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ABSTRACT

The project aim was characterisation of antibacterial releasing, remineralising and self-

adhesive novel dental composites. Commercially available bulk filling and flowable

composites were tested in order to provide benchmark properties for successful dental

composite materials. 20 wt. % of light curable urethane dimethacrylate based liquid was

mixed with 80 wt. % glass filler containing 10 wt. % CHX and 0 - 40 wt. % CaP. Conversion

versus depth with 20 or 40 s light exposure was assessed by FTIR. Solidification depth and

polymerisation shrinkage were determined using ISO 4049 and 17304 respectively.

Subsequent volume expansion and biaxial flexural strength and modulus change upon water

or simulated body fluid (SBF) immersion were determined over 4 and 6 weeks respectively.

Precipitation of hydroxyapatite on the surfaces of light cured discs after storage in water

versus SBF was assessed weekly up to 4 weeks using SEM with EDX, Raman and XRD.

Mass of precipitate that could be scraped from the surfaces was determined gravimetrically

after 12 weeks. CHX release into solution or associated with the hydroxyapatite layer over

12 weeks was determined using UV spectrometry. Biaxial flexural strength and modulus

were determined after 1 month immersion in SBF. The shear bond strength between

experimental formulations and Ivory dentine etched with phosphoric acid was assessed.

Separate adhesive agent ‘iBond’ was applied to dentine and the shear strength was

compared with that when experimental composite was attached directly to the dentine

without iBond use.

Conversion decreased linearly with both depth and CaP content. Shrinkage was ~3% for

experimental materials. Early water sorption increased linearly, whilst strength and modulus

decreased exponentially to final values when plotted versus square root of time. Maximum

volumetric expansion increased linearly with CaP rise and balanced shrinkage at 10-20 wt.

% CaP. Experimental composites initial strength and modulus decreased linearly with

increasing CaP. Hydroxyapatite layer thickness / coverage from SEM images, Ca/Si ratio
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from EDX and normalised hydroxyapatite Raman peak intensities were all proportional to

both time in SBF and CaP wt. % in the filler. Hydroxyapatite was, however, difficult to

detect by XRD until 4 weeks. Early CHX release was proportional to the square root of time

and to CaP level and twice as fast in water compared with SBF. After 1 week, CHX

continued to be released into water. In SBF, however, any released CHX became entrapped

within the precipitating hydroxyapatite layer. At 12 weeks HA entrapped CHX was

proportional to the CaP filler wt. % and up to 14% of the total in the sample. CHX formed 5

to 15% of the HA layer with 10 to 40 wt. % CaP respectively. Shear bond strength has

increased upon addition of CaP up to 20 wt. %. Formulations with 0 wt. % CaP and no

adhesive monomer exhibited the lowest shear strength of ~ 3 MPa. Upon addition of 4Meta

and still absence of CaP, the shear strength increased up to 13 MPa. Formulations with 20

wt. % CaP experienced the highest shear strength of ~ 25 MPa irrespective of the addition of

adhesive monomers.

The high strength, hydroxyapatite precipitation and surface antibacterial accumulation

should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and

prevent subsurface carious disease respectively.
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1. INTRODUCTION AND LITERATURE REVIEW

Introduction

This section will introduce the problems associated with dental caries and critically

discuss proposed possible solutions particularly regarding dental composite developments

within the past decade.

1.1.Dental caries

Dental caries (tooth decay) is one of the most common largely preventable diseases

people suffer throughout their lifetime. It is associated with bacteria such as Streptococcus

mutans and Streptococcus sobrinus that, through acid formation, cause oral pain,

demineralisation of tooth structure and subsequently tooth loss [1]. This can be treated and

potentially reversed at its early stages. Dental caries commences its localised destruction of

the susceptible dental hard tissue by acidic by-products. These were formed due to bacterial

fermentation of food causing demineralisation to the tooth structure [2]. This disease is

chronic. It progresses slowly in most people, and can be seen in both the crown and root (so

called coronal or root caries). If carious tooth was left untreated, the costs of treatment will

escalate particularly when root canal treatment or total tooth replacements with implants are

ultimately required [3, 4].

The mineral composition of the tooth structure (Hydroxyapatite) is at equilibrium at pH 6-7.

Whenever sugary food is ingested, the pH of the local environment declines below 5.5 [5].

This causes the hydroxyapatite to dissolve and go through a process called demineralisation

[2]. This process, however, is reversed in the presence of sufficient Ca2+ and PO4
3- in the

surrounding environment. Once the pH increases to 6-7, the precipitation of Ca2+ and PO4
3-

is enhanced within demineralised tooth structure. This process is called remineralisation [2,

3, 6]. Clinically, the favoured method of caries management is tooth replacement by

restorative material [7].
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1.1.1. Dental biofilms

Dental biofilm is a complex microbial community of microorganisms found on tooth

surfaces, embedded in a matrix from both bacteria and host origin. Biofilms are directly

associated with caries [8], and they can be classified as either supra or sub gingival. The

development of dental biofilms takes place in a sequence of events including the formation

of salivary pellicle, bacterial adhesion to the pellicle and co-adhesion and co-aggregation of

secondary colonizers [9].

Although the dental biofilms are known to be essential for caries formation, most of the

bacteria present are not the main cause of dental caries. Instead specific cariogenic

microorganisms have been identified to be involved in the carious process. Within the

different biofilm communities several microorganisms, including Streptococcus mutans,

Lactobacilli and Actinomyces species, have been correlated with the carcinogenicity of the

dental biofilm [10].

1.1.2. Streptococcus mutans, Lactobacilli and Actinomyces

Streptococcus mutans is the primary player in the formation of dental caries. This type

of bacteria can generally be cultured at higher levels from saliva of patients with caries [11].

Various factors are related to the carcinogenicity of Streptococcus mutans as they are

aciduric (can grow in acidic environment) and acidogenic (produce acid) bacteria. They,

therefore, efficiently generate lactic acid through metabolism of sugars [12]. In addition,

Streptococcus mutans produce extracellular polysaccharides which help in bacterial

attachment and colonization to the tooth surface.

Similarly, Lactobacilli (e.g. L. casei and L. acidophilus) are acidogenic and aciduric bacteria

[13]. They are generally considered to be secondary organisms that attack the carious

region, contributing to the caries progression [14]. The Actinomyces species (e.g. A.
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naeslundii, A. viscosus), are the predominant colonizers of on the root surface[15] . These

cause more disease to patients of middle age and older adults.

1.1.3. Methods to control dental biofilms

It is crucial to control the process of biofilm film formation in order to prevent dental

caries. This could be achieved either through mechanical or chemical methods. Mechanical

control includes regular tooth brushing, flossing, and professional descaling. Chemical

methods involve use of antimicrobials and antiseptics such as chlorhexidine [16].

1.1.4. Chlorhexidine

Chlorhexidine (CHX) is a highly effective non-antibiotic with antibacterial properties.

CHX chemical structure is given in Figure 1-1. It is considered a broad-spectrum

antimicrobial agent that acts against Gram-positive and Gram-negative bacteria, yeasts and

some lipophilic viruses [17]. CHX is known as an effective antibacterial agent against the

oral bacterial biofilm, and has been used extensively in dentistry mostly for the treatment of

periodontal infection [18] and as an anti-plaque mouthwash (e.g. Corsodyl TM). The efficacy

of chlorhexidine is not related only to its antimicrobial property, but also to its substantivity,

which indicates the ability to bind tooth surfaces and oral tissues.

Due to its cationic structure, CHX is attracted to the negatively charged bacterial cell. This

leads to an increased permeability of the bacterial inner cytoplasmic membrane and leakage

of low-molecular weight components [19]. At the tooth surface, a small amount of CHX binds

to the pellicle and enamel, where it remains for several hours. This tooth surface- CHX

interferes with the adherence of bacteria to the tooth surface by either killing the bacteria

(bactericidal effect) or simply preventing it from multiplying (bacteriostatic effect). This is

dependent upon the antibacterial species and the amount of chlorhexidine attached to the

tooth surface [19].
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Figure 1-1: The chemical structure of chlorhexidine diacetate (C22H30Cl2N10.2(C2H4O2))

(molecular weight 625.6 g mol
-1

).

1.1.5. Dental biofilm adhesion to restorative materials

Dental biofilms can also develop on the surface of different restorative materials in a

similar sequence to that on tooth surfaces. These biofilms are associated with secondary

caries, which are either initiated at the tooth surface or tooth restoration interface. The

carcinogenicity of dental biofilms has been found to vary depending on the type of

restorative materials [20]. More cariogenic biofilms have been observed on the surfaces of

composite resin compared to other restorative materials, such as amalgam [20]. This is

mainly due to the lack or limited antibacterial property of composite resin [21]. In addition, it

has been reported that the resin component of composite can increase the growth of some

cariogenic species [20]. The composite resins are therefore expected to develop secondary

caries at higher rates than any other restorative materials.

1.2.Restorative dental materials

1.2.1. Amalgam restoration and ‘white’ fillings as alternative

The popularity of amalgam restorations is decreasing due to concerns regarding

mercury release combined with patient demand for ‘white’ fillings. With the imminent
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worldwide phase out of amalgam fillings arising from the Minamata agreement, alternative

white dental composites and to a lesser extent resin modified glass ionomer cements will

become the main tooth restorative materials [22]. Amalgam restorations also lack adhesion

to tooth structure and need excessive reduction of potentially sound tooth to provide

mechanical retention. Furthermore, large improvements have been made in aesthetic

materials in recent years. Previously for Amalgam filling, in order for the restoration to stay in

place, the cavities had to be produced with irregularities on the surface and undercuts. On

the other hand, aesthetic materials are bonded to dentine and enamel, which reduces the

need for large removal of the sound dental tissues [23].

A major problem with aesthetic tooth-filling materials such as composites, however, is their

higher failure rates. These restorative materials fail due to several reasons. These include

loss of retention, fracture, and over longer periods of time, recurrent caries formed beneath

the restorations. [24, 25].

1.2.2. Glass ionomer cements

Glass ionomer cements (GICs) are one type of aesthetic filling materials. Silicate glass

and aqueous polyalkeonic acid are their main constituents, and their setting is based on an

acid base reaction. The use of GICs has expanded as they bond chemically to the hard

tissue of the tooth and release fluoride for relatively long periods of time. [26, 27].

Furthermore, the coefficient of thermal expansion of GICs is similar to that of the tooth

structure. The main drawback of GIC is low strength and initial moisture sensitivity. This

limits the use of GIC to low stress bearing areas only [28, 29]. In order to improve strength

of GIC, it was previously reinforced with metals. This can, however, reduce the fluoride

release [29, 30].
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1.2.3. Resin modified glass ionomer cements and polyacid-modified composites

In order to overcome the drawbacks associated with conventional GICs, resin modified

glass ionomer cements (RMGICs) and polyacid-modified composites (compomers) have

been developed. Compomers were designed to provide adhesion and fluoride release of the

GICs but with improved aesthetic and mechanical characteristics. Compomers contain light

curable methacrylate monomers, in addition to the fluoride release related components of

GIC; polyalkanoic acids and reactive glass fillers [31]. These materials set by light cure

polymerisation followed by water sorption, which gives rise to acid base reaction.

Compomers show higher strength and resistance to occlusal load than GICs. Compomers

release less fluoride than GICs and have lower antibacterial activity [31-33].

Resin modified glass ionomer cements (RMGICs) are mainly composed of methacrylate

monomers, aqueous polyacrylic acid solutions and silane treated reactive glasses. Modern

RMGICs show moderate mechanical properties, low moisture sensitivity and comparable

fluoride release to conventional GICs. RMGICs, however, suffer from polymerisation

shrinkage, which is a shared disadvantage with compomers. This can enable bacterial

microleakage [34]. RMGICs often contain Hydroxyl ethyl methacrylate (HEMA) [35]. Release

of HEMA via diffusion subsequent to incomplete polymerisation was, in early formulations, a

risk with these materials. Furthermore, their translucency also could be poor [36]. RMGICs

have also been shown to have toxic effects to human cells [21].

1.2.4. Dental composite resin

Resin dental composites were introduced more than 50 years, and they are widely

considered as one of the most significant contributions to dentistry to in the last century [37].

In the past two decades, dental composites became the most widely used dental filling for

restoring anterior and posterior teeth, primarily due to increasing aesthetic demands by

patients [38]. Resin composites are used for a variety of applications, including restorative
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materials, pit and fissure sealants, cavity liners, cores and buildups, onlays, inlays, crowns,

provisional restorations, cements for single or multiple tooth prostheses and orthodontic

devices, root canal posts and endodontic sealers [39].

Composites are generally defined as materials that have physically or chemically distinct

phases, that when combined, produce a material with characteristics different form the

original individual components, such as concrete or carbon fibre composites. Dental

composites are composed of a liquid phase and a solid powder phase.

Composite materials are similar to each other as they are all composed of a polymer matrix,

reinforcing fillers, a silane coupling agent for binding the filler to the matrix, and chemicals

that promote or inhibit the polymerization reaction. This thesis is only concerned with

composites used as restorative materials.

1.2.4.1. Organic matrices

The organic matrix forms the body of the composite, and is produced as described

later, by addition polymerisation of dimethacrylate monomers. Most commercial dental

composites use BisGMA and/ or UDMA as their organic matrix [39-41]. These base

monomers are typically diluted with other comonomers, such as TEGDMA and HEMA [42] .

Bisphenol A diglycidyl methacrylate (BisGMA)

Bisphenol A diglycidyl methacrylate (BisGMA) or Bowen’s resin is a viscous

monomer with high molecular [43]. The monomer structure (see Figure 1-2) contains two

aromatic rings with pendant hydroxyl groups (—OH—). The double rigid aromatic groups

and hydrogen intermolecular bonding of hydroxyl groups are responsible for the high

viscosity of the monomer [44]. This, therefore, leads to enhanced glass transition

temperature (Tg) and reduced degree of monomer conversion [45]. Furthermore, the

presence of pendant hydroxyl groups account for some inevitable water sorption after curing.
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These are the main disadvantages of BisGMA resin; significant water absorption, very high

viscosity and low polymerisation, which means high amount of monomer still exists in the

material after polymerisation.

It was reported that BisGMA based resins exhibit final double bond conversion of only 55-65

% [46]. The low conversion of BisGMA has been attributed to the complex diffusion

controlled reaction mechanism. As the polymerisation reaction progresses, both the

termination and propagation reactions become diffusion limited. Unreacted monomer

molecules, during polymerisation, are incorporated into the polymer chains as units

containing pendant C═C double bond. Upon the increase in the reactivity of pendant C═C 

bonds increases, cyclisation (intramolecular crosslinking) and formation of high density

region or microgels takes place. The polymerisation reaction further occurs by chemical

bonding of the microgels leading to agglomeration and increase in heterogeneity of the

polymer system. This lead to decrease in crosslink density, and subsequently promoted

water absorption and possible hydrolytic degradation reactions [47, 48].

Low monomer conversion could lead to serious consequences; the release of unreacted

monomer may stimulate bacterial growth around the restoration and promote allergic

reaction [49]. In addition, hormone mimicking properties have been reported for BisGMA and

have led to safety concerns [50, 51]. It was also shown that low concentrations of BisGMA

causes a rapid decline of the glutathione pool of human gingival fibroblasts combined with

apoptosis (programmed cell death) [52]. Furthermore, the unreacted monomers act as

plasticiser, reducing the mechanical properties and increasing swelling [49].
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Figure 1-2: The chemical structure of BisGMA (molecular weight 510.6 g mol
-1

)

Urethane dimethacrylate (UDMA)

Urethane dimethacrylate (UDMA) is comparable in size with BisGMA but differs in its

chemical structural features (see Figure 1-3). This affects critical properties such as

viscosity, diffusivity, polymerisation shrinkage, water uptake, physiochemical and mechanical

properties. UDMA is an aliphatic high molecular weight monomer with two imine groups (—

NH—). These imine groups can associate with carbonyl groups (C═O) through 

intermolecular hydrogen bonds. Such intermolecular hydrogen bonds are responsible to

some degree for the high viscosity and relatively high glass transition temperature (Tg) of the

monomer. This imine group in UDMA, however, produces weaker hydrogen bonds than the

hydroxyl group (—OH—) of BisGMA [53]. This leads to lower viscosity and glass transition

temperature (Tg) of UDMA compared to BisGMA and hence on curing, exhibit higher degree

of conversion (due to presence of flexible aliphatic chains). It has been shown that BisGMA

polymers had higher leachable amounts of unreacted monomer, while UDMA mixtures had

more crosslinking than the BisGMA mixtures [54].

In addition, the urethane groups (—NHCOO—) in UDMA are known to form weaker

hydrogen bonds with water molecules than the hydroxyl groups of BisGMA molecules. This

leads to reducing the hydrophilic nature of the constituent monomer units [55]. It has been

reported that UDMA exhibit better tensile properties, faster and more higher conversion, and

its lower viscosity allows its use with minimal amount of diluents incorporated in the system
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[56]. Palin et al. has shown that upon curing, decreased volumetric shrinkage of resin

composites can be achieved when the composite system does not contain high amount of

dimethacrylate diluent monomers [57]. Moreover, UDMA has been reported as less cytotoxic

than Bis-GMA [58-63].

Figure 1-3: The chemical structure of UDMA (molecular weight 470 g mol
-1

).

Diluent monomers

Diluent monomers with low molecular weight are incorporated within the resin phase to

lower the high viscosity of base monomers and improve handling properties of composites.

The most commonly used diluent monomers are triethylene glycol dimethacrylate

(TEGDMA) and 2-Hydroxyethyl methacrylate (HEMA).

Triethylene glycol dimethacrylate (TEGDMA)

Triethylene glycol dimethacrylate (TEGDMA) is an aliphatic and hydrophilic monomer

(see Figure 1-4). This monomer is characterised by much lower viscosity and glass transition

temperature (Tg) and higher degree of conversion compared to previously mentioned base

monomers (UDMA and BisGMA) [64]. TEGDMA affinity to water is mainly attributed to the

presence of ether linkages (C—O—C). Although the degree of conversion of resin

composites increases upon addition of TEGDMA, polymerisation shrinkage and water

sorption are adversely affected [65]. Despite these limitations, TEGDMA is still used within

most current dental composites.
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Figure 1-4: The chemical structure of TEGDMA (molecular weight 286.3 g mol
-1

).

2-Hydroxyethyl Methacrylate (HEMA)

2-Hydroxyethyl methacrylate (HEMA) is an aliphatic low molecular weight monomer

(see Figure 1-5), which is widely used in biomaterials. In dental research, HEMA is mainly

used in dental adhesives as a solvent and adhesion-promoting agent [66]. After

polymerization however, poly (HEMA) is characterized by high water sorption [66]. This

affinity for water is attributed to the presence of the hydroxyl group (—OH) on HEMA

molecules. This hydrophilic nature of HEMA makes it attractive for use in the formulation of

bioactive dental composites that release remineralising components for tooth repair or

antibacterial agents to reduce bacterial microleakage of dental restorations [67].

Figure 1-5: The chemical structure of HEMA (molecular weight 130.14 g mol
-1

).

1.2.4.2. Activator-Initiator system

Dental composite resins are generally cured through a free radical polymerization

reaction. These free radicals can be generated either by chemical activation or by external

energy activation (light, heat or microwave). The chemically cured system utilizes benzoyl

peroxide initiator which is activated by a tertiary amine, such as N, N-dimethyl-p-toluidine
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(DMPT) (see Figure 1-6). Dental composites cured through this method are supplied as a

two paste system, where one of the pastes contains the initiator and the other the activator.

Upon mixing, free radicals are generated from the chemical reaction between peroxide-

amine systems, to induce the polymerization process [68].

Figure 1-6: The chemical structure of DMPT (C9H13N) (molecular weight 135.21 g mol
-1

).

Light activation is accomplished nowadays mostly using visible blue light with a peak

emission at 470 nm. Recent photo-activated systems mainly utilise Camphorquinone (CQ)

(see Figure 1-7) as a free radical photo-initiator with a tertiary amine, such as DMPT as

accelerator [39, 69]. The CQ absorbs light between 400-500 nm (maximum at 470 nm) to

create an activated state complex in association with the tertiary amine (e.g. DMPT). This

complex subsequently breaks down to produce free radicals, thereby starting the free radical

polymerization reaction (described later).

The use of UV light has been previously reported to cure the dental composites. This,

however, provided limited depth of curing, and in addition, UV light exposure can induce

tissue damage [70]. UV has, therefore, been replaced with high intensity visible light

sources, such as halogen light (tungsten-quartz) and more recently with light emitting diodes

(LED) and lasers. Higher curing of dental composites using LED light source has been

achieved than that with halogen light sources [71]. It was also found that the emission

spectra of LED light units, match the absorption spectrum of Camphorquinone (CQ) better

than the broader spectrum of the halogen light. In addition, LED light sources produce lower
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temperature rise within the composite upon polymerization [72]. Thus, using LED light

sources can reduce the possibility of thermal stress on pulpal tissues particularly within

deeper restorations.

Figure 1-7: The chemical structure of CQ (C10H14O2) (molecular weight 166.22 g mo-1)

Addition/ Free radical Polymerisation

Dental resin composites are polymerised by a polymerisation mechanism called Free

Radical Polymerisation or Addition Polymerisation. This polymerisation process starts from

an active centre, adding a monomer one at a time to rapidly form a chain. Theoretically, the

chain can grow indefinitely until finishing all the monomer. The type of addition

polymerisation found in current dental composites, is based on opening of carbon-carbon

double bonds and joining to form single bonds. These carbon-carbon double bond units (—

C═C—) are known as Vinyl groups, and are commonly methacrylate monomers (—C═C 

(CH3)—COOR).

There are three stages in the addition polymerisation reaction: initiation, propagation and

termination. A source of free radicals, such as CQ, is required for the addition polymerisation

to begin. This source can be activated via blue light to generate free radicals. The free

radicals generated (I●) attack the liquid monomer C=C double bond, breaking it open to

create a monomer free radical (M●) that can bond to other monomers leading to the

formation of bigger polymer chains. The reaction mechanism can be represented as follows:
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A + B
୩ౚ
ሱሮ 2I● Free-radicals generation

I● + M → M● Initiation

M୬
● + M

୩ౌ
ሱሮ M୬ାଵ

● Propagation

M୬
● + M୬

●
୩౪
→  P Termination

For termination the above reaction mechanism assumes a theoretical situation in which

chain radicals are consumed in pairs to produce dead polymer. Rate constants for all stages

of the polymerisation reaction can be represented by kd, kp and kt. This simplified mechanise

assumes that all monomers used for dental composite have similar polymerisation rates. A

simple example of free radical polymerisation can be seen in the following:

R—R + blue light → 2R● 

R●+H2C═CH2 → RH2C—CH2● 

RH2C—CH2● + H2C═CH2 → RH2C—CH2—H2C—CH2● 

RH2C—(CH2—H2C)m—CH2●+●H2C—(CH2—H2C)n—CH2R →     

RH2C—(CH2—H2C)m—CH2—H2C—(CH2—H2C)n—CH2R

1.2.4.3. Inorganic fillers

The filler phase forms the bulk of the composite. The type of filler particles,

concentration, size and distribution plays a major role in determining the material properties.

Commonly used fillers are quartz, fused silica, and glasses like alumino-silicate, barium

oxide and boro-silicate [73]. The filler particles are divided according to their size into macro-
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fill (10-15 μm), micro-fill (40-50 nm) and nano-fill (5-100 nm) [39].  Most composites contain 

mixture of these different filler sizes (hybrid composites) [73] .

The filler sizes and shapes are likely to present distinct surface areas. This was shown to

affect the minimum possible amount of resin matrix in the interfacial region between particles

[74]. It has also been reported that nano-particles can improve general properties such as

adhesion, aesthetics, and elastic moduli of the resin based composites [75]. Smaller

particles, however, reduces maximum filler loading leading to higher polymerisation

shrinkage.

1.2.4.4. Coupling agents

The significance of a coupling agent is to provide bonding between organic matrix and

the inorganic fillers phase of the composite to allow the transfer of stress from their matrix to

higher modulus filler particles [76]. Titanates and Zirconates were used as coupling agents

but the most common coupling agents are organosilanes such as γ-methacryloxypropyl 

trimethoxysilane [73]. ‘Silanation’ improves the composite resistance to hydrolytic

degradation and enhances mechanical properties through better distribution and stress

transmission from flexible resin matrix to the stiffer and stronger inorganic filler particles [77].

The silanol groups (S—OH) on both the hydrated silane and the filler surface can bond

together and form the siloxane bond (Si—O—Si). The bonding between silane and the resin

phase, on the other hand, is achieved through the reaction of the carbon double bonds

(C═C) of the silane molecule and resin monomers during polymerization.  

1.3.Antibacterial dental composites

Studies on cured dental composite have shown no antibacterial activity, which is

expected as individual ingredients of dental composite have no antibacterial action [78].

Various antibacterial agents, however, have been added to dental composites such as
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chlorhexidine, triclosan and benzalkonium chloride [79-81]. Antibiotics are not

recommended due to problems associated with resistance development. Fluoride can be

antibacterial, and have been incorporated in composite formulations previously [82, 83].

Much greater levels, however, are required than with chlorhexidine or antibiotics to be

effective. Furthermore, there is conflicting evidence over whether the addition of fluoride in

commercial composites has any clinical benefit [39, 78].

Recent studies have incorporated antibacterial dimethylaminododecyl methacrylate

(DMADDM) into adhesive agents [84, 85] and dental composites [86-88]. This material

showed promising antibacterial property with adhesives, but still need to be investigated for

the composite materials.

A gold standard antibacterial agent for oral biofilms with comparable effectiveness to

antibiotics is chlorhexidine [89]. Chlorhexidine is widely used in over the counter

mouthwashes.

Chlorhexidine was added into various experimental dental composites due its low minimum

inhibitory concentrations against oral bacteria and ability to inhibit metalloproteinases

(MMPs) [81, 90]. Composites with early release of chlorhexidine might reduce the need for

extensive caries affected tissue removal as advocated in modern tooth restoration

procedures [91].

Experimental dental composites have been produced using HEMA that contains

chlorhexidine [81]. From this study it was confirmed that composites with 50 or 90% of the

monomer as HEMA containing 10 wt. % chlorhexidine had reduced bacterial biofilm growth

on their surfaces when compared with controls with no chlorhexidine. High HEMA content

enabled high water sorption that encouraged drug release. Unfortunately, it also decreased

the composite strength. Further studies have additionally included water soluble components
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such monocalcium phosphate monohydrate (MCPM) [67]. MCPM also encourages water

sorption into the set composite which enhances chlorhexidine release but decreases

mechanical properties.

1.4.Remineralising dental composites

In the past 20 years a wide range of calcium phosphates (CaP) such as hydroxyapatite

(HA) [45, 92, 93], amorphous calcium phosphates (ACP) [87, 88, 94-97], tetracalcium

phosphate (TTCP) [98] and mono and dicalcium phosphates (MCPM and DCPA) [99-101]

have been studied as fillers in an attempt to produce calcium and phosphate –releasing

dental composites. Both nano-sized and micron-sized HA particles have been investigated

with the later tending to give higher mechanical properties [45, 99]. Acidic coupling agent

optimisation could improve flexural strength but a maximum of only ~70 MPa was achieved

[45, 92]. ACP filled composites were shown to release calcium and phosphate at levels

dependent upon the amount added to the formulations [82]. The biaxial flexural strength

could be increased to ~ 75 MPa through hybridisation of the ACP with other elements (e.g.

silicon and zirconium) but was still generally half that for base resin [95-97, 102]. Initial low

strengths could be attributed in part to poor dispersion and insufficient interaction between

ACP and resin but might also be caused by generation of pores upon component release

and increased water sorption after water storage. The strength of TTCP filled composites

increased from ~50 to 100 MPa by replacing 50% of the TTCP by silicon nitride whiskers.

Calcium and phosphate release, however, was decreased by an order of magnitude [98].

Similar effects were observed with MCPM / whisker composites [99]. Replacing MCPM with

less soluble DCPA increased strength but drastically reduced calcium phosphate release

[82, 99] Furthermore, the addition of whiskers compromised optical properties preventing

light cure feasibility.
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More recently, reactive acidic and basic mono and tricalcium phosphate fillers (MCPM/ β-

TCP) have been added together in dental composites [67]. The β-TCP enabled more control 

over the MCPM dissolution and composite water sorption. Highly soluble MCPM on the

surface of the material dissolved but in the bulk it reacted with the β-TCP to form less 

soluble, water-binding brushite (dicalcium phosphate dihydrate) crystals. The strengths of

these composites were subsequently improved through partial replacement of the reactive

fillers with reinforcing fillers but these again compromised optical properties [68]

1.5.Determination of remineralising properties of dental composites

In the above studies, remineralisation potential was generally assessed through calcium

and phosphate release determination [39]. Predicting the release levels required to promote

re-mineralisation, however, is complex and dependent upon many other parameters. A

dental restoration that promotes HA deposition could in addition to providing remineralisation

of adjacent collagen, potentially also enable closure of gaps between the material and tooth

and reduce bond deterioration over time. Some dental Portland cements, adhesives and

ceramics have shown hydroxyapatite precipitates on their surfaces in simulated body fluids

(SBF) [103-106]. In one study it was shown they could also re-mineralise adjacent human

dentin [106].

Factors that contribute to increasing rates of HA precipitation on the surface of a material

include raised SBF supersaturation, pH and temperature. Material surface chemistry has

also been shown to be important (e.g. by providing nucleation sites) [107-110]. In these

studies, SEM, EDX, Raman, FTIR and XRD have all been employed to assess the

hydroxyapatite precipitates. These studies, however, were largely only semi-quantitative. In

addition material mass changes have been monitored to provide quantitative results. Such

gravimetric methods are complicated in composites studies, however, because of large

composite changes in mass upon water sorption and component release.
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1.6.Dental adhesives

Dental adhesives were introduced to both improve retention of composite fillings and

prevent microleakage along the restoration’s margins. The chemical compositions of dental

adhesives vary widely. They generally contain resin monomers, initiators and stabilizers,

solvents and sometimes inorganic fillers smaller and in much less volume than those in

dental composite. In many formulations chemical bonding to tooth may also be achieved by

incorporating monomers with acidic groups and affinity for hydroxyapatite.

The adhesive first adheres to enamel and dentine and then to the composite [111, 112]. The

process of adhesion between the adhesive and composite filling is through co-

polymerisation of methacrylate double bonds (—C═C—). Micromechanical adhesion is 

crucial for reliable bonding to enamel and dentine. This is improved by enhancing tooth

micro-roughness. Resin monomer subsequently becomes interlocked with roughened

dentine and enamel surfaces upon curing [113]. Adequately removing the smear layer,

demineralising enamel and dentine, good wetting, penetration, diffusion and good

polymerisation are all important for the adhesive system to function properly [111, 112, 114].

“Etch and Rinse” adhesives usually use 30-40% phosphoric acid to demineralise dentine

and roughen enamel surfaces to a depth of about 5 μm. After 10-30s the acid is rinsed off. 

This also removes the “smear layer” which was generated upon cutting tooth structure. The

resultant, porous collagen matrix and exposed dental tubules or roughened enamel enable

improved interlocking with resin. In 3 step formulations etching is followed by applying a

primer. The primer usually contains resinous material in a volatile carrier or solvent, such as

alcohol or acetone. The low viscosity of the solvent and primer hydrophilicity helps the

resinous material penetrate into the collagen matrix and tubules. Once this primer is in place

a stream of air is applied to evaporate the carrier but leave the resin behind. Adhesive-

hydrophobic resin monomer is then applied to adhere to the primer resin. At this stage a
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hybrid layer is formed that contains resin, collagen and hydroxyapatite. In 2 step

formulations the primer and adhesive steps are combined. Etch and rinse approaches can

be highly technique sensitive. Both excessive or under etching may cause poor bond

strength and microleakage [112, 113].

