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Abstract

Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further
our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is
complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation
estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy
and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network
reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are
considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two
independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core
connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines
employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement
between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly
connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with
atlases at different node scales. The binary network properties of these core connections were similar between pipelines but
showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural
network reconstrution pipelines to diffusion data in order to identify the most important connections for further study.
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Introduction

Studying brain structural networks using diffusion MRI

tractography has recently become a popular research topic in

neuroscience [1]. In this field the research aim is to quantify

connectivity between grey matter regions via white matter

pathways in vivo, on a global scale, in order to understand the

topological organisation of brain structure and to relate this to

aspects of neurological health and disease. The structural topology

may be analysed by characterising the brain as a graph, whereby

sets of network nodes, representing grey matter regions, transfer

information between one another via network edges, representing

connecting axonal pathways.

It has been suggested that the organisation of the structural

network may reflect neurological phenotype. For example,

network metrics such as clustering coefficient and pathlength have

been related to the effect of age [2], gender [3] and IQ [4]. In

addition, network alterations have been observed in neurological

diseases such as Alzheimer’s disease [5,6], epilepsy [7,8] and

schizophrenia [9–11], meaning such metrics may become useful as

topological biomarkers of brain integrity or pathology. However,

reconstructing brain network nodes and edges is both a conceptual

and practical challenge and there is little agreement between

studies of how exactly these should be defined.

Nodes of the brain network, which represent spatially distinct

regions of grey matter, may be defined using different parcellation

schemes and scales. A common parcellation technique has been to

warp the structural image to an anatomical template, such as the

AAL atlas [12], where the grey matter regions have been manually

labelled in a single representative subject [4,9,11,13]. Alternative

warping strategies have been applied; for example, those utilising
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cortical shape and curvature information [14], or multiple

template propagations [15]. In addition, different templates may

be used to generate different parcellation schemes. Most parcella-

tions used in whole-brain structural network studies have been

relatively coarse, with around 100 brain regions. Because of the

uncertainty concerning where to place region boundaries, some

studies have divided parcellated regions into smaller pseuodoran-

dom patches [16,17], or performed network analysis across a

range of parcellation scales [18–20]. Regions defined in structural

space must then be accurately warped to diffusion space in order

to estimate the inter-regional connectivity, and a number of

registration schemes are available.

Edges of the structural brain network, which represent white

matter tracts between two grey matter regions, are frequently

quantified based on the number of connecting fibers. As such, the

issue of which fiber model, initialisation and tracking technique to

use arises. The diffusion tensor model [21], combined with

deterministic tracking, is a common technique for reconstructing

network edges [14,22–24]. Multiple fibers may be represented

using multiple diffusion tensors, the orientation distribution

function (ODF) [25], multi-compartment models [26] and the

fiber orientation distribution (FOD) [27]. The ball and sticks

multi-compartment model is one example of a popular fiber model

employed to track through multiple fiber populations in structural

network studies [3,28]. In contrast to multi-compartment models,

the FOD representation assumes an identical signal response for

each fiber population and does not employ model fitting.

Deterministic tracking determines inter-regional connectivity by

following the dominant fiber orientation whereas probabilistic

tracking samples directions from a distribution of orientations to

produce a connectivity distribution.

In networks obtained using probabilistic tractography, a

continuous measure of connectivity is generated which reflects

(to some degree) the probability of connection between all brain

regions. A probability threshold may then be applied to produce a

binary network, where connections are either absent or present

[29]. However, assigning importance to connections is a challenge

and the choice of threshold affects the occurance of false positive

and negative connections, resulting in a trade-off between

sensitivity and specificity of the connections [30,31]. Thresholding

also has an intrinsic impact on the network topological measures

[32].

Given the complexity and number of steps involved in network

reconstruction from the raw diffusion MRI images, it is important

to provide an assessment of consensus in networks obtained from

alternative reconstruction pipelines which vary not in just one or

two components but in the entire reconstruction pipeline (i.e the

parcellation, registration and fiber model). This would also enable

some assessment of the potential impact in swapping and

substituting individual components of the reconstruction.

In this study, we assessed the convergence of structural

connectivity networks obtained from two alternative pipelines

across a range of network density thresholds, by merging

alternative parcellations to a common and equivalent node scale.

