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ABSTRACT. This paper studies the identification of partial differences of
nonseparable structural functions. The paper considers triangular structures with
no more stochastic unobservables than observable outcomes, that exhibit a degree
of monotonicity with respect to variation in certain stochastic unobservables. It is
shown that, the existence of a set of instrumental values of covariates, over which
the stochastic unobservables exhibit local quantile invariance and over which a local
order condition holds, defines a model which identifies certain partial differences of
structural functions. This result is useful when covariates exhibit discrete variation.
The paper also considers the identification of partial derivatives in smooth structures
when covariates exhibit continuous variation.

1. INTRODUCTION

1.1. Nonseparable structures. Structures in which stochastic unobservables are
nonseparable are of interest because they are capable of representing a very wide class of
social and economic processes. Further, they allow responses to changes in conditioning
variables! to exhibit stochastic variation which may be significant in the analysis of the
social and economic behaviour of individuals.

Economic theory rarely tells us where the sources of stochastic variation appear in
economic models, so conservative analysis of the econometric issues that arise when models
are brought to data allows for the possibility that structures are nonseparable.

This paper explores the limits of identification of characteristics of nonseparable struc-
tures? using a construction which allows for the possibility that covariates and outcomes
may exhibit discrete variation. One aim of this paper is to understand the limitations
that discrete variation may place on the class of structural characteristics that can be
identified by a model.

*I am grateful to Jaap Abbring, Lars Nesheim and Hide Ichimura for helpful comments at a cemmap
workshop on July 30th 2002, and to Valérie Lechene and Richard Spady for helpful discussions. This
paper formed the basis of an invited address at the 2002 European Econometric Society Meeting held in
Venice. I am grateful to the discussant, Whitney Newey, for his insightful comments.

TThis revision corrects an error in previous versions in which it was stated that the results of the
Theorem of the paper apply when outcomes have discrete distributions of general form conditional on
covariate values. In fact the Theorem allows for only rather special types of discrete distributions for
outcomes which appear as arguments of structural functions if partial differences of structural functions
are to be identifiable under the weak conditions considered in this paper. Section 5.3 contains a discussion
of this issue. This revision also corrects the discussion of large structural systems in Section 5.10.

1By “conditioning variables”, which I shall refer to as “covariates”, I mean variables whose values
may determine the distribution of a random variable - a distribution I will refer to as a “conditional
distribution”. The covariates discussed in this paper may not be random variables in the sense that
they may not have well defined probability distributions - for example they may be values selected by an
experimenter. A consequence of this is that the “distribution” of covariates will convey no information
about structures. Of course values taken by covariates may contain information.

2Structures, characteristics of structures, models and identification of structural characteristics are
defined as in Hurwicz (1950) and Koopmans and Reiersol (1950). Definitions are given in Section 3.
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1.2. Discrete variation. Covariates frequently show discrete variation. Covariates
may be realisations of discrete random variables such as binary indicators, for example
measuring labour force participation, or of integer valued random variables, for example
years of schooling, or, because of the granularity of the observation process, show discrete
variation in practice, even though continuous variation is possible in principle.

This paper focuses on identification of members of a particular class of structural
characteristics, namely values of partial differences of structural functions, that is differ-
ences obtained when all arguments but one are held constant and the remaining argument
takes two distinct values. These structural characteristics are, unlike say derivatives of
structural equations, characteristics which could feasibly be identified in the absence of
parametric restrictions when covariates exhibit discrete variation. The analysis of this
paper permits discrete variation in covariates but the results also apply when there is
continuous variation and limiting arguments allow the study of identifiability of partial
derivatives of structural functions and so a link to the results in Chesher (2001a, 2001b,
2001c¢, 2002).

Of course conditions must be placed on structures if a structural characteristic is to be
identified. The strategy taken in this paper is to seek weak identifying conditions. Since
the interpretation of all econometric analysis is contingent upon identifiability and identifi-
ability necessarily rests on some untestable restrictions, it is prudent to base identifiability
on the weakest possible restrictions.

Weak restrictions may lead to identifiability of only a limited class of structural char-
acteristics and it may be that none of its members is of interest in practice. In this
circumstance one may wish to impose further restrictions which lead to identification of
interesting characteristics. The impact of additional (for example parametric) restrictions
can be examined using the construction developed here.

1.3. Local identification. This paper studies the identifiability of local character-
istics of structures and there is no attempt to develop conditions under which, say, a
complete structural function is identified. This approach is taken because, when there
is discrete variation in covariates, and in the absence of parametric restrictions, data
may only be informative about local characteristics of structures, for example, the partial
difference of a structural function when its arguments are set to particular values.

If parametric restrictions are imposed then the value of a local characteristic (for
example the slope of a chord of a structural function over some interval) may be equal to
the value of a global characteristic (for example the slope of a parametric linear structural
function). Then the force of the parametric restriction is to allow identification of the value
of the global characteristic from information provided by just local discrete variation in
covariates.

A significant advantage of a focus on identification of local characteristics of structures
is that, as shown in Chesher (2001b), restrictions placed on structures to achieve local
identification need only be locally valid. For example, to identify a partial difference of
a nonseparable function over some interval one need not restrict attention to structures
in which stochastic unobservables and covariates are statistically independent®. Identifi-
cation can be achieved if there is dependence but it is limited in extent at the values of
arguments of the structural function at which knowledge of the value of the structural
feature is desired.

Global validity of local identification restrictions may lead to identification of global
characteristics of structures, a possibility that can be examined using the construction
developed in this paper.

3 A restriction commonly imposed in the study of identification when structures may be nonseparable.
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1.4. Partial differences. Classical identification conditions impose a degree of inde-
pendence* on the variations in stochastic unobservables and covariates and an “order”
condition® which limits the covariate driven variation in structural functions.

The focus of this paper on the restrictions on structures required to identify partial
differences of structural functions allows the role played by these conditions to be seen
rather clearly.

Under very weak conditions, which do not include these classical identification condi-
tions, differences of structural functions are identifiable.

The classical identification conditions just described ensure that certain identifiable
differences of structural functions are partial differences, that is differences obtained by
varying just one argument of a structural function.

The classical “rank” condition, when viewed entirely in the context of the study of
identification ensures that an identfiable partial difference is non-zero.

1.5. Quantiles. A key to progress in the study of identification when structures may
be nonseparable is understanding that an analysis that proceeds in terms of conditional
quantile functions is extremely well suited to the nature of the problem considered.

For 7 € (0, 1) the 7-quantile of a scalar random variable, A, with distribution function
F4 is defined as follows®,

Qa(r) =inf{q € N|Fa(q) > 7}

and note that such quantiles are equivariant with respect to monotone transformations,
that is, if A is a non-decreasing function on R then

Qn(ay(1) = MQa(1)).

This T-quantile is well defined whenever A has a proper distribution function, including
cases in which A is a discrete random variable and the equivariance property applies in
such cases.
The conditional T-quantile of A given a vector of covariates B = b is analogously
defined as
Qap(7,0) = inf{q € N|Fp5(q,0) > 7}
where F4|p is the conditional distribution function” of A given B = b, and the equivariance

property
QIL(A,B)\B(T> b) = h(QA\B(T> b)7 b)

applies for all b for which h(a,b) is a nondecreasing function of a.

