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Abstract 

The autonomous robots are useful for lot of things, such as rescue in dangerous 

environments. In this thesis, we consider how autonomous robots, the Unmanned 

Aerial Vehicles (UAVs), make a plan to travel in an indoor uncertain environment. At 

the same time, the robots will observe and update the environment representations 

with their on-board sensors and plan the path for each robot in the robot group. 

They will avoid collisions and cooperate with others in the Complete Mission 

Process (CMP), which includes all operations of robots before the mission is 

completed (all targets are visited). 

The environment cannot be represented exactly because of the inaccurate 

representation model and the sensor noises. In order to complete the mission 

efficiently, single robot requires a method to plan a path for efficient travelling from a 

start point to a target point, plan an assignment for visiting all its targets one by one. 

For multiple robots in a robot group, we need to plan an allocation for allocating 

multiple targets to multiple robots in order to make sure that all robots can cooperate 

together. All these planning operations have to be done based on an inexact 

representation of the environment. 

This thesis focuses on the path/assignment/allocation planning problem in 

environments which are not completely known, based on a reduced/simplified —

Partially Observable Markov Decision Process (POMDP) — framework. The former  

researches only consider the initial plan but neglect the later replans.  Our approach 

considers the plan and the re-plans from the start to the completion of the mission. 

Our novel Monte Carlo based planning approaches will plan a path for one robot to 

move efficiently from one point to one target, plan an assignment for one robot to 

visit multiple targets by travelling the shortest route and plan an allocation for 

multiple robots to cooperate and visit multiple targets as soon as possible (the 

planning time plus the travelling time is minimized). 

Our approach is based on a Monte Carlo sampling strategy. In order to decrease 

its computational cost, two strategies are proposed. We then extend our approach to 

multiple robots and multiple targets scenario.  

Finally, the approaches are extended to multiple robots and multiple targets 

scenario. They are characterised and evaluated experimentally through simulation. 

When we compare it with similar methods from the literatures, our approach can 

provide the better solution. 
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1 Introduction 

1.1 The Planning Problems 

We focus on the problem of developing algorithms to allocate multiple targets to 

multiple robots and find paths for autonomous robots to visit these targets one by 

one in an uncertain environment. We simulate the autonomous robot, like an 

Unmanned Aerial Vehicle (UAV), that can detect and update the environment 

representation when moving in uncertain environments. The uncertain environment, 

like a damaged building in an earthquake, is not known precisely at the time when 

the robots are launched. 

In our scenario, there is a building with some dramatic events happened and the 

rescue is needed. In many situations, the prior information about the construction of 

the damaged building, such as the plan of a building, is available. However, as the 

Earthquake Engineering Field Investigation Team (EEFIT) reported in [4][5] (shown 

in Fig. 1 and Fig. 2), the effect of a catastrophic event (such as an earthquake) is to 

change the environment. So, any prior knowledge about the environment only 

shows what things used to be, not what they are now. As we can see, Fig. 1 shows 

the effect of an earthquake damage in a building in Bhuj, India. The earthquake 

opened a hole in a wall, and a pre-existing the door was locked. The damage 

caused by an earthquake in Ji-Ji Taiwan is shown in Fig. 2. We can see that the wall 

is broken and the debris from the collapse is lying on the ground, where the robot 

should avoid the curtains and the debris to passing the left door. In Fig. 3, the 

earthquake in Erzincan Turkey broke the cantilevered masonry panel, and the hole 

is unpredictable. 

In emergency response situations, response time is critical [1] to save more 

survivors. The rescue team should enter the damaged building to save the survivors 

as soon as possible. However, it is dangerous to send the rescue team members 

into the damaged building directly. In case of this situation, teams of robots could be 
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dispatched to search and locate missing persons inside a damaged building [2][3]. 

In our research, we use Unmanned Aerial Vehicles (UAVs) as the robot to do our 

research, because they can overcome the debris on the ground. 

 

Fig. 1 Structural damage to a building caused by an earthquake[4] 

 

Fig. 2 The broken internal wall and the debris on the ground [5] 
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Fig. 3 DiagonaI cracking of a cantilevered masonry panel in an earthquake [8].  

  After the robots have searched and located the survivors‘ exact locations inside the 

damaged building, the rescue team members can work more efficiently to save the 

survivors [1]. Robots can use the building structure map as a baseline to represent 

the uncertain environment of the damaged building and make their search plans 

autonomously. These maps of building structures are available for the National 

Safeguard (or Rescue Team) in most countries [6] (e.g., all public buildings‘ structral 

maps are available in some cases, for example, the National Government Agencies 

and Local Governments in Japan [7]). 

In order to find the survivors efficiently, the rescue team members should evaluate 

the earthquake power to estimate the building damage and set up some targets for 

the robot team to visit. The robot platform has sensors to detect and update the 

environment representation when the robot is moving, for example in [80][90]. The 

navigation system will make a re-plan, including re-allocate targets for robots, if the 

robot is stopped by an obstacle. 

Therefore, we define the idea of Complete Mission Process (CMP) as: we send 

out the robots to visit those targets and all operations of robots are included before 

all targets are visited (or make sure that the remaining targets are not reachable). 

These operations include detecting and updating the representation of uncertain 
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environments, planning and re-planning the allocation for all robots, and recording 

the actually travelled route for each robot. Although the full robot operation carries 

out many replans, most existing algorithms are only assessed based on their results 

from a single plan. This fundamentally does not represent the true behaviour of the 

system. Therefore, we are taking a holistic approach to the whole end-to-end 

problem, including the initial planning and the later re-planning(s) before the mission 

completed. As we show later, the full performance can be very different. That is why 

we believe that comparing algorithms using the CMP is the only meaningful manner. 

As illustrated in Fig. 4, the CMP may include several re-plans until the problem is 

solved. The uncertain environment is represented with an Occupancy Cell (OC) Map.  

 
Fig. 4 The Complete Mission Process (CMP) 

In prior research, the effects of the uncertainties are added into the planning 

algorithms using different strategies. Maeda [47] proposed a planner to take the 

uncertain terrain friction into account, because the uncertain terrain feedback will 

change the result of the robot‘s action (e.g. change the direction of movement). He 

proposed an algorithm to estimate the terrain feedback of different terrains and the 

planner uses this feedback value to adjust the planned path. Melchior [50] did 
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research into the terrain uncertainty by extending Rapidly-exploring Random Tree 

(RRT) node to a group of points, where each point is a possible robot‘s position 

when the robot reaches the RRT node. Mohibullah [107][108][109] researched the 

missing person‘s possible moving trajectories in an outdoor environment. These 

trajectories are the heuristic to make a plan for robots to find the missing person. 

In this thesis, we research the planning problem, which is affected by the uncertain 

locations of obstacles. Robot(s) will make re-plans many times to avoid obstacles in 

an uncertain environment. The targets may be re-allocated to the robot team, in 

order to visit all targets as quickly as possible. The actual travelled route of a robot is 

a sum of many segments of these planned and re-planned paths. Therefore, we 

want the actual travelled route of the robot to be the shortest. 

If there is only one robot and one target, we can plan a path for the robot to visit 

the target. If there is one robot and multiple targets, we need to plan an assignment 

which contains the paths and the order of targets to be visited by the robot. For 

multiple robots and multiple targets, we will plan an allocation. In the allocation, the 

targets are allocated robots, and the assignment is planned for each robot. 

Therefore, we want to find the shortest travelled route for a single robot, or the 

shortest travelled routes for a group of robots, in the CMP. For the robot group 

(there are several robots), we will find that the longest travelled route of robots is the 

shortest in the CMP. 

To test the performance of different algorithms, we created a simulator which is 

capable of simulating the netire CMP: given a prior map and a set of destinations, it 

will step through simulating the movement of the robots, the output of the sensing 

systems, the update of the occupancy map and the trigger to do planning.  

The prior works [12] consider various aspects of allocation planning for an robot 

group: remove uncertainty using a threshold [12] [38] [39] [96] [40], plan a sub-
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shortest allocation and adjust it gradually [102] [41] [47] [48] [49] [50] [51] [52], plan 

with the Most Likely State [42], vote the different decisions/policies [43] [44], use 

information entropy as heuristic [44] [97] [18], cluster nodes based on their locations 

[61] [62] [63] [64]. 

In this thesis, we consider the problem from the view point of Complete Mission 

Process (CMP). We also consider the Complete Mission Time, which contains two 

parts: one is the travelling time, the other is the planning time. Each re-plan will 

increase the planning time. The travelling time depends on the robot actually 

travelled route. We consider how to decrease the re-plan number and decrease the 

robot actually travelled route length at the same time. The difficulty we met is that 

the actual travelled route is a combination of many segments of the planned and re-

planned paths for each robot, because the robot has to make re-plan many times in 

uncertain environments in CMP. In our research, we design our algorithm by 

studying the combination of the plans with the shortest travel length and the lowest 

probability of replanning. When we compare the robot actual travelled routes of 

different algorithms in CMP, our proposal produces much better results. 

1.2 Problem Representation Model 

In order to design our algorithm, we need a model to present our research 

problem. Markov Decision Processes (MDP) and Partially Observable Markov 

Decision Process (POMDP) are two popular models which are used by many 

researchers to design their planning algorithms. We compare these two models and 

select the POMDP model for our research problem and design our algorithm. 

1.2.1 Markov Decision Processes (MDP)  

A Markov decision processes (MDP) is a mathematical framework for modelling 

decision-making problem in situations where outcomes are decided by the current 

state and the control action [9]. The missing person search-planning problem 

requires a plan which contains a decision sequence from the initial state to the 
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target state. When we make a decision at the initial state, we evaluate and compare 

different possible choices for the decision. Therefore, MDPs are useful for studying 

a wide range of planning problems. It forms the basis of our further works. 

MDPs can be solved via dynamic programming [10] or reinforcement learning [11]. 

MDPs were known at least as early as the 1950s [9]. Today they are used in a 

variety of areas, including robotics, automated control, economics and 

manufacturing [9]. 

More precisely, an MDP is a discrete time stochastic control process, which 

provides a general mathematical model for the interaction between a robot and the 

world [9]. The world state is represented by a set of variables (discrete or 

continuous). The action (like move forward, turn left or turn right) chosen is based on 

a robot‘s possible observations and knowledge. The robot‘s state is transferred 

based on the pre-defined transfer probability of the robot‘s actions. Many classical 

AI planning algorithms can be formulated as special cases of MDPs, like the chess 

player [11]. 

MDP considers the simplified matters with an assumption [13], in which the 

previous states and actions will not affect the future states if we know the current 

state. Therefore, the future transition only depends on the current state and action. 

Generally, this assumption of the real word is fairly accurate, if we are given enough 

descriptive state vectors [12]. 

By framing the problem as an MDP, we can design a planning algorithm to 

compare different plans, including allocations, assignments and paths [14][15][16]. 

The output of many algorithms is a value function, which calculates a value of 

planned result for every possible state [12]. The greedy strategy can select the 

actions for a robot to immediately reach high-value states, since the plans are 

implicitly encoded in the action evaluation function. 
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MDP algorithms have solved many challenging problems, but the robot cannot 

always get the perfect knowledge of the states of the real environment for most 

cases. Therefore, the partially observable MDP is a more realistic choice. 

1.2.2 Partially Observable Markov Decision Process (POMDP) Model 

In an MDP, we assume that the robot completely knows the state of the world, 

including probabilities that the action transfers robot to different new states. This 

assumption is rarely true in real scenarios, especially for the problems researched in 

this thesis. A Partially Observable Markov Decision Process (POMDP) extends an 

MDP by adding imperfections to the robot‘s observations about the world. The 

assumption of the POMDP formulation is that the likelihood of observations about 

the hidden states can be decided by statistical probability distributions [12]. 

In [117], Whelan reports the ability to map a large environment with a root mean 

squared error of approximately 20cm. Since this is significantly smaller than the size 

of the grid cell used in our planner (60cm on a side), we assume that the occupancy 

state of a cell can be precisely determined by a single measurement from the robot 

(if the obstacle is not blocked by another obstacle). Furthermore, we assume that 

the robot can localize itself correctly to the grid cell which contains it. However, 

because the robot can only observe a subset of the environment, uncertainty still 

persists. 

While a robot, using an algorithm based on MDP, can make its decision based on 

the state, a robot using an algorithm based on POMDP has to make its decisions 

based on a history of its actions and its observations [12]. Because the history 

records what the robot knows about the world, the history dependency makes the 

planning problem more complexly. The Markov property implies that a robot can 

safely summarise all history in a sufficient statistic state and ignore the long history 

descriptions [9]. The POMDP equation also assumes that its state obeys the Markov 

property, except that the state is not directly observable. The entire action and 
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observation history is relevant, but can be summarised in the current representation 

sufficiently. 

To avoid the dependency on explicitly storing the entire history, the dominant 

approaches prefer to maintain a belief space to describe the probability distribution 

over all states. The belief is a sufficient statistic for the history. That is, if a robot 

knows the current belief probability, the observations and actions which lead to that 

distribution are irrelevant for predicting the future [12]. Therefore, POMDPs provide 

a general and flexible framework for realistic problem, which enables people to 

propose algorithms to solve their problems in different areas. For example, to model 

the mobile robot search planning problems, the robot state, action, and observation 

spaces are large and cannot be represented exactly[12][13]. The robot will travel in 

some kinds of scenario and use sensors such as cameras, laser range-finders, and 

acceleration transducers to gather information [3][39][40][80][90][109]. The sensor 

measurements are imperfect because of the noise and limited detection distance. In 

this context, a POMDP solution represents a plan which allows the robot to gather 

the information and brings it to its target. 

We will show the formulations of a POMDP in Chapter 2, where we demonstrate 

that a POMDP is a special kind of MDP. An unobservable state can be replaced by 

the observable information-state, which also can be summarised by a belief-state 

[12]. As the robot moves in the Complete Mission Process (CMP), the variables of 

POMDP are being updated. When the robot is blocked, it will make a re-plan with 

the new updated POMDP representation. 

1.3 POMDP for Targets Allocation Planning 

The effect of a catastrophic event, such as a fire, an earthquake or an explosion, 

leads to changes the environment. There might be lots of survivors. A key issue to 

the problem is to identify whether they are around, and where they might be. If we 
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send the rescue team to search the entire building locating and saving survivors, 

more people will be endangered in the damaged building. Therefore, the rescue 

team can use a robot group to inprove the search efficiency in these uncertain 

situations. 

Our research was carried out in three main parts. The first explored how to plan 

an efficient path in an uncertain environment. The second extended this to examine 

how to construct a plan to allow one robot to visit many targets. Third, we 

considered the problem of target allocation in which multiple targets are assigned to 

a group of robots. We introduce our research of these three parts in the following 

chapters of this thesis. 

We use discretised spaces in our research. In terms of Fig. 5 (adapted from [17]), 

on the extreme right, the combination of a fine description with accurate calculations 

of utility will lead to perfect plans but it is hardly exist in realistic problems. On the 

extreme left, although simple heuristics (like distances to target) require little 

computation, they cannot provide a good approach to evaluate the affection of the 

uncertainty. The simplest approach is based on the assumption that both the 

environment and the pose of the robot(s) are known perfectly, or determine the 

global state at anytime. Most research defines heuristics or evaluation functions to 

calculate uncertainties in the map and improve their planning processes. An 

example of those algorithms of these approaches is showed in section 2.5. However, 

these approaches can only explain the evolution of the probability distributions over 

a very short planning horizon [12]. Therefore, the most practical planner needs to 

have a good trade-off between these two extremes, and it should be lying 

somewhere in the middle of the bar. 
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Fig. 5 POMDP solution methods span from left to right.  

By discretising the state, action and observation spaces, we can approximate the 

uncertainty within a small number of dimensions, such as a group of grid cells. Then, 

the evaluation functions can use these uncertain grid cells to direct the searching 

direction of the planning process, as in [18][19][20]. 

1.4 Scope of the Research 

We focus on the planning problem in an uncertain environment. Our simulator 

uses a simple on-board sensor strategy to update the representation of the 

uncertain environment, which is reasonable [117]. Therefore, the Simultaneous 

Localization And Mapping (SLAM) [29] is not included in our research. 

There are many models of earthquake damage. For example, we can use the 

earthquake damage models discussed in [21][22][23][24] and the details of the 

space-dependent damage model correlated ground motions in earthquake events 

which are proposed in [25][26][27]. Earthquake damage cannot be predicted 

completely [28], so we can construct an uncertain environment by using a basic and 

empirical damage models in [21][22][23][24][25][26][27], or by setting the 

uncertainties manually. The planning system in the simulation system knows nothing 

about these damage models. The disturbance of the damage model is also 

supported by our simulator to test the sensitivity of our algorithm. 

In our simulate experiments, the actual states of the environment should exist and 

be known by the simulator, in order to correctly simulate the movements of the 

robots. The sensors cannot see the situations behind an obstacle, like a solid wall, 
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and their readings are given by the simulator. The robot does not know the exact 

states of the entire environment and can only make a plan based on its own 

representations. Our research focuses on how to inject and use the uncertainties 

efficiently in the planning process. 

1.5 Publications 

Our research results have been published in two conference papers:  

The first one is ―Path Planning In Partially Known Environments‖, published in the 

Proceedings of the International Association of Science and technology for 

Development (IASTED), on 7-9 November 2011, at Pittsburgh of USA. We have 

introduced the PD Planner in this paper with a two-dimensional uncertain 

environment. The PD Planner planning process [71] will be introduced in Chapter 3. 

The second one is ―Reducing the Computational Cost of a Monte Carlo Based 

Planning Algorithm‖, published in the IEEE International Conference on Systems, 

Man and Cybernetics (SMC) 2013, on 13-16 October 2013, at Manchester of UK. 

We have introduced two strategies to decrease the computational cost of PD 

Planner. The strategies‘ details [95] will be introduced in Chapter 4. 

1.6 Contributions  

This section outlines the contributions of our research based on the POMDP 

model represented problem, and the thesis addresses these issues: 

 We have found that the possible shortest paths in uncertain environments 

are likely to cluster naturally, which can be used to make a plan. 

 We have designed the Path Distribution (PD) Planner to plan a path for 

one robot to visit one target in an uncertain environment. We also test the 

impacts to the PD Planner in situations where the occupancy probabilities 

are not known perfectly. 
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 We also have researched the sampling strategy of PD Planner for large 

environments. Two strategies are proposed to decrease the computational 

cost. 

 We extend the PD Planner to handle the assignment case, which is called 

as the Assignment Distribution (AD) Planner. The AD Planner performs 

path planning for one robot to reach several targets efficiently in uncertain 

environments.  

 Lastly, we have extended the AD Planner to Group Allocation Distribution 

(GAD) Planner, which can allocate multiple targets to multiple robots and 

plan path for each robot in a robot group to visit multiple targets efficiently 

in uncertain environments. Our evaluation of the performance of the 

algorithms on extensive simulations show that it leads to significant 

improvements. 

The path length is used to evaluate the travelling time for completing the mission. 

The simulated robot can perfectly detect the uncertain environment within a limited 

distance, and update its representation of the environment. 

We illustrate our planners in scenarios that range from simple to complex. Our first 

scenario is for one robot to visit one target in a damaged one-floor building. We 

developed an algorithm which uses clustering of solutions/paths to identify stable 

structures of paths for the robot to move from one position to another position 

efficiently in an uncertain environment. Then, the planner is extended to consider 

multiple targets assignment across multiple floors, for example one robot will visit 

four targets in a damaged two-floor building. We illustrate the scalability of map size 

and the fact that our approach is not restricted to a single floor. The assignment 

planning for one robot in an uncertain environment is named as AD Planner. At last, 

three robots will visit five targets in a damaged three-floor building, including a free 

space surrounding the building for robots to move freely. We will figure out how to 
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make an allocation planning for multi- robots. The actual travelled paths of robots 

using different algorithms are recorded and compared. 

