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Abstract 

Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including 

receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, 

PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and 

phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on 

intracellular endosomal membranes, and these changes have been linked to a number of major 

neurological diseases including Alzheimer’s, Parkinson’s, epilepsy, stroke, cancer and a range of rarer 

inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and 

neurodevelopmental conditions such as Lowe’s syndrome. This article analyses recent progress in 

this area and explains how PIP lipids are involved, to varying degrees, in almost every class of 

neurological disease.  
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1.0 Introduction 

Phosphoinositides (PIPs) are structurally related and functionally diverse phospholipid molecules 

with many important roles in the nervous system. These functions include substrate supply to 

receptor-stimulated phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) signalling pathways, 

ion channel regulation, the control of intracellular vesicular trafficking, cytoskeletal organisation and 

protein-mediated inter-organelle lipid transport [1, 2]. Excluding the parent molecule 

phosphatidylinositol (PI) there are seven different lipids in the PIP family, consisting of PI4P, 

PI(4,5)P2, PI(3,4,5)P3, PI(3,4)P2, PI(3,5)P2, PI3P and PI5P. The different PIPs are formed by a collection 

of phosphoinositide kinase and phosphatases that catalyse the stepwise phosphorylation and 

dephosphorylation of hydroxyl groups on different positions of the inositol head group (Figure 1) [3]. 

In the nervous system, as in other mammalian tissues, the highest mass levels are for PI, followed by 

PI4P and PI(4,5)P2, with much lower and often transient agonist-stimulated peaks of the D3-

phosphorylated lipids formed through receptor-activated phosphoinositide 3-kinase pathways[3].  

1.1 Signalling by PI4P and PI(4,5)P2 

Levels of PI4P and PI(4,5)P2 undergo rapid depletion and resynthesis following agonist activation of 

heterotrimeric G protein-coupled receptors (GPCRs) that signal through PLC. PLC activation, usually 

initiated via Gq subunits, induces substantial PI(4,5)P2 hydrolysis and results in the formation of the 

second messengers inositol(1,4,5)-trisphosphate and diacylglycerol that mediate Ca2+ release from 

the endoplasmic reticulum and also PKC activation. GPCRs that signal through this route are high-

profile drug targets in the treatment of neurological diseases. Examples include Alzheimer’s disease 

where both orthosteric and allosteric ligands for the M1 muscarinic receptor [4] have been 

developed for the treatment of cognitive defects [5] and to inhibit the formation of neurofibrillary 

tangles and β-amyloid plaques [4, 6, 7]. Similarly, PLC-coupled delta opioid receptors are 

pharmacological candidates for chronic pain, epileptic seizures and locomotor disorders [8, 9]. While 

GPCR-specific ligands and individual receptor expression patterns in the CNS facilitate the targeting 
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of specific cell types and processes, drugs that inhibit PIP-metabolising enzymes also have some 

potential in the treatment of neurological diseases. Examples include the recent development of 

isoform-specific small molecule inhibitors of the PI(4,5)P2-metabolising enzymes PLC3 [10]and 

PIP5K1C [11] for the treatment of chronic pain. 

1.2 PI 4-kinases in the CNS 

Cellular PI4P levels are maintained by a family of four different PI 4-kinase (PI4K) enzymes: PI4K2A, 

PI4K2B, PI4KA and PI4KB (Figure 2). All four PI4K isozymes are expressed in the nervous system but 

they are targeted to different subcellular compartments including the trans-Golgi network (TGN), 

endosomes, secretory vesicles and the plasma membrane [12, 13]. More recent work investigating 

the pathways that supply PI4P to plasma membrane signalling processes has revealed that multiple 

PI4K isoforms at different cellular locations are required to maintain the signalling pools of PI4P and 

PI(4,5)P2 [14, 15]. PI4K2A, the crystal structure of which has been solved [16, 17], is by far the most 

abundant PI kinase activity measurable in brain membranes [18] and has been implicated in TGN-

endosomal sorting [19-24] and cell survival [18]. However, non-neuronal studies indicate that the 

wortmannin-sensitive PI4KA is likely to be the dominant isozyme for synthesizing the PI4P required 

for agonist-dependent signalling [25, 26].  

When considering the role of any PIP pathway in neurological disease it is important to note that 

each phosphoinositide-metabolising enzyme appears to possess a distinct protein interactome that 

operates in combination with catalytic activity to define its overall function in neuronal signalling 

and trafficking [13]. A well-studied example to illustrate these layers of complexity is PI4K2A, which 

synthesises a pool of PI4P on TGN and endosomal membranes, and which has also been visualised 

on secretory vesicles [22, 23, 27-32]. This enzyme contains an amino acid motif that can bind the E3 

ubiquitin ligase itch and this interaction facilitates reciprocal regulation of both enzymes’ catalytic 

activities [33]. This intermolecular association thereby functionally associates rates of endosomal 
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ubiquitination with membrane PI4P synthesis, and PI4P-dependent signalling and trafficking with 

protein targeting for degradation.  

In addition to effects on protein ubiquitination, the modular protein-binding functions of PI4K2A 

influence membrane sorting in TGN endosomal trafficking. PI4K2A contains a dileucine AP-3 clathrin 

adaptor-binding motif that partly mediates non-catalytic PI4K2A functions in cargo sorting and 

trafficking from the TGN to late endosomes [19]. Furthermore, PI4K2A has been shown in cross-

linking and proteomic studies to be a component of the multi-protein, biogenesis of lysosome-

related organelles complex-1 (BLOC-1) and also the Wiskott Aldrich Syndrome protein and scar 

homologue (WASH) complex that regulates the actin cytoskeleton [34]. In addition, PI4K2A has been 

shown to be a protein-binding partner for the R-SNARE protein VAMP3 [24]. Therefore, it is likely 

that alterations to PI4K2A expression can have ramifications for the numerous components of its 

associated protein interaction network and that these, in turn, can impact on the multiple neuronal 

roles that have been ascribed to this protein [20, 34-38]. There is also evidence for PI4K2A activation 

by the transcription factor c-FOS, which represents a novel avenue for research and potentially links 

alterations to PI4P synthesis with genomic transcriptional regulation [39, 40]. 