Because of this equivariance property, restrictions imposed on the covariate driven
variation of conditional quantiles of a stochastic unobservable given covariates can be
“passed through” a structural function as long as the function is restricted to exhibit a
degree of monotonic variation with respect to the unobservable.

That sort of monotonicity restriction is an essential element in the restrictions that
define the identifying models of this paper.

1.6. Multiplicity of stochastic unobservables. Another essential element in the
restrictions considered in this paper is that the number of unobservables (R) should be
no greater than the number of observable outcomes (M). This does allow the possibility
that a structure involves more than M unobservables, but for the purpose of this paper

4For example, conditional mean independence, full independence, or, as considered in this paper,
conditional quantile invariance.

5In the language of Koopmans, Rubin and Leipnik (1950).

6The distribution function is defined as: Fa(a) = P[A < a].

"That is F4|p(a,b) = P[A < a|B =1b).
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a model contains only such structures in which unobservables coalesce to produce M or
fewer unobservables, no more than the number of observable outcomes.

In a nonparametric attack under weak restrictions, imposing this condition is essen-
tial, a point easily seen when we consider that otherwise one would be seeking knowledge
of characteristics of a structure generated by R > M stochastic unobservables from in-
formation contained in a M < R dimensional distribution function for outcomes given
covariates.

There are of course many econometric models used in practice that do not embody
such a restriction, for example the mixed proportionate hazard models popular in the
analysis of durations, measurement error models and models for panel data that incorpo-
rate “individual effects”. It is notable that in all cases models of this sort gain identifying
power from strong restrictions, which usually require additivity (in some specified metric)
at key points in admissible structural functions®.

1.7. Restrictions and instrumental values. Two types of restrictions define the
models considered in this paper.

First there are restrictions on admissible structural equations, specifically that they
have a triangular structure, that they exhibit monotonic variation with respect to certain
unobservables and that there is a specific sort of variation in the values delivered by the
structural functions as covariate values vary.

A two equation example of the sort of triangular structure considered here is the
following” .

Yl = hl(YQ,X,EhEQ)
Yo = ho(X,e2)

The monotonicity requirement is that h; be non-increasing or non-decreasing in £; and
ho be strictly increasing or strictly decreasing in £5. These conditions can be weakened,
for example to “single crossing” conditions as set out in Chesher (2002). The functions
hi1 and hs are normalised to be respectively non-decreasing and strictly increasing!®.

The second type of restriction limits the variation in the conditional distribution of
the unobservables (1 and e3) as covariate values (X) vary. Specifically if identification
of a structural feature at 71- and 79- quantiles of respectively ¢, and e is required then
restrictions are placed on the dependence of those conditional quantiles given X = z as «
varies.

The restrictions on X-driven variation in conditional quantiles of unobservables and
on X-driven variation in structural functions are both required to hold for variations in X
confined to a set of instrumental values. This set may be non-denumerable, but in cases
in which there is discrete variation it may be denumerable.

In Section 4 a theorem is stated and proved which defines a model such that, for two
equation admissible structures as set out above, if 2’ and z”” belong to a set of instrumental
values, V* C %X, then the partial difference:

hl(yéal“*;e;e;) _hl(ygvx*ae?e;) (1)

8For example measurement error models typically have measurement error additive in some specified
metric, mixed proportionate hazard models typically have the unobserved heterogeneity term additive
in the log hazard function, panel data models typically have individual effects additive with the other
unobservables.

9Note that e2 need not be present in h; and that €1 and €2 can be jointly dependent and dependent
upon X.

10The requirement that ho be strictly monotonic with respect to variation in e2 is significant, restricting
the stochastic variation in Y2 (which note appears in the function hi) to take place across a support which
has a one-to-one correspondence with the support of €. The issue is addressed further in Section 5.3.
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is identifiable. Here e is the 73-quantile of the conditional distribution of €5 given X,
e} is the T3-quantile of the conditional distribution of & given 2 and X, y4 and y} are
respectively ho(z',e5) and ho(z”,€5) and o* is any value of X in the set of instrumental
values.

The set of instrumental values is required to be such that:

1. the 75-quantile of the conditional distribution of €5 given X = z, e}, and the 7}-
quantile of the conditional distribution of £, given €2 = e4 and X = =z, e}, are
invariant with respect to variation in x within the set of instrumental values, and,

2. for any 2’ and z” in the set of instrumental values,
/ / * * ! 1 * *
hl(y27 z,eq, 62) = hl(yQa T ,eq, 62)
which is in the nature of an order condition.

The membership of the set of instrumental values may depend upon the probabilities,
77 and 75, which define the conditional quantiles of £; and 2. The “*” in “V*” is intended
to indicate this dependence. A more expansive, but cumbersome, notation would write a
set of instrumental values associated with 7% and 75 as V(71:72), The membership of the
set of instrumental values may also depend upon the partial difference whose identification
is sought.

It is shown in Section 4 that in this two equation problem:

1. the partial difference (1) is uniformly identified!! by a model embodying restrictions
as set out above, restrictions made precise in the statement of a Theorem set out in
Section 4, and,

2. all structures in which the partial difference (1) takes a particular value, say a, gen-
erate conditional distributions for Y given X such that the difference in conditional
quantiles:

Qv vax (71, Qya x (73, 2), ') = Qyi o x (71, Qyg x (75, 27), 2) (2)

takes the same value, a. Here Qy, |y, x and Qy,|x are conditional quantile functions
of respectively Y7 given Y5 and X, and of Y5 given X.

The analog principle'? suggests an estimator of the value of the partial difference,
namely the expression (2) applied to estimates of these conditional quantile functions.

1.8. Plan of this paper. Section 2 briefly reviews the related literature. Section 3
defines concepts used in the paper and states and proves a Lemma which is helpful in
determining whether a model identifies a structural characteristic.

Section 4 states and proves a Theorem which defines a model that identifies values
of, and partial differences of, structural functions in two equation systems. The model
embodies restrictions of the sort described above.

The ten sub-sections of Section 5 consider the following issues.

1. The requirement that a rank condition hold (that is ¢} # 5 in the example above)
if the identification result is to be useful, the impact that discrete variation in covari-
ates has on the information that data can provide about differences of structural
functions, and the utilty of parametric restrictions when covariates show discrete
variation.

Tn the sense of Koopmans and Reiersol (1950), see Section 3.
12Manski (1988).
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2. The impact of weak instruments on the ability to identify interesting partial differ-
ences.

3. Discrete variation in outcomes.
4. Analog estimation of partial differences.

5. The way in which a classical analysis via instrumental variables is subsumed in the
analysis of this paper.

6. The concept of overidentification in this analysis via instrumental values and the
use of overidentifying restrictions in analog estimation.

7. Smooth structures and the identification of partial derivatives of structural func-
tions.

8. Identification of partial differences with respect to covariates.
9. Identification of partial differences with respect to stochastic unobservables.

10. Identification of partial differences in M equation structures.

Section 6 concludes.

2. RELATED LITERATURE

The study of identification has a long history with early contributions by Working (1925,
1927), and Frisch (1934, 1938) and with notable developments by, among others, Haavelmo
(1944), Hurwicz (1950), Koopmans and Reiersol (1950), Koopmans, Rubin and Leipnik
(1950), Wald (1950), Fisher (1959, 1961, 1966), Wegge (1965) and Rothenberg (1971).
One product of this research was the order and rank conditions in linear models, local
versions of which feature in the results of this paper.