1.7 Thesis Structure 

In Chapter 2, we introduce the POMDP model and algorithms used in the 

planning and searching problems in an uncertain environment. We review the 

related literature, and find that most researchers evaluate their solutions for single 

planning enquiry. 

In Chapter 3, we introduce the Path Distribution (PD) Planner, in a 2 dimensional 

OC Map. This is the first main challenge of our research: to travel effectively in an 

uncertain environment. We implemented a simulator to compare our research with 

other typical algorithms. The experiments show that the robot using our algorithm 

can reach the target by travelling shorter distance. 

The Monte Carlo sampling strategy used in PD Planner requires many 

calculations when the OC map contains many grid cells. So, two strategies for 

reducing the computational cost are introduced in Chapter 4: 1) Sampling in 

Planning Process (SiPP) – only sample the grid cells required in the planning 

process, and 2) Hierarchical Path Distribution (HDP) Planner – decrease the map 

dimension based on pre-defined uncertain structures. 

In Chapter 5, we extend the PD Planner to a 2.5 dimensional uncertain 

environment for one robot and multiple targets assignment planning. Then, we 

extend the approach to plan an allocation for a group of robots. We record the 

travelled routes of robots using different planning algorithms. The experiment results 

show that the robot(s) with our planner can travel in a shorter distance to complete 

the mission (visit all of the targets). 

In Chapter 6, we show the critical discussion of our research. Some potential 

research directions of the future work are introduced, too.  
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2 Planning and Searching In an Uncertain Environment 

This chapter formally describes the problem of planning paths to visit multiple 

targets in an uncertain environment. Each robot is equipped with a line-of-sight 

sensor, such as a laser scanner. This scanner can observe the free space in front of 

the robot out to a fixed detection radius. Here, we use the Occupancy Cell (OC) map 

to record the occupancy probability of each grid cell, if these grid cells are not 

detected by a robot. 

We will introduce the basic terminology and concepts of MDPs (Markov Decision 

Process) and POMDPs (Partially Observable Markov Decision Process), and 

describe how they are used to describe the problem. We use the belief space to 

represent the state location probability of POMDP, which make the POMDP as a 

special case of MDP. After that, we will introduce some typical solution methods for 

POMDPs. Finally, we will figure out the short cuts and limitations in existing 

literatures and propose our research idea in the following chapters of this thesis. 

2.1 Problem Statement 

We consider the following situation. A building has experienced a catastrophic 

event such as a fire or an earthquake, as illustrated in Fig. 1 and Fig. 2. Prior 

information about the building – specified as a set of plans – has been provided to 

the emergency services. With these plans specific targets of interest (such as 

reported locations of people, or general identification of areas where the missing 

persons are likely to be found – such as stairwells [1]) - have been identified. These 

targets are defined by the rescue team in the search and rescue indoor 

environments. The goal is to visit these targets as soon as possible by sending a 

team of rescue robots to search inside a multi-floor building.  

For our research scenario, the first key challenge is how to plan a path to travel 

efficiently in an uncertain environment. The second key challenge is to assign the 
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targets with an efficient order for a single robot to visit them. The third challenge is 

how to allocate multiple targets to multiple robots in order to visit all targets as soon 

as possible. 

The prior map before the catastrophic event describes a known environment, 

where the state of each grid cell is represented as free space or occupied by an 

obstacle. However, a catastrophic event, such as an earthquake, can have 

important effects: the building‘s internal structure may be transformed by some 

random damages, for example broken walls can block a corridor and holes create 

new routes through previously impassable walls. 

Given these transformations, the map has to be updated to reflect the damage. 

We use an Occupancy Cell (OC) Map to record the occupancy probability of each 

grid cell. For example, Fig. 6 (a) is a certain map before transform (black cell is 

obstacle and white cell is empty), and Fig. 6 (b) is the earthquake damage 

transformed map, using a perturbation model in [28] (shake the building to 

propagate the uncertainties in OC Map), where each grid cell has an independent 

obstacle occupancy probability between 0 and 1. 

(a)       (b) 

Fig. 6 Map example:a)0/1 map; b)OC map(darker cell had higher occupancy probability) 

We should complete the following tasks to find the missing persons in our 

scenario: 
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(1) The research team analysis the building plans and probability distributin 

over the OC Map of the building, and proposes a set of locations where 

missing persons might be found. 

(2) The robots then make a plan and re-plan to search inside the damaged 

building, each single robot can make a search plan for itself. 

(3) The OC Map will be updated while the robot travelling inside the damaged 

building. 

Our planning algorithm is designed to find paths for the robot Group to visit all 

targets. Our evaluation is the length of robot‘s actual travelled route. 

For step 1, we can initialize the OC Map from an empirical damage model. For 

step 2, the re-plan condition could be that the current path is not executable, or a 

new and much better assignment is found. For step 3, we can use different 

exchange rules depending on the complexity of the scenarios (for example, the 

obstacles cannot block the wireless connection, or one robot should see another 

robot when they exchange data). 

In our simulator, the sensor cannot see the grid cell‘s state behind an obstacle. 

We simplify the sensor noises to be zero, which means that the obstacles within the 

detect radius can be found exactly (if they are not blocked by another obstacle). 

In Fig. 7, for example, the robot starts from the cell marked with a red dot (down-

left part in each figure), its current position is marked by a red dot surrounded by a 

yellow cycle (mid-up part in each figure). The darker cells have higher occupancy 

probabilities, and the actual obstacles are marked with ―x‖. The robot updated OC 

Map is shown as the brighter cells along the travelled route (visited by the robot on-

board sensors). The red line is the route that the robot travelled, and the yellow line 

is the current planned path. The robot makes the first re-plan at    because the 

current planned path (the yellow line) is blocked, see Fig. 7 (a). The second re-plan 

is launched at   , see Fig. 7 (b).  The third re-plan is launched at   , see Fig. 7 (c). 
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The robot will make several re-plans before it reaches the target, because the new 

measurements may find obstacle(s) blocking the last planned path, or showing a 

shorter path through some new openings in a wall. 

 

Fig. 7 A robot moving and re-planning at             . The yellow line is the planned path, and 

the red line is the travelled route. 

2.1.1 The Occupancy Cell Map  

We use an Occupancy Cell (OC) map     to represent the uncertain environment 

and the robot position is described with the grid cell coordinate       in    . We 

define the obstacles as the places where the robot cannot or should not go through, 

and the sensors cannot penetrate it. So, the robot has to avoid them. The free 

space is where the robot is allowed to go through. When we say that an 

environment is uncertain, we mean that we are not sure of the number or the 

locations of the obstacles. The planning algorithms do not make plans that will lead 

the robot into an obstacle. Therefore, the obstacles that block a planned path are 

called unknown obstacles. 
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The occupancy grid cell map     contains |   | grid cells. Each cell is a square 

although other shapes – such as octagons – could be used.. All cells have the same 

size. A grid cell can only connect with its immediate neighbours. Each cell has a 

unique coordinate      . We define      to represent the state (occupied by an 

obstacle or free) of the cell whose coordinate is      , where 

     ,
                       
                  

To describe the uncertainty, a grid cell is not assigned a binary value, but 

instead is given a continuous value that represents the probability that the grid cell is 

occupied [35],                  . The cell‘s empty probability is  (    )    

         . We assume that the occupancy probability for each cell is independent 

of all the other cells. Therefore, we do not limit the number, shape, position or 

complexity of obstacles and their probabilities in the environment. However, we do 

not exploit any potential correlation, in structure of obstacles which might exist, to 

predict something about what might be happening in other cells based on what the 

robot has observed. 

We implement a simulator to do our research. In our simulator, we use a 2-

dimensional floor map of a one floor building and a 2.5 dimensional map for a 

building with several floors as examples to illustrate the algorithms in this thesis. 

However, the proposed algorithms are also applicable to general and higher 

dimensional situations. 

The simulator lets us do our research step by step, from simple scenario to 

complex scenarios. We start from single robot planning to visit single target. Then, a 

single robot will visit several targets. Lastly, the multiple robots will visit multiple 

targets. 

We now introduce the symbols and the basic evaluations of the research models: 

Markov Decision Processes (MDP) and Partially Observable Markov Decision 

(1) 
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Processes (POMDP). We use these models, as many researchers did, to represent 

our research problem. Our algorithms are defined to solve POMDP problems, using 

the MDP algorithms. 

2.2 Markov Decision Processes (MDP) 

In this section, we introduce the general setup of the Markov Decision Processes 

(MDP). 

The environment used by the Classical Artificial Intelligence (AI) planner is 

assumed to be deterministic and finite, fully-observable, static and discrete [30]. In 

order to research the planning problems in this kind of environment, an MDP is used 

to model the entire environment, including the properties of robots. STRIPS [31] is 

the first major planning system, which presents the state of the environment with 

well-defined MDP symbols (like a graphic containing nodes and edges) in order to 

find a node/action sequence from the start node to the target node. A set of MDP 

actions are defined, and a set of pre-conditions and deterministic effects on the 

symbolic state is defined to each action. For example, the action ―move to top-right‖ 

has a pre-condition that the grid cells of top, right and top-right must be empty. The 

STRIPS-style planner autonomously makes a fixed action sequence for a robot to 

move from a start state to a target state. 

An important factor to think about is that the robots are required to satisfy various 

objectives simultaneously, but the classical evaluation only takes one objective into 

account [32]. For example, robots can maximize the rewards (such as gather the 

most information with the least amount of energy), but cannot minimize the risks 

(such as limiting the accumulated probability of being blocked) at the same time. 

Therefore, a reward function has to be used to specify these objectives [32][16]. 

An MDP involves a decision-making agent that interacts with a fully observable 

environment (assume that the sensors can detect the entire environment at any 



32 
 

single state), and the action result may be different states with different probabilities. 

In this thesis, we assume that the robot state is discretised into a set of steps 

indexed by  . The state vector      is used to describe the state of the 

environment at step  . The environment state includes the updated OC map    , 

the robots states, the targets set   for robot(s) to visit. 

At each step, the agent chooses an action      which causes the state transfer 

stochastically from    to     , and results in the agent receiving the reward   . In 

our research, we adjust the transition probability from    to      and define the 

transition to be deterministic, because the autonomous robot can adjust its action(s) 

based on its observations to reach its next position. We can easily evaluate the 

rewards of different action sequences in the planning process. See Fig. 8 as an 

example, the agent produces a new action    based on the state in each iteration. 

The world samples a new state      based on the agent‘s action. The ―       ‖ 

box simply alters time subscripts in preparation for the next iteration. 

 

Fig. 8 The MDP model [12].  

Formally, an MDP is defined by the tuple 

               

where 

   is the state space 

(2) 
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   is the space of actions 

                     |       defines the transition probabilities 

between the states 

          defines a reward function for executing action   , at state 

   

    is the initial state of the environment 

   is a discount factor 

The agent executes a policy  , which specifies an action for every state: 

      

This policy can be seen as a conditional plan. After the first action is taken, the 

subsequent actions depending on the state transition is defined in  . The Markov 

property asserts that the state is a sufficient statistic, which means that the past 

conveys no extra information about the future if the present state is known [13]: 

         |                     . Then, we have:     ,     ,         , 

and            . Their relationships are shown in Fig. 8. 

Let        to be a value function and denote the value of executing policy   

starting from state   .        equals the discounted sum of expected future rewards: 

       ∑   
    

                 

 

   

            
    

         |    

where   is the discount factor of future rewards (   ) and   is the steps of 

forward inference based on             . (4) calculates the value of a policy 

includes both the direct reward and all future rewards along the action/policy 

sequence. These future rewards depend on the future states, which are decided by 

the probabilistic model of the environment. We use the expectation over future 

states in (4). The discount factor   is used to weight rewards in the near future more 

heavily than rewards in the distant future. Theoretically,    might by infinity. 

(3) 

(4) 
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However, we only consider the discounted finite horizon case in this thesis, where 

    is the potential travelling time to a target. 

The aim of the MDP agent is to find the optimal policy 

             
 

       

Combining this with (4) gives 

           
  

[           
    

          |   ] 

Many decision-making algorithms find policies through exact or approximate 

solutions to this equation [16]. In our research, we simplify the evaluation of a path 

to its length. The other costs, like to change direction multiple times, are not counted.  

2.3 From MDP to Partially Observable MDP (POMDP) 

An MDP assumes complete knowledge of the environment. However, in a real 

situation, the robot‘s on-board sensors only have limited detection distances and 

their measurements always contain some noises and could be blocked by some 

obstacles. The robot cannot observe the entire environment exactly or precisely, 

and the action results will be influenced by these errors and lack of knowledge [33]. 

It implies that the state of the entire environment is not directly available to the robot. 

Therefore, plans will be made on the basis of the state of the world [30][14]. 

In this section, we will introduce the POMDP, which was developed in the 

operations research community [110]. Many artificial intelligence researchers use it 

to design and test their algorithms [111]. More formally, a POMDP is defined by the 

tuple to represent the more realistic world 

                     

where           are defined to be the same quantities as in the MDP and the 

new symbols are 

(5) 

(6) 

(7) 
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   is the space of observations 

                       |         defines observation probabilities 

   is the belief space 

    is the initial information available to the agent 

It is assumed that the initial information    takes the form of a (possibly uniform) 

probability distribution over the state-space. At each step  , the robot receives an 

observation      of the sensor measurements around the robot. 

The most prevalent approaches for solving POMDP problems use value iteration, 

which calculate a value for each node    based on the direct reward          of 

action    and the discounted rewards of its children,                  . The main 

idea is to get the optimal balance between the direct reward          and the future 

rewards                  : 

           
  

                             

2.3.1 Belief States and Belief Space 

A robot will update its belief at step  , after taking an action    and receiving an 

observation   . Since the state is Markovian, maintaining the POMDP belief over the 

states only requires knowledge of the previous belief state, the action taken, and the 

current observation. The belief state transfer operation is                 . The 

belief state is defined at each step  , so the belief space is also a discrete space. 

Next, we will describe how to update this POMDP belief. 

In state   , the agent observes      with probability     |      . Let      to be 

a probability distribution over the state space   and       denotes the probability 

that the environment is in state     . Given        at time  , after taking action    

and observing   , the new belief            in new state      is calculated as 

(8) 
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                |      ∑       |            

    

 

where         |       is the normalizing constant. Its value is given by 

    |       ∑     |        ∑       |                      . 

By adding the belief space  , the POMDP problem becomes a belief MDP 

problem [34]. The action is selected based on the current belief   , and the 

transition function is redefined as the belief transition function. The POMDP optimal 

action selection policy is constructed as follows: 

  
            

  

[ ∑               

    

   ∑     |        
       

    
] 

with the expected reward cost:  

  
           

  

[ ∑               

    

   ∑     |          
       

    
] 

 

2.4 Review of Planning Algorithms  

A POMDP is a special case of Decentralized POMDP (Dec-POMDP), which is 

suitable for the problem of making a plan for multiple-robots. The algorithms for Dec-

POMDP will be introduced in Chapter 5. In this section, we will review the planning 

algorithms which have been proposed by other authors, including heuristics, policy 

iteration, forward searching and solutions based on POMDP models. 

These proposals handle uncertainties from different points of view. We will use 

the path planning algorithms as the implementation of these proposals when we 

need to explain their details clearly. 

(9) 

(10) 

(11) 
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2.4.1 Value iteration -- Heuristic Approaches 

The most common approach (at least for real-time applications such as mobile 

robot navigation) uses a heuristic function to estimate the value iteration (8) of the 

full POMDP solution [12]. There are three heuristic categories: (a) those which do 

not count the uncertainty into the evaluation directly, (b) MDP-based heuristics 

which consider stochastic actions without future uncertainty, and (c) those which can 

act in order to resolve or decrease uncertainty for reaching target. 

2.4.1.1 Heuristics without Uncertainty Considerations 

The simplest strategy is to leave the uncertainty to re-planning, with the 

assumption that the entire environment is currently known perfectly. A threshold is 

used to decide which cells are blocked and which cells are free in the representation 

of the uncertain environment. A path re-planning will be launched when the robot‘s 

on-board sensors find an obstacle which blocks the next movement. This strategy is 

simple and probably the most widely used in practice [12]. By removing the 

uncertainty with a threshold, we can use Dijkstra‘s algorithm [99]. Dijkstra finds one 

of the shortest paths from the start position to its closest neighbours within distance 

1. Then, it finds one of the shortest paths to all neighbours within distance 2. By 

repeating this process, it is guaranteed to find one shortest path to the target 

position. Dijkstra extends the paths to all possible directions, so it is extremely 

expensive. To remove those extensions toward the hopeless direction, the A* [38] 

use a heuristic function to extend the next step toward the target position. The A* 

algorithm has two overlapped loops to maintain the OpenList and the CloseList. If 

the map has   grid cells, all grid cells will be added to the OpenList and the 

CloseList in the worst cases. Therefore, the A* complexity obeys      . 

For some cases (for example, newly-found obstacles block the current path 

locally), the searching tree of the old plan and the new re-plan have many same 

nodes and branches. Therefore, Stentz proposed D* [39] and Koening proposed D*-
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lite [96] algorithms to keep the A* last search tree for the next planning in order to 

make the re-plans faster (depends on the similarity of the new searching tree and 

the old searching tree). We will compare against re-plan strategies in the robot 

navigation problem experiment in Chapter 3. 

If the topological graph of uncertain environment, such as parking lots, is 

available, the planner could take it into account to decrease the complexity of the 

searching problem. Dolgov [102] proposed a two-phase algorithm to plan a path for 

an autonomous car to move in a semi-structured uncertain environment. Firstly, he 

uses the forward heuristic search to find a continuous kinematical feasible trajectory 

(the car can move forward, turn left or right; and to move back should be punished) 

based on the topological lane graph. Secondly, the numerical optimization is used to 

optimize the trajectory locally, which often gets the global optimum in his scenario. 

However, his algorithm does not guarantee that the minimal-cost path will be found, 

or the entire reachable state space will be searched. 

The occupancy probability threshold can be used to modify the uncertain 

environment to a certain environment (the cell with an occupancy probability smaller 

than the threshold is marked as an empty cell) for the planning algorithms, 

especially in high dimensional environment. Some researchers use the Rapidly-

exploring Random Tree (RRT) to construct the connection structure of the high 

dimensional environment based on many sampled nodes and make a fast planning 

in the tree [41].  The new nodes are sampled and connected with the RRT tree to 

extend the size of the tree. For example, Pepy [40] proposed a strategy to transfer 

uncertainty to certainty by using a threshold to sample RRT nodes for where the 

robot can go and where it cannot go. Jaillet [41] considers the cost function defined 

over the environment and uses a threshold in the transition tests to accept or reject 

the new sampled nodes of an RRT tree. The path is searched in the RRT tree 
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instead of the C-space. But, the RRT may not find the path when a path exists in 

fact [41]. 

Unlike the threshold strategy, the Most Likely State (MLS) uses the most likely 

state (a probability matrix defined by user) to decide the actual states of the world of 

highest probability, and the shortest path is found with these states. MLS takes the 

corresponding action from the MDP policy [42]. This is a good approximation to the 

full POMDP solution when distributions are compact, and the most likely state is 

hardly far from the truth. 

The      method [112] votes on actions based on the belief distributions over 

discrete states of the uncertain environment, based on the evaluations of all state 

nodes [43]. The number of votes state    can cast is proportional to the probability 

that    is the true state.    casts its allotted votes by voting on actions in proportion 

to their MDP evaluations from state   . After voting, the agent will take the action 

with the most votes, which is a greedy choice. The main assumption for QMDP is that 

all the uncertainty will disappear after the robot takes its action. The action will be 

optimal if this assumption is true, otherwise the uncertain states may make the 

action not executable [44]. The MLS and      are suitable for small discrete state-

spaces (about several hundred discrete states in 2 or 3 dimensional state space). 

