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Quantitative Mapping of the Per-Axon Diffusion
Coefficients in Brain White Matter

Enrico Kaden,1* Frithjof Kruggel,2 and Daniel C. Alexander1

Purpose: This article presents a simple method for estimating
the effective diffusion coefficients parallel and perpendicular to

the axons unconfounded by the intravoxel fiber orientation dis-
tribution. We also call these parameters the per-axon or micro-
scopic diffusion coefficients.

Theory and Methods: Diffusion MR imaging is used to probe
the underlying tissue material. The key observation is that for

a fixed b-value the spherical mean of the diffusion signal over
the gradient directions does not depend on the axon orienta-
tion distribution. By exploiting this invariance property, we pro-

pose a simple, fast, and robust estimator of the per-axon
diffusion coefficients, which we refer to as the spherical mean
technique.

Results: We demonstrate quantitative maps of the axon-scale
diffusion process, which has factored out the effects due to

fiber dispersion and crossing, in human brain white matter.
These microscopic diffusion coefficients are estimated in vivo
using a widely available off-the-shelf pulse sequence featuring

multiple b-shells and high-angular gradient resolution.
Conclusion: The estimation of the per-axon diffusion coeffi-

cients is essential for the accurate recovery of the fiber orien-
tation distribution. In addition, the spherical mean technique
enables us to discriminate microscopic tissue features from

fiber dispersion, which potentially improves the sensitivity and/
or specificity to various neurological conditions. Magn Reson
Med 000:000–000, 2015. VC 2015 The Authors. Magnetic
Resonance in Medicine published by Wiley Periodicals,
Inc. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the
original work is properly cited.
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INTRODUCTION

Today diffusion MR experiments are the method of choice
for assessing the microscopic fiber anatomy noninva-

sively. The measured signal is sensitive to tissue proper-
ties in the range of few micrometers, such as the axon
caliber, the degree of myelination, and the interaxonal
space, averaged over a large population of microenviron-
ments with potentially complex orientation distribution.
The past years have seen considerable effort go into the
development of biophysical models for estimating these
structural tissue features, for example, the AxCaliber
framework (1,2) and the ActiveAx technique (3). A limita-
tion of the previous studies is that the intravoxel axon
population is assumed to consist of a single fiber bundle
and that the axons within this bundle have the same ori-
entation, which is typically not the case. Even in the cor-
pus callosum the directional architecture is far from
homogeneous (4,5). The transcallosal fibers do not only
link homotopic brain regions, but also heterotopic cortical
areas, thus do not run parallel to each other, ultimately
leading to complex orientation distributions (6). Further-
more, the presence of axon undulation, which is sup-
posed to cope with mechanical tension such as pulsation,
in other brain regions with eye movement and locomotion
(7), gives rise to significant orientation dispersion, whose
potential effect on the diffusion signal was recently dem-
onstrated in a simulation study (8). Lastly, the callosal
fibers may be arched on the millimeter voxel scale, in
many instances apparent in the midsagittal plane.

To address the directional heterogeneity of white mat-
ter, we first model the diffusion signal of a small fiber
segment up to its orientation. The spherical convolution
of this impulse response function with the axon orienta-
tion distribution then yields the MR signal observable on
the voxel scale (9). Based on a parametric spherical
deconvolution approach (10), the assumption of a single
fiber orientation that underpins previous methods was
recently relaxed by allowing a Watson density of axon
orientations to describe fiber dispersion (11,12). However,
the NODDI technique models only single fiber bundles
even though strong evidence suggests that the majority of
white matter regions features multiple fiber bundles
crossing within the voxels (10,13–15). Another potential
limitation of NODDI and related methods is the assump-
tion that the diffusion coefficient parallel to the fibers is
fixed and known. Similarly, Jespersen et al. (16) devel-
oped a nervous tissue model to estimate the per-axon/
dendrite diffusion coefficients, which is also based on a
mathematical model of the fiber orientation distribution,
namely a spherical harmonic representation. This post-
mortem study of neonatal baboon brain, which used an
MR dataset with a high signal-to-noise ratio (SNR), trun-
cated the harmonic series expansion at an unduly low
level to minimize the number of model parameters.

Alternatively, we may use a complex gradient
sequence to recover the per-axon diffusion coefficients
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in the presence of fiber dispersion and crossing. Double
or multiple pulsed-gradient-field experiments (17–19),
which encode Brownian motion with different gradient
directions in two or more time periods, can detect micro-
scopic diffusion anisotropy. See also Refs. (20) and (21)
for two comprehensive reviews. Various anisotropy met-
rics, such as compartment eccentricity (22), were pro-
posed, which are estimated from the signal differences
we observe in dependence on the angle(s) between two
(or more) gradient directions. A recent in vivo study (23)
mapped microscopic anisotropy indices in human brain
white matter, which are invariant with respect to the
predominant fiber orientation. Furthermore, isotropic
diffusion weighting based on magic-angle q-vector spin-
ning (24) was proposed to factor out the effects due to
orientation dispersion and to estimate the microscopic
fractional anisotropy. To date, however, these noncon-
ventional pulse sequences are not provided by the scan-
ner vendors. The echo time is typically much longer
than 100 ms, thus deteriorating the SNR and/or spatial
resolution. A dense sampling of the high-dimensional
measurement space is required, especially for arbitrary,
not necessarily uniform orientation distributions, which
results in a long acquisition time that makes clinical
usage rather difficult.