This allowed us to investigate similarity between independent

network reconstructions on a connection-wise basis and to identify

the underlying brain connections occuring most robustly in both

pipelines. Our results suggest it may be useful to apply multiple

pipelines to obtain structural brain networks from diffusion data

and to employ the comparison framework described here to

identify the most important connections.

Methods

Ethics statement
Informed written consent was obtained from all subjects

participating in this study. Processes for consenting and image

acquisition were approved by the UCL Research Ethics Commit-

tee.

Subjects and image acquisition
Twenty-eight young healthy adult subjects (16 male, mean age

+ s.d. 28.5 + 3.9 years) participated in this study. Subjects had

no brain abnormalities at the time of scanning, as determined by

examination of their structural scan by an expert radiologist. Two

T1-weighted images of 1|1|1 mm resolution were acquired

sequentially with a 3D Fast Low-Angle Shot (FLASH) sequence

(176 contiguous sagittal slices, 2566224 mm FOV, TR = 11 ms,

TE = 4.94 ms and a = 15u) on a 1.5T Siemens Avanto MRI

scanner at Great Ormond Street Hospital, London. A diffusion-

weighted echo planar sequence (TR = 7300 ms, TE = 81 ms) with

60 noncollinear diffusion directions (b = 1000 s/mm2) was used to

acquire diffusion-weighted images of 2:5|2:5|2:5 mm and three

un-weighted images (b = 0 images). The diffusion-weighted

sequence was repeated three times for each subject in a single

scanning session.

Image preprocessing
DICOM images were converted into NIfTI format using

TractoR [33] and the brain was extracted from all images using

FSL’s brain extraction tool [34]. In order to increase the signal to

noise ratio of the structural image, the two acquired T1-weighted

images were registered and averaged in Freesurfer v5.1.0 [35].

The diffusion-weighted volumes were corrected for eddy-current

induced distortions by affine registration to an unweighted

reference image using the diffusion-specific FSL FDT algorithm

[36].

We chose to compare two alternative state-of-the-art recon-

struction pipelines (these two pipelines will hereafter be referred to

as P1 and P2, Fig 1). Both reconstructions had similar capabilities

but varied with respect to the details of the cortical parcellation,

registration and probabilistic fiber model method.

Cortical parcellation
To define network nodes, the cortical grey matter of the

averaged T1-weighted image was parcellated into regions using

automated software. P1. NiftySeg was used to parcellate the

structural image into 44 cortical regions (22 per hemisphere), as

defined by the Hammers Atlas [37]. The parcellation algorithm

first labels brain regions by propagating a set of manually labelled

T1-weighted images to the structural image [38,39]. The LoAd

tissue segmentation algorithm was then applied to the structural

image to obtain the cortical grey matter of the parcellated regions

[40]. P2. Freesurfer was used to parcellate the structural image

into 68 cortical regions (34 per hemisphere), as defined by the

Desikan-Killiany Atlas [41]. The parcellation algorithm assigns a

neuroanatomical label to each location on a cortical surface model

of the image, based on probabilistic information from a manually

labeled training set [42].

Native and common node scale parcellations
The pipelines employed atlases with a different number of brain

regions, preventing a direct connection-wise comparison between

them. Therefore, parcels in the native atlases were merged to a

common node scale (Fig. 2). The number of merges was the

minimum required to give correspondence between the atlases and

Consensus between Pipelines in Structural Brain Networks
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resulted in 34 brain regions (17 per hemisphere). Parcels in the

Desikan-Killiany atlas (P2) were merged across the entire cortex

based on anatomical correspondence to their equivalent Hammers

atlas (P1) parcels. For example, the pars opercularis, pars orbitalis

and pars triangularis parcels in the native Desikan-Killiany atlas

corresponded to the inferior frontal gyrus parcel in the native

Hammers atlas and therefore in both of the merged atlases. The

Desikan-Killiany and Hammers atlases differed fundamentally in

temporal lobe regions, meaning an equivalent merging of parcels

could not be found. Therefore, the temporal lobe is itself

considered as a single node in both merged parcellations (Fig. 2

and 3). The merging process did not result in identical

parcellations. The remaining differences in common scale

parcellations were due to alternative border criteria as well as

alternative parcellation algorithms. Therefore, in addition to the

native Desikan-Killiany and Hammers atlases, we also obtained

the two merged 34 node scale versions of each atlas for each

subject (Fig. 3).

