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Abstract The extremal index θ , a measure of the degree of local dependence in the
extremes of a stationary process, plays an important role in extreme value analyses.
We estimate θ semiparametrically, using the relationship between the distribution of
block maxima and the marginal distribution of a process to define a semiparametric
model. We show that these semiparametric estimators are simpler and substantially
more efficient than their parametric counterparts. We seek to improve efficiency fur-
ther using maxima over sliding blocks. A simulation study shows that the semipara-
metric estimators are competitive with the leading estimators. An application to sea-
surge heights combines inferences about θ with a standard extreme value analysis of
block maxima to estimate marginal quantiles.

Keywords Block maxima · extremal index · extreme value theory · sea-surge
heights · semiparametric estimation.
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1 Introduction

The modelling of rare events in stationary processes is important in many application
areas. The extremal behaviour of such a process is governed by its marginal dis-
tribution and by its extremal dependence structure. Chavez-Demoulin and Davison
(2012) provide a review of this area, concentrating on the latter aspect. For processes
satisfying the D(un) condition of Leadbetter et al (1983), which limits long-range de-
pendence at extreme levels, the extreme value index θ ∈ [0,1] is the primary measure
of short-range extremal dependence.
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Following Leadbetter et al (1983), let X1,X2, . . . be a strictly stationary sequence
of random variables that satisfies the D(un) condition and has marginal distribution
function F . Let Mb = max(X1, . . . ,Xb). In the non-degenerate case when θ > 0, for
large b and ub the distribution function Gb of the block maximum Mb is approximately
related to F via

Gb(ub) = P(Mb 6 ub)≈ Fbθ (ub). (1)

Further, if there exist normalizing constants cb and db such that Fb(cbx+db)→ G(x),
as b → ∞, then G(x) is the distribution function of a Generalized Extreme Value
(GEV) distribution. The corresponding result for M∗

b =max(X∗
1 , . . . ,X

∗
n ), where X∗

1 ,X
∗
2 , . . .

are independent variables with distribution function F , gives the limiting distribution
function H(x) = G(x)1/θ . Thus, the limiting distributions of Mb and M∗

b are GEV,
with respective location, scale and shape parameters (µθ ,σθ ,ξ ) and (µ,σ ,ξ ), say,
related by

µθ = µ +σ
(

θ ξ −1
)
/ξ , σθ = σθ ξ . (2)

We consider a block size dependent index (Smith, 1992) θb = − logG(ub)/ log2,
where, without loss of generality, Fb(ub) = 1/2. Thus, θb → θ as b → ∞. We will
only make explicit the dependence of θ on b when necessary. Ancona-Navarrete
and Tawn (2000) (threshold dependent index θ(u)) and Robert et al (2009) (block
size and threshold dependent index θb(ub)) consider similar sub-asymptotic forms.
Unfortunately no general theory exists concerning the rate of convergence to θ of
these quantities. Some of the bias in estimating θ is because θb (or θ(u) or θb(ub)),
rather than θ , is estimated.

As noted by Beirlant et al (2004), ignoring θ leads to (a) underestimation of
marginal quantiles of F implied by inferences about G from block maxima, and (b)
overestimation of quantiles of G implied by inferences about F from, for example,
a threshold-based analysis of raw data. Chavez-Demoulin and Davison (2012) note
that θ contains information about the extent of clustering of extreme events that may
be of great practical importance.

Recent advances in the estimation of θ (Ferro and Segers, 2003; Süveges, 2007;
Süveges and Davison, 2010; Laurini and Tawn, 2003; Robert, 2013) have concen-
trated on threshold methods, based on exceedences of a threshold. The improvement
of maxima methods (Gomes, 1993; Ancona-Navarrete and Tawn, 2000), based on (2)
and described in Section 1.1, has received less attention. We propose a new max-
ima method that is simpler and has much greater statistical efficiency than existing
maxima methods.

1.1 Maxima methods

Parametric maxima methods are based on fitting GEV distributions to two sets of
maxima of b consecutive observations. The first sample Mi, i = 1, . . . ,n is block max-
ima of the original series. The second sample M∗

i , i = 1, . . . ,n is block maxima of
a series obtained by randomizing the index of the original series, to obtain approx-
imately an independent series with the same marginal distribution as the original
sequence. Based on (2), Gomes (1993) fit a GEV(µθ ,σθ ,ξ ) distribution to {M} and
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a GEV(µ ,σ ,ξ ) distribution to {M∗} and construct the estimator θ̂G = (σ̂/σ̂θ )
−1/ξ̃ ,

where ξ̃ = (σ̂ − σ̂θ )/(µ̂ − µ̂θ ). Ancona-Navarrete and Tawn (2000) combine the two
GEV fits into one by maximizing a likelihood (with respect to (µ ,σ ,ξ ,θ)), assuming
that ({M∗}, {M}) are independent. We call the resulting estimator θ̂AT . In one sense
parametric maxima methods are anomalous: other methods of estimating θ do so di-
rectly, without embedding θ in a larger model with nuisance parameters. Northrop
(2005) proposes a semiparametric (SP) maxima estimator. The relationship G = Hθ

is used but no particular parametric form is assumed for G or H.
An undesirable feature concerning existing maxima methods is the need to resam-

ple the original data to produce a sample of block maxima with approximate c.d.f. H.
In Section 2 we show that this is unnecessary: more efficient estimators of θ can be
constructed by comparing G directly to F , without generating pseudo-samples from
H. The theoretical gain in efficiency is quantified, albeit in an idealized situation, in
Appendix A and in Section 2.1 general properties of the semiparametric estimators
are discussed. In Section 2.2 we show that one of these estimators is approximately
an extended version of the blocks estimator of Robert (2009). In Sections 3 and 4
we carry out simulation studies and an extreme value analysis of type 1 on sea-surge
data respectively. The paper is concluded in Section 5 with a discussion and technical
proofs are reported in the Appendix. Computer code to implement this methodology
is available at www.homepages.ucl.ac.uk/~ucakpjn/.

