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Abstract   

Background: Cortical grey matter (GM) lesions are common in multiple 

sclerosis (MS), but little is known about their temporal evolution. We 

investigated this in people with relapsing-remitting (RR) and secondary 

progressive (SP) MS. 

Methods: 27 people with RRMS, and 22 with SPMS were included in this 

study. Phase sensitive inversion recovery (PSIR) scans were acquired on two 

occasions. Cortical GM lesions were classified as intracortical (IC, only 

involving GM) and leucocortical (LC, mixed GM-white matter [WM]); WM 

lesions touching the cortex as juxtacortical (JC). On follow up scans, new IC, 

LC and JC lesions were identified, and any change in classification of lesions 

previously observed was noted. WM lesion counts in the whole brain were 

assessed on PD/T2-weighted scans. 

Results: Over a mean (SD) of 21.0 (5.8) months, the number of new IC 

lesions per person per year was greater in SPMS (1.6 [1.9]) than RRMS (0.8 

[1.9]) (Mann-Whitney p=0.039). All new LC lesions arose from previously 

seen IC lesions (SPMS 1.4 [1.8] per person per year, and RRMS 1.1 [1.0]), 

and none arose de novo or from previously seen JC lesions. Changes in 

cortical GM (either new IC or IC converting to LC) lesion counts did not 

correlate with the changes in WM lesion counts. 

Conclusions: New cortical GM lesions rarely arise from the WM and the rate 

of new IC lesion formation is not closely linked with WM lesion accrual. IC 

lesion formation appears to be more common in SPMS than RRMS. 
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Introduction 

 Histopathological [1-4] and magnetic resonance imaging (MRI) studies 

[5,6] have established that cortical grey matter (GM) lesions can be extensive 

and are clinically relevant in multiple sclerosis (MS). Cortical GM lesions are 

seen in all MS subtypes [1,2], but are particularly apparent in people with 

progressive MS [1,7]. Cortical lesions play a significant role in the 

accumulation of irreversible disability [5]. 

  
 Little is known about the development and evolution of cortical GM 

lesions [8-10]. It is uncertain whether lesions confined to cortical GM 

(intracortical [IC] lesions) accrue at the same rate as leucocortical (LC) lesions 

(those involving both GM and WM) or WM lesions, or whether the rate of 

cortical GM lesion formation is similar throughout the course of relapsing-

remitting (RR) and secondary progressive (SP) MS. It is also not known if LC 

lesions form de novo, or through the extension of IC lesions into WM, or 

juxtacortical (JC) WM lesions in to GM. Cortical GM demyelination has been 

linked with meningeal inflammation, providing a plausible mechanism for 

cortical GM lesion formation to occur independently of WM demyelination [11]. 

and so it cannot be assumed that an effect MS disease modifying treatments 

have on WM lesion accrual will be similar for GM lesions. 

 

 Investigating the evolution of cortical GM lesions in histopathological 

studies is not possible, as serial tissue sampling cannot be undertaken. 

Investigating lesion evolution in vivo with magnetic resonance imaging (MRI) 

has been hampered by limited detection of GM lesions using conventional 

scanning methods. However, with the development of MRI techniques that 

improve the detection of GM lesions, such as double inversion recovery  

[12,13] and more recently phase sensitive inversion recovery (PSIR) [14,15], it 

is now possible to see GM lesions in nearly everyone with MS. Compared 

with DIR, PSIR appears to increase GM lesion detection 2 to 3 times and, 
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importantly, allows cortical GM lesions to be more robustly distinguished from 

JC WM lesions, and sub-classified into IC and LC lesions [15,16]. Using a 

high resolution PSIR sequence, we studied the formation and evolution of 

cortical GM lesions on a lesion-by-lesion basis, and examined their 

relationship with WM lesion accrual. 

Methods  

 Sixty five people took part in this study; all gave a written informed 

consent. This study had approval from our local institutional ethics committee. 

Data from three people with RRMS had to be excluded due to MRI motion 

artefacts; of the remaining 62 people, 27 had RRMS, 22 SPMS, and 13 were 

healthy controls [See Table 1]. For the MS groups, a detailed clinical history 

was obtained and neurological examination undertaken. Disease duration, 

number of relapses since the baseline visit, and change in disease modifying 

therapy were all noted. Expanded disability status scale scores were 

estimated [17].  