Each common scale parcellation was registered to diffusion

space (as described below) using the registration implementation

for the corresponding pipeline (e.g. following the P1 registration-

tractography for the merged P1 parcellation). We also applied the

paired registration-tractography implementation from each pipe-

line to both of the native atlases. We further tested the robustness

of our results by applying each registration-tractography imple-

mentation to the Automated Anatomical Labelling (AAL) Atlas

parcellation [12], which had cortical 78 regions.

Registration of cortical parcels to diffusion space
The structural and diffusion-weighted images were co-registered

in order to define the cortical parcels of interest in diffusion space.

The registration field was determined as follows. An affine

registration was used to register the first b = 0 image to the

averaged T1-weighted image. The T1-weighted image was then

non-linearly registered to the b = 0 image using the inverse of the

transformation acquired in the previous stage as a starting

transformation. The transformation field was retained and applied

to the cortical parcellation to transform parcels to diffusion space.

The categorical nature of the labels was preserved through a

nearest neighbour resampling scheme. P1. NiftyReg was used to

perform the linear and non-linear registrations using the default

settings [39,43]. NiftyReg used normalised mutual information to

calculate image similarity and a bending energy regularisation

with cubic B-spline parameterisation for the non-linear warping.

P2. The linear and non-linear registration was performed by FSL

FLIRT and FNIRT, respectively [36]. Normalised cross correla-

tion and sum-of-squared difference was used to calculate image

similarity for the linear and non-linear warping stages, respective-

ly. The membrane energy was used to regulate the non-linear

warp field which was parameterised as a cubic B-spline scheme.

Fiber orientations
The orientations of fiber bundles at each voxel were inferred

using one of two methods. P1. Constrained spherical deconvolu-

tion (CSD) was applied to estimate the underlying fibre orientation

distributions (FOD) in each voxel, using MRTrix [44]. CSD

assumes that the observed diffusion signal is a convolution of fiber

orientations and a diffusion signal response function, meaning the

fiber orientations may be extracted by spherical deconvolution of

the diffusion signal. The maximum spherical harmonic order for

the deconvolution was set to 8. P2. A ball and two sticks multi-

compartment fiber model was fitted to the diffusion data, using the

Bayesian Estimation of Diffusion Parameters Obtained using

Sampling Techniques (BEDPOSTX) algorithm in FSL. The

BEDPOSTX algorithm uses Markov chain Monte Carlo sampling

to estimate the uncertainty in fibre orientations [45].

Probabilistic fiber tractography
The paths of fiber trajectories in the brain were reconstructed

by seeding 100 probabilistic fibers from the interior boundary

voxels of each cortical parcel. The interior boundary voxels were

Figure 1. Summary of network reconstruction stages applied
to structural and diffusion images for P1 and P2. The pipeline
stages are shown on the left and the alternative implementations of the
methods are shown inside the boxes. Arrows indicate the passage of
merged (dark arrows) and native (light arrows) atlases through the
pipeline stages (red and blue refer to Hammers and Desikan-Killiany
atlases, respectively). Nodes were defined by registration of the cortical
parcels to diffusion space. Edges were defined by performing
tractography from the parcel boundary through the fiber orientations.
Note that the whole-brain probabilistic tractography methods differed
only in relation to the recommended settings for the software used to
track through the fiber orientations. The network construction stage
calculated the connecting fiber density between all cortical parcel pairs
across the entire cerebral cortex and was identical for both pipelines.
Applying these stagesto the merged and native atlases resulted in
comparisons between pipelines at three node scales; the merged atlas
scale (34 nodes, dark arrows), Hammers atlas scale (44 nodes, light red
arrows) and Desikan-Killiany scale (68 nodes, light blue arrows). We also
applied the registration and whole-brain tractography pipelines to the
AAL atlas (not shown).
doi:10.1371/journal.pone.0111262.g001
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the intersection of the dilated binary cortical parcellation with the

fiber propagation mask (defined for each pipeline below). P1.

Fibers were propagated using the default settings in MRTrix [46].

The sampling interval was 0.2 mm, maximum curvature threshold

was 60u and minimum fiber orientation dispersion (FOD)

amplitude threshold for tracking through a voxel was 0.1. The

propagation mask was defined as the union of white matter, sub-

cortical grey matter and ventricle regions from the LoAd tissue

segmentation provided by NiftySeg. P2. The default settings in

FSL ProbTrack algorithm were used to determine the fiber

trajectories [26]. The sampling interval was 0.5 mm and stopping

criteria meant that fibers terminate if they curve by more than 80u.
The propagation mask was defined as the white matter

segmentation provided as part of the Freesurfer output, and

included white matter, sub-cortical and ventricular regions.

