirable. There is no gen-

eral theory providing simple conditions under which an improper prior yields a

proper posterior for a particular model, so this must be investigated case-by-

case. Eugenia Castellanos and Cabras (2007) establish that Jeffreys prior for the

GP distribution always yields a proper posterior, but no such results exist for

the other improper priors we consider. It is important that posterior propriety

is established because impropriety may not create obvious numerical problems,

for example, MCMC output may appear perfectly reasonable (Athreya and Roy,

2014).

One way to ensure posterior propriety is to use a diffuse proper prior, such as

a normal prior with a large variance (Coles and Tawn, 2005; Smith, 2005) or by

truncating an improper prior (Smith and Goodman, 2000). For example, Coles

(2001, chapter 9) uses a GEV(µ, σ, ξ) model for annual maximum sea-levels, plac-

ing independent normal priors on µ, log σ and ξ with respective variances 104, 104
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and 100. However, one needs to check that the posterior is not sensitive to the

choice of proper prior and, as Bayarri and Berger (2004) note “. . . these posteriors

will essentially be meaningless if the limiting improper objective prior would have

resulted in an improper posterior distribution.” Therefore, independent uniform

priors on separate model parameters are of interest in their own right and as the

limiting case of independent diffuse normal priors.

In section 2 we give the general form of the three priors we consider in this

paper. In section 3 we investigate whether or not these priors yield a proper

posterior distribution given a random sample z = (z1, . . . , zm) from the GP dis-

tribution, and, in cases where propriety is possible, we derive sufficient conditions

for this to occur. We repeat this for a random sample y = (y1, . . . , yn) from a

GEV distribution in section 4. In section 5 we discuss some implications of these

results and possible extensions. Proofs of results are presented in the appendix.

2. Reference priors for extreme value distributions

Let Y be a random variable with density function f(Y | φ), indexed by a

parameter vector φ, and define the Fisher information matrix I(φ) by I(φ)ij =

E
[
−∂2 ln f(Y | φ)/∂φi∂φj

]
.

Uniform priors. Priors that are flat, i.e. equal to a positive constant, suffer

from the problem that they are not automatically invariant to reparameterisation:

for example, if we give log σ a uniform distributon then σ is not uniform. Thus,

it matters which particular parameterization is used to define the prior.

Jeffreys priors. Jeffreys’ “general rule” (Jeffreys, 1961) is

πJ(φ) ∝ det(I(φ))1/2. (2.1)

An attractive property of this rule is that it produces a prior that is invariant

to reparameterization. Jeffreys suggested a modification of this rule for use in

location-scale problems. We will follow this modification, which is summarised

on page 1345 of Kass and Wasserman (1996). If there is no location parameter

then (2.1) is used. If there is a location parameter µ, say, then φ = (µ, θ) and

πJ(µ, θ) ∝ det(I(θ))1/2, (2.2)

where I(θ) is calculated holding µ fixed. In the current context the GP distribu-

tion does not have a location parameter whereas the GEV distribution does.

MDI prior. The MDI prior (Zellner, 1971) is defined as

πM (φ) ∝ exp {E[log f(Y | φ)]} . (2.3)

This is the prior for which the increase in average information, provided by the

data via the likelihood function, is maximised. For further information see Zellner

(1998).
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3. Generalized Pareto (GP) distribution

Without loss of generality we take the m threshold excesses to be ordered:

z1 < · · · < zm. For simplicity we denote the GP scale parameter by σ rather than

σu. We consider a class of priors of the form π(σ, ξ) ∝ π(ξ)/σ, σ > 0, ξ ∈ R, where

π(ξ) is a function depending only on ξ, that is, a priori σ and ξ are independent

and log σ has an improper uniform prior over the real line.

The posterior is given by

πG(σ, ξ | z) = C−1m π(ξ)σ−(m+1)
m∏
i=1

(1 + ξzi/σ)−(1+1/ξ) , σ > 0, ξ > −σ/zm,

where

Cm =

∫ ∞
−∞

∫ ∞
max(0,−ξzm)

π(ξ)σ−(m+1)
m∏
i=1

(1 + ξzi/σ)−(1+1/ξ) dσ dξ (3.1)

and the inequality ξ > −σ/zm comes from the constraints 1 + ξzi/σ > 0, i =

1, . . . ,m in the likelihood.

3.1 Prior densities

Using (2.1) with φ = (σ, ξ) gives the Jeffreys prior

πJ,GP (σ, ξ) ∝ 1

σ(1 + ξ)(1 + 2ξ)1/2
, σ > 0, ξ > −1/2.

Eugenia Castellanos and Cabras (2007) show that a proper posterior density

results for m > 1.

Using (2.3) gives the MDI prior

πM,GP (σ, ξ) ∝ 1

σ
e−(ξ+1) ∝ 1

σ
e−ξ σ > 0, ξ ∈ R. (3.2)

Beirlant et al. (2004, page 447) use this prior but they do not investigate the

propriety of the posterior.

Placing independent uniform priors on log σ and ξ gives the prior

πU,GP (σ, ξ) ∝ 1

σ
, σ > 0, ξ ∈ R, . (3.3)

This prior was proposed by Pickands (1994).

Figure 1 shows the Jeffreys and MDI priors for GP parameters as a functions

of ξ. The MDI prior increases without limit as ξ → −∞.

3.2 Results

Theorem 1. A sufficient condition for the prior π(σ, ξ) ∝ π(ξ)/σ, σ > 0, ξ ∈ R
to yield a proper posterior density function is that π(ξ) is (proportional to) a

proper density function.
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Figure 1: Scaled Jeffreys and MDI GP prior densities against ξ.