In this article, to factor out the effects due to fiber dis-
persion and crossing ubiquitous in brain white matter,
we shall use neither prior knowledge about the fiber ori-
entation distribution (e.g., Dirac measure, single Watson
density, spherical-harmonics model) nor complex diffu-
sion sequences with multiple gradient pulses and magic-
angle spinning waveforms. Rather, the method we pro-
pose to quantify the per-axon diffusion process and
henceforth call the spherical mean technique (SMT) is
based on the insight that for a fixed b-value the spherical
mean of the diffusion signal over the gradient directions
does not depend on the fiber orientation distribution. In
particular, the mean signal is only a function of the dif-
fusion signal of individual axons. This approach is
closely related to the powder average, which can be per-
formed in two different ways, that is, by mixing the sam-
ple or by measuring the signal from all directions while
keeping the other sequence parameters, hence the diffu-
sion weighting factor, constant (25–28). The presented
technique can be easily adopted in the clinical domain,
as it uses conventional pulse sequences featuring multi-
ple b-values and gradient directions. We have shown
preliminary results in Ref. (29). The gain will be twofold.
First, the specification of the impulse response function
is essential for the quantitative recovery of the axon ori-
entation distribution, which is used by tractography
algorithms to reconstruct the fiber pathways in the brain
(30,31). Second, the per-axon diffusion coefficients are
simple-to-estimate markers sensitive to the underlying
fiber microanatomy, such as the axon caliber, the degree
of myelination, and the space between the fibers, that
are not confounded by the orientational structure like
the fractional anisotropy from the standard tensor
model (32).

This article is organized as follows. We start with a
brief introduction of the spherical convolution model
(9,13,14). For general response functions it is shown that,

when the b-value is fixed, the mean signal over the gradi-
ent directions equals the spherical mean of the impulse
response irrespective of the fiber orientation distribution.
By exploiting this invariance property, we propose a sim-
ple, fast, and robust estimator of the microscopic diffusion
process. The diffusion signal of individual axons is here
modeled using a second-order approximation. The Results
section carries out a comprehensive simulation study and
demonstrates the in vivo quantification of the per-axon
diffusion coefficients in the cerebral white matter without
prior knowledge of the fiber orientation distribution. This
report concludes with a discussion of SMT, including an
outlook for future work.

THEORY

Biophysical Model

White matter tissue can be divided into an intracellular
domain and extracellular space. The former component
consists of axons, which may be strengthened by myelin
sheath and are organized in bundles called fascicles, and
glial cells, for example, oligodendrocytes, neurolemmo-
cytes, and astrocytes, while the latter describes the space
that separates the brain cells and is filled with intersti-
tial fluid containing macromolecules of the extracellular
matrix. Here, we start with a model for the diffusion sig-
nal of individual fibers. Consider the infinitesimal neigh-
borhood of an axon oriented by the tangent vector
v 2 S2, where S2 ¼ fv 2 R3 : jjvjj ¼ 1g denotes the two-
dimensional unit sphere. If the axon pathways are suffi-
ciently smooth, a fiber section in the micrometer range
resembles an axially symmetric cylinder.

The diffusion signal of an axonal segment including its
typical surrounding volume, which is always present and
consists of glial cells and extracellular space, may be mod-
eled by the impulse response function hbðg;vÞ. b � 0
denotes the diffusion weighting factor and g 2 S2 the nor-
malized gradient direction. Before proceeding, we present
general properties of the impulse response. The diffusion
signal hb of a small fiber section does not depend on its
location within the voxel, as the MR experiment makes no
attempt to encode this spatial information, and thus is
voxel-averaged. The per-axon diffusion signal is a zonal
function with hbðg;vÞ ¼ hbðRg;RvÞ for all orientation-
preserving rotations R 2 SOð3Þ, where SOð3Þ denotes the
special orthogonal group, which implies that hb depends
only on the spherical distance hg;vi 2 ½�1; 1� between any
two points g;v 2 S2. We shall use both notations hbðg;vÞ
¼ hbðhg;viÞ interchangeably. The impulse response is
antipodally symmetric, that is, hbðg;vÞ ¼ hbð�g;vÞ for all
g;v 2 S2, and takes its values in the interval ½0;1�. Hence-
forth, let us assume that the signal hb of an axonal segment
is known up to its orientation v 2 S2.

