
A NEW FRAMEWORK FOR INTERACTIVE SEGMENTATION OF POINT CLOUDS

Kun Liu∗ Jan Boehm

Dept of Civil, Environ & Geomatic Eng, University College London
{kun.liu, j.boehm}@ucl.ac.uk

KEY WORDS: Point Cloud, Segmentation, User, Visualization, Algorithms

ABSTRACT:

Point cloud segmentation is a fundamental problem in point processing. Segmenting a point cloud fully automatically is very chal-
lenging due to the property of point cloud as well as different requirements of distinct users. In this paper, an interactive segmentation
method for point clouds is proposed. Only two strokes need to be drawn intuitively to indicate the target object and the background
respectively. The draw strokes are sparse and don’t necessarily cover the whole object. Given the strokes, a weighted graph is built and
the segmentation is formulated as a minimization problem. The problem is solved efficiently by using the Max Flow Min Cut algorithm.
In the experiments, the mobile mapping data of a city area is utilized. The resulting segmentations demonstrate the efficiency of the
method that can be potentially applied for general point clouds.

1. INTRODUCTION

Due to the rapid development of surveying and reality capture
technology, such as mobile mapping vehicles, e.g., Google street
view car and consumer range cameras, e.g., Microsoft’s Kinect,
the acquisition of point clouds continues to become easier and
faster and incurs lower costs. Point cloud data is ubiquitous nowa-
days in many areas such as geomatics, civil engineering and com-
puter vision. However before point cloud can be used in any of
these application areas, the data needs to be processed in a series
of operations. Among of these operations, segmentation of point
clouds is an important one. For instance, object localization and
classification [Kim et al., 2012] need segmentation to partition
point clouds into different clusters.

Segmentation of point clouds is a fundamental problem and a
large number of approaches were proposed in last two decades.
However, it remains to be one of the most challenging problems
in point cloud processing. Most segmentation methods for point
clouds are inspired from image segmentation algorithms [Golovin-
skiy and Funkhouser, 2009,Ioannou et al., 2012]. Image segmen-
tation and point cloud segmentation, both need to compute neigh-
bors of a pixel or a point. Due to the grid structure of images, the
neighbors of a pixel can be obtained effortlessly. However, for
point clouds, a neighbor searching algorithm is necessary, e.g., k-
nearest neighbors (KNN) [Muja and Lowe, 2009]. Segmentation
aims to find boundaries between distinct parts. To determine the
boundaries, it is essential to choose a proper descriptor to char-
acterize pixels or points. Usually pixels are described by color
models such as RGB, while points are defined by coordinates.
The color is a descriptor which can easily identify differences of
pixels, whereas coordinates are not intrinsic and can vary in dif-
ferent frames. Therefore, other descriptors for points are usually
utilized, e.g., normals and curvatures. Moreover, an image is a
flat 2D grid, whereas a point cloud can exhibit complicated geom-
etry in 3D space. Due to different acquisition systems used, point
clouds might have distinct qualities possibly containing noise and
outliers. On account of these issues, segmentation of point clouds
is more difficult than segmentation of images.

Segmentation of point clouds is difficult but user interactions could
help to address this challenging problem. In this paper, we present

∗Corresponding author.

a new framework which only needs a few simple user interactions
to segment point clouds efficiently. The user interactions are in-
spired by Lazy Snapping [Li et al., 2004] for image segmentation.
As shown in Figure 6, the user interactions are simple and sparse,
and only two strokes are required to accomplish the segmentation.
The method can be employed in many other applications such as
labeling point clouds. In our proposed method, the technique of
graph cuts is used as [Li et al., 2004, Liu et al., 2009] for image
segmentation. As shown in Figure 1, graph cuts aims to find the
minimum cut partitioning the graph into disjoint parts, and hence
graph cuts is suitable for segmentation problems. First, each point
in the point cloud is connected with nearby points using nearest
neighbor algorithms to construct a graph. With user interactions,
the points selected by the drawn stroke are connected to the vir-
tual added nodes. If the weights are determined properly, the
minimum cut coincides with the boundary of the target object.
The weights are usually defined by using various descriptors of
points such as coordinate and normal. For some point clouds
with colors, the color information could be used as well. There-
fore, the proposed method is a framework which is flexible and
can be customized. In summary, this paper makes the following
two contributions:

1. Propose a framework to segment point clouds interactively

2. Develop an efficient solution for partitioning

In the experiments, the mobile mapping laser scanning data are
utilized to test efficiency and robustness of the method.