The MDI prior (3.2) does not satisfy the condition in theorem 1 because

exp{−(ξ + 1)} is not a proper density function on ξ ∈ R.

Theorem 2. There is no sample size for which the MDI prior (3.2) yields a

proper posterior density function.

The problem with the MDI prior is due to its behaviour for negative ξ so a

simple solution is to place a lower bound on ξ a priori. This approach is common

in extreme value analyses, for example, Martins and Stedinger (2001) constrain

ξ to (−1/2, 1/2) a priori. We suggest

π′M,GP (σ, ξ) =
1

σ
e−(ξ+1), ξ > −1, (3.4)

that is, a (proper) unit exponential prior on ξ + 1. Any finite lower bound on

ξ ensures propriety of the posterior but ξ = −1, for which the GP distribution

reduces to a uniform distribution on (0, σ), seems less arbitrary than other choices

as it corresponds to a change in the behaviour of the GP density. For ξ > −1, the

GP density fGP (z) decreases in z, which is what one anticipates when conducting

an extreme value analysis to make inferences about future large, rare values. For

ξ < −1, fGP (z) increases without limit as it approaches its mode at the upper

end point −σ/ξ, behaviour that is not expected in such analyses.

Corollary to theorem 1. The truncated MDI prior (3.4) yields a proper pos-

terior density function for m > 1.
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Theorem 3. A sufficient condition for the uniform prior (3.3) to yield a proper

posterior density function is that m > 3.

4. Generalized extreme value (GEV) distribution

Without loss of generality we take the n block maxima to be ordered:

y1 < · · · < yn. We consider a class of priors of the form π(µ, σ, ξ) ∝ π(ξ)/σ,

σ > 0, µ, ξ ∈ R, that is, a priori µ, σ and ξ are independent and µ and log σ have

improper uniform priors over the real line.

Based on a random sample y1, . . . , yn the posterior density for (µ, σ, ξ) is

proportional to

σ−(n+1)π(ξ) exp

{
−

n∑
i=1

w
−1/ξ
i

}
n∏
i=1

w
−(1+1/ξ)
i , (4.1)

where wi = 1 + ξ(yi − µ)/σ and σ > 0. If ξ > 0 then µ− σ/ξ < y1 and if ξ < 0

then µ− σ/ξ > yn.

4.1 Prior densities

Kotz and Nadarajah (2000, page 63) give the Fisher information matrix for

the GEV distribution (1.2). Using (2.2) with φ = (µ, σ, ξ) gives the Jeffreys prior

πJ,GEV (µ, σ, ξ) =
1

σξ2

{
[1− 2Γ(2 + ξ) + p]

[
π2

6
+

(
1− γ +

1

ξ

)2

− 2q

ξ
+

p

ξ2

]

−
[
1− γ +

1

ξ
− 1

ξ
Γ(2 + ξ)− q +

p

ξ

]2}1/2

, µ ∈ R, σ > 0, ξ > −1/2, (4.2)

where p = (1 + ξ)2 Γ(1 + 2ξ), q = Γ(2 + ξ) {ψ(1 + ξ) + (1 + ξ)/ξ}, ψ(r) =

∂ log Γ(r)/∂r and γ ≈ 0.57722 is Euler’s constant. van Noortwijk et al. (2004)

give an alternative form for the Jeffreys prior, based on (2.1).

Beirlant et al. (2004, page 435) give the form of the MDI prior:

πM,GEV (µ, σ, ξ) =
1

σ
e−γ(ξ+1+1/γ) ∝ 1

σ
e−γ(1+ξ), σ > 0, µ, ξ ∈ R. (4.3)

Placing independent uniform priors on µ, log σ and ξ gives the prior

πU,GEV (µ, σ, ξ) ∝ 1

σ
, σ > 0, µ, ξ ∈ R. (4.4)

Figure 2 shows the Jeffreys and MDI priors for GEV parameters as a functions

of ξ. The MDI prior increases without limit as ξ → −∞ and the Jeffreys prior

increases without limit as ξ →∞ and as ξ ↓ −1/2.
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Figure 2: Scaled Jeffreys and MDI GEV prior densities against ξ.

4.2 Results

Theorem 4. For the prior π(µ, σ, ξ) ∝ π(ξ)/σ, σ > 0, µ, ξ ∈ R to yield a proper

posterior density function it is necessary that n > 2 and, in that event, it is

sufficient that π(ξ) is (proportional to) a proper density function.

Theorem 5. There is no sample size for which the Jeffreys prior (4.2) yields a

proper posterior density function.

Truncation of the independence Jeffreys prior to ξ 6 ξ+ would yield a

proper posterior density function if n > 2. In this event theorem 4 requires

only that
∫ ξ+
−1/2 π(ξ) dξ is finite, where π(ξ) = σπJ,GEV (µ, σ, ξ) (see (4.2)). From

the proof of theorem 5 we have π(ξ) < 2
[
π2/6 + (1− γ)2

]1/2
(1 + 2ξ)−1/2 for

ξ ∈ (−1/2,−1/2 + ε), where ε > 0. Therefore,∫ −1/2+ε
−1/2

π(ξ) dξ < 2
[
π2/6 + (1− γ)2

]1/2 ∫ −1/2+ε
−1/2

(1 + 2ξ)−1/2 dξ,

= 23/2
[
π2/6 + (1− γ)2

]1/2
ε1/2.

The integral over (−1/2 + ε, ξ+) is also finite. However, the choice of an a priori

upper limit for ξ may be less obvious than the choice of a lower limit.