2 Semiparametric maxima estimators of θ

Let X1, . . . ,Xm be strictly stationary sequence of random variables with marginal dis-
tribution function F and extremal index θ . Let M(s, t] = maxs<k6t Xk,nd = ⌊m/b⌋
and ns = m− b+ 1. Consider two sets of block maxima: Y d = {Y d

i , i = 1, . . . ,nd},
where Y d

i = M((i−1)b, ib] (disjoint blocks) and Y s = {Y s
i , i = 1, . . . ,ns}, where Y s

i =
M(i− 1, i+ b− 1] (sliding blocks). We use n as general notation for the size of a
sample of block maxima. Consider, for some s ∈ {0, . . . ,m− b}, Y = M(s,s+ b],
the maximum of any block of b consecutive Xs, and let V = −b logF(Y ). When F
is known and (1) holds then V has an exponential distribution with mean 1/θ . The
maximum likelihood estimator (MLE) of θ based on a random sample V1, . . . ,Vn from
this distribution is θ̂F = n/∑n

i=1 Vi, with variance var(θ̂F) = n2θ 2(n−2)−1(n−1)−2.
Typically F is unknown, so we must use empirical analogues of V . We describe

these using the sliding block maxima Y s. Let Vi = −b logF(Y s
i ), i = 1, . . . ,m−b+1

and let Bi be the set of the Xs that contribute to block maximum Y s
i . By construction,

the b values in Bi cannot exceed block maximum Y s
i . To adjust for this deterministic

effect we use only the m− b values not in Bi to construct the estimator F̂−i of F
applied to Y s

i . Let li = minXk /∈Bi Xk. For y > li we let

F̂−i(y) =
1

m−b+1 ∑
Xk /∈Bi

1(Xk 6 y), (3)

where 1(A) is the indicator function of an event A. F̂−i(Y s
i ) can be expressed in terms

of the rank Ri ∈ {1, . . . ,m− b+ 1} of Y s
i within X1, . . . ,Xm. If Ri = ri then ri − 1 of
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{Xk,k /∈ Bi} are larger than Y s
i and m−b+1− ri of {Xk,k /∈ Bi} are smaller than Y s

i .
Therefore, (3) gives F̂−i(Y s

i ) = (m−b+1−Ri)/(m−b+1). The case Ri = m−b+1
occurs only when Y s

i < li, which is unlikely unless b is small. To ensure positivity of
F̂−i(y) we set F̂−i(y) to 1/(m−b+n+1) if y < li (Dabrowska et al, 1989).

Thus, Y s produces a sample V̂ s
i = −b log F̂−i(Y s

i ), i = 1, . . . ,ns, which are deter-
mined by the respective ranks Ri, i = 1, . . . ,ns. The disjoint block maxima Y d produce
the subsample V̂ d

i = V̂ s
(i−1)b+1, i = 1, . . . ,nd . We expect (as in Robert et al (2009)) that

Y s contains more information about θ than Y d and thus produces a more efficient
estimator of θ .

Consider block maxima Y = (Y1, . . . ,Yn) with order statistics Y ′ and let V̂ =
{V̂i, i = 1, . . . ,n}, where V̂i = −b log F̂−i(Yi). The ranks R = (R1, . . . ,Rn) of Y within
X1, . . . ,Xm convey no information about the distribution of Y ′. Therefore, using a
marginal GEV(µθ ,σθ ,ξ ) model for the ordered block maxima Y ′, the joint likeli-
hood based on Y = (V̂ ,Y ′) factorises as

L(θ ,µθ ,σθ ,ξ ;Y ) = LR(θ ;V̂ )LGEV (µθ ,σθ ,ξ ;Y ′), (4)

so that independent inferences can be made about θ and (µθ ,σθ ,ξ ). We use as an
approximation to LR(θ ;V̂ ), the pseudo-likelihood

Lexp(θ ;V̂ ) = θ n exp

(
−θ

n

∑
i=1

V̂i

)
, (5)

that is, the likelihood that would apply if V̂1, . . . ,V̂n are sampled randomly from an
exponential distribution with mean 1/θ . The disjoint and sliding blocks estimators
for θ are those that maximize the pseudo-likelihood Lexp(θ ;V̂ ), that is,

θ̂d =

(
1
nd

nd

∑
i=1

V̂ d
i

)−1

, θ̂s =

(
1
ns

ns

∑
i=1

V̂ s
i

)−1

. (6)

For convenience we will use θ̂SP to refer to a general estimator of this type.
The pseudo-likelihood (5) is approximate because (1) provides only an approxi-

mate relationship between G and F . Serial dependence in the underlying sequence,
X1, . . . ,Xm is expected, resulting in dependence between the values of V̂ from nearby
disjoint blocks. Use of sliding blocks further complicates matters as successive val-
ues of V̂ s are strongly positively associated. Even if (1) holds and the underlying
sequence is i.i.d., estimation of F from a finite sample introduces a further approxi-
mation. Moreover, the double use of the sample to estimate F and to provide block
maxima, induces dependence between V̂1, . . . ,V̂n that is not negligible asymptotically,
see for example, Robert (2009). Therefore, the expression given for var(θ̂F) at the
start of Section 2 does not apply in either case.