Most of this work was cast in the context of parametric models although Koopmans and
Reiersol (1950) understood that identification could be achieved with less restricted mod-
els and the definitions provided by Hurwicz (1950), adopted by Koopmans and Reiersol
(1950), and used in this paper, were designed to apply in the consideration of identification
in the absence of parametric restrictions.

Until the early 1970’s much econometric analysis dealt with aggregate market or na-
tional data. One would not expect such data to be generated by highly nonlinear struc-
tures and so the focus of the study of identification on simple parametric models and
indeed on linear models was apposite.

The microeconometrics revolution of the 1970’s wrought a major change, bringing
new interest in the study of the behaviour of individual economic agents who may face
wide variations in conditions under which choices are made, leading to consideration of
structures in which nonlinearity is an essential and an interesting element. Economic
theory provides little guidance concerning the precise forms of nonlinear structural equa-
tions and so interest in monparametric identification, that is identification of structural
characteristics in the absence of parametric restrictions, was rekindled.

Charles Roehrig (1988), extending the work of Brown (1983), re-stimulated interest
in nonparametric identification. Roehrig (1988) is concerned with global identification
of structural functions for models in which stochastic unobservables are restricted to be
statistically independent of covariates. Most of the discussion in Roehrig (1988) is for
the case in which the stochastic unobservables are separable, appearing additively in the
structural equations of the model. Newey and Powell (1988), Newey, Powell and Vella
(1999), Pinkse (2000), Darolles, Florens and Renault (2000) study identification using
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such models with stochastic unobservables which satisfy mean independence conditions
of various types.

There has been recent interest in determining when global identification can be achieved
in structures with nonseparable disturbances. Brown and Matzkin (1996) consider the
identification of nonparametric primitive nonseparable structural functions (for exam-
ple production or utility functions) under the restriction that stochastic unobservables
and covariates are independently distributed. Altonji and Matzkin (2001) study panel
data structures restricted by conditional exchangeability conditions. Imbens and Newey
(2001) study triangular, nonseparable structures similar to those addressed in this pa-
per!3. They determine conditions under which there is global identification of structural
functions when stochastic unobservables are restricted to be statistically independent of
covariates, and they develop an ingenious estimator of a structural function and provide
conditions under which it is consistent.

Statistical independence of stochastic unobservable and covariates is a very strong
condition which we might not expect to hold in practice, particularly when working with
microdata, which may exhibit heteroskedastic variation.

One of the aims of this paper is to develop identification conditions which do not require
full statistical independence of unobservables and covariates while still allowing identifica-
tion of pertinent structural characteristics. This is achieved by placing restrictions on the
covariate-driven variation of conditional quantiles of the unobservables. Such restrictions
can be tailored to suit the case under study. For example where heteroskedastic variation
is considered likely one might only be prepared to place restrictions on covariate-driven
variation in conditional medians, allowing other conditional quantiles to depend upon the
values of covariates.

One of the few papers to consider identification from a conditional quantile perspective
is Matzkin (1999) which considers a model in which a structural function takes the form
Y = m(X,¢e) with ¢ distributed independently of X and m(X,e) strictly monotonic in
e. Conditions under which the function m(:,-) and the distribution function of ¢ are
identifiable are obtained. The value of m(-,-) at a point (z,e) is shown, under suitable
conditions, to be identifiable as the value of the conditional 7-quantile of Y given X =z
where 7 is such that e is the T-quantile of the marginal distribution of ¢.

There is a large recent literature concerning the identifying power of treatment effect
models'*. The structures admitted in these models have two potential outcomes only one
of which is observed depending on whether a treatment is assigned or not. These structures
contain more sources of stochastic variation than observable stochastic outcomes and so
the analysis of this paper is not applicable.

The identification conditions of this paper include local quantile independence restric-
tions. A number of papers have used quantile independence restrictions as the basis
for developing estimators including Amemiya (1982), Powell (1983), Newey and Powell
(1990), Chaudhuri, Doksum and Samarov (1997), Kahn (2001) and Chernozhukov and
Hansen (2001).

This paper extends the research reported in Chesher (2001a, 2001b, 2001¢, 2002) to
problems in which there is discrete variation in covariates or outcomes. The results of this
paper can be specialised to yield those given in the earlier papers, as indicated in Section
5.7. As is often the case, viewing a problem, as here, from a more general standpoint
creates great simplification, so the results of this paper shed light on the results contained

13In the Imbens-Newey model each structural equation contains exactly one stochastic unobservable.
In the model of this paper more than one stochastic unobservable may appear in a structural equation as
long as the unobservables appear in triangular form.

14Gee for example many contributions by James Heckman including Heckman (1990) and Heckman,
Smith and Clements (1997), and Heckman and Vytlacil (2001) and the papers referenced therein, and
Imbens and Angrist (1994), Das (2000), Chernozhukov and Hansen (2001), Abadie, Angrist and Imbens
(2002), and Vytlacil (2002).
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in these earlier papers, and more generally on a number of results in the extensive literature
on identification of structures and their characteristics.

3. STRUCTURES, MODELS AND IDENTIFICATION

This Section makes precise the definitions of various concepts used in this paper and
states and proves a Lemma which is helpful in determining whether a model identifies a
structural characteristic.

Following Hurwicz (1950), a structure is defined as:

1. a system of equations delivering a value of a vector outcome, Y = {Y,,}M_, given
a value of a vector covariate, X = {X;}X_ | and a value of a vector of unobservable
random variables, ¢ = {¢,}2 |, and,

2. a conditional distribution function, F;|x for the unobservables given the covariates,

3. such that, the conditional distribution function of outcomes given covariates, Fy|x
is well defined.

Note that the definition of a particular structure requires a complete (i.e. numerical)
specification of a system of equations and a conditional distribution Fy x.

A structural characteristic'® is a functional (S) of a structure, S, for example the value
of a partial derivative of a structural function at a given point or of a partial difference
calculated at a given pair of points. Data are generated by some structure, we know
not which, and we wish to discover the value of a characteristic of the data generating
structure. Many structures with different values of a structural characteristic may generate
identical conditional distribution functions, Fy|x. Structures which generate the same
conditional distribution function for Y given X are said to be observationally equivalent.

Data generated by a structure are informative about Fy|x, but cannot alone distin-
guish one observationally equivalent structure from another. If the value of a structural
characteristic varies within observationally equivalent structures then that value cannot
be identfied. So, in order to identify the value of a structural characteristic the class of
admissible structures must be restricted so that there is no variation in the value of the
characteristic within observationally equivalent structures.

The term “model” is used to describe a set of restrictions defining admissible structures.
A model is a proper subset of the class of all structures, for example all structures in which
the equations are restricted to be linear and F|x is multivariate normal independent of
X.

A model identifies a characteristic, 8(.S) in a structure Sy if that characteristic is the
same in all structures which are admitted by the model and observationally equivalent
to Sy (Koopmans and Reiersol (1950)). A characteristic 6(.S) is uniformly identified by a
model if it is identifiable for every structure S admitted by the model.

It is helpful to have a simple means of determining whether a model uniformly identifies
a structural characteristic. This is provided by the following Lemma.

Lemma. Consider a model, let S* be the set of admissible structures such that
0(S) = a and let A be the set of all values of 8(S) generated by admissible structures. Let
F;?‘  denote the conditional distribution function generated by a structure S. Suppose
there exists a functional of the conditional distribution function of Y given X, G(Fy|x),
such that for each a € A, Q(F{flx) =aq for all S € S Then 6(S) is uniformly identified
by the model.