2. RELATED WORK

Segmentation is a well studied problem in image processing, and
many approaches were proposed in the last decade that also ef-
fect the related work in point cloud area. Most methods for point
cloud segmentation are inspired by methods for image segmenta-
tion.

In image segmentation, a group of approaches using interactive
tools is very attractive. Based on user interactions these methods
can output results efficiently. Among of them, Lazy Snapping [Li
et al., 2004] is a representative work. In Lazy Snapping, lines are

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 357

drawn to indicate the target object and the background. The lines
are far away from the true boundary of the object, and are not nec-
essary to cover the whole object. With these simple interactions,
a cut along the contour of the object is automatically computed
and hence the object is easily segmented out from the image. Our
method proposed in this paper is inspired by Lazy Snapping and
uses a similar user interaction. In addition, GrabCut [Rother et
al., 2004] and Paint Selection [Liu et al., 2009] are two more ef-
ficient methods for image segmentation. In GrabCut, users drag
a rectangle loosely surrounding the target object and then a seg-
mentation is computed. The Paint Selection method provides a
progressive paint tool. Users paint the target object progressively
using a brush and check the results instantly until the satisfied
segmentation is obtained. Noticeably, Lazy Snapping, GrabCut
and Paint Selection all use the technique of graph cuts which is
related to the Max-Flow Min-Cut problem in graph theory. Graph
cuts is an optimization process which computes the minimum cut
for a weighted graph. It is very suitable for solving segmentation
problems. The previous methods for image segmentation also
demonstrate its efficiency. In our proposed method, graph cuts is
opted for point cloud segmentation as well.

In point cloud segmentation, graph cuts is applied in the previ-
ous work [Golovinskiy and Funkhouser, 2009]. In the method
presented in [Golovinskiy and Funkhouser, 2009], the location of
the target object needs to be specified. Based on the given loca-
tion, a weighted graph is built and then graph cuts is applied to
compute the boundary of the object. In the method, constraints
indicating the object or the background can be added interactively
in necessary to obtain a satisfied segmentation. In [Ioannou et al.,
2012] the Difference of Normals (DoN) operator is introduced
for segmentation of point clouds. The operator is inspired by the
Difference of Gaussian (DoG) which is a filter for edge detec-
tion in image processing. Since the normal computation of point
cloud is based on the local neighborhood of points, the Differ-
ence of Normals characterizes the distinctions of normals com-
puted using different sizes of the local neighborhood. For ex-
ample, this distinctions is significant on the areas with the sharp
edge. The boundaries between different objects are assumed to be
along sharp edges in this method. By detecting the sharp edges,
a segmentation of the point cloud is computed. However, the two
discussed methods for point cloud segmentation both have lim-
itations. The former method needs to specify locations and add
constraints that are tedious and not easy to manipulate if a point
cloud is geometrically complicated. The assumption in the latter
one is so strong that prevents widely applying for general point
clouds.

3. THE INTERACTIVE SEGMENTATION METHOD

In this section, an interactive segmentation method based on graph
cuts is proposed to partition point clouds. The related theory is
reviewed first. Then the segmentation algorithm is presented in
detail.

3.1 Graph cuts

In computer vision and computer graphics, graph cuts is widely
applied in various applications such as image segmentation [Li et
al., 2004] and surface reconstruction [Lafarge and Alliez, 2013].
In these applications, the problems are formulated as energy min-
imization which can be solved by using graph cuts.

As shown in Figure 1, a graph G = (V, E) is displayed with
a set of nodes V and a set of edge E . For instance, in image
segmentation pixels are considered as the nodes and edges are

Figure 1: The colored nodes and edges constitute a graph and
each edge is associated with a weight. The green and the yellow
nodes are two special ones, named as source and sink respec-
tively. The red cut separates the graph into two disjoint subsets
and each of them contains only source or sink node. The removed
edges are dashed in the figure. The minimum cut is a cut whose
removed edges have the smallest sum of weights.

built by connecting each pixel and its neighbors. In the graph, two
special nodes are called source and sink which are colored as the
green and the yellow dots respectively in the figure. In addition, a
weightwe is associated with each edge e in E . Graph cuts aims to
compute the minimum cut C which partitions the graph into two
disjoint components as illustrated in Figure 1. Mathematically,
the minimum cut is the solution of the minimization problem

minimize
C

∑
e∈C

we. (1)

This problem coincides with the Min-Cut problem in graph the-
ory [Bondy and Murty, 1976]. In practise, the Min-Cut prob-
lem is converted to its dual equivalent problem, i.e., Max-Flow,
and solved efficiently [Boykov and Kolmogorov, 2004]. See the
book [Bondy and Murty, 1976] for further detail about the Max-
Flow Min-Cut theorem.