2.4.1.2 Heuristics to Resolve Uncertainty 

The problem with the heuristics above is that they only act to seek a reward, 

possibly taking into consideration their current uncertainty and the uncertainty of 

their actions [12]. Another strategy is to decrease the uncertainty for the future re-

planning. This means that the uncertainty should be counted in the heuristic function 

to compare the effect of the uncertainties among different selections. 

Action entropy is an example of a heuristic which is used to quantify the change 

of the uncertainty after the actions are executed [44]. The entropy is defined by 

information theory as        [97], where        is the occupancy probability of a 
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cell   in an OC map. The action based on entropy switches between two distinct 

modes: seeking a reward and seeking information. The entropy distributed in belief 

space can be used as the switching criterion. The entropy planner can select the 

action to reduce the belief uncertainty over a one-step horizon. In other situations, it 

follows one of the MDP-based heuristics. A typical example is the algorithm 

proposed by Bruns [18], which uses entropy to measure the information obtained for 

guiding a motion planner to achieve maximal progress toward the discovery of a 

path. It uses the entropy to redefine the edge costs among the sampled nodes and 

guide the A* searching process. The entropy can measure the uncertainty changes 

within the robot observation distance, which only provides a local measure of 

uncertainty and cannot avoid the local minimal problem. Therefore, the global view 

of the entire uncertain environment will hardly be calculated by entropy. 

Thrun [45] plans a path by considering the quality of localization along that path. 

His algorithm is called Coastal Navigation, which calculates the information content 

of each state, based on the extent to which an observation from that state would 

modify a fixed priority. Then, each state gets a value combining a weighted sum of 

the information-based cost and a target-related cost. The planner can use this value 

to evaluate and compare different paths. 

Candido [98] proposes a minimum uncertainty planning technique for mobile 

robots localizing with beacons based on a POMDP model. His algorithm analyses 

the evolution of the belief based on the pre-known problem-specific domain 

knowledge. The core idea of Candido‘s method is to use paths (such as nearly 

optimal trajectories) prescribed in the workspace as a heuristic, then to generate the 

belief-feedback policies with fixed modes and apply them to robot navigation 

localizing with beacons to find a minimum uncertainty path [98]. However, his 

algorithm requires other algorithms (which he does not specify) to help generate the 
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explore policies in the belief space of POMDP. The explore policies will affect the 

performance of the planned result. 

A number of authors have proposed different ideas to add uncertainty evaluations 

into the basic RRT algorithms. Tian [19] and Liu [46] presented a modified RRT 

algorithm for robot local navigation, which provides a biased direction for nodes to 

surround obstacles, which can remove the obstacle uncertainties from an uncertain 

environment. The planner can use these biased nodes to find a path toward the 

target and avoid the uncertain obstacles. However, the planned path cannot be 

guaranteed to be the shortest one. 

Maeda [47] uses a mixture of a Model Predictive Control (MPC) for local RRT 

planning with an approximate-model global planner to provide sub-goals. Guibas [48] 

introduces the notion of a bounded uncertainty roadmap (BURM) and uses it to 

evaluate uncertainty by representing the collision probability bounds in different 

regions of the C-space. The Multipartite RRT (MPRRT) designed by Zucker [49] for 

fast re-planning a path in unknown or dynamic environments. It biases the sampling 

nodes toward the separated RRT sub-trees and re-using nodes/branches from 

previous planning iterations. Melchior [50] extends the single searching node with 

several possible nodes calculated from multiple simulations. The algorithms have to 

know the possible models of the coefficient of friction (different fictions make the 

robot move to different directions) in the given rough terrain, in order to simulate the 

robot movement in the unknown environment. Fulgenzi [51] proposed an algorithm 

based on the extension of RRT, where the likelihood of the obstacles trajectory and 

the probability of collision are explicitly taken into account, based on the on-board 

sensor measurements. His algorithm refines the path when the RRT tree is updated 

and extended as the robot moves (the local path is re-planned with high frequency). 

Pepy [52] proposed a new path planner by combining RRT nodes with a set 
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representation of uncertain states. The uncertain state increases the number of RRT 

nodes as the planned path expanding toward the target. 

2.4.1.3 Evaluate Uncertainty with Policy Iteration 

Policy iteration seeks to evaluate the candidate policy or produce a modified 

policy, instead of evaluating the sequence of actions and states. By given each 

policy a value, which can be extracted from action-based approaches, the policies 

can be evaluated explicitly. There is an equivalence between the two approaches: 

where value iteration extracts a policy from a converged value function, policy 

iteration calculates a value function from a policy during each policy evaluation step 

[12]. 

Hansen shows how policies can be represented in Finite State Machines (FSMs) 

[53]. Each node in the FSM dictates a particular action, while each arc corresponds 

to a particular observation. Each step of policy improvement involves modifying the 

FSM by adding and removing nodes, and changing the actions associated with 

nodes (which changes the successor nodes associated with observations). 

Modifications are based on exact updates, hence convergence is guaranteed. 

The path of belief nodes corresponds to the path of the policy nodes, when we 

transfer the belief nodes structure to the policy nodes structure. Therefore, we can 

find the path based on the policy nodes structure. However, policy iteration is 

another form of value iteration and cannot avoid the shortages of the value iteration 

algorithms [53]. 

2.4.1.4 Forward Search 

The value-iteration-based approaches assume that the estimates of the value 

function evaluated in the future are available. These estimates are used to create a 

value function in order to transfer the discounted future value to the present value. 

The calculation of future values is generally defined over the entire belief-space, 

which can be pre-calculated in advance. If we hypothesise that the value iteration 
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calculate the nodes‘ values at current time  , the forward searching calculates the 

nodes‘ values at time      (target may be not reached at     , but the planner 

assumes the robot will not be blocked from   to     ). 

 

Fig. 9 A POMDP as a belief node and action tree, starting from belief   [30]. 

A number of POMDP solution algorithms use the search forwards strategy, 

starting from the current node [54][55][56]. A POMDP can be viewed as a game 

which alternates between the agent selecting an action and nature selecting an 

observation. Other agents‘ observations and actions will be estimated for Dec-

POMDPs. A traditional approach to maximizing performance in turn-based games is 

to represent the game as a tree [30]. 

In the example shown in Fig. 9, we use circles to represent nodes from which the 

agent chooses a value-maximizing action from all possible next steps. The squares 

represent nodes from which the environment probabilistically chooses one 

observation. The value of each node is based on the rewards associated with belief-

action transitions and the estimated values of the unexpanded leaf nodes. An action 

node value involves a maximum over the values of its children, whereas an 

observation node value involves an expect observation. Given a heuristic to 

estimate the values of the unexpanded leaf nodes of the tree, a naive approach to 

solving the POMDP is to perform brute-force search of this tree, expanding every 

action in a breadth-first order. Since the game-tree is valid only for those reachable 
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belief nodes from a known starting belief node, this approach is often used for online 

computation. 

Forward search can adapt to changes in the environment as long as the model is 

also updated [57]. For discrete actions and observations, a value function does not 

have to be represented over the entire belief space, because the reachable belief 

nodes are sufficient for decision-making. 

The limitation of forward search is the exponential complexity in the planning 

horizon, at least for naïve breadth-first search. If each node has   children at each 

step,  -steps forward will generate                
      

 
 nodes. This 

approach is not suitable for making long-term plans. The computational complexity 

can be further reduced by scaling down the number of samples for calculations 

further down the tree, which has less effect on the topmost values due to the 

discount factor   [12].  

A number of authors reduce the computational complexity by expanding actions 

in a more narrow sense, using a search algorithm such as AO* [58], where the 

nodes are divided as ―and-node‖ (combine the values of children nodes) and ―or-

node‖ (only the highest value among children nodes are kept) in order to calculate 

their values and propagate the change to parent nodes. For AO* to be effective, a 

good heuristic, for example the heuristic function designed for some special problem 

[57], is required to estimate the value of un-expanded nodes. In our research 

scenario, the robot only has an occupancy cell map, and the obstacles or damages 

are not known exactly. As a result, a good heuristic is unavailable for general 

situations. 

These uncertainty-aware heuristics are an improvement over simpler heuristics, 

but also have some shortcomings [12]. Each method makes the optimistic 

assumption when it makes a plan, and expects no re-plan happens again. In fact, 
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the path of plan/re-plans in uncertain environments is not same as the robot actually 

travelled route. The re-plan may be launched at any waypoints in the planned path. 

The actually travelled route is a combination of the partway of plan/re-plans, which 

means that the planner only evaluate part of the travelled path, not the entire 

travelled path. 

2.4.2 Graphical POMDP Models 

POMDPs are often described using graphical models [59]. An example is shown 

in Fig. 10:   is the state node,   is the observation node,   is the decision node 

(where we select an action); the shaded nodes are observable, while the un-shaded 

state nodes are hidden; the rewards are omitted for clarity; the graphical POMDP 

model shows how a joint probability distribution over all states, actions, observations, 

and the decision nodes can be factored into smaller conditional probability 

distributions [59]. This section reviews the authors‘ works based on this type of 

model. 

 

Fig. 10 Two time-slices of the POMDP problem, using a graphical model [59]. 

Inference in graphical models is often achieved by fixing the values of certain 

nodes (usually the observable variables), and then applying an inference algorithm 

to determine distributions over variables of interest. Attias proposes a novel 

approach using general graphical model theory to solve POMDPs [60]. Actions are 
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written as random variables. If the maximum depth of the graphic searching tree is 

  time-steps, the  -th state is fixed to be the target state, and the first observation is 

fixed. Assuming a prior distribution over the (assumed random) action variables, 

standard inference algorithms can then be applied to find the Maximum A Priori 

(MAP) sequence of actions [60]. However, the prior action distribution may not be 

available in the real world to find the actions. One possible extension is to replace a 

single target state with some general reward function, which can be calculated in the 

planning process. By casting the problem as an inference problem in a graphical 

model, a powerful and general inference algorithm can be designed based on 

graphical search algorithms [60]. This planning process extends the searching 

inferences to all possible directions, and the leaf nodes provide the basic reward 

values for these inferences. In the real world, the maximum depth of the searching 

tree cannot easily satisfy both the shortest solution and the calculation limitation. 

2.4.3 Node Clustering Algorithms 

Node clustering in POMDP spaces is discussed in many papers, which aim to 

decrease the number of nodes in the belief space [61][73]. Node clustering 

algorithms make decisions with fewer belief nodes, by putting the main calculation 

on decreasing the degree or dimension of the belief space. Eventually, the solution 

in decreased belief space will be transferred back to the original belief space for the 

agent to execute. Its computational complexity obeys        , where   is the node 

number before clustering,   is the dimensionality of each point,   is the number of 

clusters, and   is the number of iterations required for clustering [113]. 

Li [61] proposes an algorithm for off-line planning by clustering belief states based 

on the Euclidean distance between two nodes in the belief space. He proposes a 

belief space compression and node clustering algorithm in [62]. Rens [63] proposed 

an algorithm for online planning by clustering the belief nodes based on the states‘ 
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distance in POMDP state space.  Oliehoek [64] identified a criterion that allows for 

lossless clustering of observation histories (cluster more nodes with longer distance), 

and speed-up the planning process (empirically, at least 42% faster for horizon 

   ). 

These clustering algorithms for POMDPs can be used in other POMDP 

approaches. One example is for heuristic algorithms, proposed by the authors in 

[65][66][67], which focus on the belief search space and eliminate searching 

branches over unreachable or improbable belief states. Another example is for 

POMDP compression algorithms by clustering nodes, proposed by the authors in 

[68][69][70]. They construct a policy space on the lower dimensional belief space, 

which is created by the belief nodes clustering operations. Then, they make a 

planning in the policy space and ‗reinstate‘ the policies for the original belief nodes. 

The degree that a belief space can be compressed depends on the redundant 

space of the problem model. If the belief space is compressed too small, the result 

will be inaccurate. If we want an accurate result, the compressed belief space 

should have many belief nodes. It is not easy to define a compress model for 

general situations. Therefore, these authors define the compress operations based 

on the POMDP model of different problems. 

This kind algorithm provides a research direction to decrease the computational 

cost of POMDP algorithms. We will propose a strategy based on this idea to reduce 

the computational cost of our proposal in Chapter 4. 

2.5 Discussion 

In this chapter, we introduced the problem of visiting targets as quickly as 

possible to locate missing survivors in an uncertain environment. The targets are 

given by the rescue team members and a group of robot will be sent to visit them. 
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We introduced the basic concepts and terminology of the MDP and the POMDP, 

which can be used to represent our research problem. The current mathematical 

models, strategies and algorithms proposed by different authors to solve the 

POMDP problems have been introduced in this chapter. These algorithms compare 

different paths/solutions and find the best one among them based on the 

representation of the uncertain environment. 

However, the single shortest solution does not guarantee that the actual path 

travelled by the robot is the shortest, because the later plan may deny the current 

shortest plan. For example, the robot is moving toward the west along the current 

plan, but the later re-plan has a high probability to ask the robot to move back (move 

toward the east), because the west direction is blocked completely by new found 

obstacles. Then, the robot actual travelled route in CMP is far away to be the 

shortest route. 

Therefore, these algorithms have one important limitation: they only compare the 

single planned path/solution, but ignore the effect of the re-plans in CMP. In 

uncertain environments, the evaluation cannot avoid unexpected obstacles (which 

will block the planned path) completely. The robots have to make several re-plans at 

some random positions in CMP, until they reach the target. The total time to 

complete the mission includes the total travelling time and the total planning time. 

The routes that the robots actually travelled are a combination of the partway of re-

plans, which are different with the planned path in plan/re-plans. These routes 

decide the total travelling time. More re-plans increase the total re-planning time of 

the complete mission time. Therefore, the planner should make a trade-off between 

the total travelled route and the possible re-plan numbers in CMP. We have to add 

evaluation of the path length and the re-plans into the planning process until the 

problem is solved. 
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The difference in our research is that we seek the shortest path/solution for the 

entire CMP. On one hand, we want the route that the robot actually travelled to be 

the shortest. On the other hand, we want the lowest re-plan probability. We find that 

if the possible shortest paths are clustering in some areas, we can find the path with 

the optimal trade-off between the path length and the re-plan probability. 

In the next chapter, we introduce the PD Planner. 
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3 Path Planning in the Presence of Uncertainty 

This chapter proposes an algorithm to solve the problem of path planning in an 

uncertain environment in the following scenarios: 

1, We only have one robot and one target location (given by the rescue team). 

2, One robot will move from its start position to target position in an uncertain 

environment. It may take many re-plans before the target position is reached. 

The task is to make the robots move through the uncertain environment efficiently. 

Therefore, we should add the effects of uncertainties and the possible re-plans into 

the planning process, when we consider this planning problem. 

3.1 Introduction 

Our research problem is simplified as: how to plan a path in OC map     for robot 

to reach its target, as illustrated in Fig. 11. We assume that the robot moves at a 

constant speed, in order to describe the paths more conventiently and compare 

them exactly based on their grid cells‘ coordinates.  

targetstart

How to find a path
 

Fig. 11 Path Planning problem in an uncertain environment for a robot. 

The path is planned in the OC map     for the robot to reach its target cell. The 

clustering value of the belief node is the path distribution value in PD Planner 

algorithm, which will be introduced in the following section. 
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We use 2-dimensional environment to illustrate the planning algorithm. However, 

the algorithm can also work in 3- dimensional and higher dimensional environment. 

The paths are evaluated in terms of the path length in our research, so the optimal 

path has the same meaning with the shortest path. 

3.2 Path Planning in Known Environments 

A* is one of the most widely used path planning algorithms to plan a path in 

known environments [38], which uses a heuristic to estimate the future cells in the 

searching tree. Based on the cell heuristic value given by the heuristic function, the 

cells with the shortest estimation length to target will be searched first, like Fig. 12. 

 

Fig. 12 A* algorithm searched area (cycles) and planned path (yellow line). 

    The A* algorithm defines the path estimate length function         as follows: 

 (    )   (    )          

where      is a cell with coordination of      ,         is the actual cost of the 

shortest path from the start cell to cell     , and         is the actual cost of the 

shortest path from cell      to the target cell [74]. The A* searching process can find 

the minimal value of         by comparing all paths between start cell and cell     . 

(12) 
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However, we use  ̂       to estimate         in reality, because we do not know 

        before the searching process reach the cell     .  ̂       is called as the 

heuristic function. Hart [74] proved that, if  ̂       is a lower bound on        , the 

shortest path is guaranteed to be found. Based on the A* value function, the 

shortest path has the lowest value        . 

By choosing the next cell      with the lowest value         in the searching 

process, the most likely cells to reach the target cell are searched first. This is the 

reason why few cells are searched in Fig. 12. 

However, the performance of A* heavily depends on the heuristic function  ̂      , 

which will add additional calculation to the searching process in order to extend the 

searching tree to the most hopeful directions of reaching the target. If the heuristic 

function is guaranteed to be less than, or equal to,   times the actual distance to the 

target cell (  is a real number), the found path is guaranteed to be no more than   

times longer than the actual shortest path [38]. Here, A* algorithm requires    . If 

it is not very important to find the actual shortest path, we can set         

depending on the requirements and the pre-known conditions of different 

approaches [38]. In the worst case, the searching tree will cover all cells of the map, 

which means that the heuristic function cannot decrease the size of the searching 

tree. Generally, researchers define different heuristic functions for different 

applications, in order to effectively reduce the size of the searching tree and make 

the searching process faster [38]. For example, Buniyamin discussed about the 

Euclidean distance heuristic function in [103], and Dolgov proposed a hybrid A* in 

[104] to combine the non-holonomic heuristic and the 2D Euclidean distance 

heuristic to goal. In our path planner, the Euclidean distance heuristic function is 

used as A* heuristic. The reason is that our algorithm is suitable for 2D and higher 

dimensional environments. 
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The pseudocode for the A* algorithm, with distance heuristic function, is shown in 

Pseudo-code 1. 

Pseudo-code 1 A* algorithm 

 

The pseudo code above uses   and   to denote graph nodes, which is the grid 

cell      in a certain map. The D* [39] or D*-lite [96] algorithms reuse the former A* 

searching tree to re-plan a new path for a robot to move in an uncertain environment. 

3.2.1 Rapidly-exploring Random Tree (RRT) 

A* is not suitable for solving the high dimensional space path planning problem in 

a short time, because its searching step is short and there are still many nodes in 

the search tree. So, researchers proposed the RRT algorithm to construct a search 

tree with less nodes and longer distance between two neighbour nodes. RRT 

algorithms are designed for searching high dimensional space fast. The same as A*, 

it can be used to solve MDP problems. 

RRT uses the robot start position as the root, and expands the branches toward 

the target until the target is added into the tree, or the limitation (like the max node 
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number) is reached. A typical RRT search tree looks like Fig. 13, where the black 

blocks are obstacles and each node indicates a small collision-free area around it. 

Because each node is randomly sampled, many places in the map are not covered 

by the tree. In A*, we extend nodes from the current node to its near-by neighbours 

in the grid cell map. But in RRT, we sample nodes from the original grid cell map, 

and set up their connection (generally connect to the nearest nodes) to construct a 

roadmap tree. Then, A* will search through this roadmap tree and find a solution. 

The researchers focus on how to sample and construct this tree effectively. For 

example, increase the number of sampled nodes around obstacles and use different 

length limitation among sampling points. 

The main advantage of the RRT is that the nodes of the search tree are less and 

it can be applied to a high-dimensional space. However, it has one important 

shortage: there might be a path existing, when the RRT algorithms find ―no path 

existing‖. 

 

Fig. 13 An example of RRT: random nodes and their links [75]. 

3.3 The Path Distribution (PD) Map 

    In this section, we will introduce an algorithm to find a path for the robot in an OC 

map.  
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3.3.1 Definition and calculation 

In our research, we find that the possible shortest paths in an OC Map tend to 

cluster in some areas. Therefore, we cluster these possible shortest paths to grid 

cells. We define the Path Distribution (PD) Map to record this cluster. 