We attempt to make some adjustment for these issues by basing estimates of
uncertainty on information sandwich estimators (White, 1982) of the sampling vari-
ances of the estimators of θ . Details are given in Appendix B. Some unrealistic sim-
plifying assumptions are used, such as observations from distinct blocks being inde-
pendent, so we use as an alternative a block bootstrap (Politis and Romano, 1994). In
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common with other estimators of θ , studying the asymptotic properties of θ̂d and θ̂s
is difficult and we do not attempt such an analysis here.

2.1 Desirable properties of these estimators

The estimator θ̂SP is simple and non-iterative. Appendix A shows that, in an idealized
situation where data can be treated as random samples from the respective models,
it is more efficient than its parametric counterparts. This finding is supported by a
simulation study presented in Section 3. The extremal index measures local depen-
dence in extremes and is independent of the marginal distribution of the process.
Since θ̂SP is determined by the ordering of the ranks of the raw data it is invariant
to marginal transformation, whereas the parametric alternatives are not. In common
with threshold methods, θ is estimated directly, rather than as part of a larger extreme
value model, that is, estimation of extremal dependence and marginal behaviour are
separated. It may be that the assumption (G = Fbθb ) underlying θ̂SP is reasonable for
smaller block sizes than the parametric GEV assumptions. Section 3 gives examples
where the rate of convergence of θb to θ as b → ∞ is O(1/b). Thus, convergence
to G = Fbθ could be relatively fast even if convergence to the limiting GEV form,
which depends on the marginal distribution, is slow. The semiparametric framework
permits the use of a relatively small block size, whereas the parametric alternatives
do not.

2.2 Link to the blocks estimator

The blocks estimator (sometimes called the logs estimator) θ̂B = log Ĝ(u)/b log F̂(u)
(Smith and Weissman, 1994) requires the choice of a threshold u and a block size b.
Robert (2009) extends this idea by using a random threshold, set at a particular sample
quantile. We show that in large samples θ̂d gives approximately the same value as a
combination of blocks estimators, each based on its own local data-dependent thresh-
old. Suppose that we use a set of random thresholds ui = Yi, where Yi, i = 1, . . . ,n are
a sample of block maxima over blocks of length b. We may think of this as using the
data to define a set of local thresholds. Each of the ratios log Ĝ(Yi)/b log F̂(Yi) is an
estimator of θ . We combine these using a ratio estimator

θ̂RB =

1
n

n

∑
i=1

log Ĝ(Yi)

b
1
n

n

∑
i=1

log F̂(Yi)

=

1
n

n

∑
i=1

log Ĝ(Yi)

−1
n

n

∑
i=1

Vi

. (7)

If disjoint blocks are used to construct {Yi} then Ĝ(Y(i)) = i/n and, by Stirling’s
formula, as n → ∞ the numerator of (7) ↓ −1. Therefore, for sufficiently large n, θ̂d ≈
θ̂RB. A potential advantage of maxima estimators over blocks estimators is that all
block maxima contribute information directly to the estimator, regardless of whether
or not they exceed some threshold u.
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2.3 Theoretical comparison with parametric maxima method

The calculations in Appendix A show that, in an idealized situation where data can be
treated as random samples from the respective models, θ̂d has a smaller asymptotic
variance than θ̂AT . The asymptotic variance of θ̂AT depends on the marginal distri-
bution of the raw data, via the shape parameter ξ of the GEV distribution assumed
for block maxima, whereas the asymptotic variance of θ̂d does not. The efficiency of
θ̂AT relative to θ̂d depends on θ and, to a lesser extent, on ξ (see Figure 1) but θ̂AT is
at best 50% efficient (when θ = 1). This is expected because the resampling used to
produce the parametric estimator introduces an extra source of variability.
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Fig. 1 Asymptotic relative efficiency of the parametric maximum likelihood estimator of θ compared
to the semiparametric maximum likelihood estimator for ξ = −0.4 (solid lines), ξ = 0 (dashed line) and
ξ = 0.4 (dotted line).

3 Simulation studies

We present two types of simulation study. The first shows that the conjectured superi-
ority of the SP estimators relative to existing maxima methods is realised in practice
and examines how best to estimate the sampling variability of the former. The sec-
ond compares the performance of the SP estimators to the most efficient threshold
methods.

3.1 Maxima estimators

We compare the SP estimators of θ to the parametric estimators θ̂AT and θ̂G for
different processes, values of θ , marginal distributions and blocks sizes. The pro-
cesses are those for which results are presented in Tables 4-8 of Ancona-Navarrete
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and Tawn (2000). As the general findings are the same in all cases we present re-
sults only for a max-autoregressive (maxAR) process (Davis and Resnick, 1989):
Xi = max{(1−θ)Xi−1,θZi}, where {Zi} and X0 have independent unit Fréchet dis-
tributions. For this process θb = θ +(1−θ)/b (see Appendix C).

We simulate 500 sequences of length m = 4,900 and estimate θb using the semi-
parametric estimators (disjoint and sliding blocks) and θ̂AT and θ̂G for b = 20,70,245
(n = 245,70,20). To examine the impact of marginal distribution we apply θ̂AT and
θ̂G after transformation to Gumbel, Gaussian and exponential margins. In fact the
marginal distribution has a relatively small effect on the overall performance of θ̂AT
and θ̂G so we present results only for Gumbel margins. However, marginal dis-
tribution can have an impact on individual estimates. Figure 2 compares the esti-
mates produced by θ̂AT for a moving maxima process (Xi = max j=0,...,3{α jZi+ j}),
for α j = 1/4, j = 0, . . . ,3, with Gaussian and Gumbel margins. For small b = 20
(n = 245) the agreement is good but for b = 245 (n = 20) there is large disagreement
for some datasets.
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Fig. 2 Estimates θ̂AT based on data simulated from a moving maxima process with α =
(1/4,1/4,1/4,1/4) and θ = 1/4: Gaussian margins against Gumbel margins. Left: b= 20. Right: b= 245.