3.2 Algorithm

In this paper, an interactive approach is proposed to address the
segmentation problem for point cloud. The proposed user inter-
actions are similar to Lazy Snapping [Li et al., 2004] for image
segmentation. It allows users to draw sparse strokes and segment
target objects out from point clouds as illustrated in Figure 6a.
Generally, only two strokes are required to specify target the ob-
ject and the background respectively. Although the strokes are
sparse, they are sufficient for graph cuts to compute a satisfied
segmentation as show in Figure 6b.

3.2.1 Segmentation via graph cuts To use graph cuts to seg-
ment a point cloud, a graph needs to be built first. Figure 2 gives
an example illustrating a built graph of a point cloud. Given a
point cloud, each point is considered as a node in the graph. To
construct edges, more computation is necessary. This is due to
the fact that point cloud is a type of geometrical representation
lacking connectivities between points. It is distinct from images
which have grid structures. In our method, to construct edges the
k-nearest neighbors algorithm (KNN) [Muja and Lowe, 2009] is
applied to compute neighbors of all points, and edges are created
by connecting each point and its neighbors.

As stated in Section 3.1, two special nodes, i.e., source and sink,
need to be defined. In our method, two virtual nodes are intro-
duced as the source and the sink (see the blue and the orange
dots in Figure 2). More edges are built between the sink (orange)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 358

Figure 2: The orange and gray strokes are drawn by users to spec-
ify the object (a van) and the background. Given the two strokes,
a graph of the point cloud is built, the dots represent the nodes in
the graph and the dashed lines are the edges. Noticeably, the blue
and the orange dots are two added nodes as source and sink (see
Figure 1), and the edges connecting them and common nodes
(black) are also colored as orange and blue lines respectively.
Note that the graph displayed in the figure is just an illustration,
because in reality every point is one node in the built graph.

and the nodes specified as the object part. Similarly, the source
(blue) and nodes specified as the background part are connected
as illustrated in Figure 2.

The topology of the graph is determined and edge’s weight needs
to be defined as well. Given a weighted graph, graph cuts is able
to compute the minimum cut as shown in Figure 1. Intuitively,
the minimum cut is generally along edges with smaller weights.
Therefore, to define a proper weight between two nodes, a smaller
value is set if the two nodes more likely belong different objects
in the point cloud, and vice versa.

In our experiments, two kinds of weight definitions are used.
The first one is using the Euclidean distance between two nodes.
Specifically, for an edge e = (a, b) where a and b represent two
different nodes, the weight we is defined as

we = e
− ||xa−xb||

2

σ2 . (2)

xa and xb are the coordinate vectors of a and b respectively, || · ||
is the l2-norm and σ is a user specified parameter. The function

f(x) = e
− x2
σ2 used in Equation 2 is a Gaussian function which is

widely applied in many applications such as data denoising and
regression. Figure 3 depicts the shapes of the function with dif-
ferent σ values. As shown in the figure, the f(x) value decreases
slower when x is larger than σ. Therefore, σ can be considered as
a parameter to scale distances between nodes in a nonlinear way.
The other way to define edge weights is based on normals. In a
point cloud, each point can be associated with a covariance ma-
trix determined locally [Demantké et al., 2011]. In our paper, the
normal of a point is defined as the least significant eigenvector
of the associated covariance matrix, i.e., the eigenvector corre-
sponding the smallest eigenvalue. To compute the normal filed of
a point cloud, the approach presented in [Demantké et al., 2011]
is used. The weight we of the edge e = (a, b) is defined as

we = |nT
a nb|. (3)

na and nb are the normals of a and b respectively and |·| is the ab-
solute value function. The normals are 3-dimension column unit
vector and hence nT

a nb is the dot product of vectors. This weight
characterizes normal similarity of two nodes. For example, the

Figure 3: The shapes of the Gaussian function with different σ
values are displayed.

value is close to the maximum value 1 when the two normals
are nearly parallel. Furthermore, for the edges connecting virtual
nodes and common nodes, weights are always defined as infinity.

