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Abstract

Diffusion weighted magnetic resonance imaging (DW-MRI) is a powerful imaging tech-

nique that can probe the complex structure of the body, revealing structural trends which

exist at scales far below the voxel resolution. Tractography utilises the information de-

rived from DW-MRI to examine the structure of white matter. Using information derived

from DW-MRI, tractography can estimate connectivity between distinct, functional cor-

tical and sub-cortical regions of grey matter. Understanding how seperate functional

regions of the brain are connected as part of a network is key to understanding how

the brain works. Tractography has been used to deliniate many known white matter

structures and has also revealed structures not fully understood from anatomy due to

limitations of histological examination. However, there still remain many shortcom-

ings of tractography, many anatomical features for which tractography algorithms are

known to fail, which leads to discrepancies between known anatomy and tractography

results. With the aim of approaching a complete picture of the human connectome via

tractography, we seek to address the shortcomings in current tractography techniques by

exploiting new advances in modelling techniques used in DW-MRI, which provide more

accurate representation of underlying white matter anatomy.

This thesis introduces a methodology for fully utilising new tissue models in DW-

MRI to improve tractography. It is known from histology that there are regions of white

matter where fibres disperse or curve rapidly at length scales below the DW-MRI voxel

resolution. One area where dispersion is particularly prominent is the corona radiata.

New DW-MRI models capture dispersion utilising specialised parametric probability dis-

tributions. We present novel tractography algorithms utilising these parametric models

of dispersion in tractography to improve connectivity estimation in areas of dispersing

fibres. We first present an algorithm utilising the the new parametric models of disper-

sion for tractography in a simple Bayesian framework. We then present an extension

to this algorithm which introduces a framework to pool neighbourhood information from
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multiple voxels in the neighbournhood surrounding the tract in order to better estimate

connectivity, introducing the new concept of the neighbourhood-informed orientation dis-

tribution function (NI-ODF). Specifically, using neighbourhood exploration we address

the ambiguity arising in ’fanning polarity’. In regions of dispersing fibres, the antipodal

symmetry inherent in DW-MRI makes it impossible to resolve the polarity of a dispers-

ing fibre configuration from a local voxel-wise model in isolation, by pooling information

from neighbouring voxels, we show that this issue can be addressed.

We evaluate the newly proposed tractography methods using synthetic phantoms

simulating canonical fibre configurations and validate the ability to effectively navigate

regions of dispersing fibres and resolve fanning polarity. We then validate that the al-

gorithms perform effectively in real in vivo data, using DW-MRI data from 5 healthy

subjects. We show that by utilising models of dispersion, we recover a wider range of

connectivity compared to other standard algorithms when tracking through an area of

the brain known to have significant white fibre dispersion - the corona radiata. We

then examine the impact of the new algorithm on global connectivity estimates in the

brain. We find that whole brain connectivity networks derived using the new tractog-

raphy method feature strong connectivity between frontal lobe regions. This is in con-

trast to networks derived using competing tractography methods which do not account

for sub-voxel fibre dispersion. We also compare thalamo-cortical connectivity estimated

using the newly proposed tractography method and compare with a compteing tractog-

raphy method, finding that the recovered connectivity profiles are largely similar, with

some differences in thalamo-cortical connections to regions of the frontal lobe. The re-

sults suggest that fibre dispersion is an important structural feature to model in the

basis of a tractography algorithm, as it has a strong effect on connectivity estimation.
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Chapter 1

Introduction and outline

1.1 Introduction

Magnetic resonance imaging (MRI) has proved to be a particularly powerful tool to exam-

ine the body. The technique allows exploration of the entire body, yielding 3D volumes

of image data without the use of ionising radiation and an extremely flexible range of

contrast options. MRI acquisition sequences can be tuned to create contrast between

different tissues and even the motion of blood or the diffusion of water at microscopic

length scales inside tissue. This flexibility of MRI as a medical imaging tool has led to it

becoming highly prevalent in many areas of medicine and biological science.

MRI is of particular importance in neuroimaging, due to its high contrast sensitivity

to the various tissue types in the brain, allowing the study of deep brain structure only

previously accessible by invasive techniques, which is only possible via post-mortem ex-

aminiation, or during traumatic surgical proceedures on a patient or animal subject. Of

particular interest in neurology is the ability to determine the boundaries of cancerous

regions, lesions or regions of tissue degredation as in diseases such as multiple sclerosis

(MS) or Alzheimer’s disease.

MRI has proved to be a particularly powerful neurological imaging tool due to the

ability to tune the imaging sequences to be contrast-sensitive to the diffusive motion of
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water molecules, driven by thermal energy, at microscopic length scales. Water is hugely

abundant in the body. Water molecules engage in random walks in a process known

as self diffusion. If the sequence is tuned appropriately, a signal drop can be detected

when water molecules move over the course of a magnetic pulse sequence. Such an

MR imaging technique is referred to as ’diffusion weighted magnetic resonance imaging’

(DW-MRI) and is the basis of a considerable volume of neuroimaging research, due to the

ability to probe structural trends int tissue at the microscopic scale.

When the motion of water molecules is impeded by tissue structures such as cell

membranes, the departure from free diffusion behaviour can be detected and interpreted

as information on the geometrical properties of the tissue, particularly the size, shape,

and orienation of the cells. This opens up grand possibilities in white matter (WM),

where the large majority of the volume consists of densely packed cylindrical cells which

connect distinct brain regions over orders of several micrometers to several centimetres.

It is possible to derive information from DW-MRI about the orientation of these cells in

each voxel of an image volume, yielding a 3 dimensional volume of directional data. Fiber

tractography integrates paths by piecing together streamlines through this directional

data allowing us insight into the connectivity of the brain. The way the brain is connected

as a network is key to understanding its function and how it is affected by pathology or

trauma. This has potentially wide ranging impacts in developing our understanding of

the brain and also in applications like surgical planning, where knowing the boundaries

of WM structures accurately can have critical impacts on patient outcomes.

Mathematical models relate the signal measured from DW-MRI to interesting proper-

ties of the structure of WM, including, but not limited to, orientation, which is pertinent

in tractography. Other properties which the models can reveal include cell density, cell

size, intra-cellular and extra-cellular volume. One of the simplest models of WM is the

diffusion tensor (DT) model [11]. The diffusion tensor model works by fitting a covari-

ance matrix to the DW-MRI signals characterising the diffusion characteristics in a given

reference frame. From this covariance matrix, various properties can be extracted such
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as the mean diffusivity (MD) and the eccentricity of the diffusion profile, often referred

to as the diffusion anisotropy [10].

Due to the simplicity of the model the DT has become widely used both in research

and clinically, however, the parameters which can be derived from the model are fairly

non-specific and the diffusion tensor is affected by a conflation of several structural tissue

properties. The DT does not in itself disentangle the effects of complex structural phe-

nomena such as crossing fibres, cerebro spinal fluid (CSF) or grey matter partial volume

or fanning or bending of fibres at the sub-voxel scale. DW-MRI research has therefore

moved on to more advanced models which aim to disambiguate specific complex struc-

tural features of tissue such as crossing and fibres. The resolution of multiple crossing

fibre popolations existing inside a voxel’s boundaries has been approached in numerous

ways, including multi-tensor models [121] and other multi-compartment models such as

ball and multiple sticks [13]. Various multi-compartment models [112] aim to seperate

contributions to the signal from CSF and the fibrous compartment. Approaches capable

of disambiguating distinct, crossing fibre populations can reduce both false negative and

false positive connections resulting from tractography utilising models assuming a sin-

gle fibre population. Examples include the lack of the lateral callosal (inter-hemispheric)

connections (false negatives) or the over-representation of the vertical callosal connec-

tions (false-positives). However, there still remain many clear false negative and false

positive connections, leading to an incomplete and inaccurate representation of the hu-

man connectome via tractography.

These false negatives and false positives arise due to two key limitations: the re-

maining over-simplicity in the models used to describe the data, which do not account

for fanning or bending and the inherently greedy, local nature of widely used tractog-

raphy algorithms. Sub-voxel scale fanning can be observed in histological microscopy

and compares qualitatively with measures obtained from DW-MRI [109, 110]. Tech-

niques have evolved which extend the concept of multiple discrete fibre populations per

voxel to a continuous distribution of fibre orientations represented non-parametrically
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as a fibre orientation distribution function (fODF) [56, 57] or a continuous diffusion pro-

file [120, 34]. While in theory these non parametric techniques can capture sub-voxel

fibre dispersion, recent work [108, 135, 65] has suggested that the use of parametric

models of sub-voxel fibre dispersion can lead to more accurate and robust estimation of

the degree of dispersion of the fibre architecture in both synthetic data and in vivo data.

1.1.1 Problem statement

Continuing development of DW-MRI modelling techniques has yielded new sophisticated

models of white matter architecture which better represent the underlying tissue struc-

ture. These models are advantageous for use in tractography as they give a more accu-

rate depiction of the fibre architecture, however, so far, these models have not been used

in tractography techniques. New parametric models of sub-voxel fibre dispersion can

help address some of the false negatives and false positives which can arise from igno-

rance of the variation of WM structure occuring below the sub-voxel scale by providing

a more accurate representation of the underlying WM structure. This motivates the use

of parametric models of fibre dispersion in tractography. Utilising these models in trac-

tography is not trivial, there are challenges which lie in extracting viable tractography

results from the use of such models. In this thesis we aim to implement tractography

algorithms which utilise these models and address any technical issues therein.

1.1.2 Project aims

The goal of this work is to propose a framework in which to fully utilise parametric

models of dispersion in tractography, addressing whatever technical issues lie therein.

An extension of the NODDI model [135], using a Bingham distribution [115, 116], is

the local model chosen for use as the basis for the tractography algorithms presented.

The aims of this PhD thesis are to propose and implement tractography algorithms ex-

ploiting the NODDI model, demonstrate their efficacy on synthetic and in vivo data and
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investigate the impact of the new algorithms on connectivity estimation.

1.1.3 Contributions

The contributions of this thesis are as follows:

• The design and implementation of new tractography algorithms utilising the NODDI

model as a model of dispersing WM fibre architecture.

– The implementation of a tractography algorithm using a simple Bayesian for-

mulation to apply a curvature prior, producing smooth tracts. We evaluate

the algorithm on synthetic phantoms and in vivo data

– The proposal of a tractography algorithm combining parametric models of

sub-voxel fibre dispersion with a neighbourhood exploration technique. This

addresses the complications arising in the use of antipodally symmetric dis-

tributions such as that used in the NODDI model, specifically the key problem

of fanning polarity.

• Validation of the new tractography algorithms in synthetic phantoms and in vivo

data. Showing that accounting for sub-voxel fibre dispersion addresses false nega-

tives of traditional tractography techniques and validating that the neighbourhood

exploration framework effectively addresses the issue of fanning polarity arising

in parametric models of dispersion.

• Examination of how the use of the proposed algorithm impacts estimates of global

connectivity recovered in investigations of cortico-cortical connectivity and thalamo-

cortical connectivity.

1.1.4 Thesis outline

Chapter 2 starts with the background of the structure of the brain and basic diffusion

properties in tissue. The basic principles of MRI and DW-MRI are then covered followed
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by the mathematical models which are used to relate the DW-MRI signal to features of

the tissue. Much of the contents of chapter 2 form a chapter in the book "DTI: From the-

ory to practice." edited by W. Van Hecke, which is currently in press. This section covers

a selection of the most common models, from the simplest, such as the diffusion tensor

(DT) [11] and ball and stick [14], throught to more advanced approaches such as con-

strained spherical deconvolution [117] and the NODDI model [135], which is the model

on which the tractography algorithms presented in this thesis are based. Chapter 3 in-

troduces the fundamental concepts of tractography and follows with some of the current

popular approaches, including deterministic, probabilistic and global tractoraphy meth-

ods. Chapter 4 is the first of the contributions chapters, introducing a simple tractogra-

phy algorithm utilising the NODDI model as the basis. Part of this work was published

in the proceedings of the workshop on computational diffusion MRI workshop (CD-MRI)

at the 15th international conference on medical image computing and computer assisted

intervention (MICCAI) [94]. Experiments on synthetic and in vivo provide evaluation

of the efficacy of the algorithm. Chapter 5 introduces the new ’neighbourhood informed

tractography’ (NIT) technique, which is used alongside the dispersive parametric local

model of NODDI to improve the accuracy of the results. The efficacy of the algorithm is

evaluated on synthetic phantoms to demonstrate its ability to resolve fanning polarity

and also applied on in vivo data from 5 healthy subjects. A preliminary version of the

work in chapter 5 was presented at the IPMI 2013 conference [95] and a journal paper

is currently in preparation and close to submission. Chapter 6 applies the NODDI-NIT

algorithm to examining thalamo-cortical and cortico-cortical connectivity and examines

the effect of including measures of dispersion in tractography on the recovered connec-

tivity profiles. Chapter 7 summarises the main contributions and overall conclusions,

along with a discussion on future directions.
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Chapter 2

Background

2.1 Tissue structure in the brain

The brain is a vastly complex organ. It is housed inside the skull and suspended in cere-

brospinal fluid (CSF) which fills the open spaces not occupied by brain tissue such as the

sulci and ventricles, provides a protective liquid layer around the brain and facilitates

chemical transportation. The tissue which makes up the brain can be roughly divided

into two distinct types, grey matter (GM) and white matter (WM) [81]. Grey matter is

largely composed of neuronal cell bodies [75], while WM is largely composed of the long-

range protrusions of neurons called axons, which serve to connect neurons over large

distances. There are other types of cells, collectively referred to as ’glial cells’, which

exist in both GM and WM such as oligodendrocytes, astrocytes and microglia. These

facilitate various functions including biochemical support and immune response. Figure

2.1 shows the organisation of grey matter and WM in the brain. The GM makes up the

outer regions of the brain and this region is normally referred to as the ’cortex’. The WM

makes up the deeper structure which can be revealed by dissecting the brain. There are

some regions of grey matter lying beneath the cortex, deep within the WM and these are

often referred to as ’sub-cortical’ grey matter.

An simple illustration of the major components of neural tissue is provided in Figure
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Figure 2.1: Coronal slice of the brain (Atlas of the Human Brain in Section, 2nd ed),
showing white matter, grey matter and CSF.
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(a) Brain microstructure (b) Myelin

Figure 2.2: Simple illustration of microstructure in the brain .Showing the soma, axon,
glial cells and myelin.

2.2(a). The soma is the neuron body, it contains the nucleus and many of the cell’s main-

tenence structures. Typically, neurons have numerous protrusions from the soma collec-

tively referred to as neurites which facilitate electrical communication between seperate

neurons. The neurites are divided into two distinct types, dendrites and axons. There

are typically many dendrites protruding from a single soma, the number and specific

structure of the dendrites is highly variable and is dependent on the type of neuron and

where it exists in the brain. Each neuron also typically has a single axon. The axon

is an extended protrusion of the neuron which can range in length from micrometers to

many centimeters and even to over a meter in humans. The axon serves to facilitate long

range communication between distinct groups of neurons, which may be in completely

distinct regions of the brain or body, while dendrites serve to facilitate communication

with neighbouring neurons and with axons terminating in the vicinity [123].

Glial cells are non-neuronal cells which serve a number of purposes such as cell main-

tenance and metabolic functions, immune response and structural support. There are

numerous different types of glia, broadly characterised into two groups, microglia, which

form the immune component of the central nervous system and macroglia, which facili-
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Figure 2.3: Lobes of the brain. Illustration adapted from [47].

tate structural, chemical and nutritional support to other neural cells.

One particular type of macroglia, the oligodendrocyte, has a very specific and impor-

tant structural function in the central nervous system. Each oligodendrocyte cell ex-

hibits protrusions which wrap around axons forming a protective layer called the myelin

sheath. Each protrusion of the oligodendrocyte wraps several times around an axon,

forming a multi-layered wall which exists in short repeating sections. The myelin sheath

serves in one function as an insulating layer, protecting the axon from electrical inter-

ference from neighbouring neural cells and ions and preventing leakage of electrical

potential from the axon itself. A second important function of the myelin sheath arises

from the discontinuity of the myelin layer. The gaps in between each myelin section are

called Nodes of Ranvier and they form points at which electrical potential accumulates

and ’hops’ to the next gap. This process is referred to as ’saltatory conduction’ or ’salta-

tion’ and allows rapid and efficient propagation of action potentials along the length of

an axon which is faster and more efficient than the wave-like propagation of potential

along an unmyelinated axon.
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2.1.1 Macroscopic structure of the brain

The brain is organised in two hemispheres, which are similar in shape and size, however

they do differ in specific details of structure and function. Each hemisphere is divided

into 4 major lobes as seen in Figure 2.3: the frontal lobe which plays a role in reasoning,

language, memory and motor control, the parietal lobe which has a role in integrating

sensory information, the temporal lobe which plays a role in auditory processing and

the occipital lobe which plays a role in the processing of visual information. The tempo-

ral lobe is separated from the frontal lobe by the lateral fissure and the two hemispheres

are separated by a prominent central fissure. Each lobe can be subsequentley subdivided

into regions associated with a particular function distinguished by their cytoarchitecture

[18] or divided into regions according to gyral and sulcal patterns based on neuroanatom-

ical conventions and accumulated neuroanatomical knowledge [36, 52].

2.1.2 White matter

As mentioned in the previous section, WM is mainly made up of axons [75], which are ex-

tended, roughly cylindrical protrusions of neurons which allow the transmission of chem-

ical and electrical impulses between separate neurons and join the brain as a network,

facilitating its function. Axons can range in size between several micrometers to many

centimeters to over a meter in size in the human central nervous system. The diame-

ter ranges between 0.1 µm to 20 µm, with larger axons facilitating faster transmission

of action potentials at a higher spatial cost [123]. The axons are generally grouped in

large bundles called fascicles which facilitate gross connections between different brain

regions. The neurons in the brain are organised into functional regions with each region

performing some particular function. For even basic tasks, communication is required

between several of these regions and also with the body through the spinal column or

cranial nerves.

The white matter fibres which connect the different regions of the brain are organised
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Figure 2.4: Association fibres. Illustration from [47].

into large bundles, refered to sometimes as tracts or fascicles. They can be categorised

into 3 separate groups: association tracts, which connect regions in the same hemi-

sphere, projection tracts, which connect the cortex with subcortical structures in the

basal ganglia and the spinal cord and commisural tracts, which connect regions in op-

posing hemispsheres.

Figure 2.4 shows the association fibres, the superior longitidinal fasciculus (SLF)

which connects regions in the frontal, parietal, occipital and temporal lobes. Also shown

are the cingulum (Ci), which runs along the superior edge of the corpus callosum and

connects different regions of the limbic system. The inferior longitudinal fasciculus (ILF)

connects the temporal and occipital lobe and the uncinate fasciculus connects regions of

the temporal lobe with the orbitofrontal cortex. Not shown is the inferior fronto-occipital

fasciculus (IFOF) which connects the occipital cortex with parts of the frontal lobe.

Figure 2.5 shows two of the major commisural fibres, the corpus callosum and below

it the anterior commisure. The corpus callosum is a very large tract, with an estimated

population of 200-250 million axons facilitating large scale connection between the two

hemispheres. The other commisural fibres are the anterior commisure, the posterior

commisure and the hippocampal commisure, which are all smaller commisural fibres

inferior to the corpus callosum facilitating further connection between brain regions in

27



Figure 2.5: Commisural fibres. Diagram from [47]

opposing hemispheres.

Figure 2.6 shows the corona radiata, a structure containing numerous projection

tracts, which connects the cortex with the lower regions of the brain, the internal cap-

sule, the spinal column and the cerebral peduncle. Figure 2.7 shows the corona radiata

extracted from an ex vivo specimen. The corona radiata is a structure where the white

matter exhibits significant divergence of fibres, which can be observed in Figure 2.7.

This WM structure is of particular importance for this thesis, as we focus on effectively

dealing with the dispersion in regions such as the corona radiata in tractography.

2.2 Diffusion basics

2.2.1 Diffusion in free water

The first observations which led to the understanding of the diffusion of liquids and

gases were made in 1826 by the botanist Robert Brown, who was studying the seemingly
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Figure 2.6: Corona radiata. Diagram from [47]
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Figure 2.7: Corona radiata histological section with corona radiata, internal capsule and
projection fibres illustrated. The projection fibres make up parts of the internal capsule
and external capsule and form the corona radiata. Diagram adapted from [129]
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Figure 2.8: Brownian motion of water molecules.

random pattern of motion pollen grains exhibited when suspended in water under a

microscope. His initial hypothesis that this motion was due to some biological function

of the pollen was rejected and it was later understood that the motion was due to the

buffeting of the pollen grains by the water molecules surrounding them. This led to the

revelation that liquids and gases are not static and lifeless as they might appear, but the

atoms or molecules which make up the fluid undergo constant thermally-driven motion.

Consider a set of water molecules in thermal motion as in Figure 2.8. As they move,

they will constantly collide with each other, tracing a chaotic random path as the high-

lighted molecules do in Figure 2.8a). In Figure 2.8b) a local set are labelled in red. As

time progresses to Figures 2.8c) and 2.8d) the labelled molecules spread further apart in

a roughly spherical profile. This is akin to the process which governs the spreading of a

drop of die when placed into a clear glass of water. The die molecules in the water would

behave as the labelled molecules do in Figure 2.8.
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The diffusion process was summarised mathematically by Adolf Fick in 1855 [42].

Fick’s law is given in equation 2.1, where J is the net particle flux, C is the particle

concentration and D is a constant of proportionality known as the diffusion coefficient.

