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Abstract

Dirichlet Process Mixture (DPM) models have been increasingly employed to
specify random partition models that take into account possible patterns within
the covariates. Furthermore, in response to large numbers of covariates, methods
for selecting the most important covariates have been proposed. Commonly, the
covariates are chosen either for their importance in determining the clustering of
the observations or for their effect on the level of a response variable (in case a
regression model is specified). Typically both strategies involve the specification of
latent indicators that regulate the inclusion of the covariates in the model. Common
examples involve the use of spike and slab prior distributions. In this work we review
the most relevant DPM models that include the covariate information in the induced
partition of the observations and we focus extensively on available variable selection
techniques for these models. We highlight the main features of each model and
demonstrate them in simulations.
Keywords. Dirichlet Process Mixture models, random partition models, Bayesian
variable selection, spike and slab distributions, model misspecification.

1 Introduction
Bayesian nonparametric literature has been increasingly focusing on models that can
cluster observed units according to possible patterns in the covariates space. This mod-
elling strategy is usually referred to as Random Partition Model with Covariates (RPMx,
Müller and Quintana [2010]) and has been successfully applied to a wide range of real-data
problems, including epidemiology, survival analysis, genomics, pharmacokinetics.

Usually, an RPMx is constructed starting with a Dirichlet Process Mixture (DPM,
Antoniak [1974]) model. This is characterized by specifying a Dirichlet Process (DP,
Ferguson [1973]) prior on the parameters of the sampling model. The popularity of these
models is due to fact that they allow for high flexibility and that the posterior distribu-
tion of interests can be generally explored by efficient computational algorithms. DPM
models induce a partition of the observations in clusters, with the probability of belong-
ing to a specific cluster proportional to the cluster’s cardinality. This imposes a normal
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behavior on the partition. Recently, a wealth of research has been focussing on compli-
cating the clustering structure, by introducing dependence of the cluster probability on
covariates. Moreover, RPMx have been extended to embed latent parameters with the
aim of performing variable selection. The role of the latent variables in the RPMx frame-
work consists primarily in identifying the subset of variables that are more discriminant
in terms of the partition. The variable selection output is just the posterior distribu-
tion of the latent indicators, which are commonly treated as any other model parameter
and whose distribution is often approximated by Markov Chain Monte Carlo (MCMC)
techniques.

The main objective of this paper is to review the most relevant RPMx models, defined
through Dirichlet Process Mixtures. We dedicate particular attention to the available
variable selection techniques. The rest of the work is organized as follows. In Section
2 we review the relevant theory about DPM models. In Section 3 we present RPMx
models within a DPM framework, while in Section 4 we review available variable selection
methods. Section 5 introduces an extension of RPMx models while in Section 6 we
presents a simulation study. We conclude with a final discussion in Section 7.

2 Dirichlet Process Mixture Models
The Dirichlet Process (DP) is a distribution defined over a space of random distributions
(Ferguson [1973]). A constructive definition is presented by Sethuraman [1991], who
showed that if a random probability measure G is distributed according to a DP with
parameters α ∈ R+ and base measure G0 defined on the metric space Θ, then

G =
∞∑
k=1

ψkδθk (1)

where the elements θ1, θ2, . . . are iid realizations from G0, δθk is the Dirac measure that
assigns a unitary mass of probability in correspondence of location θk and the ψk are
constructed following the stick breaking procedure (see Ishwaran and James [2001] for
details):

ψk = φk

k−1∏
j=1

(1− φj), (2)

with φk
iid∼ Beta(1, α). By construction 0 ≤ ψk ≤ 1 and

∑∞
k=1 ψk = 1. The resulting

random measure G is defined on the same support of G0, i.e. Θ. A more compact
notation is G ∼ DP(α,G0)

Another common representation of the DP, which allows for efficient MCMC schemes,
has been provided by Blackwell and MacQueen [1973]. Let us consider a sample of n
components θ = (θ1, . . . , θn) from a random distribution G. If G is distributed as a
DP(α,G0), then by integrating out G from the joint distribution of θ1, . . . , θn, we obtain
the predictive prior distribution of θi given θ(i), which is the vector obtained by removing
the i-th component from θ:

θi | θ(i) ∼
1

α + n− 1

∑
i′ 6=i

δθi′ (θi) +
α

α + n− 1
G0(θi) (3)

Equation 3 is generally referred to as Blackwell-MacQueen urn. In particular, the
first part of Equation 3 can be rewritten as

∑k
j=1(njδθ∗j (θi))/(α + n − 1), where nj is
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the number of observations that have value equal to θ∗j . The vector θ∗ = (θ∗1, . . . , θ
∗
k)

contains the unique values of the sequence θ(i). Since Equation 3 is a mixture of atoms,
there is a positive probability that k ≤ (n− 1). This aspect is due to the discreetness of
the DP samples (Blackwell [1973]): there is a positive probability of ties, i.e. that two
random draws from G ∼DP(·, ·) are identical. From Equation 3 it is also clear that there
is a higher probability that a new (as yet unobserved) unit will be assigned to a more
numerous cluster.

