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ABSTRACT. This paper studies the nonparametric identification of partial dif-
ferences of a nonseparable structural function that determines the value of a discrete
or continuous random variable when the function depends on endogenous variates
which have discrete probability distributions. Weak conditions are developed under
which a partial difference of a structural function with respect to a discrete endoge-
nous variable is nonparametrically identified up to an interval. The interval is short
when there are many points of support of the endogenous variable. The interval has
finite length if there are at least three points of support but not when there are only
two. The interval can be estimated using quantile regression estimation methods.

1. INTRODUCTION

1.1. Nonseparable models and identification of partial differences. This paper
considers the identification of a partial difference of a nonseparable structural function
that yields the value of a discrete or continuous random variable, a function which includes
among its arguments endogenous variates which have discrete probability distributions.

Weak conditions are developed under which a partial difference of a structural function
with respect to a discrete endogenous variable is nonparametrically identified to within an
interval. The interval can be estimated using quantile regression estimation procedures.

As the granularity of the support of a discrete endogenous variable diminshes, the
interval shrinks to a point, yielding a point identification result when the endogenous
variable is continuously distributed.

To motivate the study of this problem consider the following stylised Becker-Chiswick-
Mincer model! of the determination of the log wage (W) and completed years of schooling

(5)-

W = hl(S7X7p1)
S = ho(X,ps)

Here X denotes a list of covariates measuring characteristics of the individual and of the
environment in which decisions are made and outcomes determined, and p; and p, are
unobserved, continuously, and possibly dependently distributed random variables. The
variate py will be interpreted as a measure of ability.

*I am grateful to Roger Koenker and to seminar participants at cemmap, Northwestern University,
University of Chicago and at the Harvard-MIT econometrics workshop for comments on the related paper
Chesher (2002) and for discussion of the problem considered in this paper.

TThis revision corrects errors in the presentation of the proof of Lemma 2 in which, in the July 29th
version, some inequalities were incorrectly oriented.

1See Becker and Chiswick (1966), Chiswick and Mincer (1972), Chiswick (1974), Mincer (1974), Card
(1995), Card (2001).
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In this context there is interest in partial differences like
A= hl(sl7 z, 7"1) - hl(sn7 z, 7"1)

which measure the “pure” effect of schooling on the wage.

When p; and p, are dependently distributed these “pure” effects cannot be identified
without adding further restrictions to the model and (W, S, X) data can only reveal the
combined effect on the wage of schooling (via the S-argument of hy) and ability (via the
pi-argument of hy through its dependence on ps).

Chesher (2003) develops weak conditions under which partial derivatives of structural
functions like hy are nonparametrically point identified, but those results are not ap-
plicable to the problem studied here because, when S is a discrete random variable, there
cannot be nonparametric identification of the S-partial derivative of the function hy. That
paper also surveys the related literature.

Weak conditions under which there is nonparametric point identification of a partial
difference, like A, when endogenous variables (S above) are continuously distributed but
covariates vary only discretely are developed in Chesher (2002). Discrete variation in X
prohibits nonparametric identification of the S-partial derivative of the function hy, hence
the focus in that paper on identification of partial differences.

The method employed in Chesher (2002) is not directly applicable when S has a
discrete distribution. The discrete endogenous variable case was left in that paper as a
puzzle which this paper solves by developing weak conditions under which an interval
containing a structural partial difference like A can be nonparametrically identified.

1.2. Interval identification of a partial difference. The interval identification
result is now introduced in the context of a simple restricted version of the model at the
start of this Section in which the covariates, X, are excluded from the wage structural
function, hy, as follows.

W = hi(S, p)
S hz(X7P2)

Let {s,,}22_, be the points of support of the discrete distribution of S and consider
two distinct points of support, s; and s; and the neighbouring points of support below
them, s;_1 and s;_;.

The variate py is normalised to be uniformly distributed on (0, 1) independent of X.
The function hs (X, p,) is therefore the conditional quantile function of S given X, a weakly
increasing caglad step function with steps whose lengths are equal to the probability
masses on the points of support of the distribution of S given X.

Let 71 be a value of continuously distributed p,, to be specified. Identification of the
structural partial difference

A= hi(sj,m1) — hi(ss,71) (1)

is considered.
Sufficient conditions for identification of A are as follows.2

1. Monotonicity. The function h; is strictly monotonically varying with p;. The

conditional 71-quantile of p; given p, and X is weakly monotonically varying with
3
P2-
2Weaker conditions are set down in Section 2.
3The second monotonicity condition is only required to hold over intervals of values of p,.
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2. Rank condition. There exist four distinct values of X: z¢, =1, 27 and 27~ such

that for a chosen value 75 € (0,1)
79 =P[S=5'2"] = P[S=s"" 2" = P[S=s/|2!] = P[S = s’ 1277 1]. (2
These covariate values are referred to as instrumental values.*

3. Covariation. The value of the 71-quantile of p; given p, = T2 (see equation (2))
and X does not vary across the four instrumental values. Denote the common value
by 71 - this is the value of p; that appears in the definition of the partial difference
A, given in equation (1).?