Given the occupancy cell map    , we randomly draw a large number of samples 

of map instances   . The shortest and collision-free path     
   is constructed on 

  , which is computed using a suitable path planning algorithm in a certain 

environment. The path distribution is the probability of a possible shortest path going 

through a cell     , written as         . Marginalizing over the map instances, its 

value is given by 

  (    )  ∑ { (       ( 
 )|  ) (  )}

    

 

where       is the probability that map    is the actual description of the 

environment. In our research, we use the A* path planning algorithm to compute the 

path given a map realization. However, any algorithm that can find the shortest path 

can be used here. 

A* is a deterministic path planning algorithm, and we have 

 (       ( 
 )|  )  {

                     ( 
 )

                                      
 

    The PD Map is estimated using the Monte Carlo Sample strategy, as 

introduced in Chapter 3. We compute the probability in a similar manner to that 

proposed by Murphy [76]. A set of possible paths                where    | |. 

         is evaluated by summing the number of paths which pass through each 

cell, then dividing by  . The pseudo code of the algorithm is as shown in Pseudo-

code 2. 

(13) 

(14) 
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Pseudo-code 2    Compute Path distribution function 

 

The PD map records where the POSs are likely to cluster. It is different with the 

Kearns‘ expectation map [56], which records the estimated travel costs in an 

uncertain environment. 

In PD Planner, we use A* to find the shortest path on   . If the algorithm, like 

RRT, would like to find the sub-shortest path and cannot guarantee to find the 

shortest path on   , the path clustering may not be shown clearly in PD Map. The 

examples of PD Maps based on A* will be shown in the next section. 

3.3.2 Examples of PD map 

In this section, we illustrate the PD map examples based on the OC map and 

different start and target position pairs. An example of OC Map is shown in Fig. 15, 

where there are many corridors and the darker cells have higher probabilities of 

being occupied, which increase the uncertainty of the corridor. This map is based on 

the floor plan of the Yale Law School 1st Lefel Plan Map [77] (see Fig. 14), because 

it is a challenging example of a map in which there are many narrow corridors and 

alternative routes. We use the image convolution blur matrix to make the grid cells‘ 

states vague, which can be used to simulate damages. This operation is introduced 

in [78][79], which can generate the effects of shaking the building to create the OC 

map. The grid cells closer to the known wall will have the higher occupancy 

probability. The pseudo code is shown in Pseudo-code 3. 
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Pseudo-code 3 The Image Convolution function 

 

To simulate an uncertainty environment, the floor plan was convolved with a 

kernel, and all cells‘ occupancy probabilities are bigger or equal than 0.1. 

Furthermore, deliberate regions of high uncertainty (increase to 0.3) were inserted to 

simulate where existing routes could be blocked. These cells were placed in the 

channel around coordinate (120,120), Fig. 15. 

 

Fig. 14 The building plan map of Yale Law School 1
st

 Lefel [77]. 
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Fig. 15 The blurred OC map of Fig. 14, with a high occupancy area(red ellipse) 

For each algorithm of A* and RRT, we demonstrate two PD Map cases with 

different start and target position, as shown in Fig. 16 and Fig. 17. We could see that 

the clusters in the RRT (1000 tree nodes) PD Map are more loose compared with 

the A* PD Map. The background in these two figures is the building map. The darker 

cells have higher probabilities   to lie on a path. In the centre area, figure (a) has 

more branches than figure (b) in Fig. 16 and Fig. 17. We use capital letters to mark 

the key positions of the branches. 



59 
 

 
(a) 

  
(b) 

Fig. 16 The estimated path distributions based on 3000 map instances (A* paths). 
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(a) 

 
(b) 

Fig. 17 The estimated path distributions based on 3000 map samples(RRT paths) 
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It is clear that there is a natural clustering of several alternative routes, in Fig. 16 

and Fig. 17. For example, in Fig. 16 (a), the paths between A and B are mainly 

clustering to A-C-D-E-B and A-G-H-J-F-B, the main branches appeared at C-D, E-B, 

J, and the low clustering routes locate among points C-G-H. There may be two main 

reasons that the wide area C-G-H shows less clustering: 1) uncertain obstacles 

construct many corridors to separate paths into different locations; 2) the shortest 

paths in this area are too sensitive to cluster in a small area. These indicate that the 

robot passing through the area C-G-H will jump among different possible shortest 

paths and increase the actual travelled route length. 

The paths planned by A* and RRT have similar clustering phenomena, but RRT 

loses some branches (so we prefer A* in our planner). For example, the clustering 

routes F-G-E is found by A* in Fig. 16(b) but cannot be found by RRT in Fig. 17(b). 

The clustering route F-D is clearer in Fig. 16(b) than in Fig. 17(b). The RRT cannot 

guarantee to find the shortest path in these randomly sampled certain environments. 

Therefore, the lack of shortest paths leads to lack of clustering branches. These 

pictures show the strong structure of clustering routes which typically exists in these 

environments. The cluster in PD map will guide us to plan a path for the robot. 

3.4 Planning the Path with the PD Map 

A known obstacle marked in a map can be avoided by a path planner. However, 

the obstacles‘ positions are not known exactly when the environment is uncertain. 

Therefore, the obstacles are not always avoidable by the path planner. Based on the 

PD Map, we will find the path in the high clustering areas to avoid obstacles and 

reach the target by travelling the shortest route. 

Given a belief state  , its child belief states (direct neighbours) are             . 

The child belief state             corresponds to cell coordinate      . One choice 

would be to use the path distribution probability of the cell             as the reward 
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value of the state. Then, at each grid cell (belief node), we can simply use the 

greedy algorithm to select the action which leads to the child state with the highest 

reward among children states. However, this greedy decision, like algorithm QMDP 

[43], will not generate the globally shortest solution in CMP. Therefore, we use the 

wide-first search algorithm to plan a path for the robot. 

We call the algorithm PD Planner. The PD Planner seeks the path,  , that 

connects the start cell and the target cell by getting the maximum evaluation among 

the candidate paths. More formally, the goal is to find the path   such that 

         
 

        

where       is the distribution of the possible shortest paths along the path  ,  

defined to be: 

        (    
 )  (    

 )        
   

Because   (    
 )   , in general the longer the path   is, the smaller       will 

be.  For numerical stability we find the path which minimizes the negative log 

likelihood 

         
 

{ ∑   (  (    
 ))

 

   

} 

    The pseudo-code for the searching process of the PD Planner is shown in 

Pseudo-code 4. 

(15) 

(16) 

 (17) 
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Pseudo-code 4    Path Planning function based on the Path Distribution Map 

 

The searching process evaluates the possible branches and extends those most 

hopeful branches at each step until the target is reached. This is a typical width-first 

search algorithm, like the Dijkstra algorithm based on PD Map. In the PD Map, the 

path distribution value can be seen as the travelled cost from start cell. Therefore, 

this searching process differs from the A* algorithm, which uses      , where   

is the travelled cost from start and   is the estimated heuristic value to target (  and 

  are different for most cases). 

For estimating PD Map, the PD Planner will sample   map instances based on the 

OC Map. Therefore, the computation cost of the PD Planner is about   times of the 

A* computational cost. We will discuss more details of the computational cost of PD 

Planner in Chapter 4. 
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3.5 Experiment results of different path planning algorithms 

The path planned by PD Planner lies in the high clustering areas of the possible 

shortest paths. The possible shortest paths clustering in these areas could be the 

candidate paths for possible re-plans. This is why the PD Planner can provide a 

better solution for the Complete Mission Process (CMP). 

In the experiment, we compare three different path planning approaches, which 

show three typical ways to deal with the uncertainty. These algorithms are: the 

Threshold A* path planning algorithm [38], the entropy-based path planning 

algorithm [18], and the PD Planner.  

3.5.1 Additional Descriptions in Simulator 

In this section, we describe our simulator for single robot and one target cases. 

The multi- robot and several targets cases will be described in section 5. 

Our simulator uses the POMDP model and constructs a network structure of the 

belief nodes, which may be empty, holding an obstacle or a missing person. The 

robot can fly from one belief node to its immediate neighbour belief nodes. In two 

dimensional environment, we give each belief node a coordinate, so we can use 

     to represent the belief node   at the coordinate      , as described in sections 

above. We can use      or   to describe the robot position. 

The node    is the initial belief node and the node         is the target belief node 

where the survivor might be found. The planning problem is to find the shortest 

belief node sequence to reach the belief node         from the initial belief node   . 

The robot can move to any direction freely. For a 2D map, we limit its action set to 

8 actions: up, down, left, right, up-left, up-right, down-left, as well as down-right. 

These actions correspond to the movement of the robot from one node to one of its 

immediate 8 neighbours, as shown in Fig. 18. 
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Fig. 18 Eight actions for a robot to move to its immediate neighbours 

In our research, the robot uses the belief node structure to represent the uncertain 

environment and to make a plan. Therefore, the value function       of the POMDP 

is defined on the belief space   and is calculated for each belief node  . The value 

is used to compare and decide which belief node is the best one to move next, and 

we can compare different sequences of belief nodes with their values. In Section 2.4, 

the different algorithms are introduced to act as the value function, calculating the 

value for each belief node  , and making decisions of moving robot toward target 

       . These value functions are the main differences of various research. For 

example, the heuristic algorithm A* defines the evaluation function as      , 

where   is the path length from start to current position and   is the heuristic path 

length from current to target position. 

Each robot has a limited detection distance, which can be adjusted in our 

simulator. However, the cell behind an obstacle cannot be detected by a robot. The 

robot can update part of its belief node structure based on its on-board sensor 

measurements, for possible re-planning in the CMP. 
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3.5.2 Thresholded A* 

A* is a path planning algorithm in a certain environment. Former researchers use 

a threshold to transfer uncertainty to certainty and adjust the old A* searching tree to 

make a re-plan faster [39][96]. If the robot is blocked along the former planned path, 

a re-planning will find a new shortest path based on the updated OC map. The A* 

cannot guarantee that the robot travelled path is the shortest  from the point of the 

CMP, sincethe actual travelled path is the combinations of the partway of the initial 

planned path and all re-planned paths. 

The A* planner uses a threshold   to decide whether a cell will be treated as 

empty or blocked: 

     {
  (      )   

                      
 

  The certain map, recording the obstacles‘ exact positions, constructed from   

is equivalent to assuming a particular map realisation. Higher value of   means 

higher risk, but the planned path length is shorter. It is hard to find a value of   to 

make sure that the obstacles‘ positions are similar to the actual states of the real 

environment. So, this algorithm is hardly to avoid the re-plans and decrease the 

actual travelled path length at the same time. 

    As the threshold increases, the algorithm will regard progressively more and more 

cells as if they were open. Although this means that there is a higher probability that 

the algorithm will discover a path if it exists, it also tends to pursue paths which have 

a very high probability of being blocked. Conversely, as the threshold value is 

reduced, the algorithm regards more and more cells as being occupied. This means 

that the algorithm will tend to find fewer paths, but the probability that those paths 

are open will be greater. Although we have tested with a range of parameter values, 

in this thesis we present results for                , these values are selected for 

situations from low risky to high risky based on the OC map. 

(18) 
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3.5.3 Entropy-guided path planning 

The entropy-based path planning algorithm [18] takes the local uncertainty, 

quantified through entropy, into account. It focuses on the information acquisition (to 

decrease the uncertainty) along a single path from start to target locations. 

The standard entropy definition to measure the uncertainty of a probability 

distribution   over a domain   is: 

      ∑            

   

 

Information obtained is the change in the entropy of the distribution as a result 

of the mutual information measurement   obtained from an action, or observation: 

   |           |   

Burns [18] evaluates and plans a path in an uncertain environment based on 

the change of uncertain information. When a robot moves, it can collect information 

along the path to direct further exploration [18]. For each searching step, Burns 

computes    |   with the assumption that the step is reachable. Burns prefers to 

minimize entropy distribution of the candidate paths [18]. 

The shortage of the entropy based algorithm is the local minimal trap, because 

the lack of the global measurement. 

3.5.4 The Maximum Collision-free Probability Planner 

We design a path planner, called as the MaxProb Planner, which only finds the 

path with the highest collision-free probability in uncertain environments. The 

MaxProb planned path   can be defined as: 

        
 

{ ∏ [   (    )]

      

}        
 

{ ∑         (    ) 

      

}  

(19) 

(20) 

(21) 
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The MaxProb Planner has the same searching process as the Dijkstra algorithm, 

except that it uses the collision-free probability (ignore the path length) to evaluate 

the candidate paths. For numerical stability, the MaxProb Planner finds the path 

which minimizes the negative log likelihood, as shown in (21). 

There are three ideas to count the collision-free probability of the diagonal move, 

in the MaxProb planner. For example, in Fig. 19, the robot moves from the cell 4 to 

the cell 2. One idea is to multiply the collision-free probabilities of these four cells (in 

this case no diagonal movement will be planned). The second idea is to multiply the 

collision-free probabilities of the cell 1, cell 2, and the average collision-free 

probabilities of two neighbour cells (cell 1 and cell 3). The third idea is to ignore the 

two neighbour cells‘ occupancy probability. Here, we define the MaxProb planner 

with the third idea. 

  

Fig. 19 The MaxProb diagonal movement example. 

The reason that the MaxProb Planner does not count the cell 1 and the cell 3 is: 

the PD Planner does not count the neighbour cells‘ clusters for the diagonal 

movement in the PD Map. The possible shortest paths clustering in these two 

neighbour cells can be seen as the candidate possible shortest re-plan paths to 

overcome the obstacles along this diagonal movement. But the MaxProb Planner 

does not count the re-plans. 

When we design the PD Planner, we find that a path   has a probability       to be 

a collision-free path and a probability         to be the shortest path in the real 
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environment (although we do not know the cells‘ states of the real environment). 

These two probabilities have the relation:             . A path has the highest 

collision-free probability may have the lower probability to be the shortest path. 

Therefore, if the highest cluster area in the PD Map is far away to the highest 

collision-free path, the MaxProb Planner will not as good as the PD Planner. For 

example, the Fig. 23 shows the high clustering areas and the MaxProb Planner 

planned path shown in Fig. 24 is not lying in the high cluster areas. 

Additionally, the MaxProb Planner ignores the path length and does not count the 

re-plan situations. These reasons make the different performance between the 

MaxProb Planner and the PD Planner. 

3.5.5 Local Re-plans Strategy in Experiment 

The PD Planner is a global path planning algorithm, but it can be used in local re-

planning (plan a path based on the sub-map around the robot current position to 

overcome the local obstacle) as well. The local re-plan is a strategy to re-plan a path 

faster, suitable for all algorithms described in this thesis. It plans a path based on 

the sub-map around the robot position, in order to re-connect with the former 

planned path from the blocked point. It assumes that the last planned path is just 

blocked by a small obstacle. Therefore, the local re-plan cannot guarantee to find 

the global shortest path. 

The local PD Planner re-planning uses a smaller OC map which can be applied 

for the cases that the clustering channel is not blocked completely. For example, in 

Fig. 20, the red cloudy area shows a local re-plan area, which is a small part of the 

map. The blue solid line A-C-D-F-E-B is the planned path. The local re-plan 

assumes the planned path is blocked locally, and its planning aims at re-connecting 

with the planned path. If the path is blocked at D-F, we can make a re-plan within 

the red cloud area, where the ―stream‖ of alternative paths is available to reconnect 
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with the path segment E-B. The blue dash line D-G-E-B is the local re-planned path 

in Fig. 20. 

 

Fig. 20 The solid line: the planned path. The dash line: re-planned path. 

 

3.5.6 The Experiment Results of the Monte Carlo Test 

The test scenario consists of the following. First, a planner was presented with a 

nominal OC map which was constructed using prior information. The planner 

computed an initial path. The platform then executes its mission. The robot flies to 

each waypoint in the planned path. As it fly, it uses an idealized mapping algorithm: 

the sensors detect the nearest obstacles around the platform within a short distance 

(currently is 5 cells, and it can be changed to any integer in our simulator), and the 

sensor data is used to update the sub-map around the robot. Therefore, the global 

map   is updated gradually as the robot moves. When the platform encounters a 
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cell which blocks the currently planned path, the path planner is executed again 

using the updated map information. If the path planner has the local re-plan 

interface, the simulator will employ the local re-plan function first. If the local re-plan 

cannot find a path, the simulator will call the global re-plan function of different 

planners. Currently, we have not implemented the re-plan strategy based on the 

new gap in the updating OC Map, which is one of the possible future research 

interests. 

We compared the performance of three algorithms: the A* algorithm using a 

threshold OC map [80] (as explained in section 3.5.2), the entropy based path 

planning algorithm [18] (as explained in section 3.5.3), and the PD Planner. The 

metrics we recorded were: the time required to complete a scenario, the travel 

length, and the number of re-plans. The performance of each algorithm was 

assessed in terms of average path length, computational time, and probability of 

reaching the target. These results were computed over 3000 Monte Carlo runs, in 

which each run has a randomly sampled true map (the obstacle positions‘ 

probabilities obey the OC Map) for simulator to decide the robot collision correctly. 

The robot uses different algorithms to plan the path based on its OC Map. The 

shortest paths in these sampled true map instances are randomly distributed, and 

the average length of these shortest paths is 215.46. 

In Fig. 21, we show the cumulative probabilities of different algorithms when the 

robot reaches target at each travelled length. We can see that, in the most  of the 

cases, the PD Planner causes the platform to travel a significantly shorter path than 

the entropy algorithm, and the entropy algorithm produces a shorter path than A* for 

all choices of the threshold parameter. The reason is that the PD Planner exploits 

the global uncertainty information; the entropy algorithm only exploits local 

uncertainty information, and the A* algorithm exploits no uncertainty information at 

all. These results are validated in Table 1, which shows the average and standard 
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deviation of the travel times and also shows that the PD Planner has a significantly 

smaller standard deviation. 

 

Fig. 21 The cumulative probabilities of different algorithms at each path length. 

We expect the robot to travel the shortest length when it reaches the target. The 

significance of the probability to reach target can be considered at each travelled 

length. The shortest possible path length is 183, shown in Fig. 22. But, this shortest 

path going through a low path distribution passage, see the OC Map in Fig. 23 (the 

low path distribution area is below the point D). Its location indicates that it is not the 

shortest path in most possible instances of the real environment. That is the reason 

why the A* planner robot can get about 0.04% probability to reach target at this path 

length. However, if the path is blocked, the robot has to fly back down the shortest 

path and pursue the next shortest path. This will lead to the large jump in the path 

length. 
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Fig. 22 The shortest path whose length is 183. 

 

Fig. 23 The low Path Distribution below point D, (background is OC Map) 
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Fig. 24 The MaxProb planned path is not lying in the high cluster areas of the PD Map (Fig. 23). 

 

Table 1 The average length and standard deviation of Fig. 21. “Local 150P” means that we use 

150 particles for local re-planning. 

Algorithms Avg Length Standard Deviation 

A*,       509.2773 131.0747 

A*,       492.162 135.2005 

A*,        490.148 149.0865 

Entropy 466.0447 135.0181 

PDPlanner 10Particle 386.9380 115.6397 

PDPlanner 50Particle 371.0313 112.8375 

PDPlanner 100Particle 365.8473 111.6878 

PDPlanner 300Particle 361.1553 109.3952 

PDPlanner 300P,Local 150P 371.4227 110.5571 

MaxProb 418.3893 95.0450 
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The highest cluster area in the PD map may only cover 40% of all possible map 

instances, while second high cluster area covers 30% and other cluster areas cover 

30% all-together. The bigger particle can estimate the PD Map more accurate. This 

is the reason why the deviation in Table 1 decreases as the number of particle 

increases. 

The analysis so far has hypothesizedthat the nominal and actual occupancy maps 

are the same. However, it is hard to compute the occupancy probabilities accurately. 

To examine the impact of these errors, we repeated the experiment. However, the 

actual occupancy map was computed by perturbing the nominal occupancy map. 