 

 PSIR (0.5x0.5x2mm) and PD/T2-weighted (1x1x3mm) scans were 

acquired (as per our previous work [15]) on a 3T Philips Achieva system, on 

two occasions at least one year apart. Follow-up images were registered to 

baseline scans using NiftyReg (http://sourceforge.net/projects/niftyreg) [18] 

with an affine transformation. On baseline scans, cortical GM lesions were 

classified as IC or LC; WM lesions touching but not entering the cortex were 

classified as JC lesions. As in our previous work [15], a cortical GM lesion 

was defined as a focal hypointensity relative to the surrounding normal cortex, 

that involved the cortex in part or whole. When small or ill-defined on a single 

slice, a lesion was only counted if it was present on at least one other 

adjacent slice. If a lesion was only seen to involve cortical GM it was classified 

as being IC, and if it also involved WM it was classified as LC. Total cortical 

GM lesion counts were calculated as the sum of IC and LC lesion counts. On 

follow up scans, new cortical GM lesions were counted, and on a lesion-by-

lesion basis any change in classification of lesions previously identified in or 

adjacent to the cortex (e.g. from IC or JC to LC) was noted. The intra-operator 
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intra-class correlation coefficient, using this PSIR sequence and these criteria, 

was 0.995 for total cortical GM lesion counts (IC and LC), and for IC and LC 

lesions separately, 0.990 and 0.984 respectively [15]. The PD/T2-weighted 

scans were used to count new WM lesions appearing over the follow up 

interval. All lesion marking was undertaken by VS under the supervision of an 

experienced neuroradiologist (TY) using guidelines previously reported [15]. 

Marking of all scans was blind to clinical details.  

 

 Statistical analyses were performed using SPSS version 21 (SPSS, 

Chicago, IL, USA). Differences in demographic and clinical variables between 

RR and SPMS were examined using independent sample t-tests. Since lesion 

numbers tend not to be normally distributed, changes in lesion numbers were 

compared between patient groups using the Mann-Whitney test. Spearman 

rank correlation was used to investigate associations between GM and WM 

lesion accrual. The threshold for statistical significance was p≤0.05. 

Results 
The demographic and clinical details of the participants are shown in 

Table 1. As expected people with SPMS were older (mean 53.4 (SD 7.3) 

compared with 41.7 (10.9) years; p<0.001) and had longer disease durations 

than RRMS (25.4 (10.0) compared with 13.1 (9.5) years; p<0.001). The mean 

(SD) follow up period for the RR group was 22.2 (6.3) months and for SP 19.5 

(4.8) months, which was not significantly different. The median EDSS for 

people with RRMS was 1.0 at baseline (range 1.0-6.0) and 1.5 (range 1.0-6.0) 

at follow up, and for SPMS was 6.5 (range 4.0-8.5) at both time points. At 

baseline 23 RRMS and 9 of the SPMS group were on a disease modifying 

treatment, and during follow up disease modifying therapy was started in one 

person and changed in five people with RRMS. 

Baseline lesion characteristics 

Baseline and follow up lesion counts are given in Table 2. While the 

total number of cortical GM lesions (IC and LC combined) was higher in the 

SP compared with RRMS groups (46.6 [19.4] compared with 36.8 [14.8] 

respectively), this did not reach statistical significance. IC, LC and JC lesion 
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counts (Table 2) also did not differ significantly between the RR and SP 

groups. 

 

Lesion accrual 

At follow up the SPMS group had a statistically higher total number of cortical 

GM lesions when compared with the RRMS group (mean 49.0 (19.7) and 38.0 

(15.7) respectively; Mann-Whitney p=0.043), but again there was no 

statistically significant difference between the groups for IC, LC or JC lesion 

counts. All lesions seen at baseline remained visible at follow up. The accrual 

of new IC lesions per person per year was greater in SPMS (1.6 (1.9)) than 

RRMS (0.8 (1.9)) (Mann-Whitney p=0.039). No de novo new JC or LC lesions 

were seen, and new LC lesions were seen to evolve from IC lesions but not 

JC lesions (Table 2). An example of an IC lesion converting to LC, is shown in 

Figure 1. 

 

The mean number of lesions converting from IC (at baseline) to LC lesions (at 

follow up) per person per year was not significantly greater in SPMS than 

RRMS (1.4 [1.8] compared with 1.1 [1.0] respectively). No new cortical lesions 

were seen in controls. 

 

WM lesion accrual per year was not significantly different in RRMS and SPMS 

groups (Mean [SD]: 0.7 [1.3]) compared with 0.2 [0.4] respectively). No new 

WM lesions were seen in controls. In the entire MS group, there was no 

significant correlation between the number of new WM lesions and the 

number of lesions converting from IC to LC or the number of new IC lesions. 

Similar results were seen in the RRMS and SPMS subgroups, and so are not 

shown. 