Theorem 6. There is no sample size for which the MDI prior (4.3) yields a

proper posterior density function.
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As in the GP case, truncating the MDI prior to ξ > −1, that is,

π′M,GEV (µ, σ, ξ) ∝ 1

σ
e−γ(1+ξ) µ ∈ R, σ > 0, ξ > −1, (4.5)

is one way to yield a proper posterior distribution.

Corollary to theorem 4. The truncated MDI prior (4.5) yields a proper pos-

terior density function for n > 2.

Theorem 7. A sufficient condition for the uniform prior (4.4) to yield a proper

posterior density function is that n > 4.

5. Discussion

We have shown that some of the reference priors used, or proposed for use,

in extreme value modelling do not yield a proper posterior distribution unless we

are willing to truncate the possible values of ξ priori. An interesting aspect of our

findings is that the Jeffreys prior (4.2) for GEV parameters fails to yield a proper

posterior, whereas the uniform prior (4.4) requires only weak conditions to ensure

posterior propriety. This is the opposite of more general experience, summarised

by (Berger, 2006, page 393) and (Yang and Berger, 1998, page 5), that Jeffreys

prior almost always yields a proper posterior whereas a uniform prior often fails

to do so. The impropriety of the posterior under the Jeffreys prior is due to the

high rate at which the component π(ξ) of this prior increases for large ξ. An

alternative prior based on Jeffreys’ general rule (2.1) (van Noortwijk et al., 2004)

also has this property.

The conditions sufficient for posterior propriety under the uniform priors

(3.3) and (4.4) are weak. Therefore, a posterior yielded by a diffuse normal priors

is meaningful but such a prior could be replaced by an improper uniform prior.

Although it is reassuring to know that a posterior is proper, with a sufficiently

informative sample posterior impropriety might not present a practical problem

(Kass and Wasserman, 1996, section 5.2). This may explain why (Beirlant et al.,

2004, pages 435 and 447) obtain sensible results using (untruncated) MDI priors.

However, the posterior impropriety may be evident for smaller sample sizes.

In making inferences about high quantiles of the marginal distribution of

X, the GP model for threshold excesses is combined with a binomial(N, pu)

model for the number of excesses, where pu = P (X > u). Reference priors for a

binomial probability have been studied extensively, see, for example, Tuyl et al.

(2009). An approximately equivalent approach is the non-homogeneous Poisson

process (NHPP) model (Smith, 1989), which is parameterized in terms of GEV

parameters µ, σ and ξ relating to the distribution of max{X, . . . , Xb}. Suppose

that m observations x1, . . . , xm exceed u. Under the NHPP the posterior density
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for (µ, σ, ξ) is proportional to

σ−(m+1)π(ξ) exp

{
−n
[
1+ξ

(
u−µ
σ

)]−1/ξ
+

}
m∏
i=1

[
1+ξ

(
xi−µ
σ

)]−(1+1/ξ)

+

, (5.1)

where n is the (notional) number of blocks into which the data are divided in

defining (µ, σ, ξ). Without loss of generality, we take n = m. The exponential

term in (5.1) is an increasing function of u, and xi > u, i = 1, . . . ,m. Therefore,

exp

{
−n
[
1 + ξ

(
u− µ
σ

)]−1/ξ
+

}
< exp

{
−

m∑
i=1

[
1 + ξ

(
xi − µ
σ

)]−1/ξ
+

}

and (5.1) is less than

σ−(m+1)π(ξ) exp

{
−

m∑
i=1

[
1+ξ

(
xi−µ
σ

)]−1/ξ
+

}
m∏
i=1

[
1+ξ

(
xi−µ
σ

)]−(1+1/ξ)

+

. (5.2)

Equation (5.2) is of the same form as (4.1), with n = m and yi = xi, i = 1, . . . , n.

Therefore, theorems 4 and 7 apply to the NHPP model, that is, for posterior

propriety it is sufficient that either (a) n > 2 and π(µ, σ, ξ) ∝ π(ξ)/σ, for σ >

0, µ, ξ ∈ R, where
∫
ξ π(ξ) dξ is finite, or (b) n > 4 and π(µ, σ, ξ) ∝ 1/σ, for

σ > 0, µ, ξ ∈ R.

One possible extension of our work is to regression modelling using extreme

value response distributions. For example, Roy and Dey (2014) use GEV regres-

sion modelling to analyze reliability data. They prove posterior propriety under

conditions on the prior for (σ, ξ) that are stronger than those in our theorems

4 and 7. Future work will investigate our conjecture that the conditions in Roy

and Dey (2014) can be weakened. Another extension is to explore other formal

rules for constructing priors, such as reference priors (Berger et al., 2009) and

probability matching priors (Datta et al., 2009). Ho (2010) considers the latter

for the GP distribution.
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6. Appendix

6.1 Moments of a GP distribution

We give some moments of the GP distribution for later use. Suppose that

Z ∼ GP (σ, ξ), where ξ < 1/r. Then (Giles and Feng, 2009)

E(Zr) = r!σr
/ r∏

i=1

(1− iξ), r = 1, 2, . . . . (6.1)

Now suppose that ξ < 0. Then, for a constant a > ξ, and using the substitution

x = −ξv/σ, we have

E(Z−a/ξ) =

∫ −σ/ξ
0

v−a/ξ
1

σ

(
1 +

ξv

σ

)−(1+1/ξ)

dv,

= (−ξ)a/ξ−1σ−a/ξ
∫ 1

0
x−a/ξ(1− x)−(1+1/ξ) dx,

= (−ξ)a/ξ−1σ−a/ξΓ(1− a/ξ)Γ(−1/ξ)

Γ(1− (a+ 1)/ξ)
, (6.2)

where we have used integral number 1 in section 3.251 on page 324 of Gradshteyn

and Ryzhik (2007), namely∫ 1

0
xµ−1(1− xλ)ν−1 dx =

1

λ
Beta

(µ
λ
, ν
)

=
Γ(µ/λ)Γ(ν)

Γ(µ/λ+ ν)
λ > 0, ν > 0, µ > 0,

with λ = 1, µ = 1− a/ξ and v = −1/ξ.