The interval identification result makes use of conditional quantile functions. The
conditional 7-quantile of a random variable A given a (possibly vector) random variable
B = b is denoted by Q(p(7[b),5 defined as

Qap(7|b) = inf{q : Fap(qlb) > 7}

where Fy|p is the conditional distribution function of A given B.
Under the conditions just stated there is the following inequality

min ( Qw|sx (T1]55,27) — Qw|sx (T1si, 2" 71), )

Qwisx(T1lsj, 2771) — Quwisx (T1]si, x7)
<A<

QW|SX(7'1|5jaxj) - QW|SX(7'1|5iaxi_1)7
max - i 3

( Qwsx (T1]sj, 2771 — Qusx (T1]ss, ") ®)
where the values of S that appear in (3) are conditional 79-quantiles of the distribution
of S given X, as follows.”

si = Qgx(Talz’)  sii1 = Qgx (72| ™") } ()

sj = Qg x(T2]2?)  sj_1 = Qgx(r2]z' ™)

This inequality identifies A up to an interval which can be estimated via the analogue
principle (Manski (1988)), replacing the conditional quantiles in (3) by estimated condi-
tional quantiles evaluated at estimates of the instrumental values of X. The inequality
(3) holds when W is discretely or continuously distributed.

This Section concludes with a discussion of some issues raised by the result (3). Section
2 gives a formal statement of the identifying restrictions and a Theorem stating the interval
identification result.

1.3. Estimation and overidentification. To estimate the bounding interval calcu-
late an estimate Fg|y and then find values, {#*,2~", 27, 277!} of X such that

To = Fs‘X(SlMZZ) = Fs‘X(Si_lki‘iil) = F5|X(SJ|§ZJ) = Fs|x(8j_1|§;‘j71).

4See Chesher (2002). Note that the existence of such instrumental values for any chosen 72 will depend
on the nature and extent of the support of X.

5This would of course be satisfied if p; were distributed independently of X given p,, but is far less
restrictive than an independence condition being specific to 71, 72 and the values of X considered.

6For example QA\BlBQ (7|b1,b2) is the T-quantile of A given By = b1 and Bz = bs.

7Since S has a discrete distribution these values of S are also conditional T-quantiles for some values
of T 7é T2.
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Finally calculate estimates, QW|SX(T1|Si,$) for x € {2,271} and QW|SX(Tl|sj,x) for
x € {27,277} and substitute in (3). At each stage the estimates could be calculated
using a parametric, semi- or nonparametric estimator.®

When X contains many covariates there may be many choices of instrumental values
which yield the same identifying interval. Then the interval is overidentified and the
procedure described above will yield many estimates of the identifying interval. One could
perhaps combine these using a minimum distance procedure to produce an asymptotically
efficient estimator.

In the just identified case, if Fgx does not vary monotonically with x there may
be distinct sets of instrumental values leading to different identifying intervals. One
would naturally be lead to use the set of instrumental values yielding the shortest interval
although accuracy of estimation will be a factor to bear in mind when choosing among
sets of instrumental values.

1.4. Rich support. Suppose that the granularity of the support of S is very fine, so
that S is “nearly” continuously distributed. Then if Fg x(s|x) is smoothly varying with
it will be possible to choose z~! close to ' and 27~ close to @/ and then, if Q,, |, x
is smoothly varying with p,, the separation between the bounds on A will be small.

If in fact S is continuously distributed then, if there exist instrumental values 2 and
27, one can choose #°~! = 2 and 2/ ~! = 27 and the inequality (3) collapses, yielding the
point identification result given in Chesher (2002)

A= QWlSX(Tl|3jva7j) - QW\SX(71|5iva7i)

where

S = QS|X(T2|xi)

sji = Qgx(r2]z?).

When S is continuously distributed, 79 is the unique probability value which satisfies
these equations.

1.5. Discrete covariates. If X has limited variation, for example when X is discrete,
it may not be possible to find any instrumental values that satisfy (2) for a particular, or
perhaps for any choice of s; and s; at any value of 75. It is sometimes possible to develop
wider identifying intervals in this case as explained in Section 3.3.

