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Effective conservation planning relies on the accurate identification of anthropogenic land cover. How-
ever, accessing localized information can be difficult or impossible in developing countries. Additionally,
global medium-resolution land use land cover datasets may be insufficient for conservation planning
purposes at the scale of a country or smaller. We thus introduce a new tool, GE Grids, to bridge this gap.
This tool creates an interactive user-specified binary grid laid over Google Earth's high-resolution im-
agery. Using GE Grids, we manually identified anthropogenic land conversion across East Africa and
compared this against available land cover datasets. Nearly 30% of East Africa is converted to anthro-
pogenic land cover. The two highest-resolution comparative datasets have the greatest agreement with
our own at the regional extent, despite having as low as 44% agreement at the country level. We achieved
83% consistency among users. GE Grids is intended to complement existing remote sensing datasets at
local scales.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Software availability

GE: Grids is aweb applicationwritten in Javascript using the Google
Earth application programming interface (API), which is
freely available from Google. The program requires a web
browser, the Google Earth plug-in and internet
connectivity. The codebase is maintained and can be
downloaded as a zip file from http://andrewstanish.com/
files/GERasterCreator.zip. The zip file contains a.html file,
accessory files, and a ReadMe file. Use the ReadMe file for
suggestions on program instruction and notes on Google's
Terms of Service. GE Grids is free, regulated under the
GNU General Public License v3 (http://www.gnu.org/
copyleft/gpl.html) and intended for further open-source
gical Society of London, Re-

obson).

r Ltd. This is an open access article
development. The developer is Andrew Stanish
(andybp85@gmail.com).
1. Introduction

Land use land cover (LULC) datasets describe how humans use
land (land use) as well as the physical features that cover the earth's
surface (land cover). These datasets aid in the identification of the
location, intensity, and extent of human activities which is essential
to conservation planning (Hansen et al., 2000). In LULC datasets,
anthropogenic land cover is typically classified as either cropland or
urban extent. However, identification of these land uses is chal-
lenging and varies greatly across datasets (Vancutsem et al., 2012;
Potere and Schneider, 2007; Fritz et al., 2011). Traditional remote
sensing classification approaches require grouping spectral signa-
tures and subsequent accurate discrimination between groups i.e.
land cover types (Pfeifer et al., 2012). However, emerging remote
sensing techniques, such as object-based classification reduce this
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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reliance on unique spectral properties by allowing probabilistic
class descriptions (Blaschke, 2010). Classification may be relatively
easy where vegetated landscapes are homogenous and extensive
e.g. some croplands. However, in heterogeneous landscapes with
small, patchy agricultural fields, discriminating cropland from
natural land cover using classification algorithms can be difficult
(Tchuent�e et al., 2011; Vancutsem et al., 2012).

Furthermore, while the financial burdens of obtaining satellite
image data are decreasing, generating remote sensing classification
products still require specialized, and often expensive, training and
software (Stensgaard et al., 2009; Pettorelli et al., 2014). Access to
these resources may present particular hurdles to research and
conservation programs, particularly those in developing countries.
Error in selecting, downloading, processing, and analyzing remote
sensing datasets may additionally result in inappropriate recom-
mendations and conclusions (Watson et al., 2015), particularly for
ecological applications (Kerr and Ostrovsky, 2003). Inappropriate
analyses may result in missed opportunities, or squandered re-
sources (Wilson et al., 2005). There is thus a need for easily created,
inexpensive, locally-accurate datasets that can confidently be used
in conservation planning (Watson et al., 2015).

One possible solution to problems associated with the cost and
difficulty of conducting remote sensing classification analyses and
the accuracy of LULC datasets is to use free, easy to access, high-
resolution image data (pixel resolution of 10 m or better; moder-
ate resolution data is between 10 and 250 m (Pfeifer et al., 2012))
like that available through Google Earth. Google Earth is a free,
easy-to-use program owned by Google Inc. that allows access to
sub-meter pixel resolution data for over a quarter of the world's
landmass and three-quarters of the global population (Google,
2014).