(a) (b)

Figure 4: An example shows the difference of the two definitions
of edge weights: (a) weights defined using Euclidean distance
(see Equation 2); (b) weights based on normals (see Equation 3).
The point cloud represents a L-shape model with a long gap in
one face. The user interactions are exactly same.

As shown in Figure 4, the two definitions of edge weights ex-
hibit different properties. A point cloud of L-shape are segmented
twice by our method with same user interactions but using differ-
ent weight definitions. In Figure 4a the definition in Equation 2
is used. Since the weights are determined by using the Euclidean
distance, the segmented boundary is along the long gap where
distances between points and their neighbors are larger than other
areas. On the other hand, the computed boundary in Figure 4b
is along the sharp edge of the L-shape due to using the defini-
tion in Equation 3 based on normals. In our method, users can
switch the definitions depending on different segmentation tasks.
Specifically, to segment an object locating distantly from others
the definition in Equation 2 is preferred, while the definition in
Equation 3 is more suitable to partition objects with boundaries
along sharp edges. Noticeably, the proposed method is so flexi-
ble that users can adopt other definitions of edge weights such as
combining color information. From this point of view, this work
also proposes a framework for point cloud segmentation that can
be highly customized.

3.2.2 Solving graph cuts In Section 3.2.1, the segmentation
of a point cloud is formulated as a minimization problem same
to Equation 1. The problem is well studied in graph theory and
can be addressed efficiently using the Max-Flow Min-Cut algo-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 359

rithms [Bondy and Murty, 1976]. In our experiments, the Max
Flow algorithm proposed in [Boykov and Kolmogorov, 2004]
is opted for solving, and the public available C++ library [Kol-
mogorov, 2010] is used in our implementation.

(a) (b)

Figure 5: A 2D example is given to illustrate the algorithm
in [Katz et al., 2007] for computing visibility of point cloud. The
blue heart represents a point cloud and the view point is in the
center of the circle. The blue heart is transformed to the cyan dis-
torted one as Equation 4. A convex hull of the transformed heart
and the view point is computed, and the visible part of the blue
heart exactly corresponds the hull boundary as shown in (b). In
reality the circle is much larger than the displayed one.

3.2.3 Visibility of point cloud In our method, a point cloud
is segmented by drawing strokes such as in Figure 6a. However,
the orange stroke in the figure not only covers a few points from
the van but also some points from the building. This issue can be
solved by computing the visibility of the point cloud. By using
visibility information, the part of the building occluded by the
van can be excluded before drawing strokes.

Point cloud is a type of discrete representation and geometry in-
formation is missing between points. Therefore, computing visi-
bility for a point cloud is not straightforward. In our implemen-
tation, the algorithm in [Katz et al., 2007] is used to obtain the
visibility. The idea of the algorithm is illustrated in Figure 5.
Mathematically, the given point cloud is transformed as the for-
mulation

x = x+ 2 · R− ||x||||x|| · x, (4)

where x is the coordinate vector, R is the circle radius and ||x||
is the l2-norm of x. Then the convex hull of the transformed
point cloud and the view point is computed. The visible points
are obtained by reversely transforming the boundary of the hull
as shown in Figure 5b.

4. EXPERIMENTAL RESULTS

In this section, segmentation results are shown to demonstrate
the efficiency of the method proposed in Section 3.. Point clouds
used in the experiments are from the mobile mapping data of the
Bloomsbury area (London). The point data is acquired by the
vehicle with mounted laser scanners.

Figure 6 displays a complicated scene with van, building, bicy-
cles and etc. The van is the target object and aims to be segmented
out from the point cloud. However, several challenges exist in
this example. Parts of building are missing. The distribution of
points is not uniform and exhibits strip-like patterns which could
potentially harm the resulting segmentation. Furthermore the van
is closely connected to the ground. All these issues increase the
difficulty to get a satisfied results. As shown in Figure 6a, the or-
ange stroke is drawn to specify the target object and the gray one
is used to indicate the background. The gray one is on the ground
region which is close to the van, and hence a correct boundary

of the van is guaranteed. Noticeable, these strokes are sparse and
not along the boundary of the object. The resulting segmentation
is computed by using graph cuts as discussed in Section 3.2.1. As
shown in Figure 6b, the result is correct without selecting points
on the building due to the visibility check as discussed in Sec-
tion 3.2.3.