1.6. Binary endogenous variables. If j =i+1 the interval identifying inequality (3)
involves three points of support of the discrete endogenous variable, otherwise it involves
four points of support. Suppose the endogenous variable has just two points of support,
without loss of generality {0,1}. Then (3) does not apply in full. However, following the
argument in the Appendix, it can be shown that if the conditional 7;-quantile of p; given
po and X is non-decreasing with py there is the inequality:

A > Qwisx(T1]1,2°) — Qwisx (71]0,2°)

with the inequality reversed if the conditional 7; quantile of p; given p, and X is non-
increasing with p,.

So, in the binary endogenous variable case, any knowledge of A under the weak con-
ditions set out here requires prior knowledge of the direction of the dependence of p; on

8Regarding the quantile function estimation: for parametric estimation, see Koenker and Bassett
(1978) and Koenker and d’Orey (1987); for semiparametric estimation see Chaudhuri, Doksum and
Samarov (1997), Kahn (2001) and Lee (2003); for nonparametric estimation, see Chaudhuri (1991).
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py. Even with that knowledge, A can only be nonparametrically identified in this non-
separable model up to an interval with infinite length. More informative identification
in the presence of binary endogenous variables requires stronger restrictions than those
considered here.”

1.7. Plan of the remainder of the paper. The next Section provides a full set
of identifying restrictions, rather weaker than those used in introducing the result and a
Theorem stating an interval identification result for a structural partial difference with
respect to an endogenous variate for the case in which the structural function depends on
covariates and just one endogenous variate. The proof is contained in the Appendix.

Section 3 considers three extensions: interval identification when the structural func-
tion depends on more than one endogenous variate; interval identification of a structural
partial difference with respect to a covariate; and interval identification when covariates
have sparse support insufficient to allow the existence of instrumental values of X satis-
fying all the equalities in condition (2). The final Section concludes.

2. INTERVAL IDENTIFICATION OF STRUCTURAL PARTIAL DIFFERENCES

Consider a model for two outcomes, Y7 and Y3 with covariates X = {X k}le and two
continuously distributed latent random variables p; and p, with structural equations as
follows.

Vi = h(Ya, X, py) (5)
Yo = ha(X,py) (6)
The conditional distribution function of p; given p, and X is denoted by F}, |,,x and

Qp,|p,x denotes the associated conditional quantile function. The distribution of p, is
normalised as uniform on (0, 1) independent of X.

2.1. The discrete distribution of the endogenous variable. Let the points of
support of Y5 be {y5*}M_,  independent of X, with M not necessarily finite. The as-
sociated positive probability masses are {p,,(z)}M_, with S"¥_ p,,(z) = 1. Define the

cumulative probability sums {p™(x)}M_, as follows.

pm(x)Ean(x), me{l,...,M}
n=1

The distribution and quantile functions of Y5 given X = x are as follows.

0 —00 < y2 < Y3
FYQ\X(y2|x): pm(aj) yéngy2<y£n+l7 m€{27"'7M_1}
1 Y3 <yo < o0
v3 0<7<p'(x)
QYg\X(T|x) = yén pmil(‘r) <T S pm(‘r)v m e {27 < '7M - 1}
ys! pi(a) <t <1

Since p, is normalised as uniformly distributed on (0, 1) independent of X, the struc-
tural function hs is the quantile function of Y5 given X, that is:

ha(z, py) = QYZ\X(P2|$)'

9For example parametric restrictions.
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2.2. Interval identifying restrictions and a Theorem. Consider probabilities
{71,72} € (0,1)? and two points of support of Ya, y4 # y3. There are the following
conditions.

[. Triangularity. At any value of X, and of continuously distributed p; and p,, the
values of the outcomes Y7 and Y2 are uniquely determined by equations (5) and (6).

II. Rank condition. There exists a set of instrumental values of X:
X = {2 27 2t 1Y

such that o o _ _ _ _
P = ) = p ) = e =

III. Monotonicity. The function hy is weakly monotonic with respect to variation in
p1, normalised non-decreasing and caglad. For z € X', and

r2 € Ra(w) = [p'~ (), (@) U [P~ (), (2)]

the COIl-dltIOIlal quantlle flﬂ[}lctlon Qp,p,x (T1|r2, T) is either a non-increasing or non-
decreasing function of rs.

IV. Covariation. For {2/, 2"} € X and rp € Ra(a’)U Ra(z"),
Qﬁl ‘PQX(Tl |’I“2, ﬂ?l) = Qf’l |/’2X(7—1 |T2’ x”)
and p, is normalised to be uniformly distributed on (0, 1) independent of X.

V. Order condition. For z € X, define r1 = Q, |, x (71|72, 2).!" For {a/,2"} € X
and [ € {i,i—1,j,j — 1}

ha(ys, a',m) = ha(ys, 2", 71).
For x € X define the following structural partial difference.
Dx (Y5 3,71, 72) = ha(yhs @, 71) — ha(yhs 2, 71)
The Theorem stating the set identification of Ax (v, yg, T1,T2) is as follows.