Google Earth's high-resolution data are useful as a platform for
validating datasets (Fritz et al., 2011) used previously with urban
extent (Schneider et al., 2009) and land cover (Defourny et al.,
2008). While Google Earth has the potential for wider use in sci-
entific literature, particularly in LULC analyses (Potere, 2008), one
prominent challenge is that native analysis functions in Google
Earth are minimal (Yu and Gong, 2012), limited to drawing points,
lines, and polygons. We previously used the polygon drawing
feature to identify anthropogenic land use conversion in West Af-
rica (Riggio et al., 2013) and Mozambique (Jacobson et al., 2013).
The results were a significant improvement over existing datasets
and aided in determining potential habitat. Although the time-
consuming nature of these analyses limited further application,
the success of the method spurred the creation of a new tool, “GE
Grids”, to speed land cover class identification. GE Grids is the first
free, customizable creator of raster datasets for use with Google
Earth. GE Grids creates a user-defined, interactive grid (raster)
overlaid on Google Earth image data. This tool circumvents
expensive, specialized programs and knowledge, and enables easy
use of Google Earth's high-resolution data to create localized
datasets. We use GE Grids to document anthropogenic land con-
version in East Africa, a region of significant conservation impor-
tance (Ray et al., 2005; Myers et al., 2000; Jenkins et al., 2013)
experiencing rapid human population growth (UN, 2013).

2. Methodology

2.1. GE grids program design and workflow

GE Grids is a browser-based application that provides a
customized interface to map land cover using satellite and aerial
data available in Google Earth. The application relies on the free
Google Earth plug-in (GEP) and Google's public application pro-
gramming interface (API) as well as a plugin called “filesaver.js”
written by Eli Grey and available on GitHub. The program is written
in JavaScript and tested in the Google Chrome and Mozilla Firefox
web browsers.

The GE Grids program consists of two main objects: “dataset”
and “filesys”. “dataset” has two functions: to store internal data
displayed on the GEP, and to handle the functionalities related to
creating, rendering, and updating the ASCII data. “filesys” controls
the download and upload of data. The download functionality
makes use of filesaver.js for cross-browser compatibility. The up-
load function handles data uploading and rendering ASCII raster
files. It sets the GEP grid parameters to what it reads from the file,
triggers the GEP to draw the grid, and creates an array with the IDs
of each grid cell lined up in the same order as on the grid. The
upload method then reads through the file, value by value, and
triggers the dataset object to change the color of the grid cell and
change the value stored for the ASCII output, until it reaches the
end of the file.

GE Grids calls a series of four functions. These four functions, in
the order they are called, are “initGrid,” “genPolygons,” “make-
Polygon,” and “clickInit.” “initGrid” sets the GEP camera view, calls
“genPolygons” to draw the grid in the GEP, triggers the dataset
object to create the internal copy and render the ASCII, and finally
calls “clickInit” to set up the user interface. “genPolygons” draws
and positions the grid using the values specified by the user in the
html input. The “makePolygon” subroutine creates the actual grid
cell in the GEP. Finally, “clickInit” sets up the user interface for
interacting with and changing grid cells.

In summary, program execution begins with page load, and the
program initiates the GEP. The user can then change the default grid
options and Google Earth preferences via the user interface. When
the user clicks the “Draw” button, the grid parameters are read into
an object, and “initGrid” is called. Once the GEP grid and ASCII
raster are set up, the user can click on a grid cell. When this hap-
pens, the dataset “object” changes the color of the grid cell, updates
its internal store of the values, and re-renders the values in the
ASCII output. There is no internal save functionality, but the user
can download a copy of the ASCII raster and re-upload it to
continue.

The user interface of GE Grids is a combination of generic con-
trols provided by Google Earth and input parameters for creating a
grid. Controls allow the user to navigate around the Google Earth
imagery and to enter the information necessary to specify or
“draw” a grid (Fig. 1). Options include: the latitude and longitude of
the upper right-hand corner coordinates of the grid, the size of each
cell (in Degrees e a function of Google Earth's use of the WGS 1984
lat/long coordinate system), and the number of cells on each axis.
Each cell can be visually divided into 9minor grids (3� 3) using the
“Grid Guides” function to ease the classification of heterogeneous
cells. Although the study was done using square grids, the program
supports any number of cells per side.

The overall workflow is summarized in Fig. 2. Once the user
creates a grid using the “Draw” feature, they can interact with the
grid by clicking on the grid edges to change their color from white
to red. This corresponds with a data value change from 0 to 1; or if
the No Data function is clicked on, to �999 (or any other value
chosen by the user). The result can be downloaded as a text file in
ASCII raster format for import into GIS software or as a KML file to
upload into Google Earth. The ASCII file can also be re-uploaded
into GE Grids for editing and error checking.