Note that P1 initiates fibers by uniform sampling of boundary

voxels with a FOD amplitude greater or equal to 0.2, whereas P2

initiates fibers from the centre of each boundary voxel. Also, P1

terminates fibers if the FOD amplitude is below 0.1. For both

pipeline tracking schemes, fibers were terminated immediately

after leaving the propagation mask so that their cortical parcel

connections could be recorded.

Network construction
Network construction and analysis was performed using the R

programming language [47]. Cortical parcels were represented as

network nodes and the fiber connections between them as edges.

Fibers connected node pairs if their end-point coordinates

terminated within two distinct cortical parcels. The connection

weight between two cortical nodes was defined as the density of

Figure 2. Merging cortical parcels of P2 parcellations. The native scale P2 parcellation (68 parcels) is shown on the left and the merged P2
parcellation (34 parcels) is shown on the right. The merging pattern was identical for both hemispheres and therefore only the left hemisphere is
shown. The colour scheme of brain regions is as in Fig. 2. Lines represent merging of native scale parcels (left) to their equivalent common scale
parcels (right). Coloured vertical lines correspond to regions in the temporal (purple), frontal (green), parietal (blue), occipital (red), insula (light-blue)
or limbic (yellow) lobes. Native scale P1 parcellations (44 nodes) were merged to the common scale parcellation by merging all temporal lobe parcels.
doi:10.1371/journal.pone.0111262.g002

Figure 3. Representative cortical parcellations of P1 and P2 at the native and common node scale. Temporal lobe regions in P1 native
scale parcellations (P1-44, far left) were merged, resulting in a lower scale parcellation (P1-34, middle right). Selected regions across the entire cerebral
cortex in P2 native scale parcellations (P2-68, middle left) were merged (P2-34, see Fig. 1). This resulted in a common and anatomically equivalent
parcellation scale of 34 nodes for both P1 and P2 networks.
doi:10.1371/journal.pone.0111262.g003
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connecting fibres (as in [48]), calculated as the sum of connecting

fibers divided by the mean volume of the seed (boundary) voxels

adjacent to the two parcels (boundary voxels were assigned to the

nearest parcel by Euclidean distance). Performing this calculation

for all fibers produces an N-by-N undirected matrix of connection

weights, where N is the number of nodes in the parcellation (either

34, 44, 68 or 78). The weighted cortical connection matrix was

calculated for the repeat diffusion scans of all subjects. The subject

mean weighted connection matrices (across the three repeat

diffusion scans) were calculated for all subjects by averaging each

weight across all scans.

Convergence between alternative pipelines
Convergence between alternative pipelines was investigated in

binary networks of equal density. Binary networks were generated

by thresholding the subject weighted networks and convergence

was quantified for all possible densities in the range [0,1], by

selecting the x highest ranked connections in the weighted matrix,

for x~1 : c, where c is the total number of possible connections

(calculated as (N2{N)=2). Connections of equal weight (predom-

inantly weights of value 0), were randomly assigned a rank,

meaning connections were chosen randomly if the network density

threshold intersected connections of equal weight. Convergence

was quantified between the pair-wise subject binary networks

using the Dice Similarity Coefficient (DC). DC was defined as the

proportion of intersecting connections relative to the total number

of connections at that density. This measure is identical to the

percentage convergence measure of network similarity used in [49]

for networks of equal density.

Our investigation was interested in similarity between pipelines

independent of network density effects (denser networks have a

higher DC by chance). Therefore, at each network density, we

computed a one sample t-statistic between the observed DC across

all subjects to the expected DC value, using a two-tailed t-test. The

expected DC value was equal to the network density, d , as the

number of connections expected to agree in two random binary

networks (d:d:c) was divided by the total number of connections

(d:c). Our null hypothesis was that similarity between pipelines was

equal to that by chance, given the density. The p-value computed

from this t-statistic was our estimate of the significance of the

similarity. To estimate the dependency of the significance on our

sample population, we bootstrapped the subjects 1000 times at

each network density. As lower p-values represented higher

similarity, we inspected the negative logarithm of the p-value to

obtain a global maximum significance and corresponding network

density where the binary network similarity was most reliably

different from random.