Theorem 1. Conditions I - V imply the following inequality.

min ( Qvipvax (T1lyd, 27) — Qi pvax (Talys, @71, )
Qvivax (T1ly2, 2771 = Qvyjvax (T1ly5, =)

< AX(y§7y%7Tl77—2) <

max ( le\YZX(T”y%_? le) - QY1|Y2X(7'1|Z/§, xliil'% )
Qvilvax (T1ly2, 2771) — Qvyvax (T1]yh, )

The Theorem is proved in the Appendix. The method of proof is as follows.

10This is somewhat stronger then is required but has the virtue of simplicity - see the Appendix for
discussion.
11 Note 1 is invariant with respect to € X by virtue of Condition IV.
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2.3. The method of proof. First an expression is obtained for the conditional dis-
tribution function of Y7 given Y2 = y4* (one of the points of support) and X = z. This
leads directly to an equation whose solution is the conditional quantile function of Y;
given Yy = y5* and X = z.

When F, |, x is non-decreasing in py for p, € [p™~'(x),p™(x)] the solution can be
bounded, as follows:

hy (ygL7 Z, Qp1|p2X(T1 |pm(x)7 x)) < QYl\YzX(Tl |y£n7 l‘) <h (ygl7 €L, Qpl\ng(Tl |pm—1(x)’ .I)

with the inequalities reversed when F, |, x is non-increasing in p, for p, € [p™ ! (x),p™(x)].
In the non-decreasing F, |,,x case, for x € {2, 2"~} with m set equal to i there is,
under the conditions of Theorem 1, from (7)

h(ys,z,m1) < Qvipvax(Tilys, ') (8)
Qvivax (T1lys, 21 < ha(ys, x,m1) 9)
and for z € {27, 27~} with m set equal to j
ha(yh, ) < QYl\YgX(lel/%;xj) (10)
Qvivax(Tilyd. 2’ < m(yd,x,r). (11)

Adding (8) to (11) and rearranging and adding (9) to (10) and rearranging gives
QY1|Y2X(7—1 |y%7 xj_l) - le\Y2X(Tl |y§7 xl)

S hl(y%'vval) - hl(y;7x7r1) = AX(y;7y%7Tl77—2) S

Qv vax (T11Y3,27) = Qv pvo x (T1lyz, 1)
In the non-increasing F, |,,x case the inequalities are reversed and the result of Theorem
1 follows on combining the two cases.

3. EXTENSIONS

3.1. Many endogenous variables. The identification result of Theorem 1 is for the
case in which there is a single endogenous variable in the structural function of interest.
Extension to the case with more than one endogenous variable is straightforward.

Consider the case in which there are two endogenous variates, Y5 and Y3 and in place
of condition (I), condition (I').

I'. Triangularity. At any value of X, and of continuously distributed p;, p, and ps,
the values of the outcomes Y7, Y5 and Y3 are uniquely determined by the following

equations.
Yl = hl(Yé7Y37X7p1)
Yé = h?(Xv p?)

Let y§ be a point of support of the distribution of Y3 and consider interval identification
of the following partial difference with respect to Y>

AX(y;y%-vynghTZ) = hl(ygvygwrvrl) - hl(yévyf;]?xvrl)

for z € X a set of instrumental values satisfying condition (IT'). Now cumulative proba-
bilities are subscripted to indicate the endogenous variate to which they refer.
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I'. Rank condition. There exists a set of instrumental values of X:
X = {at 2 21 271
such that

(2) = ) =py @) =p) (@) =7

3
2 2
pi(a’) = pia’) =pf(a’") = p§(@’ ") = 7s.
The monotonicity, covariation and order conditions are amended as follows.

III'. Monotonicity. The function h; is weakly monotonic with respect to variation in
p1, normalised non-decreasing and caglad. For z € X, and

r2 € Ra(z) = [py (@), pa(2)] U [0y (), 3 (2)]

the condltlopal quant-lle function Q,, |p,p, x (71|72, 73, 2) is either a non-increasing or
non-decreasing function of ro.

IV’'. Covariation. For {z/,2"”} € X and ry € Ra(z') UR2(z"),

Qpy1paps X (112,73, 8") = Qp, p,p, x (T1]72, 73, 27)

and p, and p5 are normalised to be independently uniformly distributed on (0, 1)?
independent of X.