This tool meets the legal requirements of the Google Earth API
Terms of Service. GE Grids is free to all users, does not alter or blur
imagery from Google Earth, and allows attribution of the image
data to remain visible. In using this tool, users are also agreeing to
abide by Google's Terms of Service. Importantly, the image data
itself and the output from GE Grids should not be used for



Fig. 1. Screenshot of the GE Grids program interface showing the control options, a portion of the interactive grid, and the layout of the ASCII text file.
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commercial purposes without further consent from Google. More
information can be found in the ReadMe file, included in the zip file
download of this tool.

2.2. Application of GE grids to East Africa

We used GE Grids to document anthropogenic land conversion
throughout East Africa at a resolution of 0.01� (~1 km at the
equator). Each run of GE Grids covered a 50� 50 grid cell square
(0.5� � 0.5�; ~2500 km2). Each grid cell was visually evaluated for
the presence of anthropogenic land cover (Fig. 3). A cell was clas-
sified as ‘converted’ if 50% or more of the land was converted to
human land cover (including agriculture, urban development, in-
dustry, mines, roads, and housing units such as bomas). Cells were
classified as No Data where identification of land cover was
impaired, primarily due to moderate resolution imagery (e.g.
Landsat imagery) or cloud cover. We did not consider deforested,
degraded or grazed lands as converted. Grid cells partially covered
by water were evaluated on the basis of the terrestrial land cover.
After evaluating all cells in a 50� 50 grid, the resulting file was

downloaded in ASCII text format. Each text file was then imported
into ArcGIS 10.2.1 (ESRI, 2014) and converted to a raster. The indi-
vidual files were mosaicked together on a per-country basis. No Data
cells were filled using WorldPop, a human population density
dataset with 1 km resolution (Linard et al., 2012). We examined
correlations between WorldPop and anthropogenic land conversion
at five people per km2 increments with the highest correlation used
as a threshold level; any No Data cells with population density above
the threshold were classified as “converted” (Table S1). Each country
was then merged and clipped to remove islands in the Indian Ocean
(Fig. S1). Finally, the “lakes” class from the Global Lakes and Wet-
lands (GLWDv3; Lehner and D€oll, 2004)was overlaid to give context.
The resulting dataset is a binary land classification layer of anthro-
pogenic land conversion versus natural habitat.

To illustrate the repeatability of a land cover classification using
GE Grids we compared the results of the classification of a grid of



Fig. 2. User interaction diagram depicting the workflow using GE Grids.

Fig. 3. The upper left image (A) is a screen capture from Google Earth near the western ed
intersect. Fields and houses are clearly visible. Image B is the classification of this area in th
fields occupy the land on top of the Great Rift Valley escarpment while natural vegetation
corresponding to the extent shown in B. These illustrate the differences among various da
conversion, green represents natural vegetation, the light grey line is the country border, and
figure legend, the reader is referred to the web version of this article.)
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2500 cells (50� 50). We chose a grid containing a mixture of
conversion and natural lands, along with a combination of high and
medium resolution imagery. For intra-user consistency, the lead
author classified this same grid a total of five times. For inter-user
consistency, all co-authors, except the programmer (A.S.), classi-
fied this grid. Grids were compared in ArcGIS.

2.3. Dataset comparisons

Five datasets, one regional and four global, were spatially
compared with the GE Grids classification: Africover (Alinovi et al.,
2000), GlobeLand 30 (National Geomatics Center of China, (2014)),
GLC-SHARE Beta Release 1.0 (Latham et al., 2014), Globcover v2.3
(Bontemps et al., 2011), and MODIS land cover MCD12Q1 (Friedl
et al., 2010, Table 1).

For comparison purposes, all products were standardized to
raster datasets at 0.01� resolution, then clipped and aligned to
identical geographic extents. Each dataset was re-sampled ac-
cording to the majority land cover within the 0.01� cell. An
important component of previous land cover comparisons was the
standardization of classes before comparison as products used
different land cover categories and definitions (e.g. the
ge where Masai Mara National Reserve (Kenya) and Serengeti National Park (Tanzania)
e GE Grids program, with a black box depicting the area of screen capture. Towns and
lies below the escarpment. The clustered six images in C all show an identical area

taset's depictions of anthropogenic land conversion. Dark gray is anthropogenic land
hashed regions are protected areas. (For interpretation of the references to color in this



Ta
b
le

1
Su

m
m
ar
y
of

co
m
p
ar
at
iv
e
la
n
d
co

ve
r
d
at
as
et
s.