With “Self Etching” Adhesives, acid and primer are included in one step to simplify clinical

procedure and save time. The smear layer is in this case incorporated into the hybrid layer

rather than removing it. There is no rinsing step. In 2 step self-etch formulations, the acidic

primer is applied to the dentine surface and dried with air before application and

polymerisation of the adhesive. Self-etching systems can be subdivided into two groups

depending on their acidity. Strongly acidic formulations (pH <1) form a hybrid layer of about

5 μm, whereas, milder systems (pH 1-2) form a hybrid layer of about 1 μm. Highly acidic-

systems generally produce a stronger bond than mild systems [112]. In one step

formulations acid, primer and adhesive are combined. These tend to have relatively shallow

hybridization but may have more carboxyl or phosphate functionalised monomers to interact

with residual hydroxyapatite [111, 113]. The self-etch are considered to be less technique

sensitive. There are still, however, many problems involved with incorporating dissolved

hydroxyapatite and the smear layer into the hybrid layer. Also the single step systems have

consistently produced lower bond strength than the others. Furthermore, single step

adhesives can have the highest variability and failure rate clinically [112, 113].

1.7.Self-adhesive dental composites

Recently significant improvement has been obtained in the development of self-

adhesive dental composites containing adhesive monomers such as Vertise Flow (Kerr) and

Fusio Liquid Dentin (Pentron Clinical) [115]. These formulations are composed of

methacrylate monomers as well as acidic adhesive monomers typically found in bonding

adhesive agents such as glycerolphosphate dimethacrylate (GPDM) and 4Meta [39, 115].
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These composites are currently only recommended for liners and small restorations but are

widely recognised as a potential entry point for universal self-adhesive composites [39].

1.7.1. Adhesive monomers

As it was explained earlier, bonding between the composite and tooth structure can

be achieved by an exchange process by which inorganic tooth material is replaced by resin

monomers that become interlocked in the retentions upon curing. Two mechanisms,

diffusion and capillarity, aid micro-mechanical retention [111]. This can more readily be

achieved while using low viscosity adhesive agent or flowable composite. Additional ionic

bonding between acidic monomers such as 4 Meta and pyromellitic dianhydride (PMDM)

and calcium in the hydroxyapatite can also occur [116]. This mechanism of bonding could be

feasible with viscous composite pastes. The possible use of adhesive monomers, therefore,

was investigated in this project.

4-Meta

4-Meta has been widely used as adhesion promoting monomer [111]. This monomer is

easily available in a crystalline powder, which is the anhydride form of 4-Met. Upon exposure

to water, 4-Meta powder goes through a swift hydrolysis reaction to form 4-Met (see

Figure 1-8). 4-Met is the active form, and composed of two carboxylic groups attached to

aromatic group. This provides acidic characteristics, thus demineralizing properties, and also

enhance wetting. The aromatic group, however, is hydrophobic and will decrease the acidity

and the hydrophilicity of the carboxyl groups [117]. Various authors have reported improved

adhesion to enamel and dentine due to the addition of 4-Meta [111].
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Figure 1-8: Chemical structure of the powder form of 4-Meta and the hydrated active form 4-

Met.

PMDM

PMDM is a carboxylic acid-type of adhesive monomer that is commercially available and

has been utilised to make dental adhesive agents [118]. PMDM can be found in two

structural isomers; para and meta. The para PMDM isomer is in a crystalline form and used

to mediate adhesive bonding of restorative composite with tooth structure [119]. The

chemical structure of this monomer is shown in Figure 1-9. Its ability to chemically interact

with the dentine was previously shown in different studies [120, 121]. The meta isomer is a

liquid, and normally during the synthesis of PMDM, the meta isomer is reduced [119].

Figure 1-9: Chemical structure of PMDM.

Water

4-Met

4-Meta
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1.8.Current commercial composites: Description and Disadvantages

Current dental composites have sufficient mechanical properties to be placed in all

areas in the mouth [39]. The mechanical properties of the current commercial materials have

been extensively investigated in the literature [122, 123]. The flexural strength and modulus

of current commercial dental composites range from 70 to 180 MPa and 3 to 10 GPa

respectively. This was achieved generally by altering the filler content. Composites having

the most filler was shown to be the strongest and stiffest; following the rule of composite

mixtures [39]. Current composites have similar strength to Amalgam and are much superior

to glass ionomers. Further enhancements, however, are critical given that development of

secondary caries is the primary reason for replacement of dental composites [124]. It is,

therefore, essential to continue to pursue improvements in reducing shrinkage and its

accompanying stress. In addition, introduce remineralising processes of tooth structure and

improve bonding to it.

Several attempts were made to solve the issues with polymerisation shrinkage. Modified

urethane dimethacrylate resin DX511 from Dupont found in KALORE™ (GC) was shown to

reduce shrinkage due to its relatively high molecular weight compared with bis-GMA and

traditional UDMA (895 g/mole vs. 512 g/mole vs. 471 g/mole, respectively) [125]. This,

however, significantly compromised the monomer conversion (50%) [126].

Venus® Diamond by (Heraeus Kulzer) is characterized by the presence of a novel

monomer (TCD-di-HEA, (Bis-(acryloyloxymethyl)tricyclo[5.2.1.02,6]decane) (TCD-urethane)

that was shown to combine low shrinkage (~2 vol. %) with low viscosity [127, 128]. TCD-

urethane backbone has also been shown to generate low stress due to its rigid structure

[129]. There is, however, conflicting reasons for this especially as the degree of conversion

was not measured and it is not possible to rule out reduced amounts of conversion to explain

the lower stress for Venus Diamond composite [128].
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The dimer acid dimethacrylate monomers utilized in N’Durance® (Septodont) are also of

relatively high molecular weight (673–849 g/mole), and have been shown to have high

conversion of carbon double bonds (~70%) [39, 130]. In addition, it has been shown to

experience lower polymerization shrinkage (~ 1.5 vol. %) than BisGMA based systems such

as Z250 (~2 vol. %). The strength of N’Durance®, however, was shown to be significantly

lower than that for Z250 (125 MPa and 170 MPa respectively) [130-132].

According to the literature concerned with testing commercial dental composite properties, at

the time this study commenced, the examples described above were considered as major

advances in composite technology. At this stage, however, none of the commercial dental

composites possess remineralising properties. Self-adhesive property was restricted to only

flowable composites as described above.

In this project, the properties of four different commercial dental composites will be

investigated Z250, Gradia, Vertise Flow (VF) and Fusio Liquid Dentine (FLD). These

materials will then be used for comparison with novel remineralising, antibacterial and self-

adhesive experimental dental composites. The commercials will be categorised based on

their function as either bulk filling (Z250 and Gradia) or flowable composites (VF and FLD).

1.8.1. Bulk filling commercial composites

There is a wide range of bulk filing dental composites currently in the market, but only

two examples (Z250 and Gradia) will described in this section. The two commercial materials

are light cured and were selected due to; 1- both are widely used, 2- composed of different

base monomers; BisGMA for Z250 and UDMA for Gradia, 3- filler phase for Z250 contain

nano and micro zirconia, and Gradia filler phase contains glass and pre-polymerised fillers.

Both of Z250 and Gradia are supplied as a pre-mixed paste with high viscosity [133, 134].

This is due to their high filler loading ~ 80 wt. %. Although they contain different monomers,
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their monomer conversion was shown to be similar, (50%) [135] and (45%) [136]

respectively. The polymerisation shrinkage of these materials was also investigated and

shown to be 2.5 % [137-140] and 2.7% [125, 141, 142] respectively.

In terms of mechanical properties, Z250 has shown to be one of the strongest (~180 MPa

flexural strength) among commercial composites [143, 144]. On the other hand, Gradia was

reported to exhibit low strength (~85 MPa) [141]. The properties of these two commercial

materials will be thoroughly investigated, and their strength and weaknesses will be pointed

out and taken in consideration when designing a novel dental composite.

1.8.2. Flowable commercial composites

Self-adhesive flowable composites (such as VF and FLD) are widely considered to

represent the latest trends in the development of dental composites [39]. Theses composites

contain similar composition; methacrylate monomers and glass fillers, but with less filler

loading than the bulk filling composites. In addition, these composites contain adhesive

monomers. These materials are recommended only for small restorations and liners due to

their high polymerisation shrinkage and low strength. These materials were described

extensively above in the self-adhesive composite section.
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1.9.HYPOTHESIS

 From the literature study conducted above, it is believed that the type of monomer

system will affect the handling, conversion water sorption and shrinkage properties of

the composite. Large monomers are usually viscous and rigid providing thicker

pastes and allowing less polymerisation shrinkage.

 Rigid monomers (such as BisGMA) will have restricted chain movements during

polymerisation and trapping more unpolymerised monomers in between the chains

leading to lower monomer conversion. UDMA has lower rigidity and viscosity than

BisGMA and expected to give higher monomer conversion.

 If the monomers in unpolymerised state are cytotoxic, high conversion is essential.

Higher monomer conversion will mean the polymer network will be more cross-linked

providing higher strength.

 Flexible monomer chains (such as TEGDMA and HEMA) should provide higher

monomer conversion as well as higher polymerisation shrinkage. It is speculated that

their use should be minimal to avoid high shrinkage.

 Another important factor that influences the polymerisation shrinkage is the filler

loading. High powder to liquid ratio will mean less monomer in a given amount of

composite, therefore, less shrinkage. The properties of the filler also determine

whether they are considered as reinforcing fillers (such as glass particles). On the

other hand, soluble calcium and phosphate fillers (such MCPM and TCP) will

decrease the strength and increase the water sorption.

 The water sorption induced by MCPM is envisaged to compensate for the

polymerisation shrinkage.

 Release of soluble components from the composite such as MCPM induces water

sorption and enhances the CHX release. Replacing these solid materials with water,

however, is expected to lead to deterioration in the strength and modulus.
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 Upon water storage, and as water sorption is taking place, if the water occupies

voids, the mass of the samples is expected to increase without affecting the volume.

On the other hand, if the water expands the polymer matrix, an increase in both

volume and mass is expected.

 The refractive index of the fillers also determines the amount of light that passes

through it, and subsequently the monomer conversion versus depth. Composites are

expected to have lower conversion at the end further from the light source due to

light scattering. Light scattering occurs if there is a refractive index mismatch

between glasses, CHX, TCP and MCPM.

 TCP with MCPM reacts to form hydroxyapatite at pH >7 in supersaturated medium.

The density and thickness of hydroxyapatite precipitate on the surface of the

composite is expected to depend on the amount of calcium and phosphate ions

released into the medium and time of immersion in SBF.
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1.10. PROJECT SCOPE AND AIMS AND OBJECTIVES

In the previous section, the modifications that have been made to dental composite

materials to improve their performance were discussed. In light of this, this section will

summarize the aims of the project. The areas of development in this project (project scope)

will also be described.

The project aim is to develop competitive dental composite filling materials with high

strength, enhanced lifespan and reduced bacterial microleakage. The proposed composite

should self- adhere to tooth structure and release active fillers that promote antibacterial and

remineralising properties without compromising mechanical properties.

From consultations with clinicians and dental composite manufactures and information from

the above literature review a set of target properties has been drawn up.

Target properties

1. The composite must be light curable and delivered as a single paste.

2. The level of polymerisation shrinkage should be comparable or less than that of

Z250. This relatively low shrinkage should be compensated by inducing enough

water sorption.

3. The level of monomer conversion should be more than that in current products to

reduce possible toxicity.

4. The set composite must be strong enough to resist the occlusal forces. It must also

have relatively low stiffness to be compatible with tooth structure and prevent

brittleness.

5. The composite should release calcium and phosphate ions to remineralising the

demineralised tooth structure whilst maintaining excellent aesthetic properties.
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6. The materials should also release the antibacterial CHX at a sufficient rate to kill any

bacteria in the surroundings.

7. The materials should be self-adhesive and form chemical bonds with the tooth

structure.

Project objectives

1. To determine the properties and characteristics of current popular dental composites

(chapter 3).

2. To screen possible components (monomers and fillers) for inclusion in experimental

dental composites that could fulfil the above target properties. Subsequently these

components are used to form experimental formulations. These were subject to a

wide range of tests to confirm their potential for future use. The chemistry of the

materials was identified using Raman mapping, conversion was checked through

FTIR, antibacterial release was determined via UV spectrometry and the mechanical

properties were assessed using an Instron testing frame (chapter 4).

3. To check the fundamental properties of experimental formulations with varied

calcium phosphates levels in terms of conversion, depth of cure, dimensional

changes (water sorption and polymerisation shrinkage) and mechanical properties.

These properties will be also compared with the current materials (chapter 5).

4. To determine the remineralising properties and CHX release from experimental

formulations with varied calcium and phosphate levels. In addition, determine the

factors that control the hydroxyapatite precipitation and better understand

precipitation kinetics (chapter 6).

5. To select and test possible self-adhering formulations with two different adhesion

promoting monomers (chapter 7).
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2. MATERIALS AND METHODS

This section summarises all the materials and protocols used throughout the project. At

the start of each chapter, a summary of the materials and methods used is also provided.

2.1.Materials

2.1.1. Commercial materials

A list of commercial composites investigated in this thesis is shown in Table 2-1.

Table 2-1: Details of commercial materials investigated in this project. Description and

component information are provided by the manufacturers.

Name Supplier Components Description

Monomers Fillers

Z250 Filtek™ BisGMA, UDMA,

BisEMA, TEGDMA

Zirconia, silica Premixed syringe

- light cure

Gradia GC Corporation UDMA,

dimethacrylate,

co-monomers

Fluoro-Alumino-silicate

glass, silica, pre-

polymerised filler

Premixed syringe

- light cure

Vertise Flow Kerr GPDM, HEMA,

BisGMA

Pre-polymerised filler,

ytterbium fluoride,

barium glass filler,

colloidal silica

Premixed syringe

- light cure

Fusio Liquid

Dentine

Pentron Clinical UDMA, TEGDMA,

HEMA, 4-Meta

Silica, barium glass,

minor additives

Premixed syringe

- light cure
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2.1.2. Monomers for experimental formulations

A list of monomers utilised to prepare experimental composite formulations in this thesis is

shown in Table 2-2.

Table 2-2: Details of monomers used throughout this project. Molecular weight information

was provided by the manufacturer.

Abbreviation Name Supplier Product Code Molecular

Weight (g/mol)

UDMA Urethane dimethacrylate Esstech X850 0000 470

TEGDMA Tri(ethylene glycol)

dimethacrylate

Esstech X943 7446 228

HEMA Hydroxyethyl methacrylate Esstech X968 7044 130

PMDM Pyromellitic Dimethacrylate Esstech X865 0000 674

4-Meta 4-methacryloxyethyl

trimellitate anhydride

PolyScience 17285 286

2.1.3. Fillers

The different fillers used in preparation of experimental composite formulations are

provided in Table 2-3. The chemical formula for different calcium phosphate fillers are given

in Figure 2-1. In all formulations, antibacterial agent chlorhexidine diacetate (CHX) (Sigma-

Aldrich, UK) (see Figure 1-1) was incorporated at varying levels.
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Table 2-3: Details of filler materials used throughout this project as provided from the

manufacturers.

Abbreviation Name Silanated Product code Size (m) Manufacturer

GP barium-alumino-
silicate glass

powder

YES 680326 7 D.M.G.

MCPM Monocalcium
Phosphate

Monohydrate

NO MCP-B26 ~53 Himed

TCP β-Tricalcium 
phosphate

NO Ssb210907 ~53 Plasma biotal

CHX Chlorhexidine
diacetate salt

hydrate

NO 1001447866 Undisclosed SIGMA

GF borosilicate glass
fibre

YES 0322201-S 15x300 MO-SCI

O
                                                                            ║ 
                                                                 HO ─  P ─ OH  
                                                                            │ 

O-

(a) MCPM anion (Ca (H2PO4)2.H2O) (molecular weight 252 g mol-1).

O
                                                                            ║ 

O- ─  P ─ O-

                                                                            │ 
O-

(b) β-TCP anion (Ca3(PO4)2) (molecular weight 310 g mol-1).

Figure  2-1: The chemical structure of (a) MCPM and (b) β-TCP 
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2.1.4. Initiators and activators

The initiator and accelerator used to form the experimental composite formulations are

given in Table 2-4.

Table 2-4: Details of initiators and accelerators used throughout this project as provided from

the manufacturers.

Abbreviation Name Supplier Product Code

Initiator CQ Camphorquinone Alfa Aesar 10120023

Accelerator DMPT N,N-Dimethyl-p-toluidine Aldrich 15205BH

2.2.Methods

In this section, the methods employed in this project are described thoroughly. A

summary of the methods employed in each section can be found at the start of each

chapter.

2.2.1. The required apparatus for preparing the composite materials

A skin condition (dermatitis) associated with direct contact with monomers was

prevented by wearing latex gloves at all times during sample preparation. Gloves were

changed whenever they came into contact with monomers and after all preparations hands

were washed thoroughly. A laboratory coat was worn to prevent the contamination of clothes

and / or skin.
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Viscous and diluent monomers were handled using metal spatulas and glass pipettes

respectively. Amber glass bottles were used to contain the monomers, initiators and

accelerators during mixing.

The paste was hand mixed using a metal spatula and a rubber mixing-pad (3M ESPE). All

weighing was done using an analytic balance (AG 204 Mettler Toledo) equipped with a

density kit.

Room temperature was 23 °C, and light was turned on or off as desired, depending on

daylight. Fridges were maintained between 1 – 5 °C with no light.

2.2.2. Commercial materials sample preparation

Commercial materials were prepared for use following the manufacturers’

recommendations and described in the following:

2.2.2.1. Bulk filling commercial dental composite materials Z250 and Gradia

Pastes of Z250 and Gradia were placed in metal rings and sandwiched between

acetate sheets. To ensure equal thickness disc dimensions of these viscous materials were

formed, a gentle pressure was applied when placing the top acetate sheet. These

specimens were then light cured for 40 seconds on each side with a blue light-curing unit

Demi Plus, Kerr for which the power output was 1100 mW/cm2.

2.2.2.2. Flowable commercial dental composite materials Vertise Flow and

Fusio Liquid Dentine

Pastes of Vertise Flow and Fusio Liquid Dentine were injected into metal rings and

sandwiched between acetate sheets. As the viscosity of these materials was low, care was
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taken to prevent their escape from the metal rings when covered with the acetate sheets.

These specimens were then light cured for 40 seconds on each side using the same blue

light-curing unit described above.

2.2.3. Experimental composite sample preparation

2.2.3.1. Monomer preparation

Monomers, initiator and accelerator were weighed into an amber bottle to form a total

amount of 10g (mass percentages of components weighed to an accuracy of 0.001g). The

components were weighed in the order from the smallest the largest amounts.

The amber bottle was then capped, and the monomer mixture was mixed for 1h using a

stirrer (Stuart. BioCote, U.K.) and a magnetic stirring bar at speed setting of 4/9 at room

temperature to ensure their complete dissolution. After this the stirring bar was removed, the

amber bottle was labelled and this “stock monomer mix” could be stored at 5 °C for up to two

months with no effect on the curing kinetics of the end product.

2.2.3.2. Filler preparation

All fillers were stored in airtight containers at room temperature. The bulk of the filler

materials were kept dry. This was ensured by only decanting small amounts of filler

sufficient for a week work at a time.

2.2.3.3. Paste mixing

The required mass of fillers were added onto a mixing pad and mixed using a metal

spatula. The required amount of “stock monomer mix” was then weighed onto the mixing

pad depending on the powder to liquid ratio, see Figure 2-2. Approximately one third of the

filler was combined with the monomer to make a thin paste. Once a homogenous

consistency was obtained, the second third of the filler was added to the paste and mixed.
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Finally the whole filler was mixed thoroughly in such a way as to avoid excessive

introduction of air to the mixture.

Figure 2-2: Filler powder and monomers mix on a rubber mixing pad before mixing.

2.2.3.4. Disc specimen preparation

Monomer and powder were mixed on a mixing pad (see Figure 2-2) to form a paste

following the procedure described previously. One disc specimen requires around 0.2 g of

paste to fill it. Brass ring moulds were used to form disc specimens, see Figure 2-3. The

filled rings were covered immediately with another sheet of acetate and topped with another

glass block. This glass block was used to expel excess material from the rings, but

sometimes light manual pressure was also required (e.g. when CaP is incorporated in the

formulations). After de-moulding, the edges of each disk were smoothened.

Figure 2-3: Disc specimen after being removed from brass ring mould, after edges have been

smoothed by removing excess material.
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2.2.4. Hydration

Discs that were to be tested in their hydrated state were added, individually, to sterilin

tubes containing 10 ml deionized water or SBF and stored at 37 °C for as long as it was

required prior to testing.

2.2.5. Statistical methods

Two methods of analysis were employed in this thesis; factorial analysis and linear

regression. Factorial analysis was the main method of analysis in chapter 3. Linear

regression was employed to statistically interpret the data in chapter 4 and 5.

2.2.5.1. Factorial analysis

Factorial analysis is the main method of analysis that has been used to investigate the

materials used in chapter 2 (Pilot study). This statistical method allows the effect of more

than one independent variable to be investigated simultaneously. This system has

advantages over single variable designs. The main benefit of this design is that it can

provide information about how variables interact or combine in their effect on a property.

Moreover, it allows greater confidence in the level of effect of each variable from a small

number of samples. In this report three or two variables were investigated at one time.

The typical 2 level factorial design used in this thesis was designed as follows. For each

investigation, 3 variables with high (F = +1) and low (F = -1) possible values were selected.

In the full factorial design formulations with every possible combination of these variables is

investigated (see Table 2-5). An experiment involving three variables has in total 8 possible

different formulations to be tested. For each variable, four of the samples will have low

variable values and the other four high variable values (see Table 2-5).
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C1 to C4 all have F for variable 1 equal to +1 but two each of +1 and –1 for variable 2 and 3.

The effect of variable 1 can therefore be obtained by comparing the average outcome for

sample C1 to C4 with that for C5 to C8. Similarly, comparing the average outcome for

samples C3, C4, C7 and C8 with that of C1, C2, C5 and C6 gives the effect of variable 2, and so

on.

Table 2-5: Sample combinations for two level factorial design in which three variables were

analyzed. +1 and -1 refer to high and low values of the variable respectively.

Sample Variable 1 Variable 2 Variable 3

C1 +1 -1 +1

C2 +1 -1 -1

C3 +1 +1 +1

C4 +1 +1 -1

C5 -1 -1 +1

C6 -1 -1 -1

C7 -1 +1 +1

C8 -1 +1 -1

The factorial expressions fitted to the data assuming a linear fit were

P=<P>+F1a1+F2a2+F1F2a12 (2-1)

P=<P>+F1a1+F2a2+F3a3+F1F2a12+F1F3a13+F2F3a23+F1F2F3a123 (2-2)
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Simple factorial expressions are shown for 2 (equation 2-1) and 3 (equation 2-2) variables at

2 levels.

F1, F2 and F3 take values of +1 or -1 when the variable one and two is high or low

respectively. F3 is +1 or -1 when the variable three is high or low respectively. a1, a2 and a3

indicate the magnitude of the effect of 3 variables. The other “a” terms indicate levels of

variable interaction. <P> is the mean property for all 8 possible formulations.

In this way it is possible to demonstrate how much the variables under investigation affect

properties of interest. Ho and Young [145] performed a two level factorial analysis in

simultaneous investigation of three variables. In this thesis both three and two variables are

investigated at one time.

2.2.5.2. Linear regression analysis

The function LINEST in Microsoft excel was used to fit linear equations to average

properties versus variables. LINEST calculates the statistics for a line by using the ‘least

square’ methods to calculate straight line that best fits the data under investigation, and then

return an array that describes the line. LINEST can also be combined with other functions to

calculate the statistics for other types of models that are linear in the unknown parameters,

including logarithmic, polynomial, exponential, and power series. As this function returns an

array of values, it must be entered as an array formula. The equation for a straight line is:

y = mx + b (2-3)

Where the dependent y values are a function of the independent x values. The m values

(gradient) are corresponding to each x value, and b is a constant value. LINEST can also

return additional regression statistics.
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LINEST provided standard errors on gradients and intercepts and R2 values. 95%

confidence intervals were estimated assuming they were 2 times standard errors. These are

provided as error bars on graphs (unless mentioned otherwise) and in parentheses with

equations. Linest was first applied assuming a non-zero intercept. If the intercept was

smaller than its estimated 95% confidence interval, the analysis was repeated assuming a

zero intercept.

2.2.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR is a chemical analytical technique that provides the intensity of infrared light that

a sample absorbs as a function of wavenumber. The infrared light can be classified

according to the wavenumber into far infrared (200-10 cm-1), mid infrared (200-4000cm-1)

and near infrared (4000-12800 cm-1). The mid infrared region is most commonly used as it

provides greater information on molecular structures. FTIR is widely used to measure the

degree of conversion of methacrylates [81, 145-147]. Other methods can also be used to

determine the degree of monomer conversion such as Differential scanning calorimetry

(DSC) and Fourier transform Raman spectroscopy (Raman) [68, 148-151].

In this project FTIR has been employed to quantify the degree of monomer conversion of the

experimental dental composite. This section will give some of the reasons for using FTIR in

this project to record the degree of conversion and address some of the limitations of this

technique compared to Raman and DSC.

FTIR allows a real time monitoring for the degree of conversion and the rate at which the

polymerization reaction progresses. The method of FTIR used in this project has been

described by Young et al. [147]. In that study the curing of methacrylate systems is



Anas Aljabo PhD Thesis

72

monitored in real time producing a curing profile. This gives the FTIR technique an

advantage over the Raman spectroscopy methods available in the department.

FTIR and Raman, are complementary to each other. Active peaks in Raman are often weak

in FTIR. The C═C peak (at 1638 cm-1 in FTIR), for instance, is stronger in Raman than in

FTIR. It is, therefore, expected if this peak was used; the FTIR technique may have poor

sensitivity to residual monomer levels when conversion is high [145]. Hence, selections of

peaks for monitoring polymerization reaction are central to the success of the technique.

Other peaks (~1320 cm-1) have been used to monitor monomer conversion as described

later.

The process in taking DSC measurements causes a delay between sample placement and

the actual start of monitoring of the polymerisation reaction. This is due to having to seal the

DSC container and place in the instrument. On the other hand, right after preparing the

experimental composite paste, the polymerisation reaction can be monitored before and

after applying blue light when using real-time FTIR. This is due to the ability to place the

material on the FTIR diamond cell in seconds. It therefore, can be expected to provide easier

measurement of fast polymerisation processes.

2.2.6.1. FTIR background and principles of infrared (IR) absorption

After a molecule absorbs IR radiation, it gains energy as it undergoes a transition from

one energy level (Einitial) to another (Efinal). Planck’s law describes that the energy of transition

and the frequency of absorbed radiation ݂ (Hz) are related by the equation:

Et = h ݂ (2-4)

Where Et is the energy of transition, which equals Efinal- Einitial and h is Planck’s constant.
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Since ݂ = vc, where v and c are the wavenumber (v) (cm-1) and velocity of light (8×108 m s-

1), equation (2-4) can be replaced by this equation:

Et = hvc (2-5)

The wave length (λ) (nm) is correlated with frequency ( )݂ by the following equation:

λ = c/f      (2-6)

Therefore, equation (2-6) can also be given as:

Et = hc/ λ   (2-7)

Energy absorbed by a molecule must exactly match that needed for a molecular transition.

Infrared radiation absorbed causes the bonds between atoms in molecules to oscillate and

vibrate at their resonant frequencies. Different bonds have different strengths/lengths and

absorb various wavelengths of radiation. The resonant frequencies correspond to discrete

vibrational energy levels.

The absorption of the IR radiation causes change in the dipole moment (electron distribution)

of the bond. This leads to transitions between energy levels [152]. The

frequencies/vibrational resonant energy levels depend on both the size of the atoms and the

electron density of the bond. FTIR can more easily show the asymmetric vibrations of polar

groups as the dipole moment of polar bonds can be more strongly deformed than non-polar

bonds.

FTIR spectra are usually displayed as a plot of IR absorbance versus wavenumber (cm-1).

Peaks shown in the spectrum correspond with different vibrational transitions. The FTIR

spectrum can generally be divided into two regions. The region with absorption between
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4000-1300 cm-1 is mainly due to vibrations associated with specific functional groups. The

second region with absorption from 1300-500 cm-1 is known as the fingerprint region, and

associated with vibrations of the whole molecule.

2.2.6.2. FTIR instrumentation

FTIR instruments consist of IR source, interferometer and detector. The IR

polychromatic radiation source requires a sampling method to determine the ratio of intensity

of incident to transmitted/absorbed radiation, as well as an instrument (detector) to

determine the wavelengths of the incident and transmitted/absorbed radiation.

The IR radiation beam is divided into two optical beams via the beam splitter. Two mirrors

reflect the splitter beams back, see Figure 2-4. One mirror is fixed, while the second is

allowed to move across the path of the light beam. The time needed for the light to travel

from the mirrors to the splitter will be different for both beams and dependant on the

wavelength. These reflected beams will be recombined at the splitter and the resultant used

to produce an interferogram. This interferogram can be converted to absorbance versus

wavenumber through computer software and Fourier transformation. The computer software

uses the Fourier transform and the Beer Lambert law to convert this interferogram into a plot

of Absorbance versus wavelength. All of the wavelengths of the source reach the detector

simultaneously, leading the formation of a full spectrum in seconds. This makes FTIR

spectroscopy suitable for real-time monitoring of polymerization.
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Figure 2-4: Schematic diagram of FTIR.

2.2.6.3. Attenuated total reflectance (ATR) infrared spectroscopy

ATR is the sampling method employed to find the intensity of radiation interacting with

the sample. This instrument is used in conjunction with IR spectroscopy. ATR-IR can

analyse the surface of thick specimens that would normally have too strong IR absorption

when using the conventional technique. In this method the material being investigated is

placed on a diamond cell, because of its high refractive index. The beam passes through the

crystal reaching the sample, and is primarily internally reflected back through the diamond

with small penetration into the sample (0.5-5 μm), see Figure  2-5. The intensity of the 

reflected wave (evanescent wave) decreases due to energy being absorbed by the sample.

The attenuated energy wave is directed out of the crystal and passed to the detector to

generate the spectrum.

Beam splitter

Sample

Detector

Light source

Fourier transformation by computer

Moving mirror

Stationary mirror
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Acetate sheet

Evanescent wave

Figure 2-5: Schematic diagram of Attenuated total reflectance (ATR)

2.2.6.4. FTIR Resolution

With FTIR, the spatial resolution is limited by the size of the crystal, and each

spectrum corresponds to the average chemical structure over the whole area of the crystal.

For composite materials, the spectrum generated will be an average of both the polymer and

filler phases.

On the other hand, the wavelength resolution is the closest division between discrete

wavenumbers that can be detected. Two discrete wavenumbers (two distinct lines in the

frequency domain), can be detected when the beam from the sample is scanned in the time

domain for one complete period (from one maximum to the next on the interferogram). FTIR

wavelength resolution, therefore, is determined by the distance over which the moving mirror

can move. In this project, the resolution of the instrument was maintained at 4 cm-1 at all

times.

ATR diamond

Incident IR-beam
The detector

Reflected IR-beam

Sample
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2.2.6.5. Degree of monomer conversion

All commercial and experimental composite materials were directly loaded at room

temperature (23 ºC) into a metal mould (10 mm diameter and 1mm thickness) on the centre

of diamond cell in ATR top-plate (Specac Ltd, UK) in an FTIR spectrometer (Perkin Elmer

series 2000, UK). The top surface of the sample was then covered with acetate sheet to

prevent oxygen inhibition of the polymerization. FTIR spectra of the sample in contact with

the diamond were obtained with wave number range between 600 and 2000 cm-1 and

resolution set at 4 cm-1. Number of scans was fixed at 8 and the total run time was 15 min.

After 1 min from start of spectral collection, commercial and experimental composites were

light cured for 20 or 40 s using a light-curing gun described earlier (n=3).

Degree of monomer conversion was determined through change in the height of the

absorbance of the monomer peaks at 1320 cm-1 (C—O stretch) above the background at

1335 cm-1, see Figure 2-6. Percentage of monomer conversion was calculated using

Conversion (%) =
�(ࢎି࢚ࢎ�)

ࢎ
(2-8)

Where h0 and ht are the peak heights at 1320 cm-1 wavenumber initially and after time t

respectively.