Network properties of the consensus network
The binary networks corresponding to the peak convergence

threshold will hereafter be referred to as ‘consensus networks’ for

convenience. The graph theoretical proprerties of the consensus

networks were calculated for all subjects using the igraph package

[50] in the R programming language. The global properties of

characteristic pathlength [51] and global efficiency [52], and the

local properties of local efficiency [52], clustering coefficient [53]

and assortativity [54], were calculated as described in [55].

Results

Convergence between alternative network
reconstructions

The raw weights matrix represents the connecting fiber density

between cortical region pairs across the entire cerebral cortex. The

connecting fiber density was highly correlated between subject

mean networks obtained from alternative reconstructions in terms

of both rank and weight (34 nodes: Spearman r = 0.675 + 0.06,

Pearson r = 0.630 + 0.061, 44 nodes: Spearman r = 0.677 +
0.076, Pearson r = 0.702 + 0.085, 68 nodes: Spearman r =

0.586 + 0.095, Pearson r = 0.632 + 0.085), confirming that these

pipelines had yeilded similar networks.

A general trend of decreasing DC with decreasing network

density was observed. The grand mean DC across all subjects and

densities was 0.741 + 0.165, 0.759 + 0.132 and 0.724 + 0.135

for the 34, 44 and 68 atlas scales, respectively. At a network

density of 1 the DC was 1 as all connections existed in both

pipelines. Clearly, the DC should be interpreted in the context of

the expected similarity of random networks at the same density

(Fig. S1).

The networks were significantly more similar between pipelines

than by chance across all density thresholds (Fig. 4). Similarity

increased approximately linearly with increasing threshold (corre-

sponding to a decreasing network density), until very high

thresholds were reached, where a peak similarity was observed

(at network densities between 0.1–0.2, depending on the atlas),

after which similarity decreased sharply towards 0. The peak

similarity threshold resulted in binary networks that were most

highly similar between the pipelines whilst accounting for the

expected similarity at this density by chance. The most highly

significant similarity was found at densities of 0.196, 0.161 and

0.106 (110, 152 and 242 connections) for node scales of 34, 44 and

68, respectively. The magnitude of the significance was similar

between atlases of different scales ({ log p*~75) at the peak

similarity threshold.

Similar results were obtained using the AAL atlas. The weighted

networks were highly correlated between pipelines in terms of rank

and weight (Spearman r = 0.703 + 0.161, Pearson r = 0.692 +
0.162) and the grand mean DC was 0.701 + 0.114 (Fig. S1). The

peak similarity was observed at a density of 0.142 (427

connections), where {log p was 48.9 (Fig. 4).

The paths of fibers underlying peak convergent connections are

shown in Fig. 5. Fibers representing the inter-lobe connections,

intra-lobe connections and inter-hemispheric connections are

shown for a representative subject reconstructed through the P1

pipeline. By visual inspection, it can be appreciated that the spatial

distribution of fibers corresponds with known major anatomical

tracts according to previous literature [56]. Major white matter

tracts, such as the inferior longitudinal fasciculus, superior

longitudinal fasciculus, cingulum and arcuate, were represented

by fibers underlying inter-lobe connections. On the other hand,

fibers representing intra-lobe connections appeared to be mostly

cortical U-fibers.

Network properties of consensus networks
The convergent connections of the consensus networks are

summarised in Fig. 6. The connections that agreed between

pipelines tended to be similar across subjects. The convergent

connections, which had high hemispheric symmetry, were

primarily between ipsilateral intra-lobe regions and between

bilateral homotopic regions. The left and right insula gyri were

the most highly connected nodes in the consensus network.

The density of the consensus networks decreased when

comparing lower to higher node scales atlases, whereas the

number of connections increased. The graph theoretical metrics of

global pathlength, clustering coefficient, global efficiency, local

efficiency and assortativity, which were calculated for all consensus

networks, are shown in Table 1. Graph theoretical properties of

the consensus networks were similar between pipelines employing

Consensus between Pipelines in Structural Brain Networks
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atlases at the same node scale, whereas some differences were

found in graph theoretical properties between atlases of different

node scales. The global pathlength and clustering were not

significantly different between pipelines at the same scale but

tended to increase and decrease in higher node scale atlases,

whereas global efficiency tended to decrease. Assortativity was less

stable between pipelines and showed no clear trend with node

scale. The AAL atlas consensus networks had a relatively high

density considering the number of network nodes in the

parcellation, compared to other atlases.