Discussion  

The most striking finding in our study was that new LC lesions (lesions 

that involve both cortical GM and adjacent [JC] WM) evolved from pre-existing 

IC lesions (which are confined to GM), and not from JC WM lesions or de 

novo. We also found significantly more new IC lesions in SPMS than RRMS 
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and, consistent with previous work [10] we found that changes in IC lesion 

numbers did not correlate with changes in WM lesion counts. The latter 

finding suggests that cortical GM lesion accrual is not closely linked with WM 

lesion formation. 

 

In a previous study using DIR scans to identify and count cortical GM 

lesions, Calabrese and colleagues followed up a mixed cohort of people with 

MS over 6 years [5].When assessed at 3 years[10] , the average rate of new 

cortical lesions was ~0.6 per person per year in RRMS (n=76) and ~0.7 in 

SPMS (n=31). At 5 years [5], the new cortical GM lesion accrual was 0.6 per 

person per year in both RRMS (n=157) and SPMS (n=31), and the rate of 

new WM lesions was ~0.8 and ~0.3 per person per year in RRMS and SPMS 

groups respectively. At 6 years [10], in RRMS the mean rate of cortical lesion 

accrual was 0.9 per person per year (n=95), but SPMS figures were note 

reported. Roosendaal and colleagues also assessed cortical GM lesion 

formation in 13 people with RRMS (=9) and SPMS (n=4) over 3 years, but did 

not report on lesion accrual in these groups separately [9].  

 

In the present study, new cortical GM lesions formed at a rate of ~0.8 

in RRMS and ~1.6 per person per year in SPMS, and WM lesions at a rate of 

~0.7 and ~0.2 per person per year respectively. With the exception of new 

cortical GM lesion accrual in SPMS, our results are very similar to those of 

Calabrese et al. With regard to the rate of cortical GM lesion accumulation in 

SPMS, the discrepancy in results between studies may be due to chance 

alone. However, the SPMS group included in the present work also had a 

much longer mean disease duration (25.4 years compared with 11.6 years) 

and greater disability as measured by EDSS scores (median 6.5 compared 

with 4.5) than the previous study [5], and so these two studies may actually be 

looking different phases of progressive MS and it is possible that with longer 

disease duration there is an increase in formation of new IC lesions in SPMS. 

It is also possible that the difference reflects the use of different MRI 

sequences to detect cortical lesions in the studies (PSIR in ours and DIR in 

Calabrese et al.) 
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When we tracked individual lesions we found that LC lesions did not 

occur de novo, but instead arose from previously seen IC lesions, and the rate 

of conversion from IC to LC lesions was matched by the rate of new IC lesion 

formation.  As such, the apparently static total IC lesion counts (Table 2) gives 

a false impression of stability, when actually new IC lesions did occur (more 

so in SPMS), and other IC lesions extended into WM so increasing LC counts. 

This has important implications when assessing treatment effects, as counting 

either total IC or JC lesions alone may overlook substantial increases in the 

number of LC lesions and significantly underestimate the rate of new IC lesion 

formation. 

 

The total number of cortical GM lesions was significantly greater in the 

SPMS compared with RRMS group at follow-up. However, when we 

subdivided cortical GM lesions into IC and LC, while both lesion types were 

more numerous in SPMS compared with RRMS, and the difference was about 

twice as great for LC compared with IC lesions (Table 2), the differences did 

not reach statistical significance. We think that this relates to the size and 

heterogeneity of the cohorts, which while large enough to demonstrate a 

difference in total cortical GM lesion counts were too small to distinguish 

subtypes of cortical GM lesions. 

 

Consistent with previous work [10,19], we did not find a significant 

correlation between the formation of new cortical GM lesions and new WM 

lesions. There are a couple of possible explanations for this. First, that cortical 

GM and WM lesion genesis have at least partially different underlying 

mechanisms. As noted above, meningeal inflammation has been seen in 

tissue sample from people with SPMS, and linked with both the extent of 

cortical GM lesions [20], and the magnitude of neuronal loss [21], providing a 

plausible mechanism for GM lesions to form independently of WM lesions. 

Second, that similar mechanisms underlie both WM and GM lesion formation 

but have their greatest effect on WM and GM at different times. WM lesion 

accrual occurs most rapidly earlier in the clinical course of MS [10,22]. In 

contrast, the results of our study, and those from previous work [5], show that 

the rate of GM lesion formation is similar, if not higher, in SPMS compared 
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with RRMS. With improved discrimination between IC and LC lesions using 

the PSIR sequence [16], our study also suggests that new IC lesion formation 

is probably higher in SPMS than RRMS. 