V’. Order condition. For x € X' define 71 = Q,, |p,p, x (71|72, 73,2). For {2/, 2"} € X
and [ € {i,i—1,j,j — 1}

ha (yl27 yg? xl7 7“1) =h (yl27 yg? ﬂ?”, 7“1).
Under conditions I’ - V' there is the following interval identifying inequality.

min ( QY1|Y2Y3X(71|Q%.7 yg,le) - QY1|Y2Y3X(Tl|y%7ygvxiil')v )
Qvivavsx (T1]2, 45,2771 — Qvivavax (T1lyh, 1§, 27)

S AX(yévy%7y§7TlvT2) S

max ( QY1|Y2Y3X(71 |y%7 yg? xj') - QY1|Y2Y3X(7—1 |y%7 yga xiil')v )
QY1|Y2Y3X(71 |y%7 yg? xjil) - QY1 \Y2Y3X(Tl |yév yg? xl)

The proof is similar to the proof of the Theorem 1 given in the Appendix.

3.2. Partial differences with respect to covariates. Consider a simple case in
which the structural function of interest, i, depends on a single discrete endogenous
variable and a single covariate Xy with X = (Xy, X¢).

Interval identification of the structural partial difference,

Ax(yb, 24,24, 71,72) = ha(ys, 24, 71) — ha(yh, @4, 1)
requires the existence of four instrumental values, X = {z%,z.~!, 2}, i~} as in condition
(IT) but with the requirement that within the set of instrumental values, x4 = z§ for
x € {al,xi}, my = af) for x € {z},2;”'} and the probability of obtaining the value,
ys, of the endogenous variable given X = z is equal to 79 for all z within the set of
instrumental values. Condition (V) is modified, now requiring that the structural function
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is insensitive, only via its X arguments, to variation in x within the set of instrumental
values. Conditions (I), (III) and (IV) are maintained.
The interval identifying inequality is:

min (Qy; jvax (T1]¥%: 75) — Qvivax (T11Y5, 25, Qv pyax (T1]45: 257 1) — Qva pyax (T1 Y5, 23))
< AX(yévxg7xlz7TlvT2) <

max (le\yzx(ﬁw;,xfz) - le\yzx(7'1|yéaﬂ?§,_1)a QYl\YgX(lel/évxf;l) - le\yzx(7'1|yéal"é))

a result that can be proved by minor modification of the argument of the proof of Theorem
1.

3.3. Sparse support. The rank condition (II) requires that there exist a set of in-
strumental values of X

X = {2 27 2 1Y

such that o o 4 4 . .

pia) =p/ (@) =p" (@) = p @) = 7o
When X has sparse support, for example when X does not exhibit continuous variation
it may not be possible to find such a set X.

In this case, modification of the rank condition (II) can lead to interval identification.
Replace condition (IT) by the following condition (II").

I1”. Rank condition. There exists a set of distinct instrumental values of X:
X = {at 2 2t 271
such that
pah<n P2 Y@< P@ ) En (12)
The other conditions are unchanged and there is the following Theorem.

Theorem 2. Conditions (I), (II"), (III), (IV) and (V) imply the inequality stated in
Theorem 1.

A proof is given in the Appendix. When one or more strong inequalities hold in
(12) the bounds in the inequality of Theorem 1 may be wider than those obtained when
equalities hold throughout. Further, the conditions of Theorem 2 are more restrictive in
this case since they require, that the covariation and monotonicity conditions hold over a
larger set of values of p, than when strict equalities hold throughout in (12).

4. CONCLUDING REMARKS
The interval identification result obtained here suggests that point nonparametric identi-
fication of A is not possible in a nonseparable model.

If Y5 is discrete and hg is strictly increasing then p, must be discrete, and then, if ho
depends on X, changes in X change the locations of the points of support. This is not a
case of real econometric interest.

The more interesting case considered here is that in which discrete Y5 is generated by
continuous p, which requires that hs is a step function. But in this case, each value of Y5
is associated with a interval of values of p, and the data generating value in this interval
cannot be identified.
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Therefore it is not possible to “control” precisely for variation in py by fixing Y5 at some
quantile of its conditional distribution given X and considering alternative instrumental
values of X, as was proposed in Chesher (2002) for the case in which Y5 is continuously
distributed.

However the monotonicity condition on @, |,,x invoked here allows the impact of
ps on p;, and thus on the value delivered by hi, to be bounded as p, varies within the
interval associated with the points of support of Y5 that are of interest, and this leads to
the interval identification result of this paper.

The result for binary endogenous variables presents an interesting puzzle. Under the
conditions proposed there can be interval identification of a structural partial difference
with respect to a binary endogenous variable, but the interval does not have finite length.
What minimal additional restrictions would lead to identification up to an interval of
finite length?
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APPENDIX: PROOFS OF THEOREMS 1 AND 2

First, two lemmata employed in the proofs of the theorems are stated and proved.
Lemma 1 provides an expression for the distribution function of Y3 conditional on Yy = y5*
and X = x. Lemma 2 places bounds on the associated conditional quantile function. The
proofs of Theorems 1 and 2 follow.