In the following proofs we use the generic notation π(ξ) for the component

of the prior relating to ξ: the form of π(ξ) varies depending on the prior being

considered.

6.2 Proof of theorem 1 and its corollary

This trivial extension of the proof of theorem 1 in Eugenia Castellanos and

Cabras (2007). Suppose m = 1, with an observation z. The normalizing constant

C of the posterior distribution is given by

C1 =

∫ 0

−∞
π(ξ)

∫ ∞
−ξz

σ−2 (1 + ξz/σ)−(1+1/ξ) dσ dξ

+

∫ ∞
0

π(ξ)

∫ ∞
0

σ−2(1 + ξz/σ)−(1+1/ξ) dσ dξ,

=
1

z

∫ ∞
−∞

π(ξ) dξ.

If the latter integral is finite, that is, π(ξ) is proportional to a proper density

function, then the posterior distribution is proper for m = 1 and therefore, by
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successive iterations of Bayes’ theorem, it is proper for m > 1. The corollary

follows directly.

6.3 Proof of theorem 2

Let A(ξ) = e−ξ and Bm(σ, ξ) = σ−(m+1)
∏m
i=1 (1 + ξzi/σ)−(1+1/ξ). Then,

from (3.1) we have

Cm =

∫ ∞
−∞

A(ξ)

∫ ∞
max(0,−ξzm)

Bm(σ, ξ) dσ dξ,

=

∫ −1
−∞

A(ξ)

∫ ∞
−ξzm

Bm(σ, ξ) dσ dξ +

∫ 0

−1
A(ξ)

∫ ∞
−ξzm

Bm(σ, ξ) dσ dξ

+

∫ ∞
0

A(ξ)

∫ ∞
0

Bm(σ, ξ) dσ dξ.

The latter two integrals converge for m > 1. However, the first integral diverges

for all samples sizes. For ξ < −1, (1+ξz/σ)−(1+1/ξ) > 1 when z is in the support

(0,−σ/ξ) of the GP(σ, ξ) density. Therefore Bm(σ, ξ) > σ−(m+1). Thus, the first

integral above satisfies∫ −1
−∞

A(ξ)

∫ ∞
−ξzm

Bm(σ, ξ) dσ dξ >

∫ −1
−∞

A(ξ)

∫ ∞
−ξzm

σ−(m+1) dσ dξ,

=

∫ −1
−∞

A(ξ)

[
− 1

m
σ−m

]∞
−ξzm

dξ,

=

∫ −1
−∞

A(ξ)
1

m
[−ξzm]−m dξ,

=
1

mzmm

∫ ∞
1

v−mev dv,

where v = −ξ. This integral is divergent for all m > 1, so there is no sample size

for which the posterior is proper.

6.4 Proof of theorem 3

We need to show that C3 is finite. We split the range of integration over ξ

so that C3 = I1 + I2 + I3, where

I1 =

∫ −1
−∞

∫ ∞
−ξz3

B3 dσ dξ, I2 =

∫ 0

−1

∫ ∞
−ξz3

B3 dσ dξ, I3 =

∫ ∞
0

∫ ∞
0
B3 dσ dξ

and B3 = B3(σ, ξ) = σ−4
∏3
i=1 (1 + ξzi/σ)−(1+1/ξ). For convenience we let ρ =

ξ/σ and ζi = z3 − zi, i = 1, 2.

Proof that I1 is finite. We have ξ < −1 and so −(1 + 1/ξ) < 0, ρ < 0 and
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0 < 1 + ρzi < 1 for i = 1, 2, 3. Noting that −ρz3 < 1 gives

(1 + ρz1)(1 + ρz2)(1 + ρz3) > (−ρz3 + ρz1)(−ρz3 + ρz2)(1 + ρz3),

= (−ρ)2ζ1ζ2(1 + ρz3),

= (−ξ)2σ−2ζ1ζ2(1 + ρz3). (6.3)

Therefore,

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

< (−ξ)−2(1+1/ξ)σ2(1+1/ξ)

[
ζ2 ζ1

(
1 +

ξz3
σ

)]−(1+1/ξ)

.

Thus, I1 6
∫ −1
−∞(−ξ)−2(1+1/ξ) [ζ2 ζ1 ]−(1+1/ξ) I1σ dξ, where

I1σ =

∫ ∞
−ξz3

σ−4σ2(1+1/ξ)

(
1 +

ξz3
σ

)−(1+1/ξ)

dσ,

= z−13

∫ −1/ξz3
0

v−2/ξ
1

z−13

(
1 +

ξv

z−13

)−(1+1/ξ)

dv,

= (−ξ)2/ξ−1z−(1−2/ξ)3

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
,

where v = 1/σ and the last line follows from (6.2) with a = 2 and σ = z−13 .