Fick’s law originally embodied the concept of diffusion in the presence of a concentration

gradient, however, diffusive mixing occurs even in the presence of thermal equilibrium,

such as in a glass of water. Water molecules diffuse randomly throughout the container

(the glass), however, across any arbitrarily defined plane the net flux is zero on average.

J=−D∇C (2.1)

The dynamics of the thermal motion of water molecules as they collide repeatedly with

nearby molecules are too complex to predict in detail. However, it is possible to treat

the behaviour of a large ensemble of water molecules in a probabilistic way as Einstein

did in 1905, when he introduced the concept of the ’displacement distribution’ [41]. The

displacement distribution quantifies the fraction of particles which will traverse a certain

distance in a given time, or, conversely, the probability that any one particle will traverse

a given distance in a given time. Einstein’s formulation gives us a probability density

function, ρ(r) quantifying the fraction of particles which have undergone displacement r

in a time t. The distribution follows a Gaussian profile in 3 dimensions:

ρ(r)= 1√
(4πtD)3

e−
|r|2
4tD (2.2)

D is the same diffusion constant from Fick’s law in equation 2.1. This gives a 3 dimen-

sional Gaussian distribution with a peak at r= 0 which is spherically symmetric (i.e. the

isoprobability surface is spherical).

Einstein also further derived the mean squared displacement of an ensemble of water

molecules after time t:

〈r2〉 = 6Dt (2.3)
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2.2.2 Diffusion in neural tissue

The previous section discussed the diffusion properties of water in the absence of bound-

aries, however, it is how these diffusion properties are affected by the presence of bound-

aries which allows us to gain unique insight into tissue structure using DW-MRI. If the

water molecules encounter hinderances as they are diffusing, the mean squared displace-

ment over a set time will be lower than that observed in free diffusion. Hence the diffu-

sion constant D in equation 2.3 will appear to be lower. Therefore, in a biological tissue,

we normally refer to the ’apparent diffusion coefficient’ (ADC) [74]. Figure 2.9 illustrates

the behaviour of water diffusion when restricted inside cylindrical boundaries. As the

molecules diffuse, they are impeded when they encounter a boundary and hence inside

these cylinders, they tend to progress along the axis of the cylinder, as in this direction

they are not impeded by boundaries. This leads to anisotropic diffusion behaviour. The

diffusion profile, which in free water is spherical, becomes elongated along the axis of the

cylinders due to the restriction of motion caused by the cylinder walls. The earliest and

simplest model to capture the anistoropic behaviour of water in organised media such

as parallel cylinders was the diffusion tensor (DT) [11]. Equation 2.2 can be extended to

include directional dependence on the displacement vector r:

ρ(r)= 1√
(4πt|D|)3

e−
rT D−1r

4t (2.4)

where

D=


Dxx Dxy Dxz

Dxy D yy D yz

Dxz D yz Dzz

 (2.5)

D is normally referred to as the ’diffusion tensor’. The diffusion tensor is a symmetric

positive definite matrix, hence it has 6 unique elements. It generally takes the form

of an ellipsoid with a special case arising when all non-diagonal elements are zero and
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Figure 2.9: Water molecules restricted inside cylindrical boundaries.

Dxx == D yy == Dzz which is a sphere, representing isotropic diffusion. The concept of

the diffusion tensor is explored in further detail later in section 2.4.1.

The DT is particularly applicable for characterising the diffusion properties in WM

since it consists of many bundles of coherent axons, which affect water diffusion in much

the same way as the parallel cylinders in the previous conceptual example. Singular

value decomposition of the diffusion tensor yields eigenvectors which define the princi-

pal axes of the ellipsoid and corresponding eigenvalues which define the corresponding

diffusivities. The eigenvector with the largest corresponding eigenvalue defines the ma-

jor axis of the ellipsoid, the axis in which the diffusion of water is least hindered, which

in turn generally corresponds to the average orientation of the axes of the cylindrical

boundaries. This is a particularly powerful property of the diffusion tensor as it yields a

measure which can be interpreted as the predominant direction of axons in white matter

using diffusion weighted magnetic resonance imaging.
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2.3 Diffusion weighted magnetic resonance imaging

Diffusion weighed magnetic resonance imaging (DW-MRI) is a technique which sensi-

tises the signal recorded by an MRI machine to the diffusion of water in tissue, such that

a change in diffusion properties results in a change in the signal detected. Specifically,

DW-MRI is tuned in such a way that diffusion creates attenuation of the signal, that is,

a signal drop is present where there is high diffusion. In this section, we give a concise

overview of the concepts of nuclear magnetic resonance (NMR) followed by a description

of how to apply diffusion weighting.

2.3.1 Basic principles of magnetic resonance imaging (MRI)

Magnetic resonance imaging is, as the name suggests, dependant on the behaviour of

atomic spins in the presence of magnetic fields. An atomic nucleus with an odd number

of nucleons possesses a magnetic moment µ due to its spin angular momentum I, a

quantum mechanical property of subatomic particles and nuclei. These are related by

µ = γI. γ is the gyromagnetic ratio - a constant specific to the nucleus in question. In

the case of a hydrogen nucleus the gyromagnetic ratio has a value of 2.68×108 rad/(sT).

The gyromagnetic ratio dictates the frequency with which a nucleus will precess around

a magnetic field.

For the purposes of this thesis, it is only necessary to consider the hydrogen nuclei in

water molecules, as it is these which give rise to the signal detected in DW-MRI and in

most MRI applications. They are the most abundant nucleus type present in biological

tissue. However other nuclei are used in some specialised MRI techniques.

In the absence of any external magnectic fields the magnetic moments of the spins

are randomly oriented, as in Figure 2.10(a). In the presence of an external magnetic

field B0, the magnetic moments of the nuclei align and precess around the axis of the

applied field as in Figure 2.10(b). The spins of hydrogen nuclei adopt one of two possible

energy states, a lower one aligned with the magnetic field and a higher energy state
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(a) spins randomly aligned in absence of exter-
nal magnetic field

(b) spins aligned with B0

Figure 2.10: Nuclear spins in the absence of and presence of a magnetic field B0. When
the magnetic field is applied the magnetic moments of the nuclei precess around the axis
of the field, either aligned or anti-aligned.

which is anti-aligned. Thermal energy causes many of the spins to exist in the higher,

anti-aligned state, however, more nuclei exist in the lower, aligned energy state, giving

rise to a net magnetic moment M. The ratio of spins in the aligned state N− to the

anti-aligned state N+ at a temperature T is governed by the Boltzmann relationship:

N+

N− = e
−∆E
κT (2.6)

where ∆E is the energy difference between the two states.

While the nuclei exist in only two seperate states, they are not static. The spin mo-

ment precesses around the axis of the applied magnetic field B0. The frequency of pre-

cession is a key factor in MRI data acquisition and is given by the Larmor equation [17]:

ω0 = γB0 (2.7)

where ω0 is the angular frequency of precession of a spin, otherwise known as the

Larmor frequency. As there are hydrogen nuclei in both the aligned and antialigned

state, the majority of the net magnetisation is cancelled out and in order to generate a

detectable signal in an MRI experiment there must be as large a net magnetic moment
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Figure 2.11: Net magnetic moment M.

as possible, i.e. the ratio of the particles in the aligned state to those in the anti-aligned

state must be as large as possible. Hence to achieve this, a significant magnetic field is

required to generate practical signal to noise ratios (SNR). Standard MRI scanners have

a very strong static magnetic field generated by a superconducting magnet of the order

of several Tesla. Clinical human MRI scanners generally have fields of 1-3 tesla and the

latest technological developments have allowed fields of up to 7 Tesla. Pre-clinical animal

scanners can have a smaller bore and 9 Tesla and above is common. The static magnetic

field of the MRI scanner is normally denoted as B0. Spins in different physical locations

can be spatially located by the application of an additional magnetic field gradient, which

adds linearly to the B0 field, by gradient coils which lie inside the bore of the scanner.

The sum of all the magnetic moments of all the nuclei creates a net magnetisation

vector M, illustrated in Figure 2.11.

2.3.1.1 Excitation and relaxation

Signal is generated by perturbing the net magnetisation vector M with a radio frequency

(RF) pulse. The RF pulse is applied by a hardware insert in the MRI scanner and res-

onance is achieved by producing an RF pulse with the same frequency as the Larmor

frequency of the precessing hydrogen nuclei. This excites the magnetisation vector and

37



perturbs it out of alignment with B0. It is perturbed out of alignment with B0 by a spe-

cific angle, governed by the length of the RF pulse, which is determined by the context

of the application. Commonly it is perturbed by 90o, into the plane perpendicular to B0

or by 180o. The component of the net magnetisation vector M in the plane perpendicular

to B0, Mxy then rotates around the axis of B0 at the Larmor frequency (the z-axis is as-

sumed to be aligned with B0). For a flip angle of 90o Mxy = M0 and Mz = 0. This moving

net magnetic moment induces a signal in the receiver coils which is used to create an

image.

After the magnetisation vector has been excited with the application of the RF pulse

the net magnetisation then returns to the equilibrium state, aligned with B0, in a process

of relaxation. As it does the signal induced in the receiver coils attenuates. This process

is called the free induction decay (FID). The transverse magnetisation Mxy decays as the

longitudinal magnetisation Mz recovers to its original (thermal equilibrium) value M0.

The longitudinal magnetisation recovers with a time constant T1:

Mz(t)= Mz,eq(1−exp
(−t

T1

)
) (2.8)

This is referred to as ’spin-lattice’ relaxation. The transverse magnetisation Mxy also

decays with another time constant T2 due to the dephasing of spins as their magnetic

moments interact with each other. This is known as ’spin-spin’ relaxation. The decay of

the signal S(t) at time t is dictated by the relationship given in equation 2.9.

S(t)= M0 exp
−t
T2

(2.9)

At any particlar location x, the magnetic field experienced by the spin is given by B = B0+
Gx [22]. Where G= (Gx,G y,Gz) defines a magnetic field gradient in a specific direction.

If we consider the effect of the gradient G on the precession of the nuclei spins with

reference to equation 2.7, we can see that spins at a position x will have a position-

dependent procession frequency given by:
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(a) 90o flip (b) 180o flip

Figure 2.12: Flipping the net magnetisation vector by 90o and 180o.

ω(x)= γB(x)= γ(B0 +Gx) (2.10)

Therefore spins at different spatial locations precess at different frequencies. This can be

used to spatially locate the spins when collecting signal to form an image. A ’slice select’

gradient can be applied during the application of the RF pulse to only excite a thin slice

of protons, then further gradients are applied during image acquisition to distinguish

protons from different physical locations. The image is acquired in frequency space or

’k-space’ and can be reconstructed using a Fourier transform (FT).

2.3.1.2 T∗
2 and magnetic field inhomogeneity:

T2 decay assumes that the main B0 field is homogeneous, where in reality it is not.

There are always imperfections in the B0 field in any real MRI scanner and biological

tissues also exhibit susceptibility effects which create further field inhomogeneity. The

dephasing of spin precession due to these effects is denoted T∗
2 decay or T∗

2 relaxation.

By using the spin echo sequence described in the next section, we can discount T∗
2 effects,

simplifying the process of acquiring magnetic resonance images.
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Figure 2.13: Spin echo sequence

2.3.1.3 Spin echo sequence

As the FID decays very quickly, it is not useful to read it with the receiver coils, so

a second 180o RF pulse is applied to produce an ’echo’. The 180o RF pulse reverses the

phase relationship of the spins so the dephasing which caused the decay of the transverse

magnetisation is now reversed and the magnetic moment precessions now rephase and

produce a measurable signal at a time normally denoted as TE. The 180o RF pulse is

applied at TE/2. At this time, we then collect the signal to form the image using ’readout’

gradients to spatially locate the spins. After a time TR, the process is repeated to read

the next line of the image. During an MRI sequence, this process is normally repeated

for each line of voxels and the length of TR along with the intended dimensions of the

image dictate the length of time the scan will require. Figure 2.13 gives an illustration

of the spin echo sequence.

2.3.2 Diffusion weighted magnetic resonance imaging

This section introduces the basic theory behind sensitising the MRI signal to diffusion.

The pulsed gradient spin-echo (PGSE) sequence was proposed by Stejskal and Tanner

in 1965 [113] and has become ubiquitous in diffusion weighted imaging. The PGSE

sequence utilises the same spin-phase interactions used to spatially locate spins to also
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Figure 2.14: The PGSE sequence. The 180o RF pulse between the readout gradients
effectively reverses the polarity of the second gradient with respect to the first.

apply diffusion weighting. The key to the PGSE sequence is to apply a magnetic gradient

for some fixed time δ, during which spins in different locations will diverge in phase,

then apply the effective opposite gradient for the same fixed time. After the first gradient

pulse the spins across a sample will accrue a phase difference with other spins according

to their location. The second gradient pulse then acts in the opposite sense, as it is the

opposite polarity. For any spin which has not moved, this will have the effect of returning

it to its original phase, however, for any spin which has moved, upon the action of the

second gradient pulse, it will not return to its original phase as it will experience a

different local magnetic field according to equation 2.10. This creates a signal loss in an

area in which water molecules are diffusing, the signal loss is greater the further the

water molecules travel in between the two gradient pulses. Therefore the application of

the pulsed gradients before the image readout has the effect of quantifying the amount

of diffusion in each voxel parallel to the direction of the applied gradient G.

Figure 2.14 outlines the PGSE sequence. The key parameters which govern the

amount of diffusion weighting are the magnitude of the gradient pulse G, the time width

of the pulses δ and the time elapsed between the pulses ∆. The diffusion weighted signal

S then obeys the equation:
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A = S
S0

= e−
(
γ2G2δ2

(
∆− δ

3

))
D (2.11)

where G is the gradient strength, ∆ is the time elapsed between the pulses, δ is the time

width of the pulses and γ is the gyromagnetic ratio for the proton and D is the diffusion

constant. S0 is the signal without diffusion weighting. A = S/S0 is the attenuation.

Alongside multiple diffusion weighted images with different gradient directions, the S0

signal is acquired in an image taken with no diffusion weighting, often referred to as a

b-zero image.

Equation 2.3.2 is normally summarised as:

S
S0

= e−bD (2.12)

where:

b =
(
γ2G2δ2

(
∆− δ

3

))
(2.13)

b is normally referred to as the ’b-value’ and is a commonly used summary parameter.

Equation presumes the gradients are ideal, i.e. they instantly switch to their maxi-

mum value. However, in real MRI scanners the gradients do not switch instantly, eddy

currents are created by ramps at the beginning and end of a gradient pulse. Extra terms

are required in equation 2.3.2 to account for this completely. This leads to numerous

essential practical considerations. However, the basic theory remains the same so the

discussion of gradient slew is beyond the scope of this thesis.

2.3.2.1 Q-space

A concept used in certain diffusion imaging techniqes is that of q-space and the q-vector.

Kärger and Heink [67] demonstrated that for an idealized pulse sequence with infinites-

imally short gradient pulses measured signal attenuation A(q) = S(q)/S0 is the 3-D

Fourier transform of the diffusion scatter pattern p(r):

42



A(q)=
∫
R3

p(r)exp(−iqTr)dr=F [p(r)] (2.14)

Where:

q= γδG (2.15)

The set of all 3D q-vectors is referred to as q-space, a concept that was formalised by

Callaghan in 1992 [20]. This concept is used in q-space imaging and other diffusion

techniques such as diffusion spectrum imaging (DSI) [125, 124] and q-ball imaging [120,

122].

2.4 Modelling white matter architecture

In order to succesfully extract information about tissue structure, it is necessary to model

how the tissue structure affects the DW-MRI signal. A mathematical model relates the

measured signal with specific tissue properties which are of interest in a parsimonious

manner. The tissue properties are often represented by spacial distributions or parame-

ters which relate to various identifiable physical features of the tissue, for example, the

size or density of cells or the orientational arrangement.

2.4.1 The diffusion tensor

The earliest model conceived is the aforementioned diffusion tensor (DT) which remains

widely used [113, 9]. It provides a measure of diffusion anisotropy which indicates struc-

tural details of the tissue and also a principal direction which indicates an average fibre

direction in white matter. The diffusion tensor model fits a covariance matrix to the

measured signals, characterising the diffusion in a particular reference frame. The DT

model uses a 3x3 covariance matrix:
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D=


Dxx Dxy Dxz

Dxy D yy D yz

Dxz D yz Dzz

 (2.16)

The diffusion tensor is, by definition, symmetric positive definite, hence there are only 6

unknown elements to determine. The diffusion tensor can be coupled with the diffusion

weighted signal using the b-matrix, which is analogous to the scalar b-factor.

I2

I1
= e−bD (2.17)

where:

b=


bxx bxy bxz

bxy byy byz

bxz byz bzz

 (2.18)

equation 2.17 can be expanded:

I2

I1
= exp(−bxxDxx −byyD yy −bzzDzz −2bxyDxy −2bxz −2byzD yz) (2.19)

As there are 6 unknown elements to the diffusion tensor, at least 6 diffusion encoded

images are required to resolve the equation in each voxel (7 if we include the b = 0

image). The directions chosen must be non-colinear and non-coplanar. However, if only 6

images are used, the data will be fit exactly, including noise, hence generally, many more

than 6 diffusion encoding directions are used.

The tensor can be estimated via a simple ordinary least squares (OLS) approach. This

is a very simple and efficient way to fit the diffusion tensor, however, it is not necessarily

the best. Alternative approaches opt for weighted least squares (WLS) [10], non-linear

least squares or outlier rejection [24].

The tensor model captures the anisotropic diffusion profile in the presence of coher-
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Figure 2.15: Illustration of diffusion profiles in varying tissue geometries. The tensor
profile is shown in the case of a single, coherent bundle of fibres, crossing fibres, and
disordered geometry such as a region of GM.

ently oriented fibres, and also yields several scalar measures reflecting tissue structure,

quantifying diffusion properties such as diffusion anisotropy. A major limitation however

is the inability of the diffusion tensor to capture meaningful information in situations

where the fibre architecture inside a voxel is not a single, coherent bundle, but could

be one of a number of other possible configurations. Some examples of diffusion tensor

profiles corresponding to distinct tissue geometries are given in Figure 2.15.

2.4.2 Extracting informative measures from the diffusion tensor

Several useful things can be extracted from the diffusion tensor which can be used to

infer properties of tissue structure. First and foremost, as the diffusion tensor D is sym-

metric positive definate it can be decomposed into real eigenvalues λi and corresponding

eigenvectors ei:

D=EΛE−1 (2.20)
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E=
[
e1 e2 e3

]
(2.21)

Λ=


λ1 0 0

0 λ2 0

0 0 λ3

 (2.22)

If we assume by convention that λ1 >λ2 >λ3 then the eigenvector e1 with the biggest

eigenvalue identifies the dominant diffusion direction and can be interpreted (cautiously)

as the probable dominant fibre direction in WM. Caution must be used in this interpre-

tation as there may be confounding factors which could make the assumption that the

principal eigenvector denotes the dominant fibre direction in a voxel such as a partial

volume of GM or CSF, or multiple fibre populations within the voxel.

Informative scalar measures can also be derived from the diffusion tensor:

• The mean diffusivity (MD):

MD = λ1 +λ2 +λ3

3
= 〈λ〉 (2.23)

• The fractional anisotropy (FA):

F A =
√

3
2

√
(λ1 −〈λ〉)2 + (λ2 −〈λ〉)2 + (λ3 −〈λ〉)2√

λ2
1 +λ2

2 +λ2
3

(2.24)

• The linear coefficient (CL) [127], which gives a measure of the linearity of the dif-

fusion tensor profile:

CL = λ1 −λ2

λ1
(2.25)

• The planar coefficient (CP) [127], which gives a measure of the planarity of the

diffusion tensor profile:

CP = λ2 −λ3

λ1
(2.26)
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(a) Mean diffusivity (MD) (b) Fractional anisotropy (FA) (c) Principal eigenvector.

Figure 2.16: Mean diffusivity (MD) 2.16(a), fractional anisotropy (FA) 2.16(b) and di-
rection of principal eigenvector 2.16(c). The principal eigenvector is displayed using the
common anatomically-related colour scheme of blue - inferior→superior, red - left→right
and green - posterior→anterior.

• The spherical coefficient (CS) [127], which gives a measure of the sphericity of the

diffusion tensor profile:

CS = λ3

λ1
(2.27)

FA and MD are rotationally invariant diffusion metrics which are commonly used in re-

search and clinical applications for investigating pathology [38] or functional differences

between individuals [69]. FA, MD and principal eigenvector maps are shown in Figure

2.16. FA is typically high in dense, coherently oriented white matter, as is CL. CP is

typically high in regions of crossing fibres and CS is higher in regions of CSF and GM,

these can all be highly useful metrics depending upon the application.

A major limitation of the diffusion tensor is that it assumes Gaussian diffusion, an

assumption which breaks down in populations of water molecules restricted inside cell

boundaries. Over long enough timescales, the diffusion characteristics of these water

molecules deviate from Gaussian, hence this can lead to modelling errors with the diffu-

sion tensor.
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(a) Coherent (b) Crossing

(c) Curving (d) Fanning

Figure 2.17: Illustrations of possible configurations of sub-voxel fibre architecture.