Lemma 1

Under condition (I) and the weak monotonicity (normalised non-decreasing) of hy with
respect to p; required by condition (IIT), the conditional distribution function of Y7 given
Yy = 94" and X = z is as follows.

m 1 " (2) m
Fyvax (ilys' x) = —/ Fpyppx (sup{p : b (43", ,p) < y1}lp2, x)dpy
pm(ac) pm—1(x) P
If hy is strictly monotonic (normalised increasing) with respect to p; then
1 P () 1
Pl 0) = —= [ B x (07 0. s, 2o
pm(ac) pmf1(z)

where hy ! (y5, x, 1) satisfies

Yy = hl(y?,ﬂ?,hil(ygL,w,yl)). (Al)

Proof of Lemma 1
The conditional distribution function of Y7 given Y5 = y3* and X = z is defined as

follows.
P[Yl S Y1 ﬁYQ = ygL|X = J}]

PYy = y5'| X = ]

Given X = z, in terms of events, since hy is a non-decreasing function of py,

FY1|Y2X(y1 |y£n’ x) =

M <yunYy =y} = {p; <sup{p: hi(y5",z,p) <y} N{p" '(x) < py < p™(x)}
p

and so

p™ ()
PYi <yinNYe =yy'|X = 2] = / Fy o, x(sup{p : h1(y3", z,p) < y1}lpa, )dpy
p

p"L*l(fL‘)
(A2)
and the first result of the Lemma follows on dividing by P[Y2 = y5'| X = z] = pi(2).
If hy is an increasing function of p; then

sup{p: h1(y3",@,p) <yi} = byt (v5" 2 p1) (A3)
p
and substituting in (A2) leads to the second result of the Lemma. O

The conditional 7i-quantile of Y7 given Yo = y5* and X =z is

' 1 p" () -
Qviv2x (T1]y3", @) = inf{q: —/ Ey 1px(sup{p : h1(ys", 2,p) < q}lpy, x)dpy > 71}
q pm(x) pm—1(z) P
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and when h; is increasing with respect to p;:

m ) 1 p" (x) _ m
Qvy|vax (T1]y3", @) Equlf{q " (x)/ y )Fpl\p2X(h1 "5 ®,q)|py )dpy > 71}
m pmTH(x

Lemma 2 places bounds on this conditional quantile.

Lemma 2
Under conditions (I) and (IIT), if F, |,, x is non-decreasing in p, for p, € [p" ! (z), p™ (x)]
then

hy (yéna Z, Qp1|p2X(T1 |pm(x)7 l‘)) < QYl\YzX(Tl |y;n7 l‘) <h (ygb7 €L, Qpl\ng(Tl |pm71(x)’ .I))
with the inequalities reversed if F}, |,, x is non-increasing in p, for p, € [p™ (), p" ()]

Proof of Lemma 2
If F, |,,x is non-decreasing in py for p, € [p™~1(x),p™ ()] then, recalling the result
of Lemma 1, replacing p, in the integrand first by p™~1(x) and then by p™(z) yields:

1 p" (z) m e
/ F, ppx (sup{p : ha (v, ,p) <y }p™ ' (x), x)dpy
pm(x) pm—1(z) P

< Fyyvex (n1lys's ) <

" ()

1 P m s
—/ Fy 1p,x(sup{p : hi(ys', 2, p) < yi}lp™ (), x)dpy
pm(l‘) pm—1(z) P

and since, for example
1 "™ ()
(@) /,,ml(m) Fplwpzx(sgp{p chi(ys',x,p) <y }p™ (x), x)dp,
= Fpl\pgx(sgp{p tha(ys', 2, p) < yidp™ (@), )

there is, for all y;, the following.

Fpl\p2X(Sup{p : hl(yénvxvp) < y1}|p7n—1(x)’x)
p

< Fy,vox(nlyy', @) <
Fy p,x(sup{p : hi(ys", z,p) < y1}[p™ (@), 2) (A4)
p

If h; is an increasing function of p; then in (A4) sup,{p : h1(y3",z,p) < y1} can be
replaced by hy vy, @, y1).

If F, |, x is non-increasing in p, for p, € [p™~'(x),p™(x)] the inequality (A4) is
reversed.