Specifically, the actual occupancy map is given by 

       (      )      (      )              

where      is a uniform random variable drawn in the range [0,1]. The value of 

       (      ) was clamped to lie in the range [0,1]. We investigated the results 

for the cases when       and      . The results are shown in Fig. 25 and Fig. 26 

respectively. Despite the large errors in the nominal occupancy map, the PD 

Planner still produces the shortest path. Table 1, Table 2 and Table 3 show the 

average and standard deviation of the lines in Fig. 21, Fig. 25 and Fig. 26, 

respectively. We can conclude that the PD planner can get a higher probability to 

reach target within a more condensed travel length than others, although the 

average path length of PD Planner increases as the occupancy probability error 

increases. 

(22) 
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Fig. 25 : The cumulative probability of the actual travel path length for       . 

Table 2 The average length and standard deviation of the paths in Fig. 25 

Algorithms Average Length Standard Deviation 

A*,       480.0795 120.4837 

A*,       434.7765 104.1231 

A*,       480.7590 123.9443 

Entropy 445.5380 144.4400 

PDPlanner 10Particle 431.9455 139.4256 

PDPlanner 50Particle 405.2715 120.1786 

PDPlanner 100Particle 402.6400 116.6115 

PD Planner 300Particle 397.9580 109.9135 

PDPlanner 300P, Local 150P 410.6500 118.2655 

MaxProb 461.9740 143.3752 
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Fig. 26 The cumulative probability of the actual travel path length for        

Table 3 The average length and standard deviation of the paths in Fig. 26 

Algorithms Average Length Standard Deviation 

A*,       525.9680 124.1112 

A*,       490.9960 152.7526 

A*,       358.7960 173.6503 

Entropy 466.6490 144.464 

PDPlanner 10Particle 487.1890 142.3330 

PDPlanner 50Particle 385.9250 127.7427 

PDPlanner 100Particle 370.4900 118.0775 

PD Planner 300Particle 365.4680 111.9697 

PDPlanner 300P, Local 150P 381.2160 117.7380 

MaxProb 442.4190 88.3116 
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The average number of times a path has to be re-planned is shown in Table 4. 

Re-planning occurs when a path is blocked. On average, the PD Planner has to re-

compute paths significantly less frequently than the other algorithms. 

Table 4 The average re-plan numbers of different algorithms when the nominal and actual 

occupancy maps are the same, and when they differ 

Algorithms Original             

A*,       65.664 54.093 68.630 

A*,       52.194 52.763 59.791 

A*,       46.531 50.930 54.725 

Entropy 48.560 52.310 56.568 

PDPlanner 10Particle 38.429 48.455 58.383 

PDPlanner 50Particle 35.702 41.416 42.145 

PDPlanner 100Particle 35.004 40.596 39.422 

PD Planner 300Particle 34.434 40.419 38.300 

PDPlanner 300P, Local 150P 36.567 43.578 43.981 

MaxProb 30.0760 32.8505 36.0370 

 

3.5.7 The effect of Particles for PD Planner 

We look at sampled true maps as the points in the Monte Carlo Sampling Space. 

So, each sample is a particle in the space. More particles provide a more accurate 

PD map for the PD planner to find the path, but it will also increase the 

computational cost. The number of particles is linearly related to the computational 

cost, see Fig. 27. In the following experiment, we use four different particle sizes (10, 

50, 100, 300) for PD Planner with different occupancy probability errors in OC map. 
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Fig. 27 Running time for the PD Planner with different numbers of particles. The         error 

means: the occupancy probabilities of cells in OC Map for PD planner have a          error. 

To sample one map instance, the states of all   grid cells in OC Map are sampled 

based on their occupancy probabilities, respectively. We run A* to find the shortest 

path in each map instance, whose complexity obeys      . The PD Planner uses   

particles to estimate the PD map. To plan a path based on the PD Map can be seen 

as a Dijkstra searching process, in which the evaluation   is replaced by the path 

distribution value      . In the worst case, Dijkstra will visit all nodes in the map to 

construct the searching tree. So, its complexity obeys     . Therefore, the PD 

Planner calculation cost can be rewrite as 

                                        

 

3.6 Summary 

In this chapter, we assume that there is only one target for one robot to go. We 

focus on how to plan a path to travel efficiently in uncertain environments. It is the 

basis for our later research. 

(23) 
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The PD Planner is an approach to solve the path planning problem in an 

uncertain environment. The clustering value is the path distribution probability of the 

cells in PD map, which indicate where the paths are likely to go. The exact path 

distribution map is very difficult to calculate, so we estimate the PD map instead.  

We compare the actual travelled length of the robot with the PD Planner and 

other typical algorithms in uncertain environments. 

    One important shortage of PD Planner is that its computational cost        is 

higher than other algorithms. In the next chapter, we will analyse the computation 

cost of the PD Planner, which will increase fast when the particle number increases. 

Therefore, we introduce two ways to reduce the computational cost. In Chapter 6, 

we will extend PD Planner to the scenario of one robot to visit multiple targets, 

meanwhile the multiple robots visit multiple targets. 
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4 Reducing the Computational Cost of PD Planner 

4.1 Introduction 

In order to estimate the Clustering Value (CV) Map, we need to sample many 

possible map instances and find the POS in each of these map instances. This 

operation job requires lots of time to compute the result. In this chapter, we will 

develop two strategies to reduce the computational cost of PD Planner. We analyse 

where the extremely expensive computations come from and propose two strategies. 

The first, called Sampling in Planning Process (SiPP), performs lazy sampling within 

the planning algorithm of itself. It is a very simple strategy, but it has a surprising 

impact on the performance of the algorithm. We call the second the Hierarchal PD 

Planner that performs dimensionality reduction by decomposing the environment 

into homogeneous regions. 

The PD Planner will be used as an implementation example to illustrate how these 

two strategies work. We show that these approaches can reduce the computational 

costs with minimal loss of performance. 

The PD Planner shows that the more particles   we sample, the more accurate the 

PD Map and the better the performance will be. However, more samples require 

more calculations. If   samples are drawn and we use A* to find paths in sampled 

map instances, the computational cost is 

                                     

This equation is the same as (23). The first      term arises from the 

sampling of     to get   .        is the cost of the worst case in A* algorithm 

finding a path in    [38]. The final      term arises from planning with the PD Map. 

Since   is typically large, the computational cost is dominated by the first two 

terms. This analysis suggests that two strategies should be pursued – the first is to 

(24) 
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reduce the computational cost of sampling the map instances and the second is to 

reduce the overall dimension of the map. 

To test the time budget of each part, we use the PD Planner to do the following 

experiment. We select the OC Maps with different sizes, from 50*50 to 300*300 grid 

cells. For each size, we randomly generate 5 different OC Maps (randomly generate 

a blurred map just as we did in Chapter 4). The start and target cells are located at 

top-left and bottom-right corner, or at top-right and bottom-left corner. The PD 

Planner uses 300 particles to estimate the PD Map. We run 1000 times for each 

map to get the average time budget (sampling, running A*, planning with PD Map) of 

the original PD Planner. The experimental result is shown in Fig. 28, in which the 

―Original‖ means no strategy to decrease the computational cost of PD Planner. 

Here, ―OriginalSample‖ corresponds      , ―OriginalAStar‖ corresponds       , 

―OriginalPlanner‖ corresponds     , and ―OriginalTotal‖ corresponds (24). 

 

Fig. 28 The time budget parts of PD Planner 
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We can see that the main time budget of PD Planner lies in the sampling 

operation (―OriginalSample‖) and finding paths in sampled map instances 

(―OriginalAStar‖). 

4.2 Sampling in Planning Process (SiPP) 

The previous implementation of the map sampling step sampled all the cells in 

the path. However, it turns out that the MDP planning algorithm (like Dijkstra, A*, 

RRT, etc.) rarely checks all the grid cells in the planning process. To test the 

number of cells visited, we randomly generate different size maps (10000 instances 

for each size) and compared the number of cells having been visited. The results, 

shown in Fig. 29, suggest that empirically less than 50% of the cells are visited. This 

suggests a surprisingly simple heuristic which we call Sampling in Planning Process 

(SiPP): rather than sample the entire map state at the beginning of a Monte Carlo 

run, it is possible to embed the sampling in the A* algorithm directly. 

 

Fig. 29 The average A* checked cells in different size Maps (10000 instances for each size). 
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Fig. 30 The average SiPP saved time based on completely random OC maps 

The SiPP strategy is designed to sample the states of those grid cells that 

checked by the searching process of the MDP algorithm. Therefore, in each map 

instance   , only those grid cells already checked by the searching process (like 

Dijkstra, A*, etc.) have a sampled and certain state: empty or blocked, and the 

states of other grid cells are unknown (un-sampled). Those grid cells having not 

been visited by the searching process will not affect the planning process, so the 

SiPP strategy will not affect the location of the planned path. 

In Fig. 30, we show that the SiPP saved time that might otherwise be used for the 

percentage of the original PD Planner, based on the completely random generated 

OC maps (no typical structures, like walls or rooms, and no idea heuristic available). 

Since the start and target position located at the corner of the map, the searching 

process (like A* algorithm) always checks most part of the map to find the shortest 

path for bigger size map. 
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In order to implement SiPP, we insert the sampling operations into the searching 

process where grid cells‘ states are required. The pseudo code of SiPP function, 

based on A* algorithm, OC_A, with an OC Map     is shown in Pseudo-code 5. 

Pseudo-code 5    The adjusted A* for estimating the PD map of PD Planner. 

 

 The sampling operation is defined in the                                     , 

in line 12. This function also makes sure that each grid cell is sampled only once in 

one round. The pseudo code of function                             is shown in 

Pseudo-code 6: 
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Pseudo-code 6    The dis_function for inserting the sampling process into the planning process 

  

The sampling efficiency depends on the effectiveness of the A* heuristic function 

in the given OC Map. But, as we analysed and shown in the experiments, the SiPP 

is highly effective for low dimensions and low effective for high dimensions. This 

suggests that the methods which reduce the overall dimensions of the problem will 

have a significant impact on the performance of the algorithm. 

Therefore, the SiPP can save more time for small size map corresponding to the 

smaller number of nodes in the searching tree. It does not save much time when   

increases. But there are less grid cells for small size map between the start and 

target position, so the searching process will check less to find the shortest path. 

In the next section, we propose the Hierarchical PD Planner. 

4.3 The Hierarchal PD Planner 

The second challenge is to reduce the dimensionality of the environment. In this 

section, we describe a method called the Hierarchal PD (HPD) Planner. The main 

idea of the HPD Planner is to hierarchically decompose the map into a small set of 

homogeneous regions, then find a path based on this high level map, and restore the 

path to the original map. The properties of each region can be cached in advance. As 

a result, the PD Planner can be viewed as running over a graph representation of the 

environment, where each vertex describes the properties of a region, and each edge 
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encodes the links between regions. The essential idea is to represent the grid cells 

with same occupancy probability as one region. So, the node of the searching space 

for path planning can be decreased. 

Given the raw occupancy map Fig. 15, areas of similar probability are merged to 

create the region map, as shown in Fig. 31(a), where the robot seeks to move from 

the start position ―s‖ to the target position ―t‖. In Fig. 31 (a), we use the red lines to 

show the constructed Region Map, where the grid cells in the same region have the 

same occupancy probability. In Fig. 31 (b), we draw the region path with a blue line, 

and the pink line shows the restored grid cell path based on the region path. 
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(a) 

 
(b) 

Fig. 31 The red squares are the regions in an OC Map. A robot moves from “s” to “t” with 

different path strategies in (b). 
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The Hierarchical PD Planner (HPD Planner) has three steps: 1, Construct a Region 

Map; 2, Find the clustering of paths in regions by running the PD Planner on just the 

Region Map; 3, Represent the path in OC Map grid cells. 

When we run the PD Planner in Region Map, we estimate the path distribution in 

Region Map (paths cluster in regions). The Region Map decreased the dimension of 

OC Map, so the PD Planner in Region Map will be faster. The SiPP strategy, which is 

more effective at lower dimensions, can also be applied here. 

4.3.1 Constructing the Region Map 

We define each region as a square or rectangle sub-map, containing grid cells 

having the same (or similar) occupancy probabilities. Zou [93] uses a Sub-Region to 

plan a path. Lingelbach [94] looks the entire map as one cell and decompose it into 

smaller grids to plan a path. Both of them plan a path by decreasing the searching 

space. Comparing with former researchers, the main difference of our region map is 

that we transfer the occupancy probability to different regions and use it to find the 

passable probability of each region. 

To construct the Region Map, we define a region by its top-left and bottom-right 

grid cells in the OC Map. We scan the OC Map from its top-left corner to bottom-right 

corner, as shown in Fig. 32, where TL is top-left grid cell of the region, BR is the 

bottom-right grid cell of the current constructing region, New1 and New2 are top-left 

grid cells added into wait list after we construct the current region. 
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Fig. 32 Region constructing example 

A waiting list is used to record the top-left grid cell coordinate for finding a new 

region. The pseudo code for finding regions based on an OC Map is shown in 

Pseudo-code 7. 

Pseudo-code 7    The region construct function for estimating CV map (PD map of PD Planner) 

 

The function ―CheckRegionLimitation‖ is defined to check a region is permitted or 

not, and its pseudo code is shown in Pseudo-code 8. 
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Pseudo-code 8    The region check function of constructing a region 

 

The region shape can be defined based on the characteristics of the OC Map, if 

they are pre-known. Here, we find a square region first, and then we try to expand 

the new found square region to rectangular region by expanding the region along the 

x-axis or y-axis. 

We use             to define the occupancy probability similarity in one region, 

where  _average is the average occupancy probability of grid cells in the region. If 

    , we will accept that some grid cells in one region have different but similar 

occupancy probabilities. In following part, we use      to construct a region map. 

Once all the regions have been found, it is easy to find their connections with the 

top-left and bottom-right grid cell coordinates of the region. The region map can be 

looked as a graph, where each node is a region and the edge shows the connection 

of two closest neighbour regions (two regions have a segment of same boundary). 

For the worst case, each grid cell of the map will be visited twice: to set an 

extension of a region and to set an initial region, except the top-left and the bottom-

right grid cells. Therefore, in the worst case, the computational cost for constructing 

the region map is      , where   is the grid cell number of the grid cell map. This 

occurs when each region consists of a single cell, which is unlikely to occur in 

practice. 

4.3.2 Computing Travel Length and Occupancy Probability of Regions  
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The PD Planner uses the occupancy probabilities and the travel cost of moving 

from one grid cell to another. The Hierarchical PD Planner requires these quantities 

for each region. In this subsection, we develop methods to compute the occupancy 

of the travel length between two neighbouring regions and the occupancy probability 

of a region. 

In the Region Map, the path from region A to the neighbouring region B is defined 

in terms of moving from the centre of region A to the centre of region B, passing 

through the middle grid cells of the same border between the region A and the region 

B. 

Since all the grid cells in the same region have the same occupancy probability, 

the four cells shown in Fig. 33 (Line AB is the same border of Region A and B) are 

sufficient to define the path. These are: 

    : the centre grid cell of region A 

    : the middle grid cell of line AB, in region A  

    : the middle grid cell of line AB, in region B 

    : the centre grid cell of region B 

The path length from region A to region B is the Euclidean Distance from    to   , 

then to   , then to   . 

 

Fig. 33 The region connection is described with four grid cells. 

Region A

Region B
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m2

m1
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A B
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The region occupancy probability         specifies the probability that a robot, 

when entering a cell, is not able to get to the centre of that region. This is similar as 

the path un-exist probability in 2-dimensional percolation theory [101]. The difference 

is that we want the robot to reach the target position, while the percolation theory 

wants the robot to reach any point on the bottom boundary of the region. 

This region occupancy probability         is a function of the region size        , 

occupancy probability     of the region‘s cells, and the target cell  is the region centre, 

written as 

                          

We also define the       as the crossing probability that the robot can reach 

the region centre cell successfully. We have                . For the same 

uncertain environment, we can use the OC Maps with different number of grid cells to 

represent it. If one grid cell represents a smaller area, the OC Map will have more 

grid cells. In the other case, the OC Map will have less grid cells. In these different 

size maps, the robot should have the same probability to reach its target position 

from the same start position. This is same for the region map with different number of 

regions. Therefore, we should transfer the occupancy probability from grid cell to 

region. 

We design an experiment to see the changes of      , when an OC map (with 

different         and different    ) is transferred to a one region map         (only 

contains one region). For example, we have an OC Map        (21*21 grid cells) 

and transfer it to a region map         (contains only one region, where the region 

size is           ). The occupancy probability of the grid cells in        is        . 

The robot has the same probability       to reach the centre point from the boundary 

point via the shortest path, no matter it moves in        or in        . This process is 

similar with the percolation theory, which discusses the probability of an open 

(25) 
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shortest path existing between a centre point and a boundary of the environment 

[106]. 

Specifically, a set of different OC Maps of different sizes were selected and a 

range of occupancy probabilities               were used. We sample each OC 

Map 1 million instances to find the number of instances in which the shortest paths 

exist, in order to estimate      . For example, we have an OC map with 101*101 grid 

cells and        . Its possible shortest paths clustering areas are shown in Fig. 34, 

where the brighter and higher points have more paths clustering. We get       is 

about 0.1 in this example. The changes of       for different         and     are 

shown in Fig. 35, where the x-axis is the     and the y-axis is the      . We can see 

that the crossing probability       decreases exponentially as the map size increase, 

which is the same as Menshikov‘s percolation theory in [105]. Aizenman [106] proved 

that this crossing probability is the same for conformal map (one grid cell has more 

than two neighbours), which means that we can calculate the crossing probability for 

the hexagon cell map and the octagon cell map in the same way. 

Our experiment results show that the       has three parts: 

1, When        , the       is almost a linear function of    , which can be 

estimated as                      

2, When        , the       is close to 0 for different size maps when the 

occupancy probability. 

3, When            , the       decreases exponentially based on         and 

   . 

For the 3rd case, we can assume the crossing probability       based on the 

percolation theory [105][106], which looks like: 

         (           )
           

      (       )
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       ((           )
  

)              
            ((       )

   
)      

In our experiment, we have        ,     and the result       , as illustrated in Table 

5. Based on these values, we can use the Matlab function ―lsqcurvefit‖ to estimate 

the parameter matrix                          . 

Table 5 Experiment results of       for different         and     

                                                

5 0.4426 0.2827 0.1593 0.0769 0.0307 

11 0.4216 0.2022 0.0636 0.0134 0.0018 

21 0.4291 0.1601 0.0201 0.0011 0 

41 0.4358 0.1292 0.0028 0 0 

101 0.4354 0.1038 0 0 0 

301 0.4360 0.0935 0 0 0 

 

The estimated result of      is                                        

                                                             . We show 

the estimated       with red lines in Fig. 35. 

(26) 
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Fig. 34 The height is the cluster value of the possible shortest paths in a region (       ). The path 

links from region centre to mid-point of the region border. The higher and brighter points have higher 

clustering value. 
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Fig. 35 Probability to reach a region centre with different      and map sizes. Two estimate 

probabilities are shown for             . 

In the HPD Planner‘s 1st step, we construct a region map and calculate the region 

occupancy probability                 for each region (containing more than one 

grid cell) based on (26). This operation will affect the operations in the 2nd and the 3rd 

step of the HDP Planner. 

Since we have the crossing probability, the region path can be smoothed to 

directly link the cells of entering and leaving a region, when we restore a region path 

to a grid cell path (then, the path may not go through the region centre) in the 3rd step 

of HDP Planner. 
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4.4 Experiment Results and Discussion 

In the Hierarchical PD (HPD) Planner experiments, we use the OC Map Fig. 15 

(used in PD Planner experiment) as the representation of the uncertain environment. 

We will compare the difference of HPD Planner and PD Planner. 