Discussion

In this study, we quantified the convergence of probabilistic

structural networks obtained using two independent state-of-the-

art reconstruction pipelines over a range of network density

Figure 4. Similarity between P1 and P2 networks across density thresholds using atlases at three node scales. Significance of similarity
was calculated by comparing the distribution of within-subject DC to the expected DC by chance, given the density of the networks. Shown is the
mean negative log p-value of the DC between binary networks thresholded at a given density. The within-subject DC’s were bootstrapped to obtain
a standard error on the mean (dashed lines). A global peak similarity was found at a density of 0.196, 0.161, 0.106 and 0.142 for the Common (34
nodes), Hammers (44 nodes), Desikan-Killiany (68 nodes) and AAL (78 nodes) atlases, respectively.
doi:10.1371/journal.pone.0111262.g004

Figure 5. P1 fibers underlying convergent connections in the left hemisphere of a repre-sentative subject. Fibers are coloured by their
network connection. (a) Inter-lobe fibers viewed from the medial aspect. (b) Intra-lobe fibers viewed from the medial aspect. (c) Inter-hemispheric
fibers shown from the coronal aspect. The paths of fibers underlying convergent inter-lobe connections agrees with that of major anatomical tracts,
such as the ILF (orange) and cingulum (green). Convergent intra-lobular connections were mostly represented by short-range cortical U-fibers.
Convergent inter-hemispheric fibers travel via the corpus callosum and connected homotopic cortical regions, such as the superior, middle and
inferior frontal gyri (green). For visual clarity, a maximum of 200, 50 and 100 fibers from the subset of whole-brain tractography fibers are shown per
connection for (a), (b) and (c), respectively. Also, only fibers greater than 7 cm are shown for (a) and (b) and greater than 10 cm for (c).
doi:10.1371/journal.pone.0111262.g005

Consensus between Pipelines in Structural Brain Networks

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e111262



thresholds, by merging alternative parcellation schemes to an

anatomically equivalent and common node scale. We also

replicated our experiment using both the native parcellation scales

and an alternative (AAL) parcellation scheme. Our results show

there is high agreement between the two alternative reconstruction

methods. We observed a global peak convergence corresponding

to the brain network that occured most robustly between the two

methods. The graph theoretical properties of these ‘consensus

networks’ were highly similar between pipelines employing the

same atlas but showed some variation across atlases at different

node scales. Fibers representing these networks recovered the

majority of major white matter tracts in all atlases, giving us

confidence that the network has reasonably high anatomical

validity.

Convergence between alternative network
reconstructions

Individual components of the structural network reconstruction

pipeline can impact on network anatomical accuracy or the

network metrics, meaning the combinatorial choice of which

complete reconstruction pipeline to employ is of great importance.

Previous studies have found that graph theoretical properties of

binary structural brain networks, such as hierarchical modularity

and small-worldness, were similar across alternative acquisition

and parcellation methods (at the same node scale) [57], as well as

between alternative connection weighting schemes [31,58].

However, the agreement between completely independent recon-

struction methods of similar capability has not been previously

addressed. We found that the mean DC across all subjects and

densities was significantly higher than by chance for all atlases,

meaning that alternative reconstructions yielded connection

weights that were ranked similarly across the entire rank profile.

We therefore observed a highly significant agreement between

structural networks obtained from two independent state-of-the-art

reconstruction pipelines for the first time. This is an important

finding since it demonstrates agreement between individual

network connections as opposed to network topological measures,

which may have resulted from a wider array of connection

configurations. Furthermore, we can have some confidence that

the networks are robust to swapping individual stages between the

pipelines to some degree.

A high similarity may be expected given the similar capabilities

of the pipelines. High correlation in connection rank profiles is an

intrinsic property of probabilistic tractography studies, whereby

probabilistic fibers tend to disperse from the true anatomical tracts

as they encounter complex fiber architectures or noise in the

diffusion data. This leads to densely populated network weights

where the connectivity profile of neighbouring nodes is highly

correlated. This may be the primary reason for such a high

convergence across the entire density range, even at very low

density thresholds (Fig. 4). Although highly significant relative to

random networks, the similarity of AAL atlas pipelines was lower

than the other atlases. This was due to a number of subjects’

weighted networks having a relatively high number of non-

connected (and therefore randomly ranked) region pairs, leading

to a lower convergence across thresholds (Fig. S1).