The fiber orientation distribution p : S2 ! ½0;1� quan-
tifies the relative frequency of specific axon orientations
within a fiber population. This density function is char-
acterized by antipodal symmetry, that is, pðvÞ ¼
pð�vÞ; v 2 S2, non-negativity, that is, pðvÞ � 0; v 2 S2,
and normalization, that is,

R
S2 pðvÞdv ¼ 1 (15). The

spherical convolution of p with the per-axon diffusion
signal hb,

2 Kaden et al.



EbðgÞ
E0
¼
Z

S2

hbðg;vÞpðvÞdv; [1]

yields the observable MR signal on the voxel scale
(9,13,14). EbðgÞ is the signal with the diffusion encoding
b � 0 and g 2 S2, while E0 denotes the signal in the
absence of diffusion weighting, which is required for
normalizing the T2-contrast. Finally, the diffusion signal
ebðgÞ ¼ EbðgÞ=E0 is antipodally symmetric and takes its
values in ½0; 1�. For a modern measure-theoretic perspec-
tive we refer the reader to Kaden and Kruggel (33).

Spherical Mean Technique

Thus far, we have assumed that the diffusion signal of a
fiber segment is known, which is, however, not the case.
To estimate the impulse response without prior knowl-
edge about the tangential distribution of the axons, we
consider the spherical mean of the diffusion signal over
the gradient directions

�eb ¼
1

4p

Z
S2

ebðgÞdg; [2]

where all other sequence parameters, in particular the
diffusion weighting factor b � 0, are fixed. The key
insight is that the mean signal �eb is invariant with
respect to the fiber orientation distribution. To see this,
we first show that the spherical mean of the response
function, that is, the diffusion signal of an axonal
segment,

�hb ¼
1

4p

Z
S2

hbðg;vÞdg [3]

does not depend on the fiber orientation v 2 S2. For two
arbitrarily chosen orientations v1;v2 2 S2 we can always
find an orientation-preserving rotation R 2 SOð3Þ with
v1 ¼ Rv2. Therefore, it holds

1

4p

Z
S2

hbðg;v2Þdg¼ðiÞ 1

4p

Z
S2

hbðRg;Rv2Þdg

¼ 1

4p

Z
S2

hbðRg;v1Þdg ¼ðiiÞ 1

4p

Z
S2

hbðg;v1Þdg;

[4]

as (i) hb depends only on the inner product of its argu-
ments and (ii) integration is translation-invariant with
respect to SOð3Þ.

Next, we show the invariance property in generality.
We substitute the spherical convolution model [1] into
Eq. [2] and change the order of integration, which is jus-
tified according to Fubini’s theorem, recalling that the
response function jhbðg;vÞj � 1 is bounded for all g;v
2 S2 and the surface area of S2 as well as the spherical
integral

R
S2 pðvÞdv ¼ 1 are finite. The inner integral in

�eb ¼
Z

S2

1

4p

Z
S2

hbðg;vÞdg

� �
pðvÞdv ¼ �hb

Z
S2

pðvÞdv [5]

is not a function of x, as demonstrated above, thus gives
the spherical mean �hb of the response function, and our
claim follows. In particular, the mean signal �eb for an
arbitrary fiber orientation distribution equals the spheri-

cal mean �hb of the diffusion signal of a small axonal seg-
ment. Note that we have not used a particular impulse
response, but only properties common to all response
functions. This spherical mean lemma can be shown in a
similar way for the measure-theoretic approach (33). To
compute the spherical mean, it is sufficient to calculate
the mean signal of the impulse response whose orienta-
tion can be chosen arbitrarily, here for convenience
v ¼ ð0;0;1Þt 2 S2. After a transformation into spherical
coordinates and recalling the antipodal symmetry of hb,
the mean diffusion signal takes the form

�eb ¼
Z p=2

0

hbðcosðuÞÞsinðuÞdu; [6]

which is easy to compute. The insight that for a speci-
fied b-value �eb is fully determined by the response func-
tion will enable us to infer the axon microanatomy
without any information about the directional tissue
architecture. We call this method the spherical mean
technique (SMT).

Second-Order Approximation

In this work, we model the diffusion signal of an axonal
segment using a second-order approximation (26), which
may be written as

hbðg;vÞ ¼ exp �bhg;vi2lk
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
longitudinal

exp �bð1� hg;vi2Þl?
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transverse

: [7]

This axially symmetric microscopic tensor model is para-
metrized by lk and l?, which denote the effective diffu-
sion coefficients parallel to a small fiber section and
perpendicular to it, respectively. lk and l? quantify the
voxel-averaged diffusion process inside the axon and in
its characteristic vicinity with the constraint 0 � l? � lk
� lfree because the axonal membranes perpendicular to
the fiber axis v 2 S2 form the major barriers that confine
Brownian motion of water molecules. The upper bound
lfree is given by the bulk diffusivity, which is circa 3:05
mm2=ms at 37�C (34). Equation [7] fulfils the general
properties of an impulse response presented above.
Eventually, the spherical mean of the diffusion signal
with the parametric response model [7] reads

�ebðlk;l?Þ ¼ expð�bl?Þ1F1ð1=2; 3=2;�bðlk � l?ÞÞ

¼ expð�bl?Þ
ffiffiffiffi
p
p

erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðlk � l?Þ

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðlk � l?Þ

p ;
[8]

where 1F1 denotes the confluent hypergeometric func-
tion and erf is the error function. Equation [8] has been
derived before (10,14,35), but was used in a different
context, that is, for the recovery of the fiber orientation
distribution.