In conjunction with a repertoire of protein binding partners, post-translational modifications of 

PI4K2A are important for its intracellular trafficking functions. Recently, PI4K2A has been shown to 

be phosphorylated by GSK3 and this regulates PI4K2A-dependent trafficking of AMPA receptors by 

promoting the binding of the AP-3 clathrin adaptor [41]. The catalytic activity of PI4K2A is also 

regulated by post-translational modification. The rate of PI4P synthesis by PI4K2A is determined by 

non-covalent membrane interactions and the palmitoylation of two cysteine residues within the 

catalytic domain of the protein [42-45]. The membrane lipid environment and particularly the 

cholesterol content of these membranes can affect the enzyme’s catalytic activity [27, 46-48] and 

palmitoylation state, since the late Golgi-localised palmitoyl transferases that modify PI4K2A are also 

cholesterol sensitive [45]. Targeting of PI4K2A to cholesterol-rich membranes is also important for 
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its proposed role in regulating OSBP-dependent sphingomyelin synthesis at this subcellular location 

[49]. Hence, PI4K2A is an example of a single PI-utilising enzyme that integrates a membrane 

environment-sensitive catalytic function with a diverse range of non-catalytic functions that include 

protein targeting for degradation, endosomal trafficking and non-vesicular lipid transport, all of 

which are relevant to PIP disease pathways in the CNS. 

1.3 Generation of PI(4,5)P2 in the brain 

Resynthesis of PI(4,5)P2 requires PI4P 5-kinase activity by three main isozymes, PIPK1A, PIPK1B and 

PIPK1C (Figure 2). While evidence demonstrates that PIPK1A negatively regulates neurite outgrowth 

[50] and PIPK1B growth cone morphology [51], in the CNS at least, isoform-specific knockout studies 

in mice have revealed a dominant role for PIPK1C isozymes in PI(4,5)P2 generation [11, 52, 53]. 

PI(4,5)P2 can also be generated through the D4 phosphorylation of PI5P by PI5P 4-kinases [54]. PI5P 

can be synthesised by D5 phosphorylation of PI by PIKfyve (also known as Fab1) [55-57], but there is 

strong recent evidence that in cells PIKfyve phosphorylates PI3P to PI(3,5)P2, which is then 

dephosphorylated via 3-phosphatase activity to generate PI5P [58]. PI5P is a much less abundant 

lipid substrate than PI4P and hence, PI5P is a not the major source of cellular PI(4,5)P2 in the brain.  

1.4 PIP 5-kinase mutations in neurological diseases 

To date, there is only one direct example of a genetic mutation in either a PI4K or PIP 5-kinase 

causing a human disease and that is PIP5K1C in the rare autosomal recessive disorder lethal muscle 

contractural syndrome type 3 [59]. However, there has been an interesting development recently 

concerning the possible involvement of PIP5K1B in Friedreich’s ataxia [60], a multisystem disease 

that features pronounced neurodegeneration. The PIPK1B gene had previously been implicated as 

the cause of this disorder but subsequent papers revealed that this was probably a misidentification 

and concluded instead that Friedreich’s ataxia was due to silencing of the FTX gene which encodes 

the mitochondrial protein frataxin [61, 62]. However, Bayot and colleagues [60] have reported that 
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the GGA triplet repeat expansion that silences frataxin gene also results in cis-silencing of PIPK1B, 

leading to diminished PI(4,5)P2 production and striking disorganisation of the actin cytoskeleton [60]. 

These observations indicate that genetic impairment of PIPK1B function could contribute to some of 

the complicated clinical presentations of this ataxia.  

2.0 The channelopathies and disorders of PIP binding 

In addition to their roles in substrate supply to the PLC and PI3K signalling pathways [63], D4-

phosphorylated PIPs have important roles in ion channel regulation at the plasma membrane [15, 

64-79]. Lipids such as PI(4,5)P2 and PI4P can either positively or negatively [80] influence ion flux. 

This occurs through interactions with specific sites on channel proteins or through effects on 

membrane charge, and frequently in tandem with other modulators such as heterotrimeric G 

proteins subunits or subunit phosphorylation [73, 74, 81-83]. This lipid-based regulatory mode is 

relevant to neurological diseases since important pharmacological targets, for example, the KCNQ 

channel in epilepsy, are regulated by membrane PIP levels [76]. Furthermore, dysfunctional channel-

PIP interactions, usually due to genetic mutations affecting channel protein structure, lead to 

deregulated neuronal transmission. Diseases that feature this type of molecular mechanism are 

often collectively referred to as channelopathies.  

One well-established example of a channelopathy involving PIPs is a potassium-sensitive periodic 

paralysis with associated ventricular arrhythmias known as Andersen-Tawil syndrome [84-87]. This 

can be either an autosomal recessive disorder or occur sporadically and is caused by point mutations 

in PIP interaction sites on the KCNJ2 (Kir2.1) inwardly-rectifying potassium channel. Interestingly, 

while PI(4,5)P2 activates KCNJ2 opening the binding of other membrane PIP species inhibit this 

process by directly competing out PI(4,5)P2 binding [88]. Structural analysis of the protein family has 

revealed the presence of two distinct PIP interaction sites on the channel protein. The first PIP 

interaction site consists of a conserved non-specific phospholipid-binding region in the 
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transmembrane domain and a second site, located in the channel’s cytoplasmic tail, specifically 

binds PI(4,5)P2 [89]. Conversely, for potassium channels such the TRPV4 that are negatively 

regulated by PI(4,5)P2 binding, in this case via lipid biding to an ankyrin homology domain, mutations 

of the PIP interaction site result in augmented channel function [80], and this is relevant to TRPV4 

channelopathies such as Charcot-Marie-Tooth (CMT) type 2C and congenital distal and 

scapuloperoneal spinal muscular atrophy [80, 90-93].  

Another corollary of these recent insights is that the intramembrane balance of PI4P and PI(4,5)P2 is 

likely to be an important determinant of ion channel gating. Furthermore, distortions of this ratio, as 

can occur in inherited conditions characterised by PI(4,5)P2 phosphatase dysfunction, may be 

sufficient to cause ion channel deregulation [94, 95]. However, this is hitherto an underexplored 

area of neurological research. It is also important to mention that PIPs can influence ionotropic 

neurotransmission through vesicular trafficking processes that deliver, recycle and degrade plasma 

membrane-localised receptors, channels [13] and neurotransmitter transporter proteins [96]. These 

PIP-dependent processes have repercussions for receptor reserve and thus agonist efficacy, and 

collectively represent another route through which PIPs can modulate synaptic signalling. 