FTIR spectra of initial components were obtained to help identification of different peaks.

2.2.6.5.1. Depth of cure FTIR method

Metal ring moulds were placed on top of each other 1-4 pieces and filled with paste to

obtain the spectra at 1, 2, 3 and 4 mm thicknesses. The composite paste was placed on the

FTIR diamond cell as described above. Each of these samples was cured for 20 or 40

seconds (n=3).
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Figure 2-6: FTIR spectra of experimental composite formulation containing UDMA, TEGDMA,

HEMA, CQ and DMPT in the monomer phase and glass fillers. The figure shows change in

absorbance used to determine curing profile. The 1320 cm
-1

peak used to measure peak height

(relative to base at 1347cm
-1

) corresponds to C—O bond in the polymerizing methacrylate

group.

2.2.6.5.2. Depth of cure ISO method (ISO 4049:2009)

To assess depth of cure using the ISO 4049 method, pastes were condensed into

metal moulds (4 mm diameter and 6 mm deep). After exposure of the top surface to blue

light for 20 or 40 s, the specimen was removed from the mould and any soft material

scraped away using a plastic spatula. The depth of the remaining solid specimen, hDTH, was

measured. The depth of cure is presented as half of hDTH according to the ISO standard

(n=3).
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2.2.7. Polymerisation shrinkage

2.2.7.1. Polymerisation shrinkage calculated

Shrinkage is proportional to degree of conversion. One mole of polymerizing C═C 

bonds typically gives volumetric shrinkage of 23 cm3 /mol [153]. The total shrinkage due to

the composite polymerisation can therefore be estimated using this equation

(2-9)

Where N is the number of moles reacted per unit volume. N can be estimated using this

equation

(2-10)

Where M is the total monomer mass fraction and C is the final fractional monomer

conversion obtained from FTIR. Also ni , Wi and xi are number of C═C bonds per molecule, 

molecular weight (gmol-1) and mass fraction of monomer respectively.

 Total fractional shrinkage, φ, due to the composite polymerisation can therefore be 

estimated from FTIR monomer conversions, using

߮ = ∑ߩܥ23
௫

ௐ 
 (2-11)

(C, monomer conversion (%); ρ, composite density (g/cm3); ni, the number of C═C bonds 

per molecule; wi, molecular weight (g/mol) of each monomer; xi, mass fraction of each

monomer). The calculation was done in triplicates.
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N = [M ]Crcomp
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2.2.7.2. Polymerisation shrinkage experimental (ISO 17304:2013)

Polymerisation shrinkage was also determined using Archimedes’ principle and ISO

17304:2013. This method determines the densities of unpolymerised paste and polymerised

discs by measuring their mass in air and water (n=6). An analytic balance (AG 204 Mettler

Toledo) equipped with a density kit was used. The density of the polymerised disc ρd can be

calculated as:

ࢊ࣋ =
ࡹ ࢝࣋�∗ࢊ

ࡹ) ࡹ�ିࢊ ࢝ )
(2-12)

Where Md, Mw, and ρw is disc weight in air, in H2O and density of water, respectively. Due to

relative flowable composition of un-polymerised paste, it has to be placed on acetate sheet

to determine the weight in air and in water. The density of paste ρp can be calculated as:

࣋ =
ࡹ) ି࢙ ࡹ ࢝࣋(ࢇ

ࡹ ି࢙ ቂ
ࡹ࢝࣋ ࢇ
ࢇ࣋

ቃି ࡹ ࢝

(2-13)

ρa and ρw are the density of acetate and distilled water at the temperature of measurement

respectively . Ma, Ms and Mw are the mass of acetate in air and sample plus acetate in air

and water respectively. Therefore, polymersiation shrinkage S can be calculated as:

(%)�ࡿ =
ࢊࢂ�ିࢂ

ࢂ
×  = ൬−

࣋

ࢊ࣋
∗

ࡹ ࢊ

ࡹ 
൰ (2-14)

Where: Vp, Vd is volume of paste and disc, respectively, Mp is the paste weight in air: Mp =

Ms - Ma.
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2.2.8. Raman Spectroscopy

Fourier Transform Raman (Raman) is a type of vibrational spectroscopy that

determines the intensity of inelastic scattering of a laser light (633 nm). As stated earlier, the

quantum vibrational energy levels in molecules can be used to infer the molecular structure

of a substance. The difference between Raman and FTIR is that Raman scattering occurs

when there is change in molecular polarizability whilst in IR spectroscopy the IR absorption

must be accompanied by a change in dipole moment.

2.2.8.1. Raman background and principles of Raman effect

With Raman spectroscopy, high energy radiation interacts with the electron cloud of the

bonds within a molecule. Light photons excite the molecules to higher virtual energy levels

than any of their vibrational resonance modes. Then the molecular bonds relax and they

release photonic energy. The molecular bonds relaxation usually occurs at the molecules

preferred energy level (in a given temperature). The photons emitted have the same energy,

and, therefore, same frequency as the photons that were absorbed. These photons are

known to be ‘elastically’ scattered (Rayleigh scattering). Sometimes, however, the molecules

relax to higher or lower vibrational energy levels producing Stokes or Anti-Stokes shifts

respectively, see Figure 2-7. This occurs when the energy of the photons is not conserved,

and so the emitted photons have a different frequency from the incident radiation. The

difference between the Stokes and Anti-Stokes shifts is known as the Raman shift. The

Raman spectrum is normally plotted as intensity of the scattered radiation as a function of

Raman shift in wavenumbers (cm-1). The peaks location corresponds to the chemical

bonding of the molecule, whilst the peak intensity is associated with the concentration of the

bond type. Regarding methacrylate composite materials included in this project, Raman

spectroscopy is used to provide the molecular structure of a material and also level of

methacrylate conversion following the curing reaction as the number of C═C methacrylate 
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bonds decrease. Raman microscopy has been also employed to investigate water induced

chemical changes.

Virtual energy state

Rayleight Stokes Anti-Stokes Raman scattering
scattering Raman

scattering

Vibrational energy state

Ground state

Figure 2-7: Diagram showing the states of Raman signal

2.2.8.2. Raman instrumentation

A Raman microscope consists mainly of an optical confocal microscope, a light

source, monochromator, laser excitation source (633 nm) and a detector. The sample is first

illuminated with a visible light, and focused on a specific area. The visible light source is then

switched off, and the laser excites the area in focus. Raman scatter from the excited region

is passed through microscope objectives, and then through a pinhole aperture. The Raman

signal then passes to the detector, and the data from the interferometer give a plot of Raman

shift versus intensity. Out of the focal point Raman scatter will be not focused at the pinhole

aperture, and therefore not transmitted to the detector. This allows the acquired Raman

spectrum only to be representative of the excited point within the sample.
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2.2.8.3. Raman mapping

Samples of commercial and experimental composites were secured on glass slides

with adhesive putty and a suitable flat area of 40 μm2 of the surfaces was illuminated with

visible light under 50 x magnifications. All spectra were obtained using a Lab Ram

spectrometer (Horiba, Jobin Yvom, France). The samples were excited at 633 nm by a He-

Ne laser through a microscopic objective (50x). Raman spectra were obtained in the range

of 850-1700 cm-1 with a resolution 2 cm-1 using a confocal hole of 150 µm. For each

specimen, spectra were obtained by mapping areas of 40 x 40 µm. For each area (n=3),

several hundreds of spectra were generated and normalised using data between 1200 and

1700 cm-1 prior to obtaining average spectra. The component spectra were determined by

selecting spectra from either representative areas of the composite or maps of the filler

powder or monomer liquid before mixing. To aid peak assignment, spectra were generated

for pure β-TCP, MCPM, CHX and glass as well as the polymerised monomer. Maps were 

generated by analysing and colouring each 2 μm area depending on how closely it 

resembled each of the component spectra.

2.2.9. Ultraviolet-visible spectroscopy (UV)

Ultraviolet-visible spectroscopy is used to detect and quantify chromophores. UV

spectroscopy can also be used to identify unknown compounds by comparing the spectra

generated with samples of those of pure compounds / solutions. In this project, UV

spectroscopy was employed to quantify chlorhexidine release from the experimental

composite being developed.

2.2.9.1. UV background and principles

UV light is absorbed when it passes through a sample and the energy matches that

required for promotion of valence electrons to higher energy orbitals (electronic transition).
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UV-visible light wavelengths of 200-800 nm .The excitations may involve both bonding and

nonbonding electrons. The UV spectrum is plotted as absorbance versus wavelength.

Incident intensity (i) and transmitted (t) light through homogenous absorbing systems at a

given monochromatic wavelength is given by the Beer-Lambert law.

A = – Log [i / t] = kcl (2-15)

A is the absorbance, c is the concentration of absorbing species molL-1 in solution, I is the

light path length (cm) and k is the molar absorptivity (L mol-1 cm-1). At a given wavelength,

the molar absorptivity (molar extinction coefficient) for any absorbing species is a constant.

2.2.9.2. UV instrumentation

The UV spectrometer consists of a UV light source (deuterium lamp) for the range of

160-375 nm and visible light source (tungsten lamp) for in the range 360-1000 nm. A slit

allows the light beam to enter the monochromator. Then light is reflected via mirrors to a

diffraction grating (see Figure 2-8). This can be rotated to allow specific wavelength

selection. The monochromatic light then passes through an exit slit into a beam splitter. This

splitter divides the light in two; one beam passes through the reference cell (quartz cuvette

that contains the solvent only) and the second is directed through the sample cell (cuvette

that contains the sample). The detector measures the difference between the two and

provides the absorbance due to the sample.
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Reference cell
Light source

Mirror

Entrance slit

Sample cell
Diffraction grating Beam splitter

Monochromator
Exist slit Detector

Figure 2-8: Diagram of UV spectrometer

2.2.9.3. CHX release in water versus SBF and entrapment in HA

To quantify CHX release, discs of each formulation (n=3) were weighed and

immersed in 10 ml of distilled water or SBF (at 37 ºC) within sterile tubes. At various time

points up to 12 weeks (2, 4, 6, 24, 168, 336, 720, 1440 and 2160 hours) the specimens were

removed and replaced in fresh distilled water or SBF. UV spectra of storage solutions were

obtained between 190 and 300 nm using a UV 500 spectrometer (Thermo Spectronic, UK).

These were compared with calibration graphs created in the same range for solutions of

known concentration of CHX to ensure that the CHX was the only component causing

absorbance. A calibration curve using absorbance at 230 and 255nm was obtained using 5

chlorhexidine concentrations (1.25, 2.5, 5, 10 and 20 ppm), see Figure 2-9. Plots of

absorbance versus time were linear as expected from the Beer Lambert law. The CHX peak

at 255 nm was then used to calculate the amount of CHX release (Rt in grams) between

different time periods from each specimen using equation:

=࢚ࡾ


ࢍ
ࢂ� (2-16)
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Where A is the absorbance at 255 nm, g is the gradient of a calibration curve of absorbance

vs CHX concentration (obtained using known solutions) and V is the storage solution

volume. The percentage cumulative amount of drug release Rc at time t was then given by

equation

(%)ࡾ =
[∑ [࢚ࡾ

࢚


ࢃ ࢉ
(2-17)

Where Wc is the weight of CHX incorporated in a given specimen in grams.

Figure 2-9: Calibration curve of the absorbance of 5 chlorhexidine concentrations (1.25,

2.5,5,10 and 20 PPM).

To assess the level of CHX deposited / trapped in the hydroxyapatite layer on the surface of

composite samples after 12 weeks in SBF the HA from the test in chapter 6 was dissolved

in 10 ml of deionised water by mixing for 24 hours using a small stirrer. The UV spectra of

the resultant solutions were then obtained.
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2.2.10. X-ray diffraction

X-ray diffraction (XRD) is an analytical technique generally used for the

characterization and phase identification of crystalline materials. In this project, XRD was

employed to detect the hydroxyapatite on the surface of experimental composite materials.

The crystal structure is composed of atoms arranged in lattice planes separated by the inter

plane distance. X-ray radiation is scattered by the atoms when it hits a crystalline sample.

Some of this scattered radiation undergoes constructive interference and Bragg diffraction

occurs, see Figure 2-10. The angle of constructive interference can be calculated using

Bragg’s law

λn = 2d sin θ   (2-18)

Where  λ is the wave length of incident X-ray beam, d interplane distance and θ angle of

incident. N is an integer and is known as order of the diffraction beam.

                                         θ                                          θ      

                                                                          θ                                       d

A C

B

Figure 2-10: Lattice planes of Bragg model

Every crystalline material has a specific atomic structure, and illustrates a unique x-ray

diffraction pattern.
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XRD is composed of five main components: the X-ray tube for emission of radiation,

dispersive slit, sample holder, receiving slit and detector.

2.2.10.1. X-ray diffraction pattern of the hydroxyapatite precipitate on the

experimental composite

Surface XRD (thin film) spectra of samples stored for 1, 2, 3 or 4 weeks in water or

SBF were obtained using a Bruker-D8 Advance Diffractometer (Brüker, UK) using Ni filtered

Cu Kα radiation. Data were collected using a Scintillation counter with a step size of 0.02˚ 

over an angular range of 20-55˚ 2Ɵ and a count time of 10 sec. The width of the XRD peak 

was used to estimate the size of the HA crystals [154] using the Scherrer equation:

=࣎
ࣅࡷ

Ɵ࢙ࢉࢼ
(2-19)

߬ is the mean size of HA crystals, K is dimensionless shape factor ~ 0.9, ߣ is the X-ray

wavelength = 0.15 nm, ߚ is the line broadening at half the maximum intensity and Ɵ is the

Bragg angle.

2.2.11. Gravimetric and volumetric analysis

The mass and volume of all formulations were gravimetrically determined using a

density kit and four-figure digital balance (Mettler Toledo). Each sample was stored in a

separate sterilin tube and each tube contains 10 ml of distilled water at 37 ◦C. After 1, 2, 4, 

6h and 1, 2, 4 days and 1, 2, 4 and 6 weeks specimens were removed, blotted dry,

reweighed and replaced in new tubes containing new storage solution. The percentage

volume and mass change were determined using

% Volume change =
�[ି࢚ࢂ [ࢂ

ࢂ
(2-20)
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% Mass change =
�[ࡹ ି࢚ ࡹ ]

ࡹ 
(2-21)

Where Vt and Mt are the volume and mass at time t after immersion in storage solution,

while V0 and M0 are the initial volume and mass, respectively (n=3).

2.2.12. Biaxial Flexural Testing

Various flexural test methods are employed for characterizing the maximum tensile

stress in a material at failure and thereby the flexural strength of that material. 3-point bend

flexural testing is recommended in ISO 4049:2009 for determining the flexural strength of

polymer based restorative materials. 3 and 4-point bending have been widely used to

determine flexural properties of cement materials [155-161]. Biaxial flexural testing has

been used largely in the characterization of mechanical properties of dental materials [67,

68, 162-164]. There are a number of studies in the literature comparing the testing methods

[163, 165-167].

3 and 4-point bending tests often require larger specimens than those for biaxial tests. This

means more material is required at more cost to make samples for mechanical testing. The

rectangular shape of the specimens for 3 and 4-point bending tests can be difficult to

manufacture, increasing the possibility of defects. On the other hand, biaxial flexural testing

is more representative of occlusal stress state [167]. Furthermore, biaxial disc specimens

are easier to make and can be used for other tests (drug release, water sorption, depth of

cure, polymerisation shrinkage).

Biaxial flexural test geometries include: ball-on-ring, ball-on-three-ball and piston-on-ring

[165]. In this project, the ball-on-ring jig was employed, see Figure 2-11.
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Figure 2-11: Ball-on-ring jig utilized for biaxial test method.

2.2.12.1. Flexural strength and modulus testing

Biaxial flexural strength (BFS), elastic modulus and fracture behaviour of the

experimental composite formulations was determined using a ‘ball-on-ring’ biaxial testing

method. In this method, a disk specimen (dry or hydrated) was placed on a knife edge ring

support (radius 4mm) and then loaded by a spherical tip in an Instron (4502, U.K.) (See

Figure 2-12 and Figure 2-13). This was used to record load and central deflection of the disk

and plotted on a load versus deflection graph. From this the maximum load at fracture and

the pre-fracture slope were determined to find the biaxial flexural strength and elastic

modulus respectively.

To assess strength and modulus variation with time, 1 mm thick and 10 mm diameter

specimens were prepared as above and stored either dry or for 1 day, 1 week or 1 month in

distilled water. Biaxial flexural strength, S, and modulus, E, were determined using

equations (2-22 and 2-23)

=ࡿ
ࡼ

ࢎ
ቂ(+ ቀቀ.ૡ(ࣆ

ࢇ

ࢎ
ቁ+ .ቁ+ .ૡቃ (2-22)

ࡱ = .
ࡼࢊ

࢝ࢊ
ቀ
ࢇ

ࢎ
ቁ� (2-23)
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(P, load (N); h, sample thickness (mm); µ, Poisons ratio taken as 0.3; dP/dw, the gradient of

load versus central deflection; a, the support radius (mm)).

Figure 2-12: Biaxial test jig. Disc specimen is placed on a ‘knife edge’ circular support. The

‘ball bearing’ load cell tip is lowered onto the specimen at 1 mm/min and the corresponding

load versus displacement is recorded.

Figure 2-13: Schematic representation of biaxial test. Disc specimen is placed on a ‘knife edge’

circular support. The ‘ball bearing’ load cell tip is lowered onto the specimen at 1 mm/min and

the corresponding load versus displacement is recorded.

Load cell Tip

Biaxial Samples

Supporting ring a

r

P

h

Disc specimen



Anas Aljabo PhD Thesis

92

2.2.13. Scanning electron microscopy (SEM)

All SEM images were captured at 5kV accelerating voltage using a Scanning electron

microscope (Phillip XL-30, Eindhoven, The Netherlands) and INCA software. The images

were taken for experimental composite formulations dry or after immersion in water or SBF

for different times (specifically identified in chapter 6 materials and methods). Samples were

mounted onto stubs with fast setting epoxy adhesive. The mounted specimens were then

sputter coated using gold and palladium alloy prior imaging.

2.2.14. Energy Dispersive X-ray Analysis (EDX)

EDX analysis was performed using an Inca X-sight 6650 detector (Oxford Instrument,

UK) at 20kV accelerating voltage to quantify the average and homogeneity of calcium versus

silicon content of the surfaces. Specimens stored for 1 day or 1, 2, 3 and 4 weeks were

mounted onto stubs with fast setting epoxy adhesive. The mounted specimens were then

sputter coated using gold and palladium alloy. The surface of the composite was divided into

9 squares each 3 x 3 mm, ignoring the 1 mm edge area which could be contaminated with

the epoxy resin (see Figure 2-14). Acquisition time to map each square was 200 s with a

Count Rate Optimisation process time of 6. Ca/ P ratio was determined to first confirm HA

formation and then the ratio of Ca from HA to Si in the glass, utilized as a filler, was used to

investigate relative changes in the thickness / homogeneity of the HA layer with time and

composite composition.
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Figure 2-14: Schematic of experimental composite surface divided into 9 squares (3 x 3 mm
2
)

to enable quantitative measurement of the ion ratios using EDX.

2.2.15. Shear bond strength

Shear bond strength test has been heavily criticised in the literature recently. It was

speculated that shear bond strength tests (macro and micro) are inappropriate for the

evaluation of the bond strength to tooth structure because they generate unrealistic stress

and are highly variable [168]. This technique, however, is the most common type of

adhesion test [169]. Furthermore, it is a standard test method which was described in ISO

29022:2013.

The criticisms of adhesion testing have not been directed particularly towards the shear

bond test, but for all other adhesion tests including tensile strength test and push-out test. It

was also recommended to spend less time and effort on laboratory experiments, and carry

out clinical trials instead [168]. This is not feasible, however, with experimental materials.

Obviously human dentine would be the ideal adhesion substrate for shear bond testing, but

ivory dentine and more commonly bovine dentine were investigated as a substitute.

Conflicting observations have been reported about the similarity in shear strength results

using bovine and human dentine [170]. In addition, it was recommended to use only the

3mm

3mm
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coronal bovine dentine and not the root dentine [168]. Ivory dentine was shown to give

relatively reproducible shear strength results, but there is conflicting protocols for storing

before experiment [171, 172].

2.2.15.1. Ivory dentine source and ‘controlled hydration’

Ivory dentine was taken from the lower third of a full tusk. The tusk’s origin is Africa,

and it was provided by the U.K. Border Agency, Heathrow Airport for research purposes

(CITES Reference 08/2012). It should be noted that this ivory is of very limited availability,

was already destined for destruction after seizure and may only be used in academic

research or for teaching purposes and returned to customs after use if not fully destroyed.

The commercial dentine adhesive and etchant utilized were iBond total etch (described

above) and iBond phosphoric acid 35% phosphoric acid gel (batch 395074) (Heraeus

Kulzer, Germany). Ivory dentine was cut into cubes (~ 1 x 1 x 1 cm). The cubes were placed

in deionised water for 24 hours at 37ºC. After that they were kept in a sealed container to

reduce water evaporation for 24 hours. Ivory cubes were then embedded for 24 hours in

slow-setting viscous self-curing resin in such a way that dentine tubules are perpendicular to

the top resin surface. After removing the ivory/ resin cylinders from the mould (see

Figure 2-15), P120 polishing paper was used to grind the resin surface until dentin was

exposed. The dentin surface was then polished with P500 paper until the surface was even

and smooth. The Ivory/ resin cylinders were placed again in deionised water for 24 hours,

and left to dry in a sealed container for another 24 hours at 37ºC to achieve what is called

‘controlled hydration’. At this stage shear bond strength experiment was performed within 24

hours.
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Figure 2-15: Ivory cube removed from plastic mould after being embedded in self-curing resin

for 24 hours.

2.2.15.2. Shear bond strength test

Surface of ivory dentine was acid etched with 35% phosphoric acid for 60 seconds

followed by water rinsing and gentle drying. At this stage adhesive agent (iBond) was

applied in the experiments that test its effect before adding the composite paste (procedure

will be described in the next sentences). Otherwise to assess bond strength, composites

pastes immediately were poured in 2 mm increments into brass tubes of 3mm internal

diameter and 6 mm long placed directly on dentine surface. The end of the tube in contact

with dentine was chamfered at 45 degrees to reduce its contact area. Each 2 mm increment

was cured for 40 s.

The shear bond test was performed according to (ISO 29022:2013). Shear bond strength

was determined using an Instron Universal testing machine with a ‘Flat-edge shear fixture’

jig, see Figure 2-16. The jig consisted of a metal holder with adjustable screw to secure the

specimen and an adjustable blade, which was used to shear the tube (containing composite)

from the dentine, see Figure 2-17. An Instron, 1 kN load cell at a cross head speed of 1

mm/min was used.
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Figure 2-16: ‘Flat-edge shear fixture’ jig with dentin inside of it and sample placed on top prior

to shear bond strength test.

The load at break was recorded and the bond strength Ƭ calculated in MPa from equation

Ƭ=
ࡼ


(2-24)

Where P is the load in (N) at break, and A is the bonded area of the cylinder in (mm2). Each

formulation was repeated 8 times and 95% CI was calculated from standard deviation

(STDV).

=ࡵ
ࢂࡰࢀࡿ

√
(2-25)

Figure 2-17: ‘Flat-edge shear fixture’ jig with dentin inside of it and sample placed on top

during shear bond strength test.
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3. COMPARISON BETWEEN DIFFERENT BULK FILLING AND FLOWABLE COMMERCIAL

DENTAL COMPOSITES

3.1.Abstract

The aim of this chapter was to characterize commercially available bulk filling and

flowable composites in order to provide benchmark properties for a successful dental

composite material.

Raman mapping analysis and FTIR spectra provided detailed information on the chemistry

and microstructure of the materials investigated. The monomer conversion was obtained

using FTIR. Polymerisation shrinkage as well as mass and volume change were

gravimetrically determined using a density kit and four-figure digital balance. Biaxial testing

was used to find the flexural strength and stiffness along with the fracture behaviour. Finally

adhesion of the commercials to Ivory dentine was assessed by determining shear bond

strength.

The monomer conversion for bulk filling commercial composites (Z250 and Gradia) was

found to be lower than that for flowable (VF and FLD) commercial composites; ~50% and

~60% respectively. On the other hand, polymerisation shrinkage for Z250 and Gradia was

shown to be ~2.5% and ~4% for VF and FLD respectively. Mass and volume change upon

immersion in water was found to be higher for VF and FLD than that for Z250 and Gradia.

Flexural strength for Z250 was the highest (~180 MPa), whereas lower strength was

observed for Gradia, VF and FLD (~90, ~120 and ~130 respectively). The modulus for all the

materials was similar; ~3 GPa. Finally, shear bond strength for bulk filling commercial

composites and adhesive agent iBond was slightly higher than that for flowable self-

adhesive commercial composites without iBond.
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The levels of conversion, shrinkage, water sorption and mechanical and fracture properties

were found and compared to the chemistry and phase composition of each material. This

helped gain a better understanding of current dental materials which aids the development of

new formulations. In conclusion, high molecular weight, flexible and bi-functional monomers

that can chemically bind to the fillers and tooth structure will increase curing, mechanical

properties and bond strength. Optimising the powder to liquid ratio must be balanced to

control handling and decrease polymerisation shrinkage and water sorption.
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3.2. Introduction

In chapter 1, the different types of dental composite materials were introduced. In this

chapter, two bulk filling (Z250 and Gradia) and two flowable (VF and FLD) commercial

composites will be investigated. The difference between bulk filling and flowable materials is

mainly the filler loading. The filler loading for bulk filling is higher than that for flowable

composites. This majorly affects the properties of the materials, and subsequently their

applications. Another difference is that flowable composites VF and FLD contain adhesive

monomers, and thus promoted as self-adhesive composites.

In addition, all these four materials used different base monomers and different fillers to each

other.

The effect of varying the filler loading, addition of adhesive monomers and using different

base monomers on the properties of the materials will be investigated in this chapter. The

results will be compared to the literature. Finally, the lessons learned from this extensive

investigation of the commercials will be bared in mind in designing novel dental composite

materials.

3.3.Aims and Objectives

This chapter aims to characterize and compare the chemical composition, curing,

shrinkage, mass and volume change, mechanical properties and shear bond strength of

commercially available bulk filling and flowable dental composites. Characterizing each

material will provide benchmark properties for development of new dental composite

materials. Comparison with literature will highlight areas in which improvements can be

made.

The Raman spectra of each material and available component spectra will be found as well

as spectral peaks associated with the characteristic chemical groups for each material. FTIR
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spectra will also help in identifying the peaks associated with each of the monomer

components. Raman maps will help to identify:

• Size, chemistry, surface structure and dispersion of filler particles

• Chemistry of polymer phase

The level of cure for all materials is to be established using FTIR. Polymerization shrinkage

will be determined following ISO 17304:2013, and compared with mass and volume change

upon water immersion.

In terms of mechanical properties, the biaxial flexural strength and Young’s modulus, as well

as the fracture behaviour, for each material will be determined. Possible links between the

microstructure, curing and mechanical properties will be discussed, including possible failure

mechanisms.

Finally, shear bond strength for all the materials will be determined, and the components

responsible for the adhesive properties for each material will be described.

3.4.Hypothesis

It is envisaged that spectra obtained by Raman mapping will be sufficiently variable

across an area to enable determination of size, shape and dispersion of the inorganic filler

components within the polymer matrix phases. Chemical variations determined on the

micron scale obtained by combining Raman spectral maps might provide greater insight into

how different phases interact. It is hypothesized that there will be a link between the level of

monomer conversion and the mechanical properties of the materials as it is reported in

chapter 1 of this thesis. It is expected that degree of conversion of composite materials with

rigid monomer BisGMA will be lower than that for materials with UDMA monomer. The

shrinkage of dental composite materials is reported in the literature to be lower with highly

viscous monomers. Literature suggests that bulk filling dental composite materials with

higher filler contents and long chain dimethacrylate monomers will have higher flexural
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strengths and Young’s modulus than that for flowable composites. It is also suggested that

flowable self-adhesive composites can give similar shear bond strength values to that of bulk

filling viscus composites adhered to dentin using a separate bonding agent.
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3.5.Materials and Methods

In this chapter, four commercial dental composite materials were investigated and

compared and one adhesive used in bonding studies. Their details are provided in Table 3-

1.

Table 3-1: Commercial materials to be investigated with manufacturers and type description

Material’s name Manufacturer Type

Filtek™ Z250 3M ESPE, U.S.A Bulk Filling Dental Composite

GC Gradia Direct
posterior

GC Corporation, Tokyo, Japan Bulk Filling Dental Composite

Vertise™ Flow Kerr Italia, Scafati, Italy Self-Adhering Flowable
Composite

Fusio™ Liquid Dentin Pentron Clinical, CA, U.S.A Self-Adhering Flowable
Composite

iBond® Heraeus Kulzer, Hanau, Germany Adhesive

The composition of each material was ascertained from collating information from the

manufacturer’s information and literature. The surface of each material was examined with

Raman spectroscopy, and was used to make composition maps of these surfaces.

The curing profiles and degree of conversion were determined via FTIR (n=3) using changes

in intensity of those spectral peaks identified as being involved in free radical polymerization

(see chapter 2; Materials and Methods). Polymerization shrinkage was determined using

Archimedes’ principals and following ISO 17304:2013, utilizing an analytical balance

equipped with a density kit (n=6). Mass and volume changes were determined for composite
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discs light cured for 40 seconds each top and bottom, polished edges and stored in 10 ml of

deionised water at 37 ºC (n=3). Specimen’s mass, volume and density were determined

using density kit and digital balance. The flexural strength and stiffness of the commercial

materials was found by biaxial testing of disc specimens (n=6). The fracture behaviour was

also observed during biaxial testing. Shear bond strength to Ivory dentin was determined

following ISO 29022:2013, using an Instron Universal Testing machine (n=8).
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3.6.Results

3.6.1. Materials composition and Chemistry

3.6.1.1. Product Description

3.6.1.1.1. Bulk filling composites Z250 and Gradia

Z250 and Gradia are restorative dental composite materials used for bulk fillings in

anterior and posterior teeth. Both require a separate adhesive system for effective bonding,

and are supplied as a single packable pre-mixed paste containing monomer and filler

phases as well as photo-initiators. The pastes for both composites are highly viscous,

containing ~80 wt. % filler and can be polymerised by blue light exposure for 20s as

recommended by the manufacturers.

Z250 contains BisGMA as the main bulk monomer, whereas, Gradia’s main monomer is

UDMA [164, 173]. The filler phase of Z250 contains silane coated silicon / zirconium oxide

glass particles. Gradia’s filler, however, has fluoro-alumino silicate glass particles, silica and

pre-polymerised fillers.

3.6.1.1.2. Flowable composites Vertise Flow (VF) and Fusio Liquid Dentine (FLD)

VF and FLD are flowable restorative dental composites materials used for pit and

fissure sealant, base liner and small class I, class III and class V cavity application.

Manufacturer’s claims indicate they do not require separate adhesive systems. They are

supplied as a single pre-mixed paste containing monomer and filler phases as well as photo-

initiators. The pastes for both composites have relatively low viscosity (compared with Z250),

contain ~ 68 wt. % filler and can be polymerised by blue light exposure for 20 s as

recommended by the manufacturers.
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VF contains GPDM monomer as well as BisGMA, whereas, FLD bulk monomer is UDMA.

VF’s filler contain both (fluoride and barium) glass particles and pre-polymerised fillers. The

filler phase of FLD is silane treated barium glass particles.

The composition of the commercial materials from manufacturer’s information or literature

[137, 173, 174] is given in Table 3-2. The quantities of the components are given where this

information was available.

Table 3-2: Summary of commercial product components. All information is from

manufacturer’s usage instructions.