METHODS

Experiment Design

The diffusion data analyzed in the present study were
kindly provided by the Human Connectome Project,
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WU-Minn Consortium (HCP Lifespan pilot data, Phase
1a, Washington University, released August 2014, avail-
able online at http://www.humanconnectome.org). The
dataset was acquired on a Siemens 3 T Skyra MRI scan-
ner equipped with a 32-channel phased-array head coil
and a customized SC72 gradient insert featuring a maxi-
mum gradient strength of 100 mT/m (36). A spin-echo
Stejskal–Tanner sequence measured two b-shells of
about 1000 and 2500 s/mm2 with 76 and 75 gradient
directions, respectively, which together with their antip-
odal points are uniformly distributed on the sphere (37).
SMT requires at least two non-zero diffusion weighting
factors for the quantification of the per-axon diffusion
coefficients lk and l?.

Note that lk and l? do not depend only on the micro-
scopic diffusion process, for example, bulk diffusivity,
fiber microgeometry, and observation time, but also on
the MR experiment, that is, the temporal profile of the
diffusion encoding gradients. In particular, two different

pulse sequences with identical b-value may give rise to
different effective diffusion coefficients. Therefore, it is
imperative that the sequence timing, that is, the temporal
profile of the diffusion sensitizing gradients, is kept
fixed, here with echo time of 74.8 ms and repetition time
of 3.67 s, so that the same diffusion propagator is
observed throughout the scan. Only the magnitude jGj,
hence the diffusion weighting factor b, and the direction
g ¼ G=jGj 2 S2 of the time-dependent diffusion encoding
gradients G(t) are altered. Additionally, 10 images with-
out diffusion weighting were measured, which are
evenly distributed across the experiment.

The spin-echo echo-planar scan with nominal flip
angle of 78

�
and refocusing flip angle of 160

�
was per-

formed using a multiband sequence (38–40) with slice
acceleration factor of 3. The diffusion data were acquired
with in-plane phase encoding in both right-to-left and
left-to-right directions. The measurement of 93 slices
with 1.5 mm thickness and a 140 � 120 image matrix

FIG. 1. Simulation of the fiber orienta-
tion distribution using a Dirichlet pro-

cess mixture with bipolar Watson
kernel, which is shown for six samples.

The spherical functions are depicted in
polar coordinates and, because these
functions are antipodally symmetric, it

is sufficient to display them in one
hemisphere. Abbreviations: left (L), right

(R), inferior (I), superior (S), anterior (A),
posterior (P).
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with a field of view of 210 � 180 mm2 (in readout and
phase-encoding direction, respectively) covered the
whole brain, resulting in an isotropic voxel resolution of
1.5 mm. The acquisition time was circa 36 min. After
unaliasing the simultaneously acquired slices channel by
channel (38–40), SENSE1 multiple-coil combination was
applied (41) and the magnitude signal was stored. The
dataset used in the study came from an adult male in the
age group between 25 and 35 years.

Data Preprocessing

The image data were preprocessed using HCP’s Minimal
Preprocessing Pipeline (42,43). This pipeline starts with
intensity normalization across the diffusion scan based on
the zero b-value images. The susceptibility-induced distor-
tions are eliminated using the two images acquired with
reversed phase-encoding polarities (44,45). Further, the
dataset is corrected for eddy-current artefacts and subject
motion, as implemented in the FMRIB Software Library
(46). All corrections are performed in a single resampling
step. In this work, we analyze the diffusion-weighted images
in the native measurement space. The brain is extracted
from the dataset (47) and the image background is masked.

As the MR signal was combined with SENSE1 from
the multiple receive coils, the noise regime of the magni-
tude signal, although data preprocessing may alter its
characteristics to a certain extent, is well described by a
Rician distribution RðE; 1Þ (48). The probability density
function is defined as

fRðS; E; 1Þ ¼ S

12
exp �S2 þ E2

212

� �
I0

SE

12

� �
; [9]

where S 2 ½0;1Þ is the measured noisy signal, E � 0
denotes the true magnitude signal, 1 > 0 characterizes
the noise level, and I0 is the zeroth-order modified Bes-
sel function of the first kind. The mean of the Rician dis-
tribution is higher than the true signal especially for low
SNRs. To minimize potential effects of this noise-
induced bias, we adjust the measured signal as follows