In our experiment, we ran the original PD Planner, the PD Planner with SiPP 

strategy, and the hierarchical PD Planner with SiPP strategy with the same start and 

target cell in the same OC Map. Our simulator samples 3,000 possible maps based 

on    . The robot can detect the environment within a 5-cell distance to the robot 

location and update the OC Map for re-planning when the current path is blocked. 

We record the total length travelled by the robot in these 3000 true maps. A Region 

Map example is shown in Fig. 37, where we marked out high clustering value regions. 

The experiment result is shown in Fig. 36. 

Each algorithm was executed 1000 times to collect the average calculating times 

for finding a path. We select 3 pairs of start and target cells randomly. The 

experiment results are shown in Table 6, (the HPD Planner includes the Region Map 

constructing time). There are building structures (e.g. walls, rooms, corridors) that the 

A* heuristic may use, in the OC map Fig. 15. Therefore, the A* can check less grid 

cells to find the shortest path in map instances and the SiPP can save more time. 
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Fig. 36 The cumulative probability of reaching target 

Table 6 Average planning time of different strategies. 

 cell pair 1 Replan cell pair 2 Replan cell pair 3 Replan 

A*       0.008s 0.115s 0.011s 0.114s 0.007s 0.117s 

Original PD 2.237s 34.434 2.797s 33.857 1.908s 34.923 

SiPP 1.465s 34.434 1.396s 33.857 1.299s 34.923 

 HPD Planner 0.975s 39.573 1.003s 38.733 1.092s 39.957 
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Fig. 37 Regions are marked with blue lines, darker means higher clustering value 

 

4.5 Summary 

In this chapter, we have discussed the problem of reducing the computational 

costs of the Monte Carlo sampling calculation through the use of two strategies – 

lazy sampling and hierarchical decomposition. We implement these strategies to 

reduce the computational cost of the PD Planner. 

Lazy sampling is a very simple heuristic but is surprisingly effective. If the OC 

map has some typical precondition structures for A* to define a specific heuristic 

function, it can reduce even further. Furthermore, it is guaranteed that it will have no 

impact on the overall results achieved. 

The hierarchical approach decomposes the map into a set of regions in which the 

occupancy probability is nearly constant. The properties of these regions have been 

cached in advance. The result is to reduce the overall dimension of the problem 
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which reduces the computational cost in the A* planner. The resulting algorithm is 

about two times faster than original PD Planner. The shortest path passing a region 

may not be a straight line, because of the obstacles in the region. Therefore, the 

region path cannot describe the details as meticulous as the grid cell path planned 

by PD Planner. That is the reason why the performance of the HDP Planner is not 

as good as the original PD Planner. In our experiment, the HDP Planner increases 

the re-plan number about 15%. 

Currently, the region path is planned by linking a region centre to its closest 

neighbour region centre. There are several avenues to extend the region types and 

the path of passing a region for future research. First, the Region Map currently 

uses just simple square and rectangle structures which might poorly describe the 

geometry of the environment. Therefore, we might define other structures, like an ―S‖ 

arch or ―T‖ corridor, to construct the Region Map in the future. 

Second, the situations of      for constructing regions could be researched in 

the future, which can decrease the dimension of the searching space to a deeper 

extent (but increase the complexity of transferring occupancy probability to region 

occupancy probability). 

Thirdly, although we have developed strategies to reduce the computational cost 

of each sampled map instance, we have not developed methods to reduce the 

overall number of map instances required for estimating PD map. Since the purpose 

of sampling is to develop a better characterization of the PD Map. One possible 

research interest is to analyse each POS based on OC Map structures (like a long 

corridor, a big room with several doors, etc.) and adjust POS‘s probability for 

estimating the PD Map. If we can increase the POS‘s probability for estimating the 

CV Map, by finding that it is lying in a higher clustering area, we will be able to 

estimate the PD Map with fewer particles. 
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5 Targets Allocation Planning for a Group of robots 

5.1 Introduction 

Chapter 3 discussed the issue of how to plan the trajectory for a single robot 

which has to move between two specified points in an uncertain environment. 

However, the rescue team could set multiple targets in the damaged building and 

ask a robot group to investigate all of these targets as soon as possible. In this 

chapter, we will consider the problem of how to make a plan for a robot group to 

search multiple targets in an uncertain environment. Here, the robot group contains 

more than one robot.  

We will define the assignment and the allocation for the robot group in this 

chapter, by extending the PD Planner to the scenario of one robot visiting several 

targets, and multiple robots visiting multiple targets. 

The PD Planner can plan a path, linking two points in an uncertain environment. 

For one robot to visit multiple targets, we will plan an assignment, which includes 

multiple paths for one robot to visit all targets one by one. We call the planner as the 

Assignment Distribution (AD) Planner. We want the actual travelled routes to be the 

shortest when all targets are visited. 

Secondly, we extend the planner for the cases that the robot group has several 

robots. The planned result is an allocation, which includes the assignment for each 

robot in the group. We call the planner as the Group Allocation Distribution (GAD) 

Planner, which will decide how to assign multiple targets to each robot and plan the 

assignment for each robot to visit its targets. When all targets are visited, one robot 

will have the longest travelled route in the robot group. We want this longest 

travelled route to be the shortest. In fact, the GAD Planner is also suitable for the 

cases that there is only one robot in the group to visit several targets, or there is only 
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one robot to visit one target. We introduce our research step by step to show the 

inside details of the clustering algorithms. 

In the following part, we will introduce the multiple robot POMDP model. Then, we 

review the existing targets assignment algorithms, which are suitable for one or 

more robots. After we discuss their shortages in an uncertain environment, we 

introduce our proposals: the AD Planner and the GAD Planner. 

5.2 POMDP Model for Multi-robot 

The most complex scenario of our research is the situation of multiple robots 

visiting multiple targets. It is carried out in the scope of the Decentralized POMDP 

(Dec-POMDP) framework, which is an extension of POMDPs to the case of multiple 

robots. The Dec-POMDP is a very powerful extension of POMDP, and it enables us 

to model the interaction of two (or more) autonomous robots, which have to take 

individual actions based on their individual observations and common knowledge 

about the uncertain environment [36]. These individual observations may not 

represent the world accurately and actions may fail to have the intended effects. Our 

simulator supports the scenarios for multiple robots to visit multiple targets, which 

can be modelled with Dec-POMDP. 

The Dec-POMDP is formally defined as the tuple                    [36], 

where 

  is a finite set of   robots 

  is a finite set of possible states of the environment 

                   is a finite set of possible joint actions for   agents, 

which is the Cartesian product of individual actions.    is the finite set of individual 

actions for agent   
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  is the transition function, a mapping from states and joint actions to probability 

distributions over next states            

                   is a finite set of possible joint observations for   

agents.    is the finite set of individual observations for agent   

  is the observation function, a mapping from the joint actions and the successor 

states to probability distributions over joint observations            

  is the reward function, a mapping from joint actions and current state to real 

number         

  is the horizon, the number of timesteps considered 

   is an initial belief (probability distribution over states)         

At the beginning        , the environment is at the state   .    is unknown to all 

robots, what all robots know is the prior belief   . At each step        , each robot   

individually performs an action   
  which is unknown to the other robots. 

The main difference from the single robot model is that each robot will take the 

other robots‘ states and actions into its own decision process. If the other robots‘ 

observations and actions are not available, one robot should use the estimate about 

other robots‘ actions instead. So, we have the following version of the reward 

equation for a multi-robot model. 

Given the current state    and the multi-robot joint action       
      

  , the 

environment changes to a new state     , which is drawn from the distribution 

             .The new state      remains hidden to all robots, but a multi-robot 

joint observation         
        

     is drawn from the distribution            

    . Each robot   receives its individual observation   
   , which is a part of     , 

and is unknown to the other robots. All robots receive their own rewards   
  

        . At the next step, each robot   performs its individual action   
    and the 
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whole process is repeated until step    , where   is the terminate condition. At this 

stage, the sum 

  ∑   
 

       

       

 

is calculated to represents the total reward obtained in the process, in which the 

sequence                           has occurred. 

The goal of the Dec-POMDP planning algorithms is to assign each robot   an 

individual policy   , so that the multi-robot joint policy             maximizes the 

total reward on average for each possible sequence                             

[36]. 

The Multi-agent A* (MAA*) is a typical algorithm for solving Dec-POMDPs [37]. Its 

policy search tree is a joint (or partially joint) of the robots‘ policy searching trees. 

Each robot policy search tree is extended independently to find the shortest policy 

sequence for that robot using the A* heuristic function, but the evaluation of each 

search step includes all the policies of all the robots. In order to run faster, the 

author provides a sub-shortest strategy which only extends a robot‘s policy set if a 

child node has the same evaluation as its parent. In this case, other children nodes 

will not be checked in each search step. The computational costs of the A* search 

process and the heuristic for a single policy searching tree is the same as algorithms 

for POMDP. 

5.3 Robot Group Allocation Algorithms Review 

In our scenario, we have some target cells where the missing persons might be. 

The robot group allocation algorithm should decide how to allocate these targets to 

each robot, the targets‘ visiting sequence, and the shortest path to visit these targets. 

(27) 
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The planning problem for one robot is similar as the Travelling Salesman Problem 

(TSP).  The planning problem for multiple robots is similar to the multiple Travelling 

Salesman Problem (mTSP) [114]. However, there are typical differences in our 

planning problem scenario: 1) the sales men can start from any target location in the 

planning process, but we cannot change our robots‘ start points in one planning 

enquiry, 2) we are planning in uncertain environments where the actual travel paths 

are not known in advance. 

If the robot group has more than one robot, we will focus on the robot with the 

longest path.  

 The robot group allocation research theories proposed by Furukawa and 

colleagues are introduced in a series of papers [83] [84] [85] [86]. An allocation 

includes the assignments for all robots in the group. The assignment for one robot 

contains several paths linking the robot position and targets assigned to the robot. 

Therefore, group shortest allocation has these characteristics: 

 The shortest time to complete the mission is the longest time it takes any 

one robot to complete its assigned tasks (visit all its allocated targets).  

 If we remove the robot with the longest paths and its allocated targets, the 

rest parts of the robot group also has the shortest allocation. 

To find the shortest allocation, the path lengths of all possible allocations should 

be measured and compared. 

Undeger [87] proposed an on-line allocation search algorithm (Real-Time Edge 

Follow - RTEF) in grid-type environments. RTEF [87][88] uses a heuristic algorithm 

(RTEF-ARM) to evaluate the global environmental information to decide which 

allocation segment, or direction, has greater probability to reach a target. Bachrach 

presented an online, forward-search algorithm for planning under uncertainty by 

representing the robot‘s belief of each target‘s pose as a multimodal Gaussian in 
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[89]. He exploited a parametric belief representation to directly compute the 

distribution of posterior beliefs after the actions are taken and enabled the robot to 

search more deeply by considering policies composed of multi-step action 

sequences [89]. 

The former allocation researchers do not take these cases into account: 

 The actually travelled route in an uncertain environment between two 

points is different from the initial planned path, as we have shown in 

Chapter 3. 

 When we make a plan, there might be one shortest clustering branch and 

several sub-shortest clustering branches between two points in an 

uncertain environment. The clustering branches among targets may be 

overlapped in some areas to increase the probability that the shortest 

allocation lying in the area, and shift the sub-shortest allocations to the 

shortest allocations. 

In our search planning problem, we will make a plan for a robot group,   

               , to visit several targets,   {  }           , where    is the 

number of robots,    is the number of targets, and we have        . The 

uncertain environment includes both obstacles and free-space probabilities, 

described by an OC map    . Here,    corresponds a cell      in an OC map    . 

The probability of finding a missing person at    is      . 

In our simulator, we use a 2.5-dimensional environment representation and one 

belief node can hold several robots, because that they can fly at different altitudes. 

The rescue team members can give the targets based on different damages and 

their experiences, because the catastrophic event is unpredictable and meanwhile 

the effects of its damage are very hard to formulate exactly [1][22][24][26][27][28]. 

The path   links two destination cells. We define the shortest path as    that has 
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the lowest cost        . In this chapter, we use the path length to evaluate the cost 

of a path (as we used in former chapters). 

The targets allocated to robot    is      . The assignment for robot    is defined as 

the collection of joined    to visit all targets in       in sequence, written as  (     )  

   
    

    . Different assignment sequences have different lengths. The shortest 

assignment has the shortest length for    to visit all its targets      , written as 

    (     )        
 (     

)
[∑        

  
  
   (     

)
]                                      (28) 

The target assignment planning is specified as follows: 

1, We exclusively and exhaustively assign targets to one robot in different orders. 

2, We use the shortest paths (planned by PD Planner) to link these target one by 

one to construct the routes for different assignments. The shortest assignment is the 

one with the shortest route length among all possible assignments. 

The group allocation which assigns all the targets to  , is 

       , (     )  (     )    (    
  )-. The allocation cost is the max cost of 

the assignments in       , because the mission completion is decided by the robot 

with the max assignment length in an allocation. The shortest allocation         

has the lowest cost: 

                   
      

{       
    (     

)       

[    (     )]}                         (29) 

The target allocation planning is specified as follows: 

1, We exclusive and exhaustively allocate targets to the robot group. There will be 

many different possible allocations. Each target will only be allocated to one robot 

and the union of all assignments      must cover the targets set  . 

2, Each robot is allocated several targets in one possible allocation, and we find 

the shortest assignment for each robot (using the assignment planner). 
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3, The allocation length is the longest length of the shortest assignments in the 

allocation. The shortest allocation is the allocation with the shortest length among all 

possible allocations. 

All the robots start positions can be set by the user in the simulator. They may be 

launched from the same cell     
     , or different cells in an OC Map. The 

cooperation is unpredictable, because it is hard to define the wireless 

communication model in an uncertain environment [72]. Therefore, we use a simple 

strategy in our simulator: a single robot does not exchange information with other 

robots if it makes a local re-plan; the robot group will exchange information and 

make a new assignment plan if one robot requires a global re-plan. 

The total travelled paths of robots are affected by the searching sequence of the 

targets and the detected obstacles when the robots are moving. The main challenge 

of our research is that the robot actual travelled route from its initial start position to 

the target position is a combination of the initial plan and several re-plans. Our 

research aims at the shortest actual travelled route for the Complete Mission 

Process (CMP). 

Here, we illustrate this problem for a known environment first, then we introduce 

the research problem in an uncertain (partially known) environment. 

5.3.1 Search Planning in a Known Environment 

The simplest scenario is the search planning problem in which everything is 

known exactly [81][82]. For example, in the two-dimension map shown in Fig. 38, 

the obstacles, targets and robot start positions are known exactly, including the 

positions of the obstacles and the targets. In this figure, the black squares are 

obstacles, three targets are marked with a cross (labelled ―A1‖ ―A2‖ ―A3‖), and the 

start position for the robots is marked with an arrow. The search planning problem is 

to find the shortest assignment so that each target is visited by at least one robot, 
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and the time to visit all targets is. If we assume that the robot moves with a constant 

velocity, the minimum time equals to the shortest path length. 

Quadrotors

A1

A2 A3

 

Fig. 38 An example of everything is known exactly. 

The number of all possible assignments is exponential in the number of targets 

and robots,   
  . By evaluating all possible assignments, we can find the shortest 

solution. However, this is an NP-complete problem [90] and we cannot exhaust all 

possible assignments in most cases.  

The group allocation algorithms are suitable for the case that the group has only 

one robot. So, we do not introduce the one robot group algorithms review separately. 

One of the earliest approaches is a naïve greedy method to assign the targets, 

called the Target Equalization (TE) method [91]. The algorithm attempts to assign 

the same number of targets to each robot. The algorithm pseudo-code is shown in 

Pseudo-code 9. 
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Pseudo-code 9    Target Equalization function 

 

Its main loop will be executed 
  

  
 times. TE addresses this problem in a greedy 

way: the robot(s) will always move to the closest target. It is clear that this method is 

a greedy assignment and will not guarantee to find the best solution. For example, in 

Fig. 39, the best assignment is: the robot    goes to the fastest target    and the 

robot    goes to the closer two targets (     ); but the TE will assign all targets to 

  . However, it can be used to provide a baseline to evaluate other methods. 

  

Fig. 39 The TE assignment is Assign1, the best assignment is Assign2. 

The Path Equalization (PE) method takes the path length comparison into the 

assignment process to avoid the case in which some robots have a very long path 
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while others end up with very short paths. Its process pseudo-code is shown in 

Pseudo-code 10. 

Pseudo-code 10    Path Equalization function 

 

This method chooses the next robot for assignment based on a current 

assignment, rather than in a fixed order through all robots. It attempts to balance the 

path length among the robots [91]. Its main loop will be executed    times. However, 

all assignment decisions are made locally without a global view to assign targets 

[90]. 

Assume that we have 3 robots and 30 targets. When using the PE method, we 

find that the options available to robots decrease with the number of available 

targets, as the assignment process goes on. This is not a problem when the number 

of available targets is still large, but in the following stages of the assignment 

process, it can lead to a situation where a robot with the shortest cumulative path at 

the time of selecting the next target has much poorer options than another robot with 

a somewhat longer cumulative path [90]. For example, we have three robots: 

        . The targets assigned to       mean that the nearest target to    forces it 

to dramatically and irreversibly increase its path length so that the assignment leads 

to a drastic and irreversible imbalance in path length. 

In [90], a two-stage assignment process is proposed to solve the PE problem. A 

time-varying parameter      is defined at step  , as:      
             

  
,  where 
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              is the number of targets still unassigned at step  . The two-stages are 

governed by a threshold   . 

Stage I: When        , any selected robot is likely to have many options for its 

next assignment, and the PE algorithm is followed.  

Stage II: When        , many robots are likely to have very limited choices, and 

the simple PE approach could lead to poor assignments. In this case, the 

assignment pseudo-code is shown in Pseudo-code 11. 

Pseudo-code 11    Function of 2 stage assignment algorithm 

 

The process can be seen as a combination of assigning many targets to robots 

(limiting the search choices) and assign several targets to robots (increase the 

search choices). It is better and computationally more feasible to consider several － 

even all － robots for each update rather than myopically picking out the one with 

the shortest path so far [90]. If no good choice is available, the least bad choice is 
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made on line 3 of pseudo code of the stage II (see above). The planned assignment 

is acceptable because the longest path is shorter than the threshold  . 

Maddula [90] proposed a refinement algorithm to improve the assignment solution. 

He defined a concept called a Potential Point of Exchange (PPE) as follows. 

Suppose path    is currently assigned to    and    is currently assigned to   . If 

targets       and       are such that the distance between them is less than a 

threshold, ||     ||    , we term         a potential point for exchanging targets 

between the robots [90]. Based on this, he defined four exchange operators: 

 Operator 1: The sub-paths of    and    starting at    and    linking their last 

targets, respectively, are exchanged. 

 Operator 2: The sub-paths of    and   , including the segments terminating 

at    and    linking their start positions, respectively, are exchanged. 

 Operator 3: The segments of     and    starting at    and   , respectively, 

are exchanged. 

 Operator 4: The segments of    and    ending at    and   , respectively, are 

exchanged. 
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Fig. 40 The initial assigned paths and their exchanges[90]. 

The exchange operators are illustrated in Fig. 40, where the first graph shows two 

assigned paths (one dot line and one solid line) and the potential routes are shown 

as the grey lines. The next four graphs show the effect of applying each of the 

exchange operators to the original paths. Not all operators produce better options, 

so worse assignments than the original one will be rejected. Operator 1 and 

Operator 2 are the main assignment searchers, and they exchange whole sub-paths. 

Operators 3 and 4 mainly act to remove ―kinks‖ in existing pairs of paths, where the 

paths cross and then cross again within a short distance [90]. The paths exchanging 
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requires a local search on the map. If the exchange does not work (because the 

path segments cannot be reconnected), it will be rejected automatically. 

The procedure begins with the assignment produced by one of the above 

algorithms, and iterates over the following procedure until a stopping criterion is met. 