In Figure 7, three segmentation results are shown using the pro-
posed interactive method. The left column illustrates the interac-
tions where the oranges strokes specify the target objects and the
gray strokes indicate the backgrounds. The right column shows
the results of segmenting person, tree and bench respectively. In
the tree’s example, it shows clearly that the drawn strokes are
very few and sparse comparing the large region of the target ob-
ject. In summary, the interactions is easy for users, only intuitive
drawing is required. The resulting segmentations of the examples
demonstrate the efficiency of the method that can be applied for
general point clouds.

(a)

(b)

Figure 6: The two strokes shown in (a) are drawn by users. The
orange one specifies the target object, i.e., a van in the point
cloud, and the gray one specifies the background. The strokes
are sparse and don’t necessarily cover a large part. Using graph
cuts, the selection of the orange stroke can propagate over the
whole object and hence the van is segmented out from the point
cloud as displayed in (b).

5. CONCLUSION

In this paper, an interactive method based on graph cuts is pro-
posed for point cloud segmentation. The interactions are simple
and only a few strokes are drawn. The experiments are conducted
and prove the efficiency of the method which can be potentially
applied for general point clouds.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 360

Two immediate directions can be explored to improve the work
in future. One direction is optimizing the implementation and
accelerating the algorithm to segment a larger point cloud, e.g.,
with more than ten million points. Hierarchical strategy of solv-
ing and subsampling can be used. The subsampling is also able
to improve the quality of point distribution. The other direction
is studying descriptors besides coordinate and normal that can
benefit other applications as well such as classification and rec-
ognization.

ACKNOWLEDGEMENTS

The authors would like to thank ABA Surveying LTD to provide
the mobile mapping data. They also would like to thank Simon
Julier for the helpful discussions and suggestions. Part of this
research work is supported by EU grant FP7-ICT-2011-318787
(IQmulus).

REFERENCES

Bondy, J. A. and Murty, U. S. R., 1976. Graph theory with appli-
cations. Vol. 6, Macmillan London.

Boykov, Y. and Kolmogorov, V., 2004. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimization in
vision. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 26(9), pp. 1124–1137.

Demantké, J., Mallet, C., David, N. and Vallet, B., 2011. Dimen-
sionality based scale selection in 3D lidar point clouds. Interna-
tional Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Laser Scanning.

Golovinskiy, A. and Funkhouser, T., 2009. Min-cut based seg-
mentation of point clouds. In: Computer Vision Workshops
(ICCV Workshops), 2009 IEEE 12th International Conference
on, IEEE, pp. 39–46.

Ioannou, Y., Taati, B., Harrap, R. and Greenspan, M., 2012. Dif-
ference of normals as a multi-scale operator in unorganized point
clouds. In: 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), 2012 Second International Con-
ference on, IEEE, pp. 501–508.

Katz, S., Tal, A. and Basri, R., 2007. Direct visibility of point
sets. In: ACM Transactions on Graphics (TOG), Vol. 26num-
ber 3, ACM, p. 24.

Kim, Y. M., Mitra, N. J., Yan, D.-M. and Guibas, L., 2012. Ac-
quiring 3D indoor environments with variability and repetition.
ACM Transactions on Graphics (TOG) 31(6), pp. 138.

Kolmogorov, V., 2010. maxflow-v3.01, http://vision.csd.
uwo.ca/code/maxflow-v3.01.zip.

Lafarge, F. and Alliez, P., 2013. Surface reconstruction through
point set structuring. Computer Graphics Forum 32(2pt2),
pp. 225–234.

Li, Y., Sun, J., Tang, C.-K. and Shum, H.-Y., 2004. Lazy snap-
ping. ACM Trans. Graph. 23(3), pp. 303–308.

Liu, J., Sun, J. and Shum, H.-Y., 2009. Paint selection. In: ACM
Transactions on Graphics (ToG), Vol. 28number 3, ACM, p. 69.

Muja, M. and Lowe, D. G., 2009. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In: VISAPP (1),
pp. 331–340.

Rother, C., Kolmogorov, V. and Blake, A., 2004. Grabcut: In-
teractive foreground extraction using iterated graph cuts. In:
ACM Transactions on Graphics (TOG), Vol. 23number 3, ACM,
pp. 309–314.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 361

(a) (b)

(c) (d)

(e) (f)

Figure 7: An illustration of segmenting person, tree and bench out from point clouds respectively: (a), (c), (e) in the left column show
the user interactions and (b), (d), (f) in the right column display the corresponding results.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-357-2014 362