Therefore,

I1 6
∫ −1
−∞

(−ξ)−3 [ζ2 ζ1 ]−(1+1/ξ) z
−(1−2/ξ)
3

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= [z3ζ2 ζ1 ]−1
∫ −1
−∞

(−ξ)−3
(
ζ2
z3

)−1/ξ (ζ1
z3

)−1/ξ Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= [z3ζ2 ζ1 ]−1
∫ 1

0
x

(
ζ2
z3

)x(ζ1
z3

)x Γ(1 + 2x)Γ(x)

Γ(1 + 3x)
dx,

= [z3ζ2 ζ1 ]−1
∫ 1

0

(
ζ2
z3

)x(ζ1
z3

)x Γ(1 + 2x)Γ(1 + x)

Γ(1 + 3x)
dx, (6.4)

where x = −1/ξ and we have used the relation Γ(1 +x) = xΓ(x). The integrand

in (6.4) is finite over the range of integration so this integral is finite and therefore

I1 is finite.

Proof that I2 is finite. We have −1 < ξ < 0, so −(1 + 1/ξ) > 0 and (1 +

ξz/σ)−(1+1/ξ) < 1 and decreases in z over (0,−σ/ξ). Therefore,

I2 =

∫ 0

−1

∫ ∞
−ξz3

σ−4
3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

dσ dξ,
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6
∫ 0

−1

∫ ∞
−ξz3

σ−4
(

1 +
ξz3
σ

)−(1+1/ξ)

dσ dξ,

=

∫ 0

−1
z−13

∫ −1/ξz3
0

v2
1

z−13

(
1 +

ξv

z−13

)−(1+1/ξ)

dv dξ,

= z−13

∫ 0

−1

2z−23

(1− ξ)(1− 2ξ)
dξ,

= 2z−33

∫ 0

−1

{(
1

2
− ξ
)−1
− (1− ξ)−1

}
dξ,

= 2z−33 ln(3/2),

where the integral over v follows from (6.1) with r = 2 and σ = z−13 .

Proof that I3 is finite. We have ξ > 0 so −(1+1/ξ) < 0. Let gn = (
∏n
i=1 zi)

1/n.

Mitrinović (1964, page 130):

n∏
k=1

(1 + ak) > (1 + b)n, ak > 0;
n∏
k=1

ak = bn, (6.5)

with ak = ξzk/σ and b = ξg3/σ gives

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

6

(
1 +

ξg3
σ

)−3(1+1/ξ)

,

and therefore

I3 =

∫ ∞
0

∫ ∞
0

σ−4
3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

dσ dξ,

6
∫ ∞
0

∫ ∞
0

σ−4
(

1 +
ξg3
σ

)−3(1+1/ξ)

dσ dξ,

=

∫ ∞
0

β

∫ ∞
0

v2
1

β

(
1 +

αv

β

)−(1+1/α)

dv dξ,

where v = 1/σ, α = 1/(2 + 3/ξ) and β = α/ξg3 = 1/(3 + 2ξ)g3. For ξ > 0,

α < 1/2 so using (6.1) with r = 2, σ = β and ξ = α gives

I3 6
∫ ∞
0

β
2β2

(1− α)(1− 2α)
dξ,

=
2

3
g−33

∫ ∞
0

1

(ξ + 3)(2ξ + 3)
dξ,

=
2

9
g−33

∫ ∞
0

(
1

ξ + 3/2
− 1

ξ + 3

)
dξ,
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=
2

9
g−33 ln 2.

The normalizing constant C3 is finite, so πU,GP (σ, ξ) yields a proper posterior

density for m = 3 and therefore does so for m > 3.

6.5 Proof of theorem 4 and its corollary

Throughout the following proofs we define δi = yi − y1, i = 2, . . . , n. We

make the parameter transformation φ = µ− σ/ξ. Then the posterior density for

(φ, σ, ξ) is given by

π(φ, σ, ξ) = K−1n π(ξ)|ξ|−n(1+1/ξ)Gn(φ, σ),

where

Gn(φ, σ) = σn/ξ−1

{
n∏
i=1

|yi − φ|−(1+1/ξ)

}
exp

{
−|ξ|−1/ξ σ1/ξ

n∑
i=1

|yi − φ|−1/ξ
}

and, if ξ > 0 then φ < y1 and if ξ < 0 then φ > yn.

We let v = σ1/ξ, H = H(φ, ξ) = |ξ|−1/ξ
∑n

i=1 |yi − φ|−1/ξ and J = J(φ, ξ) =∏n
i=1 |yi − φ|−(1+1/ξ). The normalizing constant Kn is given by

Kn =

∫ ∞
−∞

∫ ∫ ∞
0

π(ξ) |ξ|−n(1+1/ξ)Gn(φ, σ) dσ dφ dξ,

=

∫ ∞
−∞

π(ξ) |ξ|−n(1+1/ξ)

∫
J

∫ ∞
0

σn/ξ−1 exp
{
−Hσ1/ξ

}
dσ dφ dξ,

=

∫ ∞
−∞

π(ξ) |ξ|−n(1+1/ξ)

∫
J

∫ ∞
0

vn−1 exp{−Hv} |ξ| dv dφ dξ,

=

∫ ∞
−∞

π(ξ) |ξ|−n(1+1/ξ)

∫
J Γ(n)H−n |ξ| dφ dξ,

=

∫ ∞
−∞

π(ξ) |ξ|−n(1+1/ξ)

∫
J (n− 1)! |ξ|n/ξ+1

{
n∑
i=1

|yi − φ|−1/ξ
}−n

dφ dξ,

= (n− 1)!

∫ ∞
−∞

π(ξ) |ξ|1−n
∫
J(φ, ξ)

{
n∑
i=1

|yi − φ|−1/ξ
}−n

dφ dξ. (6.6)

For n = 1 the integral
∫
φ:ξ(y1−φ)>0 |y1 − φ|−1 dφ is divergent so if n = 1 the

posterior is not proper for any prior in this class.