D
at
as
et

(w
eb

si
te
)

R
ef
er
en

ce
Se

n
so
r

Y
ea

r
of

d
at
a
co

lle
ct
io
n

Sp
at
ia
l
re
so
lu
ti
on

To
ta
l#

of
cl
as
se
s

(#
re
la
te
d
to

an
th
ro

a )
A
cc
u
ra
cy

as
se
ss
m
en

t
ov

er
al
lb

(c
ro
p
la
n
d
)

A
fr
ic
ov

er
(w

w
w
.g
lc
n
.o
rg
/a
ct
iv
it
ie
s/
af
ri
co

ve
r_
en

.js
p
)

A
lin

ov
i
et

al
.2

00
0

La
n
d
sa
t
TM

B
u
ru
n
d
i
19

99
,K

en
ya

19
99

,
Ta

n
za
n
ia

19
97

,R
w
an

d
a
19

99
,

U
ga

n
da

20
00

e
20

01

30
m
;
sp

at
ia
lly

ag
gr
eg

at
ed

to
p
ol
yg

on

C
on

d
en

se
d
to

6
(2
)

N
A

G
lo
be

La
n
d
30

20
10

(w
w
w
.g
lo
ba

lla
n
d
co

ve
r.
co

m
)

N
at
io
n
al

G
eo

m
at
ic
s

C
en

te
r
of

C
h
in
a
(2
01

4)
30

m
m
u
lt
is
p
ec
tr
al

im
ag

es
(e
.g
.L

an
d
sa
t

TM
,L

an
d
sa
t
ET

M
þ,

H
J-
1)

20
08

e
20

11
30

m
10

(2
)

83
.5
%
(8
3.
1%

)

G
LC

-S
H
A
R
E
B
et
a
R
el
ea

se
1.
0

(w
w
w
.g
lc
n
.o
rg
/d
at
ab

as
es
/l
c_
gl
cs
h
ar
e_

en
.js
p
)

La
th
am

et
al
.,
20

14
V
ar
ie
d

B
u
ru
n
d
i,
Ta

n
za
n
ia
,R

w
an

d
a,

an
d
U
ga

n
d
a
20

01
;
K
en

ya
20

10
30

ar
c
se
co

n
d
s

(~
1
km

)
11

(2
)

80
%

G
lo
bc

ov
er

v2
.3

(d
u
e.
es
ri
n
.e
sa
.in

t/
gl
ob

co
ve

r/
)

B
on

te
m
p
s
et

al
.,
20

11
M
ER

IS
FR

20
09

30
0
m

22
(5
)

58
%

M
O
D
IS

M
C
D
12

Q
1
co

lle
ct
io
n
5;

ye
ar

20
12

(h
tt
p
s:
//
lp
d
aa

c.
u
sg
s.
go

v/
p
ro
d
u
ct
s/
m
od

is
_p

ro
d
u
ct
s_
ta
bl
e/
m
cd

12
q1

)
Fr
ie
d
l
et

al
.,
20

10
M
O
D
IS
,b

an
d
s
1e

7
&

EV
I

20
12

50
0
m

17
(3
)

75
%
(7
7%

)

a
N
u
m
be

r
of

cl
as
se
s
re
la
te
d
to

an
th
ro
p
og

en
ic

la
n
d
co

n
ve

rs
io
n
.

b
A
s
sp

ec
ifi
ed

in
th
ei
r
d
at
as
et

d
es
cr
ip
ti
on

s.

Fig. 4. GE Grids land cover classification map of East Africa. Cities displayed are either
country capitals or have populations exceeding 500,000.
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International Geosphere Biosphere Project, IGBP, and the Land
Cover Classification System, LCCS; McCallum et al., 2006). This is
trivial here as all and only anthropogenic classes were of interest.
However, both GlobCover and MODIS MCD12 did have a class
representing a mosaic of both natural and anthropogenic land
covers. Therefore we compared these datasets with and without
these mosaic layers.