While much attention has focused on K+ channel regulation by PIPs, there is also a role for D3-

phosphorylated PIPs in this aspect of neurophysiology [97]. The best studied disease in this regard is 

mucolipidosis type IV, an autosomal recessive neurodegenerative disorder that can be caused by 

mutations in the PI(3,5)P2 interaction site on the TRPML1 channel, which localises to intracellular 

late endosomal/lysosomal membranes where it mediates metal cation efflux [98-100]. Significantly, 

a recent publication has described the development of small molecule activators of TRPML1 that can 

restore the function of PI(3,5)P2-insensitive structural variants that are also associated with the 

mucolipidosis phenotype [101]. This report sets an important precedent and indicates that 

molecules targeting PIP-channel interactions may be an important area for future drug development 

in neurodegenerative diseases. 
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2.1 Role of PIP protein binding domains in neurological diseases 

A recent proteomics study identified 405 PIP-interacting proteins, which unexpectedly means that 

this set of proteins is more numerous than the entire complement of proteins involved in either 

phosphoprotein or ubiquitin binding [102]. PIPs can influence a wide range of processes in neurons 

through the membrane recruitment of proteins containing either PI4P- or PI(4,5)P2-binding domains 

such as the PIP-specific pleckstrin homology (PH) domains, epsin N-terminal homology (ENTH) and 

AP180 N-terminal homology (ANTH) domains, and PX and FYVE domains [103]. These specific inter-

molecular interactions facilitate the spatial and temporal targeting of signalling proteins such as PLC 

and Akt during agonist-stimulated PIP signalling, and also the recruitment of membrane trafficking 

machinery such as epsin-1, AP-2, AP180 and dynamin to the plasma membrane for clathrin-

mediated coated pit formation and endocytosis. 

PI4P has an important role in targeting, via PH domain binding, lipid transfer proteins such as OSBP, 

CERT and FAAP2 to PI4P-enriched membranes at points of inter-organelle contact sites (reviewed in 

[13]). Furthermore, the recent finding that PI4P hydrolysis by Sac1 phosphatase releases energy to 

facilitate non-vesicular cholesterol transfer at Golgi-endoplasmic reticulum contact sites suggests an 

additional role for PIPs as a membrane-associated source of energy [104]. The implications of this 

unexpected finding for neurological diseases have yet to be explored but it is relevant to note that 

intracellular levels of lipids transported by PI4P-dependent processes, such as glucosylceramide, are 

frequently abnormal in diseases such as Parkinson’s and Gaucher’s [105].  

There are some instances in the literature of mutations in protein PH domains causing neurological 

and neuromuscular diseases. The best-studied example is the PI(4,5)P2-binding PH domain of 

dynamin 2, a GTPase required for the scission of clathrin-coated pits to form clathrin-coated vesicles 

during endocytosis and also the release of clathrin-coated transport vesicles during Golgi-to-

endosomal intracellular trafficking. A point mutation (K562E) in the dynamin 2 PH domain that 
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abolishes PI(4,5)P2 binding is associated with a dominant intermediate form of CMT neuropathy 

[106]. CMT disease describes a spectrum of progressive peripheral neuropathies with varying 

degrees of severity that can be caused by mutations in at least 60 genes affecting a number of 

biochemical pathways [107]. Mutations within the PH domain of this dynamin isoform have also 

been found in patients affected by other variations of CMT disease and also centronuclear myopathy 

[108-116]. However, it is important to note that not all disease-causing mutations within the 

dynamin PH domain also cause impaired PI(4,5)P2 binding [114]. Moreover, this type of disease 

association is not exclusive to dynamin isoforms and there are now several reports demonstrating 

that mutations in the PH domains of PLEKHG5 can also give rise to CMT symptoms [117, 118] and 

paediatric-onset lower motor neuron disease [119].  

3.0 CNS disorders caused by PI4P and PI(4,5)P2 imbalances 

There are examples of inherited but rare multisystem diseases caused by loss of function mutations 

in the PIP 5-phophatases and these have been extensively discussed in recent reviews of this area 

[120-123]. Of particular note in a neurological context is oculocerebrorenal syndrome of Lowe, 

sometimes referred to as Lowe’s syndrome or OCRL [124]. This is an X-linked recessive disorder and 

therefore only affects males. In addition to deleterious effects on the eyes and kidneys, OCRL 

presents clinically with neurological problems including intellectual impairment, developmental 

delays and behavioural problems. This disease is caused by loss of function mutations in the OCRL 

gene, which encodes a multidomain PIP 5-phosphatase that dephosporylates PI(4,5)P2 to produce 

PI4P [125-131]. OCRL has been localised to endosomes, the Golgi apparatus, the plasma membrane, 

phagosomes [132] and, importantly in terms of understanding current thinking on the disease 

mechanism, clathrin-coated vesicles [133]. Loss of OCRL activity leads to the build-up of PI(4,5)P2 on 

endosomal membranes and this feature of the disease drives actin accumulation and cytoskeletal 

abnormalities [134-138]. It is worth noting though that the case for PI(4,5)P2 accumulation 

underlying the neuropathological defects in OCRL is not proven. This is because Dent’s disease, 
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which is also caused by OCRL dysfunction, does not feature CNS involvement [136, 139, 140]. From 

this point of view, it is useful to consider how the non-catalytic functions of the OCRL protein might 

contribute toward the disease symptoms. Of particular interest in this regard is the PH domain of 

OCRL which does not bind PIPs but which instead contains a clathrin-interacting motif, and it is this 

motif that targets OCRL to late-stage clathrin-coated pits during endocytosis [137, 141]. OCRL1a, a 

splice variant only expressed in the brain, has a higher affinity for clathrin than the more 

ubiquitously expressed OCRL1b variant, and thus it may be specifically the loss of this protein-

interaction function that causes the neurological defects associated specifically with OCRL as 

opposed to Dent’s disease [142]. Reports that non-catalytic mutations in the APPL1-binding domain 

of OCRL are pathological [143] further support the idea that the phenotype of Lowe’s disease may 

be an aggregate manifestation of deficiencies in the OCRL1 protein interactome in tandem with 

abrogated PI(4,5)P2 homeostasis [144]. 