A global maximum convergence across thresholds was identified

and this corresponded to a sparse network with approximately

100–300 connections (network densities of 0.1–0.2), depending on

the atlas. We propose that the connections in the consensus

network correspond highly with the underlying anatomical

substrate compared to other thresholds. Therefore, for studies

employing similar network reconstruction methods, we speculate

that this is an appropriate threshold to apply to the weighted

networks for balancing sensitivity and specificity to true brain

connections.

The convergence decreased sharply towards zero when the

network density was below the peak convergent density. This may

be explained by factors such as the relatively large impact of rank

mismatches in connections between pipelines (due to differences in

their respective sensitivity) when the number of connetions is low,

or a homogenous weight distribution of the highest ranking

connections leading to effectively random ranking and lower

convergence.

Reus et. al. (2013) [30] recently assessed the impact of threshold

on the sensitivity and specificity of brain network connections.

Using the Desikan-Killiany atlas with 68 nodes, they estimated the

number of true positive connections as 420.7 (corresponding to a

network density of 18.5%), which is slightly higher than our study.

This difference could be explained by their use of a different

experimental design, whereby a model of the true positive

distribution was fitted to the prevalance distribution calculated

across subject binary networks obtained from deterministic

tractography. It is interesting to note that while [30] and our

study used different pipelines and analysis methods, the estimate of

the number of brain connections is of a similar magnitude. The

number of connections in the consensus networks was 110, 152

and 242 (corresponding to network densities of 0.196, 0.161 and

Figure 6. Prevalance of convergent connections across subjects at the peak convergence density. The prevalance is shown for the
common (left), Hammers (middle-left), Desikan-Killiany (right-left) and AAL (right) atlases. Convergent connections were defined as the intersection of
subject networks thresholded at the peak convergence density obtained from our bootstrap statistical analysis. The node lobe memberships are
indicated by the adjacent colour bars, as in Figure 2. Colours represent the temporal (purple), frontal (green), parietal (blue), occipital (red), insula
(turquoise) and cingulate (brown) lobes.
doi:10.1371/journal.pone.0111262.g006

Consensus between Pipelines in Structural Brain Networks

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e111262



0.106) for atlas of node scale 34, 44 and 68, respectively. This

trend of an increasing number of connections occuring consistently

between pipelines at higher node scales may be expected given the

increase in possible region pairs. Similarly, [30] found that the

estimated number of true positive connections increased in the

Harvard-Oxford atlas, which has 96 nodes.

Other studies have investigated the effect of threshold on

anatomical validity of structural networks, by utilising a ground

truth for particular sub-components of the network. Li et. al.
(2012) investigated the effect of threshold on the sensitivity and

specificity of structural network connections, using connectvity

data derived from post-mortem tract tracing techniques in the

macaque brain as a ground truth [31]. The performance of several

tractography strategies was assessed by analysing the area under

the receiver operating characteristic curve. However, their study

was limited to a subset of brain regions due to limited availability

of tract tracing data in macaque brain and an optimal threshold

for performing network analysis was not reported. Bastiani et. al.
(2012) used a network ‘quality control’ technique to analyse the

sensitivity and specificity of brain network connections across

thresholds for deterministic tractography reconstruction tech-

niques [59]. However, their sensitivity and specificity metrics

measured connectivity between sets of regions known to be

connected according to a priori information and therefore may

have had limited applicability to other connections across the

network. In contrast to these works, our study utilised information

across all brain region pairs and compared two independent

pipelines as opposed to performing a more focussed study on

individual fiber tractography reconstruction stages.

We found high similarity in graph theoretical propeties of the

consensus networks when comparing those derived from the same

node scale atlas. This may be expected, given the convergence of

connections at the peak convergence density was above 65%, and

that the networks had the same connection density, which is

known to significantly impact upon the graph theoretical metrics

[32]. Despite high similarity across alternative pipelines at the

same node scale, some graph theoretical properties were

significantly different across node scales. Most notably, the number

of connections in the consensus network increased and density of

the network decreased in atlases at higher node scales. This could

be due to division of connections between multiple parcels at

higher node scales due to an increase in the number of possible

regional pairs.