2.4.3 Complex sub-voxel fibre architecture

The characteristic size of the primary structures we are examining in DWI for tractogra-

phy, the axons, is in the range 0.5-20µm. This is 2-3 orders of magnitude below the DW-

MRI resolution, which is typically 2-3mm for common DW-MRI acquisitions. Therefore

complexities can arise in the tissue structure lying within the boundaries of any particu-

lar voxel. The simplest models, including the diffusion tensor, can only comprehensively

summarise the white matter fibre architecture within a voxel if the fibre configuration

conforms to a single, highly coherent bundle of parallel axons, which does not deviate in

direction across the entire volume of the voxel, as demonstrated in Figure 2.17a). Fig-

ures 2.17b-c) illustrate other conceivable sub-voxel architectures which can arise and are

known to exist in white matter. The white matter fibres within a voxel may cross (Figure

2.17b), bend (Figure 2.17c) or fan (Figure 2.17d) within the boundaries of a single voxel.

By using only a single, unique direction to summarise the sub-voxel fibre architec-
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ture illustrated in Figures 2.17 b)-d), the underlying white matter structure is mis-

represented, and this leads to false negative or false positive connections in resulting

tractography based on these models. In many cases of complex sub-voxel white mat-

ter architecture, the basic diffusion tensor model can be actively misleading [121, 103].

For example, in the case of two fibre bundles crossing at an acute angle, the diffusion

tensor will actually yield the average orientation of the two combined, and no useable

information relating to either individual bundle.

To address the limitations of these simplistic models of white matter, DW-MRI re-

search has focussed on the development of more comprehensive models, which capture

the extra structural complexity of voxels with complex sub-voxel fibre architecture. One

of the primary focusses has been on capturing crossing fibre structure, where two dis-

tinct fibre populations cross inside the voxel, the fibres of each population interdigitating

with those of the alternate population(s). Crossing fibres are an inherent complication in

DW-MRI, as it is known that fibre populations intersect each other at a far smaller scale

than any DW-MRI resolution conceivable in the foreseable future could resolve.

2.4.4 Multi-compartment models

The first step towards more comprehensive modelling of the tissue in a voxel is compart-

mentalisation. The assumption is that the water inside the voxel can be broken up into

separate compartments or ’partial volumes’, each of which exhibits a different diffusion

behaviour depending on its specific environment. Each compartment subsequently has

a unique contribution to the resulting DW-MRI signal. The measured DW-MRI signal is

therefore assumed to be a sum of the signal contributions for all compartments. For ex-

ample, water diffusion inside fibres will exhibit a highly anisotropic diffusion behaviour,

as it is restricted almost entirely to diffusing along the axis of the fibre, while the wa-

ter outside and around fibres can percolate through the fibrous lattice, and therefore

will exhibit more isotropic diffusion properties. Compartmentalisation separates these

two water populations to be treated with a different mathematical model, which more
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accurately captures the diffusion behaviour.

2.4.4.1 Ball and stick model

A prominent example of a DW-MRI model which features such a compartmentalisation

is the Ball and Stick model [14]. The ball and stick model models the diffusion of the

intra-cellular water inside parallel axons as an infinitely thin stick and models the extra

cellular water which exists around the axons as a ’ball’, which is simply a compartment

modelling hindered, isotropic diffusion. These two separate compartments could be con-

sidered as special cases of the diffusion tensor, with the stick being a diffusion tensor

for which the diffusion along all eigenvectors except the principle direction is zero, and

the ball being an entirely isotropic tensor with the diffusion along all eigenvectors being

equal.

The signal Si for the ith diffusion weighted aquisition with gradient direction r i the

signal is given by:

Si = S0((1− f )exp(−bid)+ f exp(−bidrT
i RARTri) (2.28)

where S0 is the MR signal without diffusion weighting, d is the diffusivity, bi and ri re-

spectively are the b-value and gradient direction associated with the ith MR acquisition.

f is the volume fraction of the anisotropic compartment in the voxel, and RART is the

anisotropic diffusion tensor along the principle diffusion direction (θ,φ):

A =


1 0 0

0 0 0

0 0 0

 (2.29)

The ball and stick model represents one of the simplest ways to compartmentalise a

tissue model. However it doesn’t in itself approach the aforementioned complexities of

complex sub-voxel fibre architecture such as crossing, curving or fanning as it still relies

on the assumption of a single, coherent fibre population which does not deviate over the
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volume of the voxel.

To address the issue of multiple fibre populations per voxel for a simple compartment

model such as the ball and stick is conceptually trivial. The model can be modified to

incorporate multiple ’stick’ compartments to represent each distinct fibre population [13]:

µi = S0((1−
N∑

j=1
f j)exp(−bid)+

N∑
j=1

f j exp(−bidrT
i R jART

j ri)) (2.30)

Here, the elements with subscript j represent the respective elements given in equation

2.28, for the jth of N fibre populations. While in theory this extension is a simple one,

in practice it is not simple to apply. The primary issue is one of model selection. This

model actually represents an effectivelly infinite series of possible models, one for each

allowable value of N, which can stem from 0 (no fibre population) to ∞ fibre populations.

A very large number of fibre bundles is clearly physically unrealistic and a significant

concern when allowing a flexible number of fibre populations is overfitting. Hence many

different approaches are taken to appropriately and robustly decide on the number of

fibre popultions, from Bayesian techniques such as automatic relevance determination

(ARD) [13] and model ranking via the Bayesian information criterion (BIC) [82], to fre-

quentist methods using bootstrapping [100]. An in depth discussion of this issue is

beyond the scope of this thesis and can be found in the respective references.

2.4.4.2 Multi-tensor model

A similar solution for crossing fibres to the ball and multi-stick representation, which

simply uses multiple instances of a model used to represent single fibre bundles are

multi-tensor models. A multi-tensor model could be thought of as a generalisation of

the ball and multi-stick model, with the restriction that one tensor must be isotropic

and the other tensors must have non-zero diffusivity along only one axis released. The

caveat of this generalisation is that the model has more parameters which must be esti-

mated, which can have challenging practical consequences. Therefore implementations

of multi-tensor models tend to resort to some restrictions on the tensors such as cylindri-
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cal symmetry [6] or fixing eigenvalues [121].

These conceptually simple (but often practically challenging) approaches to mod-

elling multiple fibre populations per voxel have been generally successful and widely

exploited in diffusion imaging. However, a major limitation of these models and related

approaches, especially when considering their application in tractography, is that they

still fail to capture the sub-voxel fibre architecture represented in Figures 2.17 c) and d).

From the parameters describing each fibre population, from the aforementioned multi-

fibre models, only the orientation of the jth bundle (θ j,φ j) can be extracted from the

estimated parameters of the model, in the case of the fanning and curving represented

in Figures 2.17 c and d, a continuous range of fibre orientations exists in the voxel, which

cannot be accurately summarised by a singular orientation estimate, or a limited number

of them.

2.4.5 Non-parametric approaches

A set of alternative approaches to modelling sub-voxel fibre architecture exists which

releases the dependence on simplistic geometric models of fibre architecture. These are

normally grouped under the definition of ’non-parametric’ approaches. These approaches

aim to estimate an ’orientation distibution function’ (ODF) from the diffusion data. The

ODF is a spherical distribution function which represents, as a probability distribution,

the probability of something having a particular given orientation and is effectively a 3

dimensional, spherical realisation of a probability distribution fuction (PDF). What that

’something’ is depends upon the method. There are several techniques which estimate a

’diffusion ODF’ (dODF), which is the probability that a diffusing water molecule moves

in a particular direction. In free water the dODF would be uniform over the sphere, in a

single coherent bundle of fibres, the dODF would be sharply peaked along the direction

of the fibres as this is the direction in which diffusion is least restricted. Alternative

techniques estimate the ’fibre ODF’ (fODF) which represents the probability that a fibre

exists in the voxel with a particular given orientation. As with the dODF, in the case of a
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single coherent fibre bundle, the fODF would be sharply peaked along the fibre direction

(in theory, for a bundle of absolutely parallel fibres it would be a delta function). However,

in the case of free water, theoretically, the fODF should be zero throughout the sphere,

as there are no fibres.

This leads to an obvious realisation when it comes to the applicability to tractogra-

phy, that the fODF is inherently more useful, as it attempts to directly represent the

structural organisation of the fibres we are trying to track. Information useful to trac-

tography can be extracted from dODFs. For example, the peaks in the function can be

assumed to represent the mean directions of fibre bundles, however, this is an indirect

measure of fibre architecture and summarises the fibre architecture in the voxel in a

similarly limited fashion to the multi-compartment models mentioned in section 2.4.4.

The fODF directly represents the estimated distribution of fibre orientations inside each

voxel directly and therefore encapsulates the information we require for tractography

much more comprehensively.

2.4.5.1 Diffusion spectrum imaging

Diffusion spectrum imaging (DSI) [125, 124] attempts to reconstruct the diffusion scatter

pattern p directly and hence estimates the dODF. The diffusion scatter pattern is the 3-

dimensional displacement of water molecules and its properties provide insights into the

underlying tissue structure in which the water is diffusing. DSI estimates p by taking

the inverse Fourier transform of the q-space samples A(q):

p(r)=F−1[A(q)](r) (2.31)

DSI samples q-space using a grid based scheme. The Fourier transform of these q-space

samples then yields samples of the diffusion PDF on a grid of displacements x. The

dODF can then be reconstructed by projecting the samples from the grid onto a sphere:
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ψ(x̂)=
∫ ∞

0
(αx̂)dα (2.32)

Where ψ(x̂) is the dODF evaluated on the unit vector x̂.

The primary limitation of DSI is the acquisition requirements to cover q-space with a

grid which is typically orders of magnitude more than typical DTI acquisitions, normally

500-1000.

2.4.5.2 Q-ball imaging (QBI)

Q-ball imaging [120, 122] estimates the dODF using a spherical q-space sampling scheme,

which is much more efficient than the grid-based scheme used in DSI. Q-space is sam-

pled using a high angular resolution (HARDI) acquisition, using q-space samples with a

fixed radius.

Q-ball approximates the dODF ψ(r̂) using the Funk-Radon transform (FRT). The

FRT of a spherical function f (r̂) is the integral of f (r̂) over the great circle C (r̂) that lies

in the plane perpendicular to r̂ through the origin.

ψ(r̂)=
∫
C (r)

A(q)dq̂ (2.33)

Radial basis functions can be used to represent ψ(r̂). Alternative methods employ a

modified spherical harmonic basis to represent ψ(r̂) [53, 34], which has the advantage

that the FRT can be performed analytically.

2.4.5.3 Persistent angular structure MRI (PAS-MRI)

PAS-MRI [57, 4, 102] seeks to compute a spherical function related to the fODF as a

projection of p onto the sphere. Using the same efficient spherical HARDI q-space sam-

pling as Q-ball imaging, PAS-MRI seeks to recover the persitent angular structure (PAS)

which exists within all isoprobability contours of the diffusion scatter pattern p.
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Figure 2.18: Illustration of spherical deconvolution. The single fibre response function
R(q; r̂) is convolved with the ground truth fODF φ(r̂) to give the signal S(q).

2.4.5.4 Spherical deconvolution

The most prevalent non-parametric method of directly estimating the fODF is spherical

deconvolution [56, 117, 66, 32, 8, 96]. Spherical deconvolution relies on the assumption

that the diffusion signal S(q) can be modelled as the convolution of the fODF, φ(r̂), with

a response function, which is the signal measured from a single fibre population with

orientation r̂:

S(q)=
∫
φ(r̂)R(q; r̂)dr̂ (2.34)

Spherical deconvolution can be seen as an extension of the multi-stick or multi-tensor

model, with the allowable number of fibre populations increased to infinity and rep-

resented by a continuous spherical distribution. Figure 2.18 illustrates the concept, a

ground truth fODF which consists of 2 distinct fibres when convolved with the single

fibre response function gives the diffusion signal.

This then becomes an inverse problem to estimate the feature of interest, the fODF.

The deconvolution operation can be performed by representing the fODF using a set of

spherical harmonics. The set of spherical harmonics used is restricted to those which

produce an antipodally symmetric, real-valued function. The operation can be simplified

to a matrix multiplication:

s=Rf (2.35)
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where f and s are the nc ×1 spherical harmonic coefficient vectors of the fODF, φ(r̂) and

the signal S(q) respectively and R is the rotational harmonic matrix of R(q; r̂). Assuming

that the response function is axially symmetric, it can be shown that R is a diagonal

matrix. the elements of R can be calculated from the spherical harmonic coefficients of

the response function [56, 117]. Therefore it follows by inverting equation 2.35, we get:

f=R−1s (2.36)

Spherical deconvolution can be used to provide measures characterising white matter

diffusion, to reflect scalar measures from the DT such as FA and MD [33].

The basic spherical deconvolution approach is highly susceptible to noise, which pro-

duces high angular resolution artefactual lobes in the recovered fODF. This includes

negative lobes, which cannot be interpreted as physically plausible. Low pass filtering

the harmonic series can mitigate this to some extent at the expense of angular resolution.

However, a non-negativity constraint drastically reduces noise-sensitivity and increases

the physical relevance of the resultant fODF. This is the basis of the ’constrained spher-

ical deconvolution’ (CSD) technique [117].

2.4.6 Advanced parametric approaches

The extension of the simple multicompartment models discussed in section 2.4.4 from a

limited set of fibre directions to a continuous distribution on the sphere opens the possi-

bility of capturing sub-voxel fibre structures exhibiting continuous orientation dispersion

such as the fanning and bending configurations demonstrated in Figures 2.17 c) and d).

By their nature these fibre configurations require a continuous spherical distribution to

represent them.

Recent work has proposed advanced parametric models which capture sub-voxel ori-

entation dispersion [108, 135, 65, 115]. These models make use of parametrized, continu-

ous, spherical distributions which are suitable for modelling orientation dispersion. The
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spherical distributions used feature a mean axis and concentration parameters which

control the spread of the probability distribution around this mean direction. In [135],

the Watson distribution is used, while in [108, 65, 115] the Bingham distribution is used.

The Bingham distribution is a generalisation of the Watson distribution with elliptical

contours (see Figure 2.20). The key difference is that the Watson distribution is cylin-

drically symmetric around the mean direction, while the Bingham distribution is able

to capture anisotropic orientation dispersion which doesn’t exhibit cylindrical symmetry

around the mean axis. The Bingham distribution is therefore able to capture orientation

dispersion which exists in only one plane. This planar dispersion is an expected feature

of white matter. The Bingham distribution is shown to explain DW-MRI data more ac-

curately than the Watson distribution [115]. Therefore it is a better choice of model for

tractography applications. Figure 2.19 shows visualisations of Watson and Bingham dis-

tributions for comparison, showing the primary distinction of cylindrical symmetry for

the Watson distribution which is a special case of the more general Bingham distribution.

The Bingham distribution [16] is an antipodally symmetric function on the sphere

with a mean direction µ and two concentration parameters κ1 and κ2 which control the

degree of dispersion along the two axes orthogonal to the mean direction µ1 and µ2

respectively:

f (n)= F1

(
1
2

,
3
2

,κ1,κ2

)−1
exp[κ1(µ1 ·n)2 +κ2(µ2 ·n)2] , (2.37)

where F1 is the hypergeometric function (note: F1(1/2,3/2,κ1,κ2) is a number, not a func-

tion). The factors of 1/2 and 3/2 are set as such for defining directions on a 3 dimensional

sphere. The Bingham distribution can be further generalised for higher-dimensional

hyperspheres.

The key advantage of utilising such a parametrized model of dispersion is that it is

able to capture orientation dispersion representitive of the fanning and curving fibre con-

figurations shown in Figures 2.17 c) and d) with a limited number of degrees of freedom.
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(a) Watson distribution (b) Bingham distribution

Figure 2.19: Comparison of Watson and Bingham distributions. The Watson distribu-
tion is governed by a single concentration parameter κ and is cylindrically symmetric
while the Bingham distribution is governed by two concentration parameters κ1 and κ2,
allowing elliptical contours which can represent anisotropic dispersion. The Bingham
distribution is a generalisation of the Watson distribution, with the Watson distribution
being the special case of the Bingham distribution when κ1 = κ2.

Figure 2.20: Bingham distributions fit to diffusion data using the NODDI techique. We
see one example from the corpus callosum and another from the centrum semiovale, two
areas with distinctly different dispersion characteristics. In the centrum semiovale, we
see an example of anisotropic dispersion. The spheres show the Bingham distribution
as both a red surface, for which the distance of a point on the surface to the origin
is equal to the normalised PDF value defined for the unit vector between the surface
point and the origin. The probability is also projected onto the transparent spheres,
with the probability defined by the colour, blue being low probability and red being high
probability. These are two useful ways of visualising spherical distributions.
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5 parameters in total are required to define the Bingham distribution, two for the mean

direction, one for the secondary axis (fanning axis) and two concentration parameters κ1

and κ2. This is a significant advantage over the spherical deconvolution approach out-

lined in section 2.4.5.4, for which, due to the number of spherical harmonic coefficients

the inverse problem is ill-posed. This makes spherical deconvolution highly suscepti-

ble to over-fitting and spurious fODF features due to noise. Various compromises are

required to overcome this which sacrifice angular resolution.

Sotiropoulos et al demonstrate in [108] that a parametric model of dispersion using

the Bingham distribution more robustly and more accurately captures sub-voxel fibre

dispersion in simulations and real brain data when compared to alternative methods

including CSD and PAS-MRI.

2.4.7 The NODDI tissue model

For the tractography methods developed later in this thesis, the NODDI model is chosen

as a parametric model of fibre dispersion [135]. Therefore, in the following, we outline

some of the main features of the NODDI model.

The NODDI technique was developed by Zhang et al in 2012 and originally utilised

a Watson distribution to model neurite dispersion. NODDI is an abbreviation of ’neurite

orientation dispersion and density imaging’. The technique was further developed using

the Bingham distribution to model neurite dispersion more accurately. The Bingham

distribution was shown to better explain DW-MRI data than the Watson distribution by

comparison using the Bayesian information criterion (BIC) [115].

The Bingham NODDI model gives a spherical distribution in each voxel, which rep-

resents an estimate of the range of white matter fibre orientations bounded by the re-

spective voxel. The Bingham distribution is capable of modeling anisotropic dispersion,

so it can more accurately reflect the dispersion of WM fibres. We fit the Bingham model

to diffusion data using an extension of the NODDI technique [135], which uses a mul-

ticompartment model, modelling CSF, an isotropic compartment (ball) and the fibrous
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Figure 2.21: Different fibre configurations with corresponding ODFs. The upper row
shows cylindrically symmetric dispersion, which can be accurately summarised by a
cylindrically symmetric ODF such as a Watson distribution. The lower row shows
anisotropic dispersion, the dispersion along one axis is greater than that along the or-
thogonal axis. This requires an ODF with elliptical contours such as the Bingham dis-
tribution to represent the dispersion correctly.

Figure 2.22: Separate compartments contributing to the diffusion signal, disambigu-
iated by NODDI: fibrous compartment with dispersion, isotropic compartment and CSF.
Diagram adapted from [135].
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compartment sperately.

Further details on the NODDI model and acquisition design can be found in [135,

115], what follows is an overview of the important features. The NODDI model is a

multi-compartment model which disambiguates a conflation of multiple tissue features

giving rise to the diffusion weighted signal.

The normalised signal A can be writen as (following the notation in [135]):

A = (1−νiso)(νic A ic + (1−νic)Aec)+νiso A iso (2.38)

where A ic and νic are the normalised signal and volume fraction of the intra-cellular

compartment, Aec is the normalised signal of the extra-cellular compartment and A iso

and νiso are the normalised signal and volume fraction of the CSF compartment.

2.4.7.1 Intra-cellular compartment

The intra-cellular compartment is modelled by a distribution of sticks [14] (see section

2.4.4). The model is designed to capture fibre structure which can be coherent or dis-

persed, such as the fanning structures present in the corona-radiata. The normalised

signal for the intracellular compartment A ic is given by:

A ic =
∫

S2
f (n)exp(−bd∥(q ·n)2)dn (2.39)

where q and b are the gradient direction and b-value. f (n)dn gives the probability of

sticks having orientation n and exp(−bd∥(q ·n)2) gives the signal attenuation due to un-

hindered diffusion along a stick with intrinsic diffusivity d∥ and orientation n. The ori-

entation distribution f (n) is modelled with a Bingham distribution as given in equation

2.37.
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2.4.7.2 Extra-cellular compartment

The extra-cellular compartment is modelled with anisotropic (Gaussian) diffusion as a

cylindrically symmetric tensor. The diffusion in the extra-cellular compartment is hin-

dered by the presence of the neurites and their distribution, hence the intra-cellular and

extra-cellular compartments are coupled by the orientation distribution function f (n):

log Aec =−bqT
(∫

S2
f (n)D(n)dn

)
q (2.40)

D(n) is a cylindrically symmetric tensor with principal direction of diffusion n. d∥ (par-

allel to n) is the same as d∥ for the intra-cellular compartment and the perpendicular

diffusivity is set using the tortuosity model [114]: d⊥ = d∥(1−νic).