When considering the role of OCRL in degrading PI(4,5)P2, it is important to remember that there are 

other neuronal PIP phosphatases such as PIPP (INPP5J) and SHIP2, which can catalyse the D5 

dephosphorylation of both PI(4,5)P2 and PI(3,4,5)P3 but have nevertheless not yet been implicated in 

any OCRL-like pathology [120]. Furthermore, mutations of the PIP D5 phosphatases synaptojanin 

proteins (SYNJ1 and SYNJ2), which have roles in decoating clathrin-coated vesicles, do not feature in 

either Lowe’s or Dent’s disease. Hence although speculative, and notwithstanding some differences 

in PIP substrate preferences, these observations suggest very specific and non-overlapping roles for 

the D5 phosphatases in neuronal physiology and that dysfunction of these enzymatic pathways in 

neuronal disease cannot be explained simply by abrogated PI(4,5)P2 degradation. Instead, 

alterations to the non-catalytic functions of these enzymes, and also perhaps the highly localised 

changes to the minor endosomal pools of PI(4,5)P2 in the membrane domains where these proteins 

are specifically and temporally targeted, may hold the key to understanding how loss of function in 

PIP degradation leads to particular patterns of neurodegenerative disease.  
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4.0 Defective PI 3-kinase signalling in neurological disease – overgrowth and myelination disorders 

Phosphorylation of PI(4,5)P2 on the D3 position by class I PI3K catalytic subunits (PIK3CA, PIK3CB, 

PIK3CD and PIK3CG) can generate PI(3,4,5)P3, a molecule with important roles in both pro-survival 

[145-147]  cell migration signaling [148]. Phosphorylation of either PI4P or PI by class II PI3Ks such as 

PIK3C2A produces respectively PI(3,4)P2, a PIP species recently implicated in clathrin-mediated 

endocytosis [149] and also PI3P, which functions in primary ciliogenesis [150]. Individual PI3K 

isoforms can have multiple roles in the CNS. As an example of this diversity in neuronal functions, 

PIK3CG (more commonly referred to as PI3K) is required to maintain blood-brain barrier integrity 

during ischaemic reperfusion [151], has a function in memory and behaviour through NMDA 

receptor-stimulated long-term potentiation [152] and is a drug target in neuroinflammatory diseases 

such as multiple sclerosis [153]. 

In the nervous system, PI3K activity can be stimulated either by receptor tyrosine kinases or GPCRS; 

examples include insulin receptors activating PIK3CA isoforms or metabotropic glutamate receptors 

signaling via PI3KCB (reviewed in [154]). These signalling events dynamically control diverse 

physiological functions in the nervous system including protein synthesis [155, 156], long-term 

depression [152, 157, 158] and neuronal morphogenesis [159]. In healthy cells, the duration of 

PI(3,4,5)P3 signalling is limited due to its rapid dephosphorylation by PIP phosphatases such as PTEN 

and SHIP2. Moreover, several neurological diseases arise from gain of function and amplified 

PI3K/Akt/mTOR signalling and this is principally due to deregulated and constitutive activation of 

PI3K isoforms or loss of PI(3,4,5)P3 phosphatase activity. 

These numerous PI3K functions in the CNS  depend on the activation and membrane recruitment of 

protein kinases such as PDK1 and Akt isoforms and a range of effector proteins with PI(3,4,5)P3- and 

PI(3,4)P2-binding domains such as ARNO [160], which has been implicated in functions such as 

dendritic development. Significantly, a number of recent publications have revealed a crucial role for 
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PI(3,4,5)P3-dependent processes [161] and the PI3K/Akt/PTEN/mTOR signalling axis in myelination 

[153, 162-175], which is a key process in maintaining neuronal transmission, survival and recovery 

from trauma.  

 

4.1 PI3K and Akt3 link brain overgrowth with epilepsy and autism. 

In terms of neurological disease, one of the most striking developments in this field has been the 

number of recent reports implicating activating mutations in enzymes such as PIK3CA and Akt3 in a 

variety of brain overgrowth syndromes such as megalencephaly.  These disorders  feature increased 

numbers of both neurons and glial cells [176-182] and recent discoveries in this area are challenging 

for ideas that PIK3CA activating mutations and/or PTEN deletion are sufficient to drive malignancy to 

such an extent that certain cancers could be considered  ‘addicted’ to PI3K signalling [183].  

Hemimegalencephaly is a rare disorder featuring overgrowth of only one cerebral hemisphere and 

severe epilepsy. This type of cortical dysplasia is characterised histologically by dysfunctional cellular 

proliferation, differentiation and mislocalisation of particular neuronal cell types including 

GABAergic neurons, which are often dysfunctional in epilepsy [184]. Recently, Lee and colleagues 

[176] discovered that surgically resected diseased tissue from patients suffering from this disease 

was subject to a number of somatic mutations expected to cause constitutive activation of PI3K 

signalling to mTOR. As these mutations were only found in diseased brain regions, the authors 

concluded that this syndrome could be classified as a genetic mosaic disease. The somatic activating 

mutations identified were in the PIK3CA, AKT3 and MTOR genes. Interestingly, unlike in cancer 

where the PIK3CA activating mutation H1047R predominates, in hemimegalencephaly the activating 

E545K mutation is more common. Other mutations include a substitution in the N-terminal PH 

domain of AKT3, which is known to result in increased activation of the enzyme [185]. The 

biochemical consequences of the mTOR C1483Y mutation are not yet known, but the authors found 
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that in least some of these cases there was activation of S6 phosphorylation indicating upregulation 

of Akt-mTOR signalling. Simultaneous with the report of PI3K/AKT involvement in 

hemimegalencephaly, Rivière and co-workers [180] reported a range of mutations in AKT3, the 

regulatory PI3K subunit PIK3R2, and again in the PIK3CA protein in a number of related 

megalencephalies . Several subsequent studies in this area have also found AKT3 gain of function 

mutations either by gene amplification [182] or the E17K activating point mutation [179], which 

taken together demonstrate a remarkable and common dependency for activated and brain-specific 

Akt3 signalling in a whole spectrum of cerebral overgrowth disorders. In terms of understanding how 

AKT3 drives these proliferative pathologies, there is strong evidence that that it is due to inhibited 

cyclin D2 turnover leading to cell cycle defects [186]. Of importance in this regard are the converse 

findings that akt3 homozygous knockout mice have reduced brain size [187, 188] and that 

microcephaly in human disease is associated with haploinsufficiency of the chromosome 1q-

localised AKT3 gene [189]. 