Product
name

Monomers Fillers Filler content
(wt. %)

Size

Z250 BisGMA, UDMA,
BisEMA, TEGDMA

Zirconia, silica

(3-methylacryloxy-
propyltrimethoxy silane)

78 10 nm-3.5 µm

Gradia UDMA, dimethacrylate,
co-monomers

Fluoro-Alumino-silicate glass,
silica, pre-polymerised filler

77 ~ 0.85 µm

VF GPDM, HEMA,
BisGMA

Pre-polymerised filler, ytterbium
fluoride, barium glass filler,

colloidal silica

70 20 nm-20 µm

FLD UDMA, TEGDMA,
HEMA, 4-Meta

Silica, silane treated barium
glass, minor additives

65 ~ 1.2 µm

iBond- Total
etch

UDMA, 4-Meta,
glutaraldehyde,
acetone, water,

photoinitiators, HEMA

Fillers 1-5 Nano-fillers

3.6.1.2. Raman mapping
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3.6.1.2.1. Z250

The spectra of each phase for Z250 are given in Figure 3-1. The glass phase is

characterised by strong peaks at 1373 cm-1 and 1400 cm-1. The monomer phase is

characterized by a peak at 1610 cm-1, due to C═C in aromatic carbon rings in both BisGMA 

and BisEMA. There are also peaks at 1455 cm-1 in the monomer spectrum representing the

aliphatic C—H vibrations. These peaks are also present in the polymer. The 1407 cm-1 and

1640 cm-1 peaks are due to C═C and a C—H attached to C═C in unpolymerised 

methacrylate. These peaks disappear whilst the C═O peak at 1720 cm-1 will slightly shift and

decrease if there is full polymerisation.

Figure 3-1: Raman spectra of glass and monomer phases used to construct Raman map of

Z250.

The Raman map of the surface of Z250 paste (see Figure 3-2) shows regions with the

monomer spectrum in blue and regions of glass in red. The regions of red indicates that the
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size of the filler in Z250 is around 2-3 µm. The particles appear, on the whole, well dispersed

but with some regions of possible flocculation of smaller particles (submicron).

Figure 3-2: Overlaid Raman map of a region of 40 x 40 µm on the surface of Z250. Glass

particles are around 2 µm in size and shown in red. Monomer phase is shown in blue.

3.6.1.2.2. Gradia

The spectra of glass, monomer and polymer phases in Gradia are given in

Figure 3-3. The glass phase is characterised by strong peaks at 1370 cm-1 and 1400 cm-1.

The monomer phase is characterized by a peak at 1640 cm-1, which represents C═C in 

unpolymerised UDMA and other methacrylates. The polymer spectrum is that of the polymer
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different; the relative intensity of 1405 (C—H attached to C═C), 1640 (C═C), and 1720 

(C═O) cm-1 peaks all decrease as expected with any methacrylate polymerisation. There are

also peaks at 1455 cm-1 in the monomer and polymer spectra representing the aliphatic C—

H vibrations in all methacrylates. The difference in height when the spectra are normalised

by the 1451 cm-1 peak suggest ~ 60% conversion.

Figure 3-3: Raman spectra of glass, monomer and polymer phases for Gradia paste

The Raman map of Gradia surface (Figure 3-4) shows areas of glass in red, monomer in

blue and pre-polymerised polymer in green. Raman mapping indicates that there are distinct

glass particles of the order of ~1 µm, but in addition areas consistent with flocculation of

submicron particles. Larger regions in green show the dispersion of the pre-polymerised

fillers of ~ 10 µm. The glass, monomer and polymer are generally well separated.

850 1050 1250 1450 1650

Glass

1370

1400

850 1050 1250 1450 1650

Monomer

1405 1451

1640

1720

850 1050 1250 1450 1650

Wavenumber (cm-1)

Polymer

1405

1451

1640
1720



Anas Aljabo PhD Thesis

109

Figure 3-4: Raman map of 40 x 40 µm area of the surface of Gradia. This map superimposes

where the spectra of each phase is detected. The red corresponds to glass, blue to monomer

and the green areas are pre-polymerised fillers.
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also peaks at 1400-1450 cm-1 in the monomer spectrum representing the aliphatic C—H

vibrations. In the monomer spectrum, it is also noticeable that the sharpness of the peak at

1610 cm-1, which represents the aromatic carbon ring in BisGMA, is low; the C—O—C group

in these monomers is responsible for the 1114 cm-1 peak. The polymer spectrum represents

the pre-polymerised fillers. The peaks in the monomer and polymer phases are identical, but

the relative intensities are different, especially for 1640 cm-1 peak, which decreases in the

polymer spectrum. From the variation in intensity, it could be predicted that the conversion is

~ 60%.

Figure 3-5: Raman spectra of glass, monomer and polymer phases used to construct Raman

map of VF.
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The Raman map of VF surface shows areas of glass in red, monomer in blue and polymer in

green, Figure 3-6. Raman mapping indicates that there are distinct submicron glass

particles. The dispersion of pre-polymerised fillers is shown as larger regions in green of ~

20 µm as well as smaller particles of ~ 5 µm. The glass, monomer and polymer are generally

well separated.

Figure 3-6: Raman map of surface of VF. Red regions correspond to glass spectrum. Green

areas are pre-polymerised fillers. Blue areas represent monomer.
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3.6.1.2.4. Fusio Liquid Dentine

The spectra of glass and monomer phases of Fusio Liquid Dentine are given in

Figure 3-7. The glass phase is characterised by strong peaks at 1373 cm-1 and 1402 cm-1.

The monomer phase is characterized by a peak at 1407 cm-1 and 1450 cm-1 in the monomer

spectrum representing the aliphatic C—H vibrations and sharp 1640 cm-1 peak which

represents C═C in unpolymerised UDMA and other methacrylates. A visible peak at 1610 

cm-1, which represents the aromatic carbon ring in BisEMA, is also shown in the monomer

spectra.

Figure 3-7: Raman spectra of glass and monomer phases used to construct Raman map of

FLD.

The Raman map of FLD surface (see Figure 3-8) shows regions with the monomer spectrum

in blue and regions of glass in red. The regions of red indicate that the size of the filler in
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FLD is around ~2µm. The particles appear, on the whole, well dispersed but with some

regions of flocculation of smaller particles (submicron).

Figure 3-8: Raman map of surface of FLD. Red regions correspond to glass spectrum. Blue

areas represent monomer.

3.6.2. Conversion, Translucency, Shrinkage and Water sorption

3.6.2.1. Conversion
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other monomers. Peaks appeared at 1636 cm-1 C═C stretch and a C—H attached to C═C in 

unpolymerised methacrylate. Other peaks were observed at 1608-1612 cm-1 representing

C═C in the aromatic carbon rings for both BisGMA and BisEMA. UDMA showed another 

unique peak at 1528 cm-1 reflecting N—H deformation. In all monomers, peaks appeared at

1452 cm-1 representing the aliphatic C—H vibrations, 1269/1320 cm-1 for C—O stretch and

1160 cm-1 C—O—C asymmetric stretch.

The FTIR spectra for the glass filler is characterised with mainly a sharp peak at ~ 1000 cm-

1.
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Figure 3-9: FTIR spectra for monomers and example glass filler incorporated in bulk filling and

flowable commercial composites.

3.6.2.1.1. Z250

Figure 3-10 shows the FTIR spectra for Z250 commercial composite before and after
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aromatic carbon rings in both BisGMA and BisEMA, a peak at 1720 cm-1 (C═O stretch) that 

is associated with BisGMA, BisEMA, UDMA and TEGDMA . A dominant peak appeared at

~1030 cm-1 that is representing the filler phase. Small decrease in the intensity of 1269/1320
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Figure 3-10: FTIR spectra for Z250 commercial composite before and after light exposure for

40 seconds.

3.6.2.1.2. Gradia

The FTIR spectra for Gradia commercial composite before and after 40 seconds of

light curing are shown in Figure 3-11. From this figure it can be seen that high intensity

peaks associated with UDMA appeared at 1536 cm-1 and 1716 cm-1. Another noticeable

peak, whose intensity decreased slightly after curing, was observed at 1636 cm-1 C═C 

stretch and a C—H attached to C═C from the methacrylate monomers UDMA, TEGDMA 

and HEMA. The intensity of 1320 cm-1 for C—O stretch peak above background at 1360 cm-

1 decreased by ~ 40 % upon curing. A dominant peak appeared at ~1030 cm-1 that is

representative of the filler phase.
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Figure 3-11: FTIR spectra for Gradia commercial composite before and after light exposure for

40 seconds.

3.6.2.1.3. Vertise Flow

Figure 3-12 shows the FTIR spectra for VF commercial composite before and after

40 seconds of light curing. A peak appeared at 1716 cm-1 (C═O stretch) that is associated 

with all methacrylates. Small peaks were observed at 1600-1616 cm-1 due to C═C in the 

aromatic carbon rings in BisGMA. Upon light exposure, there was a reduction in the intensity

of C═C peak at 1636 cm-1, C—O peaks at 1269/1320 cm-1 and C—O—C peak at 1160 cm-1

shifted to 1148 cm-1. High intensity peak associated with glass fillers was found at ~1020 cm-

1.
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Figure 3-12: FTIR spectra for VF commercial composite before and after light exposure for 40

seconds.

3.6.2.1.4. Fusio Liquid Dentine

The FTIR spectra for FLD commercial composite before and after 40 seconds of light

curing are shown in Figure 3-13. This figure indicates again the peak at 1716 cm-1 (C═O 

stretch) that is associated with UDMA, TEGDMA and HEMA. A strong UDMA peak appeared

at 1540 cm-1. Another noticeable peak, whose intensity decreased slightly after curing, was

seen at 1636 cm-1 (C═C stretch) and a C—H attached to C═C in the methacrylate 

monomers UDMA, TEGDMA and HEMA. Upon light curing a noticeable decrease in the

intensity of 1269/1320 cm-1 for C—O stretch and C—O—C peak at 1160 cm-1 was

demonstrated. A high intensity peak associated with glass fillers was observed at ~1000 cm-

1.
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Figure 3-13: FTIR spectra for FLD commercial composite before and after light exposure for 40

seconds.

Monomer conversions at the bottom of specimens 1 mm deep after curing from the top

surfaces for 40 s are illustrated in Figure 3-14 for both bulk filling and flowable commercial

composites. Bulk filling composites generally experienced lower conversion than flowable

composites. Z250 showed slightly higher conversion than Gradia (50% and 43 %

respectively). Flowable composites VF and FLD both had conversion of ~ 63%.

Figure 3-14: Conversion of bulk filling and flowable commercial composites.
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3.6.2.2. Translucency

Translucency test for bulk filling and flowable commercial composites is shown in

Figure 3-15. From the images, a blue line can be seen underneath the uncured (a) and

cured (b) Z250 (I), VF (III) and FLD (IV). Gradia (II), however, is significantly more opaque,

and the blue line cannot be seen for either uncured or cured samples.

Figure 3-15: Translucency for (a) uncured paste, and (b) cured discs for commercial

composites; bulk filling (I) Z250, (II) Gradia, and flowable (III) VF and (IV) FLD.

3.6.2.3. Shrinkage

Polymerisation shrinkage of bulk filling commercial composites was found to be lower

than that of flowable composites. Z250 and Gradia volume shrinkage was illustrated in

Figure 3-16, and found to be ~ 2.5 %. On the other hand, VF and FLD shrinkage was

determined to be ~ 3.6 %.
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Figure 3-16: Volume shrinkage of bulk filling (Z250 and Gradia) and flowable (VF and FLD)

commercial composites.

3.6.2.4. Mass and volume change

Mass and volume change over 6 weeks are shown versus the square root of time in

Figure 3-17. These plots were linear up to 6 h for all commercial composites. Initial mass

change up to 6 h for bulk filling composites Z250 and Gradia was 0.3 and 0.5 % respectively.

Z250 and Gradia density was ~ 2.1 g/cm3 irrespective of time of immersion .With flowable

composites, VF and FLD, initial mass change up to 6 h reached ~ 0.7%. The mass changes

for all formulations continued to increase to final plateau values at ~ 1-2 weeks. 6 week final

values of ~ 0.9 % for Z250 and Gradia, and ~1.2% for VF and FLD were observed (Figure 3-

17 (a)). The density of VF and FLD decreased from ~1.90 g/cm3 dry to ~1.85 g/cm3 after 6

weeks in deionised water.

Initial volume increase up to 6 h for Z250 and Gradia was 0.6% and double that (1.2 %) for

VF and FLD. After that time, the volume increased further reaching ~1.1 for both Z250 and

Gradia and 2.2 % for VF and FLD at 4 days, and then plateaued between 1 and 6 weeks.
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Final volume increase for Z250 and Gradia was ~ 1.4%, whereas, VF and FLD volume

increase was significantly higher, ~2.6 %.

Figure 3-17: (a) mass and (b) volume change of bulk filling and flowable commercial dental

composites over 6 weeks of storage in water. Error bars represent 95%CI, n=3.

3.6.3. Strength, Modulus and Fracture Behaviour
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0

0.4

0.8

1.2

0 5 10 15 20 25 30 35

M
a

s
s

c
h

a
n

g
e

(w
t.

%
)

Sqrt (t/hr)

Z250

Gradia

VF

FLD

0

1

2

3

0 5 10 15 20 25 30 35

V
lo

u
m

e
c

h
a

n
g

e
(v

o
l.

%
)

Sqrt (t/hr)

Z250

Gradia

VF

FLD

b

a



Anas Aljabo PhD Thesis

124

Flexural strengths for commercial composites are given in Figure 3-18. Initial dry

strength for commercial composites Z250, Gradia, VF and FLD (188, 96, 131 and 149 MPa

respectively) were all significantly different. Upon immersion in water for 24 hours, all of the

commercials showed slight decrease in strength. Further decrease in strength was shown

after 28 days in water, reaching 160, 71, 107 and 124 MPa for Z250, Gradia, VF and FLD

respectively. It was noticeable that the pattern of decrease in strength upon immersion in

water was similar for all of commercial composites included in this study.

Figure 3-18: Flexural strength of Z250, Gradia, VF and FLD commercial composites after 0, 1, 7

and 28 days storage in water. Error bars represent 95%CI, n=6.

3.6.3.2. Flexural Modulus

Flexural modulus for commercial composites is given in Figure 3-19. It can be seen

that the modulus for all commercial composites decrease with time of immersion in water.

Dry modulus is ~ 3 GPa for Z250 and Gradia, and 3.3 GPa for VF and FLD. The modulus for

all commercial composites stored in water for 28 days was similar ~2.5 GPa.
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Figure 3-19: Flexural modulus of Z250, Gradia, VF and FLD commercial composites at dry, 1, 7

and 28 days storage in deionised water. Error bars represent 95CI, n=6.

3.6.3.3. Fracture behaviour

Figure 3-20 shows the load/deflection plots for all commercial materials. They have all

exhibited brittle fracture behaviour. Gradia and VF composites, however, illustrated more

than one ‘break point’, whereas; the fracture of Z250 and FLD is sharp.
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Figure 3-20: Typical load/ deflection graphs for each commercial composite material during

biaxial testing.

3.6.4. Adhesion to dentine

3.6.4.1. Shear bond strength

Shear bond strength results for flowable and bulks filling commercial dental

composites are given in Figure 3-21. Z250 with iBond showed the highest shear bond

strength reaching 37 MPa. Gradia with iBond and VF (without iBond) shear bond strength

results were similar at ~ 28 MPa. FLD (without iBond) shear bond strength was the lowest at

25 MPa.
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Figure 3-21: Shear bond strength for each commercial composite material to phosphoric acid

(37%) treated Ivory dentine. With bulk filling commercial materials Z250 and Gradia, iBond was

used. Flowable commercial composites VF and FLD were applied directly to Ivory dentine

without using iBond. Error bars represent 95%CI, (n=8).

3.7.Discussion

3.7.1. Materials composition and Chemistry

The Raman spectra for the various silicate glasses in Z250, Gradia, VF and FLD, were

all similar indicating two peaks at 1370 and 1400 cm-1. The higher fraction of fillers to

monomer shown in the Raman maps for Z250 and Gradia than that for VF and FLD is

expected from manufacturer’s information. The maps also showed well dispersed filler

particles across the areas under investigation for all commercial composites tested due to

the use of coupling agents.

The relative intensity of the peaks in Raman spectra for the Z250 monomer showed high

intensity peaks at 1610 and 1640 cm-1 suggesting that ~ 40% of the monomer is BisGMA

and BisEMA, and ~ 20% UDMA leaving ~ 40% for the diluent TEGDMA. The Raman spectra

for the monomer of Gradia showed a sharp peak at 1640 cm-1 indicating that mainly UDMA,
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TEGDMA and/or HEMA were utilized in the formulation. On the other hand, the Raman

spectra for the monomer of VF showed significantly higher peak intensity at 1640 cm-1 than

1610 cm-1 suggesting that low concentration of BisGMA (~ 10% of the monomer) was

incorporated in the formulation. Finally, the Raman spectra for FLD monomer showed sharp

peaks at 1640 cm-1 suggesting mainly UDMA, HEMA and TEGDMA were incorporated. A

small peak was illustrated at 1610 cm-1 representing either BisGMA or BisEMA. It is more

likely to be BisEMA because the other peaks, 1114 and 1188 cm-1 which represent BisGMA,

are missing. Neither BisGMA nor BisEMA, however, were reported in the manufacturer’s

usage instructions.

The monomer and polymer spectra for Gradia both had similar peaks, indicating that the

monomer used to form the pre-polymerised fillers, maybe the same as the monomer of the

composite. The same was seen for VF monomer and polymer spectra, suggesting that the

monomer of the pre-polymerised filler and the monomer of the composite are the same.

Using pre-polymerised fillers with similar components to the other fillers and monomer

present in the composite may improve the mechanical properties [175].

3.7.2. Conversion, Translucency, Shrinkage and Water sorption

3.7.2.1. Degree of conversion

The variation of the peaks at ~1000 cm-1 may be a consequence of differences in the

filler phase particle sizes in the commercial composite materials investigated in this study.

Smaller particles will make greater contact with the FTIR diamond. This could explain the

dominant glass peak in FTIR spectra observed for Z250. The FTIR spectra for Z250 are

characterized by a BisGMA (aromatic C═C) peak at 1600 cm-1. Gradia and FLD, on the other

hand, showed high intensity peaks at 1536 cm-1 and 1716 cm-1 confirming the use of UDMA

and other di-methacrylate comonomers in the formulation. VF FTIR spectra showed a small

BisGMA peak at 1600-1616 cm-1 confirming the possibility of incorporating low concentration
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of BisGMA. Upon light curing, a decrease at different levels in the intensity of 1269/1320 cm-

1 peaks for C—O stretch was shown for all commercial composites. Higher decrease in the

intensity of these peaks was shown for VF and FLD than with Z250 and Gradia suggesting

higher conversion for the formers than that for the latters.

The above monomer conversion for bulk filling commercial composites Z250 (50%) [135]

and Gradia (43%) [136] was lower than that for flowable composites VF (63%) [137, 176]

and FLD (64%) [137] and were comparable to that in previous studies. From the Raman

data Gradia contains pre-polymerised particles with ~ 60% conversion. The ratio of

monomer: polymer is ~ 50:50. The height of the initial FTIR monomer peak will therefore be

0.5+0.4*0.5 = 0.7 times that if the polymer was still monomer. If the monomer phase

polymerises by 60% then the height after cure divided initial height will be 0.4/0.7 = 0.57.

Conversion will therefore appear to be only 43% and not the true 60%. The following

explains the difference between the apparent conversion from FTIR and the actual monomer

conversion of the composite.

Apparent monomer (Ca) fraction remaining by FTIR obeys the following equation

Ca = (RCpo + Cm) / (RCp+1) (3-1)

Where R is the mass ratio of polymer/monomer, Cpo is the polymer conversion and Cm is the

monomer conversion. Rearranging shows that the monomer remaining will be less that the

apparent monomer remaining by an amount

Cm = Ca - (1-Ca) RCpo (3-2)

If the polymer is fully converted or the ratio of polymer/ monomer is small the apparent,

conversion will be the correct monomer conversion. With Ca=0.57, R=1, Cp=0.4, Cm is 0.4

i.e. 60% instead of apparent 43% conversion for Gradia. The issue with underestimation of
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conversion when pre-polymerised particles present is worse for Gradia than VF where

monomer content relative to polymer is particularly low.

Monomer conversion is dictated mainly by the type of monomer used. Since all materials are

particle filled, the amount of highly viscous BisGMA monomer has been reduced in Z250 and

VF or completely replaced, in Gradia and FLD by co-monomers with lower molecular weight

monomer, such as UDMA and TEGDMA. This provides the required consistency and also

improves monomer conversion, since the steric hindrance phenomena associated with the

high molecular weight and viscosity of BisGMA are reduced [177].

Higher conversion is generally associated with monomers of lower glass transition

temperature, Tg. For BisGMA (the main monomer in Z250), UDMA (the main monomer in

Gradia and FLD) and TEGDMA these are -8, -35 and -83 ºC respectively [59, 178]. With

homopolymers without filler, BisGMA, UDMA and TEGDMA were found to have maximum

conversions of 35, 72 and 83 % at 22 ºC [179]. The bottom surface conversion observed in

the above study is, therefore, as expected for Z250 and FLD.

The monomer conversion for VF (63%) is relatively high for a BisGMA containing composite.

Possible explanations for VF high conversion may be related to (I) the lower amounts of

BisGMA used (II) the addition of the very reactive monomethacrylate monomer (HEMA) that

constantly reacts with residual C═C bonds of di- or multi- functional monomers immobilized 

in the polymer network [137], (III) the higher amount of catalysts (CQ-amine) and co-

catalysts (i.e. PMDM and iodonium salts) used in light cured composites containing acidic

monomers to compensate for amine neutralization by the ionized acidic groups upon

application on moist tissues [180].

An important factor that influences the monomer conversion is how well the refractive indices

of the polymer matrices match those of the reinforcing fillers [46]. High intensity light
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transmitted through the sample is crucial for high conversion. Reduction In light transition

can be caused by light scattering due to mismatch in refractive indices of the liquid and any

suspended particles [181]. The refractive index of typical radiopaque fillers, such as those

containing barium, strontium and zirconium, is about 1.55, which is similar to that for

BisGMA 1.54 [46]. The refractive index of TEGDMA, a widely used diluent for BisGMA, is

only 1.46. The additions of TEGDMA, therefore, not only decreases resin viscosity but also

lowers the refractive index of the resin system, causing optical mismatch between

monomers and the radiopaque glass fillers [46]. The mismatch between the UDMA refractive

index (1.48) and the filler (1.55) in Gradia can explain its low monomer conversion shown

above.

Additionally, the use of pre-polymerised fillers in Gradia may have contributed to the lack of

translucency (Figure 3-15) [46]. This, however, is not the case for VF, where BisGMA ratio in

the pre-polymerised fillers was possibly decreased to obtain higher conversion, and

decrease refractive index mismatch. High quality pre-polymerised fillers can improve

handling properties of the composite without compromising translucency.

3.7.2.2. Polymerisation shrinkage

The type of monomer and its structure affect stress generation. One mole of

polymerizing C═C bonds typically gives volumetric shrinkage of 23 cm3/mol [153]. Larger

monomers, such as BisGMA, have less methacrylate groups per unit volume needed to be

converted in order to produce the hardened polymer [182]. This can explain the low value for

Z250 volume shrinkage (2.4%) shown above, which is in good agreement with previous

studies investigating the shrinkage of the same material [137-140]. On the other hand,

monomers, with enhanced molecular mobility during curing, such as UDMA and TEGDMA

allow the polymerisation process to continue to a greater extent, leading to the generation of

higher stresses [178]. The polymerisation shrinkage for Gradia (2.7%) exhibited in this study
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is very similar to what has been reported in the literature [125, 141, 142], and was expected

to be higher as UDMA is the main monomer. The lack of significant increase in shrinkage

can be attributed to the use of pre-polymerised fillers [125]. It was reported in the literature

that using pre-polymerised fillers reduces polymerisation shrinkage [141].

Volume shrinkage for VF (3.9%) and FLD (3.5%) shown in this study is in good agreement

with the literature [173]. The amount of polymerization shrinkage can be reduced by altering

the ratio of filler to polymer [141, 183]. Increasing the filler content in the composite can

decrease the polymerisation shrinkage [183]. This corresponds to lower shrinkage for bulk

filling composite than that for flowable composite shown in this study [139]. The high

polymerisation shrinkage for flowable composites VF and FLD is therefore to be expected for

low filler content composites.

3.7.2.3. Water sorption

Mass increase after 6 weeks immersion in water found in this study was comparable to

what was reported in the literature (for Z250 (1 wt. %) [140, 184], Gradia (0.86 wt. %), VF

(1.23 wt. %) [138] and FLD (1.15 wt. %)) As the water sorption occurs primarily in the matrix,

crosslinking is expected to play a major role. Crosslinking of the matrix is particularly

important for water sorption kinetics (diffusion coefficient), but has a limited influence on

water sorption per volume [185]. Water sorption is influenced by the affinity for water, which

depends on the quantity of hydrophilic (e.g. hydroxyl within the matrix creating hydrogen

bonds with water or acidic groups). This was described thoroughly in a previous study [185].

Water sorption in these materials can be explained by either of the following processes; if

water expands the composite then it might be assumed that the volume is that of the original

sample plus the volume of water. It can then be shown that the percentage volume change

should be comparable with the percentage mass change multiplied by the sample density.

Alternatively, if the water occupies pores then mass will increase but volume remain
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unchanged. The ratio of maximum volume divided by mass change observed above was

less than Z250 and Gradia densities suggesting a combination of these 2 effects.

Monomers, polymers and glass densities are ~1,1.1 and 3 g/cm3 respectively. VF and FLD

volume increase is double that of mass change, suggesting that the water expanded the

composite. This has been shown in previous studies investigating the volume increase for

VF [173]. Higher water sorption was attributed to the hydrophilic acidic phosphate group and

the short spacer group in the adhesive monomer GPDM. In those studies, it was also shown

that flowable composites with large monomer content can exhibit higher volume increase

than bulk filling composites, which is in good agreement with the results presented in this

thesis. The presence of TEGDMA as a diluent in FLD may contribute to the increased

sorption because of the hydrophilicity of this monomer [184].

3.7.3. Strength, Modulus and Fracture Behaviour

Commercial composites have been shown to have flexural strength between 100 to

180 MPa [140] with Z250 being the highest. The superior mechanical properties for Z250

(~170) shown in this study are comparable to that in other studies in the literature [141, 184,

186], and can probably be due to the high inorganic filler content [142, 183, 186], and the

selection of wide range of filler particles that include large particles (3.5 µm), which can

strengthen the composite [186]. Filler size, however, is only one of various factors affecting

the mechanical properties of the composites, including the type, shape and coupling of

particles to resin matrix [173]. Spherical shaped filler particles in Z250 was found to

increase the packing, which may contribute to higher strength [187]. The filler loading is

similar for Z250 and Gradia, however, the strength of Gradia is significantly lower. The

strength of Gradia (~85 MPa) has also shown to be low in the literature [141], and that was

attributed to the addition of pre-polymerised fillers [73], which disturbs the stress transfer

from the resin matrix to the filler particles. The lower conversion could have also contributed

to the lower flexural strength for Gradia [136, 188].
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Early flexural strength for flowable composites VF (120 MPa) and FLD (140 MPa) observed

above is comparable to that in the literature [39, 189]. The lower flexural strength for

flowable composites, both VF and FLD, can be attributed to the lower inorganic fillers than

that for bulk filling composites [176]. Additionally, VF contains pre-polymerised fillers, which

may have caused further deterioration to the flexural strength properties [73].

The moduli for all commercial composites included in this study were similar, and varied

between 3 to 2.5 GPa. They are in good agreement with that reported in the literature [140,

176]. The low modulus of Z250 (~3 GPa) could be a result of the lower conversion, which

decreases the polymer crosslinking. Lack of crosslinking will allow entangled polymer chains

to be pulled apart. The same explanation can be applied on Gradia (~2.5 GPa), in addition to

the use of pre-polymerised fillers. Although it is difficult to isolate the effect of pre-

polymerised filler particles, it was speculated in the literature that their addition to the filler

phase can reduce the modulus of the material [141, 187, 190]. The addition of pre-

polymerised filler particles to VF (~ 3GPa) did not significantly decrease the modulus, which

can be attributed to the relatively good monomer conversion compared to Z250 [141]. FLD

(~3 GPa) comparable modulus to VF may confirm the positive effect of higher monomer

conversion on modulus properties.

The fracture behaviour of the commercial composite materials tested in this study is brittle,

with no plastic deformation. The fracture for Z250 and FLD is sharp, suggesting that once

crack was formed, it cuts right through the specimen. On the other hand, Gradia and VF

fracture is in stages. This could be due to the addition of pre-polymerised fillers, which can

force the crack to deflect and travel for a longer distance, instead of cutting through the

sample. This observation, however, may not have a significant benefit to the filling material,

as once it is cracked, it has to be replaced or at least repaired.
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3.7.4. Adhesion to dentin

3.7.4.1. Shear bond strength

The shear bond strength for commercial composites varied between 38 to 25 MPa,

with Z250 scoring the highest. Bulk filling materials were bonded to phosphoric acid (37%)

treated dentin using a separate bonding agent Ibond as recommended in the manufacturer’s

usage instructions and shown in the literature [191]. On the other hand, flowable and self-

adhesive commercial composites VF and FLD were applied directly to the phosphoric acid

(37%) treated dentin following also the recommendations of the manufacturer’s usage

instructions and what was reported in the literature [192, 193].

Acid etching enables greater penetration of adhesives into dentinal tubules, which may

potentially further enhance interlocking between the adhesive and dentine [194]. Phosphoric

acid penetrates the dentin surface and forms a layer consisting largely of a mixture of

residual hydroxyapatite crystallites and collagen fibrils [195]. Adhesive agents such as

iBond, containing solvents and low viscosity hydrophilic monomers aid adhesive penetration

into water filled collagen and tubules. In the presence of water the anhydride group in the 4-

Meta within iBond is hydrolysed to provide two carboxylic acid groups. These groups may

partially further demineralize the dentine to allow some micro-mechanical interlocking, and

also enables a chemical bond with calcium in remaining hydroxyapatite. In addition, it may

bond with basic amino acid groups in the collagen. Upon air drying, solvent evaporates and

polymerization of adhesive additionally provides chemical bonds with the monomers in the

composite [196]. It is, therefore, expected that bulk filling composites Z250 (38 MPa) and

Gradia (30 MPa) to have good shear bond strength. These results were comparable to that

of other studies [191].

Flowable composite VF showed good shear bond strength that is consistent with other

studies [192]. This has been attributed to both lower viscosity as a result of lower filler
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content and the addition of glycerol phosphate dimethacrylate (GPDM) [197, 198] which can

form ionic bonds to calcium. Hydrophilic HEMA was also shown to improve the bonding to

the dentin by increasing the penetration into the dentinal tubules [36]. FLD shear bond

strength (25 MPa) was also comparable to previous studies [199]. FLD contains 4-Meta and

HEMA that may have contributed to the bonding as previously discussed.

3.8.Conclusion

Raman and FTIR allowed detailed characterisation of the chemical structure of the

monomer and powder phases for commercial dental composites and assessment of the

relative quantity of each of the components. This information is not usually clearly disclosed

by the manufacturers.

Monomer conversion is highly influenced by the type of monomer used in both bulk filling

and flowable composites. The viscosities, glass transition temperatures of the monomers as

well as matching refractive indices with the powder phase determine the degree of

conversion. Polymerisation shrinkage is subsequently determined by the degree of

conversion, and proportional to the monomer volume fraction. Bulk filling composites

experience less polymerisation shrinkage than flowable composites due to their higher

powder to liquid ratio. Utilizing pre-polymerised fillers decrease polymerisation shrinkage as

they are already polymerised and shrinkage has already occurred. They may, however,

cause refractive index mismatch, decrease monomer conversion and mechanical properties

as was shown in Gradia.

The filler loading as well as hydrophilic properties of the monomer determines the mass and

volume changes taking place upon immersion of the composite in deionised water. The

presence of air bubbles also enhances mass but not volume changes.
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The flexural strength and modulus for composites is highly determined by the size and type

of filler particles, powder to liquid ratio, monomer conversion and water sorption. Z250 with

packable fillers, high powder to liquid ratio and containing highly viscous BisGMA monomer

showed superior mechanical properties.