2.4.7.3 CSF compartment

The CSF compartment is modelled as isotropic Gaussian diffusion with diffusivity diso:

ACSF = exp(−bdiso) (2.41)

2.4.8 NODDI protocol and fitting

An optimized protocol for data acquisition is derived using the experiment design opti-

mization procedure detailed in [5]. The optimization suggests two HARDI shells, one

with 30 directions at a low b-value of 711 s/mm2 and another with a higher b-value of

2855 s/mm2. The NODDI model is fit to the DW-MRI data using an adapted version

of the fitting routine described in [7], which involves a three stage process of an initial

grid search, followed by gradient descent, using a Rician noise model. The final MCMC

step used in [7] is omitted due to it having a high computational and time expense while

yielding negligible effect on the accuracy of the fitted NODDI parameters.
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Summary of NODDI model parameters:

• vic: intra-cellular volume fraction

• viso: isotropic volume fraction

• κ1 and κ2: concentration parameters of the Bingham distribution

• µ1 and µ2: mean and fanning axis of the Bingham distribution

• d∥: intrinsic free diffusivity

• diso: isotropic diffusivity

The diffusivities are fixed to their respective typical values in vivo: d∥ = 1.7×10−3 and

diso = 3.0×10−3 as in [7] and [134]. Further details can be found in [135].

2.4.9 NODDI metrics

2.4.9.1 Orientation dispersion index (Watson distribution)

The original NODDI model, which uses the Watson distribution for the fibrous com-

partment, characterises orientation dispersion with a metric, known as the ’orientation

dispersion index’ (ODI) which is given by:

ODI = 2
π

arctan(1/κ) (2.42)

where κ is the concentration parameter of the Watson distribution used to define orien-

tation dispersion as in the original NODDI model [135].

2.4.9.2 Orientation tensor and dispersion anisotropy index (Bingham distri-

bution)

The extension of the NODDI model to use the Bingham distribution introduces new

metrics to quantify dispersion and dispersion anisotropy [115, 116]. The metrics are
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Figure 2.23: Bingham distributions fitted to data in the brain using NODDI.

derived from the orientation tensor (OT). The OT is defined as the scatter matrix of an

ODF such as the Bingham distribution:

Ti, j =
∫

S2
ni f (n)n jdn (2.43)

The primary and secondary eigenvalues of the OT, τ1 and τ2, are functions of the con-

centration parameters κ1 and κ2 with corresponding eigenvectors µ1 and µ2 which are

exactly those in equation 2.37. The dispersion can then be quantified by the primary

eigenvalue of the OT, τ1, which is inversely proportional to the ODI in the Watson

NODDI model. A second metric, the dispersion anisotropy index (DAI), quantifies the

dispersion anisotropy and is defined by DAI = τ2−τ3
τ1

.

2.5 Summary and conclusion

This chapter has given a summary of the various methods of modelling WM fibre ar-

chitecture using measurements from DW-MRI. There are a myriad of options for mod-

elling, and this chapter covers only a representative subset of all the models available

in DW-MRI research. The choice of model can depend on the application. Factors to

be considered include the information we wish to gain from modelling the white matter

architecture and the application context. For example, a simple model like the diffusion
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tensor may be sufficient to describe the changes in neural tissue a clinical researcher is

seeking to observe, however, as the model is overly simplistic, it provides inconsistent

information in areas where it is not sufficient to describe various features of the tissue,

including partial volumes of CSF or GM and WM, or crossing, fanning or curving fibres.

In the case that more complex fibre architecture is being studied, a more complex model

may be appropriate, such as CSD to resolve crossing fibres and derive tract-specific met-

rics [33]. CSD may not be appropriate in cases where the acquisition is not adequate,

CSD may not work well on noisy data with a limited number of directions, in which case

a simpler model may be more robust and provide usable metrics. Judicious choices must

be made as more complex models come hand in hand with more fitting complexities and

the requirement for higher quality acquisitions.

Tractography applications: With the advent of better MRI technology, acquisition

design and processing techniques to refine the data, high quality HARDI acquisitions

are becoming commonplace in research and viable in clinical applications. Hence DW-

MRI models are progressing towards better descriptions of neural tissue structure as

is the case with the latter models covered in this chapter in sections 2.4.5 and 2.4.6.

For tractography, using the model which most accurately describes white matter fibre

architecture is the most appealing option.

The DT and ball and stick are too simple to realistically extract all the information

required for tractography and often a conflation of various factors affects the accuracy of

the orientational estimates due to modelling errors. These models fail to capture complex

fibre architectures such as fanning and crossing. Using multiple fibrous compartments

in multi-stick or multi-tensor models can improve upon this, but the over-simplicity of

these models can cause identifiability issues between volume fractions and individual

diffusivity parameters.

Non-parametric approaches offer an elegant method of extracting numerous features

of the fibre architecture of the voxel and can resolve crossing fibres. dODF techniques can
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provide information useful for tractography, peaks can be extracted fairly reliably from

the dODF, although the dODF in itself is not explicitly useful for tractography as it char-

acterises features of water diffusion and does not directly characterise the distribution

of fibre orientations. fODF techniques are much more applicable to tractography as the

fODF is in itself useful as a measure of the distribution of WM fibres traversing a voxel.

Therefore directions can be directly sampled from the fODF for streamline propagation

in probabilistic tractography. fODF techniques can suffer from errors in the recovered

fODF due to noise and can misidentify fanning and crossing fibre configurations [83].

The parametric models described in section 2.4.6 offer the most promising avenues

for tractography. These models accurately describe fanning fibre architecture with a

limited number of parameters and can capture dispersing fibre structure more robustly

and accurately than competing non-parametric methods [108].
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Chapter 3

Tractography

3.1 Tractography

Tractography is the process of piecing together the directional information derived from

the methods described in section 2.4 to infer connectivity between distinct functional

brain regions. Starting from a given seed point within the brain, a tractography algo-

rithm integrates a streamline through the image volume by extracting directional in-

formation from the data in the voxel corresponding to each respective location on the

streamline. As the streamline has traced the directional information dirived from DW-

MRI data, which is assumed to represent the direction of WM fibres at the physical

location of each voxel, that streamline can then be assumed to represent a potential

connection between the seed point and the termination location of the given streamline.

Alternatively, the spatial form of the streamline itself may be interpreted as represent-

ing the structure of a WM fascicle, which has implications in surgical planning, where

certain WM features may be important to avoid in surgical proceedures to avoid post-

operative functional deficit [131, 25, 72].

A tract can be modelled as a 3D space curve r(s), which is parameterized by its arc

length s. To reflect the information extracted from the diffusion data, the tangent at arc

length s must be equal to the voxelwise directional information given by the vector field
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Figure 3.1: Simple diagram of a tract or streamline, formed from a train of vectors.

v which is derived from the models described in section 2.4 (for example the principal

eigenvector of a diffusion tensor or the orientation of the stick component of the ball and

stick model):

dr(s)
ds

= v[r(s)] (3.1)

Equation 3.1 can be solved by integration:

r(s)=
∫
s0

v[r(s)]ds (3.2)

In practice the integral in equation 3.2 is broken down into a discrete approximation.

Starting at a seed point r0 a step of size ∆ is taken in the direction v(r0) to location r1,

such that r1 = r0 +v(r0)∆. This process is repeated until some termination criteria is

reached:

ri+1 = ri +v(ri)∆ (3.3)

Thus the tract is formed as a train of vectors joined end to end as illustrated in

Figure 3.1. At each step i, the vector vi is drawn from the vector field v which is derived

from directional information extracted from a diffusion model such as those described in

section 2.4.

The key difference between differing tractography algorithms is the way the vector

vi at each iteration i is drawn.
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Tractography methods generally rely on two general assumptions about WM struc-

ture: (i) WM fascicles are smooth and present low curvature and (ii) WM fascicles in-

terconnect regions of GM and therefore do not stop in WM. This is based on anatomical

knowledge gained from histological examinations such as that shown in Figure 2.7. The

use of these assumptions may be dependent on context, for example in neurosurgical

planning, defining the shape of fascicles in the body of the WM does not necessarily

require that streamlines end in GM, hence this assumption may be relaxed. These as-

sumptions govern choices when designing tractography algorithms such as parameter

choices, prior assumptions on curvature and termination or tract selection/rejection cri-

teria.

Seeding tractography: streamlines are integrated from an initial point, referred to

as a seed point and the choice of this seed point is determined by the requirements of

the application. A seed point is often chosen by a voxel location, and the seed point

may be defined in the centre of the voxel. Alternatively, random points within the voxel

boundaries may be chosen. In many applications multiple adjacent voxels are defined

as seeds in a region of interest (ROI). The voxels are normally defined by drawing ROIs

onto a rendering of the FA image, or a T1 image and the ROI often corresponds with

a particular WM or GM structure in the brain. If a ROI is defined on a T1 image, a

subsequent transformation is then required to locate the seed points in the coordinate

system of the DW-MRI images to perform tractography. In certain applications, such as

those studying the whole brain as a network, the entire brain volume, or the entire white

matter volume may be used as a ROI to seed tractography.

Currently, most tractography research and clinical application relies on manually de-

fined seed regions, usually defined by an experienced researcher or clinical scientist who

is familiar with both the relevant neuroanatomy and the technicalities of tractography.

This remains the most effective way of localising seed regions and waypoints and no

method of automatically placing seeds is currently well established. However, it must al-
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ways be noted that this leaves room for bias in ROI placement which leads to subsequent

effects in tractography results. Different researchers may have differing approaches to

delineating anatomical features or anatomical features may be distorted in the image by

noise, artefacts or pathological lesions such as tumours or regions of tissue degeneration.

While judicious placement of ROIs by sufficiently experienced practitioners is normally

adequate to ensure the veracity of results, potential biases must always be kept in mind

when interpreting results.

Termination criteria: termination criteria differ dependending on application context

and algorithm specifics. The most basic termination criteria is based on a streamline

reaching an area outside of the brain. This is normally implemented using a brain mask,

which identifies all voxels which are considered to be either WM or GM and excludes

other features such as CSF or parts of the skull. Further to this, tracts may be termi-

nated upon entry into a region of interest (ROI) defined by either a region of voxels or

a 3D structure defined by a mesh. Such termination criteria are common when finding

connectivity between certain brain regions with ROIs defined manually or via automatic

parcellation or segmentation. Other choices include terminating tracts when they enter

an area of low FA, below a certain threshold, in DTI tractography. The rationale being

that areas of low FA tend to be associated with high uncertainty in the principle diffusion

direction therefore there exists a high potential for error in subsequent streamline steps.

Some algorithms also terminate based upon an assumption of limited curvature, i.e. if

the next streamline step is highly deviated from the previous one, then the streamline

will be terminated at this point.

3.1.1 Deterministic tractography

Early tractography approaches focussed on the diffusion tensor model described in sec-

tion 2.4.1. These assumed that the fibre direction in a voxel could be described by the

principal eigenvector of the diffusion tensor and used simple interpolation to derive the
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fibre direction at an arbitrary location. FACT (Fiber Assignment by Continuous Track-

ing) [79] made use of nearest neighbour interpolation and later techniques made use of

trilinear interpolation [28, 12]. Alternatively the information contained in the diffusion

tensor can be used more comprehensively by deflecting the streamline direction at each

step [73, 126], going beyond the use of the principle direction alone. These techniques

described in the previous section are normally described as ’deterministic’, as repeating

the process from the same seed point reproduces the same result.

Deterministic tractography techniques are limited by the fact that DW-MRI is suscep-

tible to noise, and hence uncertainty in the dominant fibre direction(s) in a voxel leads to

a paradox in deterministic tractography, which only yields a single unique streamline per

seed while uncertainty about the fibre direction(s) in each voxel would suggest a range

of potential trajectories through each one. Errors may also arise due to modelling errors,

as the microscopic anatomy of WM is more complex than a fibre reconstruction model

which yields a single, or a limited number of, unique fibre directions per voxel. Deter-

ministic methods are also susceptible to integration errors which accumulate along the

streamline, due to the need to use a finite approximation to the continuous integral in

equation 3.2.

3.1.2 Probabilistic tractography

The deterministic tractography algorithms described in the previous section presume a

unique fibre direction can be derived at each location and as such any seed point leads

to a unique and well defined terminal location. Noise in the DW-MRI data creates a

subsequent uncertainty on the dominant fibre direction in a voxel and therefore errors

in the global trajectory of the streamline. Encountering a single voxel with errors in

local fibre orientation estimates can lead to deterministic streamlines taking the wrong

path and subsequent errors in global connectivity estimation. Therefore ’probabilistic’

tractography techniques aim to characterise the uncertainty in the dominant fibre direc-

tion in each voxel, forming an ’uncertainty ODF’ (uODF), then generate an ensemble of
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(a) Deterministic tractography. (b) Probabilistic tractography.

Figure 3.2: Deterministic vs. probabilistic tractography methods. Deterministic trac-
tography integrates one streamline per unique seed location. Probabilistic tractography
integrates many from each seed location, forming a distribution of potential connections.
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tracts in a Monte-Carlo simulation, sampling a propagation direction vi from the uODF

corresponding to the current location of the tract at iteration i. The density of stream-

lines reaching various different image regions can then be interpreted as representing

the probability of connection to the seed point, forming a distribution of potential con-

nections from each seed point. The distribution is normally characterised by generating

visitation maps which quantify the number of streamlines traversing each voxel in the

brain volume. From any given seed point, N streamlines are generated and the index of

connectivity I for voxel c is given by:

I(c)= lim
N→∞

I(c, N)≈ µ(c, N)
N

(3.4)

where µ(c, N) is the number of times voxel c is traversed by a streamline.

The number of streamlines seeded per voxel or per seed region differs depending upon

the application. High numbers of 1000-5000 streamlines seeded per voxel are common

for a single seed or for a small number of voxels defined as an ROI. Lower numbers per

voxel may be used where large ROIs are used for seeding. In whole-brain network stud-

ies [26, 55, 49] the whole brain volume, or the whole WM volume may be used to seed

streamlines, in which case lower numbers between 1 and 100 per voxel are more com-

mon to make the eventual streamline database more manageable and reduce processing

times.

Different methods exist for estimating the uODF, including Markov chain Monte

Carlo (MCMC) [14, 13] and bootstrapping [84]. Both deterministic and probabilistic tech-

niques were extended to account for multiple fibre populations per voxel, using models

as described in section 2.4 [85, 13, 117, 62].

The methods of estimating fibre orientation uncertainty can be separated into three

main categories, bootstrap methods, calibration-based methods and Bayesian methods.
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3.1.2.1 Bootstrap estimates of uncertainty

Bootstrapping is a statistical method for deriving measures of accuracy on statistical

samples. Certain implementations employ the traditional bootstrap method by acquir-

ing multiple repeats of the diffusion weighted data [64], although a significant limitation

of this is the amount of data required, producing lengthly scans and limiting the scope

of practically viable acquisitions. This problem can be overcome by using the residual

bootstrap, which simulates repeated sampling by resampling the residuals of a statisti-

cal sample, essentially artificially simulating repeated measurements [63, 128]. In these

methods, a model, the DT, is fitted to the DW-MRI data, the residuals are then modi-

fied, and the diffusion tensor is refit numerous times, giving an artificial population of

fibre estimates from a single dataset, which gives an estimate of the uncertainty in fibre

direction caused by noise.

3.1.2.2 Calibration-based estimates of uncertainty.

These methods rely on a calibration experiment to determine a relationship between

some feature of the data reconstruction and the uODF, using synthetic data. Parker [86,

84, 85], Cook [30] and Lazar [71] construct a mapping from some rotationally invariant

feature of the fibre orientation estimate using simulations. Parker [86] acheives this

by creating a population of deflection angles between a known fibre direction and an

estimate reconstructed by fitting the DT to noisy synthetic data. The deflection angles

are then modelled with a Gaussian distribution for several levels of anisotropy, which

then allows a linear model to be fit summarising the relationship between the FA and

the Gaussian variance. This can then be used to infer the variance in each voxel during

tractography.

3.1.2.3 Bayesian estimates of uncertainty

In these methods, Bayesian inference is used to estimate a distribution of propagation di-

rections, characterising the uncertainty without making simplifying assumptions about
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the distribution. Behrens [14] and Hosey [54] make use of MCMC to sample the full pos-

terior distribution of fibre orientations and other parameters of the diffusion model in

each voxel as a pre-processing step, before selecting directions from these distributions

as probabilistic streamlines are integrated. These methods require significant memory

overhead due to the need to store the full range of fibre directions in every voxel as

the distribution is not parametrized compactly using a model. Friman uses a Bayesian

approach live while integrating streamlines [45], this has the advantage of having no

computationally intensive pre-processing step with associated storage requirements, but

requires certain simplifying constraints on the diffusion model and more calculation at

each streamline step.

3.1.3 fODF and dODF tractography techniques

Various methods have been proposed which sample propagation directions for tractog-

raphy directly from the ODFs derived from HARDI reconstructions. Some approaches

sample orientations from dODfs [21, 87, 35]. These are limited by the indirect rela-

tionship between the underlying fibre configuration and the dODF. The dODF exhibits

properties related to the fibre configuration, such as maxima at the orientation of fibre

bundles, but it also exhibits significant components of diffusion along other orientations.

A better approach is to sample directly from the fODF, which directly models the fibre

configuration in the voxel [119] and so is inherently more useful for tractography. By

utilising the fODF directly a tractography algorithm can cover all WM fibre directions

suggested by the data, instead of selecting only limited features of the fibre distribution

such as mean direction. By ignoring the full range of possible trajectories through a

voxel, we risk false negative connections in tractography.

It should be noted that while tractography methods which sample propagation direc-

tions directly from dODFs and fODFs are often referred to as ’probabilistic’, they are not

probabilistic in the same sense that the methods described in sections 3.1.2.1, 3.1.2.2 and

3.1.2.3 which deal with the uncertainty in fibre direction due to noise. dODF and fODF
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probabilistic tractography methods do not select from a population of fibre orientations

per voxel due to assumed uncertainty in the data, but due directly to a spread of real

fibre directions suggested by the data.

3.1.4 Global tractography

Global tractography algorithms attempt to find the global configuration of fibres which

best explains the observed data, attempting to solve for all possible trajectories between

two points [59] or over the entire brain volume simultaneously [43, 70, 91, 105, 106].

This is in contrast to the previously described streamline methods which integrate each

streamline individually progressing from the seed point, which are collectively termed

’local’ tractography methods. Global approaches simulate large ensembles of streamlines

via various methods and use a diffusion signal model to synthesise the diffusion data

which would correspond to each given candidate set of candidate streamlines. They then

compare the synthesised DW-MRI signal with the measured DW-MRI signal and progres-

sively minimise the difference via optimisation. Methods of computing the candidate sets

vary from selecting subsets of a pre-defined colossal database of streamlines derived from

local-tractography methods [105] to modelling fibre pathways as independent line seg-

ments which join to form connecting streamlines [43, 70, 91] or parametrised 3D space

curves [59, 132]. Optimisation methods vary for each method and include differential

evolution [105], simulated annealing [70], genetic optimisation [132] and MCMC [59].

This methodology has the advantage that local voxel-wise modelling complexities such

as crossing fibres or curving or fanning fibres do not have to be considered as the voxel-

wise model is effectively replaced by the set of candidate pathways traversing each voxel

(see Figure 3.4).

3.1.4.1 Advantages

The global approaches potentially minimise errors caused by noisy voxels on a stream-

line path, which might cause a locally-propagated streamline to deviate, where global
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Figure 3.3: Schematic illustration of local tractography. Local tractography takes in-
formation from a local diffusion model, resolved voxelwise prior to tractography, then
integrates deterministic or probabilistic streamlines from this information.

methods evaluate the validity of a particular streamline in a candidate set using its en-

tire length. Global tractography supports the evidence of the streamlines traversing a

particular voxel with further evidence from all the other voxel locations each streamline

intersects, pooling information globally to resolve local fibre architecture. Hence when

it comes to complexities in subvoxel architecture, global tractography can theoretically

account for any and every conceivable configuration, including crossing, kissing, curing

and fanning. In practice, however, accounting for any and every conceivable subvoxel

architecture is essentially impossible, as it would require evaluating any and every pos-

sible ensemble of candidate streamlines.

3.1.4.2 Limitations

The major drawback of global methods is therefore the computational expense of finding

the solution. As the problem becomes so high dimensional, with many millions of pa-

rameters governing the configuration of any ensemble of candidate streamlines, search-

ing for the global minimum is practically impossible and so sub-optimal solutions must

be accepted. Ad-hoc simplifications must be relied upon to find solutions in acceptable

timescales. Given the computational expense, the efficacy of global tractography meth-

ods has been questioned when compared thoroughly with local methods [76].
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Figure 3.4: Schematic illustration of global tractography. Global tractography queries
how well an entire candidate set of streamlines explains the data simultaneously, remov-
ing the need for a local model. The local model is replaced by the candidate streamlines
traversing each voxel.
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3.2 Summary and conclusions

This chapter has given an overview of a selection of the main tractography methods in

recent research. As interest in tractography grew in DW-MRI research, tractography

methods evolved from simple deterministic algorithms to stochastic implementations

designed to account for uncertainty due to noise in DW-MRI data.

As hardware technology and acquisition design has improved, SNR in DW-MRI has

become higher in standard acquisitions, with high SNRs of 20 routinely achieved and

higher SNRs of 30 and above can be achieved given appropriate resources. HARDI ac-

quisitions have become fairly routine in most research and therefore uncertainty due to

noise has become less of a problem in tractography.

Recent DW-MRI modelling research has therefore been more concentrated on accu-

rately modelling the underlying white matter architecture. Due to the limitation of the

resolution of DW-MRI being of the scale of 1-3mm, complex fibre structure inside a voxel,

such as the fanning and bending configurations shown in Figure 2.17 c) and d), can be

such that a limited set of discrete directions (for example 2 or 3) is not adequate to accu-

rately describe the underlying white matter architecture.