We found that the peak convergence density using the AAL

atlas was similar to that of the Desikan-Killiany atlas, despite the

AAL atlas having a higher node scale. This may be because the

AAL atlas uses a fundamentally different type of parcellation

scheme and algorithm. While the Desikan-Killiany atlas contains

only the grey matter region of the cortex, the AAL atlas represents

larger regions which include both grey and white matter. This may

have increased the number of robustly occurring cortical

connections, as some streamlines, which may otherwise have

become truncated before reaching the grey matter of the cortex

(due to noise and tissue partial volume effects), intersect these

parcels. Furthermore, the AAL segmentation algorithm uses an

affine registration between the subject brain and a standard brain

from MNI space, meaning subject differences in brain morphology

are not considered. Larger parcels and limited ability to account

for individual brain variation may have meant single connections

became distributed across multiple parcels in the network, leading

to a high peak convergence network density compared to the

Hammers and Desikan-Killiany atlases (Fig. 4).

With the exception of the AAL atlas, the pathlength and global

efficiency tended to increase and decrease, respectively, in
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consensus networks with increasing node scale atlases. This may

due to the lower consensus network densities at higher node scales,

resulting in a decrease in the ratio of edges to nodes. Also,

clustering coefficient and local efficiency decreased when com-

paring the consensus networks obtained from the Hammers (44

nodes) to the Desikan-Killiany atlas (68 nodes). Zalesky et. al.
(2010) examined the effect of node scale on the pathlength and

clustering coefficient of networks generated using deterministic

tractography and found that an increase and decrease in the

pathlength and clustering coefficient metrics, respectively [60].

Their study examined a wide range of node scales (from 82 to

4000 in steps of 500) whereas our study re-affirms these findings at

finer node scale increments. However, clustering and local

efficiency showed no clear trend with node scale when comparing

the Common (34 nodes) and Hammers atlases (44 nodes).

It should be noted that although the observed correspondence

of connection fiber paths with known white matter tracts does

suggests some degree of anatomical truth to the underlying

connections in the consensus networks (Fig. 5), spurious network

weights may be included in the consensus networks due to a

common bias in the tractography methods. Therefore, although

the reconstructed tracts are sensible, they are unlikely to be

exhaustive. For example, local tractography techniques may

produce shorter fibers than found in vivo, as fibers are deflected

from the true path due to noise and limited angular resolution.

This may have meant connection weights between distant regions

were lower than expected. Some network reconstruction methods

have accounted for this by penalizing the weighting of shorter

inter-regional distances [31]. In addition to the weighting scheme,

many other alternative pipelines are available which may result in

different convergence results. Therefore, it should be emphasised

that we demonstrated agreement between two pipelines out of a

large number of possibilities and that our results may not apply to

pipelines which employ different parcellation, registration or

tractography methods. Finally, the peak convergent threshold

described here was derived from a population of healthy

individuals and may not represent an appropriate threshold for

other clinical populations where connections may have become

altered or absent.

Conclusion

High convergence between two independent state-of-the-art

structural network reconstruction pipelines was observed on a

connection-wise basis for all density thresholds. A sparse ‘consen-

sus network’, which occured most robustly between the pipelines,

was identified in four atlases, and had a density of between 10%

and 20% (100–250 connections). We propose that these connec-

tions have high anatomical validity compared to other thresholds,

which is useful given the inherent difficulty in defining thresholds

for brain network studies. The pipeline had relatively little effect

on the network properties of the consensus networks, although

some relationship with atlas node scale was observed, in agreement

with previous studies. When performing structural network

analysis, it may be useful to apply multiple pipelines to diffusion-

weighted data and to use the comparison framework described

here to identify the most important connections.

Supporting Information

Figure S1 Normalised dice similarity coefficient be-
tween pipelines across density thresholds for all sub-
jects. The normalised similarity coefficient was calculated by

subtracting the expected from the observed dice coefficient at each

density. Shown are the the subject normalised dice coefficients

(left) and the mean normalised dice coefficient + standard

deviation (right) for pipelines using the Common (top), Hammers

(middle-top), Desikan-Killiany (middle-lower) and AAL (lower)

atlases. A peak normalised dice coefficient is observed for densities

in the region of 0.05–0.20 for all atlases.

(TIF)
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