Table 1 compares the SP estimators to θ̂AT and θ̂G. Naive standard errors are esti-
mated using nθ̂SP(n−2)−1/2(n−1)−1 for the SP estimators and Appendix A for θ̂AT .
For the SP estimators we also estimate adjusted standard errors based on a sandwich
estimator (Appendix B) and bootstrap standard errors based on 100 stationary block
bootstrap resamples (Politis and Romano, 1994) with optimal block length chosen
using Patton et al (2009), implemented using Canty and Ripley (2014) and Hayfield
and Racine (2008). When using disjoint blocks the semiparametric estimator outper-
forms the parametric estimators approximately to the extent suggested by Figure 1.
The use of sliding maxima improves this further. Comparison of the mean standard
errors (SE) with standard deviations (SD) shows that the (non-bootstrap) standard
errors tend to be a little too large, that is, the estimators are less variable than ex-
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b est θb mean RMSE SD SE adj SE boot SE eff
20 d 0.52 0.53 0.028 0.028 0.034 0.033 0.029

s 0.52 0.023 0.023 0.007 0.031 0.024 1.45
AT 0.53 0.037 0.037 0.050 0.56
G 0.52 0.038 0.038 0.54

70 d 0.51 0.51 0.050 0.050 0.061 0.060 0.054
s 0.50 0.043 0.043 0.007 0.052 0.045 1.38
AT 0.51 0.071 0.071 0.091 0.50
G 0.50 0.075 0.075 0.45

245 d 0.50 0.51 0.105 0.105 0.114 0.111 0.108
s 0.50 0.088 0.088 0.007 0.088 0.087 1.42
AT 0.54 0.152 0.148 0.179 0.50
G 0.51 0.159 0.159 0.44

Table 1 MaxAR process with θ=0.5. Estimators - d: θ̂d ; s: θ̂s; AT: θ̂AT ; G: θ̂G. Sampling distribution
mean, root mean square error (RMSE) and standard deviation (SD), mean standard error (SE), sandwich
adjusted standard error (adj SE) and boostrap standard error (boot SE) and efficiency (ratio of variances)
relative to θ̂d (eff).

pected. In general the bootstrap standard errors are more reliable. As expected, for
the estimators based on sliding blocks the naive standard errors are far too small.

3.2 SP maxima, blocks, intervals and K-gaps estimators of θ

We compare the performance of the SP maxima estimators to the blocks estima-
tor of Smith and Weissman (1994) and to two of the leading threshold-based esti-
mators: the intervals estimator of Ferro and Segers (2003) and the K-gaps estima-
tor of Süveges and Davison (2010). The general form of the blocks estimator is
θ̂B = log Ĝ(u)/b log F̂(u), for some threshold u and block size b. We consider two
blocks estimators: the disjoint blocks estimator uses the empirical distribution func-
tion of {Y d

i } to estimate G, whereas the sliding blocks estimator uses the empirical
distribution function of {Y s

i }.
The threshold-based estimators are based on the marginal distribution of the time

T (un) = min{k > 1 : Xk+1 > un | X1 > un} between two exceedances of threshold
un. Under mild conditions, as n → ∞ the rescaled K-gap {1−F(un)}max{T (un)−
K,0} follows a mixture model: with probability 1−θ the K-gap is zero, otherwise it
has an exponential distribution with mean 1/θ . The intervals estimator is a moment
estimator that (implicitly) uses K = 0. The K-gaps estimator is a maximum likelihood
estimator derived by treating successive K-gaps as independent. Süveges and Davison
(2010) note that in practice it is important to use an appropriate value of K and use
a model misspecification test to assist this choice, and the choice of threshold. Based
on a simulation study, they find that if K is chosen appropriately, then the K-gaps
estimator performs better than its competitors: the intervals estimator and the iterative
weighted least squares estimator (IWLS) of Süveges (2007).
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We repeat the simulation study presented in Figure 2 of Süveges and Davison
(2010). We simulate 1,000 sequences of length n = 30,000 from each of the pro-
cesses: (a) Cauchy AR(1). Xi = ϕXi−1 + Zi with ϕ = 0.7 and Zi standard Cauchy:
θ = 0.3; (b) Pareto AR(2). Xi = ϕ1Xi−1 +ϕ2Xi−2 +Zi, with ϕ1 = 0.95,ϕ2 = 0.89 and
Zi Pareto with tail index 2: θ = 0.25; (c) A Markov chain with Gumbel margins,
a symmetric logistic bivariate distribution for consecutive variables and dependence
parameter r = 2 (Smith, 1992): θ ≈ 0.33. For the intervals and K-gaps estimator we
use thresholds corresponding to the 0.95, 0.96, 0.97, 0.98 and 0.99 empirical quan-
tiles. For the SP maxima and blocks estimators we use block sizes 40, 60, 80, 100,
120, 150 and 200. The blocks estimators require a block size and a threshold to be
set. To facilitate comparsion of the SP maxima and blocks estimators we use common
block sizes and, for a given block size, we use as the threshold the sample median of
the disjoint block maxima for the disjoint blocks estimator and the sample median of
the sliding block maxima for the sliding blocks estimator.

Comparison of maxima estimators and threshold estimators is complicated by the
different nature of the tuning parameters involved: block size for maxima estimators
and threshold for threshold-based estimators. To provide a tentative basis for compar-
ison we appeal to a result from Smith (1987), who, for distributions in the domain of
attraction of the Gumbel distribution, compared the mean squared error of prediction
of extreme quantiles resulting from analyses of block maxima and analyses of thresh-
old exceedances. Smith found that the optimal sample size (number of exceedances)
in the latter is almost double the optimal sample size (number of block maxima) in
the former. Therefore, in displaying the results of the simulation study we use plotting
scales that match a proportion of exceedances p with a block size of 2/p.