Etching the dentine with phosphoric acid before applying an adhesive agent then the viscose

bulk filling composite provided good shear bond strength. The use of adhesive agent can be

eliminated by decreasing the viscosity and addition of adhesive monomers to the composite

formulation. GPDM and 4-Meta equipped VF and FLD flowable composites with adhesive

capability and subsequent good shear bond strength respectively.
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4. PILOT STUDY FOR EXPERIMENTAL DENTAL COMPOSITES

4.1.Abstract

This chapter aims to form an experimental composite material composed of monomers

investigated in the first results chapter. It assesses the effect of different fillers on the curing,

drug release, mechanical properties and fracture behaviour of the experimental formulations.

Raman mapping analysis and FTIR spectra provided detailed information on the chemistry

and microstructure of the materials investigated. The monomer conversion was described

using FTIR. UV spectrometry was employed to determine the CHX and PMDM release in set

sample storage solutions (deionised water). Biaxial testing was used to find the flexural

strength and stiffness along with the fracture behaviour of the experimental formulations.

A control group with 100% glass fillers exhibited flexural strength of ~175 MPa, which was

comparable with that of Z250 and significantly higher strength than Gradia (~ 100 MPa).

Glass fibres improved fracture behaviour but not strength. MCPM / TCP reduced the

strength especially when samples were immersed in deionised water.

CHX slightly improved conversion, but had no significant effect on strength and modulus.

CHX release was higher in formulations with PMDM in the monomer phase rather than in the

powder phase. The curing and mechanical properties of formulations with PMDM in powder

phase versus that in the monomer phase were the same.

In conclusion, composites with silane coated glass particles and fibres, and UDMA diluted

with TEGDMA and HEMA monomers have the potential to outperform current dental

composite materials in terms of curing, mechanical properties and fracture behaviour.

Furthermore, these experimental formulations can potentially equip the composite material

with antibacterial, remineralising and self-adhesive properties, which none of the commercial

bulk filling composites possess.
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4.2. Introduction

In the previous chapter, commercial dental composites Z250 and Gradia were found to

have excellent handling properties for a bulk filling material. It is thought that a successful

composite material to be placed in high load bearing areas should also be in a viscous paste

form.

Composite materials with high powder content and contain high molecular weight monomer

experience lower polymerisation shrinkage. BisGMA is a viscous monomer with high

molecular weight. The conversion of BisGMA composites, however, is low (~ 50%) and this

combined with the health concerns surrounding BisGMA (discussed in the first chapter)

indicate that UDMA may very well be a better base monomer for dental filling composites.

UDMA was shown to have superior conversion and mechanical properties [200], while

maintaining relatively low shrinkage. TEGDMA is one of the most common diluent

monomers used in dental composites [201, 202] along with HEMA [203]. It was reported in

the literature that TEGDMA contributes to increasing monomer conversion, while HEMA ,at

low levels, has minimal effect on polymerisation shrinkage [204].

The merits of silane treated glass fillers were discussed in the introduction (chapter 1).

Silane treatment is expected to be essential for a good bond between filler and polymer in a

composite material. Silane treated glass fibres do have the potential to increase the strength

of composites and improve the fatigue resistance by modifying the fracture behaviour.

The effects of incorporating antibacterial agents as well as calcium phosphates to dental

composites were reported in the Introduction (chapter 1). It is thought that adding CHX and

reactive calcium phosphates to the experimental composite can equip it with antibacterial

and remineralising properties. Furthermore, the calcium phosphates induce water sorption

which may counteract polymerisation shrinkage.
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4.3.Aims and Objectives

The aim of this study was to produce competitive dental composite filling materials with

high strength, enhanced lifespan and reduced bacterial microleakage. The proposed

composite should self-adhere to tooth structure and release active fillers that promote

antibacterial and re-mineralising properties without compromising mechanical properties.

This was to be achieved by incorporating into a dental composite:

• The adhesive monomer PMDM to promote bonding between the composite

material and tooth structures

• Chlorhexidine as antibacterial agent to prevent bacterial microleakage and

recurrent caries

• MCPM and TCP to encourage water sorption into the set material and

subsequent effective calcium, phosphate and chlorhexidine release

• High glass filler content for high strength, toughness and low polymerisation

shrinkage

The effect of varying the powder to liquid ratio on handling, conversion and strength was

also to be determined. The change in the mechanical properties of the experimental

materials due to the incorporation of different levels of fillers will also be thoroughly

investigated. The effect of immersion the experimental formulations in deionised water on

the CHX release as well as mechanical properties will be established.

4.4.Hypothesis

It is expected that spectra obtained by Raman mapping will be sufficiently variable

across an area to enable determination of dispersion of the inorganic filler components

within the polymer matrix phases.
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It is envisaged that the powder to liquid ratio will have an effect on the handling and

mechanical properties. It is hypothesized that there will be a link between the level of

monomer conversion and the mechanical properties of the materials as is reported in the

introduction (chapter 1) of this thesis. It is expected that degree of conversion of composite

materials with UDMA will be higher than that for commercial materials with BisGMA

monomer discussed in chapter 3.

Literature suggests that incorporating calcium and phosphates fillers will have an adverse

effect on the flexural strengths and Young’s modulus of the composites.

The hypothesized function of the monomers investigated in this chapter is described in

Table 4-1.

Table 4-1: Summary of molecular weight, intended function of different bulk, diluent and

bonding monomers.

Abbreviation MW Function

UDMA 470 High molecular weight, low functional group density. Cross linking for
strength and High molecular weight for low Shrinkage.

TEGDMA 228 Double methacrylate. Low viscosity Commonly used as diluent (discussed
in Introduction).

HEMA 130 Single methacrylate, Low viscosity. Single methacrylate polymerises
residual double bond to improve conversion. Low viscosity for better
handling.

PMDM 478 Bond to various substrates
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4.5.Materials and Methods

Selection of monomers was chosen based on the performance of commercial materials

tested in chapter 3. The following monomer components (see Table 4-2) were used to form

various experimental composite formulations. These formulations (see Table 4-3) were used

to determine the effect of different levels of fillers on conversion, strength and modulus.

Table 4-2: Monomer content for composite formulations used for mechanical properties

optimisation

Liquid content Percentage (wt. %)

UDMA 68

TEGDMA 25

HEMA 5

CQ 1

DMPT 1

4.5.1. CHX and PMDM release

To quantify CHX and PMDM release, discs of each formulation (n=3) were weighed and

immersed in 10 ml of deionised water at 37 ºC within sterile tubes. At various time points up

to 1 week (2, 4, 6, 24, 16 hours) the specimens were removed and replaced in fresh

deionised water. UV spectra of storage solutions were obtained between 190 and 300.

These were compared with calibration graphs created in the same range for solutions of
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known concentration of CHX and PMDM to ensure that the CHX and PMDM were the only

components causing absorbance.

The CHX and PMDM peaks at 255 and 296 nm respectively, were then used to calculate the

amount of CHX and PMDM release (Rt in grams) between different time periods from each

specimen using equation:

=࢚ࡾ


ࢍ
ࢂ� (4-1)

Where A is the absorbance at either at 255 nm or 296 nm for CHX and PMDM, g is the

gradient of a calibration curve of absorbance vs CHX or PMDM concentration at each

wavelength (obtained using known solutions) and V is the storage solution volume.

The absorbance of CHX only in a solution contains PMDM and CHX was calculated from:

ଶହହܣ = ,ଶହହܣ + ,ଶହହܣ

ଶହହܣ = ɛ,ଶହହܥ + ɛ,ଶହହܥ

ଶଽܣ = ɛ,ଶଽܥ + ɛ,ଶଽܥ

ଶଽܣ) − (ଶହହܣ = (ɛଶଽ − ɛଶହହ)ܥ

Where A255 is absorbance at 255 nm. Ap,255 and Ac,255 are absorbance of PMDM and CHX at

255 nm respectively. ɛp,255 and ɛc,255 are extinction coefficients for PMDM and CHX at 255

nm respectively. A296 is absorbance at 296 nm. ɛp,296 and ɛc,296 are extinction coefficients for

PMDM and CHX at 296 nm respectively. Cp and Cc are the concentrations of PMDM and

CHX respectively.
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Extinction coefficients for PMDM are ɛp,255 =0.0299 and ɛp,296 = 0.00832. Extinction

coefficients for CHX are ɛc,255 =0.053 and ɛc,296 = 0. Ac,296= 0, see Figure 4-5.

The percentage cumulative amount of drug release Rc at time t was then given by equation:

(%)ࡾ =
[∑ [࢚ࡾ

࢚


ࢃ ࢉ
(4-2)

Where Wc is the weight of CHX incorporated in a given specimen in grams.

4.5.2. Mechanical properties optimisation for experimental composites

Using the monomers described above (see Table 4-2) different levels of CHX and

calcium phosphates were incorporated to form different experimental composite formulations

(see Table 4-3). These formulations were used to determine the effect of varying reactive

fillers content and powder to liquid ratio on the mechanical properties dry and immersed in

deionised water for 24 hours. Flexural strength and modulus was determined for all of the

formulations.
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Table 4-3: Summary of formulations used for mechanical properties optimisation, and divided

into groups with their content in weight percentage, GP; Glass powder, GF; Glass fibre

PLR Glass Powder MCPM/TCP CHX PMDM Glass Fibre

Group 1

controls

3:1 100 0 0 0 0

3:1 80 0 0 0 20

4:1 100 0 0 0 0

4:1 80 0 0 0 20

Group 2

3:1 90 10 0 0 0

3:1 88 10 0 2 0

3:1 85 10 5 0 0

3:1 83 10 5 2 0

4:1 80 10 5 5 0

4:1 60 10 5 5 20

Group 3 3:1 80 10 5 5 0

3:1 60 10 5 5 20

4:1 85 10 5 0 0

4:1 65 10 5 0 20

3:1 85 10 5 0 0

3:1 65 10 5 0 20

4:1 80 0 0 0 20

4:1 65 10 5 0 20

4:1 55 20 5 0 20

Group 4 4:1 35 40 5 0 20

4:1 60 10 10 0 20

4:1 50 20 10 0 20

4:1 30 40 10 0 20
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4.5.3. Comparison between adding PMDM to Powder phase versus Monomer phase

The following will show how incorporating adhesive monomer PMDM (in a powder

form) (see Table 4-4) to the powder phase at 5 wt. % can interfere with CHX release.

Furthermore, excess of undissolved PMDM will be shown to be released from the samples

to the storage solution (deionised water) after 1 day of storage. Use of smaller percentages

of PMDM (see Table 4-5) dissolved in the monomer phase (5 wt. % of the monomer) will

solve these issues. Incorporating PMDM in the monomer phase instead of the powder phase

decreased its concentration from 4 wt. % to 1 wt. % of the disc. PMDM content at 1 wt. % of

the disc / 5 wt. % of the monomer was the highest concentration that can be dissolved in the

monomer without any phase separation. Various tests will be performed to determine the

difference between adding PMDM to the powder phase versus monomer phase.

4.5.3.1. Adhesive monomer (PMDM) in Powder phase

Table 4-4: Monomer and powder concentrations for an example formulation contain PMDM in

the monomer phase. This formulation was used in FTIR, Raman, CHX release and mechanical

testing experiments

Liquid content Percentage (wt. %) Powder content Percentage (wt. %)

UDMA 68 MCPM 5

TEGDMA 25 TCP 5

HEMA 5 CHX 10

CQ 1 Glass Fibre 20

DMPT 1 Glass Powder 55

PMDM 5
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4.5.3.2. Adhesive monomer (PMDM) in Monomer phase

Table 4-5: Monomer and powder concentrations for an example formulation containing PMDM

in the monomer phase. This formulation was used to perform FTIR, Raman, CHX release,

mechanical testing experiments

Liquid component Percentage (wt. %) Powder component Percentage (wt. %)

UDMA 66 MCPM 5

TEGDMA 22 TCP 5

HEMA 5 CHX 10

CQ 1 Glass Fibre 20

DMPT 1 Glass Powder 60

PMDM 5

4.6.Results

4.6.1. Optimisation of chemical composition, curing and mechanical properties of

experimental composites

4.6.1.1. Chemical analysis of experimental composite composition

The Raman spectra for the monomer used to form the experimental composite

described in this section, before and after curing for 40 seconds light exposure is illustrated

in Figure 4-1. The figure shows monomer peaks at 1640 cm-1 (C═C stretch) and 1400/1450 

cm-1 (C—H stretch). Relative to the 1454 peak, the spectra after curing shows vinyl C═C and 

C—H stretch peaks, at 1640 and 1406 cm-1 that are significantly decreased.
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Figure 4-1: Raman spectra for monomer used to form the experimental composite

formulations before and after curing for 40 seconds. Monomer is composed of 68 wt.% UDMA,

25 wt.% TEGDMA, 5 wt.% HEMA, 1 wt.% DMPT and 1wt.% CQ.

Raman spectra for MCPM, TCP, PMDM, CHX, glass, and averaged spectra for an example

formulation are given in Figure 4-2. The spectra showed phosphate peaks (P—O stretch) at

901/912 cm-1 for MCPM and 946/968 cm-1 for TCP. CHX spectra appeared at 1600 cm-1 and

1285/1295 cm-1, along with glass peaks at 1370 cm-1 and 1400 cm-1. PMDM peaks were

observed at 881 cm-1, 1608 cm-1 and 1743 cm-1. The average Raman spectra for the

example formulation showed peaks associated with MCPM, TCP, CHX, glass as well as

PMDM.
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Figure 4-2: Raman spectra of MCPM, TCP, CHX, glass, and average spectra for an

experimental composite formulation. This specific example formulation contains (Powder

phase: MCPM 5wt. %, TCP 5 wt. %, CHX 5 wt. %, PMDM 5 wt. %, glass fibre 20 wt. % and glass

powder 60 wt. %), (Monomer phase: UDMA 68 wt. %, TEGDMA 25 wt. %, HEMA 5 wt. %, DMPT

1 wt. % and CQ 1wt. %) PLR 4:1.
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The Raman map for the surface of the uncured experimental composite showed areas of

CaP (MCPM/TCP), CHX, glass and monomer, see Figure 4-3. The particles of each of

these fillers are distributed across the Raman map, without any obvious phase separation.

Figure 4-3: the overlaid Raman map of a region on the surface of an example formulation of

the experimental composite. Glass particles are shown in red, monomer in blue, CHX in yellow

and CaP (MCPM/TCP) in green. This specific example formulation contains (Powder phase:

MCPM 5wt. %, TCP 5 wt. %, CHX 5 wt. %, PMDM 5 wt. %, glass fibre 20 wt. % and glass powder

60 wt. %), (Monomer phase: UDMA 68 wt. %, TEGDMA 25 wt. %, HEMA 5 wt. %, DMPT 1 wt. %

and CQ 1wt. %) PLR 4:1.

4.6.1.2. Degree of conversion

Figure 4-4 shows examples of FTIR spectra for formulations with reactive fillers

before and after light curing for 40 seconds. The spectra reflect monomer/polymer peaks at
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1710 cm-1 (C═O stretch), 1640 cm-1 (C═C stretch), and 1528 cm-1 (N—H deformation), 1455

cm-1 (C—H bend), 1269/1320 cm-1 (C—O stretch) and 1160 cm-1 (C—O—C asymmetric

stretch). Spectra also showed phosphate (P—O) stretch) at 1005/940 cm-1 and 1040 cm-1

due to presence of TCP and MCPM respectively.

Upon light exposure, there was a reduction in the intensity of C═C peak at 1640 cm-1, C—O

peaks at 1269/1320 cm-1 and C—O—C peak at 1160 cm-1 shifted to 1139 cm-1. All these

changes in the FTIR spectra are characteristic of methacrylate monomer polymerisation

[205].

Figure 4-4: Representative FTIR spectra of an experimental composite before and after 40 s

light curing. The specific example has PLR 4:1, MCPM 5 wt. %, TCP 5 wt. %, CHX 5 wt. %,

PMDM 5 wt. %, glass fibre 20 wt. % and glass powder 60 wt. %.

Irrespective of the formulation, the degree of conversion at 15 min was approximately 70 ± 2

% (means ± stdev), (see Table 4-6). An increase by ~ 3% in the conversion is shown upon

doubling the CHX content in the formulation. CaP, however, has no effect.
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Table 4-6: Degree of conversion for group 4 experimental composites at 15 min (determined by

FTIR). The errors represent (STEV) of the mean (n=3).

CHX (wt. %) CaP (wt. %) Degree of Conversion (%)

5 0 70 (±1)

10 0 73 (±1)

5 10 69 (±1)

10 10 72 (±1)

5 20 72 (±2)

10 20 74 (±1)

5 40 70 (±1)

10 40 74 (±1)

4.6.1.3. CHX and PMDM release from experimental composites

4.6.1.3.1. UV spectra of composite solutions compared to pure CHX and PMDM

The UV spectra for CHX and PMDM are given in Figure 4-5. The spectrum for CHX

shows two main peaks at 230 and 255 nm wavelength, whereas a PMDM spectrum

indicates one peak at 298 nm. These spectra were used for comparison between the UV

spectra of the pure materials and the spectra of the storage solutions of experimental

composite formulations.
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Figure 4-5: UV spectra for (a) pure CHX (33 PPM) and (b) pure PMDM (200 PPM).

4.6.1.3.2. CHX release versus square root of time of experimental composite

The release of CHX and PMDM in deionised water from an example experimental

composite formulation is given in Figure 4-6. The PMDM release after storing the samples in

deionised water for 1 week was found to be significantly higher than that of the CHX release,

2.4 wt. % and 0.4 wt. % respectively.

Figure 4-6: CHX and PMDM release in deionised water versus square root of time for an

experimental composite formulation. This specific example formulation contains (Powder

phase: MCPM 5wt. %, TCP 5 wt. %, CHX 5 wt. %, PMDM 5 wt. %, glass fibre 20 wt. % and glass

powder 60 wt. %), (Monomer phase: UDMA 68 wt. %, TEGDMA 25 wt. %, HEMA 5 wt. %, DMPT

1 wt. % and CQ 1wt. %) PLR 4:1. Error bars represents STDV, (n=3).
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4.6.1.4. Mechanical properties

4.6.1.4.1. The effect of glass fibre and PLR on strength, Modulus and handling of

Group 1 formulations

The biaxial flexural strength for group 1 experimental formulations is given in

Figure 4-7. The change in strength due to change in PLR and addition of glass fibre is small,

and varied between 177 MPa and 185 MPa. Factorial analysis (see Figure 4-8) confirmed

that increasing glass fibre causes small decline of 6 MPa in strength on average but PLR

had no effect.

Figure 4-7: Bar chart showing the effect of changing PLR (3:1 and 4:1) and adding glass fibre

by 20 wt. % on strength. Error bars represent 95%CI, (n=6).
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Figure 4-8: Factorial analysis for change in strength due to changing (a1) PLR from 3:1 to 4:1

and (a2) adding glass fibre by 20 wt. % to formulations from group 1.

The modulus for group 1 experimental formulations is given in Figure 4-9. The change in

modulus due to change in PLR and addition of glass fibre varied between 4 GPa to 5 GPa.

Factorial analysis confirmed the experimentally significant effect of adding glass fibre on

modulus when the powder content is high, see Figure 4-10.

Figure 4-9: Bar chart showing the effect of changing PLR (3:1 and 4:1) and adding glass fibre

by 20 wt. % on modulus. Error bars represent 95%CI, (n=6).
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Figure 4-10: Factorial analysis for change in modulus due to changing (a1) PLR from 3:1 to 4:1

and (a2) adding glass fibre by 20 wt. % to formulations from group 1.

The handling for uncured paste was significantly enhanced at PLR 4:1 than that for 3:1. PLR

3:1 provided paste with low viscosity for a bulk filling composite. On the other hand, 4:1 PLR

formed paste with viscosity similar to that for Z250 and Gradia bulk filling commercial

composites.

4.6.1.4.2. The effect of glass fibre on fracture behaviour of Group 1 formulations

Figure 4-11 shows the load/deflection plots for formulations with and without glass

fibre. Formulations without glass fibre exhibited brittle fracture behaviour. Formulations with

glass fibre, however, showed significantly less brittle fracture.
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Figure 4-11: Typical load/ deflection graphs for group 1 formulations (a) with glass fibre and

(b) without glass fibre during biaxial testing.

The difference in fracture behaviour between samples with and without glass fibre was due

to the process of the crack propagation during fracture. Figure 4-12 shows fracture surfaces

of samples with and without glass fibre. The crack is deflected or stopped in samples

containing glass fibre. The crack in samples without glass fibres, however, propagated freely

across the sample causing a brittle fracture.
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Figure 4-12: SEM images for fracture surfaces of formulations with glass fibre (a, b, c, and d),

and without glass fibre (e and f). (a) Glass fibre covered with silane coating, (b) crack

propagation through the composite, (c) crack stops due to glass fibres, and (d) shows glass

fibres bridging and connecting the composite together after crack propagation. (e) Shows the

fracture surface of a sample without glass fibre, and (f) shows the crack propagation through

it.
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4.6.1.4.3. The effect of low chlorhexidine, PMDM and immersion in water on

strength and modulus of Group 2 formulations

The effect of immersion of samples in water for 24 hours, and incorporating 5 wt. % of

CHX or 2 wt. % of PMDM to group 2 formulations on strength is shown in Figure 4-13. A

slight decrease in strength was experienced due to adding 5 wt. % CHX. Incorporating 2 wt.

% PMDM and immersing in water for 24 hours, however, exhibited a small effect on

strength.

Figure 4-13: Strength of composite wet (immersed in deionised water for 24 hours) or dry with

varying amount of PMDM (0 to 2 wt. %) and CHX (0 to 5 wt. %) for group 2 formulations. Error

bars represent 95%CI, (n=6).

Factorial analysis reveals that the strength deteriorates on average by ~ 6 MPa, see

Figure 4-14 (a1), as a result of adding 5 wt. % of CHX. Only ~ 1 and 3 MPa decrease in

strength was experienced due to incorporation of PMDM 2 wt. % and immersion in water for

24 hours respectively, Figure 4-14 (a2 and a3).
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Figure 4-14: Factorial analysis describing the change in strength due to incorporating (a1) 5

wt. % CHX, (a2) 2 wt. % PMDM and (a3) immersing in water for 24 hours for group 2

formulations.

The effect of immersion in water for 24 hours, incorporating 2 wt. % PMDM and 5 wt. % CHX

on the modulus of group 2 formulations is shown in Figure 4-15. From the figure it can be

seen that varying the PMDM and CHX level had only small effects, and the modulus

generally varied between 4 to 5 GPa.
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Figure 4-15: Modulus of composite wet (immersed in deionised water for 24 hours) or dry with

varying amount of PMDM (0 to 2 wt. %) and CHX (0 to 5 wt. %) for group 2 formulations. Error

bars represent 95%CI, (n=6).

Factorial analysis confirmed that there is no significant effect on modulus as a result of

adding CHX or PMDM. Immersion in water for 24 hours, however, caused a small decrease

in modulus (~1GPa) see Figure 4-16.
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Figure 4-16: Factorial analysis describing the change in modulus due to incorporating (a1) 5

wt. % CHX, (a2) 2 wt. % PMDM and (a3) immersing in water for 24 hours for group 2

formulations.

4.6.1.4.4. The effect of varying high PMDM, glass fibre and PLR on strength of

Group 3 dry formulations

The effect of incorporating 5 wt. % PMDM, 20 wt. % glass fibre and varying the PLR

from 3:1 to 4:1 on strength is given in Figure 4-17. The strength for all the formulations

varied between 163 to 170 MPa, indicating the small effect of these variables.
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Figure 4-17: Strength of dry experimental composite with 0 or 20 wt. % glass fibre, PLR at 3:1

and 4:1 and PMDM 0 to 5 wt. % for group 3 formulations. Error bars represent 95%CI, (n=6).

Factorial analysis in Figure 4-18 showed that adding glass fibre, changing the PLR from 3:1

to 4:1 and adding high (5 wt.%) PMDM has no experimentally significant effect on strength.

Figure 4-18: Factorial analysis describing the change in strength due to incorporating (a1) 5

wt. % PMDM, (a2) changing PLR from 3:1 to 4:1 and adding (a3) 20 wt. % glass fibres to group

3 formulations.
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The modulus for group 3 formulations varied between 4 to 5 GPa, see Figure 4-19. This

shows that there no significant effect on modulus as a result of incorporating glass fibre,

varying PLR 3:1 to 4:1 and increasing the concentration of PMDM to as high as 5 wt. %.

Figure 4-19: Modulus of dry experimental composite with 0 or 20 wt. % glass fibre, PLR at 3:1

and 4:1 and PMDM 0 to 5 wt. % for group 3 formulations. Error bars represent 95%CI, (n=6).

Figure 4-20 shows the factorial analysis for group 3 formulations, and indicates that there is

no significant effect of the variables on modulus of the materials.
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Figure 4-20: Factorial analysis describing the change in strength due to incorporating (a1) 5

wt. % PMDM, (a2) changing PLR from 3:1 to 4:1 and adding (a3) 20 wt. % glass fibre to group 3

formulations.

4.6.1.4.5. The effect of varying CHX, CaP and immersion in water on strength of

Group 4 formulations

The effect of increasing the concentration of CHX (5 wt. % and 10 wt. %), CaP (10 wt.

%, 20 wt. % and 40 wt. %) and immersion in water for 24 hours on the strength of group 4

formulations is given in Figure 4-21. Increasing CaP concentrations from 10 wt. % to 20 wt.

% and 40 wt. % decreased the strength (170 MPa, 156 MPa and 150 MPa respectively).

Immersion in water for 24 hours has also caused a further decline in the strength. Smaller

decrease, however, was experienced due to increasing the concentration of CHX.
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Figure 4-21: Strength of composite wet (immersed in deionised water for 24 hours) or dry with

varying the amount of CHX (5 to 10 wt. %) and CaP (10, 20 and 40 wt. %) for group 4

formulations. Error bars represent 95%CI, (n=6).

To quantify the average effect of the variables, factorial analysis was employed, see

Figure 4-22. The strength decreased by ~ 7 MPa as a result of increasing the CHX

concentration from 5 wt. % to 10 wt. %, see (a1) Figure 4-22. Strength decreased by 5 and

13 MPa due to increasing the CaP content from 10 wt. % to 20 and 40 wt. % respectively

(see a2 values). Immersing the samples in deionised water for 24 hours decreased the

average strength by ~ 5 MPa.
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Figure 4-22: Factorial analysis describing the change in strength due to adding (a1) 5 wt. %

and 10 wt. % CHX, (a2) 10 wt. %, 20 wt. % and 40 wt. % CaP and (a3) immersing in deionised

water for 24 hours of group 4 formulations.

The effect of increasing the concentration of CHX (5 wt. % and 10 wt. %), CaP (10 wt. %, 20

wt. % and 40 wt. %) and immersion in water for 24 hours on the modulus of group 4

formulations is given in Figure 4-23. Increasing CaP concentrations from 10 wt. % to 20 wt.

% decreased the modulus on average from ~5 GPa to ~4.5 GPa respectively. Further

increase of CaP to 40 wt. % decreased modulus to 4 GPa. Immersion in water for 24 hours

has also caused a further decline in the modulus.
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Figure 4-23: Modulus of composite wet (immersed in deionised water for 24 hours) or dry with

varying the amount of CHX (5 to 10 wt. %) and CaP (10, 20 and 40 wt. %) for group 4

formulations. Error bars represent 95%CI, (n=6).

Factorial analysis (Figure 4-24) shows the average effect of the variables in group 4

formulations. From the factorial analysis it can be seen that there is no significant effect upon

increasing the concentration of CHX from 5 wt. % to 10 wt. % (a1). Modulus was decreased

by 0.4 to 1 GPa due to increasing the CaP (a2) content from 10 wt. % to 20 and 40 wt. %.

Immersing the samples in deionised water for 24 hours decreased the modulus by ~ 0.5

GPa.
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Figure 4-24; Factorial analysis describing the change in modulus due to adding (a1) 5 wt. %

and 10 wt. % CHX, (a2) 10 wt. %, 20 wt. % and 40 wt. % CaP and (a3) immersing in deionised

water for 24 hours of group 4 experimental composite formulations.

4.6.1.5. Self-healing property for formulations with reactive MCPM and TCP

Fractured samples that were immersed in water and contain CaP (MCPM and TCP)

at 10, 20 or 40 wt. % shows self-healing properties by forming either brushite or monotite

that connects the fragments together, (see Figure 4-25). The specific example shown in the

figure is for a sample that was stored in deionised water for 7 days before fracture. After

fracture, the sample was left in a wet sterilin tube (contains few drops of water) for 2 days

before noticing the brushite formation.
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Figure 4-25: SEM images at different magnifications (a) (b) and (c) of the surface of a fractured

experimental composite sample. This specific example formulation contains (Powder phase:

MCPM 5wt. %, TCP 5 wt. %, CHX 5 wt. %, PMDM 5 wt. %, glass fibre 20 wt. % and glass powder

60 wt. %), (Monomer phase: UDMA 68 wt. %, TEGDMA 25 wt. %, HEMA 5 wt. %, DMPT 1 wt. %

and CQ 1wt. %) PLR 4:1

4.6.2. Comparison between experimental composite with adhesive monomer PMDM

in powder phase verses monomer phase

4.6.2.1. Chemical changes for formulations with PMDM in powder phase

versus monomer phase

The average Raman spectra for the example experimental composite formulations

with (a) PMDM in the powder phase versus that for (b) PMDM in the monomer phase were

given in Figure 4-26. The Raman spectra showed phosphate peaks (P—O stretch) at
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901/912 cm-1 for MCPM and 946/968 cm-1 for TCP. CHX spectra appeared at 1600 cm-1 and

1285/1295 cm-1, along with glass peaks at 1370 cm-1 and 1400 cm-1. PMDM peaks were

seen at 881 cm-1, 1608 cm-1 and 1743 cm-1 for the formulation with 5 wt. % PMDM in the

powered phase, (see Figure 4-26 (a)). The same peaks where present in the Raman

spectra, except those associated with PMDM, for the formulation that contains 5 wt. %

PMDM in the monomer phase, (see Figure 4-26 (b)).

Figure 4-26: Average Raman spectra for two experimental composites formulations. These

specific examples formulations contain: (a): [(Powder phase: 5 wt.% MCPM, 5 wt.% TCP, 10

wt.% CHX, 5 wt.% PMDM, 20 wt.% glass fibre and 55 wt.% glass powder) (Monomer phase: 68

wt.% UDMA, 25 wt.% TEGDMA, 5 wt.% HEMA, 1 wt.% DMPT and 1wt.% CQ)]. (b): [(Powder

phase: 5 wt.% MCPM, 5 wt.% TCP, 10 wt.% CHX, 20 wt.% glass fibre and 60 wt.% glass

powder) (Monomer phase: 66 wt.% UDMA, 22 wt.% TEGDMA, 5 wt.% HEMA, 1 wt. % DMPT and

1 wt.% CQ and 5 wt.% PMDM)] PLR 4:1.
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4.6.2.2. Degree of conversion for formulations with PMDM in powder phase

versus monomer phase

The degree of conversion for experimental composite with (a) PMDM in the powder

phase versus that for (b) PMDM in the monomer phase is given in Table 4-7. From the table

it can be seen that the degree of conversion is the same, ~ 70 %.

Table 4-7: Degree of conversion for two experimental composite formulations. These specific

examples formulations contain: (a) example formulation of PMDM in powder phase, (b)

example formulation for PMDM in the monomer phase. Error values represents 95%CI, (n=3).