12 Monotonicity of F, |p,x With respect to py is a stronger condition than required but it has the
advantage that it is easily interpreted. The inequality (A4) holds if for all p, € [p™ 1 (z), p™ ()],

Fpl\pzx(sup{p thy (y’énvxap) < yl}‘an ZL‘) € [min(Am717Am)7 maX(Am717 Am)]
p

Am_l = Fpl‘p2x(sup{p: hi(y5*, z,p) < yl}\pm_l(w),w)
P
AL = Fy e, x(up{p: ha(y3' 2, p) < yi}p™(2), 2)]
P

for which the assumed monotonicity condition is sufficient.
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Since the functions on the left and the right of the inequality (A4) bound Fy, |y, x (y1]y3", )
respectively below and above, the solutions, ¢,,—1 and g, to

Gm-1 = irqlf{q : F, p,x (sup{p : ha(ys", @, p) < ¢} p™ ' (x), ) > 71}
p

qm = irqlf{q D Ey 1, x (sup{p : hi(y2', @, p) < q}p™(v),x) > 71}
p

bound
ifqlf{q F Py vex (lys' 7)) > T} = Qi vex (T1y2", @)

respectively above and below, that is:

dm S QYI\YQX(7'1|?J3L7$) S dm—1-

To aid understanding, consider Figure 1 where the distribution function Fy, |y, x (y1|y3", )
is the solid cadlag step function and the upper (u) and lower (1) bounding functions in
(A4) are drawn respectively dashed and dotted. A value of 71 is shown as a solid hori-
zontal line. In the example drawn, ¢, < ¢ < g¢m—1. If 71 was slightly smaller then ¢ and
gm—1 would coincide, and a further small decrease would result in coincidence of ¢,, and
q.

The relationships between the values ¢,,—1 and ¢,, and the structural function h; are
now determined.

Consider ¢,,. For any choice of ¢,

Fp1|sz(Sup{p : hl(y;nvx7p) < Q}|pm(‘r)7x) > T
p

if and only if
Qp,1p,x (T1p™ (2),2) < sup{p: hi(ys' 2, p) < q}
p

because F), |,, x is strictly increasing in its first argument; recall p; is required to be
continuously distributed. Therefore

qm = ilgf{q 1 Qp, o, x (T1]p" (x), ) < sup{p: hi(ys', z,p) < q}}-
p

Consider
q" = hi(y3", z, Qpl \sz(Tl lp™ (z),2))

which is a candidate value for g, because,
Qpl\sz(Tﬂpm(aj)?‘r) < Sup{p : hl(y;nvxvp) < q*}' (A5)
p

This holds as an equality when h; is a strictly increasing function of p; - this follows
directly from equation (A3) and the definition, (A1), of the inverse function hy *(y5", x, y1)
- and in that case,

Gm = f{g: Qp, |, x (T1[p™(2), ) < hit(ys',z,q)} = "
The case in which h; is a non-decreasing caglad step function of p, is drawn in Figure
2. Ends of steps at which hy is continuous from the left are drawn as filled circles. The

graph shows a value of Q, |,,x(71|p™ (), z) and the candidate value ¢*. The value of

p* =sup{p: hi(yy',7,p) <q*}
P



NONPARAMETRIC IDENTIFICATION WITH DISCRETE ENDOGENOUS VARIABLES 14

is indicated in Figure 2 and clearly p* > @, |,,x(71[p™ (), ), demonstrating that the
inequality (A5) does hold.

It is evident from Figure 2 that for ¢ < ¢* there is no p > Q, |, x (71[p™(2), ) such
that

Qp, 1p,x (T1]p™(2),2) < sup{p: hi(y5", x,p) < q}
p

and so ¢, = q*.
A similar argument shows that ¢,,_1 is as follows.

qm-1 = hl (ygl7 €z, Qp1|p2X(T1 |prn—1(x)7 Jf))

Therefore, in the case in which F}, |, x is non-decreasing in p, for p, € [p™*(z),p™ (2)],
there is the following inequality.

hl(y;n,x,QplpoX(Tﬂpm(l'),l‘)) < QYl\YzX(lel/;n?x) < hl(y;n?x7Qpl\ng(T1|pm71(x)7x))

A similar argument for the case in which F}, |,,x is non-increasing in py for p, €
[p™~1(x),p™ (x)] produces the reverse of this inequality

ha (Y5, 2, Qpy pyx (T10™ 1 (), 2)) < Qi pyox (T1l15", 2) < (Y5, 2, Qp, 1, x (T1[P™ (2), 7))

and combining the two preceding inequalities gives the result of the Lemma. O

Proof of Theorem 1

Consider the case in which, for z € X, Q, |,, x is non-increasing in p, over the intervals
Ra(x) defined in condition (III). Since F), |, x is the inverse function of @, |,,x this
implies that F), |,, x is non-decreasing over the intervals R (x) defined in condition (III).
In the inequality of Lemma 2 set m = i, and set x = x* giving

h’l (yév xiv Qpl\pQX(T1|pi(xi)7 xl)) < QY1|Y2X(T1|y§7 xl)

and set m = j and x = 27! giving

QY1|Y2X(T1|y%-7 xjil) S hl (y%7 xj717 Qp1|p2X(T1|pj71(xj71)7 xjil))'

Invoking the rank and order conditions (II and V) these inequalities simplify to
h‘l(y; xz, Qp1|p2X(T1 |T27 xl)) < QYl\YzX(Tl |y§7 xi)

QYI\YQX(THZ/%,%]'A) < h1(y%7$7Qp1\p2x(7'1|7'27$j71))

where z is any member of X, the set of instrumental values and h; is insensitive through
its © argument to choice of x € X.