Ê ¼ arg min
E�0

S�
ffiffiffiffiffiffiffiffi
p12

2

r
L1=2 �

E2

212

� � !2

; [10]

where Ê denotes the adjusted signal, the second term on
the right-hand side is the mean of the Rician

FIG. 2. Estimation accuracy of the mean diffusion signal �eb for the
b-values of 1000 and 2500 s/mm2 using the sample mean estima-

tor. The left panel depicts box-and-whisker plots (with 1.5 times
the interquartile range) for the acquisition protocol and various
SNRs. In the right column, the estimated spherical mean of the

diffusion signal is shown for different numbers of gradient direc-
tions. The true mean signals (dotted lines) read f0:503; 0:282g for

f1000; 2500g s/mm2, respectively.

FIG. 3. Estimation accuracy of the per-axon diffusion coefficients
lk and l?. In the left column, the estimated parameters are shown
for the measurement protocol and various SNRs. The right column

depicts box-and-whisker plots (with 1.5 times the interquartile
range) for different numbers of gradient directions per b-value.

The true diffusion coefficients (dotted lines) were set to lk ¼ 2:5
and l? ¼ 0:1 mm2=ms.

FIG. 4. These plots depict, in the axial plane, the spherical mean
�eb of the diffusion signal for the b-values of 1000 and 2500 s/

mm2 using the sample mean estimator.
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distribution, and Ln stands for the nth Laguerre polyno-
mial. 1 is computed as the median of the noise level esti-
mated voxel by voxel from the 10 images without
diffusion weighting using a maximum-likelihood
approach (49), noting that the spatial noise distribution
is approximately uniform over the cerebral white matter
(with an SNR of about 17.5) in the dataset analyzed here.

Sample Mean Estimator

Next, we will quantify the per-axon diffusion coefficients
without prior knowledge of the fiber orientation distribu-
tion. To estimate the spherical mean signal [2], we aver-
age the Rician-noise adjusted diffusion signals acquired
with pairwise different gradient directions for each diffu-
sion weighting factor b separately. These signals have
been normalized by the T2-contrast before, using the MR
signal in the absence of diffusion encoding. The imaging
gradients and nonlinearities in the gradient field give
rise to small spatial variations in the b-value. In the fol-
lowing, we perform the calculations with the average
weighting factor per b-shell and use the nominal values,

in this study 1000 and 2500 s/mm2, to refer to them. The
sample mean êb yields a close approximation of the
spherical mean �eb of the diffusion signal when the gradi-
ent directions and their antipodal points are uniformly
distributed on the sphere. For nonuniform directional
gradient schemes the mean signal may be estimated
using a reproducing kernel Hilbert space technique (50).

In a second step, the model parameters of the impulse
response are determined, here the microscopic diffusion
coefficients lk and l? parallel and perpendicular to an
axonal segment. This parametric estimation of the
response function [7] is performed by using a con-
strained least-squares approach

min
0�l?�lk�lfree

Xn

i¼1

ðêbi
� �ebi

ðlk;l?ÞÞ2 [11]

that fits the mean signal estimates êbi
to the expected

spherical mean �ebi
ðlk;l?Þ formulated in Eq. [8] for a

given set of n diffusion weighting factors bi with
i ¼ f1; . . . ;ng. The per-axon diffusion coefficients lk and
l? are estimated subject to 0 � l? � lk � lfree, where

FIG. 5. The upper two rows map the longitudinal and transverse microscopic diffusion coefficients lk and l? of the axons, shown in the
axial, coronal, and sagittal plane (from left to right). In the bottom panel, the anisotropy index lk=l? of the per-axon diffusion process is
plotted. The estimated parameters have factored out the effects due to the intravoxel fiber orientation distribution.
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lfree denotes the free water diffusivity. Therefore, the
recovered diffusion parameters are ensured to lie within
a physically meaningful range. SMT requires two or
more b-shells (i.e., n � 2) as otherwise the estimation
problem [11] is underdetermined.

RESULTS

Simulations

To demonstrate the reliability of SMT, we simulate fiber
orientation distributions that closely resemble the tissue
geometry of white matter. Here, we use a Dirichlet pro-
cess mixture with bipolar Watson kernel (33) to draw ran-
dom spherical density functions. In the stick-breaking
representation, this infinite mixture model takes the form

pðvÞ ¼
X1
i¼1

pi
expðkihv; nii2Þ

4p1F1ð1=2; 3=2; kiÞ
; [12]

where pi ¼ Xi

Qi�1
j¼1ð1� XjÞ are random weights. Xi � Beð1;