Now we take n = 2 and for clarity consider the cases ξ > 0 and ξ < 0

separately, with respective contributions K+
2 and K−2 to K2. For ξ > 0, using

the substitution u = (y1 − φ)−1 in (6.6) gives

K+
2 =

∫ ∞
0

π(ξ) ξ−1
∫ y1

−∞

(y1 − φ)−(1+1/ξ)(y2 − φ)−(1+1/ξ){
(y1 − φ)−1/ξ + (y2 − φ)−1/ξ

}2 dφ dξ,
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=

∫ ∞
0

π(ξ) ξ−1
∫ ∞
0

(1 + δ2u)−(1+1/ξ){
1 + (1 + δ2u)−1/ξ

}2 du dξ,

=
1

2
δ−12

∫ ∞
0

π(ξ) dξ,

the final step following because the u-integrand is a multiple (ξδ−12 ) of a shifted

log-logistic density function with location, scale and shape parameters of 0, ξδ−12

and ξ respectively, and the location of this distribution equals the median. For

ξ < 0 an analogous calculation using the substitution v = (yn − φ)−1 in (6.6)

gives

K−2 =
1

2
δ−12

∫ 0

−∞
π(ξ) dξ.

Therefore,

K2 = K+
2 +K−2 =

1

2
δ−12

∫ ∞
−∞

π(ξ) dξ.

Thus, K2 is finite if
∫∞
−∞ π(ξ) dξ is finite, and the result follows. The corollary

follows directly.

6.6 Proof of theorem 5

The crucial aspects are the rates at which π(ξ) → ∞ as ξ ↓ −1/2 and as

ξ →∞. The component π(ξ) of (4.2) involving ξ can be expressed as

π2ξ (ξ) =
1

ξ4
(T1 + T2), (6.7)

where

T1 =

[
π2

6
+ (1− γ)2

]
(1 + ξ)2 Γ(1 + 2ξ), (6.8)

T2 =
π2

6
+

[
2(1− γ)(γ + ψ(1 + ξ))− π2

3

]
Γ(2 + ξ),

− [1 + ψ(1 + ξ)]2 [Γ(2 + ξ)]2 . (6.9)

Firstly, we derive a lower bound for π(ξ) that holds for ξ > 3. Using the dupli-

cation formula (Abramowitz and Stegun, 1972, page 256; 6.1.18)

Γ(2z) = (2π)−1/2 2 2z−1/2 Γ(z) Γ(z + 1/2),

with z = 1/2 + ξ in (6.8) we have

T1 =

[
π2

6
+ (1− γ)2

]
(1 + ξ)2 π−1/222ξ Γ(1/2 + ξ) Γ(1 + ξ).
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We note that

Γ(1/2 + ξ) =
Γ(3/2 + ξ)

1/2 + ξ
>

Γ(1 + ξ)

1/2 + ξ
=

2Γ(1 + ξ)

1 + 2ξ
>

Γ(1 + ξ)

1 + ξ
,

where for the first inequality to hold it is sufficient that ξ > 1/2; and that, for

ξ > 3, 22ξ > (1 + ξ)3. Therefore,

T1 >

[
π2

6
+ (1− γ)2

]
π−1/2 (1 + ξ)4 [Γ(1 + ξ)]2. (6.10)

Completing the square in (6.9) gives

T2 = −{[1 + ψ(1 + ξ)] Γ(2 + ξ) + f(ξ)}2 + [f(ξ)]2 + π2/6,

where

f(ξ) =
π2/6− (1− γ)(γ + ψ(1 + ξ))

1 + ψ(1 + ξ)
=
π2/6 + (1− γ)2

1 + ψ(1 + ξ)
− (1− γ)

and [f(ξ)]2 + π2/6 > 0.

For ξ > 0, ψ(1 + ξ) increases with ξ and so f(ξ) decreases with ξ. Therefore,

for ξ > 3, f(ξ) < f(3) ≈ 0.39 and

T2 > −{[1 + ψ(1 + ξ)] Γ(2 + ξ) + f(3)}2 .

For ξ > 0, we have ψ(1 + ξ) < ln(1 + ξ)− (1 + ξ)−1/2 (Qiu and Vuorinen, 2004,

theorem C) and ln(1 + ξ) 6 ξ (Abramowitz and Stegun, 1972, page 68; 4.1.33).

Therefore, noting that Γ(2 + ξ) = (1 + ξ) Γ(1 + ξ) we have

T2 > −
{

(1 + ξ)2 Γ(1 + ξ)− 1

2
Γ(1 + ξ) + f(3)

}2

.

For ξ > 3, f(3)− Γ(1 + ξ)/2 < 0 so

T2 > −(1 + ξ)4 [Γ(1 + ξ)]2. (6.11)

Substituting (6.10) and (6.11) in (6.7) gives, for ξ > 3,

π2ξ (ξ) >
(1 + ξ)4

ξ4

{[
π2

6
+ (1− γ)2

]
π−1/2 − 1

}
[Γ(1 + ξ)]2,

> c[Γ(1 + ξ)]2,

> c(1 + ξ)2(λξ−γ),

where c = (4/3)4{[π2/6+(1−γ)2]π−1/2−1} ≈ 0.0913 and the final step uses the

inequality Γ(x) > xλ(x−1)−γ , for x > 0 (Alzer, 1999), where λ = (π2/6− γ)/2 ≈
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0.534. Thus, a lower bound for the ξ component of the Jeffreys prior (4.2) is

given by

π(ξ) > c1/2(1 + ξ)λξ−γ , for ξ > 3. (6.12)

[In fact, numerical work shows that this lower bound holds for ξ > −1/2.]