The covariation condition (IV) implies that the conditional quantiles of p; that appear
in the two inequalities take the same value, namely r;. Thus for z € X there is the
following.

hi(yh,x,7m1) < Qyvijyax (T1lyh, )
QYl\YzX(Tl|ygaﬂ7j71) < h(yb,z,m)
Adding the two inequalities and rearranging there is, for z € A
hl (y%,az,rl) - hl(yévl‘le) > QY1\Y2X(Tl|y%7xjil) - le‘Y2X(7—1|y;7xi)' (A6)

Setting m = j and = 27 and then m = i and = 2°~! in the inequality of Lemma
2, and arguing along similar lines yields the following inequality.

Qvivax (T1193,27) — Qv jva x (1Y, 2 1) > ha(yh, ,71) — ha(yh, 1) (A7)
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Combining (A6) and (A7) gives the following for z € X.
Qvilvax (T113, 2771 — Qvyvax (T1]yh, 27)

< hl(y%ﬂ%ﬁ) - hl(yé,l“,ﬁ) <

Qv,vox (T1]y3, zl) — QY1|Y2X(Tl|y§, )
When, for z € X', Q,, |,,x is non-decreasing in p, over the intervals Ro(x) defined in
condition (IIT) (which implies F), |,,x is non-increasing in p, over these intervals) these

inequalities are reversed and combining the two sets of inequalities gives the result stated
in the theorem. [

Proof of Theorem 2

As in the proof of Theorem 1, first consider the case in which, for z € X, Q,, |,,x
is non-increasing in p, over the intervals Ro(x) defined in condition (IIT). Since F), |,, x
is the inverse function of @, |,,x this implies that F, |, x is non-decreasing over the
intervals Ro(z) defined in condition (IIT).
Recall that in Theorem 2 the instrumental values satisfy the following weak inequali-
ties.
p'(a)
P (a?)

To pi—l(xi—l) > To

T2 P > 1

ININA

Lemma 2 implies
hi (Y, @', Qpypyx (T1lp (1), 27)) < Qyypyox (T1ly5, %)
Qvivox (Tily, 2771 < h1(y%7$j_17Qp1|p2X(Tl|pj_1($j_1),xj_l))

and since @, |, x is a non-increasing function of p, (recall by is normalised non-decreasing
in its final argument) there is the following pair of inequalities.

(y27 7Qp1\p2 (T1|T2,$i)) < hl(y§7xi7Qpllsz(Tﬂpi(xi)vxi))
hl(y%wrjil?Qpﬂsz(Tﬂp] (xj 1)737]'*1)) < hl(yévxjilvQpl\sz(Tlh—Q?xjil))
Combining the preceding two pairs of inequalities yields
hl(yévxivQpl\sz(T1|T27xi)) S QY1|Y2X(T1|y§7xi)
Qvivax (13, 271 < ha(d, 2771, Qp, 1, x (T1] 72,27 71))
and adding these inequalities and rearranging there is the following.
Qvilvax (T4, 277 1) — Qvy v, x (T1]9, )

<h (y%v a7t Qpllsz(Tl|T2v xj_l)) —h (yév a, Qpllsz(Tl|T2v xl))

Setting m = j and x = 27 and then m = i and = 2°~! in the inequality of Lemma
2 and arguing as above yields the following inequality.

(yZ’ ’Ql’l\t’z (T1|T27xj)) - hl(yé,~Ti71,Qp1‘p2X(T1|T2,xifl))

S QYllYZX(Tﬂy%-’ xj) - QY1‘Y2X(7'1|yéa xiil).

Combining the last pair of inequalities and invoking the order and covariation restric-
tions and using the definition of 7, there is, for x € X, the following inequality.

Qvilvax (T113, 2771 — Qvyvax (T1yh, 27)
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S hl(y%7x7T1) - hl(yévxvrl) S

Qvipvax (T1]y5,27) = Qyi v x (Talyh, '),

In the case in which, for x € X, F, |, x is a non-increasing function of p, for p, €
Ry (x), which implies that @, |,,x is a non-decreasing function of py for p, € Ra(x),
applying the same argument leads to the reverse of the preceding inequality. Combining
the results yields the inequality as stated in Theorem 1 and thus the required result. [J
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