15The term “structural characteristic” is due to Koopmans and Reiersol (1950). Hurwicz (1950) used
the term “criterion”.
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Proof. Consider any value of ag € A and any structure Sy with 8(Sp) = ag and let
S§ be the set of structures observationally equivalent to Sy. Consider any S’ € S§ and
let 0(S’) = a’. If a functional G with the stated property exists then Q(Fg?l ) =a’ and
G (F{ffX) = ag. Since S’ and Sy are observationally equivalent Fg?ll S F{f‘ljx and therefore
a’ = ag. Therefore, if a functional G with the stated property exists then, for any ag € A,
all structures observationally equivalent to any structure Sy with 0(Sp) = ag have the
same value, ag, of the structural characteristic, and so 6(S) is uniformly identified by the
model.

In practice it may not be possible to find a functional of Fy|x with the required
property even though the structural characteristic is uniformly identified. If, for some
model, such a functional can be found then uniform identification of the structural feature
by the model is assured and there is a clear route to estimation via the analog principle
using 6(S) = Q(Fé‘X).

4. A TWO EQUATION MODEL

This Section considers two equation structures and states and proves a Theorem which
provides restrictions on structures, that is defines a model, under which certain partial
differences of a structural function are uniformly identified. Issues arising from the result
of the theorem and extension to structures with more than two equations are discussed
in Section 5.

The conditions of the Theorem require structural equations to be triangular, complete,
and to exhibit a degree of monotonicity with respect to variation in certain stochastic
unobservables. From these conditions alone, two of the four results of the Theorem follow,
namely that values delivered by the two structural functions at a point of interest are
identifiable. From this we can immediately conclude that certain differences of structural
functions are identifiable under these three conditions.

The remaining condition of the Theorem ensures that certain identifiable differences of
structural functions are partial differences, a conclusion expressed in the final two results
of the Theorem. This condition posits the existence of a set of instrumental values of the
covariates such that variation in covariate values within this set:

1. results in no change in 77- and 73- conditional quantiles of ¢; and e, and,

2. results in no variation in the values delivered by the structural function h; through
its X argument.

The Theorem is now stated and proved.
Theorem

Let Y7 and Y3 be scalar random variables, let X = {X;}< | be a list of covariates and
let €1 and €5 be unobservable scalar random variables.

Let Q.,|x (7, ) denote the conditional 7-quantile of £ given X = z, and let Q., |-, x (7, €2, x)

denote the conditional 7-quantile of &1 given €5 = e3 and X = .
Consider {r:}2_, € (0,1) x (0,1), and a set of instrumental values V* C RE of the
conditioning variables whose membership may depend upon the value of 7*. Define

() = Qux(72:7)

Qsl\ng(Tik’ 6;(:8), :E)

9
=%
—

]

1

There are the following assumptions.
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Al Triangularity. Y7 and Y5 are determined by the following structural equations.

Yi = hi(Ys, X,e1,69) (3)
Yo = ho(X,e2) (4)

A2 Completeness. For each x € V*, the equations
Yio= hi(Yz,z,e1(z),e5(x))
Yo = ho(x,ei(x))
have a unique solution for Y; and Y, denoted by yi(x) and y3(x).

A3 Monotonicity.

(a) For all z € V*, the function ha(z,e2) is strictly monotonic (either decreasing
for all z € V* or increasing for all x € V*) with respect to variation in 5.
Normalise ho to be increasing with respect to variation in es.

(b) Forallz € V*and, at Yo = y3(x), e2 = e5(x) the function hq (y3(z), x, €1, e5(x))
is weakly monotonic (either non-decreasing for all x € V* or non-increasing for
all z € V*) with respect to variation in €;. Normalise h; to be non-decreasing
with respect to variation in €;.

A4 Quantile invariance. For all {2/, 2"} € V*
ei(@) = ef(")
e3(a) = e3(a”).
Denote the common values by e} and e3.
A5 Order condition. For all {z/,2"} € V*
ha(ys (33/), 1'/, e1e3) = hi(y; (xl)v ‘T//a e1,e3)
Consider {z’, 2"} € V* and define
A7) = Qyyyvax (77, Qya x (73, 27), ) = Qi yvax (77, Qyy x (75, 27), 2"). (5)

Consider a third value of z, x*, possibly distinct from = and o’ with {2/, 2", 2*} € V* and
define
;kLl (:L'/a :EH, x*) =h (y;($/)’ $*, 6*117 6;) —h (y; (l’”), ‘T*) e>1ka e;) .

Four results follow.
(a). Under conditions (A1) - (A3), for any € V* and any a:
y5(z) =a = QY2\X(T§>$) =a

and the model defined by conditions (Al) - (A3) uniformly identifies y5(x) for = €
V=

(b). Under conditions (A1) - (A3), for any z € V* and any a:
Z/T(ﬂf) =a = le\sz(TT,QYQ\X(TS,JS),%) =a

and the model defined by conditions (Al) - (A3) uniformly identifies yi(x) for = €
V=
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(c). Under conditions (A1) - (A5) for any {z/,z*,x*} € V*
h1(y>2k(37,),$*,€>{,5;> = h1(y;($/),$+,€>{,€;),
for any {z/,z*, 27} € V* and any a:

h‘l(y;k (x/)’ x*’ 5>1k’ 5;) =a = QYﬂYzX(TT’ QYzIX(T; 1'/)7 33/) =a
and the model defined by conditions (A1) - (A5) uniformly identifies hq (y5(z'), x*, €7, €3)
for {a',2*} e V*.
(d). Under conditions (A1) - (A5) for any {z’,2"”,2*} € V* and any a
m(a 2" a") =a= NG, 2") =a

and the model defined by conditions (Al) - (A5) uniformly identifies the partial
difference Aj, (2,2, 2*), for any {2, 2", 2*} € V*.

Proof

(a). First consider the identification of the value of y4 (), defined (see conditions (A1)
and (A2)) as follows.

Y2 (@) = ha(z, e5()) (6)

The monotonicity condition (A3) and the equivariance property of quantiles imply that,
for any x € V*, since e3(x) is the 75-quantile of £9 given X = z,

hQ(wa 6;(1))) = QYQ‘X(T;’ Q]‘)
Therefore, for any a,
y3(2) =a = Qv x(73,2) = a. (7)

Applying the Lemma of Section 3 gives the result that the model defined by (A1) - (A3)
uniformly identifies the value of y3(x) for all 2 € V* since Qy,|x (75, %) is a well defined
functional of the conditional distribution of Y given X satisfying the condition of the
Lemma. This completes the proof of part (a) of the Theorem!®.

(b). Now consider identification of the value of y;(x) defined (see conditions (A1) and
(A2)) as follows.

yi (@) = ha(yz(2), z, €1 (2), e5(x)) (8)
Substitute for ¥ in equation (3) giving

Y1 = ha(ha(x,€2), 2,1, €2)
and evaluate the right hand side at €5 = e}(x) which gives the expression:
g(xv 61) = hl(hQ(xv 6;(3))), X, €1, 6;(33))

Considering variations in e7, the monotonicity condition (A3) and the equivariance prop-
erty of quantiles imply that, for any & € V*, since ej(x) is the 7i-quantile of 1 given
go = e(x) and X =z,

hi(ha(z, e5(x)), 2, €1(2), €5(2)) = Qyije,x (71, €2(2), ) 9)

where the left hand side here is g(x, e}(x)).