Degree of Conversion

(a) (b)

72 (±1) 71 (±1)

4.6.2.3. CHX release for formulations with PMDM in powder phase versus

monomer phase

CHX release for experimental composite with (a) PMDM in the powder phase versus

that for (b) PMDM in the monomer phase is give in Figure 4-27. CHX release after 1 week is

significantly higher than that for formulations that contains PMDM in the powder phase. The

UV analysis of the storage solution after leaving the samples for 1 week in deionised water

showed no PMDM release.
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Figure 4-27: CHX release in deionised water versus square root of time for two experimental

composites formulations. These specific examples formulations contain: (a): [(Powder phase:

5 wt. % MCPM, 5 wt. % TCP, 10 wt. % CHX, 5 wt. % PMDM, 20 wt. % glass fibre and 55 wt. %

glass powder) (Monomer phase: 68 wt. % UDMA, 25 wt. % TEGDMA, 5 wt. % HEMA, 1 wt. %

DMPT and 1wt. % CQ)]. (b): [(Powder phase: 5 wt. % MCPM, 5 wt. % TCP, 10 wt. % CHX, 20

wt. % glass fibre and 60 wt. % glass powder) (Monomer phase: 66 wt. % UDMA, 22 wt. %

TEGDMA, 5 wt.% HEMA, 1 wt. % DMPT and 1 wt. % CQ and 5 wt. % PMDM)]. Error bars

represents STDV, (n=3).

4.6.2.4. Strength, modulus and Fracture behaviour for formulations with PMDM

in powder phase versus monomer phase

Strength and modulus (dry and immersed in deionised water for 24 hours) for

experimental composite with (a) PMDM in the powder phase versus that for (b) PMDM in the

monomer phase are shown in Table 4-8. From the table it can be seen that strength and

modulus for both formulations (a) and (b) have decreased after immersion in water from 160

MPa to 150 MPa and 5.2 GPa to 5 GPa respectively.
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Table 4-8, describes the strength and modulus for dry and wet (24 hours in deionised water)

two experimental composites formulations. These specific examples formulations contain: (a)

example formulation of PMDM in powder phase, (b) example formulation for PMDM in the

monomer phase. Error bars represents 95%CI, (n=6).

Strength Modulus

(a) (b) (a) (b)

Dry Wet Dry Wet Dry Wet Dry Wet

160 (± 9) 150 (± 8) 160 (± 7) 150 (± 12) 4.9 (± 0.4) 4 (± 0.3) 5.2 (± 0.5) 5 (± 0.4)

The load and deflection graphs for experimental composite with (a) PMDM in the powder

phase versus that for (b) PMDM in the monomer phase were given in Figure 4-28. The

figure shows resilient fracture behaviour for both formulations (a) and (b).

Figure 4-28: Typical load/ deflection graphs for two experimental composites formulations.

These specific examples formulations contain: (a) example formulation of PMDM in powder

phase, (b) example formulation for PMDM in the monomer phase.
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4.7.Discussion

4.7.1. Chemical composition, curing and mechanical properties for experimental

composites

4.7.1.1. Materials chemistry, conversion, and CHX release

The chemical composition for the experimental composite investigated through

Raman mapping showed peaks comparable to those in the spectra for pure MCPM, TCP,

CHX Glass and PMDM, see Figure 4-2. The presence of PMDM peaks may be attributed to

its presence as solid-undissolved particles. This was also supported with finding that PMDM

in samples stored in deionised water was released in the storage solution, which was

analysed using UV spectrometer. CHX release from the samples was very low, see

Figure 4-6. This is possibly due to an interaction between the acidic adhesive monomer and

the chlorhexidine salt leading to decreasing the release of the latter.

The degree of conversion for the experimental composite described in this study was similar

(~ 70%) regardless of CaP, and slightly higher due to doubling CHX concentration. A

previous study on the effect of CHX on depth of cure suggested that CHX can slightly

improve conversion of a composite [206]. It was also reported in the literature that the

refractive index of the composite fillers affect the depth of cure [207]. Conversion for the

formulations in this study, however, was measured at 1 mm depth. Small thickness of

samples may have contributed to the lack of significant difference in conversion between the

formulations.

The initial release of chlorhexidine was proportional to the square root of time, which is

expected for diffusion controlled process. According to several chlorhexidine release studies

it was identified that water sorption causes chlorhexidine to be released more readily from
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composite samples [67, 81]. Furthermore, water sorption could make polymer chains more

flexible allowing higher CHX to be released [68].

4.7.1.2. Flexural strength, modulus handling and fracture behaviour of

experimental composite without reactive fillers; group 1

Biaxial flexural strengths of group 1 experimental composites without reactive fillers

were comparable to that of commercial composite Z250 at ~ 175 MPa (described in chapter

3). This initial result was promising as Z250 exhibits one of the highest strengths for

commercial dental composites. The average Young’s modulus for group 1 formulations and

Z250 were similar, and ranged between 3 to 4 GPa. This value of Young’s modulus is

comparable to that of human dentine (5-10 GPa) [208].

The mechanical properties of the experimental composites with 3:1 or 4:1 PLR were similar.

The handling, however, was significantly increased with 4:1 PLR, providing the viscosity

required for bulk filling composite. Higher viscosity also allows the filling composite to be

applied into cavities in the upper teeth.

Examples of load / deflection profiles given in Figure 4-11 showed that the shape of the

breaking profile depended mainly on whether glass fibre was incorporated in the

formulations. Formulations without fibre break sharply, whereas formulations with glass fibre

experience significantly less brittle fracture. The difference in fracture behaviour between

samples with and without glass fibre was attributed to the process of the crack propagation

during fracture. It was noticeable from the SEM images in Figure 4-12 that glass fibres play

a major role in slowing down the crack propagation and keeping the materials together.

Glass fibre addition increases the surface area, and forces the crack to travel further through

the matrix as the crack fails to cut through the glass fibres. This can be seen in Figure 4-12

(c) in which glass fibres managed to stop the crack propagation, and subsequently a

complete fracture to the samples was prevented as the strength of the reinforcing glass fibre
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is higher than that for the resin matrix. Even if the crack propagates through the material and

the fracture is complete, glass fibres form bridges between the fragments and stop their

shattering. This can be highly beneficial to allow self-healing properties for formulations with

reactive calcium phosphates. On the other hand, the crack propagated freely across the

samples for formulations without glass fibres. The lack of resistance to the crack propagation

leads to a brittle fracture.

4.7.1.3. Flexural strength, modulus for experimental group 2 formulations with

low reactive fillers

Upon addition of reactive fillers, MCPM 5 wt. %, TCP 5 wt. %, CHX 5 wt. % and

PMDM 2 wt. %, a slight decrease in strength was shown due to CHX and after immersion in

water for 24 hours. This decrease could be attributed to the CHX released form the samples

as well as induced water sorption as a result of incorporating the reactive MCPM and TCP

fillers. Previous studies have shown that strength is inversely proportional to the water

sorption [67, 68]. The small decrease in strength was experienced as a result of 2 wt. %

PMDM incorporation is possibly due to the low concentration for of this component.

A negligible decrease in modulus due to addition of CHX and PMDM was observed for

different group 2 formulations. This can be attributed to the low percentages of reactive fillers

incorporated in the formulations. Immersion in water, however, caused a small decrease in

modulus, which can be caused by any water sorption. This suggests that the modulus of the

materials maybe more sensitive to immersion in water than the strength.

4.7.1.4. Flexural strength, modulus for experimental group 3 formulations with

low reactive fillers and varying PLR and addition of glass fibre

Increasing the PLR from 3:1 to 4:1 and addition of glass fibre (20 wt. %) showed no

significant effect on strength and modulus, which can be attributed to the good wetting of the
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monomer to the silane coated glass particles. It has been reported in the literature that silane

coating glass fillers enhances the mechanical properties [209].

PMDM presence in the powder phase did not cause significant effect on strength, but

showed other negative effects regarding drug release properties for the materials.

The effect of incorporating low amounts of reactive fillers was small and did not show trends.

It was, therefore, required to further investigate the effect of adding reactive fillers at higher

percentages.

4.7.1.5. Flexural strength, modulus for experimental group 4 formulations with

high reactive fillers dry and after immersion in water

Increasing the concentration of MCPM, TCP and CHX caused a noticeable decrease

in strength and modulus after immersion in water, which is possibly due to water sorption. In

a previous study it was shown that MCPM readily dissolves in water, which can also

contribute to the deterioration in strength [67]. CHX release can also lead to the formation of

water filled holes inside of the discs, which was reported previously [81]. The deterioration in

strength upon increasing the reactive fillers (MCPM, TCP and CHX) content at the dry state

can be attributed to the lack of coupling agent between the fillers and the resin matrix.

4.7.2. Self-healing property for composite formulations with MCPM and TCP

The interaction between MCPM and TCP to form brushite in presence of water was

reported previously [67]. Self- healing was shown in this study for a complete fracture that

occurred, but the fragments were connected with the glass fibres, and brushite was formed

in presence of water and started sealing the fracture. This is a very interesting phenomenon,

as a self-healing ability can be highly beneficial in the case of incomplete fracture. Repairing

or replacing the filling may significantly decrease as a result of successful self-healing

process.
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4.7.3. Comparison between experimental composite with adhesive monomer PMDM

in powder phase versus monomer phase

4.7.3.1. Materials chemistry, Curing, CHX release, mechanical properties and

fracture behaviour

Incorporating PMDM in the monomer phase instead of the powder phase decreased

its concentration from 4 wt. % to 1 wt. % of the disc. PMDM content at 1 wt. % of the disc (5

wt. % of the monomer) was the highest concentration that can be dissolved in the monomer

without any phase separation. Dissolving the PMDM crystals completely in the monomer

may have contributed to the lack of PMDM peaks in the average Raman spectra of the

example experimental formulation paste shown in Figure 4-26 (b).

The degree of conversion for the composite paste with PMDM in the monomer phase was

the same as that for all other formulations, as was expected due to its low concentration.

CHX release was significantly increased from formulations with PMDM in the monomer

phase. This can be attributed to the removal of interference between the acidic PMDM and

basic CHX, which was obtained by lowering the total PMDM level.

The strength and modulus for the composite discs with the same amount of reactive filler

content was the same regardless whether PMDM was included in the monomer or powder

phases. This may be due to the low concentration of PMDM to cause any significant effect

on the mechanical properties.

Fracture behaviour for flexural strength testing is mainly determined by the glass fibres

content. It was, therefore, expected to see no effect of changing the PMDM from the powder

to the monomer phase.
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4.8.Conclusion

Paste with adequate viscosity was obtained by increasing powder to liquid ratio to 4:1.

The fracture behaviour of the material was improved by incorporating glass fibre in the

formulations. In addition, no major effect was noticed due to changing these variables on the

strength of the material.

High monomer conversion (~ 70 %) was obtained while using UDMA as the main monomer,

diluted with TEGDMA and HEMA. CHX slightly increased monomer conversion, whereas

MCPM and TCP had no significant effect at 1 mm thickness.

Incorporating chlorhexidine in formulations in presence of sufficient amount of MCPM and

TCP provided readily detectable antibacterial agent release in distilled water. These forms of

reactive calcium phosphates gave rise to self-healing property by forming brushite and/ or

monetite in cases which incomplete fracture have occurred and in presence of water. MCPM

and TCP, however, decrease the strength of the material.

Adding adhesive monomer PMDM had no significant effect on strength of the cured

composite. PMDM included in the powder phase at excess, however, lead to its release in

the storage solution. Furthermore, the acidic PMDM interfered with the release of basic

CHX.

Dissolving PMDM in the monomer phase prevented its release in the storage solution. This

has also shown to have no effect neither on strength nor conversion of the experimental

composite.

The composite formulations discussed in this chapter were shown to have higher conversion

than commercial composites, competitive mechanical properties and better fracture

behaviour. Reactive calcium phosphate fillers as well as CHX and PMDM can potentially
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equip the composite with remineralising, antibacterial and self-adhesive properties. This will

be the subject of a systematic study in the next 3 chapters.
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5. CONVERSION, SHRINKAGE, WATER SORPTION, FLEXURAL STRENGTH AND MODULUS

OF NOVEL RE-MINERALISING DENTAL COMPOSITES

5.1.Abstract

The aim of this study was to assess the cure, volumetric changes and mechanical

properties of new dental composites containing chlorhexidine and reactive calcium

phosphate to reduce recurrent caries. 20 wt. % of light curable urethane dimethacrylate

based liquid was mixed with 80 wt. % glass filler containing 10 wt. % CHX and 0 - 40 wt. %

CaP. Conversion versus depth with 20 or 40 s light exposure was assessed by FTIR.

Solidification depth and polymerisation shrinkage were determined using ISO 4049 and

17304 respectively. Subsequent volume expansion and biaxial flexural strength and modulus

change upon water immersion were determined over 6 and 4 weeks respectively.

Conversion decreased linearly with both depth and CaP content. Average solidification

depths were 4.5, 3.9, 3.3, 2.9 and 5.0 with 0, 10, 20, and 40% CaP and a commercial

composite, Z250, respectively. Conversions at these depths were 53± 2% for experimental

materials but with Z250 only 32%. With Z250 more than 50% conversion was achieved only

below 1.1 mm. Shrinkage was 3% and 2.5% for experimental materials and Z250

respectively. Early water sorption increased linearly, whilst strength and modulus decreased

exponentially to final values when plotted versus square root of time. Maximum volumetric

expansion increased linearly with CaP rise and balanced shrinkage at 10-20 wt. % CaP.

Strength and modulus for Z250 decreased from 191 to 158 MPa and 3.2 to 2.5 GPa.

Experimental composites initial strength and modulus decreased linearly from 169 to 139

MPa and 5.8 to 3.8 GPa with increasing CaP. Extrapolated final values decreased from 156

to 84 MPa and 4.1 to 1.7 GPa. The lower surface of composite restorations should both be

solid and have greater than 50% conversion. The results, therefore, suggest the

experimental composite may be placed in much thicker layers than Z250 and have reduced

unbounded cytotoxic monomer. Experimental materials with 10-20 wt. CaP % additionally
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have volumetric expansion to compensate shrinkage, antibacterial and re-mineralising

components and competitive mechanical properties.
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5.2. Introduction

As was described in the introduction (chapter 1), composite failure can arise from brittle

fracture due to combined low strength and high modulus. With modern formulations,

however, it is more commonly caused by recurrent caries. Recurrent caries are enhanced

by composite bond failure which can be augmented by composite shrinkage during setting.

Resultant micro-gap formation and lack of antibacterial action allows bacterial penetration,

secondary caries and continuing hydroxyapatite dissolution beneath the composite

restoration [210, 211]. The properties of commercial materials discussed both in the

introduction (chapter 1) and in chapter 3, indicate their strengths and weaknesses. The

lessons learned were employed to design novel experimental composite formulations that

can potentially overcome the shortcomings of the products currently in the market.

One area of composite improvement will be addressed in this chapter includes light

penetration depth to ensure the lower surface of fillings do not contain poorly polymerised

layers. Poor depth of cure and shrinkage effects may both be reduced by composite

placement in thin layers, but this complicates clinical procedures. Alternatively, depth of

cure may be improved through better matching of monomer and filler refractive indices.

Furthermore, shrinkage can be reduced by increasing monomer molecular weight and filler

content. It may additionally be compensated by water sorption induced swelling. Maintaining

high strength in the range of commercial composites (between 100 to 180 MPa) is also

crucial for successful filling materials.

This chapter will discuss the above properties as well as give recommendations and

suggestions to improve the ISO standards concerned with testing the depth of cure and

polymerisation shrinkage.
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5.3.Aims and Objectives

This chapter aims to compare conversion, shrinkage and mechanical properties of one

of the strongest current commercial composites (Z250) with those of new light curable

composites with potential remineralising and antibacterial action. The properties of the new

experimental formulations are also compared with other commercial materials (Gradia, VF

and FLD) discussed in chapter 3.

Depth of cure for the experimental formulations as well as Z250 will be assessed using two

different methods: FTIR and an ISO method (4049:2009). Polymerisation shrinkage will be

assessed theoretically and experimentally. The theoretical polymerisation shrinkage will be

calculated using conversion, monomer volume fraction, number of methacrylate groups per

monomer and average molecular weight of monomers incorporated in the formulations.

Experimental volume shrinkage will be determined using ISO 17304:2013. Volumetric

studies will additionally be undertaken to determine which experimental formulations have

sufficient expansion to exactly compensate polymerisation shrinkage.

In terms of mechanical properties, the biaxial flexural strength and Young’s modulus for each

formulation will be determined. Possible links between the microstructure, curing, water

sorption and mechanical properties will be discussed, including possible failure mechanisms.

5.4.Hypothesis

As discussed in the introduction chapter and the previous chapter, reactive CaP fillers

are included to provide re-mineralising properties to the experimental composite

formulations. MCPM and TCP, however, are expected to compromise the translucency of

the material, and therefore reduce monomer conversion at depth. The use of UDMA,

TEGDMA and HEMA combination of monomers was shown in the previous chapter to give

high conversion. It is hoped that the using this monomer system will maintain the monomer
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conversion at a higher level than 50% even at 4 mm depth. Longer curing time (20 s to 40 s)

is expected to improve the monomer conversion.

High filler loading is intended to reduce the polymerisation shrinkage. Experimental

formulations containing CaP are expected to swell upon immersion in water. This expansion

is expected to be proportional to the level of CaP in the formulation. Sufficient expansion that

just compensates the polymerisation shrinkage is beneficial.

The mechanical properties of the experimental formulations are expected to decline upon

raising CaP levels in the formulations especially when immersed in water due to water

sorption.
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5.5.Materials and Methods

5.5.1. Composite paste preparation

The same monomer combination (without PMDM) that was described in the previous

chapter was utilised (see Table 5-1) to form different experimental composite formulations

with varied CaP levels. The levels of CaP (MCPM plus TCP) were 0, 10, 20 and 40 wt. % of

the filler (see Table 5-2). The levels of CHX and glass fibre were fixed at 10 wt. % and 20 wt.

% respectively.

Depth of cure for the experimental formulations as well as Z250 was tested using two

different methods: FTIR method (n=3) and ISO method (4049:2009) (n=3). Polymerisation

shrinkage was assessed theoretically (n=3) and experimentally (n=6) following ISO

17304:2013. Volumetric studies were assessed gravimetrically (n=3). Biaxial flexural

strength and Young’s modulus for each formulation was determined using Instron universal

testing machine (n=6).

Table 5-1: Monomer content for composite formulations used for mechanical properties

optimisation

Liquid content Percentage (%)

UDMA 68

TEGDMA 25

HEMA 5

CQ 1

DMPT 1
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Table 5-2: Summary of powder content of formulations used for mechanical properties

optimisation

Fillers Content (wt. %) (0 CaP) (10 CaP) (20 CaP) (40 CaP)

MCPM 0 5 10 20

TCP 0 5 10 20

CHX 10 10 10 10

Glass Fibre 20 20 20 20

Glass Powder 70 60 50 30
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5.6.Results

5.6.1. Monomer conversion

Monomer conversion in this chapter is presented with depth of cure results. The

following will describe the monomer conversion at 1 mm thickness as well as at higher

depths up to 4 mm.

Depth of cure for experimental composite formulation with varied CaP content was assessed

following two methods. The first method uses FTIR to assess the monomer conversion of

each formulation on the lower surface of specimens (furthest from the light source) with

varying thickness. The second method is based on ISO 4049:2009 standard.

5.6.1.1. Depth of cure FTIR method

Monomer conversions in the bottom few microns of specimens after curing from the

top surface for 20 s or 40 s are illustrated versus sample depth in Figure 5-1. No or linear

change in conversion with depth is observed. Example of linear regression fitting is given in

Figure 5-2.



Anas Aljabo PhD Thesis

190

Figure 5-1: Lower surface monomer conversion for composites of 1, 2, 3 or 4 mm depth and

containing 0, 10, 20 or 40 wt. % reactive calcium phosphate: a) 20 s of curing, b) 40 s of curing.

Line indicates a critical conversion of 50% below which samples must contain some

monomers with two unreacted methacrylate double bonds. (Error bars are 95% confidence

interval, n=3).

0

10

20

30

40

50

60

70

80

0 CaP 10 CaP 20 CaP 40 CaP Z250

M
o

n
o

m
e

r
c

o
n

v
e

rs
io

n
(%

)
a: 20 s curing 1 mm 2 mm

3 mm 4 mm

0

10

20

30

40

50

60

70

80

0 CaP 10 CaP 20 CaP 40 CaP Z250

M
o

n
o

m
e

r
c

o
n

v
e

rs
io

n
(%

)

b: 40 s curing 1 mm 2 mm

3 mm 4 mm



Anas Aljabo PhD Thesis

191

Figure 5-2: Example of data fitting for conversion after light curing for 20 s of experimental

composite formulations containing 0 , 10, 20 and 40 wt. % CaP at 1, 2, 3 and 4 mm depth. The

parameters obtained for this data fitting are given in Table 5-3.

Intercepts and gradients upon fitting linear equations to plots of conversion (C) versus

calcium phosphate (cp) percentage in the filler are provided in Table 5-3. The low R2 values

and gradients for 1 and 2 mm depth are due to the effect of calcium phosphate being

negligible. The larger slopes and R2 values show the calcium phosphate has a more

significant effect on the conversion at greater depths. The intercepts increased significantly

from 55 to 72 % upon decreasing the thickness from 4 to 1 mm.

Multiple linear regressions gave the intercepts and gradients of these parameters versus

sample depth and are provided at the bottom of each column Table 5-3. The small 95%

confidence intervals provided in brackets confirm conversion decreased significantly with

increasing both CaP concentrations and depth. Doubling light exposure time, however, had

no experimentally significant effect.

The top surface conversion indicates that all experimental materials (70% irrespective of cp)

had much higher monomer conversion than Z250 (50%). Gradients of conversion versus

depth were not significantly different for the experimental and commercial composites
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without calcium phosphate. Their decrease with raising calcium phosphate level, however,

was significant. From Figure 5-1 it can be predicted that 50% conversion after 20 or 40 s

curing would be achieved at 4.5, 4, 3, 2.5 and 1 mm for formulations with 0, 10, 20, and 40

CaP and Z250 respectively.

Table 5-3: Linear regression values for monomer conversion at the lower surface of

formulations with 0, 10, 20 and 40 wt. % CaP at 1-4 mm depth cured for either 20 or 40 s.

Gradients, intercept and R
2

for experimental composite formulations as well as commercial

composite Z250 are also given. Error bars represent 95CI, n=3.

Depth
(mm)

Linear regression of Conversion (C) vs CaP (cp) Conversion of Z250
(%)

20s 40s 20s 40s

Intercepts
(%)

Slope dC(%)/dcp

(wt. %)
R2 Intercepts

(%)
Slope

dC(%)/dCp

(wt. %)

R2 (%) (%)

1 72 ± 2 -0.06 ± 0.07 0.56 73 ± 1 0.03 ± 0.04 0.54 51 ± 1 50 ± 1

2 68 ± 1 -0.07 ± 0.05 0.78 67 ± 4 0.01 ± 0.18 0.78 46 ± 2 46 ± 1

3 62 ± 2 -0.44 ± 0.1 0.97 62 ± 2 -0.29 ± 0.1 0.95 41 ± 2 44 ± 1

4 55 ± 7 -0.48 ± 0.32 0.82 57 ± 5 -0.43 ± 0.24 0.87 35 ± 3 36 ± 1

Linear regression of intercepts or Z250 conversion in above columns vs depth

20s 40s 20s 40s

Gradient (column
units/mm)

-5.7 ± 0.6 -0.17 ± 0.10 -5.4 ± 0.2 -0.17 ± 0.07 -4.7 ±
0.8

-4.3 ± 0.9

Intercept(column unit) 78 ± 2 0.15 ± 0.27 78 ± 1 0.25 ± 0.20 55 ± 1 55 ± 1

R2 0.99 0.85 1 0.91 0.98 0.95
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5.6.1.2. Depth of cure ISO method

Sample cure depth after 20 or 40 s light exposure is provided in Figure 5-3. With Z250,

specimens were solid after cure up to 5 mm depth with either 20 s or 40 s light exposure

time. ISO depth of cure was therefore 2.5 mm.

Figure 5-3: Depth of cure of experimental composite formulations with 0, 10, 20 and 40 wt. % CaP, and

commercial composites Z250 with 20 and 40 s light exposure. The line indicates the minimum

requirement according to the ISO standard. (Error bars are 95%CI with n = 3).

Only the experimental composite containing 40 % CaP cured for 20 s failed to meet the

minimum ISO requirement. As with conversion, depth of cure decreased linearly with CaP

level. Linear regression parameters (gradient, intercept and R2) of experimental ISO depth

of cure (1/2 the maximum depth, hs, at which solidification was observed) versus CaP (wt.

%) is provided in Table 5 4.
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Table 5-4: Gradients, intercept and R
2

for depth of cure (1/2 the maximum depth at which

solidification was observed) versus wt. % CaP light cured for 20 or 40 seconds. Error bars

represent 95%CI, n=3.

20 s 40 s

Gradient

(mm / wt. %CaP)

0.020 ± 0.006 0.020 ± 0.005

Intercept

(mm)

2.02 ± 0.13 2.33 ± 0.12

R2 0.96 0.97

Table 5-4 indicated a 15% ((2.3-2)/2) increase in depth of cure with increasing time of

exposure from 20 to 40 s that was independent of calcium phosphate level. Average

solidification depths were 4.5, 3.9, 3.3, 2.0 and 5.0 with 0, 10, 20, and 40% CaP and Z250

respectively. High R2 values indicate that increasing CaP concentrations in the formulation

from 0 to 40 wt. % has an experimentally significant effect on the depth of cure.

5.6.2. Polymerisation shrinkage

5.6.2.1. Polymerisation shrinkage calculated

Calculated polymerisation shrinkage for experimental composite formulations with 0,

10, 20 and 40 wt. % CaP is given in Table 5-5. Experimental material shrinkage was

calculated to be 2.5, 3 and 3.5% with average conversions of 55, 65 and 75 % respectively.
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5.6.2.2. Polymerisation shrinkage experimental

Table 5-5 shows the measured polymerisation shrinkage for experimental composite

formulations with 0, 10, 20 and 40 wt. % CaP. For 1 mm thick samples the average

experimental material shrinkage was 3%.

Table 5-5: Calculated polymerisation shrinkage of experimental composites with 0 to 40 wt. %

CaP (Error are 95%CI with n=3). Measured polymerisation shrinkage of experimental

composites with 0 to 40 wt. % CaP (Error bars are 95%CI with n=6).

CaP (wt. %) Calculated Measured

0 3.35 ± 0.07 2.9 ± 0.2

10 3.25 ± 0.03 3.2 ± 0.2

20 3.27 ± 0.04 3.0 ± 0.3

40 3.23 ± 0.07 2.9 ± 0.3

5.6.3. Mass and volume change in water

Mass and volume change over 6 weeks are shown versus the square root (Sqrt) of

time (hr) in Figure 5-4. These plots were linear up to 48 hours (Sqrt (time/hr) = 7) with 0 and

10 % CaP, but up to 1 week (Sqrt (time/hr) = 13) with 20 and 40 % CaP (R2> 0.98). This

dependence upon time was expected for diffusion controlled water sorption.
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Figure 5-4: a: Mass change and b: Volume change versus square root (Sqrt) of time (hr) for

experimental and commercial materials (error bars are estimated 95% CI with n=3)

For the experimental materials, linear regression gave the gradient of the early change in

mass and volume as shown in Table 5-6. Early volume change was therefore 1.7 times

(0.019/0.011) higher than mass change regardless of CaP content. This was comparable

with initial dry composite densities.

The maximum mass and volume changes between 10 and 40 wt. % CaP increased linearly

from 0.5 to 7 wt. % and 1 to 13 vol. % respectively. Linear regression gave the gradient of
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maximum change in mass and volume 0.17 wt. %/ h0.5 and 0.29 vol. % / h0.5 respectively,

see Table 5-6. This means maximum volume change was therefore also 1.7 times

(0.29/0.17) higher than mass change regardless of CaP content.

Table 5-6: Initial gradient of mass and volume versus square root of time and maximum values

for experimental composite formulations containing 0, 10, 20 and 40 wt. % CaP stored in water

for up to 6 weeks. Initial mass and volume gradients were calculated using data up to 1 week

in water, whereas the maximum mass and volume were obtained at 6 weeks. Error represent

95%CI, n=3. The gradients, intercepts and R
2

values from linear regression of property versus

the CaP content determined using Linest are provided at the bottom of column.

CaP (wt. %) Initial gradient of mass
vs Sqrt t (wt. % / h

0.5
)

Max. mass
change (wt. %)

Initial gradient of volume
vs Sqrt t (vol. % / h

0.5
)

Max. volume change
(vol. %)

0 0.07 ± 0.01 0.57 ± 0.06 0.06 ± 0.02 0.80 ± 0.10

10 0.11 ± 0.01 0.60 ± 0.08 0.16 ± 0.02 0.94 ± 0.13

20
0.21 ± 0.03 2.52 ± 0.27 0.35 ± 0.04 4.68 ± 0.47

40
0.45 ± 0.03 7.22 ± 0.40 0.81 ± 0.08 12.82 ± 1.26

Gradient of
column vs CaP

(column unit /wt.
% CaP)

0.011 ± 0.002 0.17 ± 0.04 0.019 ± 0.002 0.29 ± 0.07

Intercept 0 0 0 0

R
2

0.98 0.96 0.99 0.96

From Table 5-6 it can be seen that the maximum volume change was 1.7 times higher than

the maximum mass change (0.29/0.17). From the gradients at the bottom of columns in

Table 5.6 it can also be shown that irrespective of CaP level the early change in mass and

volume divided by final values are given by
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When these ratios are equal to 0.5, t is the time for half maximum change. These “half times”

were calculated from equations (5-1) and (5-2) to be 60 and 58 hours for mass and volume

respectively.

5.6.4. Mechanical properties

Biaxial flexural strength and modulus for experimental composite formulations

containing 0, 10, 20 and 40 wt. % CaP are given in Figure 5-5. Flexural strength and

modulus both decreased with raising CaP level and time in water. Whilst a decrease in

strength is a disadvantage, decrease in modulus will increase resilience and energy

absorption.
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Figure 5-5: (a) Biaxial flexural strength and (b) biaxial flexural modulus of commercial and

experimental composites with 0 to 40 wt. % CaP. (Error bars are 95%CI with n=6)
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Figure 5-6: Example of data fitting for strength (St at time and Sf final strength) of experimental

composite formulations containing 0, 10, 20 and 40 wt. % CaP.

An example of data fitting is given in Figure 5-6. It was found that all changes in strength and

modulus with time could fit well to the following equations


ି࢚ࡿ) (ࢌࡿ

(ࢌࡿିࡿ)
= −.ቀ

࢚

࢘ࢎ
ቁ
.

(R2=0.99) (5-3)


ି࢚ࡱ) (ࢌࡱ

(ࢌࡱିࡱ)
= −.ቀ

࢚

࢘ࢎ
ቁ
.

(R2=0.98) (5-4)

Subscripts t, 0 and f indicate strength or modulus at time t, initially (t→0 and sample is dry) 

and finally (t→∞) when the composite has reached equilibrium water sorption.  Equations 3 

and 4 indicate that when (St-Sf) / (S0-Sf) equals 0.5; t is the time of half maximum reduction

in strength or modulus. From equations 5-3 and 5-4 this is calculated to be 48 hours for both

strength and modulus.

Linear regression gave the initial and final strengths of the experimental composites versus

CaP level and it shown in Table 5-7
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Table 5-7. From the table the change in strength can be predicted using

ࡿ) − (ࢌࡿ = [+ .ૠૠ
ࢉ

%.࢚࢝
] (5-5)

Where cp is the CaP. From Table 5-7 it can be seen that the maximum reduction in dry

strength with increasing CaP level from 0 to 40% was 18%. Without calcium phosphate the

maximum reduction in strength with time in water was only 7 % (11/169 MPa). Equation 5-5

shows, however, that increasing CaP level to 10, 20 or 40 % causes reduction in strength

upon maximum water sorption to rise to 14% (22/160), 24 % (38/154) and 38 % (53/138)

respectively.