An alternative means to amplify PI(3,4,5)P3 signalling and pathological brain growth would be via a 

loss of function mutation in PTEN, and there are reports of both frameshift and point mutations in 

PTEN causing extreme megacephaly and severe epilepsy often associated with autism [190]. Other 

defects in this lipid pathway, caused by mutations in the D4 phosphatase INPP4A, which 

dephosphorylates PI(3,4)P2 to PI3P, have been shown to cause NMDA receptor-mediated excitotoxic 

cell death, epilepsy and microcephaly [191-194]. In addition to revealing a major role for the PI3K 

signalling pathway in regulating brain development and size, there is now accumulating evidence 

that defective PTEN functioning and consequently mTOR activation are important in epilepsy and 

autism [190, 195-204]. Thus, enzymes in this pathway are candidate drug targets for non-surgical 

treatment of these neurological disorders.  

4.2 Neurological involvement in PTEN germline mutations and benign tumour growth 
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Germline loss of function mutations in PTEN give rise to an array of clinical syndromes, all of which 

feature benign and disorganised tissue overgrowth manifesting as neoplasia (hamartoma). The 

tissues affected and the severity of the condition can be highly variable even between siblings [205], 

but when caused by a germline PTEN loss of function mutation this group of diseases, which include 

Bannayan-Riley-Ruvalcaba syndrome and Cowden syndrome, are collectively referred to as PTEN 

hamartoma tumour syndromes (PHTS) [206]. As with sporadic or somatic mutations in PTEN, 

macrocephaly together with a cognitive impairment and developmental delays are common findings 

in PHTS. More recent work has found that similar to some somatic cerebral overgrowth disorders, 

there are instances of PIK3CA and AKT mutations in some Cowden syndrome patients, indicating a 

potential for upregulated PI(3,4,5)P3-dependent oncogenic transformation within affected tissues 

[207]. In line with this, there is a much increased risk of developing breast, thyroid, kidney, 

endometrial and colon cancers with PHTS [206, 208]. Neurological tumours such as neuromas [209] 

have sometimes been found in PHTS patients but it is not yet known how this relates mechanistically 

to PTEN gene anomalies.  

4.3 Activated PI3K signalling: overgrowth versus glioma 

The set of recent findings suggesting that PI3K pathway activations can cause brain overgrowth 

disorders but not necessarily cancer suggests the need for a critical re-evaluation of the proposed 

link between PTEN and glioma. The evidence for PTEN involvement in malignant brain tumours has 

accumulated over many years and for many cancers, there is a wealth of evidence from multiple 

studies indicating that PTEN is a tumour suppressor [210-216]. Furthermore, the genetic evidence 

for PTEN involvement in glioma is striking, with over 60% of advanced gliomas [215, 217-220] 

exhibiting genetic rearrangements leading to loss of PTEN function and knockdown studies on 

cultured cells demonstrating that ablated PTEN expression causes increased astrocyte proliferation 

and hypertrophy [221-223]. Many of the physiological roles attributed to PTEN concern the 

processes that arrange and organise the developing nervous system which, in turn, may relate to the 
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function of the enzyme in cell motility and adhesion [224-229]. A detailed characterisation of 

neuronal function in mice in which PTEN expression was ablated in neurons post-natally revealed 

that the main deficits were in synaptic plasticity and transmission, particularly in long-term 

potentiation and long-term depression, which manifested phenotypically as memory impairment 

[230]. Hence, in addition to developmental roles in organising the developing CNS, PTEN has 

physiological roles in neuronal transmission, indicating that changes to the enzyme’s activity or 

expression can have multiple consequences that extend beyond cell proliferation.  

Another point to consider is that unlike in PTEN overgrowth syndromes where there is often a single 

gene defect in PTEN or AKT, cancers are driven and evolve through several mutations, and for 

gliomas there is often co-upregulation of EGFR expression, leading to sustained receptor-driven 

signalling of not only PI3K but also other pro-oncogenic signalling pathways [210, 213, 231-244]. A 

switch to PTEN-dependent signalling is often a feature of more advanced tumours, possibly due to 

chromosome 10 loss of heterozygosity or resistance selection due to drug-induced inhibition of 

other proliferative pathways [214, 233, 234, 245]. In this way, upregulation of non-PIP oncogenic 

signalling networks may work in concert with PTEN deletions to generate a malignant phenotype 

and this may explain the mixed success so far in clinical trials of molecules that target solely 

upstream components of the receptor-PI3K signalling axis [246-251]. While PTEN is very well studied 

in glioma, other enzymes that can amplify PI3K signalling such as constitutively activating PIK3CA 

mutations [147, 212, 252, 253] also feature in many patients with this disease and indeed other 

neurological cancers including anaplastic oligodendrogliomas, anaplastic astrocytomas and 

medulloblastomas [254, 255].  

5.0 PI(3,5)P2 and Charcot-Marie-Tooth neuropathies 

PI(3,5)P2 is a quantitatively rare PIP that is found on endosomal membranes where it functions in the 

control of membrane fusion and dynamics [256]. PI(3,5)P2 is formed via D5 phosphorylation of PI3P 
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catalysed by PIKfyve [58] and is then rapidly dephosphorylated back to PI3P by Sac3, a PI(3,5)P2 5-

phosphatase encoded by the FIG4 gene [55, 57, 257-264]. Alternatively, PI(3,5)P2 can potentially be 

dephosphorylated to PI5P by as many as six of the catalytically active members of the myotubularin-

related 3-phosphatase family i.e. MTM1 (mutated in X-linked recessive centronuclear myopathy) 

[265], MTMR2, MTMR3, MTMR4, MTMR6, MTMR7 and MTMR8 (reviewed in [266, 267]). Alterations 

to PI(3,5)P2 levels in mice via knockout of the PIKfyve activator ArPIKfyve/Vac14 or Sac3/FIG4 

phosphatase lead to substantial neurodegeneration, hypomyelination defects and abrogated 

intracellular trafficking [268-270]. There are now several examples of neurological diseases in 

humans, including most prominently particular presentations of CMT disease, which are caused by 

genetic mutations that affect PI(3,5)P2 homeostasis [271].  

In terms of alterations to PIP metabolism, loss of function mutations in enzymes that 

dephosphorylate PI(3,5)P2 are prominent in the CMT4 subgroup of the disease, which is 

characterised by the paediatric onset of progressive axonal degeneration and associated myelin 

defects. Amongst the PI(3,5)P2 phosphatases associated with CMT4 are MTMR2 (CMT4B2) and its 

structurally related but catalytically inactive protein binding partner MTMR13 [172, 267, 272-278]. 