16Note that this conclusion of the Theorem follows when ho is weakly monotonic with respect to
variation in e2.
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Consider the right hand side of equation (9). The definition of y;(x) given in equation
(6) implies that the events (5 = e5(z) N X = z) and (Y2 = y;5(x) N X = x) are identical,
so conditioning on g9 = e}(x) and X = x is the same as conditioning on Y5 = y4(z) and
X = z. Therefore!”

QY1\€2X(TT’ e; (l‘), ‘r) = QY1|Y2X(T$1F’ yS(z), J?) (10)

Consider the left hand side of equation (9). From the definition of y3(z) given in
equation (6)

hi(ha(x, e5(x)), z, €1(x), €3(x)) = ha(ys(2), z, €1 (), e3(x)) (11)

and using the definition of yi(z) given in equation (8), on combining (9), (10) and (11),
there is the following equation.

y;(x) = QY1\Y2X(TT’y;($)7x) (12)

Equation (7) implies that y5(z) in (12) can be replaced by Qy,|x (73, ) giving:

QY1|Y2X(TT7 y; (33), :E) = QY1|Y2X(7J1<’ QYQ'X(T;7 $), :E)

and so, for any z € V* and any a,

Y1 (7)) =a = Qv |vox (77, Qye|x (73, 7),7) = a. (13)

Applying the Lemma of Section 3 gives the result that the model defined by (A1) - (A3)
uniformly identifies the value of yj(x) for all x € V* since Qy,|v,x (77, Qvs|x (73, ), x)
is a well defined functional of the conditional distribution of Y given X satisfying the
condition of the Lemma. This completes the proof of part (b) of the Theorem.

(¢). The quantile invariance condition (A4) implies that for all z € V* the terms e] (z)
and e} (z) in equation (8) can be replaced by respectively e} and e} giving the following.

yf(x) = hﬂyé(m)w,eieé) (14)

The order condition (A5) implies that, for any x € V* the second appearance of z in
equation (14) can be replaced by z* for any z* € V* which gives the following.

yi(x) = ha(ys(x), 27, €1, €3) (15)
Therefore, for all {z/,z*, 2%} € V*, setting z = 2’ in equation (15), and considering
alternative values z* and x* for the second argument of hy gives the following.
hi(ys(2'), % €1, €5) = ha(y3(a'), 2™, €], €3)

It follows from (13) and (15) that, for {2’,2*} € V* and any a,

h1(y§($/),x*, egfa 6;) =0 = QYﬂYzX(Tglﬂa QYle(T;xl)?x/) =a (16)

Applying the Lemma of Section 3 gives the result that the model defined by (A1) - (A5)
uniformly identifies the value of hq(y3(z'),x*, €7, e3), which is invariant with respect to
x* € V*, since Qy, |y, x (771, Qy,|x (75, 2'),2") is a well defined functional of the conditional
distribution of Y given X satisfying the condition of the Lemma. This completes the proof
of part (c) of the Theorem.

17Note that if hy were only weakly monotonic with respect to variation in €2 this conclusion would not
follow because there could be many values of e}(x) implying the same value of y3 ().
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(d). First recall that the partial difference A} (z', 2", 2*), which is invariant to choice
of x* € V*, is defined as follows.

*

h1 (xl7x”71'*) = hl (y;(xl)vl'*7 eTv 6;) - hl (y;(lﬂ)ﬂ $*, e>‘1<7 6;)

It follows directly from (16) that for any {z’, 2", 2*} € V* and any a,
Ap (22" 2%) =a = AH(a',2") = a.

Applying the Lemma of Section 3 gives the result that the model defined by (A1) -
(A5) uniformly identifies the value of A} (2',2",2%), since Aj(2',2") is a well defined
functional of the conditional distribution of Y given X satisfying the condition of the
Lemma. This completes the proof of the final part of the Theorem.

5. REMARKS AND EXTENSIONS

5.1. Rank condition, discreteness and parametric restrictions. Part (d) of the
Theorem is only of interest if the “rank condition”, y3(z") # y4(z”) holds.

Even when this condition holds, the extent to which yj(z) can be varied may be
severely limited by the nature of the set of instrumental values. To take an extreme
example, if there are just two admissible instrumental values (perhaps because X is a
single binary instrument), then for any choice of 73, and thus of e}, only two values of Y3
can be generated and only one partial difference can be identified. Whether or not that
is an interesting partial difference is a matter for case-by-case consideration.

If X does not show continuous variation but h; is a smooth function of Y5 then the
slope of a Ys-chord of the structural function, that is:

A, @ 2") ) (g5 (2') = w3 (27))

can be identified as long as the rank condition is satisfied.

If Ay is restricted to be linear in Y5, with a coefficient that may depend upon X and
€, then just two instrumental values are sufficient to globally identify the value of this
coefficient at a value of X and e. By extension, if hy is restricted to be a degree M
polynomial function of Y5, with coefficients possibly depending on X and ¢, then, as long
as the conditions of the Theorem are satisfied, M + 1 distinct instrumental values are
sufficient to identify the M + 1 coefficients of the polynomial.

5.2. Weak instruments. Even when the set of instrumental values has extensive
coverage, variation across the set of instrumental values may still induce only limited
variation in y4(x). This will be the case when hs transmits the effect of variation in X
only weakly. In this situation extensive understanding of the impact of Y5 on h; cannot
be obtained without further, for example, parametric, restrictions.

This “weak instrument” problem is additional to the weak instrument problem com-
monly discussed in the context of estimation which arises from the possibly poor quality
of asymptotic approximations to the distributions of estimators based on estimation using
numerous weak instruments.

5.3. Discrete outcomes. The results of the Theorem apply when the outcomes Y;
and Y, have discrete, continuous or mixed distributions. However, results (b) - (d) of the
Theorem are not likely to be useful when Y5 is not continuously distributed in a neigh-
bourhood of the quantile ex(x) of interest. Although the Theorem does apply when the
outcome Y5 has a discrete distribution, the impact of the covariates, X, on the distribution
of Y5 allowed by the Theorem is extremely limited when Y5 has a discrete distribution.
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To see this, first note that since ho is required (at the values of X of interest) to be
strictly monotonic with respect to variation in €5, Y5 can only have a discrete distribution
if €5 has a discrete distribution.

Suppose that €5 is discrete. Since hg is required to be strictly monotonic, there is a
one-to-one correspondence between the points of support of the distribution of 5 and the
points of support of the distribution of Y5. Consider a particular value which ¢, can take,
say eéi)(a:). The probability that Y3 take the value, yél)(:c) = ha(z, eéi)(a:)) is equal to the
probability that e = eg)(x) because hg is required to be strictly monotonic. Variation in
x via the first argument of hy can change the locations of the points of support of Y5 but
cannot alter the probabilities with which these points of support occur. Variation in these
probabilities could arise because eg)(x) varies with x, but such variation is ruled out for
values of x in a set of instrumental values.

This issue is now explored a little further. Any discrete distribution can be arbitrarily
closely approximated by a continuous distribution. As an example, consider the case in
which Y3 has ezactly a Poisson distribution with mean A(z). This arises when hg(z,e2)
is defined as the non-decreasing function:

ho(z,e2) =14, ez € (F(Z -1, )‘(1'))7 F(i, )\(LU))] (17)
where ¢4 is uniformly distributed on (0, 1) and
F(-1,X(z)) = 0

Fli,\z)) = @

=0

Consider the function héﬁ ) (x,e2) defined for positive § as follows.