The exchange operation pseudocode is shown in Pseudo-code 12. 

Pseudo-code 12   The Potential Point of Exchange function 

 

In a word, the algorithms described above do not compare all possible 

assignments. If we could select the PPE algorithm carefully, the assignments closer 

to the shortest assignment will be evaluated in the planning process. They define an 

algorithm to refine the basic assignment and using stopping criteria, or a limit on the 

number of iterations, or a limit calculation time, to finish the refine operations. 

5.3.2 Search Planning in Uncertain Environment 

We hope to solve the more general problem that the targets lying in an uncertain 

environment with a probability to find a missing person (survivor), as illustrated in 

Fig. 41. In this case, the targets are marked by clouds, which indicating the 

probability to find a survivor. The robots need to go through the uncertain areas (the 

occupancy probability is shown with cloud patterns) and visit the targets to locate 

the survivor(s). Generally, each search target has a probability of containing 

survivor(s),                   . 
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Fig. 41 The targets’ positions are uncertain. 

The search planning objective is to allocate the targets to the robots, which is 

similar to the discussion above. The robot group should visit all targets with the 

shortest travelled path length. 

Lau [92] proposed an algorithm which aimed to minimize the average time for 

finding a survivor given an unknown number of targets, by deciding the search 

sequence of the target areas based on the value iteration function. He models the 

environment as a graph, where the nodes are the search areas and the edges are 

the paths linking two immediate neighbour searching areas together. The algorithm 

normalized the probability,    
     

∑      
  
   

, where             . We have ∑   
  
      

and    can be looked as the normalized probability of the remaining targets in the 

search area   . 

Lau uses Dynamic Programming Equations (DPEs) to evaluate which area is the 

best for searching next. The algorithm has three steps, and the pseudo-code is 

shown in Pseudo-code 13. 
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Pseudo-code 13    Dynamic Program Equation function 

 

The iteration function in line 2 is shown bellow: 

    {             
}              

            (  
  

  
   

    

  
   

    

  
   

   

  
)     

      
                     

    

where        ,  

               is the set of all direct adjoining areas to    

             is the time to search area     

              is the evaluation that robot move from area    to area   . 

The final function   {             
} satisfies the form of a Dynamic Programming 

Equation (DPE) and is the value function that we seek. 

The main calculation of the algorithm is step 2, where the minimal expected 

average time is equal to the lesser of (i) the minimal expected time if the robot 

chooses to search in the area where it is, equalling the search time    plus the 

minimal expected time calculated from when the search is finished, and (ii) the 

minimal time for the robot to move to any area        plus the minimal expected 

average time calculated from when the robot is in that new area    [92]. The 

limitation of this algorithm is that it has the exponential scaling as before. But there 

is a further cost associated with the searching regions: (i) the choice of   will 

increase as the number of searching areas increases; (ii) the set of all direct 

(30) 
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adjoining areas      becomes bigger when the connectivity of the search areas 

increases. 

This algorithm can be used to find the shortest search sequence for a single robot 

when a target assignment is given to that robot. Based on the result, uncertain 

target search planning can be compared with different target assignments to find out 

the shortest assignment for the robot team. In reality, we can use the PE, or two-

stage algorithm to generate the baseline, and the refinement algorithm can provide 

the key search areas for DPE to find the shortest sequence faster. 

5.4 Assignment Planning  

One important limitation of the algorithms described above is that they expect the 

actually travelled route to be the same as planned, which is almost impossible in an 

uncertain environment, as shown in Chapter 3. The partially known environment 

cannot guarantee that the single planned assignment can be executed without 

collision. After the robots visited all targets, the actually travelled routes are the 

combination of many assignment plans. Therefore, the algorithms in section 5.2 

cannot guarantee that the robots actually travelled routes are the shortest. 

In this section, we will introduce how to undertake target assignment planning, 

after we know how to make a plan for moving between any two points in an 

uncertain environment. The assignment planning should take the path planning 

between any two points and the probability of finding targets into account. In an 

uncertain environment, the planned assignment should combine some different 

assignments to deal with the uncertainty. The travel cost and the search efficiency 

are balanced in the planned assignment for robot to execute.  

To solve the assignment planning problem, we will find where the possible 

shortest assignments tend to cluster and plan the assignment based on the 

clustering. This means that the assignment is evaluated based on the clustering of 
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many possible shortest assignments. Compared with other algorithms, the clustering 

also leads to decrease the re-plan probability. Our aim is to make the actual travel 

length has the highest probability to be the shortest one. 

In this section, we introduce the algorithm for single vehicle multiple target 

planning. This is the special case that there is only one robot    in the robot group. 

The planner must find the shortest assignment     (     ) which consists of the 

order that the targets are to be visited, and the trajectory the robot will take to visit 

these targets. We call the algorithm the Assignment Distribution (AD) Planner. 

Similar to the PD Planner, the AD Planner has two parts: calculating/estimating 

the Assignment Distribution (AD) Map, and using this map to find the shortest 

assignment. However, the assignment includes the targets‘ order, and some 

waypoints/grid cells may be revisited in an assignment. Therefore, the CV in AD 

Planner is more complex than the CV in PD Planner. 

5.4.1 Calculating/Estimating Assignment Distribution (AD) Map 

The AD Map is designed for single vehicle multiple target planning, which 

provides the spatial distribution of the set of shortest assignments.  

Given     with   grid cells, there are many possible map instances      

            . There is only one robot in the group, so the target assignment is     . 

The shortest assignment in    is written as     (     |  ) , which is found by 

applying an MDP assignment planning algorithm. Each      (     |  ) is a Possible 

Optimal Assignment (POA). 

We use A* to find all shortest paths between any two points among robot initial 

point and targets in   . Then, we evaluate all possible different orders of targets for 

a robot to move. Each order of targets may involve different path length. The 

planned shortest assignment is the one that the robot will travel the shortest 

distance to visit all targets. 
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Each     (    |  ) is a POA for a single robot to visit multiple targets. The spatial 

distribution over many POAs contains a high degree of structure, which can be 

exploited for planning. The areas where the POAs tend to cluster are where the 

shortest assignment is the least sensitive to the uncertainties tends to coincide. The 

set of all POAs is superimposed onto a single map, which is called as the 

Assignment Distribution (AD) map    . Each grid cell in     records the probability 

that the shortest assignment will actually pass through that cell. Therefore, we plan 

an assignment which maximizes the probability that it will stay in the regions where 

most POAs cluster. Marginalising over map instances, the probability of the shortest 

assignment passing through the cell      is the POA clustering value to the cell, 

given by  

   (    )  ∑ { [         (     |  )] (  )}

    

  

Generally, it is impossible to exhaustively compute this over all possible map 

instances, and so we use a Monte Carlo sampling strategy (the same as we do with 

PD Planner). A large number of map instances are randomly drawn, an assignment 

planner in certain environments is executed, and the AD Map computed empirically 

from (31). 

The PD Planner clusters the paths to each cell when planning a single path. In the 

PD Planner, one planned path cannot visit one grid cell more than once. The AD 

Planner extends this by clustering the POAs to each cell for planning an assignment. 

The paths in one POA indicate where the POA is lying. Therefore, we count the 

POAs that pass one cell and do not count the paths that passing through the cell in 

AD Map. Although, the shortest assignment     (    |  ) can visit a grid cell      

several times.  

Fig. 42 overlays three POAs computed from three different realizations of the    . 

The AD map for the scenario in Fig. 42 is shown in Fig. 43. Despite the complexity 

(31) 
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of the original environment, the AD map is relatively sparse and contains just a few 

well-defined paths. The AD Planner uses these well-defined paths to plan its 

shortest path. 

 

Fig. 42 Three POAs arise from different realizations of the OC map. The robot starts from    and must 

visit           . The POAs are shown in red, pink and blue. The OC Map is the background. Darker 

cells have higher occupancy probability. 

 

Fig. 43 An example of AD Map (1 robot and 3 targets), with OC Map as the background. The darker 

cells have higher    , where POAs tend to cluster.. 

Here, we construct a two-floor OC Map as another example to show what the AD 

Map looks like. In Fig. 44, there are two floors: (a) is the upper floor and (b) is the 

lower floor, and the four targets are marked as black cells. There are three 
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connections between these floors. This two-floor plan was chosen because the 

building has many narrow corridors, and the alternative routes, including travel from 

one floor to another floor when we make an assignment plan. The grid cells‘ 

occupancy probabilities are shown in green colour (the darker the higher occupancy 

probability). The red dots in the grid cells are where the assignments cluster. The 

pink line is the planned shortest assignment. We will describe the algorithm of 

assignment planning with AD Map in the next section. 

We show the clustering value of an AD Map in Fig. 45, where the brighter area 

has the higher clustering value. Despite of the complexity of the environment, the 

brighter lines illustrate that there is only a relatively small number of cells that the 

paths cluster around. 

In Fig. 46, two targets marked with ―1‖ and ―2‖ for a robot to visit. One possible 

shortest assignment is                    , which revisit the node   . 

Another possible shortest assignment is                    , which has 

the same segment                with the former assignment.  

An assignment in    is constructed with    shortest paths. As shown in Pseudo 

14, all paths are saved in the cost matrix       and we use the dynamic 

programming [115] to make sure that each path is planned once.      is the 

shortest assignment among those exhausted assignments. We use      as the 

upper bound of branches to cut hopeless branches [116]. The searching process is 

a typical mTSP recursive function to force exhaust all possible assignment branches. 

     is the exhausting assignment branch. The computational cost is         [116] 

(where   is the number of targets).  In line 6 of Pseudo 14, if   can connect the last 

target in      to another target not in     , we extend      by adding   to     . In line 

8, if      is longer than     , we call this recursive function to extend      further. 

This recursive process repeats until all targets are assigned, and we replace      
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with the new-found assignment      (line 1~4). So,      will be the global shortest 

assignment among all exhausted assignments when the recursion process finishes. 

 

                   

Fig. 44 The Assignment Distribution in a two-floor OC Map. 
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(a) 

(b) 

Fig. 45 The Assignment Distribution(AD) Map example 
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Fig. 46 The assignment clustering example with OC Map as background. The POAs go through 

the brighter cells more than the dark cells. Three key nodes          are used to mark the 

clustering routes. 

Pseudo 14 The recursive function “OptAssignment” to find the shortest assignment with all paths set. 

1    if (Lcur has NA paths)    //all targets are visited by NA paths in assignment Lcur

2        Lmin = Lcur

3        return;

4    end if

5    for(l = path in Spath,)

6        if (l connects the last target in Lcur and one target not visited in Lcur)

7           add l to Lcur

8           if (Lmin longer than Lcur)    //skip assignment Lcur if it is longer than Lmin

9               call OptAssignment(Spath, A, Lcur, Lmin)

10          end if

11          remove l from Lcur

12       end if

13   end for

OptAssignment(PathSet:Spath, Targets:A, CurAssignment:Lcur, CurOpt:Lmin)
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5.4.2 Planning the Assignment Path with the AD Map 

Similar to the PD Map, the AD Map describes where the POAs are more likely to 

be lying, and where a few POAs are lying. Our AD Planner uses this AD Map to 

evaluate the candidate assignments, and pick out the one that passes through 

where most assignments cluster. 

More formally, the goal is to find the assignment for a single robot to move, which 

can be written as a path going through all targets. The assignment decides the 

target order visited by the path, and some waypoints (grid cells of the map) may be 

visited more than once. We evaluate the assignment path with the Clustering Value 

based on the AD Map. 

    To find the shortest assignment, we repeat the assignment search process 

introduced in Pseudo 14 by replacing the path length in       with the path 

clustering         defined as: 

        ∏    (    )                                                  (32) 

The cluster evaluation of an assignment is 

   [ (     |   )]  ∏       
    

   (     |   )                         (33) 

The AD Planner seeks the assignment    (     |   ) which the highest evaluation: 

   (     )        
 (     |   )

   [ (     |   )]                          (34) 

In the AD Map, a grid cell      has a Clustering Value    (    )   . So 

   [ (    |   )] will be smaller and smaller when we extend the assignment length 

in the searching process. For numerical stability, we calculate and compare the 

negative log likelihood of    [ (    |   )]  for candidate assignments in the 

searching process. Therefore, in our approach, the AD Planner will find the minimal 

evaluation to be: 
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   (    |   )        
 (    |   )

{ ∑   [   (    
 )]

   

   

} 

The difference between the AD Planner and the PD Planner is that the grid 

cells may be revisited several times. So, one grid cell may be counted more than 

once when we evaluate a candidate assignment. In practice, we separate the 

assignment into several segments and each segment links between two targets (or 

links between start point and a target). Then, the candidate assignment  (    |   ) 

with      segments can be written as the connection of segments: 

 (    |   )                
  

In the searching process, we can evaluate each segment as a path, which is the 

same as evaluate a PD Planner path: 

              ∑   [   (    
 |    

   )]

| |

   

 

In fact, when we search the segment path  , we guarantee that it has the lowest 

evaluation (37). 

Then, we evaluate the Clustering Value of the candidate assignment as: 

    [ (    |   )]   ∑             

    

   

 

Therefore, the AD Planner planned assignment in our implementation is found by: 

   (    |   )        
 (    |   )

{ ∑    {   [    (    |   )]}

    

   

} 

The pseudo code of the AD Planner is shown in Pseudo 15, where we sample   

instances and estimate     (line 1~7). In line 4,      is initialized with a greedy 

order {           
} (select the shortest path from a previous target to next 

(35) 

(36) 

(37) 

(38) 
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target).      paths with the lowest value               are found in the AD Map 

(means the highest        ) and recorded in       (line 8). OptAssignment (Pseudo 

14) uses it as the path cost  to compare the different assignments.  

Pseudo 15 The AD Planning Algorithm. 

 

5.4.3 AD Planner Experiment Results 

In our simulator system, we do not limit the upper boundary of   ,    and the 

map size. However, we cannot spend unlimited time to do the experiments. 

Therefore, we design the experiment scenario for AD Planner as: one robot to visit 

four targets, to test the AD Planner. 

The experiment map is a two-floor OC Map, Fig. 44, with one robot and four 

targets. We compare our AD Planner with the assignment algorithm based on 

threshold A* and entropy. The main difference between these algorithms is how to 

evaluate the candidate assignments in the planning process: AD Planner evaluates 

the clustering value of possible shortest assignments, threshold A* evaluates the 

threshold path length and the entropy evaluates the entropy. 

Our robot moves from the start cell to all four targets in the OC Map. The 

simulator sampled 1500 map instances based on the OC Map as the true map for 

robot to travel. Our robot configuration is the same as the experiment for PD Planner, 



130 
 

except that the robot can move from one floor to another floor. When the current 

path is blocked, the robot will make a new assignment for all unvisited targets based 

on the updated OC Map and begins travelling along this new path of the assignment. 

This overall process is repeated until the robot either visits all targets or determines 

that no further targets to be visited. We also add the AD planner based on a region 

map (described in Chapter 4) in our experiment, to see how the region affected the 

planned result. 

Similar to the PD Planner experiment, we record all the paths travelled by the 

robot using the different algorithms. The experiment results are shown in Fig. 47. 

We can see that the robot with AD Planner has a higher cumulative probability (the 

biggest probability advantage is 20%) to visit all targets when travelling the same 

distance, comparing with the entropy and threshold A* based assignment algorithm. 

The AD Planner with higher particle number has better performance. 

 

Fig. 47 The cumulative probability of different algorithms at each travel length 

5.5 Group Allocation Distribution Planner 

In this section, we consider the AD planner to the case where the group consists 

of more than a single robot. We introduce the Group Assignment Distribution (GAD) 
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Planner which will make a plan for several robots to visit many targets in an 

uncertain environment. 

5.5.1 The Group Allocation Distribution (GAD) Map 

The difference between AD Planner and GAD Planner is that we have one robot, 

or multiple robots, works in a group. Group allocation problem is an example of 

mTSP [115]. 

The group robots have    robots. The shortest group allocation        
   in 

MDP instance    is found by applying an MDP allocation planning algorithm. Here, 

the shortest allocation    in MDP instance    includes the shortest assignment for 

each robot:    ,    (     |  )- , where     (     |  )               is the 

shortest assignment for the     robot to visit the assigned targets       in   . 

Three steps are required to get the shortest allocation   : 

1, Sample grid cells to generate a set of map instances   . 

2, For each     find all shortest paths between any two points among robots‘ 

positions and targets (exclude the point pairs between any two robots) using A*, and 

save them in the path cost matrix. 

3, Exhaust all possible allocations by recursively calling the function 

―OptAllocation‖, which will return the shortest allocation with shortest path length for 

the robot group. The pseudo code of the recursive function ―OptAllocation‖ is as 

shown in Pseudo 16. The assignments     (     |  )  in a group allocation are 

found by calling ―AssignmentPlanner‖ in line 2. In different allocations, the targets 

allocated to the same robot may be different. So, we have to plan the shortest 

assignments in each allocation. 
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Pseudo 16 The “OptAllocation” to exhaust all allocations and find the shortest 

allocation recursively [115]. 

1    if (target index i > target number NA)   //all targets are allocated?

2        find the optimal assignments in Gcur :call “AssignmentPlanner” for each assignment in Gcur

3        if (current allocation Gcur shorter than current optimal allocation Gcur)

4            Gmin = Gcur

5        end if

6        return;

7    end if 

8    for(j = 1; j< NQ; j++) //allocate the i-th target to the j-th robot

9          allocate the i-th target to the j-th robot assignment SQj,A, and update Gcur          

10        call OptAllocation(Spath, Q, A, Gcur, Gmin, i+1)

11        remove the i-th target from SQj,A, and update Gcur

12  end for

OptAllocation(PathSet:Spath, Robots:Q, Targets:A, CurAllocate:Gcur, CurOpt:Gmin, Index:i)

 

In line 3, if the longest assignments of two allocations have the same length, we 

compare their second longest assignments, until we find the shorter one as the 

better allocation. The shortest allocation    satisfies: 

              
 

{ [ (      )]}        
 

{    
     

          
*    (     |  )+}     (39) 

In each allocation  (      ), we can sort the robots‘ paths base on their length. 

If the longest paths of two assignments have the same length, we will compare their 

second longest assignment, until we find the shorter one as the better group 

allocation. 

In section 5.3, we saw that the possible shortest assignments of one robot are 

clustering to some areas. When we have several robots, we also find that those 

possible shortest group allocations    also tend to cluster to some areas. Therefore, 

we define the Group Allocation Distribution (GAD) Map to describe where the 

possible shortest group assignments are clustering. 

The GAD Map      is the set of AD maps for each robot,  

         
     

       

   . Each grid cell in    
 

 records the probability that the     

robot in the shortest allocation will actually pass through that cell. Please note that 
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the targets allocated to each robot can be changed in each sampled map instance. 

Therefore, it is different with the AD Map in section 5.4.1, which contains the paths 

to visit all targets (the single robot group has to visit all targets by one robot). In the 

GAD Map, each robot may be assigned different targets which make the GAD Map 

of the robot containing the paths to visit different targets in different MDP instances. 

Marginalising over map instances, the probability of a group shortest allocation 

passing through the cell      for the     robot is given by 

    
 

(    )  ∑ , *          |        (      )+  (  )-

    

 

Generally, it is impossible to exhaustively compute all possible map instances to 

calculate the GAD Map. So, we use a Monte Carlo sampling strategy (the same as 

we do with PD Planner) to estimate it. A large number of map instances are drawn 

randomly, a group shortest assignment planner in certain environments is executed, 

and the GAD Map is computed empirically from (40) for each robot. Therefore, each 

robot in the robot group has a GAD Map, looks like Fig. 45. 

 
(a) 

(40) 
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(b) 

 
(c) 

Fig. 48 The GAD map example for 3 robot group. (a)(b)(c) indicate the AD Map for Robot-1, 

Robot-2 and Robot-3, respectively. 

Fig. 48 shows an example of the GAD Map with three robots and five targets. 