 

In recent work, Rinaldi et al. [23] looked at the effects of natalizumab, 

interferons and glatiramer acetate, on the rate of IC lesion formation in people 

with RRMS. Over the two years of their study, the average number of new IC 

lesions per person per year was ~1.5 in the untreated group (n=35), ~0.7 in 

those taking interferon or glatiramer acetate (n=50) and ~0.1 in those 

receiving natalizumab. This demonstrates a potentially useful role for cortical 

GM lesion measures in treatment trials. Our results suggest that not only are 

new IC lesion counts of interest, but the expansion of IC lesions into LC may 

also provide additional information about treatment efficacy. 

 

A remaining limitation of our in vivo study is the sensitivity of cortical 

lesion detection on MRI. While using PSIR about 3 times more lesions IC are 

identified when compared with DIR [15], using DIR in vitro less than 10% of 

histopathologically confirmed IC lesions are detected [4]. It is therefore likely 

that many IC lesions are still not identified on the PSIR sequence. This is 

particularly the case for subpial lesions, which are the most common type of 

cortical GM lesion seen in histopathological studies [1], but are rarely seen on 

DIR or PSIR [12,15]. While this does not negate the results of the present 

study, it would be of great interest to know if the new IC lesions seen in this 

study began in a subpial location. It may be possible to address using ultra-

high field MRI: Recent work at 7T acquiring T2*-weighted scans has 

demonstrated that a substantial number of subpial lesions can be seen [24]. 

In addition, we registered the follow-up to baseline scans, which allowed us to 

more readily match lesions seen at baseline with those seen at follow-up. 

However, this registration step will have subtly blurred the follow-up images 

and so reduced contrast between lesions and surrounding tissues, and 

between GM and WM. Given that the contrast between GM lesions and 

normal-appearing GM is lower than that between WM lesions and normal-

appearing WM, and between GM and WM, slight blurring of the follow-up 

images will tend to make it relatively more difficult to detect IC lesions when 
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compared LC or JC lesions. As we only identified new IC, but no  new LC or 

new JC lesions, we do not think this can be explained by registration-

associated methodological bias, but we may have underestimated slightly the 

number of new IC lesions 

 

In conclusion, we have found that lesions that involve cortical GM 

rarely arise from the WM, the rate of cortical lesion formation in not closely 

linked with WM lesion accrual, and that new IC lesions probably arise more 

often in SPMS than RRMS. These results suggest that measuring WM lesion 

accrual alone is not a sufficient marker of MS disease activity and 

progression, and should encourage further efforts to develop MRI techniques 

that improve the in vivo detection of cortical lesions in MS.  
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Tables 
 
Table 1: Participant demographics 

Group Age (years) M:F Baseline 
EDSS 
Median 
(Range) 

Disease 
duration in 
years 

Scan interval in 
months 

Controls (n=13) 35.1 (12.2) 7 : 6 NA NA 24.6 (6.8) 

RRMS (n=27) 41.7 (11.0) 6 : 21 1.0 (1.0-6.0) 13.1 (9.5) 22.2 (6.3) 

SPMS (n=22) 53.4 (7.3) 9 : 13 6.5 (4.0-8.5) 25.4 (10.0) 19.5 (4.8) 

 

 

 
Mean (SD) shown unless noted otherwise; RRMS = relapsing remitting 

multiple sclerosis; SPMS = secondary progressive multiple sclerosis. 

 

Table 2: Number of cortical lesions seen at baseline and follow up 

Group 

Mean (standard deviation) lesion counts 

Baseline Follow up 

IC LC JC New IC IC to LC IC LC JC 

Controls 0.0 1.6 
(2.6) 0.0 0.0 0.0 0.0 1.6 

(2.6) 0.0 

RRMS 20.3 
(9.9) 

16.4 
(12.0) 

7.7 
(9.3) 

1.1 
(2.0) 

1.7 
(1.5) 

19.7 
(10.2) 

18.2 
(12.2) 

7.6 
(9.2) 

SPMS 23.5 
(10.6) 

23.1 
(15.3) 

11.6 
(12.5) 

2.4 
(2.6) 

2.1 
(1.9) 

23.8 
(10.6) 

25.2 
(16.0) 

11.6 
(12.5) 
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RRMS = relapsing remitting multiple sclerosis; SPMS = secondary 

progressive multiple sclerosis; IC = intracortical; LC = leucocortical; JC = 

juxtacortical. 
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Figures 
 
Figure 1: An intracortical lesion evolving into a leucocortical lesion 
 

 

Corresponding PSIR images at baseline (left) and follow up (right) showing an 

intracortical lesion at baseline that extends into white matter on follow up, so 

becoming a leucocortical lesion.
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