Mutations in the PI(3,5)P2 5-phosphatase Sac3/FIG4 that generates PI3P have also been implicated in 

CMT disease (CMT4J) [279], as well as other inherited neuropathies such as Yunis-Varón syndrome 

and amyotrophic lateral sclerosis [280, 281], all of which strengthen the case for a crucial 

physiological role for PI(3,5)P2 in maintaining normal neuromuscular functions and in particular 

myelination. Since the low abundance PIPs PI(3,5)P2, PI5P and PI3P are found mainly on endosomal 

and lysosomal membranes, these diseases are manifestations of defective PIP trafficking functions 

on these intracellular organelles that constitute the intracellular degradative trafficking pathway 

[256, 269]. This has led to the suggestion that these pathological examples of intracellular PI(3,5)P2 

dyshomeostasis could be considered as a class of endosomal-lysosomal storage disorder [282].  

5.1 Cilliopathies (Joubert’s and MORM syndromes) and INPP5E 
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INPP5E is a PIP 5-phosphatase that is highly active against PI(4,5)P2, PI(3,5)P2 and PI(3,4,5)P3 [122, 

283]. INPP5E localises to primary cilia [284, 285], which are single, microtubule-dependent, long, 

thin, membranous projections that are immotile and emanate from the centriole [286]. Primary cilia 

have been noted on many cell types including neurons [286-289] and while their functions are still 

being elucidated, they have been shown to function as specialised Ca2+ signalling organelles [290, 

291] and are also an important site for Hedgehog signalling [292, 293]. Primary cilia from radial glia 

are important for the formation of the cerebral cortex during brain development [294] and 

processes such as dendritic arborisation [295] and neuronal migration [296]. Ciliary defects feature 

in a variety of neurodevelopmental disorders [297] and mutations in INPP5E have been implicated in 

Joubert’s and MORM ciliopathies.  

Joubert’s syndrome is a ciliopathy characterised by abnormal development of the cerebellum and 

brainstem, which are identifiable as a signature ‘molar tooth’ structure when imaged [298]. 

Joubert’s ciliopathy has been associated with mutations in at least nine different genes, amongst 

which are mutations in the PIP phosphatase domain of INPP5E [299, 300]. Mutations in ARL13B, a 

small GTPase that forms a molecular complex with INPP5E [284, 294, 296], have also been 

implicated in Joubert’s syndrome, as have mutations in PDE6D, a protein that binds the membrane-

targeting prenyl groups of INPP5E [284, 301]. The related ciliopathy MORM is also due to loss of 

INPP5E function, although in this autosomal recessive disorder the mutation results in a truncated 

protein that nevertheless retains PIP phosphatase activity [302] but is no longer correctly targeted to 

the ciliary axoneme. PI3K signalling is required for the development of primary cilia [150] and 

current evidence suggests that INPP5E functions in the stabilisation of primary cilia as opposed to 

cilliogenesis [299]. These recent findings reveal a key role for the INPP5E signalling interactome in 

maintaining ciliar functionality and this is somewhat reminiscent of the situation in OCRL (another 

PIP-dependent ciliopathy) where mutations affecting molecular interactions in addition to catalytic 

activity can cause disease. Hence, the loss of INPP5E function and resulting 5-phosphorylated PIP 
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homeostasis tend to cause developmental abnormalities that are deleterious for the developing 

nervous system.  

6.0 The emerging story of PIPs in Alzheimer’s disease  

There is now a wealth of evidence implicating PIPs as potential biomarkers and as drug targets in 

Alzheimer’s disease. One of the most high-profile developments in this area has been the discovery 

that PI is one of only 10 serum lipids that can accurately predict memory loss in up to 90% of cases, 2 

years before the onset of dementia symptoms [303]. However, it is not clear yet whether raised 

serum PI reflects any particular change in PIP metabolism and indeed, the authors concluded that 

alongside the other biomolecules identified in their lipidomic screen, raised serum PI probably 

reports increased cell membrane breakdown. However, there are a number of observations that 

make the case for PIP involvement in Alzheimer’s disease. These are: 

1. The enrichment of PIP-metabolising enzymes such as PTEN [304] and lipids such as PI(4,5)P2 

[305] in neurofibrillary tangles. 

 

2. Alterations to PIP abundance and metabolism in diseased brains [304, 306-315]. 

 

3. Alterations to the catalytic activity of PIP-metabolising enzymes such as synaptojanin [316] 

and PI4K2A [317, 318], by binding of amyloid A peptides and conversely, the 

stimulation of A processing enzymes such as the -secretase complex by PIPs with 

particular acyl chains [319]. These results point to the existence of reciprocal product-

feedback loops on endosomal membranes that facilitate the cross-regulation of enzymes 

involved in PIP synthesis and amyloid processing. To further support this hypothesis, there is 

published evidence of a close correlation between cellular PI(4,5)P2 and 42-residue Aβ levels 

[308].  
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4. Genetic polymorphisms or mutations in genes encoding for PIP-utilising or interacting 

proteins such as PICALM, INPP5D and SYNJ1 predispose to Alzheimer’s disease [320-329]. 

These genes encode for phosphatidylinositol binding clathrin assembly protein (PICALM) 

[320-323, 330-334], which contains an N-terminal ANTH domain that binds PI(4,5)P2 [335, 

336] and can simultaneously bind clathrin by means of a clathrin-binding motif; the PI(4,5)P2 

5-phosphatase synaptojanin 1 [326, 328, 337], which is required for clathrin-mediated 

endocytosis [338]; and INPP5D, more commonly known as SHIP1 [339], which like PTEN is a 

PIP 3-phosphatase that preferentially dephosphorylates PI(3,4,5)P3 to PI(4,5)P2. Most recent 

evidence indicates that alterations to PICALM functioning leads to defects in autophagy and, 

in turn, this leads to the accumulation of tau, a process important for the development of 

Alzheimer’s disease [333]. While in Down’s syndrome, trisomy 21 results in increased SYNJ1 

gene copy number. This genomic change causes increased expression of synaoptojanin-1 

leading to decreased membrane PI(4,5)P2 levels and consequently endosomal trafficking 

defects [326]. This PIP defect is associated with concomitant reductions in A trafficking and 

clearance and, in this way, may contribute to the development of early-onset Alzheimer’s 

disease, which is common in Down’s syndrome [328, 340]. 

 

5. PI4P production by the endosomally localised PI kinase PI4K2A is stimulated by ginsenoside, 

a naturally occurring molecule that promotes A clearance in the brain of a murine 

Alzheimer’s model [341]. This effect may relate to cholesterol modulation of PI4K2A activity 

and its palmitoylation-dependent targeting to raft-like intracellular domains [27, 43-45, 48]. 