In the top three rows of Figure 3 the estimated median relative bias (MRB), stan-
dard deviation (SD) and root mean squared error (RMSE) of the sliding blocks ver-
sions of the SP maxima and blocks estimators are compared with the threshold-based
estimators. For the K-gaps estimator we plot results for the (process-dependent) op-
timal K determined by Süveges and Davison (2010) (1 for the Cauchy AR(1), 6 for
the Pareto AR(2) and 5 for the Markov chain) and for the two values of K closest to
the optimal value.

Bias can be attributed to two sources: lack of convergence of θb (or θ(u)) to θ
and bias in estimation of θb (or θ(u)). The former depends on the process and if
convergence is slow then the bias may be a strong determinant of the performance
of estimators of θ even for long sequences of data. This seems to be the case for the
Pareto AR(2), where the RMSE plot mirrors the MRB plot. For the Cauchy AR(1)
(and to a lesser extent for the Markov chain) the biases are smaller so that the relative
variabilities of estimators have more influence on the RMSE. For the Pareto AR(2)
the K-gaps estimator suffers from relatively large bias and variability if K is chosen to
be slightly too small (K = 5), but for the other two processes the performance of the
K-gaps estimator is quite insensitive to small deviations from the optimal K. Although
choices of block size and threshold make direct comparison difficult, the SP maxima
estimators are competitive with the threshold-based estimators. They have relatively
large bias for small block sizes but their low sampling variability results in a relatively
small RMSE for larger block sizes. The SP maxima estimator has lower SD than the
blocks estimator, but, particularly for the smaller block sizes, a larger MRB. The SP



10 Paul J. Northrop

F

F

F

F

F
1 1 1 1 1

2

2

2
2

2

3

3

3

3

3

−
0.

04
−

0.
02

0.
00

0.
02

0.95 0.96 0.97 0.98 0.99

N
N

N N
N N N

B
B

B
B B B B

F
F F

F F

5 5 5
5

5

6
6

6
6 6

7
7

7
7 7

0.
1

0.
2

0.
3

0.
4

0.95 0.96 0.97 0.98 0.99

N

N

N
N

N
N N

B

B

B
B B

B
B

F F F F F

4
4

4
4

4

5
5

5
5

5

6
6

6
6

6

−
0.

04
0.

00
0.

04
0.

08

0.95 0.96 0.97 0.98 0.99

N

N

N
N N

N
N

B

B
B

B
B B B

Cauchy AR(1) Pareto AR(2) Markov chain

R
M

S
E

re
la

tiv
e 

bi
as

S
D

R
M

S
E

F
F

F

F

F

1 1
1

1

1

2 2
2

2

2

3 3
3

3

3

0.
01

0
0.

02
0

0.
03

0
0.

04
0

N
N

N
N

N
N

N

B
B

B
B

B
B

B

F
F

F

F

F

5
5

5

5

5

6
6

6

6

6

7
7

7

7

7

0.
01

0
0.

02
0

0.
03

0
0.

04
0

N
N

N
N

N
N

N

B
B

B
B

B
B

B

F
F

F

F

F

4
4

4

4

4

5
5

5

5

5

6
6

6

6

6

0.
01

5
0.

02
5

0.
03

5
0.

04
5

N
N

N
N

N
N

N

B

B
B

B
B

B

B

F F
F

F

F

1 1
1

1

1

2 2
2

2

2

3
3 3

3

3

N N N N N
N

N

B
B

B
B

B

B

B

0.
01

5
0.

02
5

0.
03

5

F F F F
F

5 5 5
5

5

6
6

6
6

6

7
7

7
7

7

N

N

N
N

N N N

B

B
B

B B B B

0.
02

0.
06

0.
10

F
F

F

F

F

4
4

4

4

4

5
5

5

5

5

6 6
6

6

6N

N
N N N N

N

B

B B
B

B
B

B

0.
01

5
0.

02
5

0.
03

5
0.

04
5

0.
01

5
0.

02
0

0.
02

5
0.

03
0

N
N N

N
N

N

N

N N N
N

N
N

N

B

B

B

B

B

B

B

B
B

B

B
B

B

B

40 60 80 100 150 200120

0.
05

0.
07

0.
09

N

N

N

N
N

N N

N

N

N

N
N

N
N

B

B

B
B B B B

B

B

B
B

B B B

40 60 80 100 150 200120

0.
02

5
0.

03
0

0.
03

5
0.

04
0

N

N

N N N

N

N

N

N

N
N N

N

N

B

B B

B
B

B

B

B

B B

B
B

B

B

40 60 80 100 150 200120

Fig. 3 Top three rows: relative bias, standard deviation and root mean squared error (RMSE) of the sliding
blocks SP (labelled N) and blocks (labelled B) estimators, the K-gaps estimator (labels give the value of K;
solid line for the optimal K, dotted lines otherwise), the intervals estimator (F). Bottom row: RMSE of the
SP maxima and blocks estimators (dotted lines for disjoint maxima, solid lines for sliding maxima). Left:
Cauchy AR(1); middle: Pareto AR(2); right: symmetric logistic Markov chain. The upper axis labels give
the non-exceedance probability for the threshold-based estimators. The lower axis labels give the block
size for the SP maxima and blocks estimators.

maxima estimator uses the data to set local thresholds, whereas the blocks estimator
has a constant threshold, which here we have set at the median of the local thresholds.
In this instance, the net effect is that the SP estimator trades a reduction in SD for an
increase in MRB.