3. Results

Using GE Grids, we classified 1,479,121 cells for East Africa as
either predominately natural or converted to anthropogenic land
cover (Fig. 4). Nearly 30% (29.77%) of the region has been converted
to anthropogenic land cover although this varies greatly by country
(Table 2). Burundi and Rwanda have the highest proportions of
anthropogenic land cover at 85.99% and 82.27% respectively. Kenya
contains the greatest percentage of land still in a natural state
(82.65%), mostly within the nation's arid north. Only 3.74% of cells
were No Data and filled via human population density on a
country-by-country basis.
Table 2
Percent terrestrial land cover classified as natural or anthropogenic by country after
filling no data holes.

Country % Natural % Anthropogenic % No Data

Burundi 14.01 85.99 1.92
Kenya 82.65 17.35 1.37
Rwanda 17.73 82.27 0.13
Tanzania 68.44 31.56 5.12
Uganda 56.54 43.46 3.74
East Africa 70.23 29.77 3.74

http://www.glcn.org/activities/africover_en.jsp
http://www.globallandcover.com
http://www.glcn.org/databases/lc_glcshare_en.jsp
https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1


Table 3
The percent agreement between the GE Grids land cover classification of East Africa and those from comparative datasets. GlobCover and MODIS MCD12 both have an
additional class of mosaic cropland/native vegetation that is added in the (þ) comparison and absent in the (�). (Note. All figures and tables are onlywith theþ version of these
datasets due to their higher agreement.)

GE grids v. Dataset Africover GlobeLand 30 GLC-SHARE GlobCover (þ) GlobCover (�) MCD12 (þ) MCD12 (�)

NaturaleNatural 64.67 69.84 70.57 58.63 69.01 67.80 71.25
ConvertedeConverted 22.96 17.05 12.38 15.12 3.79 8.08 1.20
Natural-Converted 7.28 2.11 1.38 13.32 2.94 4.15 0.70
Converted-Natural 5.09 11.00 15.67 12.93 24.26 19.97 26.85
Total % Agreement 87.63 86.88 82.95 73.75 72.79 75.88 72.45
Unweighted Kappa Statistic 0.734 0.692 0.585 0.444 0.304 0.408 0.255
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The consistency of a single classified grid (50� 50 cells) from all
co-authors was 82.76%. Agreement between the five replications by
the first author was higher, at 94.6%.

Africover has the highest overall agreement (87.63%) with the
GE Grids dataset (Table 3). Africover classifies the least amount of
land as natural that we find converted. GLC-Share classifies the
least amount of land as converted that we find natural. Both
GlobCover and MODIS MCD12 have higher agreement with GE
Grids when mosaic cropland/natural vegetation land cover classes
are combined with anthropogenic land cover classes (Fig. S2).

A spatial comparison between the GE Grids' classification and
comparative products suggests that all global datasets had diffi-
culty identifying development in southeastern Burundi and coastal
regions of Kenya and Tanzania (Fig. 5, Fig. S3). On a per country
basis, Burundi had the lowest rate of agreement from all compar-
ative products with GE Grids, while Kenya had the highest
(Table S2).

The software design and approach satisfied our goals in this case
study of East African land cover. GE Grids enabled the evaluation of
reasonably sized grids (50� 50) using high-resolution satellite
data. Since this is a manual process much larger grids would
become burdensome. In all, we had to complete roughly 600 in-
dividual runs of the program given the size of the study area.
However, the ASCII text files were readily converted into raster
grids and, despite the large number of grids, were easily mosaicked
using ArcGIS without slivers or gaps.

4. Discussion

4.1. Review of results

We introduce a new tool, GE Grids, and with it create a binary
classification layer of anthropogenic land conversion versus natural
habitat in East Africa. Although East Africa is a region of conser-
vation significance (Jenkins et al., 2013), there is substantial
disagreement over the extent of anthropogenic land cover among
existing datasets (Fritz et al., 2011, 2010; Hannerz and Lotsch, 2008;
Vancutsem et al., 2012). Accurately identifying this extent provides
a useful metric for previous or future change analyses. Unsurpris-
ingly, Burundi and Rwanda have the highest rates of land conver-
sion, as these countries also have the highest human population
densities. Kenya and Tanzania have the lowest rates of land con-
version and population densities.

The reliability of this tool is important to consider as GE Grids
relies on manual classification of image data. Using a test grid, we
show that this process is highly repeatable (83% overlap between
co-authors) and even higher for a single user (95%). This suggests
that multiple contributors following strict rules can produce output
consistent enough to be merged together, although output by a
single user will be more consistent.