F(i, )\(1‘)) — &9
AN@)) — F(i— LA

; B
W e =i+ 1- (g Z5) ¢ e P 1) PG

With e, uniformly distributed on (0,1) this generates a variate Y2 = héﬁ ) (z,e2) which is

the sum of a Poisson variate with mean A(z) and an independently distributed variate, V,
which has a Beta distribution on (0,1) with distribution function Fy (v) = 1 — (1 —v)*/5.

As (8 approaches zero the probability mass of this Beta variate comes to be concen-
trated closer and closer to zero and héﬁ ) (z,e2) approaches ho(x,e3) defined in equation
(17). The Theorem of Section 4 applies when structures have Y5 generated in this fashion
with any positive value of 8 but the Theorem does not apply when 3 = 0 at which point
there is a fundamental discontinuity.

For 8 > 0 there is a one-to-one correspondence between a quantile!® es(z) of the
distribution of €3 given X = z and ya(x) = hgﬁ)(l',eg(ﬂﬁ)) and so, in the proof of the
Theorem we can use the identity

QYI\EQX(TT, ex(x),x) = QYI\YQX(TTa Ya(), )

where yo(2) = h;ﬁ)(l', ea(x)).
When 8 = 0, Qy,|v,x(77,%2(x), ) is a conditional quantile of the distribution of Y;
given Y5 and X which arises from the conditional distribution, Fy, |, x, as the “mixture”:

Fyivax (n1ly2(2), 2) = / Fy,eux (41 ez, 2)dFe, x (e22)
e2€A(y2(x),r)

18Note that in this example €2 is uniformly distributed on (0, 1), independent of X and so ea(z) does
not in fact depend upon z.
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where
A(ya(x), ) = {ez : ha(x,e2) = ya(x)}.

This observation suggests that the identification of characteristics of structures in
which Y5 has non-trivial discrete variation is similar to the problem of identification of
characteristics of structures with more sources of variation than outcomes and, as in
those cases, requires restrictions of types different to, and in a sense stronger than, those
considered in this paper.

5.4. Estimation. Quantile regression estimation methods (see Koenker and Bassett
(1978)) can be employed to estimate the values of the structural characteristics identified
by the Theorem.

Estimation could be parametric, semi- or non-parametric depending on the extent
of additional structural restrictions one cares to impose. For parametric estimation, see
Koenker and Bassett (1978), Koenker and d’Orey (1987); for semiparametric estimation
see for example Chaudhuri, Doksum and Samarov (1997), Kahn (2001) and Lee (2002);
for nonparametric estimation, see for example Chaudhuri (1991). The sampling properties
of the chosen estimator will depend upon restrictions on structures additional to those
considered in this paper.

Quantile regression estimation is well understood so estimation issues are not consid-
ered further in this paper, except in Section 5.6.

5.5. Instrumental variables. Regarding the order condition, (A5), the special case,
familiar in the classical analysis of identification in parametric models with “exclusion”
restrictions arises when X is partitioned into two subsets, X;,.. and X .. and X,,. does
not feature in the h; equation.

We then often talk of X... as instrumental variables and it will commonly be the case
that within the set of instrumental values, z;,. = x} ., some common value for all z € V*.

mnc?

Typical pairs of instrumental values in this case would have the form:

2 = AT Teae & = {0 Tlac -

mce? exc exc

In the absence of parametric restrictions we could allow X,.,. to feature in the hq
equation but maintain the “order” restriction that h; is insensitive to variations in X,
at values of X in the set of instrumental values.

5.6. Overidentification. There is overidentification of the value of Aj (2',2",2*)
when there exists more than one pair {z’, 2"} € V* yielding a common value of A}, (2, 2", z*).
Then the efficiency of estimation will be enhanced if alternative estimates, based on differ-
ent just identifying pairs, {2/, 2"}, are combined, for example using a minimum distance
estimator. There is also scope for testing some of the overidentifying restrictions.

In the classical analysis of parametric identification with exclusion restrictions, overi-
dentification arises in this two equation model when X.,. contains more than one co-
variate. This can be set in the context of the “instrumental values” of this paper by
writing

Xemc = {Xemc,la Xewc,Z}
and noting that

{xl7 I//} = {(x?ncﬂ ‘T;azc,lﬂ w:xc,2)7 (x?nm xgxc,l? x:xc,Q)}

and
{LU/, xﬂ} = {('ri;nc’ x:,;c,lﬁ x;mc,2)7 (xznc’ xjﬂ;c,l’ x/e/wc,2)}

are then overidentifying pairs of instrumental values provided that both pairs produce
identical values {ya2(z'),y2(2”)} and that the two values of 2’ and z” both fall in V*.
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5.7. Smooth structures. If the Y5 derivative of the structural function exists, and
X can vary continuously in the set of instrumental values inducing continuous variation
in Yy then, by considering'? the limiting behaviour of Ay (2/,2")/ (y3(z") — y3(z")), the
identification of the Y5 derivative of h; can be achieved, yielding the result given in Chesher
(2001b).

To see this, consider the case in which all elements of =’ and z” are identical except
for one, denoted by xy. Consider the slope of a Ys-chord of h; obtained by moving from
z' to z”, inducing a movement from y3(z') to y3(z”), and suppose the rank condition,
ys(2') # y3(a”) is satisfied. The slope of the chord is

y3 (') —ys (")
and consider its limit (assumed to exist) as ' — z”. Let the limiting value of 2’ and z”
be denoted by z*.

Let
A(x*)= lim A(z,2").

If the limit exists then
A(LU*) = VYQ hl (927 x,€1, 52) ‘yzzyg (z),x=x*,e1=e] (x),c2=6} () (18)

which is the Ys-partial derivative of the structural function h; evaluated at the point
indicated.

Write A(z*) as:

llm A;;l(x/’xll>/(xl_xll> .
v (@)~ 3 @) [ @ )

Then, if the required limits exist,

A(z") =

N\ limz/‘}z,/:m* ( ;11 (LUI7£L'//)/ (1'/ o 1'//))
AT = T (G0 — 3@ @ —a7)

and therefore:

VIV hl (y;(fb‘*),f*, 6T7 6;)
Va, y3(z*)

= VYth (y;(x*),x*,e;ez) +

A(z™)

(19)

VXV hl (y;(ﬂf*), ‘T*) CT, e;)
Vx,ys(*)

(20)

In (19) V., h1 (y5(x*),z* e}, e3) is the partial derivative of hy (y3(z), z, e}, el) with
respect to xy, and V,_ y3(x*) is the partial derivative of y3(z) = ho(z,e3) with respect
to xy, both evaluated at x = x*.

The second line, (20), follows on applying the chain rule, noting that xy affects hy in
(19) directly and via y3(z).

In (20) Vy,hy (y3(x*),x*, e}, el) is the partial derivative of hy (Y3, X, e1,e2) with re-
spect to Yz, Vx hy (y3(x*),x*, e}, e}) is the partial derivative of hy (Ya, X,e1,€2) with
respect to Xy, both evaluated at y3(z*), z*, e}, €5, and Vx, y5(2*) is the partial deriva-
tive of2 hy(X,eq) with respect to Xy evaluated at x*, €.