In the bottom row of Figure 3 the disjoint blocks and sliding blocks version of the
SP maxima and blocks estimators are compared. The main advantage of using sliding
blocks is a reduction in SD. For the Cauchy AR(1) and the Markov chain this effect
is apparent in the RMSE. However, for the Pareto AR(2), where bias dominates, the
improvement in RMSE is minimal.

Figure 4 shows the results of extending the study to three more processes: a Gaus-
sian AR(1) process: (d) Xi = αXi−1 + εi, where {ε1} are independent N(0,1−α2),
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X0 ∼ N(0,1) and we assume |α| < 1 for second-order stationarity. This process ex-
hibits serial dependence but limiting extremal independence because θ = 1 (Leadbet-
ter et al, 1983, chapter 4); (e) the maxAR process of Section 3.1: θ = 0.5; (f) a moving
maxima process (Deheuvels, 1983): Xi = max j=0,...,p{α jZi+ j}, where α0 > 0,αp > 0
and α j > 0, for j = 1, . . . , p−1, with ∑p

j=0 αi = 1. θ = maxi=0,...,p(αi). We consider
the case α = (0.3,0.2,0.2,0.3) (Ancona-Navarrete and Tawn, 2000) so that θ = 0.3.
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Fig. 4 Top three rows: relative bias, standard deviation and root mean squared error (RMSE) of the sliding
blocks SP (labelled N) and blocks (labelled B) estimators, the K-gaps estimator (labels give the value of K;
solid line for the optimal K, dotted lines otherwise), the intervals estimator (F). Bottom row: RMSE of the
SP maxima and blocks estimators (dotted lines for disjoint maxima, solid lines for sliding maxima). Left:
Gaussian AR(1); middle: maxAR; right: moving maxima. The upper axis labels give the non-exceedance
probability for the threshold-based estimators. The lower axis labels give the block size for the SP maxima
and blocks estimators.

The findings echo those from Figure 3. The SP estimators are competitive with
the threshold estimators and the K-gaps estimator only performs better than the other
estimators if K is selected appropriately. In the maxAR and moving maxima examples
the SP estimator fares no worse than the blocks estimator in terms of MRB and better



12 Paul J. Northrop

in terms of SD. In the Gaussian AR(1) case all estimators underestimate the limiting
value θ = 1 to the extent that bias dominates the RMSE. The blocks estimators have
less bias than the other estimators and therefore have the lowest RMSE of all the
estimators.

4 Example: Newlyn sea-surges

Figure 5 shows a series of 2894 measurements of sea-surge heights taken just off the
coast at Newlyn, Cornwall, UK, over the period 1971–1976. The data are the maxi-
mum hourly surge heights over periods of 15 hours (see Coles (1991)). Fawcett and
Walshaw (2012) used several estimators, including the parametric maxima estima-
tor of Gomes (1993), to estimate the extremal index of the underlying process using
several estimators. We use θ̂SP to estimate the extremal index of this series, based
on series of disjoint and sliding block maxima. We also fit a GEV distribution to the
block maxima in order to make inferences about extreme quantiles of the marginal
distribution of sea-surge heights at Newlyn.
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Fig. 5 Time series plot of 2894 maximum sea-surges measured at Newlyn, Cornwall, UK over the period
1971–1976. The observations are the maximum hourly sea-surge heights over contiguous 15-hour time
periods.

The top left plot in Figure 6 shows θ̂SP against block size b based disjoint and
sliding maxima. Also given are 95% confidence intervals for θ , based on (vertically-
scaled) adjusted log-likelihoods, see Chandler and Bate (2007, page 182). The other
plots in Figure 6 show maximum likelihood estimates for GEV distributions fitted to
the disjoint and sliding maxima, with, for the disjoint maxima only, symmetric 95%
confidence intervals. As the location and scale of the GEV distribution depend on b
we have plotted estimates of the GEV parameters implied for a block size of 1, i.e.
the marginal distribution of the data.



Semiparametric estimation of the extremal index 13

0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

block size

θ̂

0 10 20 30 40 50 60

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

block size

lo
ca

tio
n

0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

0.25

block size

sc
al

e

0 10 20 30 40 50 60

−0.2

−0.1

0.0

0.1

0.2

block size

sh
ap

e

Fig. 6 Block size selection for the Newlyn data. Top left: estimates and 95% confidence intervals for
θ based on disjoint maxima (solid lines) and sliding maxima (dashed lines). Other plots: estimates of
marginal (b= 1) GEV parameters based on disjoint block maxima (solid lines) and sliding maxima (dashed
lines). Symmetric 95% confidence intervals are also given for the disjoint maxima.

For these data b = 20 is reasonable. Table 2 shows estimates, standard errors and
95% confidence intervals for θ using this block size. The bootstrap estimates result
from the approach detailed in Section 3.1 using 10,000 resamples. The accuracy of
bootstrap confidence intervals can depend on the parameter scale chosen. Following
Davison and Hinkley (1997, Section 5.2) we seek a monotone variance-stabilizing
transformation h(θ), with the property that var[h(θ̂SP)] is approximately constant
with respect to h(θ). It is also often the case that bootstrap estimates of h(θ) are closer
to being normally distributed than estimates of θ . From the start of Section 2 we have
var(θ̂F) ∝ θ 2, which suggests that we use h(θ) = logθ . The expression for var(θ̂F)
is not correct in practice, but it may suggest an effective variance-stabilizating trans-
formation. We construct bootstrap confidence intervals for logθ and then transform
them back to the θ -scale. Basic confidence intervals are given in Table 2, but as the
bootstrap distributions of log θ̂SP are indeed very close to being normally distributed
these intervals are very similar to normal intervals. Bootstrap bias-adjustment results
in a slightly smaller point estimate of θ .