Initial and calculated final modulus for experimental composite formulations with 0, 10, 20

and 40 wt. % CaP are shown in Table 5-7. From the table, change in modulus can be

predicted using

൫ࡱ (ࢇࡼࡳ)൯ࢌࡱ�− = .ૠ+ .�
ࢉ

%.࢚࢝
(5-6)

From the table it can be seen that the addition of calcium phosphate caused a greater

maximum reduction in modulus (29%) than strength (8%). Without calcium phosphate, the

maximum reduction in modulus with time was 33% (2/5.9). Equation 6 shows, however, that

increasing CaP level to 10, 20 or 40% caused reduction in modulus to rise to 29 % (1.5/5.2),

40 % (1.9/4.8) and 58% (2.2/3.8) respectively.
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Table 5-7: Initial and final strength and modulus for experimental composite formulations

containing 0, 10, 20 and 40 wt. % CaP dry and stored in water up to 28 days. Initial strength

and modulus gradients were calculated using dry strength data, whereas the final strength and

modulus were obtained at 1, 7 and 28 days. (Error bars represent 59CI, n=6).

CaP
(wt. %)

Initial strength (S0)
(MPa)

Final strength (Sf)
(MPa)

Initial modulus (E0)
(GPa)

Final modulus (Ef)
(GPa)

0 169 158 5.9 3.9

10 160 138 5.2 3.7

20 154 116 4.8 2.9

40 138 85 3.8 1.6

Gradient -0.76 ± 0.1 -1.82 ± 0.2 -0.05 ± 0.01 -0.06 ± 0.01

Intercept 169 ± 1.6 156 ± 5.4 5.8 ± 0.1 4.1 ± 0.3

R
2

1 0.99 0.99 0.98

5.7.Discussion

The above results have provided equations that demonstrate how conversion, depth of

cure, shrinkage, water sorption, strength and modulus of UDMA based, antibacterial-

containing composites vary with reactive calcium phosphate content, sample depth and time.
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5.7.1. Monomer conversion

5.7.1.1. Depth of cure, FTIR method

The above study showed that on the top surface of the experimental composites

conversion was much higher (78 %) than observed with commercial bulk filling Z250 (55%),

Gradia (43%), and flowable VF (62%) and FLD (64%). Higher conversion is generally

associated with monomers of lower glass transition temperature, Tg. The Tg for BisGMA,

UDMA and TEGDMA are -8, -35 and -83 0C respectively [59, 178]. Homopolymers without

filler of BISGMA, UDMA and TEGDMA at 22 ºC were found to have maximum conversions

of 35, 72 and 83 % [179]. The top surface conversions observed in the above new study are

therefore as might be expected.

The reduction in conversion versus depth observed for Z250 observed above is in good

agreement with that obtained previously using Raman [212]. In the same study it was

shown that high levels of monomer could only be extracted from Z250 below a critical

conversion of 50%. This critical concentration is most probably because small monomer

molecules can diffuse and polymerise much faster than methacrylates bound into the

polymer chains [212]. Therefore, with dimethacrylates there will be few monomers

remaining unattached to polymer chains once 50% methacrylate conversion is reached.

The above study showed less than 50% conversion was observed for Z250 at all depths

below 1 mm. With the experimental composite with no CaP the conversion was well above

50% even at 4 mm depth. Eluted monomers are cytotoxic for pulp and gingival cells.

Leaching of uncured monomer has also been implicated in cell alteration and the

development of cariogenic bacteria at the interface between the filling and the walls of the

cavity [21, 213].

The level of conversion decreases with depth due to reduction in activating light intensity.

The Beer Lambert law is given by



Anas Aljabo PhD Thesis

204

ூ

ூబ
= 10ିఌ[ொ] (5-7)

(I0, intensity of incident light; I, intensity of transmitted light; ε, molar extinction coefficient of

CQ (46 cm−1/(mol/L)) [214], [CQ] concentration of CQ in the experimental composites (0.024

mol L-1); h, sample depth (mm))

The intensity of transmitted light would therefore be predicted to be 0.36 times the surface

incident light at 4 mm depth. Photo bleaching of the CQ may enable slightly greater light

transmission than predicted. Reduction in light transmission can also, however, be caused

by light scattering [181] due to mismatch in refractive indices of the liquid and any

suspended particles. The monomer refractive indices are 1.46, 1.48 and 1.55 for TEGDMA,

UDMA, and BISGMA respectively [46]. Those of the powder components are 1.48, 1.52,

1.63 and 1.66 for glass, MCPM, TCP and CHX. In the experimental composites, the glass

and monomers are well matched but addition of increasing levels of TCP is expected to

enhance scattering. This explains the reduction in conversion observed with increasing CaP

in the above study.

As 50% conversion was observed at much greater depths for the experimental materials (2.9

to 5 mm) than with Z250, the former may be placed in much thicker layers without high risk

of monomer leaching. Placement in thicker layers would simplify the restoration process in

clinical practise. Typically restorations can be up to 4 mm in depth.

5.7.1.2. Depth of cure, ISO method

The ISO depth of cure obtained for Z250 was comparable with that previously observed

[212]. From equation (2), the calculated monomer conversion for Z250 at the ISO depth of

cure (2.5 mm) is only 43%. This suggests that the ISO test may be over estimating the

thickness of Z250 layers that can be placed safely from a biocompatibility point of view.

Conversely, using equation (2) with the experimental materials, the conversion at the ISO
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depth of cure increased linearly from 65 to 69% upon raising the CaP percentage. This

suggests that the ISO test may underestimate the thickness of experimental materials that

can be placed at one time. This highlights the need for using both conversion and ISO

studies to assess depth of cure of dental composites.

The ISO test, unlike the FTIR study showed a significant effect of increasing the time of light

exposure from 20-40 s. This could be a consequence of extra light exposure only having a

significant effect before the materials become hard.

5.7.2. Polymerisation shrinkage

The measured polymerisation shrinkage of the experimental composites (~3%) was

well within the range observed for current materials. It was also in good agreement with

theory. This gives shrinkage as proportional to conversion, monomer volume fraction,

number of methacrylate groups per monomer and inverse average monomer molecular

weight. Shrinkage is directly related to conversion and conversion is affected by depth of

composite. For thick layer placement of composite, this might provide a mechanism to

reduce shrinkage in lower sections as a result of lower conversion, whilst maintaining higher

conversion/crosslinking of the surface which is required to enhance mechanical properties.

Polymerisation shrinkage for experimental formulations is higher than that for commercial

bulk filling composites; Z250 (2.4%) and Gradia (2.7%). This could be due to the higher

conversion of the experimental formulations. Flowable composites VF (3.9%) and FLD

(3.7%) exhibited higher polymerisation shrinkage, which could be attributed to their lower

filler loading.

5.7.3. Water sorption and mass/ volume change

If water expands the composite then it might be assumed that the volume is that of the

original sample plus the volume of water. It can then be shown that the percentage volume
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change should be comparable with the percentage mass change multiplied by the sample

density. Alternatively, if the water occupies pores, then mass will increase but volume

remain unchanged. With the new composites the ratio of volume divided by mass was equal

to density. This suggests most of the change is a result of expansion and there may be

fewer pores to fill. From Figure 5-4, a formulation with between 10 wt. % and 20 wt. % CaP

can be expected to have volume expansion of ~3% upon water sorption, to balance the 3%

polymerisation shrinkage shown in Table 5-5.

The above studies showed the maximum water sorption was proportional to the CaP

percentage. The presence of hydrophilic mono-calcium phosphate attracts water into the

composite. Previous work has shown this water enables MCPM reaction with TCP to form

brushite [67].

The chemical equation for brushite formation is:

Ca(H2PO4)2•H2O + β-Ca3(PO4)2 + 7H2O → 4CaHPO4•2H2O (5-8)

This demonstrates that 1 g of MCPM requires 0.5 g of H2O to fully react. For the

experimental composites this would correspond with 1 wt. % CaP requiring 0.20 wt. %

increase in mass due to water sorption. From Table 5-6, it can be predicted that 85%

(0.17/0.2) of the water required for full MCPM conversion to brushite is absorbed irrespective

of CaP level. The unreacted MCPM may be released to enhance remineralisation.

According to Fick’s law of diffusion

ࡹࢤ ࢚

ࡹࢤ ಮ→࢚
= �ට

࢚�ࡰ�

ࢎ�࣊
[55] (5-9)
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(D, diffusion coefficient of water into the composite (cm2 s-1); t, time (s); h, sample thickness

(cm)) Combining this with equation (5-1) gives

2ට
�

గ�మ
= 0.065 / hr (5-10)

Since the sample thickness h was 0.1 cm this gives D= 9.2 x 10-9 cm2 s-1 which is in the

range expected from previous values for composite water sorption [81]. From equation (5-1)

this diffusion coefficient is independent of CaP content. This suggests the composition of

the matrix polymer phase is crucial in determining the water sorption rate.

The experimental composite formulations that contain any amount of CaP showed higher

mass and volume increase than all commercial composites (bulk filling and flowable)

described in this thesis. This could be attributed to the presence of CaP in the formulations.

5.7.4. Mechanical properties

Commercial composites have been shown to have flexural strength between 100 to 180

MPa with Z250 being the highest [140]. A recent study showed that unfilled UDMA /

TEGDMA polymers have higher strength than BISGMA / TEGDMA polymers [215]. The

filled experimental composite without CaP in the above study, however, had slightly lower

initial strength than Z250. This could be partially attributed to differing inorganic fillers and

quality of interface bonding between the fillers and resin [216]. Fillers in Z250 are a mixture

of finer zirconium and silicon oxide instead of barium aluminosilicate in the new composites

[140]. Upon varying UDMA/TEGDMA ratio maximum unfilled polymer strength has been

observed at a 50/50 ratio. Too much TEGDMA, however, would give very high shrinkage

[215]. In the above study, therefore, it was fixed at 75/25 UDMA / TEGDMA.

The similarity of times of half maximum change in volume, strength and modulus suggest all

are caused by increasing water sorption. Exponential decline in the strength and modulus
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versus square root of time may be a consequence of increasing micro porosity upon water

sorption [217]. The decline in biaxial flexural strength of Z250 observed in the above study

was comparable with previous studies [218]. The lower percentage reduction of the

experimental composite without CaP could be a consequence of the greater conversion and

crosslinking.

The linear decline in dry strength upon increasing CaP (up to maximum of 18% reduction) is

possibly due to a lack of coupling agent between the CaP fillers and polymer matrix phase.

With increasing CaP from 0 to 40 wt. % CaP, the percentage reduction in strength upon

immersion increased linearly from 8 to 38%. This may be in part due to increased water

sorption. Furthermore, there may be increasing porosity due to the required release of some

unreacted MCPM to promote mineralisation.

The modulus of Z250 was initially 45% of the new composite with no CaP. This may be a

consequence of the much higher crosslinking in the experimental material. In Z250, lack of

crosslinking will allow entangled polymer chains to be pulled apart. In the experimental

materials the high level of crosslinking will prevent this. The high reduction in modulus of the

experimental composite with no CaP (30%) compared with Z250 (22%) upon placement in

water may be a consequence of the polymer chains being more plasticised. The further

reduction in modulus upon adding CaP and subsequent water immersion could be due to

lack of reactive filler matrix bonding and increasing porosity respectively.

5.8. Conclusion

This study has produced dental composites containing antibacterial chlorhexidine and

re-mineralising calcium phosphates with superior cure, expansion to compensate shrinkage

and with < than 20% CaP comparable mechanical properties to commercial materials.

These features would enable easier placement of deeper tooth restorations and reduction in

recurrent caries without enhancement of failure due to fracture.
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Monomer conversions varied linearly with depth and calcium phosphate content. The

decrease in depth of cure with increasing CaP was attributed to poor refractive index match

of TCP with the matrix phase. Calculated conversions at the “ISO cure depth” were largely

independent of time of cure and level of calcium phosphate. Values were significantly below

and above 50 % for Z250 and experimental materials respectively. This suggested that

conversion studies should be undertaken in addition to the ISO depth of cure method to

assess depths at which materials may have no unbound monomer.

Polymerisation shrinkage of the experimental materials was slightly higher than that of Z250

but at 10-20% CaP could be compensated by water sorption induced expansion. Early water

sorption increased linearly, whilst strength and modulus decreased exponentially to final

values when plotted versus square root of time. Half final volume, strength and modulus

change were all at 2 days. The new composite with no CaP had less reduction in strength

but greater decrease in modulus upon water immersion than Z250. CaP addition caused a

linear decrease in both dry strength and modulus. This reduction was further enhanced upon

water immersion. This limits the amount of CaP that may be added.
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6. QUANTIFYING HYDROXYAPATITE PRECIPITATION OF NOVEL RE-MINERALISING DENTAL

AND ANTIBACTERIAL DENTAL COMPOSITES

6.1.Abstract

The study aim was to develop high strength dental composites that would release

calcium phosphate and chlorhexidine (CHX) but additionally promote their co-precipitation as

hydroxyapatite / CHX surface layers in simulated body fluid (SBF). A urethane

dimethacrylate based liquid was mixed with 80 wt. % glass fillers containing 10 wt. % CHX

and 0, 10, 20 or 40 wt. % reactive mono and tricalcium phosphate (CaP). Precipitation of

hydroxyapatite on the surfaces of light cured discs after storage in water versus simulated

body fluid (SBF) was assessed weekly up to 4 weeks using SEM with EDX, Raman and

XRD. Mass of precipitate that could be scraped from the surfaces was determined

gravimetrically after 12 weeks. CHX release into solution or associated with the

hydroxyapatite layer over 12 weeks was determined using UV spectrometry. Biaxial flexural

strength and modulus were determined after 1 month immersion in SBF. Hydroxyapatite

layer thickness / coverage from SEM images, Ca/Si ratio from EDX and normalised

hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.

% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD

peak width and SEM images suggested this was due to the very small size (~10 nm) of the

hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt. % of the sample CaP

total mass irrespective of CaP wt. % and up to 7 wt. % of the specimen. Early CHX release

was proportional to the square root of time as expected for a diffusion controlled process. It

was also proportional to CaP level and twice as fast in water compared with SBF. After 1

week, CHX continued to be released into water reached up to 23 % in 12 weeks. In SBF,

however, any released CHX became entrapped within the precipitating hydroxyapatite layer.

At 12 weeks HA entrapped CHX was proportional to the CaP filler wt. % and up to 14% of

the total in the sample. CHX formed 5 to 15% of the HA layer with 10 to 40 wt. % CaP
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respectively. Despite linear decline in strength and modulus from 160 to 101 MPa and 4 to

2.4 GPa respectively upon raising CaP content, values were all still within the range

expected for commercial composites. Dental composites can fail due to fracture if they are

weak. Modern composites more generally fail, however, due to micron dimension gaps

forming at the composite / demineralised dentine interface. These enable bacterial

microleakage and recurrent disease / dentine demineralisation underneath the tooth

restoration. As SBF is similar to dentinal fluid the above materials should help prevent

continuing disease by promoting dentine remineralisation. Formulations with low to

intermediate CaP wt. % may additionally fill any gaps with a highly antibacterial layer without

enhancing fracture risk.
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6.2. Introduction

Although significant improvements in the mechanical properties of resin composites

have been achieved, their lifespan is short due to microleakage and recurrent carries as was

discussed in chapter 1 (Introduction). This chapter is concerned with introducing potential

remineralisation and antibacterial properties of experimental composite formulations that

promote HA and CHX co-precipitation in SBF. These properties could promote

remineralisation process to the demineralised dentin and destroy any bacteria at the

interface. In this chapter, a number of quantitative techniques have been discussed to

monitor the HA precipitation kinetics. It was also described in the first chapter that the HA

precipitation kinetics in the literature are generally qualitative. There have been few studies

proposing semi-quantitative methods for monitoring HA precipitation kinetics (such as

determination of mass increase due to HA precipitation), but this method is not suitable for

composites.

In this chapter, SEM, EDX, Raman, FTIR and XRD have all been employed to monitor the

HA precipitation. In addition, the shortcomings of the ISO recommended technique (XRD) for

testing HA formation are pointed out.

6.3.Aims and Objectives

The aim of this study was to develop methods that provide a quantitative assessment of

any hydroxyapatite layer on the surfaces of systematically varying new MCPM, β-TCP and 

CHX-containing light curable composites. In addition, this study will assess if these new

materials also have high CHX release and enhanced mechanical strengths. Furthermore, it

is known that hydroxyapatite can promote the precipitation of chlorhexidine from solution

[219]. This study will therefore address, how the formation of the HA layer affects the release

of CHX and whether any of this antibacterial can be entrapped with the HA to potentially

enable a long-term antibacterial restoration / dentine interface.



Anas Aljabo PhD Thesis

213

The morphology of the precipitate will be observed using SEM. The change in the

concentration of the ions of the experimental composite surface is investigated through EDX.

Average Raman intensity at 960 cm-1 will be used to determine the density of the HA layer.

XRD will also be employed to confirm the HA formation at the surface of the experimental

composite. CHX release into water and SBF, or entrapped in the HA layer will be assessed

through UV spectrometry. The mass and volume change of the experimental formulations

stored in SBF will be determined gravimetrically. Finally, the strength and modulus is

characterised using an Instron mechanical tester for the experimental formulations stored in

SBF.

6.4.Hypothesis

It was expected that MCPM and TCP will promote remineralisation. High solubility

MCPM will be released form the materials into water or SBF. At a pH of 7 it is envisaged that

the calcium and phosphate ions will reprecipitate on the surface of the materials. Density

and thickness of the HA layer is expected to be dependent on level of CaP in the samples. It

was also speculated that HA formation may block the CHX release from the samples, or bind

to it as was observed in the literature. This was electrostatic bonding between the CHX and

the phosphate groups of hydroxyapatite.

Mass and volume change of the samples stored in SBF could be similar to that in water or

possibly more due to HA formation, or less due to reduction in osmotic pressure differences.

The calcium and phosphate ions that forms the HA are expected to come from within the

sample and the storage solution. This should cause further increase in the mass of the

samples stored in SBF than that for samples stored in water.

The mechanical properties of the experimental formulations are expected to decline upon

raising CaP levels and immersion in SBF as was observed in the previous chapter. The

effect of thin HA layer formation on strength and modulus is expected to be negligible.
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6.5. Materials and Methods

6.5.1. Composite paste preparation

The same monomer combination that was described in the previous chapters (4 and 5)

(see

Table 6-1) is utilised to form different experimental composite formulations with varied

CaP levels. The levels of CaP (MCPM plus TCP) were increased from 0, 10, 20 and 40 wt.

% (see Table 6-2). The levels of CHX and glass fibre were fixed at 10 wt. % and 20 wt. %

respectively.

Table 6-1: Monomers were used to manufacture composite formulations to perform all

experiments in this chapter.

Liquid content Percentage (%)

UDMA 68

TEGDMA 25

HEMA 5

CQ 1

DMPT 1

The morphology of the precipitate was observed using SEM. The change in the

concentration of the ions of the experimental composite surface up to 1 month was

investigated through EDX. Average Raman intensity at 960 cm-1 was used to determine the

density of the HA layer up to 1 month (n=3). XRD was employed to confirm the HA formation
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at the surface of the experimental composite after 1 month in SBF. CHX release into water

and SBF up to 12 weeks, or entrapped in the HA layer was assessed through UV

spectrometry (n=3). The mass and volume change of the experimental formulations stored in

SBF up to 6 weeks was determined gravimetrically (n=3). Finally, the strength and modulus

for the experimental formulations stored for 1 month in SBF (n=6) was characterised using

Instron.

Table 6-2: Summary of components used to manufacture composite formulations used in this

chapter.

Fillers Content (wt. %) (0 CaP) (10 CaP) (20 CaP) (40 CaP)

MCPM 0 5 10 20

TCP 0 5 10 20

CHX 10 10 10 10

Glass Fibre 20 20 20 20

Glass Powder 70 60 50 40
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6.6.Results

6.6.1. Characterisation of Hydroxyapatite formation

6.6.1.1. Scanning Electron Microscopy

SEM images for the surface of experimental composites formulations containing 0,

10, 20 and 40 wt. % CaP are given in Figure 6-1. Images of any composites stored dry or in

water showed only scratches and small pores (e.g. Figure 6-1 (a)). Any samples containing

CaP and stored in SBF for one day or more, however, were covered with HA spheres

(Figure 6-1 (b-d)). From SEM it was noticeable that the percentage of the surface covered

by HA and the average size of the HA spheres increased with raised CaP content in the

samples or time in SBF. At early times the layers were just 1 sphere thick. At later times,

however, the HA precipitate consisted of larger, aggregating and / or multiple layers of

spheres. After 4, 2 and 1 week, in SBF, samples containing 10, 20 and 40 wt. % CaP were

approximately 90% covered with HA respectively.
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Figure 6-1: SEM images for experimental composite formulations with (a) 0 CaP, (b) 10 CaP, (c)

20 CaP and (d) 40CaP immersed in SBF for 1 week

Higher magnification images for the HA layer are shown in Figure 6-2. At high magnification

the spheres had a sponge like appearance with pores of approximately 100 nm diameter.

The pore walls were approximately 10 nm thick (Figure 6-2 (a, b and c)). On close

inspection the walls appeared to consist of balls of approximately 10 nm diameter.
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Figure 6-2: SEM images for composite with (a) 2000x (b) 10000x (d) 20000x magnifications for

experimental composite with 20 wt. % CaP and stored in SBF for 1 week.

Low magnification example image of the HA layer covering the surface of the experimental

composite is given in Figure 6-3. The image shows most of the sample surface covered with

the HA layer. The thickness of the layer varies and few cracks are shown across the surface.
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Figure 6-3: Example SEM image at 35x magnification for experimental composite with 20 wt. %

CaP and stored in SBF for 1 week.

6.6.1.2. Energy Dispersive X-ray Analysis

Surface analysis with EDX for the surface of experimental composite formulations

with 10, 20 and 40 wt. % CaP is given in Figure 6-4. From EDX the ratio of Ca/P in the

precipitate was 1.67 when focussed solely upon the precipitate as expected for HA. When

examining the composite surface it could be 0, 0.5 or 1.5 dependent upon whether

glass/polymer, MCPM or TCP was being observed respectively. Full surface mapping of the

composite surfaces showed that the ratio of Ca (primarily from HA) to Si (in the composite

glass) increased linearly with storage time in SBF between 1 and 30 days (Figure 6-4). The

gradients were also proportional to the calcium phosphate content (see Table 6-3).

The error bars in Figure 6-4 provide an indication of the level of HA variation in thickness

across the sample. When the stdev. error bars at later times do not overlap significantly with

the initial error bars the surfaces are fully covered. This occurs at 1, 3 and >4 weeks with

40, 20, and10 wt. % CaP respectively.
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Figure 6-4: The average Ca: Si ratio for different formulations (10, 20 and 40 % CaP), after 1, 7,

14, 21 and 30 days in SBF. Error bars (stdev. with n=9 areas) indicate the layer homogeneity

on a single specimen.

Table 6-3: Linear regression values of Ca/Si ratio versus time from EDX with 0, 10, 20 and 40

wt. % CaP. Gradients and intercepts of the gradients versus CaP wt. % are also provided with

R
2

values. Errors represent 95%CI.

CaP (wt. %) Gradient of Ca/Si vs t (mol/mol day-1)

0 0.0± 0.01
10 0.051 ± 0.002

20
0.24 ± 0.03

40
0.41 ± 0.03

Gradient 0.010 ± 0.002

Intercept 0

R2 0.98
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6.6.1.3. Raman

6.6.1.3.1. Monitoring HA formation

Example average Raman spectra before and after immersion in SBF are illustrated in

Figure 6-5. For the dry surface, various sharp CHX peaks are observed including one at

1600 cm-1. Additionally a glass peak at 1400 cm-1 and polymer peaks at 1445, 1640 and

1718 cm-1 were evident. Phosphate peaks (P-O stretch) at 901, 912 and 1108 cm-1 due to

MCPM, and 943 and 968 cm-1 for β-TCP were also present. After 1 week immersion in SBF 

or water, the peaks attributed to MCPM disappeared.  Those due β-TCP remained after 

water immersion but were masked by the very intense HA peak at 960 cm-1 for composites

immersed in SBF.

Figure 6-5: Raman spectra for composite with 20 wt. % CaP dry, 7 days in water and 7 days in

SBF.

6.6.1.3.2. Monitoring HA growth

Normalised average Raman spectra of example composite sample containing 20 wt.

% CaP is given in Figure 6-6 (a). Average intensity at 960 cm-1 wavenumber of random

areas on samples containing 10, 20 and 40 wt. % CaP are shown in Figure 6-6 (b). The

Raman spectra indicated that the intensity of the HA peaks increased linearly with both CaP
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content and time of immersion in SBF (Figure 6-6 (a) and (b)). The gradients of HA

normalised intensity versus time was also proportional to CaP content (see linear regression

parameters in

Table 6-4). High R2 confirms the effect of CaP levels on the intensity of the HA peak

at 960 cm-1 is significant and can be described well by a simple linear equation.

Figure 6-6: (a) Raman spectra for composite with 20 CaP at 1, 7, 14 and 30 days of immersion

in SBF (b) Average intensity at 960 cm
-1

wavenumber for 10, 20 and 40 wt% CaP formulations

plotted against time at 1, 7, 14 and 30 days (error bars (n=5) are 95%CI obtained from 5 spectra

on a single specimen).
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Table 6-4: Linear regression values of normalised 980 cm
-1

versus time from Raman with 0, 10,

20 and 40 wt. % CaP. Gradients and intercepts of the data versus CaP wt. % are also provided

with R
2

values. Errors represent 95%CI.

CaP (wt. %) Raman 980 day-1

0 0.0± 0.01
10 15 ± 2.9

20
36 ± 9.1

40
66 ± 9.4

Gradient 1.7 ± 0.1

Intercept 0

R2 0.99

6.6.1.4. X-Ray diffraction

XRD pattern of the 0 CaP sample and all other formulations immersed in water for

less than 1 month showed no HA peaks. At 1 month formulations with 10, 20 and 40 CaP

stored in SBF, however, showed low-crystallinity peaks appearing at about 26º and 32º 2Ɵ 

(Figure 6-7). These were assigned apatite on the basis of JCPDS Card 09-0432. The size of

the crystals was estimated from the Scherrer equation to be ~10 nm.
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Figure 6-7: XRD patterns for the (a) 10, (b) 20 and (c) 40 CaP- containing composite surfaces

after storage in SBF or water for 1 month. Stars (*) indicate HA peaks.

6.6.1.5. HA layer mass

The mass and percentage of the total HA precipitated on samples of the experimental

composites with 0, 10, 20 and 40 wt. % is summarised in Table 6-5. The average mass of

the discs was 200 mg. The total mass of HA scraped from the disc surfaces at 12 weeks

was between 3 and 15 mg. Table 6-5 provides also the percentage of the sample mass that

is HA, in addition to results from linear regression analysis. These data show that the level of
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HA at this time was proportional to the calcium phosphate concentration in the samples.

This was confirmed with high R2 shown in the same table.

Table 6-5: Mass of surface hydroxyapatite at 12 weeks and CHX entrapment in the HA layer at

12 weeks for formulations with 0, 10, 20 and 40 wt. % CaP. Gradients and intercepts of the data

versus CaP wt. % are also provided with R
2

values. Errors represent 95%CI.

CaP (wt. %) Mass of scraped HA (mg) HA at 12 weeks
(% of specimen)

0 0.0± 0.01 0.0± 0.01
10 3.3 ± 0.46 1.7 ± 0.3

20
5.9 ± 0.20 3.0 ± 0.1

40
14.2 ± 2.87 7.1 ± 1.7

Gradient 12.5 ± 3.18 0.17 ± 0.02

Intercept 0 0

R2 0.97 0.99

6.6.2. Mass and volume change in SBF

Mass and volume change over 6 weeks for experimental composite formulations

containing 0, 10, 20 and 40 wt. % CaP stored in SBF are shown versus the square root

(sqrt) of time (h) in Figure 6-8. These plots were linear up to 48 hours (Sqrt (t/h) = 7) with 0

and 10 % CaP, but up to 1 week (Sqrt (t/h) = 13) with 20 and 40 % CaP (R2> 0.98). This

dependence upon time was expected for diffusion controlled water sorption.
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Figure 6-8: Mass change (a) and volume change (b) versus square root of time (Sqrt.) for

experimental composite formulations with 0, 10, 20 and 40 wt. % CaP stored in SBF for up to 6

weeks. Error bars represent 95%CI, n=3.

For the experimental materials, linear regression gave the early percentage change in mass

and volume as shown in Table 6-6. Early volume change was therefore 1.8 times

(0.023/0.013) higher than mass change regardless of CaP content. This was comparable

with initial dry composite densities.
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The maximum mass and volume changes between 10 and 40 wt. % CaP increased linearly

from 0.7 to 8 wt. % and 1 to 15 vol. % respectively. Linear regression gave the maximum

percentage change in mass and volume 0.19 wt. %/ h0.5 and 0.34 vol. % / h0.5, see

Table 5-6.

Table 6-6: Initial gradient of mass and volume versus square root of time and maximum values

for experimental composite formulations containing 0, 10, 20 and 40 wt. % CaP stored in SBF

for up to 6 weeks. Initial mass and volume gradients were calculated using data up to 1 week

in SBF, whereas the maximum mass and volume were obtained at 6 weeks. Error bars

represent 59CI, n=3. The gradients, intercepts and R
2

values from linear regression of

property versus the CaP content determined using Linest are provided at the bottom of

columns

CaP (wt. %) Initial gradient of mass vs
Sqrt t (wt. % / h

0.5
)

Max. mass
(wt. %)

Initial gradient of volume vs
Sqrt t (vol. % / h

0.5
)

Max. volume
(Vol. %)

0 0.08 ± 0.02 0.55 ± 0.07 0.12 ± 0.02 0.77 ± 0.08
10 0.12 ± 0.01 0.63 ± 0.08 0.18 ± 0.02 0.98 ± 0.13

20
0.32 ± 0.05 3.21 ± 0.37 0.51 ± 0.08 5.97 ± 0.75

40
0.52 ± 0.05 8.30 ± 0.42 0.94 ± 0.07 14.60 ± 1.25

Gradient of
column vs CaP
(column unit/wt.

% CaP)

0.013 ± 0.002 0.19 ± 0.04 0.023 ± 0.004 0.34 ± 0.07

Intercept 0 0 0 0

R
2

0.97 0.97 0.98 0.97

From Table 6-6 it can be seen that the maximum volume change was 1.8 (0.34/0.19) times

higher than the maximum mass. The ratio of the early mass or volume change at time t
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divided by values at late times ΔMt / ௧→ஶܯ∆ and ΔVt / ∆ ௧ܸ→ஶ are given by the following

equations:

ࡹ∆ ࢚

ࡹ∆ ಮ→࢚
=

.

.ૢ
ቀ
࢚

࢘ࢎ
ቁ
.

(6-1)

࢚ࢂ∆

ಮ→࢚ࢂ∆
=

.

.
ቀ
࢚

࢘ࢎ
ቁ
.

(6-2)

When these ratios equal to 0.5, t is the time for half maximum change. These “half times”

were calculated from equations (6-1) and (6-2) to be 53 and 55 hours for mass and volume

respectively.

6.6.3. CHX release in water vs SBF

CHX release in water and SBF up to 12 weeks for experimental composite formulations

with 10, 20 and 40 wt. % CaP are shown in Figure 6-9.The level of CHX release in water

was proportional to the square root of time as expected for a diffusion controlled process

(Figure 6-9 (a)). In SBF, the CHX release was linear versus the square root of time only up

to 1 week and began to plateau after this time (Figure 6-9 (b)). The early and final gradients

for 0, 10, 20 and 40 wt. % formulations are provided in Table 6-7. Linear regression shows

these gradients are proportional to the calcium phosphate contents but in addition doubled in

water compared to that in SBF.
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Figure 6-9: CHX release in water (a) and SBF (b) from 10, 20 and 40 wt. % CaP formulations up

to 12 weeks. Error bars represent 95%CI, n=3.

The CHX trapped in the HA layer after 12 weeks in SBF was also proportional to the calcium

phosphate content in the samples, see Table 6-7. From this data the concentration of CHX

in these layers was calculated to be 5, 12 and 15 wt. % with 10, 20 and 40 wt. % CaP

respectively. CHX in HA plus that released in SBF (3.1, 8.5, 18 wt. % with 10, 20 and 40 wt.