This may be further evidence that upregulating intracellular PIP production could be an 

effective means of countering abrogated A clearance.  
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6. A recent study has found increased neuronal levels of the PI(3,4,5)P3-activated protein 

kinase PDK1 both in Alzheimer’s and prion disease brains. This results in increased 

internalisation, through the caveolar route, of tumour necrosis factor-α-converting enzyme 

(TACE) receptor and subsequently reduced TACE-mediated -secretase activity at the cell 

surface [342]. Consequently, there is decreased proteolysis of both amyloid precursor and 

prion proteins and this leads to their aberrant accumulation. There is also a report that PDK1 

is required for A-mediated cell death [343]. These recent publications provide further 

evidence that PIP regulation of membrane trafficking pathways exert large effects on 

neuronal A levels. Similarly, the expression VPS34 (PIK3C3), an endosomal PI3K that 

synthesises PI3P, is reduced in the brains of Alzheimer’s patients and this leads to enhanced 

processing and reduced sorting of amyloid precursor protein through a mechanism involving 

ubiquitin-mediated trafficking and the PI3P-binding endosomal sorting complexes required 

for transport (ESCRT) components Hrs and Tsg101 [344]. VPS34 is widely expressed in the 

brain and its targeted ablation results in pronounced neurodegeneration and synaptic loss 

[345]. These combined insights suggest that PIP control of amyloid protein processing is an 

important process to understand as defects in these pathways are likely to cumulatively lead 

to amyloid plaque formation in the brain. 

6.1 Synaptojanin: a PIP link between Alzheimer’s and Parkinson’s diseases and epilepsy?  

The involvement of synaptojanin in Alzheimer’s is worth further comment since mutations in SYNJ1 

have been identified in a rare familial version of Parkinson’s disease [346-348] and also in an 

inherited form of Parkinson’s associated with epilepsy [349]. A separate study also reported a 

synaptojanin mutation in an inherited form of epilepsy, suggesting that SYNJ1 mutations can have 

heterogeneous effects on neuronal function that are not necessarily limited to classical Alzheimer’s 

and Parkinson’s symptoms [350, 351]. However, whilst Alzheimer’s may represent a gain of function 

in synaptojanin due to trisomy 21, the mutations associated with Parkinson’s disease and epilepsy 
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are loss of function point mutations in the SAC1 catalytic domain that should have the opposite 

effect on membrane composition and induce PI(4,5)P2 accumulation. Interestingly, lipidomic analysis 

of lipid raft composition in both early stage and incidental Parkinson’s patients revealed an increase 

in phosphatidylinositol levels, which is further evidence that PIP metabolism may be altered in this 

condition [352, 353]. Hence, it is possible that both Parkinson’s and Alzheimer’s, although affecting 

different brain regions and with different symptoms, are to some extent pathological manifestations 

of reciprocal PIP imbalances within the CNS. Moreover, PI4K2A modulation by cholesterol and 

ginsenoside point to a possible underappreciated role for PI4P levels in this equation and indicate 

that an impaired of balance of PI4P and PI(4,5)P2 binding partners may contribute towards the 

development of these neurological pathologies.  

It is worth noting that genetic mutations in synaptojanin 2 have not been found to cause Parkinson’s 

or Alzheimer’s disease. In terms of primary structure, the 2 synaptojanin isoforms are most 

divergent in their C-termini, with synaptojanin 2 containing a proline-rich region that is absent in 

synaptojanin 1, even though both proteins are thought to function in clathrin-mediated endocytosis. 

The SYNJ2 gene has gained some interest due to its potential role in maintaining cognitive ability and 

mental health in old age [354, 355], and also because a catalytically inactivating point mutation in 

this gene in the Mozart mouse strain leads to deafness caused by hair cell loss [356]. Since both 

synaptojanin proteins have similar PIP substrate specificities it may be the case that, as with the 

OCRL phosphatases, alterations to the membrane protein interactome in addition to lipid 

phosphatase activity may be an understudied determinant of how mutations in the D5 phosphatases 

can give rise to such a heterogeneous range of neurological defects.  

It is important to point out that other branches of the PIP signalling pathway are likely to be 

important in Parkinson’s disease. Particularly relevant in this regard is the mitochondrial protein 

PINK1 (phosphatase and tensin [PTEN] homologue-induced putative kinase 1), which is a 

downstream phosphorylation substrate of Akt and has been found to be mutated in a particular 
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early-onset inherited form of this neurodegenerative disorder [357-360]. In concordance with this, 

there is evidence that D2 dopamine receptor signalling via PI3K is anti-apoptotic and thus potentially 

neuroprotective in Parkinson’s disease [361].  

7.0 PIPs in stroke, exocitotoxic cell death and cerebral ischaemia 

While PIPs have many roles in inherited neuropathies, overgrowth syndromes and 

neurodegenerative disorders, there are also demonstrations that these lipids are important for CNS 

cell survival following the ischaemic trauma caused by a cerebral haemorrhage (stroke). Excitotoxic 

cell death due to augmented glutamate stimulation of NMDA receptors and Ca2+ dyshomeostasis is a 

common consequence in this type of brain injury and PIPs, in particular PI(3,4,5)P3, have been 

implicated in this neuropathological process [362].  

PIP levels, which are contingent on lipid kinase activity, ATP production and thus mitochondrial 

function, are known to decrease following periods of cerebral ischaemia [363-366]. Furthermore, 

there are strong indications from murine genetic models that PI4P production is important for the 

survival of particular cell populations in the CNS [18, 367]. In a rat model for transient forebrain 

ischaemia, PI4KA expression was found to be heavily downregulated, specifically in CA1 pyramidal 

neurons, as was its upstream lipid product PI(4,5)P2 [367]. This change in PIP metabolism correlated 

with increased neuronal apoptosis and was found to be reversible in cultured cell lines by re-

expression of catalytically active PI4KA [367]. These results are consistent with the idea that PI4P 

synthesis has anti-apoptotic functions in the brain [18]. However, most of the evidence for PIP 

involvement in cerebral trauma concerns a neuroprotective function for pro-survival PI3K and Akt 

signalling pathways [151, 368-376]. However, there is one report that PI3K activity has the opposite 

effect and promotes neuronal oxidative stress through PI(3,4,5)P3-dependent neuronal NADPH 

oxidase activation [369]. Some of the most unexpected findings in this arena have emanated from 

studies focused on identifying serum biomarkers from stroke patients. In one such study, an 
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unbiased proteomic screen found that an increased serum level of the PI(3,4,5)P3 phosphatase SHIP-

1 accurately predicted acute ischaemic stroke [377], whilst another found that anti-PI antibodies 

were prevalent in a group of young stroke patients [378]. These findings are difficult to rationalise 

based on any known disease mechanism and require validation in a larger patient cohort. 