Following Gomes (1993), Fawcett and Walshaw (2012) used the larger block size√
m≈ 54, obtaining an estimate of 0.282 with a standard error of 0.206. For this block

size the θ̂SP compares favourably, with estimates (and adjusted standard errors) of
0.269 (0.044) using disjoint blocks and 0.245 (0.040) using sliding blocks. The boot-
strap standard errors are 0.047 and 0.039 respectively. Fawcett and Walshaw (2012)
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also use the intervals estimator of Ferro and Segers (2003), based on a threshold of
0.3m selected using a mean residual life plot, obtaining 0.223 (0.050). The standard
errors in Table 2 suggest that, at least for these data, θ̂SP is competitive with the in-
tervals estimator when both approaches are allowed to select their tuning parameter
(block size for θ̂SP and threshold for the intervals estimator) using the observed data.

θ̂ SE(θ̂ ) 95% CI

disjoint
naive 0.241 0.020 (0.204, 0.283)
adjusted 0.241 0.026 (0.194, 0.295)
bootstrap 0.219 0.027 (0.179, 0.265)

sliding
adjusted 0.238 0.028 (0.188, 0.296)
bootstrap 0.213 0.023 (0.180, 0.251)

Table 2 Estimates, standard errors and 95% confidence intervals for the extremal index θ of the Newlyn
data using (disjoint or sliding) blocks of size of 20. Naive: independence log-likelihood; adjusted: adjusted
log-likelihood; bootstrap: stationary block bootstrap.

Figure 7 shows estimates and 95% confidence intervals of high quantiles of the
marginal distribution of sea-surge height. The sum of the adjusted log-likelihood for
θ based on sliding maxima and the log-likelihood for the GEV parameters based
on disjoint maxima is profiled with respect to the desired quantile. The estimates
(and standard errors) of the GEV parameters µθ ,σθ and ξ are 0.192 (0.012), 0.130
(0.0085) and −0.0546 (0.056) respectively. The underestimation that would result
from assuming that θ = 1 is clear.
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Fig. 7 Estimates and 95% confidence intervals for the 100(1− p)% marginal quantile xp against 1/p.
Solid lines: inferring θ using θ̂SP based on sliding maxima. Dashed lines: using θ = 1.
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5 Discussion

The semiparametric maxima estimators proposed in this paper improve substantially
the existing maxima methods of estimating the extremal index, to the extent that they
are competitive with threshold methods. The simulation studies in Section 3 showed
that there is benefit to using sliding blocks rather than disjoint blocks. Apart from
the point estimates in Figure 6 we did not use sliding blocks for the GEV analysis in
Section 4. As noted by Ferro and Pezzulli (2005), who employ an approach that is
similar to sliding blocks, further research is required to determine how best to provide
estimates of uncertainty from analyses based on sliding blocks.

If the main extreme value analysis is threshold-based then, once the threshold
has been set, the intervals estimators and the IWLS estimator do not require another
tuning parameter to be specified. In contrast the K-gaps estimator and the SP maxima
estimators do. However, Süveges and Davison (2010) shows that there is potential
benefit in choosing K empirically, jointly with the threshold. Future work could seek
to optimize the choice of block size b empirically.
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Appendix A: asymptotic efficiencies of semiparametric and parametric estima-
tors using disjoint blocks

The semiparametric estimator θ̂SP is based on a sample V1, . . . ,Vn treated as randomly
sampled from an exponential distribution with mean 1/θ . The log-likelihood for a
single observation v is l(θ) = logθ + θv. Thus, the asymptotic precision of θ̂SP is
−l′′(θ) = 1/θ 2.

The parametric estimator θ̂AT of Ancona-Navarrete and Tawn (2000) treats as in-
dependent two random samples, each of size n. Sample 1 is from a GEV(µ ,σ ,ξ )
distribution and sample 2 is from a GEV(µθ ,σθ ,ξ ) distribution. Here we take n = 1.
Let I(µ ,σ ,ξ ) denote the Fisher information matrix for a sample of size 1 from a
GEV(µ,σ ,ξ ) distribution. This matrix can be inferred from Prescott and Walden
(1980), who use a shape parameter k =−ξ . The calculation of the asymptotic preci-
sion of θ̂AT requires that ξ >−1/2 (Smith, 1985).

Let I1 and I2 denote the respective Fisher information matrices for the parameter
vector (θ ,µ ,σ ,ξ ) from samples 1 and 2. I1 is given by

I1 =

(
0 000

000T I(µ,σ ,ξ )

)
,
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where 000 = (0,0,0). Let ψψψ = (µθ ,σθ ,ξ ) and ηηη = (θ ,µ,σ ,ξ ) and ∆i j = ∂ψψψ i/∂ηηη j. I2

is given by I2 = ∆ T I(µθ ,σθ ,ξ )∆ . The total information is I = I1 + I2, giving

I =
(

1/θ 2 www
wwwT IGEV

)
,

where www is a vector with non-zero entries and IGEV is the total Fisher information for
(µ ,σ ,ξ ). Block inversion of I gives the asymptotic precision of θ̂AT as

prec(θ̂AT ) = 1/θ 2 −wwwI−1
GEV wwwT > 1/θ 2 = prec(θ̂MLE),

the inequality following because I−1
GEV is positive definite.

Appendix B: estimating the sampling variances

The sandwich estimator of the sampling variance of θ̂ is J (θ̂)−1V̂ (θ̂)J (θ̂)−1,
where the observed information J (θ) = n/θ 2 and V̂ (θ) is an estimate of the vari-
ance of the score function. Using the notation defined in Section 2 the log-likelihood
is

l(θ) =
n

∑
i=1

(
logθ −θ V̂i

)
.