Let K+
n denote the contribution to Kn for ξ > 3. Using the substitution

u = (y1 − φ)−1 in (6.6) gives

K+
n = (n−1)!

∫ ∞
3
π(ξ) ξ1−n

∫ ∞
0
un−2

n∏
i=1

(1 + δiu)−(1+1/ξ)

{
1 +

n∑
i=2

(1 + δiu)−1/ξ

}n dudξ. (6.13)

For ξ > 0 we have 1 +

n∑
i=2

(1 + δiu)−1/ξ 6 n and
∏n
i=1(1 + δiu)−(1+1/ξ) >

(1 + δnu)−(n−1)(1+1/ξ). Applying these inequalities to (6.13) gives

K+
n > n−n(n− 1)!

∫ ∞
3

π(ξ) ξ1−n
∫ ∞
0

un−2(1 + δnu)−(n−1)(1+1/ξ) du dξ,

= n−n(n−1)!

∫ ∞
3
π(ξ) ξ1−nβ

∫ ∞
0
un−2

1

β

(
1 +

αu

β

)−(1+1/α)

du dξ, (6.14)

where β = α/δn and α = [n − 2 + (n − 1)/ξ]−1 and 0 < α < (n − 2)−1. The

u-integrand is the density function of a GP(β, α) distribution and so, using (6.1)

with r = n− 2, the integral over u is given by

(n− 2)!βn−2
n−2∏
i=1

1

1− iα
= (n− 2)! ξn−2δ2−nn

n−2∏
i=1

1

(n− 2− i)ξ + n− 1
. (6.15)

Substituting (6.15) into (6.14) gives

K+
n > n−n(n−1)!(n−2)! δ1−nn

∫ ∞
3

1

(n−2)ξ+n−1

n−2∏
i=1

1

(n−2−i)ξ+n−1
π(ξ) dξ,

= n−n(n− 1)!(n− 2)! δ1−nn

∫ ∞
3

n−2∏
i=0

1

(n− 2− i)ξ + n− 1
π(ξ) dξ,

= n−n(n− 1)!(n− 2)! δ1−nn (n− 1)1−n
∫ ∞
3

n−2∏
i=0

1

1 + i
n−1ξ

π(ξ) dξ,

> C(n)

∫ ∞
3

1

(1 + ξ)n−2
π(ξ) dξ,
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where C(n) = n−n(n− 1)!(n− 2)! δ1−nn (n− 1)1−n. Applying (6.12) gives

K+
n > C(n) c1/2

∫ ∞
3

(1 + ξ)2−n+λξ−γ dξ.

For any sample size n the integrand → ∞ as ξ → ∞. Therefore, the integral

diverges and the result follows.

Now we derive an upper bound for πξ(ξ) that applies for ξ close to −1/2. We

note that for −1/2 < ξ < 0 we have Γ(1 + 2ξ) = Γ(2 + 2ξ)/(1 + 2ξ) < (1 + 2ξ)−1.

From (6.7) we have

π2ξ (ξ) =

[
π2

6
+ (1− γ)2

](
1 + ξ

ξ2

)2

Γ(1 + 2ξ) +
T2
ξ4
,

where T2 → −3.039 as ξ ↓ −1/2. Noting that (1 + ξ)2/ξ4 → 4 as ξ ↓ −1/2 shows

that π(ξ) < 2
[
π2/6 + (1− γ)2

]1/2
(1+2ξ)−1/2 for ξ ∈ (−1/2,−1/2+ ε), for some

ε > 0. In fact numerical work shows that ε ≈ 1.29.

6.7 Proof of theorem 6

We show that the integral K−n , giving the contribution to the normalising

constant from ξ < −1, diverges. From the proof of theorem 4 we have

K−n = (n− 1)!

∫ −1
−∞

e−γ(1+ξ) (−ξ)1−n
∫ ∞
yn

J(φ, ξ)

{
n∑
i=1

|yi − φ|−1/ξ
}−n

dφ dξ,

where J(φ, ξ) =
∏n
i=1 |yi − φ|−(1+1/ξ). For ξ < −1 we have −(1 + 1/ξ) < 0 and

−1/ξ > 0. Therefore, for i = 2, . . . , n, (φ − yi)−(1+1/ξ) > (φ − y1)−(1+1/ξ) and

(φ−yi)−1/ξ < (φ−y1)−1/ξ, and thus the φ-integrand is greater than n−n(φ−y1)−n.

Therefore,

K−n > (n− 1)!

∫ −1
−∞

e−γ(1+ξ) (−ξ)1−n
∫ ∞
yn

n−n(φ− y1)−n dφ dξ,

= (n− 1)!n−n(n− 1)−1(yn − y1)1−n
∫ −1
−∞

e−γ(1+ξ) (−ξ)1−n dξ,

= (n− 2)!n−n(yn − y1)1−ne−γ
∫ ∞
1

x1−n eγx dx,

where x = −ξ. For all n this integral diverges so the result follows.

6.8 Proof of theorem 7

We need to show that K4 is finite. We split the range of integration over ξ

in (6.6) so that K4 = J1 + J2 + J3, with respective contributions from ξ < −1,

−1 6 ξ 6 0 and ξ > 0.
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Proof that J1 is finite. We use the substitution u = (φ− y1)−1 in (6.6) to give

J1 = 3!

∫ −1
−∞

(−ξ)−3
∫ ∞
y4

{
4∏
i=1

(φ− yi)−(1+1/ξ)

}{
4∑
i=1

(φ− yi)−1/ξ
}−n

dφ dξ,

= 3!