Y Henceforth the argument z* of A;‘Ll is suppressed since in the model considered here (defined by
conditions (A1) - (A5) of the Theorem) A;‘H is invariant with respect to z*.
20Recall y3(z) = ha(z, e}).
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Under certain conditions?! the values of the derivatives in (20) and the value of the Y»-
partial derivative of the structural function evaluated at the point indicated in equation
(18) are uniformly identified and for any a,

Vx, Qv v, x (71, Qyy x (75, 2%), %)
A=a = V T3 75, x%), ") + ———=2 . =a
Y2 Qi Vo x (71, Qy, x (75, 77), 2%) V. Qvyx (73,27

where e.g. Vy,Qy,|v,x (77, Qvy x (75, 2%),2*) is the yo-derivative of Qy,|y,x (771, ¥2,)

evaluated at y» = Qy,|x(73,7"), v = 2*.

5.8. Partial differences with respect to covariates. Partial differences of hy with
respect to an element of X can be identified in a similar fashion. Consider an element Xy,
denote remaining elements of X by Xy, and suppose there exists a set of instrumental
values V* with elements x written as

x = (z0,4)
such that:
1. for all {z/,2"} € V*,
ys(2") = y3(a”)
i) = cif")
Ga) = e

with common values denoted by 5, efand e5, and,
2. for all {z/,2"} € V*,
hi(ys, a), &y, €1, e5) = hi(ys, 25, Ty, €], €5).
where the dependence of h; on xy and x4 is made explicit in the notation.
For {2/, 2",x*} € V* define:
X, (00,20, 74) = ha(ys, x4, 24, €1, €3) = ha(ya, 25, 74, €1, €3)-

Then it can be shown that the model defined by (Al) - (A3) of the Theorem of
Section 4 and conditions (1) and (2) above uniformly identifies the partial difference
A (x4, 23, Ty ), which, note is invariant with respect to xy, and that for any a,

A% x, (zy, 2, 04) = a = Aa(x',x”) =a
where Ay (z',2") is the difference of conditional quantile functions already defined in (5).

5.9. Partial differences with respect to unobservables. Now consider identifica-
tion of partial differences of h; with respect to variation in the stochastic unobservables.
First consider differences with respect to variation in e;.

Choose a value of X, x, and a probability 73, define

e3() Qey(x (72, 7)
ya(z) = ha(z,e3(x))

21See Chesher (2002).
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choose two probability levels, 77, and 77,, define

en(r) = Qcjepx (11, €2(2),2)

61‘2($) QsﬂszX(T){Qae;(I’)wx)

and consider

hien (2) = ha(yz(2), 2, 11 (2), €5(2)) — ha (2 (2), @, €75 (2), e5())

which is clearly a partial difference with respect to variation in ;.
Results (a) and (b) of the Theorem imply that under conditions (A1) - (A3) (that

is, triangularity, completeness and monotonicity) AV (z) is uniformly identified and its

value is delivered by the follwing difference of conditional quantile functions.

QY1|Y2X(7'T17 QY2|X(7'§’ ZU), T) — QYl\YQX(TTQa QYz\X(T§7 x), ZU)

Now consider differences with respect to variation in e,.
Choose two values of X, 2’ and 2, and two pairs of probabilities {73,775} and
{751, 755}. For any x and ¢ € {1,2} define

e’éi(x) = ng\X(T;‘,:x)
Y2i(®) = ha(w,e3(x))

and

ey (v) = Qeﬂer(TTiv ey (), )

and consider
T (25 2") = ha(ysi(2'), 2", €71 (2), €51 (2") — ha(y3a(2”), 2", e7a(2"), €32 (2"))

Assume that 2’ and z” are members of a set of instrumental values, V*, which has
the following properties.

1. For all {z/,2"} € V*

with common values denoted by y5 and ej.

2. For all {z/,2"} € V*, one or both of the following conditions hold

hi(ys, @', el e51(2") = h(ys,2” e, e3(2')) (a)
hl(y;,$/,€T,€;2($/>) h1(y;,$u,€>{,€;2($,>> (b)

If conditions (1) and (2a) hold then A% _ (a/,2") can be written as

hi,e2
e (@) = ha(ys,a’ el 5, (2')) — ha(ys, 2", €], e35(2"))
= hl(y; z”, 2 631@3/)) - hl(ysv z” €1,€5 (l‘//)), (21)
for any {2’,2"} € V*. If conditions (1) and (2b) hold then A} _ (2',2") can be written

as

A;‘;l,sz (x,7 x”) = h1(y§, 1'/7 6?, ezl(x/)) - hl(y;v 1'”7 eTa 632 (x”))
= h(ys,2' el €51 (2") — ha(y3, 2, e, e35(2")), (22)
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for any {a', 2"} € V*. If condition (1) and both of (2a) and (2b) hold then A} _ (z',2")
can be written as

hoes (@ 27) = ha(ys, 2%, €1, €5, (2)) — ha(y3, 27, €], €55(2")) (23)

for any {a/, 2", 2*} € V*.

Note that each of (21), (22) and (23) is a partial difference with respect to variation in
€9. Arguing as in the proof of the Theorem of Section 4, each of these partial differences
is uniformly identified with a value delivered by the following difference of conditional
quantile functions

Qi vax (711, Qvy x (751, 2), 2") — Qi vax (T12, Qya|x (739, 27), 2)

where note that, by virtue of Condition (1a),

Qva1x (731, 7') = Qv x (739, 2").

At the point of estimation this latter condition may be easy to achieve in the sense
that, with probability levels 75; and 75, chosen, and estimated conditional quantiles for
Y5 given X to hand, one may be able to find 2’ and x” such that

QY2|X(T;171J) = QY2|X(T§2,$U”)~

Achieving Condition (1b) is more problematic.

To satisfy Condition (1b) we must find probability levels, {77, 755}, such that for the
chosen probabilty levels {73,755} and instrumental values {z’, 2"’} the following condition
holds.

QEl |62X(T>{1’ Q62|X(T;17 .7?/), xl> = QEl lea X (T>{2’ Q62|X(T§2’ x/l)7 x/l)

It is not obvious how this could be done without additional structural restrictions. A
restriction requiring £; and €2 to be independently distributed given X with quantile
invariance holding for variations of z in {a’,2”} would suffice. Note that in that case
we would require 73; to equal 7j5. It is now demonstrated that if 73; = 77, then (21),
(22) and (23) can be interpreted as a partial differences of a normalised version of the
structural function hj.