This leads to false negative and false positive connections in tractography. While it

might be assumed that orientation dispersion in the underlying white matter structure

would be reflected in the uODF as uncertainty in the dominant fibre direction, this is not

the case in general. Sotiropoulos et al show in [108] that sub-voxel fibre orientation dis-

persion is in not captured by the aforementioned uncertainty based methods, the shape

of the uODF does not reflect the shape of the fODF in a voxel with fanning fibre structure

and consistently focusses on the average fibre direction. The uODF only exhibits disper-

sion in the dominant, or average, fibre direction due to noise. Orientation dispersion in

the uODF cannot be assumed to directly reflect orientation dispersion in the underlying

fibre structure, although it may be influenced by it in an unpredictable way.
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3.3 Motivations for this work

Global methods and local methods present two opposing ways of approaching the prob-

lem of examining WM structure and connectivity. Global tractography methods adopt

a ’top down’ approach, starting by attempting to examine all possible configurations

simultaneously, avoiding the complex modelling decisions which must be made at the

local, voxel-wise level. Local tractography methods adopt an opposing methodology, a

’ground up’ approach, attempting to resolve fibre structure locally at the voxelwise level

first, then using this information to build global connectivity estimates one streamline

at a time. Both methodologies present corresponding drawbacks. Global tractography

presents a theoretically appealing solution which is not, in practice, computationally

tractible. If the global minimum of the optimisation problem could be found, it would

provide the best solution, however, due to the scale of the problem, this is not practically

possible. Local tractography presents a much more computationally approachable solu-

tion, but is hindered by the problem of DW-MRI signal models being unable to accurately

describe WM fibre structure.

This motivates the use of models which more accurately describe sub-voxel fibre ar-

chitecture in tractography, deriving propagation directions directly from an fODF mod-

elling sub-voxel fibre dispersion, to account for all possible trajectories through an im-

age volume. With the advent of new DW-MRI tissue models that accurately describe

dispersing fibre architecture, it is timely to find ways of using these models in tractog-

raphy. As shown by Sotiropoulos in [108], the most appropriate models for capturing

complex sub-voxel architecture exhibiting orientation dispersion are those described in

section 2.4.6. Chapter 4 describes a tractography algorithm based on an extension of

the NODDI model [135, 115], a parametric model utilising the Bingham distribution to

model sub-voxel fibre dispersion.

While improving the local, voxel-wise model has potential benefits for tractography,

the global tractography paradigm of pooling data from multiple voxels to resolve am-
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biguities in the locally derived information remains a powerful concept. A method for

utilising extra information which can be gained from considering voxels aside from that

in the immediate vicinity of the streamline front without inflating the problem to com-

putationally intractible proportions can further improve tractography. In chapter 5 we

propose a tractography algorithm combining parametric disperison models with neigh-

bourhood exploration, bridging the gap between global and local tractography.
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Chapter 4

Utilising measures of dispersion in

tractography

4.1 Introduction

This chapter introduces a novel tractography algorithm exploiting a parametric model of

dispersion as described in section 2.4.6. The hypothesis is that by making use of para-

metric models capturing sub-voxel orientation dispersion we can address some of the

flaws of traditional tractography techniques by using models which more accurately rep-

resent the underlying white matter architecture. Most currently available tractography

algorithms only utilise a small number of discrete directions to represent the range of po-

tential fibre orientations in any given voxel with only noise-based deviations from these

directions accounted for in the model [14, 13, 86, 84]. Others utilise a more comprehen-

sive fODF [56, 117], but the spherical distributions used to represent the fODF in each

voxel do not accurately and robustly model sub-voxel fibre dispersion [108].

Areas of the brain such as the corona radiata exhibit significant fibre dispersion,

which is observable in ex vivo dissections such as that shown in Figure 2.7. Parametric

models of fibre dispersion [135, 65, 108] are able to model this dispersion more accu-

rately and robustly than alternative models [108], therefore they are good candidates for
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tractography algorithms.

Due to the more complex nature of the fibre dispersion models, some technical chal-

lenges are anticipated, and this work has focussed on finding solutions to these techni-

cal challenges. The tractography algorithm described in the following is based on the

NODDI model described in section 2.4.7. We first outline the technical details of the

tractography algorithm, which builds upon a technique proposed by Friman et al [46],

which uses the DT as a DW-MRI model, to utilise the more advanced NODDI model.

We then examine the behaviour of the tractography algorithm on a synthetic dispersing

fibre structure, showing that utilising the NODDI model in tractography addresses the

false negatives inherent in results from simpler tractography algorithms, which do not

account for sub-voxel fibre dispersion. Further investigation is then carried out on in

vivo data of a human subject to validate the advantages of utilising dispersion models in

tractography on real data.

4.2 Methods

4.2.1 Tractography

4.2.1.1 NODDI tractography

In the following, we adapt the approach used by Friman et al in [46]. This approach al-

lows us to employ a fully probabilistic framework exploiting distributions based on fibre

dispersion while applying suitable priors to enforce smoothness on streamlines derived

from the DW-MRI data. Friman’s approach accommodates only the uncertainty in the

principle diffusion direction induced by noise, image artefacts and partial volume effects;

we instead incorporate underlying fibre dispersion directly in the ODF used to guide the

tractography.

We may model a pathway as a train of vectors, as described in chapter 3, v1:n =
{v̂1, ..., v̂n}. Paths can be built sequentially by drawing vectors v̂1 to v̂n from the PDF
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corresponding to the appropriate step pi(v̂i|v̂i−1,D) in sequential order and terminat-

ing upon some appropriate criteria like exiting a brain mask or a white matter mask.

pi(v̂i|v̂i−1,D) is different for each step on the path and is dependent on the data at the

relevant 3D location.

Hence the problem of building up the streamline v1:n = {v̂1, ..., v̂n} breaks down to an

iterative process of sampling from the PDF pi(v̂i|v̂i−1,D) at each step i. The one excep-

tion is for the point i = 1 for which v̂i−1 is not known and v̂1 is sampled from p1(v̂1|D).

To propagate the streamline through the image, starting from a seed, we choose a

propagation direction vi from a distribution formed from the product of the local ODF

and a prior on the allowable deviation from the previous direction vi−1:

P(v̂i|v̂i−1,D)= P(v̂i|D)P(v̂i|v̂i−1)
P(v̂i)

, (4.1)

This so far is similar to the approach given in [46]. In [46] the likelyhood P(v̂i|D) is

calculated by modelling a cylindrical DT with the assumption of a Gaussian distribution

of potential directions due to noise and comparing this with the underlying data. This

is aimed at accounting for uncertainty in fibre direction due to noise, in contrast to our

method, in which the model used is based on the distribution of fibre directions estimated

in each voxel by the NODDI technique. Due to the complexity of sampling from the

posterior distribution, Friman chooses to discretise the spherical posterior by evaluating

it on 2562 unit vectors derived from the vertices of a 4-fold tessellation of an icosahedron,

which is the chosen approach we use in the following.

The model used to describe the probability of an fibre existing in a voxel with ori-

entation v̂i given the DW-MRI data D is the Bingham model described in section 2.4.7.

The Bingham model has a mean axis µ, a primary fanning axis µ1 and two concentration

parameters describing the degree of dispersion along the two orthogonal fanning axes κ1

and κ2. Therefore equation 4.1 can be rewritten:
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P(v̂i|v̂i−1,µ,µ1,κ1,κ2)= P(v̂i|µ,µ1,κ1,κ2)P(v̂i|v̂i−1)
P(v̂i)

, (4.2)

where P(v̂i|µ,µ1,κ1,κ2) is the Bingham distribution described above.

P(v̂i|v̂i−1) defines the prior used to impose smoothness on the propagated streamlines.

For this we use a distribution given by:

P(v̂i|v̂i−1)=


(v̂T

i v̂i−1)γ, if v̂T
i v̂i−1 ≥ 0.

0, if v̂T
i v̂i−1 < 0.

(4.3)

Sampling from this joint distribution allows exploration of the potential path directions

in dispersive fibre regions while regularizing the curvature of the path. γ defines the

strength of the curvature prior. Low values accommodate large degrees of deviation

per streamline step, exploring more of the dispersion in each voxel, however, this also

produces highly irregular streamlines. Higher values promote smooth, slowly curving

pathways which correspond to known tract geometries.

We find the most appropriate value for γ using simulated data exhibiting dispersing

structure, which is described in the next section, which models a region of highly dis-

persive ODFs. Figure 4.1(a) shows that low values of γ such as 1, results in irregular

streamlines. However, at a significantly higher value of γ = 50 (Figure 4.1(f)), such a

strong prior on curvature can limit the potential trajectories of the streamlines, limiting

full exploitation of the dispersive ODFs. Satisfactory results can be achieved for a range

of intermediate values. For this demonstration of the algorithm we choose γ = 24 (Figure

4.1(d)). γ may reasonably be tuned within this range for other applications if necessary.

Figure 4.2 shows the distibution of streamlines as they reach the top of the phantom at

y = 6, which are binned into 4 separate bins per unit length on the x-axis, creating a

total of 32 bins across the 8 units shown in Figure 4.4. γ is increased from 0 in intervals

of 4. γ= 24 is chosen as it gives the distribution which most closely replicates the distri-

bution given by the phantom streamlines. The behaviour of the tractography algorithm
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(a) γ= 1 (b) γ= 5

(c) γ= 15 (d) γ= 24

(e) γ= 35 (f) γ= 50

Figure 4.1: Tracking through a synthetic region of dispersion utilising different values
of the constant γ in equation 3. In figure 4.1(a) γ = 1, in figure 4.1(d) γ = 24 and in figure
4.1(f) γ = 50. The blue lines represent the extremeties of the same phantom shown in
figure 4.4.

86



(a) Binned streamlines for range of γ and for
phantom streamlines.

(b) Binned streamlines for γ= 24 and phantom
streamlines.

Figure 4.2: Streamlines binned according to x location at top of phantom (y= 6) in Figure
4.4 for varying values of γ, compared against streamlines extending from the same seed
point in the phantom. γ = 24 gives the closest profile to the distribution of streamlines
from the phantom. There are 4 bins per unit length, making a total of 32 bins.

at extreme values of γ = 0 and γ = 50 in in vivo data is shown in Figure 4.9. It can be

observed that at γ = 0, what is effectively a random walk through the field of Bingham

distributions does not create strong connections to the cortex, as the streamlines spread

out too much before they reach the cortex, producing a lot of false positives. At the other

extreme of γ= 50, the curvature prior overwhelms the influence of the data, meaning the

streamlines tend not to follow the data well, and they are focussed on a particular region

of the cortex.

Sampling from the posterior distribution P(v̂i|v̂i−1,µ,µ1,κ1,κ2) is not trivial. Rejec-

tion sampling can be used to sample from a standard Bingham distribution. However,

to evaluate the full posterior, given by equation 4.2, a discrete approximation is required

(Figure 4.3). Therefore, a set of vectors is defined which is very close to uniformly dis-

tributed over the sphere using the vertices of a 4 fold tessellation of an icosahedron.

Equation 4.2 can then be evalutated for each of these vectors, and sampling from the

resulting discrete distribution is then trivial.
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Figure 4.3: Schematic illustration of discretely approximating posterior distribution in
equation 4.2

4.2.1.2 PICo tractography

For comparison, PICo tractography is used as an example of a tractography algorithm

which estimates deviation in fibre direction in each voxel due to noise only. The PICo

tractography algorithm used is based on the algorithm given in [86] as implemented in

the Camino software package [31]. The algorithm uses the DT as a model of diffusion

and estimates the deviation of the principal direction in each voxel due to noise and

fibre divergence via a ’calibration-based’ approach, as described in section 3.1.2.2. The

uncertainty of the principle direction is approximated based on the FA and the relative

maginitudes of the second and third eigenvalues, λ2 and λ3 of the diffusion tensor.

4.2.1.3 MRtrix tractography

For further comparison with an fODF-based tratography technique, the MRtrix software

package is used to perform CSD and subsequent tractography. The MRtrix tracrography

technique utilises the fODFs derived from CSD which are described in section 2.4.5.4,
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sampling a direction from the dODF given in each voxel located at the streamline front

to propagate the streamline. The fODF in each voxel is an estimation of the WM fibre

orientation profile and is presumed to be minimally impacted by noise.

4.2.1.4 Methodological differences

The NODDI-based tractography algorithm described in section 4.2.1.1 differs from the

two algorithms given in sections 4.2.1.2 and 4.2.1.3 in its use of a parametric model

explicitly modelling dispersion. PICo tractography models the deviation of the fibre di-

rection in each voxel based only on noise and features of the simple DT model. MRtrix

tractography utilises the non-parametric fODF given by CSD, which has many degrees

of freedom. In theory, the fODF given by CSD can model dispersion, however, the ex-

periments carried out by Sotiropoulos et al in [108] show that the parametric models of

dispersion used by NODDI are more accurate than CSD.

4.3 Experiments

4.3.1 Synthetic data

Synthetic data was used to determine the effect of utilising dispersion measures in trac-

tography. A numerical simulation of a fibre configuration exhibiting subvoxel fibre dis-

persion was created. Figure 4.4 shows the structure of the phantom and the layout on

the voxel grid. Each strand was then broken into line segments, each 1/10th the dimen-

sion of a voxel and the diffusion signal from each of these segments was simulated as

a cylindrically symmetric DT with d⊥ = 3.5101×10−4 mm2/s and d∥ = 2×10−3 mm2/s,

with the principal orientation of the DT dictated by the orientation of the line segment.

The simulated DW-MRI signal generated from each line segment was then added to the

signal for the voxel which bounded it, and the signal for each voxel normalised. Rician

noise was added to each voxel to simulate an SNR of 20. The diffusion tensor was then

fit to the simulated data using the Camino diffusion toolkit [31]. The Bingham NODDI
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Figure 4.4: Structure of synthetic dispersing phantom. The blue lines show a subset of
the strands forming the structure, for illustration the grid outlines the voxel boundaries.

model was also fit to the simulated data and used for tractography. The algorithm pro-

posed in the previous methods section is compared against results from standard PICo

tractography in Figure 4.7 tracking 200 streamlines from a seed point at the base of the

phantom. The stepsize used for the tractography in the synthetic experiments is half the

size of the voxel, which reflects the 1mm stepsize used in the 2mm voxels in the in vivo

experiments described in the following.

A synthetic crossing fibre structure was created with the same method as described

above. The algorithm proposed in the methods section was used to perform tractography

from a single seed point at the base of the phantom using two different values of the

curvature prior of γ= 2 (Figure 4.6(a)) and γ= 24 (Figure 4.6(b)).
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(a) (b)

Figure 4.5: Tractography based on standard PICo tractography techniques (Fig-
ure 4.5(a)) and using the tracking algorithm described in the previous section (Fig-
ure 4.5(b)). The Blue lines represent a sparse selection of the underlying fibres of the
phantom described in section 4.3.1. The red lines represent the tracking result.

(a) γ= 2 (b) γ= 24

Figure 4.6: Results of tractography from a single seed point on a synthetic crossing fibre
structure at high and low values of the curvature prior γ.
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4.3.2 In vivo data

To examine the practical impact of utilising tractography based on measures of disper-

sion, we apply our tracking algorithm to in vivo data of a subject. DW-MR images of a

healthy male were acquired on a clinical 3T Philips system with isotropic voxels of 2mm,

TE=78ms, TR=12.5, with one 30 direction shell and one 60 direction shell with b-values

of 711 s/mm2 and 2855 s/mm2 respectively. This dataset is the same as that used in [135].

The Camino software toolkit [31] was then used to fit the DT to the data and perform

standard PICo tractography from a single voxel seed in the mid-saggital corpus callo-

sum. For further comparison, the data was processed using the CSD method, using the

MRtrix software package [118], which was also used to perform tractography. The step-

size for the proposed algorithm and DT-PICo tractography is 1mm, for MRtrix it is left

as default at 0.2mm. As the CSD implemenation in the MRtrix software package cannot

utilise multishell data, the 60 direction shell was used for CSD as a higher b-value and

many directions is optimal for CSD processing.

4.4 Results

The experiments on simulated data shown in Figure 4.7 show that tracking with tra-

ditional methods (Figure 4.5(a)) which ignore underlying fibre dispersion risks a large

amount of false negative connections due to the limited exploration of the underlying

fibre structure in regions exhibiting fibre dispersion. Figure 4.5(b) shows the proposed

algorithm explores connectivity more thoroughly in dispersing regions in this simple syn-

thetic phantom. Figure 4.6 demonstrates the value of utilising the curvature prior and

justifies the chosen value of γ= 24. In Figure 4.6(a) we see that false negatives occur in

the crossing region with an innapropriately low value of γ as the single Bingham distri-

bution does not explicitly model the separate fibre populations, it instead models them as

an oblate, disc-like PDF. Using a higher value of γ= 24 the crossing region is successfuly

navigated in Figure 4.6(b), with no false positive connections. Figure 4.8 demonstrates
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Figure 4.7: ROIs used for in vivo tractography overlayed on slices of FA map of subject.
The red regions indicate the seed voxels while the green regions indicate the waypoints.
Each streamline must intersect all distinct regions of waypoint voxels to be retained and
contribute to the final connection probability map. It shoud be noted that the ROIs exist
in multiple slices and not all ROI voxels are shown, the images here demonstrate the
locality of the seed and waypoint regions.
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the performance of both standard DT-PICo tractography (Figure 4.8(a)) and the algo-

rithm presented in the previous section (Figure 4.8(b)) tracking from a seed voxel in the

mid saggital corpus callosum. For both tracking examples, 5000 streamlines in total are

propagated from a single seed voxel. Streamlines are terminated upon entry into a mask

defining the brain boundary. Figure 4.10 shows tractograhy from a seed in the corpus

callosum, using the proposed algorithm (a) and using CSD (MRtrix) (b). The algorithms

give similar results. Figure 4.10 c) and d) shows tractography between two ROIs in the

internal capsule and a waypoint defining the the pre-central gyrus using the proposed

algorithm and MRtrix respectively. It can be clearly seen that the proposed algorithm

gives a more even spread of connectivity to the cortex from the internal capsule. Figure

4.11 shows tractography performed on 4 major white matter structures which are well

deliniated using most standard tractography algorithms, using ROI and waypoint place-

ment guidance derived from [23] and [80]. All in vivo results are displayed as visitation

maps with a threshold of 1% of maximum intensity.

4.5 Discussion and conclusions

In this chapter, we presented a tractography algorithm exploiting the Bingham NODDI

model of sub-voxel fibre dispersion. Results in synthetic phantoms prove that the algo-

rithm is capable of following dispersing fibre structures more effectively than algorithms

based on simpler DWI models which do not account for dispersion. We also prove that

utilising an appropriate curvature prior, the algorithm is capable of navigating crossing

fibre regions, despite separate fibre populations not being explicitly accounted for by the

NODDI model.

Results from tractography seeded midsagittally in the corpus callosum show that the

algorithm is able to address the false positives of traditional tractography techniques

based on the diffusion tensor, successfully navigating a region of both crossing fibres and

fibre dispersion which a DT based approach cannot. We find that the algorithm gives
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(a) DT-PICo

(b) Proposed algorithm

Figure 4.8: Visitation map of tractography based on standard DT-PICo tractography
(Figure 4.8(a)) and using the tracking algorithm described in section 4.2.1.1 (Figure
4.8(b)) overlayed on FA map.

(a) γ= 0 (b) γ= 50

Figure 4.9: Tractography from single voxel seed in the middle of the corpus callosum at
extreme values of the prior parameter γ= 0 and γ= 50 overlayed on coronal slice of FA
map.
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Figure 4.10: Tractography, using the algorithm described in section 4.2.1.1, from seeds in
the corpus callosum (a) and the internal capsule (c). Results using constrained spherical
deconvolution (MRtrix) [118] from the same seed points in the corpus callosum (b) and
the internal capsule (d). Overlayed on coronal slice of FA map.

Figure 4.11: Tractography, using the algorithm described in section 4.2.1.1 on 4 major
white matter structures, the cingulum (Ci), the occopito-frontal fasciculus (OF), the su-
perior longitudinal fasciculus (SLF) and the inferior longitudinal fasciculus (ILF). Over-
layed on saggital slice of FA map.
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comparable results to CSD, a state of the art fODF technique which models crossing

fibres explicitly. This suggests that with the aid of a curvature prior, a tractography al-

gorithm exploiting a single-direction parametric model of dispersion is able to navigate

through multi-fibre regions as was shown in the synthetic experiments. When track-

ing from the internal capsule to the pre-central gyrus the proposed algorithm gives a

more even spread of connections than MRtrix, which tends to favor the connections to

the superior regions of the cortex, indicating that CSD may not be effectively capturing

fibre dispersion in this region. While the algorithm can navigate multifibre regions, the

extension of the NODDI model to explicitly model separate fibre populations and the dis-

persion therein with separate Bingham distributions should improve results, although

fitting multiple Bingham distributions would be technically challenging and should be a

focus of future work.

There is, however, one important point we must be aware of. If we consider the syn-

thetic phantom shown in Figures 4.4 and 4.7, while the propagated streamlines correctly

disperse as they travel upwards, if we were to seed in the top of the phantom, we would

get unintended dispersion in the estimated streamlines, as the Bingham distributions

are antipodally symmetric and do not distinguish the polarity of dispersion. We there-

fore risk false positives if we are tracking in the direction opposing dispersion.