Comparison of GE Grids with existing datasets reveals several
trends. Although Africover is the oldest, it has the highest per-
centage agreement with our dataset. This is likely due to the
regional nature of the dataset and its comparatively high-
resolution input data (30 m). GlobeLand 30, the only other
comparative dataset with 30 m resolution, has the second best
overlap with our layer. GlobeLand 30 has nearly the same overall
agreement as Africover, yet on a country-by-country basis, its
agreement is highly variable whereas Africover's is not (Table S2).
GlobeLand 30 has both the lowest (Burundi is only 44%) and the
highest countrywide agreement (Kenya at 95%) of any comparative
dataset. This inconsistency strengthens the recommendation by
Fritz et al. (2011) to review any dataset for your area and application
before use.

4.2. Classification challenges

The use of GE Grids to visually classify anthropogenic land
conversion does present some new challenges. One issue is image
data of moderate resolution or otherwise obscured land cover
(commonly due to clouds). However, these regions can first be
classified as No Data and later modified using ancillary data layers
where available. We chose to use WorldPop, a human population
density dataset (Linard et al., 2012), as we were evaluating land
cover datasets, otherwise land cover datasets would be the natural
choice. The high level of agreement between WorldPop and our
own (between 81 and 93% at the country level) validate their use.

Other issues with using GE Grids for identifying anthropogenic
land conversion are inherent to Google Earth. These include posi-
tional error in data, variability in image date and resolution, and
methodological variation among data providers and sensors. The
positional accuracy of Google Earth data is debated, but errors are
likely sufficiently small to allow for the evaluation of moderate-
resolution remote sensing products across the globe (Yu and
Gong, 2012; Potere, 2008). A significant drawback is the temporal
variation of Google Earth data. Dates for high-resolution imagery
from a random sample of 100 points throughout the study area
range fromAugust 10, 2001 to June 27, 2014. This variation makes it
impossible to give a definitive reference date for this product.
However, roughly 90% of sample points are from the 2010s. Un-
fortunately, the spatial coverage of various imagery dates cannot be
easily estimated. Naturally, uses at smaller extents would have less
temporal variation and represent a more precise period of time.
Another challenge is that the imagery displayed in Google Earth is
not easily integrated with GIS software, and is updated regularly,
thus reducing the replicability of GE Grids' output over long
durations.

Further challenges to the use of GE Grids for LULC classifications
impact traditional remote sensing analyses as well. The potential
misclassification of fallow or retired fields, especially in areas with
shifting cultivation, can overestimate anthropogenic impact
(Vancutsem et al., 2012). Another potential issue is the use of only
one image date in classification (Sedano et al., 2005; Watson et al.,
2015). The single image may be captured at a timewhen distinction
between croplands and natural vegetation may be difficult; for
example following a fire, during dry seasons, or when lands are left
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fallow. Additionally, a single image precludes historical analysis
(Watson et al., 2015).

However, previous research supports the idea that simple, rapid
approaches to land cover mapping have benefits. See et al. (2013b)
Fig. 5. A spatial comparison of anthropogenic land cover in
found that crowdsourced data from Google Earth delineating the
spatial distribution of cropland in Ethiopia had a higher overall
accuracy than global land cover datasets. When analyzing the
crowdsourced data itself, See et al. (2013a) found that users
East Africa between GE Grids and comparative datasets.
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underestimate the degree of human impact and there was little
difference between experts and non-experts in identifying human
impacts. These results suggest that the GE Grids process can pro-
duce accurate, conservative estimates of anthropogenic land con-
version and be effectively implemented by non-specialists.

4.3. Comparison with existing tools

GE Grids is not the first tool to intersect Google Earth with LULC
mapping, nor is it alone in attempting to improve traditional land
cover classification procedures. In fact, Google Inc. has developed
their own online tool, Google Earth Engine (https://
earthengine.google.org/#intro), which allows users free access to
a massive public collection of satellite imagery (e.g. Landsat and
MODIS) and a large-scale computational facility to perform earth
observation data analyses. Importantly, their interactive user
interface is designed for LULC image classification with only a
moderate learning curve. However, the high-resolution imagery
available on Google Earth is not included in the accessible collec-
tion, and therefore use of Google Earth Engine will likely result in
the same challenges of classification accuracy associated with low-
and medium-resolution images. Additionally, user understanding
of software is important in ensuring sound results and correct in-
ferences (Ahmed et al., 2015). Indeed, the ease of access may even
result inworse classification accuracy because it is a process similar
to traditional LULC analysis but Google Earth Engine may not have
the functions or users may be without the knowledge to fine-tune
the analysis to achieve better results.