First note that a structure in which there is strongly monotonic variation of h; with
respect to €1 and of hy with respect to €2 can always be written in terms of independently
distributed stochastic unobservables which will be denoted by 1, and 7. Let F¢ |-, x and
F¢,|x denote the conditional distribution functions of respectively €1 given €2 and X and
of g5 given X, and define the random variables

Ny = F€2|X(€2‘x)
m = F51|52x(€1‘€2,l’)
so that
€2 = Qez\X(U2|$) (24)
€1 = Qsl\ng(nl‘Q62|X(n2|x)’x)' (25)

Then {n;,n,} are independently distributed random variables each uniformly distributed
on (0, 1), distributed independently of X.?2

22This normalisation plays a central role in Imbens and Newey (2001). The transformations (24) and
(25) on which it is based are familar in the context of the generation of psuedo-random numbers, €1 and
€2 with distributions F, |.,x and F_, x employing independently uniformly distributed psuedo-random
numbers, n; and n,.
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The structural equations hy and hy can be rewritten in terms of independently uni-
formly distributed n; and 7, as

Yi = hl(Y27XaQ61|52X(n1|Q52\X(T]2|X>7X>7QEQ\X(TI2|X))
Yo = ha(X, Qe x(m2]X))

alternatively as

i = h{V(E’Xﬂ?lv?b)

YVQ = hév (X7 772)
where hYY and hY are normalised structural functions. Note that if the quantiles of g;
and ey vary with X then the dependence of hY¥ on X through its second argument will

differ from the dependence of h; on X through its second argument.
In terms of 7; and n, we have, for i € {1,2},

g2 = ey(x) =y =7y
&1 = e(r) = =1
and so, if 77, = 775 with common value 77, and Condition (1a) and, for example, Condi-
tion (2a) hold, then, for any {z/,2"} € V*,
Zl,sg (:L'/a xll) = hiv(y;) xlla T>1ka T;l) - hiv(y;, ‘TH) TT? T;Q)
which is a partial difference of the normalised function h! with respect to variation in 7.

Similarly if Condition (2b) holds then for any {2/, 2"} € V*,

*
hi,e2

and if both Conditions (2a) and (2b) hold then

(‘rlvwﬂ) = hiv(ygax/aTT’ T;l) - h{v(y%"x/’,r’{’ 7—;2)

*

hi,e9 (xlv ‘TN) = hiv(yﬁkvx*ﬁ’fﬁ;ﬁ - hiv(yzvx*aT;TSQ)

for any {2/, 2", 2*} € V*.

It follows that under the triangularity, completeness and (strong) monotonicity con-
ditions and if Condition (1a) and one or both of Conditions (2a) and (2b) hold then a
partial difference of the normalised structural function hY¥ with respect to variation in 7,

is uniformly identified and its value is delivered by the following difference in conditional
quantile functions

QY1|Y2X(TT7 QY2|X(T§1a x'), x') - QY1|Y2X(7'T7 QY2|X(T§2a x"), 33")
where, again note that Qy,|x (751,2') = Qy,|x (752, 2") by virtue of condition (1a). If the

“rank condition” 77, # T3, is not satisfied then the partial difference is trivially zero.

5.10. Larger structural systems. The Theorem of Section 4 is easily extended to
larger systems. The basic steps are outlined now.
Consider a single equation from an M equation structure

Yl :hl(Y27"',YM7X7517"'7€M)

and M — 1 “reduced form” equations??

Y;:hi(X,é‘,;,...,EM), iZQ,...,Z\/[.

23These can be thought of as arising from a structural triangular system of equations in which each h;
involves Y}, 7 > 4, and these Y}’s have been recursively substituted out.
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As before choose probability levels 7 = {77}, consider a set of instrumental values
of covariates, V* C RX for i = 1,..., M, recursively define e}(z) as the conditional 7}-

quantile of &; given X =z and ¢; = ej(z), j > i, and define y; (), i > 1, and yj(z) as
follows.
y:($)5hl($76:($)7,€RI(I)), 7’:27>A[

yik(x) = hl(yg(x)’ R ,y}‘h(m),x,e’{(m), s )67\4(55))

The triangularity condition (A1) of the Theorem is satisfied and assume that the com-
pleteness condition (A2) is satisfied.

Assume that an extended version of the monotonicity condition (A3) holds, namely
that each function h;, i > 1, is strictly monotonic (normalised to be increasing) in ¢; when
other arguments are evaluated at x, e;f(x), j=1t,...,M, with x € V*. The function hy
is required to be non-decreasing or non-increasing with respect to variation in £; and is
normalised to be non-decreasing.

Assume that the quantile invariance condition holds for each e} (x) which take values
e;,1=1,..., M, invariant with respect to z € V*.

Suppose the Yj-partial difference of h; is of interest, defined for some {’, 2", 2*} as
follows.

Ay, (@2”) = hays @),y (@), g5 @),y (7)o uar(27), 27 e, s ely)
7h1(y§($*), s ay;'(—l(m*)vy;'((x”)vy;+1(m*)a s ,yL(x*),x*, e>1k7 s 767\4)

Impose the order condition: for all (2/,2") € V*

e ,y;fil({ljl)7y;(xl)7y;f+1(xl)7 ce 7y}k\4(xl)7xlv eTv s »e}KW)
(33//)3 ce ,y;_1($/l), y; (xl)v y;+1(xll)7 s 7y7\4(m//)a ZE”, 6*1:, ce 76*M)'

>

=

—~

<

N % D%
—

8
<

N

Recursively define

Qu) = QYM‘X(T}K\I7‘/L‘)

Qu-1(2) = Qvyyvirx (Tar—1, @u(2), )

Q?W—Q(:U) = Qijf,QlYJW,lY]uX(T?\/[—Q?Q}k\l—l(‘r)7Q}k\J(‘r)7l‘)
so that Q7 (z) is the iterated conditional 73-quantile of Y] given Y3, ..., Yy, in which each
Y;, ¢ > 1, is evaluated at its iterated conditional quantile given Y;;1,..., Y.

Define the difference in the iterated conditional quantile function of Yi:
Ah, (@ 2") = Q1(@) — Q1 (2")

Then an argument as in the proof of the Theorem of Section 4 lead to the result that
the model uniformly identifies A}y (2',2") for any {a', 2", 2"} € V*, and A7) (2/,2")
delivers the value of this partial difference.

Chesher (2001b, 2002) shows how in smooth structures some or all first partial deriv-
atives of structural functions in M equation systems can be identified as functionals of
conditional quantile functions and how, by considering a local linearisation of the struc-
tural functions about a point at which identification of partial derivatives is required, the
manipulations involved reduce to linear algebra similar to that introduced in Koopmans,
Rubin and Leipnik (1950).
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6. CONCLUSION

This paper has explored the limits to identification of characteristics, specifically partial
differences of structural functions, in possibly nonseparable structures. This exploration
has been limited to:

1. complete triangular structures,

2. structures exhibiting a degree of monotonicity in the effect of stochastic unobserv-
ables on the values produced by structural functions,

3. structures with at least as many observable outcomes as there are stochastic unob-
servables.

Under these conditions differences of structural functions are identifiable. If there
exists a sufficiently rich set of instrumental values of covariates within which local quantile
invariance and order conditions hold then the resulting model identifies partial differences
of structural functions and the partial differences are non-trivial if a local rank condition
holds.

If any of the three fundamental conditions enumerated above are weakened, it does
not seem possible to achieve identification of partial differences without bringing addi-
tional restrictions to bear, even if the local quantile invariance and order conditions are
maintained.

However there may be similarly weak sets of restrictions which can result in identifica-
tion of partial differences of structural functions that do not involve all of (1) - (3) above.
It seems unlikely that these sets of restrictions will be nested within those give here*.

This paper has studied a class of structural characteristics - partial differences of
structural functions - that can be identified under weak conditions. Whether or not in
any particular problem the members of this class are of interest is a matter for case by
case consideration. In some cases it may be necessary to impose further restrictions if this
class of identifiable structural characteristics is to contain members of interest.

24Tn the sense that the class of admissable structures defined by the conditions of this paper will not be
a proper subset of the class of admissable structures defined by alternative conditions that do not include
all of (1)-(3).
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