aÞ are governed by a Beta distribution with a ¼ 1:5; ni

� US2 and ki � IGðak;bkÞ are drawn from the spherical
uniform distribution and inverse Gamma density with
hyperparameters ak ¼ 4:71 and bk ¼ 57:1 (with maximum
density at kmode ¼ 10 and P½k � 50 jak;bk� ¼ 0:99), respec-
tively. Under the topology of weak convergence the Dirich-
let process mixture includes all fiber orientation
distributions in its closure (51). It is easy to see that the
characteristic properties of p, that is, antipodal symmetry,
non-negativity, and normalization, are fulfilled. Figure 1
depicts six samples of fiber orientation densities drawn
from this stochastic process, illustrating that the synthetic

distributions include a broad range of axon dispersion and
crossing. The spherical convolution of p with the impulse
response [7] yields the diffusion signal, which is given by
Kaden and Kruggel (33). For our simulation experiments
the per-axon diffusion coefficients are set to lk ¼ 2:5 and

l? ¼ 0:1 mm2=ms (cf. Fig. 8).
We examine the accuracy of the SMT estimator using

simulated data, which were generated by the fiber dis-
persion model and then disturbed by Rician noise. 5000
trials each were run to investigate the estimation error of
the mean diffusion signal and per-axon diffusion coeffi-
cients under various scenarios after adjustment for the
Rician noise bias. Figure 2 depicts box-and-whisker plots
(with 1.5 times the interquartile range) of the estimated
spherical mean for the b-values of 1000 and 2500 s/mm2

with respect to SNR (left column), using the measure-
ment protocol of the dataset analyzed in this work, and
different numbers of gradient directions per diffusion
weighting factor. The fixed parameter is indicated in a
corner of the diagrams.

Figure 3 displays the estimated diffusion coefficients
lk and l? as a function of SNR (left column), using the
acquisition protocol, and the number of gradient direc-
tions measured for each b-value of 1000 and 2500 s/
mm2. The box-and-whisker diagrams demonstrate that
the variance of the estimator decreases as SNR and/or
the number of gradient directions per b-value (together
with their antipodal points uniformly distributed on the
sphere) increase. This average-case study over density
functions drawn from a Dirichlet process mixture sug-
gests that SMT is a robust estimator of lk and l?. The
computer simulations also show that adverse effects due
to the Rician noise regime are removed to a large extent.
To summarize, a moderate number of diffusion encoding
gradients appears to be sufficient to recover the per-axon
diffusion process regardless of the fiber orientation
distribution.

Data Analysis

We continue with the in vivo quantification of the per-
axon diffusion process in a healthy volunteer. Prior to
this, intermediate results are shown. Figure 4 maps the
spherical mean �eb of the diffusion signal for each b-value
of 1000 and 2500 s/mm2. The voxel-by-voxel vector of
the mean signals, which is a function of the axon micro-
anatomy but without the effects due to fiber dispersion
and crossing, is an important biomarker in its own right.
Figure 5 plots, in the axial, coronal, and sagittal plane
(from left to right), the diffusion coefficients lk and l?
parallel to individual axons and perpendicular to them
(first and second row) in the brain white matter, noting
that SMT has not made any assumptions about the intra-
voxel fiber orientation distribution. The bottom row of
the figure shows the per-axon anisotropy index, which is
defined as the ratio lk=l? of the longitudinal and the
transverse diffusion coefficient. The estimated quantities,
which reflect the microscopic diffusion process inside
the axons and in their typical neighborhood, are average
values over the fiber population in the displayed voxel.

Figure 5 demonstrates that lk and l? vary in the
human brain, providing evidence that the axonal

FIG. 6. These plots map the fractional anisotropy (left) and mean
diffusivity for individual axons (top) and the entire fiber population,

comparing SMT with the standard tensor model. In the upper row,
the per-axon diffusion process is shown, which does not depend

on the fiber orientation distribution, while the bottom section sum-
marizes the fiber-population water diffusion in the displayed
voxels.

Quantitative Mapping of the Per-Axon Diffusion Coefficients 7



microenvironments are heterogeneous beyond their tan-
gential distribution. For instance, the transverse diffu-
sion coefficient l? is lower in the corpus callosum
compared to other white matter regions, which might
be due to the converging pattern of the callosal fibers
that results in a reduction of the interaxonal space
accompanied with a higher axon density. Furthermore,
our data analysis suggests that the longitudinal diffu-
sion coefficient lk is significantly higher than previous
studies have suggested. This numerical underestima-
tion might adversely affect the estimation of structural
features such as the axon caliber or fiber density. Sup-
porting Information Figure S1 shows additional results
for subjects in the same age group from the HCP Life-
span data. The estimated diffusion coefficients for the
ventricular system filled with cerebrospinal fluid
approaches the bulk diffusivity of free water. Lastly, lk
and l? are distinct from the axial and radial diffusion
parameters provided by the classical tensor model (32),
which are influenced by fiber dispersion and crossing.