Other tools also incorporate Google Earth in LULC analyses.
Global Mapper, was developed for mapping global land cover with
the aid of Google Earth (Gong et al., 2013); however, the tool is not
widely available and could not be tested. VIEW-IT was developed to
provide high-quality reference data for training and validation
(Clark and Aide, 2011). Bastin et al. (2013) developed an open-
source program to track land cover change in Important Bird
Areas. Geo-Wiki is another tool that uses Google Earth to assist in
the training and validation of land cover products (Fritz et al.,
2009). Geo-Wiki goes beyond the other options to create interpo-
lated maps of certain land cover classes, such as cropland in
Ethiopia (See et al., 2013b) or a global hybrid land cover map (See
et al., 2014). Yet, the fundamental difference between these previ-
ous options and GE Grids is that they primarily assist in training or
validating existing land cover products and do not allow the user to
conduct their own land cover classification.

4.4. Software evaluation

We believe the software performed well in this case study. We
successfully evaluated nearly 1,500,000 individual grid cells over
the course of 600 runs on the basis of image data provided via
Google Earth. Despite multiple users, the program gave reliable
results and the data are easily interfaced with ArcGIS.

The software evolved during the case study as we made modi-
fications to improve reliability and focus on essential program el-
ements. A major addition was the ability to upload a previously
evaluated grid cell, enabling us to edit individual runs of the pro-
gram. Manual edits of raster grids are difficult in ArcGIS and much
easier to complete in GE Grids. However, there is room for further
improvements to evaluating and editing grid cells. Wewould like to
add the ability to include KMZ files (Google Earth files) as an overlay
while running the program. For instance, the user could then bring
in protected area boundaries and specifically evaluate land cover on
either side of the border. Additionally, transforming GE Grids into a
crowdsourcing or open-source tool could expand opportunities.
Finally, allowing for a greater number of classification categories
would be useful in most contexts. However, a greater number of
classes can affect accuracy by introducing greater subjectivity and
ambiguity of class definition (Powell et al., 2004).

GE Grids is a manual approach, having both benefits and
drawbacks. A potential lack of consistency is likely the greatest
drawback, although we believe that this will not be the case under
proper conditions. A manual approach can also be time-intensive.
However, Google Earth and GE Grids are both free, downloadable
programs, require little training, do not require download of large
satellite images from servers, require essentially no processing
time, and hence have significant built-in timesaving. The manual
approach of GE Grids is also very transparent and results can be
quickly and easily compared to each other and to existing data. This
can be an advantage over complex algorithms used in traditional
land cover classification procedures. While we recognize that the
trend in land cover classification is towards automated data pro-
cessing, we believe that a diversity of approaches is essential. Not
all approaches will work in all situations, and a transparent method
like GE Grids can help ensure accuracy from more complex classi-
fication methods.

4.5. Conclusions

Habitat loss via anthropogenic land conversion is a primary
driver in biodiversity loss (Pimm et al., 2014). Therefore, identifi-
cation of human-impacted areas is a critical first step in conser-
vation planning and planning for ecological resilience (Baguette
et al., 2013). Yet, existing global land cover datasets poorly and
variably identify croplands and urban areas (Fritz et al., 2011; Fritz
et al., 2010; Vancutsem et al., 2012). Improvements in the identi-
fication of these important areas are necessary. GE Grids can aid
conservation purposes by pinpointing anthropogenic land cover
and providing complementary data for existing LULC layers.

An important difference between traditional LULC mapping and
GE Grids is that this tool only produces a binary output as opposed
to assigning multiple land cover classes. But when identifying a
particular land cover type is very important, such as anthropogenic
land cover, GE Grids can be a valuable complement and validation
to existing datasets. Traditional remote sensing techniques require
specialized knowledge and potentially expensive data and software
(although this is changing), (Stensgaard et al., 2009; Pettorelli et al.,
2014). Comparatively, GE Grids is a free, simple, transparent process
that can quickly confirm results from more complicated analyses.
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