∫ −1
−∞

(−ξ)−3
∫ 1/δ4

0
u2

4∏
i=2

(1−δiu)−(1+1/ξ)

{
1+

4∑
i=2

(1−δiu)−1/ξ

}−4
du dξ.

A similar calculation to (6.3) gives

4∏
i=2

(1− δiu)−(1+1/ξ) 6 u−2(1+1/ξ)

{
3∏
i=2

(δ4 − δi)

}−(1+1/ξ)

(1− δ4u)−(1+1/ξ).

Noting also that 1 +
∑4

i=2(1− δiu)−1/ξ > 1 we have

J1 6 3!

∫ −1
−∞

(−ξ)−3
{

3∏
i=2

(δ4 − δi)

}−(1+1/ξ) ∫ 1/δ4

0
u−2/ξ(1− δ4u)−(1+1/ξ) du dξ,

= 3!

∫ −1
−∞

(−ξ)−3
{

3∏
i=2

(δ4−δi)

}−(1+1/ξ)

β

∫ 1/δ4

0
u−2/ξ

1

β

(
1+

ξu

β

)−(1+1/ξ)

du dξ,

= 3!

∫ −1
−∞

(−ξ)−3
{

3∏
i=2

(δ4 − δi)

}−(1+1/ξ)

δ2/ξ−1n

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

where β = −ξ/δ4 and the last line follows from (6.2) with a = 2 and σ = β.

Therefore,

J1 6 3!

∫ −1
−∞

(−ξ)−3(y4 − y1)2/ξ−1
3∏
i=2

(y4 − yi)−(1+1/ξ)Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= 3!

3∏
i=1

(y4 − yi)−1
∫ −1
−∞

(−ξ)−3
(

3∏
i=2

y4 − yi
y4 − y1

)−1/ξ
Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= 3!
3∏
i=1

(y4 − yi)−1
∫ 1

0
x

(
3∏
i=2

y4 − yi
y4 − y1

)x
Γ(1 + 2x)Γ(x)

Γ(1 + 3x)
dx,

= 3!

3∏
i=1

(y4 − yi)−1
∫ 1

0

(
3∏
i=2

y4 − yi
y4 − y1

)x
Γ(1 + 2x)Γ(1 + x)

Γ(1 + 3x)
dx, (6.16)

where x = −1/ξ and we have used the relation Γ(1 +x) = xΓ(x). The integrand

in (6.16) is finite over the range of integration so this integral is finite and therefore

J1 is finite.
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Proof that J2 is finite. Using the substitution u = (φ− y1)−1 in (6.6) gives

J2 = 3!

∫ 0

−1
(−ξ)−3

∫ 1/δ4

0
u2

4∏
i=2

(1−δiu)−(1+1/ξ)

{
1+

4∑
i=2

(1−δiu)−1/ξ

}−4
du dξ.

For −1 6 ξ 6 0 we have −(1 + 1/ξ) > 0. Noting that 0 < 1− δiu < 1 gives

4∏
i=2

(1− δiu)−(1+1/ξ) 6 (1− δ4u)−(1+1/ξ).

Noting also that 1 +
∑4

i=2(1− δiu)−1/ξ > 1 we have

J2 6 3!

∫ 0

−1
(−ξ)−3

∫ 1/δ4

0
u2(1− δ4u)−(1+1/ξ) du dξ,

= 3!

∫ 0

−1
(−ξ)−3β

∫ 1/δ4

0
u2

1

β

(
1 +

ξu

β

)−(1+1/ξ)

du dξ,

= 3!δ−34

∫ 0

−1

2

(1− ξ)(1− 2ξ)
dξ,

= 12(y4 − y1)−3 ln(3/2)

where β = −ξ/δ4 and the penultimate line follows from (6.2) with r = 2 and

σ = β.

Proof that J3 is finite. Using the substitution u = (y1 − φ)−1 in (6.6) gives

J3 = 3!

∫ ∞
0

ξ−3
∫ y1

−∞

{
4∏
i=1

(yi − φ)−(1+1/ξ)

}{
4∑
i=1

(yi − φ)−1/ξ

}−4
dφ dξ,

= 3!

∫ ∞
0

ξ−3
∫ ∞
0

u2
4∏
i=2

(1 + δiu)−(1+1/ξ)

{
1 +

4∑
i=2

(1 + δiu)−1/ξ

}−4
du dξ.

Noting that for ξ > 0 we have −(1 + 1/ξ) < 0, using (6.5) with ak = δku gives

4∏
i=2

(1 + δiu)−(1+1/ξ) 6 (1 + gu)−3(1+1/ξ),

where g = (δ2δ3δ4)
1/3. Noting also that 1 +

∑4
i=2(1 + δiu)−1/ξ > 1 we have

J3 6 3!

∫ ∞
0

ξ−3
∫ ∞
0

u2(1 + gu)−3(1+1/ξ) du dξ,

6 3!

∫ ∞
0

ξ−3β

∫ ∞
0

u2
1

β

(
1 +

αu

β

)−(1+1/α)

du dξ,
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where α = ξ/(2ξ+3) and β = α/g. Therefore, (6.1) with r = 2, σ = β and ξ = α

gives

J3 6 3!

∫ ∞
0

ξ−3β
2β2

(1− α)(1− 2α)
dξ,

= 4g−3
∫ ∞
0

1

(ξ + 3)(2ξ + 3)
dξ,

=
4

3
g−3

∫ ∞
0

(
1

ξ + 3/2
− 1

ξ + 3

)
dξ,

=
4

3
g−3 ln 2.

The normalizing constant K4 is finite, so πU,GEV (µ, σ, ξ) yields a proper posterior

density for n = 4 and therefore does so for n > 4.
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