Each robot has a different starting position.      shows that different robots have 

different clustering areas, depending on the shortest allocation in the map 

instances. For example, targets            are not linked by the clustering areas 

in    
 , because they are not always allocated to Robot 3. 
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The pseudo code to estimate the GAD Map is shown in Pseudo-code 17. Just 

like the AD Planner, we find      shortest paths once (line 4) and use them to 

find the shortest allocation. Each robot has a path linking a target and we need 

the paths to link among targets. 

Pseudo-code 17    Estimate the GAD Map function 

EstimateGAD(OC Map:Moc, Particle:s, Robots:Q, RobotNum:NQ, Targets:A)

1    Init GAD Map: MGAD={M1
GAD, M2

GAD, …, MNq
GAD}

2    for(i=0; i<s; i++)

3        Sample a map instance Mi based on Moc

4        Find all shortest paths Spath between any two points among robots and targets 

(exclude the point pairs of two robots)

5        init Gmin for robots having similar lengths (PathEqual algorithm)

6        optimal allocation Gi = OptAllocation(Spath, Q, A, Gcur, Gmin, 1)

5        update GAD Map Mi
GAD based on Gi

6    end for

7    MGAD=-log(MGAD) //Calculate the negative log value

8    return MGAD

 

The ―FindOptimalGroupAssignment‖ is a function to find the shortest Group 

Allocation in a certain environment   . The pseudo code of this function is shown in 

Pseudo-code 18. 

Pseudo-code 18    The function to find the shortest group assignment 
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5.5.2 Group Allocation Planning based on the GAD Map 

The GAD Map describes where the possible shortest group allocations are most 

likely to go in the OC Map. Our Group Allocation Distribution (GAD) Planner uses 

this map to find the Group Allocation   that pass through the cells where most group 

assignments cluster. So, we cluster allocation to each cell for planning an allocation, 

and do not count the assignments in one allocation that pass through a cell in GAD 

Map. 

The Group Allocation   based on the OC Map includes the target assignments for 

each robot, written as:                        
 . The assignment for the      robot 

is                    and the path for     robot is         , which is defined as the 

AD Planned assignment in section 5.4. 

Specifically, a candidate allocation is evaluated using 

                   
           

                

       
           

{       
 (     

)            

*   (     |    
 

)+}                         (41) 

where       means the cluster value of possible shortest allocations, 

   (     |    
 

) is the shortest assignment found using the AD Planner on map 

    
 

: 

       (     |    
 

)        
 (     

| 
   
 

)

  * (     |    
 

)+                                   (42) 

The robot group needs to work together, so the goal is to find the Group 

Allocation which maximises the candidate Group Allocation Clustering Value 

          .  

In practice, we can evaluate  (     ) in     
 

 using the negative log likelihood of 

its grid cells‘ cluster values for the numerical stability: 
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The GAD Planner searches and compares candidate group allocations to 

maximize           . The pseudo code of GAD Planner is shown in Pseudo-code 

19, where the line 4 uses the same process in Pseudo 16 to find all possible 

allocations. 

Pseudo-code 19    the GAD Planner function 

GADPlanner(OC Map:Moc, Particle:s, Robots:Q, RobotNum:NQ, Targets:A)

1    MGAD=EstimateGAD(Moc, s, Q, NQ, A)

2    Init Gopt allocate targets to robots with similar GAD evaluations

3    try all possible group allocation Gcur, where Gcur={SQ_1,A, SQ_2,A, …, SQ_Nr,A}

4        for(j=0; j<NQ; j++) //for each robot,find its optimal assignment in MGAD

5            Cv(SQ_j,A)=find optimal assignment for jth robot based on {Mj
GAD, SQ_j,A}

6            update Cv(Gcur) based on Cv(SQ_j,A)

7            if Cv(Gcur) < Cv(Gopt)

8                goto 3 //Gcur is not better than Gopt, so try next possible Gcur

9            end if

10        end for

11      If current group allocation Cv(Gcur) < Cv(Gopt)

12            Gopt = Gcur

13       end if

14    end try

15    retrun Gopt
 

5.5.3 Calculation cost of AD and GAD Planner 

In this section, we will use A* as the MDP planner to evaluate the calculation cost 

of the AD Planner and the GAD Planner. 

In the AD Planner, we will find the paths from the robot to each target, and the 

paths between any two targets. There are    targets for a single robot to visit. The 

planned path number in each MDP instance is: 

(43) 
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Each sampled MDP instance has   nodes (grid cells). To estimate the CV Map 

for AD Planner, we use the particle  . The AD Planner will find    paths from     

paths to construct the shortest assignment path in each MDP instance. Then, the 

calculation cost of estimating CV Map for AD Planner is: 

 [               (    

  )] 

where  

    

                                ∏        

    

   

 

The AD Planner plans a path in CV Map is the same as planning a path in a 

sampled MDP instance, but without the sampling operation. Therefore, the 

calculation cost of AD Planner is: 

 [               (    

  )]            (    

  ) 

The GAD Planner has two main parts: estimating the GAD Map and finding the 

group allocation for multiple robots. Therefore, it is more complex than AD Planner. 

In GAD Planner, we will find the paths from each robot to each target, and the 

paths between any two targets. We have    robots and    targets. The planned 

path number in each MDP instance is: 

                                 
  

 
       

To estimate the GAD Map for GAD Planner, we use the particle  . The GAD 

Planner will find    paths from      paths to construct the shortest Group Allocation 

(the shortest assignment path for each robot). The upper bound of branch can 

provide a discount     to the calculation cost, which depends on the scenario of 

the uncertain environment. Therefore, the calculation cost of estimating      is: 

(44) 

(45) 

(46) 

(47) 

(48) 
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Then, the calculation cost of estimating CV Map for GAD Planner is: 

                          (       

  )  

where      is cost to sample   ,       is the cost for A* to find the shortest path in 

  ,  (     

  ) is the cost to find the shortest allocation in   .      

   can be written as: 

 (     

  )   (                        )   (        )           (50) 

The planning process to find the GAD allocation in GAD Map has the similar cost 

as planning a group allocation. The only difference is that the GAD allocation in 

     has not the sampling operation. Therefore, the calculation cost of GAD 

Planner is: 

                              

The main cost of GAD is        , which is the clustering of possible shortest 

allocations. 

In application, we do not need to try all possible allocations GAD Planner, when 

we plan the shortest assignment/allocation in an MDP instance. We use three ideas 

that are used to make the planning process faster in pseudo codes. 

The first idea is that a greedy assignment (like the PE assignment) can provide an 

allocation           as a baseline, which can reject the possible allocations worse 

than it. For example, when we find that one robot‘s path of the current allocation 

             is longer than  [         ], the current allocation           can be 

rejected before all targets are allocated to robots in the planning process. 

The second idea is that we extend the current Group Allocation by linking a new 

target to one of the robots, in order to make sure that all targets are allocated and 

visited by one robot at least. Those assignments that some targets are connected 

(49) 

(51) 
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with path segments but not visited by any robot will be rejected in the searching 

process. 

Thirdly, we record the last target allocated to the robot whose assignment is the 

longest one in the allocation. In recursive process, we return to that robot directly 

and change its assignment. This process can reject the allocations with the same 

longest assignment at once. 

In this way, the  (     

  )  in the calculation cost equations (47) and (51) will 

become smaller in our implementation. 

5.5.4 Experiment Results 

We simulate the robot moving with constant velocity. For the trials here, we 

consider the case with            . These numbers are sufficiently large to 

illustrate the behaviours of the different algorithms which were implemented on a  

low end machine (IntelCore2Duo CPU 2.93GHz with 4GB of memory). 

We use a three-floor OC Map, see Fig. 49, to do the experiment. In this map, we 

add a free space around the building (the blue boundary grid cells), where the robot 

can move freely. In addition, we add a punishment for robot to fly from one floor to 

another floor. We transfer this punishment to the path length: flying up will spend 

more energy (fly 1.5 times longer in length) and flying down will spend less energy 

(0.8 time shorter in length). There are two variables to record these punishments for 

robot moving from one floor to another floor, and they are used for all assignment 

planner algorithms in our experiment. 

The robots start from their initial cells, and follows the planned allocation to visit 

their allocated targets. The robot can observe obstacles within a fixed distance (line-

of-sight) and update its own OC Map. However, the robot cannot detect the status  

of a grid cell behind an obstacle. 
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A simple communication strategy is used: robots can exchange the updated OC 

Maps to make the global replan when a single robot is blocked by an obstacle. This 

overall process is repeated until all targets are visited. 

 

Fig. 49  The OC Map for Group Allocation experiment 

We compare the GAD Planner with the Group Allocation Planner based on 

threshold A* and entropy in the experiment. The robot(s) start from the same cell to 

visit 5 targets in three-floor building. The robot group uses different Group Allocation 

Algorithms to make a plan for each robot. If one robot is blocked by an obstacle, the 
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robot group will exchange their updated OC Maps and make a global re-plan, until 

all targets are visited or make sure that no targets are reachable. 

Our experiment includes one robot, two robots and three robots to visit these five 

targets. The simulator sampled 1500 true maps as the true map instances based on 

   . These instances are used to test the performance of different planners. The 

robots do not know these true maps, and they plan and re-plan with their updated 

   . Only the simulator does know all obstacles and empty spaces in these 

instances. All results were computed over 1500 Monte Carlo trials. 

We record all the paths travelled by each robot using different algorithms. We 

select the longest travelled route in the robot group of different algorithms. We get 

the travelled length of different algorithms for each instance. The average length and 

the quantile 0.5 (half of all paths‘ lengths are shorter than the length of the quantile 

0.5) of these lengths are shown in Fig. 50, where the length of the GAD Planner 

(500p) is decreased by about 30% than others. 

 

Fig. 50 The average length and quantile 0.5. 
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    Fig. 51 shows the cumulative distribution of the longest path lengths for different 

algorithms.  The results show that the GAD outperforms the other algorithms – for 

any given travel length, the probabilities that the robots will visit all targets is less 

than that of all other algorithms The reason is that the GAD Planner exploits global 

uncertainty information; the entropy planner only exploits local uncertainty 

information, and the A* planner uses the free space assumption that states in the 

unvisited environment are open. The figure also shows that the increasing number 

of particles improves the performance of the GAD. This reflects the fact that it 

computes a progressively more accurate approximation of the     . However, the 

marginal improvement declines with the number of samples, suggesting that the 

particle number 500 is close to the highest performance in the experiment OC Map. 

 

Fig. 51 Cumulative distribution of travel lengths for different allocation algorithms. 

The histograms of the longest travel route in the robot group using different 

algorithms are shown in Fig. 52. We can see that the crest of GAD planner is the 
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highest, and its peak is at x-coordinate 2000. Other algorithms peaks are located on 

its right side. Therefore, the cumulative probability of the robot travelled route based 

on GAD planner increases faster than other algorithms. 

 

Fig. 52 The histogram of the longest travelled routes for the different algorithms 

In the experiment, each algorithm has a probability to find the shortest travelled 

route length for the robot group, comparing with other algorithms. The probability is 

listed in Table 7.  

The bigger re-plan number means the former planned allocations have higher 

probability to be blocked. Fig. 53 shows the average re-plan numbers, where the 

GAG Planner can reduce re-plan numbers significantly (only the MaxProb has less 

replan number than GAD Planner). 
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Table 7 The probability that each algorithm find the shortest travelled length for the robot group 

Algorithms Probability to find the shortest travel length 

A*       0.0260 

A*       0.0313     

A*       0.0207     

Entropy 0.0453     

GAD 10p 0.0900     

GAD 100p 0.1567     

GAD 300p 0.2107     

GAD 500p 0.3053     

MaxProb 0.1140 

 

Fig. 53 The average number of replans for different algorithms 
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    The average time      for the robot group to complete the mission can be 

calculated: 

                               
    

 
                                                              (52) 

where      is the average length of the longest travelled route,   is the velocity for 

each robot to travel in an indoor uncertain environment, 
    

 
 is the robot travel time 

and         is the initial plan and all re-plans‘ time used by the algorithm in CMP. In 

Fig. 54, we use 8-threads to sample map instances and estimate GAD Map for 

GAD500p and we can see that the GAD outperforms the other algorithms. 

 

Fig. 54 Average CMT as a function of robot travel velocity. 

We tasked one robot, two robots and three robots to visit 5 targets in the same 

uncertain environments. We compare the longest robot travelled distance in these 

three cases. The experiment result is shown in Fig. 55. If we increase the robot 

number, the longest route of the robot group will be decreased. For the single robot 
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group, one robot has to visit all targets by itself. If we have two robots in the group, 

we can expect the group to visit all targets about twice faster than the single robot 

group. If we have three robots in the group, we can expect about three times faster 

than the single robot group. The average travel lengths with different number of 

robots are shown in Table 8. 

 

Fig. 55  The longest travelled distance for different number of robots. 

    In our implementation, we use the SiPP strategy to decrease the sample 

operations and two Group Allocation strategies (in section 5.5.3, Group Allocation 

base line and assignment extension) can remove some group allocations longer 

than the upper band in the searching process. Theoretically, we are not sure how 

much we can decrease the high computational cost for these operations. 
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Table 8 The average Length and the Standard Deviation of Fig. 55 

UAV number and particle Average Length Standard Deviation 

UAV=3,GAD500p 1448.1 419.9523 

UAV=3,GAD300p 1450.6 432.3435 

UAV=3,GAD100p 1476.6 435.1294 

UAV=2,GAD100p 1932.6 482.0129 

UAV=1,GAD100p 3415.2 883.8637 

 

5.6 Summary 

In this chapter, we consider the problem of planning an allocation for a robot 

group, with multi-robots and multi-targets in an uncertain environment. Our proposal 

is to maximize the probability that the planned allocation stays in the areas where 

most of the possible shortest allocations tend to cluster. The AD Planner is an 

extension of the PD Planner, which can make an assignment planning for one robot. 

The GAD Planner is an extension of AD Planner, which can make a group allocation 

planning for multiple robots. 

The Assignment Distribution (AD) Planner algorithm plans an assignment based 

on the Assignment Distribution (AD) Map. The experiment shows that the 

autonomous robot with our assignment algorithm has a higher probability to visit all 

targets than other algorithms. The more accurately we increase the particle number 

to estimate the AD map, the better performance we can get. 

The Group Allocation Distribution (GAD) Planner plans an allocation based on the 

Group Allocation Distribution (GAD) Map. The experiment shows that the 

autonomous robots group with GAD planner has a higher probability to visit all 

targets than other algorithms. We could also see that when we use more robots, the 

robot could travel shorter when all the targets are visited. 
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Our experiment shows that GAD Planner can reduce the travelled length and the 

time to complete the mission. 
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6 Summary and Future Research 

6.1 Summary of Planning Based on Clustering 

An autonomous robot is a set of advanced mechanical, electronic information, 

control tracing and problems solving planners. Our task is to make an allocation 

planning for the autonomous robot group to visit the target(s) in an uncertain 

environment. The targets are provided by the rescue team, because that the 

disastrous damage to the building is hard to be predicted. We use the Unmanned 

Aerial Vehicle (UAV) as the robot in our research. 

Our research aims at dealing with the affection of uncertain positions of obstacles 

in uncertain environments of indoor scenarios. We design a novel Monte Carlo 

based planning approach, which is called the PD Planner, the AD Planner and the 

GAD Planner, based on POMDP model. 

In the first chapter, we introduce problem of travelling in an uncertain environment 

inside a building to find survivor(s). The uncertain environment is caused by  

disasters, like an earthquake. In the second chapter, we review the different path 

planning algorithms in an uncertain environment based on POMDP model. We 

notice that the robot needs to make many re-plans in an uncertain environment 

before it reaches the target. Therefore, we are obliged to do the research based on 

the Complete Mission Process (CMP), where the robot starts from its initial point, 

and moves along the planned and re-planned paths until all targets are visited, or 

makes sure that the unvisited targets are not reachable, in an uncertain environment. 

We design the planner in a 2-dimension uncertain environment, called Path 

Distribution (PD) Planner, for a single robot and single target scenario in Chapter 3. 

We simulate a UAV as the autonomous robot to search for survivors, which is a 

good assistant of the rescue team. We assume that the uncertain environment 

should be described correctly with an Occupancy Cell (OC) Map, where each grid 
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cell records a probability that the grid cell is occupied by an obstacle. We implement 

a simulator to compare the performances of the PD Planner with other algorithms in 

CMP. When an autonomous robot is moving in the simulator, it can detect and 

update the OC Map within a short distance (can be set to different values). The 

experiment results show that the PD Planner has a higher cumulate probability to 

reach the target when robot travels the same distance. The PD Planner helps our 

robot to move efficiently in an uncertain environment. 

In Chapter 4, we analysed the planning process of PD Planner and propose two 

strategies to reduce the computational cost of PD Planner: the Sampling in Planning 

Process (SiPP) and Hierarchal Path Distribution (HPD) Planner. The experiment 

shows that the computation time is decreased much and the performance of the 

planner is decreased a little. 

In Chapter 5, we extend the PD Planner for a group robot and many targets in a 

3-dimension uncertain environment. The Assignment Distribution (AD) Planner is 

the algorithm to plan an assignment for a single robot and many targets. The Group 

Allocation Distribution (GAD) Planner is the algorithm to plan paths for multiple 

robots and multiple targets. AD Planner compares different order of visiting many 

targets based on the evaluations of paths linking any two points, which is calculated 

by PD Planner. GAD compares different group allocations, where all targets are 

allocated to each robot and the path of each robot is evaluated using AD Planner. In 

the robot group, one robot has the longest travelled route. And we want this longest 

route to be the shortest among different group allocations. The experiment results 

show that the robot group using GAD Planner has a higher probability to visit all 

targets after travelled the fixed length. The time to complete the mission of GAD 

Planner are also smaller than other algorithms. 
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6.2 Potential Future Works 

One limitation of our planners is the calculation of the Clustering Value (CV) map, 

which requires lots of calculations. There may be several researches for the future 

work to reduce the calculation. 

One possible future research is to define some region templates for constructing 

regions faster in HPD Planner. The preconditioned data structure can be used to 

find the regions in a large area. We discuss a simple preconditioned data structure 

in Chapter 4, where the grid cells in a rectangle area have the same occupancy 

probability (similar as the percolation theory [101]). Other types region templates 

based on the preconditioned data structures in OC Map may be researched in the 

future. 

Another possible research is to calculate the PD Map directly by analysing the 

structure of the general OC Map. In practice, we use the Monte Carlo Random 

Sampling strategy to estimate the PD Map. We could calculate/estimate PD map 

directly, by researching the skeleton analysis of OC Map combining with the sample 

rules. 

Thirdly, we could use the non-deterministic algorithms, which can find the sub-

shortest solution, to estimate CV Map. We mainly introduce PD Planner using the 

deterministic MDP algorithm to calculate/estimate the CV Map and find the path. For 

the non-deterministic algorithms, which can find a sub-shortest solution, the PD Map 

will be calculated/estimated as the sub-shortest paths Clustering Value. However, it 

is possible that each single sub-shortest solution is lying next to the shortest paths 

and offers some useful information about the location of the shortest path. If we can 

use the sub-shortest paths to get the PD Map accurately in the future research, we 

can speed up the PD/AD/GAD Planners. Because the sub-shortest paths can be 

found faster in most cases. 
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Another limitation in our approach experiment is different re-plan conditions. 

Currently, the re-plan occurs when an obstacle blocked the current planned path. 

We could change the re-planning condition: a new gap is found in the updating OC 

Map, like a new broken wall. For example, we define a width around the high 

clustering value cells to construct a ―corridor‖ and re-plan when a whole broken 

boundary of the ―corridor‖. Due to the limited research time, we did not do this type 

of experiment in our research. But, it may be an interesting research in the future. 

Lastly, we can ask some robots to explore and remove the uncertainty for the 

scenarios where the number of robots is bigger than the number of targets.  
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