The results presented here demonstrate the potential benefits of using parametric

models of sub-voxel fibre dispersion in tractography. The simple algorithm presented

here navigates crossing fibre regions succesfully and exploits dispersion in areas where

it is prominent. However, further development is required to address the issue of fanning

polarity. When tracking in a direction opposing the direction of fibre dispersion, the

algorithm presented here risks false positives caused by the ambiguity presented by

antipodally symmetric parametric dispersion models. The following chapter presents a

methodology to address this issue.
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Chapter 5

Neighbourhood exploration

5.1 Introduction

In chapter 4 we presented a new tractography algorithm based on a parametric model

of dispersion. We show that models of dispersion can be exploited in tractography to

address false negatives of traditional tractography techniques which do not model the

sub-voxel white matter architecture accurately. When using such models of dispersing

white matter architecture it is important to address the fact that ambiguities arise in

interpreting the ODF estimated in a voxel due to the inherent antipodal symmetry of

diffusion weighted measurements and the lack of intra-voxel spatial specificity of the

recovered distributions [58, 108, 103]. This leads to a number of potentially confound-

ing configurations of white matter structure. Well known examples include kissing vs.

crossing, curving vs. fanning and fanning polarity [58] which is illustrated in Figure 5.1.

Such configurations existing at the sub-voxel scale require extra information to resolve

the existing ambiguities of the ODF. If the ambiguities are not addressed, this will lead

to false positives in tractography.

In order to address these ambiguities in the local voxel model of fibre orientation, we

can make use of information from neighbouring voxels in the vicinity of the streamline

front in addition to the local model. Savadjiev et al. [97, 98] demonstrate that information
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Figure 5.1: Illustration of fanning polarity ambiguity. The two opposing fibre configura-
tions give the same fODF when estimated from diffusion data.

from a voxel’s neighbourhood can be used to disambiguate sub-voxel fibre architectures

such as curving and fanning. Using helical curves projected into the neighbourhood of

a voxel, Savadjiev derives markers distinguishing and quantifying fanning and cross-

ing fibres and fanning polarity within each voxel. The method parametrises the set of

streamline selections enabling evaluation of those which are most consistent with forth-

coming local structure. These methods demonstrate nicely the potential of leveraging

voxel neighbourhood information for disambiguating fibre architecture at the subvoxel

level. These methods however do not make use of a parameterised local model of dis-

persion and carry a computational expense due to the complexity of the helical model of

streamlines, which would be costly to apply in a probabilistic tractography framework.

Using a local model capturing dispersion gives us a measure of fanning in each voxel,

but does not distinguish the polarity of the fanning. We can recruit information from the

local neighbourhood in order to mitigate false positives while tracking through a region

of dispersing fibres. In Figure 5.2 a diverging and converging neighbourhood are illus-

trated. To the intuitive eye of a human, the distinction between these two configurations

is obvious and leads naturally to an interpretation of the likely structure in the target

voxel. We seek a method to enable a tractography algorithm to understand the difference

between these two configurations.

This motivates the development of a neighbourhood exploration scheme to gather
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information from the neighbourhood of the current tracking location to resolve the am-

biguities of the voxel-based fODFs which can be effectively combined with a local model

of fibre dispersion.

In the following we present a new tractography algorithm which utilises a ’neigh-

bourhood exploration framework’ to pool information drawn from both a local model of

dispersion and the voxels in the neighbourhood of the streamline front to make informed

decisions on the next streamline step such that we can account for sub-voxel fibre fan-

ning and its associated polarity. As in the previous chapter, the tractography algorithm

exploits the Bingham NODDI model as a local model of dispersion. The tractography

method presented in this section will be referred to henceforth as ’neighbourhood in-

formed tractography’ (NIT) and as it is based on the NODDI model, it will be referred to

as NODDI-NIT.

We first introduce the neighbourhood exploration framework, we then examine and

validate the behaviour of the algorithm in synthetic reconstructions of canonical fibre

configurations. The algorithm is then applied to in vivo data of 5 subjects, utilising seed

regions which spawn streamlines passing through an area of significant dispersion, with

a distinct polarity - the corona radiata, performing tractography in opposing directions

through this region. We compare the in vivo results with other tractography methods, in-

cluding CSD based tractography (MRtrix) [118] and DT-PICo tractography (Camino) [31]

along with the method presented in the previous chapter. For clarity, the tractography

algorithm described in the previous chapter will be referred to in the following as ND-

track, short for ’neurite dispersion tracography’ when contrasting it with NODDI-NIT.

5.2 Particle filters

Particle filters are a set of Monte Carlo posterior density estimation methods to estimate

state variables given a set of observations using recursive Bayesian estimation used in

non-linear, non-Gaussian dynamical systems. Particle filtering is alternatively known
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(a) Diverging neighbourhood (b) Converging neighbourhood

Figure 5.2: Illustration of diverging and converging neighbourhood structure.

as sequential Monte Carlo (SMC). The objective of the particle filter is to estimate the

posterior density of the state variables x given the values of the observation process y

with a known model which relates y to x.

Recursive Bayesian estimation techniques aim to estimate an unknown probability

density function iteratively using incoming measurements and are commonly used in ap-

plications where the data is incoming in a real-time datastream. Via an iterative process

of prediction and innovation, predictions are made at each timestep k on the state of the

system xk given the information known from the previous step k−1 and the observations

made in that step yk−1. The particles are then weighted according to a likelihood model

providing a discrete approximation to the posterior density p(xk|y0, y1, ..., yk), otherwise

known and the ’filtering distribution’. In contrast to real-time applications, in tractog-

raphy, where the data is static, the purpose of using a recursive Bayesian estimation

technique is different. Although we have all the data at hand immediately, the high di-

mensional nature of the problem and the data means that considering all the data in one

go is computationally intractible. A tractography algorithm attempts to find a 3 dimen-

sional pathway through a 3 dimensional image volume between one point and another.

Hence as it progresses from a seed point, incoming data is that which we encounter at

each incremental point in the pathway corresponding to the appropriate coordinates at
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the streamline front.

Particle filters have been used previously in tractography methods [19, 133, 88, 111,

99]. None so far have been based on a parametric model of sub-voxel fibre dispersion.

These methods approximate the distribution of all tracts of a particular length emanat-

ing from a single seed over large distances. This can be problematic as it yields a very

large state space which requires many particles and a high degree of degeneracy can

arise among the particle set. This problem can be mitigated by resampling the particle

set, but this may reject viable pathways in favour of others with only slightly higher

weights. Stamm [111] utilises a multi-modal particle filtering method to address this

problem, however, this still leaves a large state space and little focus is given to resolving

details of structure more local to the tract front.

If a particle filter method can be used to examine candidate pathways over shorter

ranges, it can be much more effective. We propose in the following section a tractography

method which utilises a particle filter framework to gather information more locally,

informing each step of a tract individually from information in the near neighbouring

voxels as opposed to estimating a filtering distribution globally. The filtering distribution

then becomes the set of potential streamlines projecting into the near neighbourhood of

the current tracking location and those most consistent with oncoming structure are

chosen for further propagation.

5.2.1 Neighbourhood exploration framework

In this section we describe a technique that creates a neighbourhood-informed ODF (NI-

ODF) from the local dispersion estimates by fusing the information drawn from the local

model with information gathered from the neighbourhood structure of the dominant fibre

orientation. We draw candidate directions from the local dispersion fODF and propagate

these directions into the neighbourhood. By examining the coherence of each projected

streamline with neighbourhood structure we can then weight each of these candidate

directions according to the coherence of the respective projected streamline with the
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neighbourhood structure. This process is illustrated in Figure 5.3 for various canonical

neighbourhood structures. The streamlines which are misaligned with neighbourhood

structure are downweighted (coloured in blue) and the streamlines which align with the

neighbourhood structure have their weights increased (coloured in red). This shows that

fanning polarity and curvature can be distinguished. In the case of a diverging neigh-

bourhood structure, the streamlines propagated from the dispersed candidate directions

drawn from the fODF in the relevant voxel find good alignment with the neighbourhood

structure and are therefore evenly weighted. In contrast, in the presence of a convergent

oncoming neighbourhood structure, the streamlines propagated from the peripheral can-

didate directions drawn from the local fODF misalign with neighbourhood structure and

are downweighted. In the case of a curving structure, the candidate directions propagat-

ing against the curve are penalised and those following the curve are assigned higher

weights.

This neighbourhood exploration scheme falls naturally into a particle filter frame-

work. Through a process of prediction and update, the particle filter provides a discrete

approximation of a posterior disribution p(xk|y0:k) on a time-varying parameter xk at

timestep k given the observations y0:k for timesteps 0,1,2, ...,k and the initial state dis-

tribution p(x0). At each timestep k, N particles are propagated by sampling from an

importance density π(x(i)
k |x(i)

0:k−1, y0:k), then assigned importance weights w∗(i)
k which de-

pend on a likelihood model p(yk|x(i)
k ). Subsequently the discrete approximation to the

posterior distribution p(xk|y0:k), denoted by w̃(i)
k , is computed by normalising w∗(i)

k . This

operation of a particle filter is summarised in Algorithm 1. Further details on particle

filtering can be found in [39].
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(a) Diverging (b) Converging

(c) Coherent (d) Curving

Figure 5.3: Illustration of neighbourhood exploration in the case of of diverging (a), con-
verging (b), coherent (c) and curving (d) neighbourhood structure in the tracking direc-
tion. Red streamlines are highly weighted, blue are low weighted.
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State initialization, sample x0 from p(x0);

Initialise importance weights

for i = 1, ..., N, do
w∗(i)

0 = 1
N

end

for times k = 1,2, ...,K do

for i = 1, ..., N, do
sample x(i)

k from π(xk|x(i)
0:k−1, y0:k)

end

calculate weight up to normalisation factor:

for i = 1, ..., N, do
w∗(i)

k = w∗(i)
k−1 p(yk|x(i)

k )

end

normalise the importance weights:

for i = 1, ..., N, do

w̃(i)
k = w∗(i)

k∑N
j=1 w∗(i)

k

end

end
Algorithm 1: Sequential importance sampling

In this implementation, the importance density π(x(i)
k |x(i)

0:k−1, y0:k) is chosen as a Wat-

son distribution and the initial state distribution p(x0) is the Bingham distribution (de-

scribed in Section 2.4.6) from the current voxel. Drawing the initial state distribution

p(x0) from the local Bingham distribution gives orientations, suggested by the local voxel

model of dispersion, which govern the initial trajectories of a pool of candidate paths into

the neighbourhood. The Watson importance density then ensures that paths of limited

curvature propagate into the neigbourhood as the probability distribution is maximal at

the mean direction, which is based on the direction of the particle in the previous step.
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Figure 5.4: IIllustration of the algorithm outlined in pseudocode above in algorithm 1.
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The concentration of the Watson importance density therefore defines the curvature of

the projected candidate streamlines. As it is known that WM tracts in the brain are

smooth and present low curvature, this concentration is chosen to be high. A cloud of

N particles defines a set of N streamlines defined by a string of vectors of fixed length

connected end to end. At each timestep k each streamline is propagated one step from its

previous location u(i)
k−1 with a direction vector v(i)

k sampled from the importance density

by a step length d such that u(i)
k = u(i)

k−1 +dv(i)
k . The state of a particle at timestep k x(i)

k

is defined by its location u(i)
k and direction vector v(i)

k . At each step the particle weights

w∗(i)
k = w∗(i)

k−1 p(yk|x(i)
k ) are calculated to reflect their alignment with neighbourhood struc-

ture and the process is repeated for K steps. The likelihood p(yk|x(i)
k )= (vk ·D(uk))γ where

D(uk) is the interpolated direction of the vector field D, defined by the mean directions

of the Bingham distributions in each voxel, at the point location uk. The stages of the

particle filter scheme from streamline propagation to the selection of tract propagation

direction is illustrated in Figure 5.5.

The neighbourhood exploration method can be seen in action in Figure 5.7. Canonical

fibre configurations were simulated to exhibit the same structures given in the concep-

tual illustrations in Figure 5.3. Figure 5.7 shows the particles as they are upon the final

iteration K of the particle filter, with the weights denoted by colour. The simulations

in Figure 5.7 reflect the behaviour illustrated conceptually in Figure 5.3, showing that

the neighbourhood exploration scheme behaves in practice as expected from the original

concept. The most striking result is the differentiation of structures with opposing fan-

ning polarity. From the perspective of a single voxel, these configurations look identical,

as they give identical voxelwise fODFs. However as can be seen in Figures 5.7 a) and b),

the neighbouhood-informed probability distribution readily distinguishes these configu-

rations. In the divergent case the particles are evenly weighted while in the convergent

case, the highly weighted particles are concentrated in the middle of the distribution,

meaning that the peripheral directions which clash with the global structure of the sim-

ulated structure, will not be selected in the converging case.
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(a) x0 ∼ p(x0) (b) x0:k

(c) x(i)
k ∼ p(xk|y0:k) (d) tract propagation direction = x(i)

0

Figure 5.5: Illustration of the stages of neighbourhood exploration: initialisation from
the local Bingham distribution (a), particle update and weighting (b), particle selection
(c) and tract propagation direction selection (d).
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5.2.1.1 Parameter choices

The parameters of the algorithm must be chosen carefully to ensure expected operation.

γ influences the weight with which the transient streamlines are penalised for misalign-

ing with neighbourhood structure. If this is chosen as zero, there is no penalty and any

transient streamline can be randomly selected with equal weight, hence the neighbour-

hood exploration technique has no influence on the propagation of the overall streamline,

it will be entirely governed by the Bingham distributions and will not aid in resolving

fanning polarity. If γ is chosen too high, the streamlines will be too heavily penalised for

even slight misalignment with neighbourhood structure. Given that the neighbourhood

structure is discretised, this would not be sensible, therefore γ= 2 is chosen.

The concentration of the Watson distribution used as the importance density governs

the regularity of the transient streamlines which are propagated into the neighbourhood

to gather information. If this is zero, the streamlines will be propagated in a random

walk, taking any direction. This is not representative of the known regular structure

of white matter tracts. The Watson concentration should be a high value such as 30 to

propagate smooth transient streamlines into the neighbourhood.

K and the transient streamline stepsize d together determine the distance into the

neighbourhood which is probed by the neighbourhood exploration, such that the dis-

tance probed is roughly equal to K ×d. Figure 5.6 demonstrates examples of bad choices

for these parameters. In Figure 5.6(a), K and d have been badly chosen such that the

neighbourhood has not been effectively probed, as the transient streamlines have not

penetrated beyond the voxel at the streamline face, so no real information has been

gathered about the neighbourhood. In Figure 5.6(b), the algorithm has probed too far

into the neighbourhood, and hence the choice of the direction for the next streamline

step will be influenced by information gathered in structures clearly distinct from the

one at the streamline face. Ideally, the neighbourhood exploration should probe more

than one voxel, but less than 3 voxels into the neighbourhood.
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(a) too short (b) too far

Figure 5.6: Illustration of two extremes of parameter choices which are non-ideal for the
neighbourhood exploration framework. In Figure 5.6(a) the neighbourhood exploration
doesn’t go far enough, it remains within the local voxel and does not gather sufficient
information about neighbourhood structure. In Figure 5.6(b) the neighbourhood explo-
ration goes too far and gathers information from structures which are not related to the
local voxel structure we are trying to navigate.

Figure 5.7: Demonstration of particle filter behaviour in regions of diverging (a), converg-
ing (b), coherent (c) and curving (d) neighbourhood structure in the tracking direction.
Colour denotes particle weight, blue is low through to red, which is high, yellow is inter-
mediate.
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5.3 Experiments and results

5.3.1 Evaluation on synthetic dataset

Figure 5.8 shows a demonstration of the NODDI-NIT algorithm over 100 repetitions in

diverging and converging local structure. The data was simulated to give gross structural

chracteristics and sub-voxel dispersion similar to that observed in real data, as can be

observed in regions of the corona radiata such as those shown in Figure 5.10. NODDI-

NIT tractography was also performed from a single seed point in the synthetic crossing

phantom described in the previous chapter in section 4.3.1.

5.3.2 In vivo data

The in vivo data was acquired from 5 healthy subjects: 3 males and 2 felmales, between

the ages of 23 and 35 years old scanned with informed consent and the approval of the

research ethics committee. The data was acquired on a clinical Philips Achieva system

with |G|max = 65mT/m. Two HARDI shells were acquired using a PGSE DW-MRI se-

quence with axial echo-planar imaging (EPI) readout with b-values of 711 and 2855. The

echo time TE=78 ms and repetition time TR=12.5 ms, these are the same for all mea-

surements. Voxels were isotropic with size 2x2x2mm3. The signal to noise ratio (SNR) is

approximately 20. Total scanning time for the DW-MRI sequence is roughly 25 minutes.

The data was processed with the NODDI-toolbox [1], modified to fit Bingham parame-

ters. The data was also processed with the DT, using the Camino software package [31],

which was also used to perform PICo tractography (referred to as DT-PICo). The data

was also processed with CSD using the MRtrix software package [118], which was also

used to perform tractography. The parameters of the NODDI-NIT algorithm were as

follows: stepsize=1mm (or 0.5 voxels), Watson concentration 30, transient streamline

stepsize (d)= 0.5mm, K = 6, γ= 2, N = 50. For DT-PICo and MRtrix tractography all pa-

rameters were left as default. In each experiment 1000 tracts were used per seed region

voxel for every algorithm.
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Figure 5.8: 100 repetitions of the tracking algorithm in regions of diverging (a), (b) and
converging (c) and (d) neighbourhood structure in the tracking direction. In (a) and (c),
particle filter neighbourhood exploration is used, while in (b) and (d) only a curvature
prior is used as in chapter 4.
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Figure 5.9: Tracking from a single seed on a synthetic crossing fibre structure. The
algorithm fails to succesfully navigate the crossing region due to the dependence of the
neibourhood exploration framework on the means of the Bingham distributions in each
voxel.

5.3.3 In vivo experiments

To demonstrate the advantages of combining dispersion and neighbourhood exploration,

tracking was performed on projection fibres passing through the region of the internal

capsule and corona radiata (see Figure 2.7), where significant anterior-posterior fanning

is present. Several white matter fascicles, collectively known as the projection fibres,

extend from the cerebral peduncle and pass through the internal capsule then spread

significantly to form the corona radiata. The fanning structure in this region has a

distinct polarity, which can be easily seen in Figure 5.10, which is inferior-superior (i.e.

the fibres spread as they travel upwards).

Figure 5.12 shows the results of tractography performed from ROIs manually defined

in the cerebral peduncle and the superior portion of the pre-central gyrus, using NODDI-

NIT, ND-track, MRtrix and DT-PICo tractography. The ROIs are shown in Figure 5.11.

These ROI locations are chosen to demonstrate the behaviour of the tractography algo-

rithm while passing through a region of high dispersion in two opposing directions with

streamlines evolving from each region encountering a different polarity of fanning.
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The region surrounding the internal capsule and corona radiata illustrated in Fig-

ure 2.7 is one of high dispersion in the anterior-posterior orientation. When tracking

through this region, ignorance of sub-voxel fanning can cause certain projection-fibres

to be missed, especially those travelling through the anterior limb of the internal cap-

sule. Using both a tractography algorithm exploiting Bingham models of dispersion both

with and without neighbourhood exploration, the full range of cortical connections are

recovered. However, when tracking from a region in the superior regions of the cortex,

the fanning polarity is opposed, hence dispersion of tract trajectories in this direction

will lead to false positives. When tracking from a seed region in the superior pre-central

gyrus, due to the ignorance of fanning polarity, the connectivity estimates given by the

ND-track algorithm which does not utilise neighbourhood exploration bleed anteriorly

into the frontal lobe, which is in opposition to known anatomy. Using neighbourhood

exploration, the NODDI-NIT algorithm tracks directly down to the cerebral peduncle as

would be expected.

Further validation of the performance of NODDI-NIT is given in Figure 5.13, which

shows similar results obtained in both hemispheres of one subject, and Figures 5.14 and

5.15 which shows the results from NODDI-NIT in 4 further subjects and contrasts with

results from MRtrix.

Tractography is also performed with NODDI-NIT on 3 major white matter pathways,

which are reliably defined by standard tractography algorithms: the inferior longitudinal

fasciculus (ILF), the inferior occipito-frontal fasciculus (IFOF) and the cingulum (Ci)

using ROI and waypoint placement guidance derived from [23] and [80], for validation

of expected performance in standard tracts. The results are shown in Figure 5.16 with

results from MRtrix tractography performed with the same ROIs and waypoints. These

results validate expected performance on standard WM structures which are well defined

by established algorithms.

All in vivo results are displayed as visitation maps with a threshold of 1% of maxi-

mum intensity.
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Figure 5.10: Mean directions of Bingham distributions in a sagittal slice in the Corona
Radiata, showing the directional dispersion and polarity. The red arrows illustrate the
dispersing structure.

5.4 Discussion

This section has presented a tractography algorithm which combines structural infor-

mation drawn from voxels in the immediate neighbourhood of the tracking location with

information from a local model capturing sub-voxel fibre orientation dispersion. By cap-

turing fibre dispersion in the model underpinning the tractography algorithm, we can ad-

dress the underestimation of connectivity caused by underestimation of the true spread

of directions available in a voxel exhibiting orientation dispersion in the underlying fi-

bre architecture. Furthermore, the results show that by forming a joint distribution in

a neighbourhood exploration scheme which propagates trajectories from the local model

into the immediate voxel neighbourhood and examines their coherence with forthcoming

structure, we can directly address one of the key ambiguities of antipodally symmetric

fODFs: fanning polarity.