The microscopic diffusion process may be condensed
into the per-axon mean diffusivity, which is defined as
�l ¼ ðlk þ 2l?Þ=3, and the per-axon fractional anisotropy,
which is given by

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

ðlk � �lÞ2 þ 2ðl? � �lÞ2

l2
k þ 2l2

?

vuut : [13]

Figure 6 maps the fractional anisotropy and mean diffu-
sivity for individual axons (top) and the entire fiber pop-
ulation, comparing the proposed technique with the
classical tensor model (32). The per-axon fractional ani-
sotropy, which has factored out the intravoxel fiber ori-
entation distribution, exhibits rather high values close to
one in white matter tissue, showing a strong directional
preference lk 	 l? of the local water diffusion. In con-
trast, the fractional anisotropy of the standard tensor
model is affected by the axon orientation distribution.
For example, the centrum semiovale has occasionally a
fractional anisotropy lower than 0.2, suggesting almost

FIG. 7. Estimation accuracy for 66:7%; 33:3%, and 16:7% subsets of gradient directions per b-shell, here 1000 and 2500 s/mm2 (from
top to bottom). The first column depicts the transverse per-axon diffusion coefficient l̂?. In the second and third columns, the difference

l̂? � l? and the ratio l̂?=l? are shown with respect to the estimated diffusivity l? in the full dataset (cf. Fig. 5).
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isotropic diffusion at the voxel-resolution level. In fact,
this brain region has a complex orientational structure
with crossings of the pyramidal tract, the callosal fibers,
and the superior longitudinal fasciculus (10,35). The
mean diffusivity of an axonal segment and the quantity
derived from the classical tensor model share a similar
image contrast, but from a theoretical viewpoint the per-
axon and fiber-population mean diffusivities are in gen-
eral two different indices.

The diffusion-encoding gradients were arranged in a
way so that every subset of the first n directions, together
with their antipodal points, are also uniformly distrib-
uted on the sphere (37). Figure 7 maps the transverse dif-
fusion coefficient l̂? for subsets of 50, 25, and 12
gradient directions per b-shell, here 1000 and 2500 s/
mm2 (with scan times of circa 24, 12, and 6 min, respec-
tively), as well as the difference l̂? � l? and the ratio l̂?
=l? with respect to l? estimated from the full dataset.
This figure shows that the axon-scale diffusion process
can be recovered from data with a lower angular gradient
resolution at the expense of a noisier appearance and a
slight bias in the SMT estimates, demonstrating the clini-
cal applicability of the developed imaging technique.
Comparable results are obtained for the longitudinal dif-

fusion coefficient lk. Figure 8 depicts a density plot of
the per-axon diffusion coefficients, summarizing the
results from the axial slice shown in Figure 5. This dia-
gram suggests that there are four clusters of similar
microscopic diffusivities, which can be associated with
white matter, gray matter, cerebrospinal fluid, and partial
volume effects. The latter voxels are composed of tissue
that is contaminated with cerebrospinal fluid. The upper
panel of this figure maps, in the axial plane, the com-
partment the displayed voxel is assigned to, providing a
natural segmentation of the brain anatomy.

Following the voxel-by-voxel estimation of the per-
axon diffusion coefficients lk and l?, we are able to
recover the fiber orientation distribution from the diffu-
sion measurements. Knowing the spatially varying
response function enables us to solve the inverse prob-
lem accurately for the first time. To demonstrate this, we
present results in Figure 9 using the spherical deconvo-
lution in a reproducing kernel Hilbert space, which was
proposed by Kaden et al. (35). This technique does not
truncate the harmonic series expansion of the axon ori-
entation distribution as in past studies (13,14) and
ensures all characteristic properties of the density func-
tion, namely its antipodal symmetry, non-negativity, and
normalization with one. The figure shows the recon-
struction of the fiber orientation field in the centrum
semiovale of the right hemisphere, which is estimated
from all b-shell data. The fiber orientation density p
is visualized by the quasi-spherical surface S2�v7!pðvÞv
2 R3 with the following color encoding: Red indicates a
left-right orientation, green an anterior-posterior direc-
tion, and blue a superior-inferior orientation. Figure 9
exposes, in the coronal plane, the intermingling of the
pyramidal tract with the radiating callosal fibers. Alter-
native deconvolution techniques which may be used
were proposed in Refs. (10) and (33).

DISCUSSION

It is difficult, if not impossible, to examine the axon
microgeometry using markers that are affected by fiber
dispersion and crossing, which are ubiquitous in brain
white matter. The present article has introduced SMT to
disentangle the per-axon diffusion process from the fiber
orientation distribution. This method does not make use
of prior knowledge about how the fibers are oriented
inside a voxel, which is normally not available in
advance. Here we have demonstrated SMT in the cere-
bral white matter of a live human subject and provided
quantitative maps of the voxel-averaged diffusion coeffi-
cients lk and l? parallel and perpendicular to the axons
in a clinically feasible manner. In particular, there is no
need for complex gradient waveforms with multiple gra-
dient pulses (23) or magic-angle spinning (24) to recover
microscopic diffusion anisotropy as long as the local
structure is axially symmetric, which is typically the
case in nerve tissue. SMT just requires a conventional
pulse sequence featuring two or more b-shells and a uni-
form sampling of the gradient directions, which is well
supported by the scanner vendors.