The score function is

U(θ) =
n

∑
i=1

Ui(θ) =
n

∑
i=1

(
θ−1 −V̂i

)
= θ−1

n

∑
i=1

(
1−θ V̂i

)
.

The variance V (θ) = var{U(θ)} of the score satisfies

θ 2 V (θ) = var

{
n

∑
i=1

(
1−θ V̂i

)}
,

=
n

∑
i=1

var
(

1−θ V̂i

)
+2

n

∑
j=2

j−1

∑
i=1

cov
(

1−θ V̂i,1−θV̂j

)
. (8)

The first term of (8) is estimated by ∑n
i=1(1− θ̂ V̂i)

2. To estimate the covariance in
the second term we ignore the possibility that either {Yi < li} or {Yj < l j}, as their
contributions to the covariance are negligible. Let

V̂i ≈−b log
{

1
m−b+1

(Si +Ti)

}
,

V̂j ≈−b log
{

1
m−b+1

(S j +Tj)

}
,

where

Si = ∑
k/∈Bi∪B j

I(Xk 6 Yi), S j = ∑
k/∈Bi∪B j

I(Xk 6 Yj),

Ti = ∑
k∈B j∩Bc

i

I(Xk 6 Yi), Tj = ∑
k∈Bi∩Bc

j

I(Xk 6 Yj).
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In the following we make the simplifying assumption that {Xk,k∈Bi} q {Xk,k ∈B j},
for i ̸= j, that is, data from distinct blocks are independent. Under this assumption,
if disjoint blocks are used then Si q S j, Si q Tj and S j q Ti, because in each case a
block of Xs, and/or the maximum of these Xs, are compared to Xs from two other
disjoint blocks. Then

cov
(

1−θV̂i,1−θV̂j

)
= θ 2cov(V̂i,V̂j),

≈ θ 2b2cov
{

1
m−b+1

(Si+Ti)−1,
1

m−b+1
(S j+Tj)−1

}
,

=
θ 2b2

(m−b+1)2 cov(Ti,Tj),

where we have used logx ≈ x−1 for x ≈ 1. If {Yi >Yj} then Ti = b and Tj < b and if
{Yi < Yj} then Ti < b and Tj = b. Thus, (Ti −b)(Tj −b) = 0 and

cov(Ti,Tj) = cov(Ti −b,Tj −b),

= E [(Ti −b)(Tj −b)]−E(Ti −b)E(Tj −b),

= − [E(T )−b]2 ,

where E(T ) = bP(X 6 Y ) = b2θ/(bθ +1). As n(n−1)/2 pairs of blocks contribute
to the second term of (8) it is estimated by −n(n−1)θ̂ 2b4/(m−b+1)2(bθ̂ +1)2.

For sliding blocks we note that the second term of (8) contains contributions from
pairs of blocks that overlap and (n−b)(n−b+1)/2 pairs that do not. For the latter
the total contribution is estimated by −(n−b)(n−b+1)θ̂ 2b4/(m−b+1)2(bθ̂ +1)2.
We estimate the total contribution of the former by 2∑b−1

k=1 ∑n−k
i=1 Ui(θ̂)Ui+k(θ̂). Thus,

the estimators of V (θ) using disjoint and sliding blocks are respectively

V̂d(θ̂) = θ̂−2

{
n

∑
i=1

(1− θ̂ V̂i)
2 − n(n−1)θ̂ 2b4

(m−b+1)2(bθ̂ +1)2

}

and

V̂s(θ̂) = θ̂−2

{
n

∑
i=1

(1− θ̂ V̂i)
2 +2

b−1

∑
k=1

n−k

∑
i=1

Ui(θ̂)Ui+k(θ̂)−
(n−b)(n−b+1)θ̂ 2b4

(m−b+1)2(bθ̂ +1)2

}
.

In practice the contribution to the score function from the largest block maximum
Y(n) is non-random, because V̂(n) = −b log[(m− b)/(m− b+ 1)]. We adjust for this
by removing from V̂d(θ̂) and V̂s(θ̂) contributions from V̂(n).

Appendix C: θb for two processes

In the following Xi, i = 1,2, . . . are independent unit Fréchet random variables with
P(X 6 x) = exp(−1/x), for x > 0. Thus, Fb(ub) = 1/2 implies that ub = b/ log2.
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The maxAR process. Following (Beirlant et al, 2004, chapter 10)

G(x) = P(X1 6 x, . . . ,Xb 6 x),

= P(X1 6 x,θZ2 6 x, . . . ,θZb 6 x),

= exp{− [1+θ(b−1)]/x} .

Therefore, θb =− logG(ub)/ log2 = θ +(1−θ)/b.
The moving maxima process. Let α+

i =max(α0, . . . ,αi) and α−
i =max(αp, . . . ,αi).

Then, for b > p,

G(x) = P(X1 6 x, . . . ,Xb 6 x),

=P

(
Z16

x
α+

0
, . . . ,Zp6

x
α+

p−1
,Zp+16

x
α+

p
, . . . ,Zb6

x
α+

p
,Zb+16

x
α−

1
, . . . ,Zp+b6

x
α−

p

)
,

= exp

{
−

(
p−1

∑
i=0

α+
i +(b− p)α+

p +
p

∑
i=1

α−
i

)/
x

}
.

Therefore,

θb = α+
p +

1
b

(
p−1

∑
i=0

α+
i +

p

∑
i=1

α−
i − pα+

p

)
= θ + c/b,

where 1−θ 6 c 6 pθ . The lower bound is achieved if j = argmaxi{αi} /∈ {0, p} and
αi = (1− θ)/p for i ̸= j, or if {αi} are monotonic in i, and the upper bound when
α0 = αp = θ .
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