Experiments on simulated data show that by addressing the ambiguities of utilis-

ing fODFs capturing dispersion, this enables us to exploit the full range of trajectories

suggested by a model of dispersion while mitigating the effect of false positives due to
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Figure 5.11: ROIs used for the in vivo experiments. ROIs are manually outlined to cover
the whole of the corticospinal tract and the pons in the region of the cerebral peduncle,
and a location in the white matter in the superior portion of the pre-central gyrus.
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From cerebral peduncle From superior precentral
gyrus

NODDI-NIT

ND-track

DT-PICo

MRtrix

Figure 5.12: Tractography from a seed region in the cerebral peduncle and a seed re-
gion in the superior portion of the pre-central gyrus with four different algorithms. The
red arrows show the anterior connections which are recovered by NODDI-NIT, but are
missed or under-represented by alternative algorithms. The yellow arrows point to the
region where false positives occur if neighbourhood exploration is not used.
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From cerebral peduncle From superior precentral
gyrus

Left hemisphere

Right hemisphere

Figure 5.13: Tracking from a seed region in the cerebral peduncle and a seed region in
the superior portion of the pre-central gyrus for each hemisphere of one subject.

ambiguities in the fODF. Due to the NODDI model using a single Bingham distribu-

tion to model fibre architecture, this presents problems for the NODDI-NIT algorithm in

crossing fibre regions, as demonstrated by the results on the crossing phantom shown in

Figure 5.9. NODDI-NIT produces false positives in this synthetic dataset, as the neigh-

bourhood exploration framework follows the Bingham mean directions, which can align

with the 2nd fibre population which crosses the one the algorithm is initially following.

This represents a failure case for the current formulation of the algorithm. Future work

to explicitly model multiple fibre populations in the NODDI model would fix this prob-

lem. The neighbourhood exploration framework could be extended to take into account

multiple Bingham distributions per voxel.

Experiments on in vivo data examined the behaviour of the algorithm in real data

when passing though an area known to exhibit significant dispersion with a clear and

easily identifiable polarity: the internal capsule and corona radiata, focusing on the con-

nections between the cerebral peduncle and the superior, anterior and posterior regions
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NODDI-NIT MRtrix

Subject 1

Subject 2

Subject 3

Subject 4

Figure 5.14: Tractography from a seed region in the cerebral peduncle in four subjects,
using NODDI-NIT and MRtrix.
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NODDI-NIT MRtrix

Subject 1

Subject 2

Subject 3

Subject 4

Figure 5.15: Tractography from a seed region in the superior portion of the pre-central
gyrus in four subjects, using NODDI-NIT and MRtrix.
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Cingulum ILF IFOF

NODDI-NIT

MRtrix

Subject 1

NODDI-NIT

MRtrix

Subject 2

NODDI-NIT

MRtrix

Subject 3

NODDI-NIT

MRtrix

Subject 4

Figure 5.16: Tractography in 3 major WM fascicles for validation: the cingulum, the
inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF).
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of the cortex. In this region, there is clear and significant spreading of fibres as they

travel superiorly, while in the opposing direction there is clear convergence. This struc-

tural arrangement is obvious in both histological specimens and the gross structure clear

in visualisations of directional information derived from DW-MRI, exemplified in Figure

5.10.

The results presented in Figure 5.12 demonstrate that by utilising models dispersion

in tractography, we recover the full range of connectivity throughout the corona radiata,

both with and without neighbourhood exploration, while tracking from a seed region

located in the cerebral peduncle. A significantly greater degree of streamlines project

towards the anterior portions of the cortex, these connections are far less strongly rep-

resented in the MRtrix result and not captured at all by DT-PICo. We hypothesize that

these may be fronto-pontine fibres. Figures 5.13, 5.14 and 5.15 further demonstrate that

this is a repeatable result across multiple subjects.

The advantage of utilising neighbourhood exploration becomes clear when tracking

in the direction opposing dispersion, from a superior region of the cortex. Utilising dis-

persion models without neighbourhood exploration produces false positive results, with

spreading both posterior and anterior which is in conflict with known anatomy. By

utilising the neighbourhood exploration scheme, these false positives are eliminated,

and the tracks are directed strongly downwards towards the cerebral peduncle, as ex-

pected. NODDI-NIT gives a strong connection between the superior pre-central gyrus

and peduncle. The connection is weaker for MRtrix tractography, suggesting that MR-

trix streamlines spread significantly in this direction.

5.5 Conclusions

We have presented in this chapter a new tractography algorithm combining parametric

models of sub-voxel fibre dispersion with a neighbourhood exploration framework pool-

ing information from voxels in the neighbourhood of the streamline front to address the

122



issue of fanning polarity. We have demonstrated in simulations and real data that the

algorithm successfully explores dispersion in regions of high fibre dispersion while miti-

gating false positives arising from ambiguities in the voxel-wise fODFs.

Although tractography is subject to bias from the manual placement of ROIs, impor-

tantly in this study we have compared the results of multiple tractography algorithms

using identical ROIs in each subject, demonstrating that the incorporation of sub-voxel

fibre dispersion in the model allows exploration of more connectivity in dispersing re-

gions while the neighbourhood exploration framework avoids the pitfall caused by the

ambiguity of fanning polarity.

Currently the algorithm exploits the Bingham NODDI model, which assumes a single

mean direction for a set of dispersing fibres in a voxel. Future work will extend the model

to account for multiple mean directions for populations of dispersing fibres.
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Chapter 6

Connectivity

6.1 Introduction

In the previous chapters we presented novel tractography algorithms based on paramet-

ric models of sub-voxel fibre dispersion. Examining the effect of the new tractography

method proposed in the previous chapter on the derivation of global structural connec-

tivity is instructive in further examining the impact on connectivity estimation. It also

provides another opportunity for validation. Results in the previous chapters demon-

strated that accounting for dispersion in the model on which the tractography algorithm

is based addresses false negatives which arise when using other algorithms based on

simpler WM tissue models.

In this chapter we examine the impact of the new tractography algorithm on con-

nectivity between distinct brain regions. We focus on two separate cases of global con-

nectivity: cortico-cortical connectivity in the whole brain network and thalamo-cortical

connectivity.

Studying the brain as a network has been a powerful application of tractography [55,

49, 48, 27, 26, 93, 51, 50], giving new insights into the structural organisation of the brain

which can be derived from live human subjects, showing that the network organisation

of the brain exhibits small-world properties [50, 55].
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Methods of analysis of structural brain networks vary from an examination of com-

mon graph-theory network metrics such as node degree distribution, efficiency, small

world attributes, vulnerability, centrality and motifs [55], to multivariate statistical

analysis across a large cohort of subjects [93] and principal network analysis (PNA) [27].

As we only have a small number of subjects, we choose PNA as a simple and robust

method of extracting prominent network features and contrasting between the networks

derived via NODDI-NIT and an alternative tractography method. PNA allows us to

extract the most prominent subnetworks of the whole and look at the organisation of the

locations of the most influential nodes and edges.

Secondly we look at thalamo-cortical connections [14, 40, 68]. We contrast the con-

nectivity profiles of the thalamus derived via NODDI-NIT with PICo tractraphy from

the Camino software toolkit [31], based on the DT model, henceforth referred to as ’DT-

PICo’. This provides an apt comparison as we contrast a well established single fibre

uODF method, which does not explicitly account for sub-voxel fibre dispersion, with trac-

tography based on the dispersing fODF of the NODDI model.

6.2 Principal networks

6.2.1 Introduction and theory

Principal network analysis (PNA), first proposed in the context of DW-MRI derived

network analysis by Clayden et al [27], is an elegant way of identifying influential sub-

networks which can highlight some key informative features of the network as a whole.

The technique is shown to robustly identify influential subnetworks that are stable,

meaningful and reproducible. Clayden shows in [27] that principal networks derived

from tractography-derived brain connectivity are consistent on rescanning the same pa-

tient.

A graph is defined by an association matrix A, the elements A i j defining a measure
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Figure 6.1: Illustration of principal networks approach on a simple example. Network A
can be broken down in to its first (B) and second (C) principal network via PNA, capturing
the two canonical subnetworks in the whole. Figure from [27]

of the connectivity between regions, or nodes, i and j.

PNA starts with the eigendecomposition of the association matrix A:

A=QΛQ−1 (6.1)

where Λ is a diagonal matrix of eigenvalues λk and Q is a matrix for which the columns

are the M eigenvectors of the association matrix A. Principal network analysis is similar

in principle to principal component analysis (PCA). If A were a correlation matrix, such

as in functional connectivity analysis, then Q would correspond to the loading matrix of

a PCA transformation of the original data [27]. The loading matrix provides the mapping

of the values contained in the data matrix, A, which in this case is the association matrix,

to the principal component axes. The magnitude of each eigenvalue λk indicates the

degree of influence of the corresponding component in the association matrix.

To identify principal network k, we calculate a partial association matrix Ãk:

Ãk
i j =λkQ ikQ jk (6.2)

The full association matrix is the sum of the component matrices Ãk
i j. Each partial asso-

ciation matrix Ãk defines a subnetwork which has an importance within the network as

a whole related to the magnitude of its respective eigenvalue λk. Those partial associa-
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Figure 6.2: Extraction of whole brain structural connectivity network and principal net-
work analysis. A T1 weighted image is used for segmentation and cortical parcellation
and a DW-MRI image is used for tractography. The parcellation and tractography are
then combined to derive the whole brain structural connectivity network. Influential
subnetworks are then extracted from the whole brain network using PNA.

tion matrices which correspond to the largest eigenvalues represent the most prominent

and influential subnetworks within the network as a whole.

The principal network method allows us to examine the impact on the derived brain

connectivity of the NODDI-NIT method proposed in chapter 5 in an informative and

meaningful way. By examining the structure of the most influential subnetworks we can

observe changes between subjects and between the networks derived via NODDI-NIT

and DT-PICo tractography.

6.2.2 Methods

In this section, we derive matrices of inter-connectivity between 64 seperate cortical

regions defined by the Desikan atlas [36]. The regions are listed in table 6.1 with associ-

ated indices for reference and can be seen overlayed on the inflated brain surface shown

in Figure 6.3. The datasets for subjects 1-4 were used from section 5.1. The diffusion

data was processed using the NODDI toolbox [135, 1] modified to fit Bingham param-
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Figure 6.3: Desikan-Killiany atlas used for parcellating the cortex. Image taken from [2]

eters for the NODDI-NIT algorithm. The diffusion weighted data was also processed

using the DT model by the Camino software package [31] in preparation for tractogra-

phy. The T1 weighted images of each subject were parcellated into 64 cortical regions

using the FreeSurfer software package [44]. The skull-stripped T1 images in FreeSurfer

space were registered with the skull-stripped (FSL BET [107]) b = 0 image of the diffu-

sion weighted acquisition using FSL-FLIRT (FSL FLIRT [61, 60]) into diffusion space.

The affine transformation derived from this registration procedure was then used to ini-

tialise non-linear registration of the skull-stripped T1 images to the b = 0 image using

FSL-FNIRT. The warp field from this procedure was then used to reslice the cortical par-

cellation into diffusion space. 1 probabilistic streamline was seeded per WM voxel using

each of the 2 different algorithms: the NODDI-NIT algorithm described in chapter 5 and

a DT based PICo algorithm, from the Camino software package [31]. Each seedpoint was

subject to random jitter within the voxel to avoid any bias from the voxel grid structure.

Connectivity was quantified between ROI pairs as the sum of connecting streamlines

divided by the mean number of voxels in each connected ROI to normalise for the size

of the respective ROIs. A schematic illustration of the process of whole brain network

derivation and PNA is given in Figure 6.2.
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GM region name Index (left) Index (right)
caudal anterior singular cortex 1 33
caudal middle frontal gyrus 2 34
cuneus 3 35
enthorinal cortex 4 36
fusiform gyrus 5 37
inferior parietal gyrus 6 38
inferior temporal gyrus 7 39
cingulate gyrus, isthmus 8 40
lateral occipital cortex 9 41
lateral orbitofrontal cortex 10 42
lingual gyrus 11 43
medial orbitofronal gyrus 12 44
middle temporal gyrus 13 45
parahippocampal gyrus 14 46
paracentral gyrus 15 47
inferior frontal gyrus, pars opercularis 16 48
inferior frontal gyrus, pars orbitalis 17 49
inferior frontal gyrus, pars triangularis 18 50
pericalcarine cortex 19 51
postcentral gyrus 20 52
posterior cingulate gyrus 21 53
precentral gyrus 22 54
precuneus 23 55
rostral anterior cingulate cortex 24 56
rostral middle frongal gyrus 25 57
superior frontal gyrus 26 58
superior parietal gyrus 27 59
superior temporal gyrus 28 60
supramarginal gyrus 29 61
frontal pole 30 62
temporal pole 31 63
transverse temporal gyrus 32 64

Table 6.1: Cortical GM regions from FreeSurfer parcellation and associated labels.

6.2.2.1 Principal network calculation:

Principal networks were calculated using the theory outlined in section 6.2.1 applied to

the association matrices derived from tractography. To extract meaningful and compa-

rable subnetworks, a threshold was lowered on each PN until 10 edges were found. If

less than 10 edges were present in any PN, then the maximum number of edges was

retained.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: First principal network of 4 subjects derived using NODDI-NIT: axial view
(top row: a-d) sagittal view (lower row: e-h). See table 6.1 for cortex regions correspond-
ing to numeric indices.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: First principal network of 4 subjects derived using DT-PICo: axial view (top
row: a-d) sagittal view (lower row: e-h). See table 6.1 for cortex regions corresponding to
numeric indices.
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6.2.3 Results

Figures 6.4 and 6.5 show the first PNs for 4 subjects. In Figure 6.4 the principal networks

were calculated from networks derived via NODDI-NIT, in Figure 6.5 the network was

derived using DT-PICo tractography. The second principal networks can also be seen

in appendix C. The principal networks are thresholded until 10 edges are found. The

location of each vertex is based on the spatial median of the corresponding region from

the voxel-wise whole brain parcellation. Table 6.2 shows the lobe associations of the

vertices in the first PN in each subject derived from NODDI-NIT and table 6.3 shows

the lobe associations of the vertices in the first PN in each subject derived from Camino

tractography.

The PNs shown in Figures 6.4 and 6.5 show clearly that in the networks derived via

NODDI-NIT frontal intralobar connectivity is favoured, as frontal regions appear consis-

tently in the first PN of each subject. In the network derived using DT-PICo tractography

this is not the case, occipital and parietal regions are more present across subjects. Re-

gions of the frontal cortex were involved in the first PNs derived with NODDI-NIT for all

subjects, with the left and right superior frontal gyrus both appearing in every subject,

connected by an edge. The left rostral middle frontal gyrus is also present in the first

PNs of all subjects and in 3 out of 4 subjects, this is interconnected with both left and

right superior frontal gyrus, indicating that this is an important subnetwork of the brain

which may be laterally biased.

6.2.4 Discussion

The results presented above shown that the choice of tractography algorithm used to

derive whole-brain connectivity networks has a significant effect on the features of the

derived network. There are distinct differences between the structures of the networks

derived using NODDI-NIT and DT-PICo tractography, with the most obvious difference
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(a) NODDI-NIT (b) DT-PICo

Figure 6.6: Eigenvalues of the first 20 principal networks for each subject. The eigen-
value falloff is very similar, suggesting consistency in subnetwork weighting across net-
works derived with the same tractography algorithm.

Subject Frontal Parietal Occipital Temporal
1 8 1 0 0
2 4 2 0 0
3 7 0 0 0
4 7 0 0 0

Table 6.2: Lobe association of nodes in principal networks derived using NODDI-NIT.

Subject Frontal Parietal Occipital Temporal
1 1 3 3 0
2 1 5 2 0
3 6 2 0 0
4 2 2 3 0

Table 6.3: Lobe association of nodes in principal networks derived using DT-PICo trac-
tography.
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being the extensive presence of frontal lobe regions in the most influential networks as

derived using PNA. NODDI-NIT derived PNs feature vertices spatially located in the

frontal lobe more prominently, whereas DT-PICo tractography derived PNs feature pari-

etal and occipital regions more prominently. 3 regions, the left and right superior frontal

gyri and the left rostral middle frontal gyrus appear consistently in first PNs across all

subjects using NODDI-NIT, with an edge existing between the left and right superior

frontal gyrus in all subjects. These results echo the results given in the previous chapter,

which indicated that NODDI-NIT gives prominent frontal connectivity with regions in

the cerebral peduncle.

Frontal regions have been reported elsewhere [49] as featuring prominently in the

whole brain network. However, [49] identifies a stronger structural core existing in the

parietal cortex. Tractoraphy based on DSI is used in [49], which is i) deterministic and

ii) does not use a model accounting for fibre dispersion. DSI is a dODF technique, so the

tractography is not underpinned by a model directly related to the fODF, and instead

only follows discrete directions derived from the maxima of the dODF, this may account

for the differences in the results presented above.. A productive focus of future work

would be a direct comparison of numerous competing tractography algorithms and the

impact of each on estimated features of whole brain connectivity. These regions of the

left pre-frontal cortex have been identified as important in language processing in fMRI

studies [90]. Regions of the pre-frontal cortex have also been identified as part of the

default mode network (DMN) [3]. The DMN is an interconnected cluster of brain regions

which appear to be inter-communicating when the brain is not concentrating on any

particular task, but is in a state of ’wakeful rest’.

The results suggest that using a tractography algorithm which accounts for sub-voxel

dispersion reveals a different pattern of brain connectivity, with regions of the frontal

lobe appearing prominently in the network when compared to netorks derived via al-

ternative tractography methods. NODDI-NIT derived networks also show a degree of

consistency between subjects in the first PNs, with some common vertices and edges
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featuring across all subjects.

6.3 Thalamic connectivity

The thalmus is a region of subcortical GM situated between the cortex and the midbrain.

It functions as a relay for connections coming from the cortex to other areas of the brain

and spine and has a role in sleep regulation. It is divided into serval separate nuclei

which are cytoarchitecturally distinct and connected to distinct brain regions. Proba-

bilistic tractography has previously been used to examine boundaries between thala-

mic sub-regions in vivo [14, 68] by estimating thalamo-cortical connectivity, segmenting

distinct thalamic subregions based on the probability of connection to a certain corti-

cal region. This provides a further opportunity to validate the NODDI-NIT algorithm’s

ability to recover meaningful brain connectivity and to examine any differences with a

well-established tractography method.

6.3.1 Methods

The thalamus was identified using a FreeSurfer segmentation of the T1 image of each

subject. The cortex was also parcellated using FreeSurfer into the cortical zones outlined

in the Desikan-Killiany atlas. The cortical regions defined in the Desikan-Killiany atlas

are illustrated on the inflated pial surface shown in Figure 6.7. Several of the regions

defined in the Desikan-Killiany atlas were merged to form larger cortical targets based

on the major lobes of the brain - frontal, parietal, temporal and occipital. The pre-central

and post-central gyrus are seperated. The frontal lobe is divided into four separate re-

gions to examine the impact on estimated thalamo-frontal connectivity which is caused

by modelling the dispersion in the anterior part of the corona radiata and centrum semio-

vale. The cortical regions are illustrated in table 6.3.1 and Figure 6.7

For hard segmentation of thalamic sub-regions each thalamic voxel was classified as

connected to the ipsilateral cortical zone with which it had the highest probability of

134



(a) (b)

Figure 6.7: Division of the cortex into 10 separate target regions for tractography to
facilitate examination of thalamo-cortical connectivity. Rendered on a single subject’s
brain.

connectivity.

6.3.2 Results

Thalamic segmentations of the left thalamus are shown for 3 subjects in Figure 6.9. The

segmentations show consistency between subjects and a large amount of agreement be-

tween the two separate tractography algorithms. DT-PICo tractography is consistently

missing a region most probably connected to the post-central gyrus, while NODDI-NIT

has a significant region most probably connected to the post-central gyrus in all subjects.

This may be a symptom of fibre dispersion in the centrum semiovale between the tha-

lamus and the post-central gyrus which is not modelled by the DT model on which the

tractography is based.

Figure 6.8 shows probabilistic maps of connectivity for each target region in subject 1.

NODDI-NIT identifies a small region of the anterior nucleus of the thalamus connected

to the occipital and temporal lobes, which DT-PICo does not. These connections are

possibly through the cingulum WM bundle. The most obvious differences arise in the

connectivity profiles to the medial, inferior and orbito-frontal regions of the frontal lobe.

DT-PICo tractography suggests the areas connected to these regions as largely co-located

in the medial part of the thalamus, while NODDI-NIT suggests they exist more laterally.
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Target
region

NODDI-
NIT

DT-PICo
Target
region

NODDI-
NIT

DT-PICo

Figure 6.8: Probabilistic mapping of cortical connections to target regions shown in Fig-
ure 6.7 for subject 1. Each cortical target region is shown with the probabilistic maps
from both NODDI-NIT and DT-PICo.
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NODDI-NIT DT-PICo

Figure 6.9: Connectivity based segmentation of the thalamus. Colours correspond to
the cortical region of the same colour shown in Figure 6.7 and table 6.3.1. The cortical
regions and corresponding colours are given in the left colunm for refererence.
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Parietal lobe Temporal lobe

Occipital lobe Pre-central gyrus

Post-central gyrus
Frontal lobe:
superior

Frontal lobe:
medial

Frontal lobe:
inferior

Frontal lobe:
orbitofrontal cortex

Cingulate gyrus

Table 6.4: Brain regions and associated colours.