Nevertheless, when viewed together with the demonstration that raised serum PI is an accurate 

biomarker for Alzheimer’s disease [303], there appears to be an emerging trend for PIP pathway 

molecules, which are not normally secreted at high levels, to be elevated in the serum of patients 

with severe neurological diseases. However, further work is needed to clarify the mechanisms that 

underlie these phenomena and also to probe the general applicability of these findings to other CNS 

disorders. 

8.0 Conclusions 

PIPs are involved in more or less every type of neurological disease, from rare and often devastating 

genetic diseases to more common neurodegenerative conditions such as Alzheimer’s that are 

becoming more widespread as life expectancy increases (Table 1). There has been substantial 

progress, particularly in the last 5 years, in understanding how PIP pathways mediate a range of 

physiological functions in the CNS and how genetic mutations affecting these pathways can lead to 

neurological diseases. However, with the notable exceptions of glioma, multiple sclerosis and to 

some extent Alzheimer’s disease, there has been less progress in translating this new knowledge 

into possible new treatments. Some of these problems are simply down to the fact that this 

information is novel and it will take some time and financial investment in order to generate, for 

example, small molecule inhibitors that are both isoform specific and blood-brain barrier permeable. 

Another issue is the complexity of the neurobiology regulated by the PIP lipids and the presence of 

compensatory and redundant biochemical pathways that could potentially confer resistance to 

targeted therapies. Even if treatment strategies remain challenging, it is fair to conclude that 

biomolecules associated with these pathways may be useful biomarkers for predicting, diagnosing 
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and classifying neurological conditions and also for discovering molecular connections between 

diseases that could inform future treatment strategies.  
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Legends 

Table 1. 

List of neurological diseases summarising the proteins, enzymes and PIP species involved.  

Figure 1. 

Diagram illustrating PIP metabolic pathways in the CNS and the enzymes that have been implicated 

in neurological diseases. Note that lipid kinases appear in red and phosphatases in blue. 

Figure 2. 

The structures of PI, PI4P and PI(4,5)P2.  A schematic diagram illustrating the molecular structures of 

the most abundant brain PIPs. The molecular species shown here are of the 1-stearoyl, 2-

arachidonoyl varieties which are the common acyl chain additions found in PIPs from the CNS.  The 

hydrophobic acyl chains anchor the PIPs in the membrane while the hydrophilic inositol headgroup. 

is exposed to the cytosol. Note that the charge differences between the different PIPs arise from 

single phosphorylation and dephosphorylation events on the inositol head group moiety and that 

these changes are due to the catalytic activities of phosphoinositide kinase and phosphatase 

enzymes.  Imbalances in the ratio of PI4P:PI(4,5)P2 may be important in both Lowe’s & Dent’s 

syndromes, Alzheimer’s  & Parkinson’s diseases.  Several inherited conditions with neurological 

involvement including Andersen-Tawil syndrome and a dominant intermediate presentation of 

Charcot Marie Tooth neuropathy are caused by mutations that abolish protein binding to PI(4,5)P2.
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Table 1 
 

 

Disease     Protein    Lipid 

 

PI(4,5)P2 imbalances 

Chronic pain    PIPK5K1C   PI(4,5)P2 

     PLCB3    PI(4,5)P2 

Friedreich's ataxia   PIP5K1B    PI(4,5)P2 

Lethal muscle contractural  

syndrome type 3    PIPK5K1C   PI(4,5)P2 

Charcot-Marie-Tooth disease   Dynamin   PI(4,5)P2 

(intermediate form and CMT2B) 

OCRL Lowe’s disease   OCRL1    PI(4,5)P2 

Dent’s disease    OCRL1    PI(4,5)P2 

 

Channelopathies 

Epilepsy     KNVQ channel   PI(4,5)P2 

Andersen-Tawil syndrome   KCNJ2 channel   PI(4,5)P2 

Charcot-Marie-Tooth type 2C  TRPV4 channel   PI(4,5)P2 

Mucolipidosis type IV   TRPML1 channel   PI(3,5)P2 

 

Defective PI3K pathways 

Multiple sclerosis    PIK3G    PI(3,4,5)P3 

Hemimegalencephaly   PIK3CA    PI(3,4,5)P3 

AKT3    PI(3,4,5)P3 

Megalencephaly    PIK3R2    PI(3,4,5)P3 

PIK3CA    PI(3,4,5)P3 

PTEN    PI(3,4,5)P3  

AKT3    PI(3,4,5)P3 

Microcephaly    INPP4A    PI(3,4)P2 

PTEN hamartoma tumour  

syndromes (PHTS)   PTEN    PI(3,4,5)P3  

Brain cancers    PTEN    PI(3,4,5)P3 

     PIK3CA    PI(3,4,5)P3 

X-linked recessive 

 centronuclear myopathy   MTM1    PI(3,5)P2 

CMT4B2     MTMR2    PI(3,5)P2 

CMT4J     Sac3/FIG4   PI(3,5)P2 

 

 

Table
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Yunis-Varón syndrome    Sac3/FIG4   PI(3,5)P2 

Amytropic lateral sclerosis   Sac3/FIG4   PI(3,5)P2 

Joubert’s ciliopathy   INPP5E    PI(3,5)P2 /PI(3,4,5)P3 

MORM ciliopathy    INPP5E    PI(3,5)P2 /PI(3,4,5)P3 

Autism spectrum    PTEN    PI(3,4,5)P3 

     PIK3CA    PI(3,4,5)P3 

     PIK3C2A    PI(3,4)P2 

     PIK3R2    PI(3,4,5)P3 

Alzheimer’s and Parkinson’s diseases 

Alzheimer’s disease   PICALM 

     PI4K2A    PI4P 

     Synaptojanin 1   PI(4,5)P2 

     PDK1    PI(3,4,5)P3 

     VPS34    PI3P 

Parkinson’s disease   Synaptojanin 2   PI(4,5)P2 
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