% CaP respectively) was found to be slightly lower than the CHX released in water (4.2, 11,

23 wt. %).
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Table 6-7: Initial and maximum CHX release after 12 weeks of immersion in water or SBF

shown versus square root of time (Sqrt.). Initial CHX release in water gradient was calculated

using data up to 12 weeks as the release continued approximately at a constant rate. Initial

CHX release in SBF gradient was calculated using data up to 2 weeks, whereas the maximum

release was obtained at 12 weeks. CHX in HA layer as a percentage of the total CHX in the

sample. Error bars represent 59%CI, n=3.

CaP (wt. %) Initial gradient
of CHX vs

Sqrt. t (%/h
0.5

)
Water

Max. CHX vs
Sqrt. t (%/h

0.5
)

Water

Initial gradient of
CHX vs Sqrt. t
(%/h

0.5
) SBF

Max. CHX vs Sqrt.
t (%/h

0.5
) SBF

CHX in HA layer
(% of total CHX)

0 0.00 ± 0.01 -- 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01
10 0.10 ± 0.01 -- 0.10 ± 0.02 2.27 ± 0.33 1.0 ± 0.1

20
0.28 ± 0.02 -- 0.18 ± 0.01 3.52 ± 0.09 4.9 ± 0.7

40
0.61 ± 0.04 -- 0.27 ± 0.4 4.57 ± 0.27 13.6 ± 1.3

Gradient 0.015 ±
0.001

-- 0.007 ± 0.001 0.13 ± 0.05 0.42 ± 0.03

Intercept 0 -- 0 0 0

R
2

0.99 -- 0.98 0.94 0.99

6.6.4. Flexural strength and modulus of experimental composite stored in SBF

Biaxial strength and modulus for formulations with 0, 10, 20 and 40 wt. % CaP stored

in SBF for 1 month are given in Table 6-8. Biaxial flexural strength and modulus both

decreased with raising CaP level after storing for 1 month in SBF. Formulation with no CaP

showed the highest flexural strength and modulus, 160 MPa and 4 GPa respectively. Upon

CaP addition, strength and modulus were reduced to 145 MPa and 3.6 GPa respectively for

10 CaP% formulation. Strength and modulus both continued to decrease, reaching 101 MPa

and 2.4 GPa respectively for 40 %CaP formulation.
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Table 6-8: Flexural strength and modulus results for formulations with 0, 10, 20 and 40 wt. %

CaP after 4 weeks storage in SBF. Gradients and intercepts of the data versus CaP wt. % are

also provided with R
2

values. Error bars represent 95%CI, (N=6).

CaP (wt. %) Flexural strength (MPa) Flexural Modulus (GPa)

0 160± 8 4 ± 0.2
10 145 ± 5 3.6 ± 0.1

20
129.3 ± 4 3.2 ± 0.2

40
101.2 ± 8 2.4 ± 0.3

Gradient -1.47 ± 0.03 -0.04 ± 0.001

Intercept 160 ± 2 4 ± 0.01

R2 0.99 1.00

6.7.Discussion

The above study has developed new quantitative methods of providing a detailed

description of the morphology and density / thickness of HA precipitate on the surface of light

cured composites, as a function of time in SBF. HA precipitations were shown to slow CHX

release and trap this antibacterial within the hydroxyapatite layer. Even with high levels of

reactive calcium phosphate these materials were shown to still have high flexural strength

after 4 weeks immersion in SBF.

6.7.1. Characterisation of Hydroxyapatite formation

Utilizing SBF as a storage medium for both dental [96, 220, 221] and other medical

devices is popular mainly due to the intensive investigation and development carried out to

optimise SBF composition in the past decade [222] leading to the introduction of BS ISO

23317:2007 standard. Unlike the above new work this standard method and many previous



Anas Aljabo PhD Thesis

232

studies, however, have limited their analysis to qualitative rather than quantitative

assessment of precipitation kinetics [107, 109, 110].

6.7.1.1. Formation of Hydroxyapatite

The morphology of HA crystals shown by SEM images, Figure 6-1, was comparable to

that observed in previous studies using the standard method [154, 222, 223]. Other studies

have shown that with reactive filler composites [67] monocalcium phosphate dissolves from

the surface of the material in the first 24 hours after placement in water. Subsequently,

release of calcium and phosphate is much lower but the ratio of Ca/P higher [67]. This

suggests that the early release is required to supersaturate the SBF and initiate the

precipitation process. Other preliminary investigations showed composites with TCP or

MCPM formed either no precipitate or brushite respectively on their surface in SBF

(unpublished results). As pH decreases, the solubility of hydroxyapatite increases. Below

pH ~ 4 brushite becomes less soluble than HA and therefore precipitates instead [224]. A

possible explanation of why hydroxyapatite forms instead of Brushite when MCPM, TCP and

CHX are present in the composites is therefore that the TCP and CHX may help to buffer the

solutions in addition to providing the extra calcium required.

6.7.1.2. Growth of Hydroxyapatite layer

Using EDX it was possible to confirm that the precipitate had the correct Ca/P ratio for

hydroxyapatite. By mapping relatively large areas (3x3 mm2), it was additionally possible to

gain values for Ca/Si that provided a quantitative assessment of the level of precipitation.

This ratio was low at early times because the layer was patchy and areas of uncovered

composite were being observed. Once the composite was covered, silicon would still be

detectable if the layer was thin and low density. As the thickness and density of the layer

then increased detectable silicon would further decline. The increase in Ca/ Si ratio with time
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and CaP content was therefore consistent with SEM images indicating increasing coverage,

thickness and density of hydroxyapatite.

The dissolution of surface MCPM but not TCP upon composite placement in water observed

above by Raman, is consistent of much greater solubility of the former [224] and with

previous ion release studies from reactive filler composite [67]. The observation of a strong

hydroxyapatite peak and its linear increase with time relative to composite surface peaks

and CaP level are entirely consistent with the EDX data. As with EDX, the method of

Raman analysis employed is expected to give a parameter that is sensitive to increasing

coverage, thickness and density of hydroxyapatite. It is not surprising therefore that there is

direct correlation between the Raman and EDX results.

The BS ISO 23317:2007 standard suggests samples should be stored for 4 weeks before

analysis by XRD. Both EDX and Raman enabled detailed quantification of HA precipitation

from day 1 in SBF up to 1 month. XRD was less sensitive to this process and unable to

detect HA before 1 month presumably because the crystallite size was very small causing

any peaks to be too broad to detect. Comparison of the EDX and XRD studies suggests the

latter cannot detect the HA until the Ca/Si ratio exceeds 3.  The XRD peaks at 26 and 32 2Ɵ 

were as expected for precipitated HA crystals with no heat treatment [225]. The width of the

peak was consistent with a crystal size of comparable dimension to the smallest crystal balls

observed by detailed examination of the high magnification SEM images.

As the samples above weigh 200 mg they will contain ~11 moles of calcium and

phosphorus per weight percent of CaP in the filler phase. For the 10 and 40 wt% CaP

samples there is therefore ~ 110 and 450 moles of both calcium and phosphorus

respectively. Formulations with 10 or more wt. % CaP will therefore contain much higher

levels of these elements than in the 10 ml of SBF (10 and 25 moles of phosphorus and

calcium respectively). Most of the ions forming the hydroxyapatite is therefore likely to be
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from the material rather than the SBF. 1 mg of hydroxyapatite contains 6 and 10 moles of

phosphorus and calcium. Upon raising the CaP content from 10 to 40 wt% the maximum

mass of hydroxyapatite that might then be expected would therefore be from 11 to 45 mg.

The mass percentages of HA observed on the material surfaces in Table 1 suggests that in

12 weeks approximately one quarter of the maximum level of calcium phosphate was

released. From the SEM images the highly porous HA precipitate would be expected to

have a density ~ ¼ of that of the disc. The percentages of HA in Table 1 would then

correspond with layers of ~30, 60 and 140 µm thickness at 12 weeks in agreement with SEM

images.

6.7.2. CHX release in Water vs SBF

CHX particles have been incorporated into dental restorative materials in previous

studies for their antibacterial properties [81, 226, 227]. Recent studies showed that even

small CHX release (2%) significantly reduced acidogenic bacterial counts (such as

Streptococcus Mutans), biofilm viability, biofilm formation, biofilm metabolic activity and lactic

acid production [228, 229]. Previous work showed restorations that release CHX can

potentially kill bacteria in surrounding media in the first 4 weeks. After that the CHX release

was exhausted and biofilms were then formed [228]. In this study, however, most of the CHX

release was restricted where it was needed; at the composite surface within the precipitating

HA layer.

Early release of CHX from the experimental formulations in water was proportional to the

square root of time, as expected for a diffusion controlled process, Figure 6-9 (a). Increasing

the CaP content substantially enhanced the release of CHX, which is in good agreement

with a previous study [67]. This was attributed to increased water sorption induced by the

CaP in the samples. This absorbed water dissolves the solid CHX enabling its release to the

surrounding environment. In SBF, CHX released from the material was largely entrapped in
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the HA layer. Total CHX diffusion from the discs may have been lower in SBF than in water

due to the higher ions concentration in SBF than water. These reduce the osmotic pressure

difference leading to lower water sorption. A reduction in both water sorption and

chlorhexidine release into phosphate buffer compared with water was previously observed

[67].

From the mass of HA and percentage of CHX (Table 6-7) in this layer as the CHX make up 8

wt. % of the specimen, the level of CHX in the layer will increase from 4 to 14% upon raising

the CaP form 10 to 40 wt. % of the sample. This is likely to provide a highly lethal

concentration for any bacteria at the interface [68]. These formulations, therefore, potentially

could provide prolonged and localised antibacterial activity at the interface between the

restoration and the tooth structure.

6.7.3. Flexural strength and modulus

Previous work has shown with the formulations in this study the dry strength and

modulus decreases by approximately 20% and 50% respectively as the CaP content is

raised from 0 to 40 wt. %. This decline is possibly due to lack of coupling agent between

CaP fillers and polymer matrix phase. Additionally, upon storage in water greater decline in

strength and modulus is observed with higher CaP due to increased water sorption.

Furthermore, there may be increasing porosity due to the release of some unreacted MCPM

to promote mineralisation. Comparison of this earlier work with the above new studies

suggests storage in SBF causes a slightly reduced reduction in strength and modulus with

high calcium phosphate. This is presumably due to reduced water sorption resulting from

differences in osmotic pressure. Commercial composites have been shown to have initial

flexural strength between 100 to 180 MPa [140] but they can decline by more than 100%

after storing in water for 12 months [230]. In 1 month a typical decline would be ~ 10-20 %.

The strengths observed for the experimental materials are therefore at 1 month are still well
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within the range obtained with commercial composites. Whilst decrease in strength is

disadvantages, decrease in modulus will increase resilience and energy absorption.

6.8.Conclusion

The formation of remineralising HA on the surface with CHX bound to it provides

potentially a better interface with the tooth structure. Incorporating calcium phosphates in the

form of MCPM and β-TCP provide both control over the solubility of the material as well as 

promote the precipitation of HA in SBF. HA precipitation is proportional to the CaP content

as a function of time. It was shown that most of ions forming the HA were released from

within the material and reprecipitated on the surface. Quantitative methods for monitoring HA

precipitation kinetics have been introduced. Antibacterial CHX was found to be bound to the

HA precipitate at high concentration; making up to 8% of the HA layer. The strength of the

materials decreased linearly upon raising CaP levels. This, however, was well above 100

MPa, giving the materials competitive strength compared to commercial composites. In

conclusion, these materials could potentially solve the problem of microleakage and

recurrent carries as well as promote remineralisation of the demineralised dentine.
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7. EVALUATION OF SELF-ADHESIVE PROPERTIES OF EXPERIMENTAL COMPOSITE

FORMULATIONS CONTAINING ADHESIVE MONOMERS

7.1.Abstract

The study aim was to assess any self-adhesive properties of experimental composite

formulations after incorporating adhesive monomers (PMDM and 4Meta). A urethane

dimethacrylate based liquid that contains either PMDM or 4Meta adhesive monomers was

mixed with 80 wt. % glass fillers containing 10 wt. % CHX and 0, 10, 20 or 40 wt. % reactive

mono and tricalcium phosphate. The shear bond strength between these formulations and

Ivory dentine etched with phosphoric acid was assessed. Separate adhesive agent ‘iBond’

was applied to dentine and the shear strength was compared with that when experimental

composite was attached directly to the dentine without iBond use. Shear bond strength has

increased upon addition of CaP up to 20 wt. %. Formulations with 0 wt. % CaP and no

adhesive monomer exhibited the lowest shear strength of ~ 3 MPa. Upon addition of 4Meta

and still absence of CaP, the shear strength increased up to 13 MPa. Formulations with 20

wt. % CaP experienced the highest shear strength of ~ 25 MPa irrespective of the addition of

adhesive monomers. Applying adhesive agent iBond showed shear strength of ~ 30 MPa

irrespective of CaP and adhesive monomers content. To sum up, adhesive monomer 4Meta

may improve the bonding of experimental formulations containing 0 wt. % CaP. Addition of

CaP for up to 20 wt. % may also improve the bonding with the wet dentine.
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7.2. Introduction

Traditionally, more reliable composite bond has been obtained by first acid etching the

dentine [231] . This dissolves the hydroxyapatite and provides a porous hydroxyapatite

depleted surface collagen mesh and opens up aqueous fluid filled dentine tubules. Flowable

hydrophilic dentine primers and adhesives can penetrate deep into the tubules and upon

polymerization physically interlock with both collagen and tubules [232]. The adhesives can

additionally contain acidic monomers that can form ionic bonds with the dentine.

Furthermore, adhesive agents are able to chemically bond with the viscous hydrophobic

composites. In an attempt to reduce complexity of this procedure “flowable” composites,

that have the potential to bond without adhesive have been produced [233]. These flowable

composites, however, can have high shrinkage enhancing micro-gap formation (see chapter

3). Furthermore, their low strength limits the clinical situations in which they may be applied.

This study introduces adhesive monomers to viscous composite formulations that have been

previously tested in chapter 4, 5 and 6. The adhesion properties of these formulations to

Ivory dentine are investigated.

7.3.Aims and Objectives

The aim of this study is to assess the self-adhesive property of experimental dental

composites containing CaP and/ or adhesive monomers. Adhesive monomers 4Meta and

PMDM were incorporated into composite formulations contain various levels of CaP.

Adhesion properties of these formulations to Ivory dentine were assessed through shear

bond strength test.

7.4.Hypothesis

It was envisaged that incorporating adhesive monomers such PMDM or 4Meta will

equip viscous composite with self-adhesive properties. This was shown to work in flowable
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composites (see chapter 3). Viscous composites containing adhesive monomers, however,

are expected to mainly form ionic bonds with the dentine and not penetrate the dentinal

tubules. Given that formulations contain also calcium and phosphate, it is thought that wet

dentine will be remineralised and from bonds with the composites.
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7.5.Materials and Methods

In this chapter, the monomers in Table 7-1 were employed to form experimental self-

adhesive dental composites. Use of adhesive monomers PMDM and 4Meta were compared

in terms of their effects on the adhesion properties of composites to ivory dentin. Both

PMDM and 4Meta were dissolved in the monomer phase at 5 wt. % (of the monomer)

concentration. A magnetic stirrer was used to mix the monomers for 1 hour. After mixing,

monomer was stored as described previously in chapter 2 (materials and methods).

Table 7-1: Monomers combinations (basic monomer, Monomer with adhesive PMDM and

Monomer with adhesive 4Meta) were used to manufacture experimental composite

formulations using fillers from Table 7-2.

Liquid content
(wt. %)

Basic Monomer Monomer with
adhesive PMDM

Monomer with
adhesive 4Meta

UDMA 68 66 66

TEGDMA 25 22 22

HEMA 5 5 5

CQ 1 1 1

DMPT 1 1 1

PMDM 0 5 0

4Meta 0 0 5

Calcium and phosphate levels were varied in the powder phase between 0-40 wt. % while

fixing the amount of CHX and glass fibre in the formulations (See Table 7-2). iBond adhesive
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agent use or none use was also a variable to confirm the self-adhesive properties (if any) for

the experimental formulations.

Table 7-2: Filler contents of experimental composite formulations with varying CaP 0, 10, 20

and 40 wt. %. CHX and glass fibre were fixed at 10 and 20 wt. % respectively.

Fillers Content (wt. %) (0 CaP) (10 CaP) (20 CaP) (40 CaP)

MCPM 0 5 10 20

TCP 0 5 10 20

CHX 10 10 10 10

Glass Fibre 20 20 20 20

Glass Powder 70 60 50 30

Shear bond strength to hydrated Ivory dentin was determined following ISO 29022:2013,

and using an Instron Universal Testing machine (n=8). ‘Controlled hydration’ of Ivory dentine

was achieved by immersing the dentine in deionised water for 24 hours at 37 ºC, and then

leaving to partially dry in a sealed small container (high humidity) at 37 ºC for another 24

hours.
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7.6.Results

7.6.1. Adhesion of experimental composites to Ivory dentine without separate

adhesive (iBond)

Shear bond strength results for experimental composite formulations containing 0, 10, 20

and 40 wt. % CaP in the filler and either ‘Basic monomer’, monomer with PMDM or

monomer with 4Meta are given in Figure 7-1. Formulations contain 0 CaP with ‘basic

monomer’ and the monomer with PMDM showed the lowest bond strength (~3 MPa).

Formulation of 0 CaP with 4Meta monomer exhibited significantly increased bond strength

reaching ~ 13 MPa.

All formulations with 20 or 40 wt. % CaP showed the highest shear bond strength, ~ 25 MPa.

It was noticeable that the results for formulations with 40 wt. % CaP were more variable as

shown by large error bars. Formulations with 10 CaP wt. % and varying adhesive monomer

all showed similar shear strengths at ~ 14 MPa.



Anas Aljabo PhD Thesis

243

Figure 7-1: Shear bond strength for experimental composite formulations containing 0, 10, 20

and 40 wt. % CaP. All these formulations were prepared using either the ‘basic monomer’,

monomer with PMDM or the monomer with 4Meta. No separate adhesive agent (iBond) was

used. The bond strength was tested between the restorative materials and phosphoric acid

(37%) treated Ivory dentine. Error bars represent 95%CI, (n=8).

7.6.2. Adhesion of experimental composite to Ivory dentine with separate adhesive

(iBond)

Shear bond strength results for experimental composite formulations containing 0, 10,

20 and 40 wt. % CaP in the filler and either ‘Basic monomer’, monomer with PMDM or

monomer with 4Meta are given in Table 7-2. Applying a separate adhesive agent (iBond) to

the dentine surface before the experimental resin composites was shown to give bond

strength of ~ 30 MPa irrespective of the CaP level or adhesive monomer addition.
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Figure 7-2: Shear bond strength for each experimental composite formulations containing 0,

10, 20 and 40 wt. % CaP. All these formulations were prepared using either the ‘basic

monomer’, monomer with PMDM or the monomer with 4Meta. Separate adhesive agent iBond

was applied. The bond strength was tested, after applying a separate adhesive agent (iBond)

to the phosphoric acid treated Ivory dentine. Error bars represent 95%CI, (n=8).

7.7.Discussion

7.7.1. Acid etching of ivory dentine

Although the reproducibility of the shear bond test has been criticised recently, it is still

commonly used for dentin adhesion studies [169]. Acid etching of dentine surface exposes

the dentinal tubules and enables greater penetration of adhesives. This should further

enhance interlocking between the adhesive and dentine [194]. Acid etching of ivory dentine

also mimics carious dentine. Phosphoric acid penetrates the dentine surface and forms a

‘smear layer’ consisting mainly of a mixture of residual hydroxyapatite crystallites and

collagen fibrils [195]. Adhesive agents such as iBond, which contains solvents and low

viscosity hydrophilic monomers aid adhesive penetration into water filled collagen and
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tubules. This project proposes self-adhesive (no separate adhesive agent required) bulk

filling, but viscous composites. Acid etching is, therefore, particularly important to sufficiently

expose the dentinal tubules and aid adhesion.

7.7.2. Adhesion of experimental composite to Ivory dentine without separate

adhesive (iBond)

The shear bond strength of experimental formulation with basic monomer, and

containing 0 CaP showed the lowest bond strength to phosphoric acid treated ivory dentine.

This could be attributed to the lack of adhesion promoting components in this composite

formulation. Upon adding CaP, a significant increase in the shear bond strength was

experienced. This could be due to the ability of CaP in the formulations to remineralise the

wet dentine and help bind with the collagen. Formulation with 20 wt. % CaP and either

PMDM or 4Meta gave the highest shear strength value (26 MPa), which is comparable to

that for self-adhesive flowable VF and FLD (28 and 25 MPa respectively) (see chapter 3).

Although increasing viscosity reduces flow and interaction with the interface thereby

reducing bond strength, the presence of the calcium phosphate counteracts this problem by

remineralising the wet demineralised dentine providing a more stable interface. Conversely,

formulations with 40 % CaP showed high bond strength variability, because it was too

viscous.

Adhesive monomers, such as PMDM and 4Meta, have been incorporated in adhesive

systems due to their outstanding ability to chemically interact with the tooth surface [116,

234, 235]. The molecular structure of these monomers typically include a carboxylic acid

group (—COOH) (see chapter 1 introduction) or anhydride group (in 4 Meta) that hydrolyses

to 2 carboxylic acid groups. Hydrophilic HEMA was also shown to improve the bonding to

the dentine by increasing the penetration into the moist dentinal tubules [36].
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Significant increase in the shear strength was exhibited upon adding 4Meta to the

experimental formulation with 0 CaP. This was obtained probably due to the carboxylic acid

groups in the adhesive monomers (4Meta) that enable a chemical bond with calcium in

remaining hydroxyapatite. In addition, they may bond with basic amino acid groups in the

collagen. No significant increase in shear bond strength could be seen for any of the

formulations with adhesive monomers and CaP. This could be a result of an interaction

between the carboxylic acid groups from the adhesive monomers with the calcium in the

filler; which may have deactivates their function.

7.7.3. Adhesion of experimental composite to Ivory dentine with separate adhesive

(iBond)

Using a separate adhesive agent iBond significantly improved the shear bond strength

for all formulations. This was achieved due to the formation of two carboxylic acid groups

after hydrolysation of anhydride group in the 4-META within iBond in the presence of water.

These groups could potentially further demineralize the dentine to allow some micro-

mechanical interlocking, and also enables a chemical bond with calcium in remaining

hydroxyapatite. Furthermore, carboxylic groups may bond with basic amino acid groups in

the collagen. Solvent evaporates after air drying and adhesive polymerization additionally

provides chemical bonds with the monomers in the composite [196]. Furthermore, the

hydrophilicity and low viscosity of the adhesive agent allows deep penetration to the dentinal

tubules. It is, therefore, expected that experimental formulations to have high bond strength

when iBond was applied to the phosphoric acid treated dentine.

The superior shear strength achieved while using separate adhesive agent is beneficial.

This, however, complicates the process of cavity filling and significantly increases the

application time.
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7.8.Conclusion

Shear strength increased upon incorporating CaP up to 20 wt. % in the experimental

formulations particularly when no iBond was employed. Incorporating adhesive monomers

PMDM and 4Meta into the formulations have further enhanced the shear bond strength. It is

impressive that the shear bond strength for a viscous composite formulation containing 20

CaP can reach 26 MPa. This could potentially equip the composite with desirable self-

adhesive capability.

Adhesive agent (iBond) significantly increased the bond strength of all formulations to more

than 30MPa. As mentioned before, however, employing any adhesive agent will make the

cavity filling experience for clinicians both complicated and time consuming.
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8. CONCLUSIONS AND FUTURE WORK

This chapter summarises the main conclusions of each chapter of this project followed

by a description of the further work necessary to further characterise the properties of novel

re-mineralising and antibacterial and self-adhesive dental composite.

8.1.Conclusions

As mentioned in the introduction of this thesis, the ultimate goal of this project was to

develop a restorative dental composite material that is a viable alternative to the current

materials in the market. The previous chapters have dealt with selection and tuning of

components resulting in the production of composite formulations that were then

characterized in terms of curing, shrinkage, water sorption, mechanical properties, CHX

release, HA precipitation and adhesion to ivory dentine.

Inspection of the literature surrounding dental composite, in the introduction chapter,

suggested that current materials fail frequently, and lack re-mineralising and antibacterial

properties. In addition, they contain levels of residual monomers that were too high.

In chapter 3, two bulk filling and two flowable commercial dental composite materials were

investigated and characterised in terms of their chemistry, microstructure, curing, shrinkage,

mechanical properties and adhesion. All these mentioned properties were compared, which

are critical to the development of dental composite materials. The results of chapter 3

confirmed the reported problems with the materials investigated. The analysis methods

suggested that monomer conversion is highly influenced by the properties of the monomers

used to form the composite material. The viscosity, glass transition temperatures of the

monomers as well as matching refractive indices with the powder phase determine the

degree of conversion. Polymerisation shrinkage is determined by the degree of conversion

and highly affected by filler loading. The hydrophilic properties of the monomers determine

also the amount of water sorption. Pre-polymerised fillers may contribute to decrease in
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polymerisation shrinkage, but they could also cause refractive index mismatch, decrease

monomer conversion and mechanical properties. The flexural strength and modulus for

composites is dictated by the size and type of filler particles, powder to liquid ratio, monomer

conversion and water sorption. Etching the dentine with phosphoric acid before applying an

adhesive agent then the viscous composite provides high shear bond strength. The use of

adhesive agent can be eliminated by decreasing the viscosity and addition of adhesive

monomers to the composite formulation.

In chapter 4, a selection of fillers and monomers were screened to ascertain their effect on

composite properties. Paste with suitable viscosity for bulk filling applications was obtained

by increasing powder to liquid ratio to 4:1. The fracture behaviour of the material was

improved by incorporating glass fibre in the formulations. In addition, lack of major effect due

to changing these variables on the strength of the material was confirmed. High monomer

conversion (~ 70 %) was obtained while using relative flexible monomer (UDMA) as the

main monomer, and diluted with TEGDMA and HEMA. CHX slightly increased monomer

conversion, whereas MCPM and TCP had no significant effect at 1 mm thickness.

Incorporating CHX in formulations in presence of MCPM and TCP provided readily

detectable antibacterial agent release in distilled water. In addition, these forms of reactive

calcium phosphates gave rise to self-healing property; however, they decrease the strength

of the material. Adding adhesive monomer PMDM in the powder phase at 5 wt% led to its

release in the storage solution. Furthermore, the acidic PMDM interfered with the release of

basic CHX. Dissolving PMDM in the monomer phase prevented its release in the storage

solution. The experimental composite formulations discussed in chapter 4 were shown to

have higher conversion than commercial composites, competitive mechanical properties and

better fracture behaviour.

The key components (MCPM and TCP) were varied and their effect on curing, shrinkage,

water sorption and mechanical properties were investigated in the following chapter (chapter



Anas Aljabo PhD Thesis

250

5). Monomer conversions declined linearly with depth and calcium phosphate content,

which was attributed to poor refractive index match of TCP with the matrix phase. Calculated

conversions at the “ISO cure depth” were largely independent of time of cure and level of

calcium phosphate. Values were significantly below and above 50 % for Z250 and

experimental materials respectively. This suggested that conversion studies should be

undertaken in addition to the ISO depth of cure method to assess depths at which materials

may have no unbound monomer. Polymerisation shrinkage of the experimental materials

was slightly higher than that of commercial Z250 and Gradia but at 10-20% CaP could be

compensated by water sorption induced expansion. Strength and modulus were shown to

decrease exponentially to final values when plotted versus square root of time. The new

composite with no CaP had less reduction in strength upon water immersion than

commercial materials. CaP addition caused a linear decrease in both dry strength and

modulus, and was further enhanced upon water immersion, limiting the amount of CaP that

may be added. In chapter 5, dental composites containing antibacterial chlorhexidine and re-

mineralising calcium phosphates were produced with superior cure, expansion to

compensate shrinkage and with < than 20% CaP comparable mechanical properties to

commercial materials. These features would enable easier placement in deeper cavities.

The formation of remineralising HA on the surface with CHX bound to it provides potentially

better interface with the tooth structure. The formation of HA precipitates, CHX release in

water and SBF, mechanical properties in after storing in SBF for 1 month were investigated

in chapter 6. Incorporating calcium phosphates in the form of MCPM and β-TCP provide 

both control over the solubility of the material as well as promote the precipitation of HA in

SBF. HA precipitation is proportional to the CaP content as a function of time, which was

identified through quantitative methods for monitoring HA precipitation kinetics. Antibacterial

CHX was found to be bound to the HA precipitate at high concentration; making up to 13%
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of the HA layer. The strength of the composite materials stored in SBF for 1 month was

similar to that for the same materials stored in water.

Chapter 7 investigated the adhesion properties of the experimental formulations after

introducing adhesive monomers. Shear bond strength to ivory dentine increased upon

incorporating CaP up to 20 wt. % in the experimental formulations particularly when no

iBond was employed. Incorporating adhesive monomers PMDM and 4Meta into the

formulations have further enhanced the bond strength.

In summary, it is shown in this thesis that the experimental composite formulations could be

excellent alternatives to current commercial restorative materials. These materials could

potentially solve the problem of microleakage and recurrent carries as well as promote

remineralisation of the demineralised dentine.

8.2.Future work

While the materials conversion, polymerisation shrinkage, water sorption, mechanical

properties and hydroxyapatite precipitation properties were characterised, there are other

areas could be further investigated. The areas for investigation will be suggested and

preliminary work (if any) conducted will be described in the following section.

8.2.1. Dual-cure system

In order to overcome the issue with the decline in the monomer conversion with depth

especially after incorporating CaP in the formulation, it is suggested that a dual-cure system

could be developed. The composition of the monomer phase of the proposed dual-cure

system is shown in Table 8-1. This proposed system contains both CQ and Benzoyl
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Peroxide (BP) to allow both light and chemical cure. These polymerisation methods were

described in chapter 1.

The ratios of these components were suggested based on the composition of the light-cure

composites described in this thesis. This dual-cure system would allow both instant

hardening (polymerisation) upon light exposure and also prolonged chemical cure to make

sure the conversion is high even at greater depth than 2 mm. This could potentially allow

large and deep composite fillings to be placed without the need for increments, which would

simplify the process.

Table 8-1 Monomer content of light-cure and dual-cure systems. Dual-cure system is proposed

to contain both Benzoyl Peroxide (BP) and CQ.

Monomer Light-Cure Dual-cure

UDMA 68 70

TEGDMA 25 25

HEMA 5 5

DMPT 1 1

CQ 1 0.5

BP -- 0.5

8.2.2. Biocompatibility

Ideally dental composites should not be toxic to pulpal cells. The biocompatibility of the

composite formulations suggested in this study requires investigation. The possible levels of



Anas Aljabo PhD Thesis

253

leachable agents from dental composite materials have been inferred, in this project, from

degree of conversion and release data. Additionally leachable agents such as monomers

could be measured by High Performance Liquid Chromatography (HPLC) analysis of fluid in

which composite have been immersed after light cure to simulate in-vivo. This would give

some idea of the species leached during and following cure.

8.2.3. Remineralisation

The remineralisation properties of the composite formulations described in this project

should be further investigated. The materials could be attached to demineralised human

dentine, and left in SBF for 1 day, 1 week and 1 month. After each time point, the mineral

content of the dentine can be monitored through EDX to detect if the calcium and phosphate

contents have increased.

8.2.4. Anti-bacterial effect

It was shown in this project that composite materials containing calcium and phosphate

could prompt co-precipitation of HA and CHX at the interface. It will be very interesting to

identify the antibacterial properties of these materials against the oral bacteria.

8.2.5. Adhesion to human dentine

The adhesion properties of the experimental composite with human dentine should be

investigated and compared with that for Ivory dentine. Another method of adhesion testing,

such as push-out test, could also be implemented and compared with the adhesion results

from shear bond strength test. This should confirm the results achieved from shear strength

test.
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