6.3.3 Discussion

Connectivity profiling the thalamus using NODDI-NIT shows that the algorithm is ca-

pable of producing results that are repeatable across subjects, and also shows resonable

similarity with results from a competing, well-established tractography technique. While

the results from NODDI-NIT and DT-PICo tractography are broadly similar, there are

subtle differences. NODDI-NIT more consistently recovers connectivity between the tha-
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lamus and the post-central gyrus. The difference could possibly be explained by the pres-

ence of fibre dispersion in the centrum-semiovale, which is not modelled accurately by

the DT. Further differences in connectivity are apparent on inspection of Figure 6.8. The

clearest differences are in the connectivity profiles of the different regions of the frontal

lobe. NODDI-NIT gives higher probability of connection to each frontal region at a more

lateral location in the thalamus than DT-PICo. These connections between the thala-

mus and the pre-frontal cortex pass also pass through the centrum semiovale, where

the NODDI model will be more effective at accurately modelling dispersion, which could

explain the differences in thalamic connectivity profiles. Fronto-thalamic connecitivity

is similarly studied elswhere in [68] and [40]. Klein et al [68] focus on the medio-dorsal

nucleus of the thalamus so results are not directly comparable, however they do not con-

tradict the results presented here. Draganski et al [40] focus on the thalamus and other

regions of the basal ganglia, including the putamen, caudate and palladium. The corti-

cal segmentation pattern chosen in [40] is similar, but not identical to that chosen here.

Figure 6.8 also shows that NODDI-NIT identifies a region of the anterior nucleus of the

thalamus connected to the temporal and occipital lobes, possibly via the cingulum, which

DT-PICo tractography does not identify.

6.4 Conclusions

In this chapter we examined the impact of NODDI-NIT on cortico-cortical and thalamo-

cortical connectivity. We show that NODDI-NIT derived whole brain networks exhibit

different properties to those derived using an alternative algorithm with regions in the

frontal lobe featuring prominently in the most influential sub-networks. Certain frontal

regions appear consistently in the most influential networks across multiple subjects.

We also show that NODDI-NIT estimates thalamo-cortical connectivity with good con-

sistency across subjects and estimates the thalamic connections to regions of the frontal

lobe to exist more laterally than DT-PICo.
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The results suggest modelling WM fibre dispersion to be an important factor in trac-

tography as it has a strong impact on patterns in estimated cortico-cortical connectivity.

As neural computation is inextricably linked to connectivity, deriving brain connectivity

networks with an accurate tractography method is highly important. Therefore utilising

an accurate model of WM structure on which to base the tractography algorithm is a

high priority.

The preliminary whole-brain network results presented here are in contrast to other

studies on whole-brain connectivity. Other studies identify regions of the parietal cor-

tex [49] and the cingulate gyrus [27] as central cores. Both these studies use alternative

tractography methods, [49] uses DSI based tractography and [27] uses tractography

based on the ball and stick model [14, 13].

The differences may be explained by the prominence of fibre dispersion in the cen-

trum semiovale / corona-radiata. These regions are identified by NODDI as areas of

significant fibre dispersion (see Figure 6.10) [135]. Accounting for this fibre dispersion

in the tractography model may facilitate intra-lobar connections which are not detected

by tractography algorithms which do not account for fibre dispersion.

While this preliminary study gives some interesting findings, it is limited by the small

number of subjects. To better validate the existence of anterior-biased connectivity in the

NODDI-NIT derived brain networks a study with many subjects would be ideal. Scan-

rescan data for each subject would also allow repeatability to be thoroughly examined.

This is an important goal for future work.

With a large number of subjects we could confirm the existence of nodes which are

strongly connected across multiple subjects. A study with more subjects might also re-

veal further structural connectivity trends existing in the less prominent PNs. No ob-

vious trends seem apparent in the second principal networks shown in appendix C al-

though a many subject study would provide a better opportunity to investigate trends in

lower ranking sub-networks.

Alternative cortical segmentation could also be beneficial in future investigation.
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Figure 6.10: NODDI orientation dispersion index (ODI). High values of the ODI indicate
regions of high fibre dispersion. The yellow circles highlight the regions of the frontal
WM where high fibre dispersion is detected. High fibre dispersion can also be observed
throughought the centrum semiovale.

In [50] and [49] a much finer subdivision of the cortex into 500-4000 separate ROIs

is used to create targets for tractography. This allows the network to be analysed at

higher resolution. Futher network analysis techniques such as k-core decomposition,

clustering, centrality and efficiency may help reveal further details.

A thorough investigation of frontal intralobar connections would help validate the

findings. A framework for investigation of frontal lobe connections via tractography is

given by Catani et al [77].
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Chapter 7

Discussion and conclusions

Recent advances in DW-MRI modelling techniques have yielded new parametric models

of sub voxel fibre dispersion. These models capture sub-voxel white matter structure

more accurately, by specifically modelling expected fibre orientation dispersion, and more

robustly, by using a limited number of degrees of freedom in the model. In the search

to improve connectivity estimation via tractography, the use of better models is of great

importance.

This work has introduced new tractography methods exploiting parametric models

of dispersion for improved connectivity estimation and examined the impact of the new

methods on connectivity estimation.

During this project a key issue in exploiting advanced DW-MRI models of dispersion

in tractography was addressed, that of the ambiguities which arise in fODFs due to the

lack of intra-voxel spacial specificity and antipodal symmetry. These ambiguities mean

that the difference between fanning structures of opposing polarity, and between fanning

and curving structures, cannot be resolved from the information from a single voxel in

isolation.

The key contribution of this thesis is the proposal of a tractography method which

both exploits parametric models of sub-voxel fibre dispersion and actively addresses the

issue of fanning polarity using the concept of the NI-ODF. By using a neighbourhood ex-
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ploration scheme, we pool information from multiple voxels to resolve these ambiguities

in the information provided by isolated voxels to disambiguate structures of opposing

fanning polarity. This is validated in both simulations and real in vivo subject data.

In chapter 6 we examined the impact of the newly proposed neighbourhood informed

tractography method on connectivity estimation. Whole brain networks derived via

NODDI-NIT featured mainly frontal lobe regions among the most prominent networks

extracted via PNA with consistency across subjects. This was not reflected in neworks

derived via a well-established alternative tractography method, suggesting this may be

an impact of capturing sub-voxel fibre dispersion in the model underpinning the tractog-

raphy algorithm. Thorough investigation and validation of this preliminary finding will

be a focus of future work.

A summary of the contributions of this thesis is as follows:

• In chapters 4 and 5 we present new tractography algorithms exploiting parametric

models of subvoxel fibre dispersion. We show that the use of parametric models

of fibre dispersion addresses false negatives of traditional approaches based on

simpler models which do not account for dispersion.

• In chapter 5 we present the concept of the NI-ODF: when using parametric mod-

els of dispersion in tractography, an ambiguity arises in the interpretation of the

local fODFs, that of fanning polarity. We propose a framework to pool information

from voxels in the neighbourhood around the streamline front to form the neigh-

bourhood informed ODF (NI-ODF). This allows the full exploitation of dispersion

models while mitigating false positives from ambiguities in the local model.

• In chapters 4 and 5 we validate the new tractography algorithms extensively in

simulations and real data, showing that utilising models of subvoxel fibre disper-

sion recovers connectivity in regions of high dispersion, such as the internal capsule

and corona radiata, which is missed or under-represented by alternative tractog-

raphy methods.
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• In chapter 6 we show that the new tractography methods presented exhibit differ-

ences in estimates of global connectivity to a traditional tractography algorithm,

which does not model dispersion, particularly global connections associated with

the frontal lobe. We show that frontal lobe regions are more prominent in whole-

brain networks derived via the NODDI-NIT algorithm and thalamo-cortical con-

nections to the frontal lobe are also estimated to be from more lateral regions of

the thalamus.

A limitation that remains is that the model used in this work does not explicitly model

multiple fibre populations per voxel. The model captures crossing fibre structure as dis-

persion and recruiting extra information provided by curvature priors or neighbourhood

exploration, crossing fibre structure can be adequately resolved. However, a more com-

prehensive model would include the explicit modelling of multiple fibre populations and

orientation dispersion in each bundle using multible Bingham distributions.

This work has presented a methodology for fully exploiting advanced dispersion mod-

els in tactography, to address some of the remaining limitations in current tractography

methods. This work takes another step towards deriving a more complete picture of the

human connectome by using the latest state of the art DW-MRI modelling techniques in

tractography.

7.1 Future directions

An important modification which would extend the methods presented in this thesis

would be the extension of the NODDI model to multiple fibres populations per voxel to

more accurately model crossing fibres. Multiple Bingham distributions could be fit per

voxel modelling each fibre population and its degree sub-voxel dispersion individually.

Although conceptually this is a relatively trivial extension to the model, in practice it is

highly challenging. Adding further Bingham fODFs per voxel adds 5 extra parameters

per Bingham distribution, and further parameters for any unfixed diffusivities. The
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Bingham orientations would have to be carefully initialised using information derived

from a multi-fibre model. This can be acheived by initialising the Bingham orientations

via spherical deconvolution [92, 65] and calculating peak anisotropy [104].

An extension of the underlying model to include multiple directions also adds tech-

nical challenges, but also offers opportunities in any future development of the neigh-

bourhood exploration framework. On traversing voxel with multiple fibre populations a

decision must be made about which fibre population to follow. The neighbourhood ex-

ploration framework could be modified to help with this decision, looking ahead to find

coherence in oncoming structure. This would however be a challenging problem in itself.

Recent work has presented the concept of the track orientation density (TOD) [37].

This work recruits a similar concept, utilising voxel-neighbourhood information to sup-

port information gathered from the local fODF. The TOD method functions as a pre-

processing step before any tractography is performed. The method works by first in-

tegrating many short tracks using CSD-derived voxel-wise fODFs then computing the

contributions of each short track to a new ODF, the TOD, in each voxel it intersects,

based upon the integral of the tangent to the track at every point within th voxel. The

TOD can be thought of as a regularised version of the fODF, based on local support of

continuous structure. As it is built from contributions of short streamlines, the TOD

favors orientations which lead to similarly oriented structures in neighbouring voxels.

The TOD is, however, antipodally symmetric, hence cannot address the issue of fan-

ning polarity which the NI-ODF helps to resolve. Such a technique might provide useful

auxiliary information in each voxel. For example, the increased consistency of the TOD

may be able to provide peak directions more robustly in a hybrid technique. An extension

of the NODDI model to encompass crossing fibres may benefit from accurately derived

peak directions from TOD for initialising Bingham distributions for accurate fitting.

One aim of tractography is to build an accurate picture of the human connectome,

to better our understanding of how the brain works. By striving to exploit the lat-

est state of the art modelling techniques we take steps forward in this goal. Another
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aim of state of the art neuroimaging techniques is also to understand pathology of the

brain. The NODDI model has been shown to be a sensitive biomarker in certain patholo-

gies [130, 101] as the NODDI model is capable of detecting subtle changes in neurite

structure which competing models do not detect. This could potentially have an impact

on tractography based on the NODDI model. Tissue changes in certain neurodegenera-

tive diseases such as Altzheimer’s or multiple sclerosis may be detected in connectome

estimates derived from tractography based on the NODDI model. This could act as an

advanced biomarker and help give insights into how tissue changes might affect brain

function. This work has concentrated on a small set of healthy subjects. Future work

could be extended to cover larger cohorts with both healthy and diseased subjects.
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Appendix A

Publications

The following details all publications associated with this work, which have appeared in

peer-reviewed international conferences. Other related publications are also listed.

A.0.1 Publications associated with this work.

Conference proceedings

• M. Rowe, H. Zhang, N. Oxtoby and D. C. Alexander. Beyond Crossing Fibers: Trac-

tography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure. In

Proceedings of the 23rd biennial International Conference on Information Process-

ing in Medical Imaging, California, USA, 2013. (Features a preliminary version

of the work covered in Chapter 5). Selected for podium presentation, ~top 10% of

submissions.

• M. Rowe, H. Zhang, and D. C. Alexander. Utilising measures of fibre dispersion in

white matter tractography. In Proceedings of the MICCAI’12 Workshop on Compu-

tational Diffusion MRI, Nice, France, 2012. (Features a preliminary version of the

work covered in Chapter 4). Selected for podium presentation.
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Conference abstracts

• M. Rowe, H. Zhang and D. C. Alexander. ND-Track: Tractography Utilising Para-

metric Models of White Matter Fibre Orientation Dispersion. In Proceedings of

the 21st annual meeting of the International Society for Magnetic Resonance in

Medicine (ISMRM) Utah, USA, 2013. (Features extracts of the work covered in

Chapter 4). Selected for podium presentation, ~top 10% of accepted abstracts. Re-

ceived the ISMRM magna cum laude merit award.

• M. Rowe, H. Zhang and D. C. Alexander. ND-Track: Tractography Utilising Para-

metric Models of White Matter Fibre Dispersion. In Proceedings British Chapter

of ISMRM Postgraduate symposium, held at University College London, London,

UK. (Features extracts of the work covered in Chapter 4). Selected for podium pre-

sentation.

• M. Rowe, H. Zhang and D. C Alexander. Combining neighbourhood exploration

with models of sub-voxel fibre dispersion to improve tractography. In Proceedings

of the ISMRM Workshop on Diffusion as a Probe of Neural Tissue Microstructure,

Podstrana, Croatia, 2013. (Features a preliminary version of the work covered in

Chapter 5)

Papers in preparation

Journal articles

• M. Rowe, H. Zhang, N. Oxtoby, M. Tariq and D. C. Alexander. Exploiting neigh-

bourhood exploration combined with sub-voxel models of fibre dispersion in trac-

tograpy. Manuscript in preparation
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Other publications

Conference proceedings

• A. J. Sherbondy and M. Rowe and D. C. Alexander. MicroTrack: an algorithm

for concurrent projectome and microstructure estimation. In Proc. Medical Image

Computing and Computer Assisted Intervention. 13(Pt 1):183-90. 2010

Conference abstracts

• A. J. Sherbondy, T. B. Dyrby, M. Rowe, M. Ptito, B. A. Wandell, D. C. Alexander.

Microstructure Tracking (MicroTrack): An Algorithm for Estimating a Multiscale

Hierarchical White Matter Model from Diffusion-Weighted MRI. In Proc. Interna-

tional Society for Magnetic Resonance in Medicine. Montreal, Canada, 2011.
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Appendix B

Sampling from a Bingham

distribution

The following is derived from [29].

B.1 Rejection sampling

To sample from a Bingham distribution, we can make use of the rejection sampling tech-

nique, recruiting the simpler Watson distribution, which is simpler to sample from [15,

89], as an instrumental distribution. This allows us to draw samples from the instru-

mental distribution g(x), from which we have a known method of drawing samples, and

use this to draw samples from an arbitrary distribution f (x) where f (x) < M g(x) and

M > 1 gives us an appropriate bound on f (x)/g(x).

Samples can be then be drawn from f (x) via simple algorithm:

• Sample x from g(x) and u from U(0,1).

• Check if u < f (x)
MG(x) .

– If true, accept x as a realisation of f (x).

– If false, reject x and repeat.
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B.1.1 Sampling from a Watson distribution

The Watson distribution is given by [78]:

f (n)=W(n;µ,κ)= F1

(
1
2

,
3
2

,κ
)−1

exp[κ(µ ·n)2] , (B.1)

where F1 is the hypergeometric function (note: F1(1/2,3/2,κ) is a number, not a function).

µ is the mean orientation and k controls the concentration of the distribution.

If we assume the mean axis to be the Cartesian z-axis, where θ =φ= 0. Then we can

generate a sample using the following method (The values Rx refer to pseudo-random

variables from a uniform distribution (R ∈ [0,1])):

1. Set C = 1
expk−1

2. U = R1, V = R2

3. Set S = 1
κ

log U
C +1

4. If V > exp(κS2 −κS), go to 2

5. Sample direction is given by θ = arccosS, φ= 2πR3.

B.1.2 Sampling from a Bingham distribution using the Watson as

the instrumental distribution

As we can sample from a Watson distribution using the method described in section

B.1.1, we can now sample from the Bingham distribution using the Watson as the in-

strumental distribution. We require that the Watson distribution we use wraps the

Bingham distribution as closely as possible but must always be greater than or equal

to the underlying Bingham. Recalling that the Bingham distribution is given by:

f (n)= F1

(
1
2

,
3
2

,κ1,κ2

)−1
exp[κ1(µ1 ·n)2 +κ2(µ2 ·n)2] (B.2)
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Therefore:

1
Cbw

exp[κ(µ3 ·n)2]≥ 1
CB

exp[κ1(µ1 ·n)2 +κ2(µ2 ·n)2] (B.3)

The normalisation constant Cbw can be found by considering the case where n is orthog-

onal to µ3:

1
Cbw

≥ 1
CB

exp[κ1(µ1 ·n)2 +κ2(µ2 ·n)2] (B.4)

As κ1 ≤ κ2 the right hand side of equation B.4 is maximal when n is equal to ±µ1.

Giving:

1
Cbw

≥ 1
CB

expκ2 ⇒ Cbw ≤ CB exp−κ2 (B.5)

Substituting the maximal value of Cbw into equation B.3 and taking the logarithm of

both sides gives:

κ3(µ3 ·n)2 +κ2 ≥ κ1(µ1 ·n)2 +κ2(µ2 ·n)2 (B.6)

The right hand side is maximal when n=µ3, therefore:

κ3 ≥−κ2 (B.7)

Substituting into equation B.6 gives:

κ1(µ1 ·n)2 +κ2[(µ2 ·n)2 + (µ3 ·n)2]−κ2 ≤ 0 (B.8)

As κ1 < κ2 and (µ1 ·n)2 + (µ2 ·n)2 + (µ3 ·n)2 = 1 for all n then equation B.8 is satisfied for

all n.
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Appendix C

Second principal networks
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.1: Second principal networks of 4 subjects derived using NODDI-NIT: axial
view (top row: a-d) sagittal view (lower row: e-h). See table 6.1 for cortex regions corre-
sponding to numeric indices.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.2: Second principal networks of 4 subjects derived using DT-PICo: axial view
(top row: a-d) sagittal view (lower row: e-h). See table 6.1 for cortex regions correspond-
ing to numeric indices.
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connectome and the default mode network of the human brain . NeuroImage, 102,

Part 1(0):142 – 151, 2014. Multimodal Data Fusion.

[4] D. C. Alexander. Maximum Entropy Spherical Deconvolution for Diffusion MRI.

In Proc. Information Processing in Medical Imaging, pages 76–87, 2005.

[5] D. C. Alexander. A general framework for experiment design in diffusion mri and

its application in measuring direct tissue-microstructure features. Magnetic Res-

onance in Medicine, 60(2):439–448, 2008.

[6] D. C. Alexander and G. J. Barker. Optimal imaging parameters for fiber-

orientation estimation in diffusion MRI. NeuroImage, 27(2):357–367, 2005.

[7] D. C. Alexander, P. I. Hubbard, M. G. Hall, E. A. Moore, M. Ptito, G. J. M. Parker,

and T. B. Dyrby. Orientationally invariant indices of axon diameter and density

from diffusion MRI. NeuroImage, 52(4):1374–1389, 2010.

[8] A. W. Anderson. Measurement of fiber orientation distributions using high angular

resolution diffusion imaging. Magnetic Resonance in Medicine, 54(5):1194–1206,

2005.

156



[9] P. J. Basser and D. LeBihan. Fiber orientation mapping in anisotropic medium

with NMR diffusion spectroscopy. In Proc. 11th annual meeting of the Interna-

tional Society for Magnetic Resonance in Medicine, Berlin, Germany, page 1221,

1992.

[10] P. J. Basser, J. Mattiello, and D. LeBihan. Estimation of the effective self diffusion

tensor from the NMR spin echo. Journal of Magnetic Resonance, 103:247–254,

1994.

[11] P. J. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and

imaging. Biophys J., 66(1):259–267, 1994.

[12] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber trac-

tography using DT-MRI data. Magnetic Resonance in Medicine, 44(4):625–632,

2000.

[13] T. E. J. Behrens, H. Johansen-Berg, S. Jbabdi, M. F. S. Rushworth, and M. W. Wool-

rich. Probabilistic diffusion tractography with multiple fibre orientations: What

can we gain? NeuroImage, 34(1):144–155, 2007.

[14] T. E. J. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-Berg, R. G. Nunes,

S. Clare, P. M. Matthews, J.M. Brady, and S. M. Smith. Characterization and prop-

agation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in

Medicine, 50(5):1077–1088, 2003.

[15] D. J. Best and N. I. Fisher. Efficient Simulation of the von Mises Distribution.

Journal of Applied Statistics, 28(2):152–157, 1979.

[16] C. Bingham. An antipodally symmetric distribution on the sphere. The Annals of

Statistics, 2(6):1201–1225, 1974.

[17] F. Bloch, W. W Hansen, and M. Packard. Nuclear induction. Physical Review,

70:460–474, 1946.

157



[18] K. Brodmann and L. J. Garey. Brodmann’s: Localisation in the Cerebral Cortex.

Springer, 2006.

[19] A. Brun, M. Bjornemo, R. Kikinis, and C. F. Westin. White matter tractography

using sequential importance sampling. In Proc. 10th annual meeting of the Inter-

national Society for Magnetic Resonance in Medicine, Honolulu, Hawaii, 10, 2002.

[20] P. T. Callaghan, A. Coy, T. P. J Halpin, D. MacGowan, K. J. Packer, and F. O. Zelaya.

Diffusion in porous systems and the influence of pore morphology in pulsed gra-
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