In this work, the response function is based on a
second-order approximation of the microscopic diffusion

FIG. 8. Density plot of the per-axon diffusion coefficients exempli-

fied for the axial slice shown in Figure 5. The white line marks iso-
tropic microscopic diffusion with lk ¼ l?. In the lower diagram,
we can identify four clusters. The upper image maps the compart-

ment the displayed voxel is assigned to. Abbreviations: white mat-
ter (wm), grey matter (gm), partial volume effects (pve),

cerebrospinal fluid (csf).
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process inside the axons and in their surroundings
(including glial cells and extracellular space). The trans-
verse diffusion coefficient l? is a function of the fiber
caliber, the degree of myelination, and the extra-axonal
space, yet the exact relationship between l? and the
fiber microgeometry remains elusive. As we have made
only general assumptions about the per-axon signal,
SMT can be easily extended to more complex response
functions offering direct information on the axon micro-
anatomy. The presented framework provides a blueprint
for the recovery of these axon-specific tissue features,
separating them from the effects due to fiber dispersion
and crossing. The key point is that the spherical mean of
the diffusion signal [6] depends only on the biophysical
model for a small fiber section, but not on the intravoxel
axon orientation distribution. Even though brain tissue
has a complex directional structure, model development
is here simplified to finding a parametric response func-
tion linking the diffusion signal of an axonal segment to
the underlying microstructure. Obviously, complex
impulse responses require more experimental data for
the robust estimation of their model parameters, which
may collide with the tight time constraints imposed by
human scans. Hence, the second-order approach adopted
in this work seems to offer a good compromise.

Once the impulse response has been reconstructed
voxel by voxel, the estimation of the axon orientation
distribution allows us to quantify fiber dispersion and
crossing accurately. These benefits demonstrate the supe-
riority of the general approach over alternative techni-

ques, as the developed framework provides access to the
axon microanatomy and a full description of the orienta-
tional architecture in a disentangled form. The orienta-
tional invariance of the per-axon biomarkers is
particularly advantageous for comparisons between sub-
jects, as the neural circuitry is characterized by a high
interindividual variability. Moreover, we expect quantifi-
able changes of the microscopic diffusion process in the
diseased brain relative to healthy subjects. In contrast to
previous work based on the standard diffusion tensor
model (32), SMT is capable of discriminating structural
tissue alterations from fiber orientation dispersion,
which potentially improves the sensitivity and/or speci-
ficity of image-derived parameters for diseases that
directly or indirectly affect white matter. Lastly, the non-
invasive quantification of microscopic diffusion anisot-
ropy can be beneficial beyond the diagnosis of
neurological conditions. For instance, SMT may be used
for the discrimination of different types of tissue, for
example, malignant (cancerous) and benign tumors, that
appear directionally isotropic on a macroscopic scale.

To demonstrate the in vivo recovery of the per-axon
diffusion coefficients, we analyzed a dataset featuring
two b-shells of moderate diffusion weighting with 75
and 76 uniformly distributed gradient directions. The
measurement time was about 36 min for full brain cover-
age with 1.5 mm isotropic voxel resolution. The scan
duration can be greatly reduced to less than 5 min per
subject if a more economical gradient scheme (e.g., 25
directions per b-shell as in Fig. 7) is used, a lower voxel

FIG. 9. Fiber orientation field of the
centrum semiovale in the right hemi-

sphere, uncovering the radiation of
the corpus callosum (cc), the corona
radiata (cr), and their crossing

(shown in the coronal plane). The
spherical deconvolution of the axon
orientation distribution is performed

in a reproducing kernel Hilbert
space (35,50). The underlying map

depicts the fractional anisotropy of
the classical tensor model. Abbrevi-
ation: superior longitudinal fascicu-

lus (slf).

10 Kaden et al.



resolution is chosen, and the images are acquired with
single phase-encoding polarity, which facilitates the
immediate applicability in the clinical practice. Future
work will study the question of which experiment design
offers the highest sensitivity to the target parameters
within a given time budget on a standard MRI scanner
(52). Partial volume effects due to cerebrospinal fluid
contamination may be eliminated by adding a fluid atte-
nuated inversion recovery sequence.
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Supporting Information

Additional Supporting Information may be found in the online version of
this article.
Supporting Figure S1: These plots map (from top to bottom) the longitudi-
nal and transverse microscopic diffusion coefficients kk and k? as well as
the per-axon fractional anisotropy. The results are shown for subjects in the
age group between 25 and 35 years taken from the HCP Lifespan data.
Subject 1 is used in the main text and included for comparison. The esti-
mated parameters have factored out the effects due to the intra-voxel fibre
orientation distribution. The figure demonstrates the consistency and repro-
ducibility of SMT-based microscopic diffusion anisotropy imaging.
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