This aggregating property of DP makes it particularly effective to deal with clustering
problem. In fact, arguably the most famous application of the DP is the Dirichlet Process
Mixture (DPM) model (Antoniak [1974], Escobar and West [1995], Lo [1984]), a class of
models that can be expressed hierarchically as follows:

y1, . . . , yn | θ1, . . . , θn
ind∼ p(yi | θi)

θ1, . . . , θn | G
iid∼ G (4)

G ∼ DP(α,G0)

This model assumes individual level parameters θi, for i = 1, . . . , n. The vector of pa-
rameters will have some ties with probability greater than zero. This is because we set
each one of them to have a distribution G which is a DP. This will have two main con-
sequences: (i) the sequence θ = (θ1, . . . , θn) reduces to the sequence of its unique values
θ∗ = (θ∗1, . . . , θ

∗
k), with k ≤ n, (ii) the vector s = (s1, . . . , sn) with si ∈ {1, . . . , k}, which

associates each observation with a specific value among the components of the vector θ∗,
defines a partition of the observations.

An alternative representation of the DPM model is given by:

y1, . . . , yn | G
iid∼ p(y | G)

p(y | G) =

∫
p(y | θ)G(dθ) (5)

G ∼ DP(α,G0),

Recalling the discrete nature of the DP samples as well as its representation in Equation
1, we can rewrite the sampling model as a infinite mixture model:

y1, . . . , yn | G
iid∼

∞∑
k=1

ψkp(y | θk).

The vector s defines a partition because every subject i for i = 1, . . . , n cannot be
associated simultaneously with more than one cluster. Let ρn denote the partition of the
n observations implied by s. It is easy to prove that the prior distribution for ρn induced
by the use of the DP prior is:

p(ρn) =
αk

α(n)

k∏
j=1

(nj − 1)! (6)

where α(n) = α(α + 1) . . . (α + n − 1) (take i in Equation 3 to be the last observation
for i = 1, . . . , n, exploiting the exchangeability of the Blackwell-MacQueen urn). This
defines an Exchangeable Partition Probability Function (EPPF, see Pitman [1996]), where
exchangeability arises from the fact that the partition does not depend on the labels of
the observations or of the clusters, but only on the cardinality of the groups.
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Therefore, a DPM model can be represented as a Random Partition Model (RPM,
see Lau and Green [2007] for details) through p(ρn). An RPM is characterized by within-
cluster-submodels and by a prior distribution on the partition. This is evident when
writing the joint probability of the DPM in Equation 4 (Lo [1984]) as :

p(ρn,y,θ
∗) ∝

k∏
j=1

∏
i∈Sj

p(yi | θ∗j )g0(θ∗j )α(nj − 1)! (7)

where g0 is the density associated with the distribution G0, while Sj = {i : si = j, for i =
1, . . . , n}. The term α(nj−1)! is called cohesion function for the j-th group and is denoted
by c(Sj). Since p(ρn) can be seen as the product of the cohesion functions for each of
the groups, this links the DPM with a specific type of RPM called Product Partition
Model (PPM, Barry and Hartigan [1992], Hartigan [1990]), characterized in the same
way. Using Equation 3, it is possible to specify the conditional posterior distribution of
θi for the model in Equation 7 as follows:

p(θi | θ(i),y) ∝
k∑
j=1

njp(yi | θ∗j )δθ∗j + α

∫
p(yi | θ)dG0(θ)g0(θ | yi). (8)

Particularly within a regression framework, recent Bayesian literature has focussed
on defining RPM models allowing for covariates information when inferring the partition
of the observations. This is usually obtained by modifying the cohesion function to
account for covariates patterns. At the same time, there has been an increasing interest
in performing variable selection within the context of RPM with covariates to identify
the most informative variables for the partition. In the next sections we will first review
the main methodologies for specifying DPM-based RPM with covariates and then we will
present state of the art procedures for variable selection.

3 Covariate dependent DPM
Let us consider a matrix of covariates X with n rows and D columns and let xi denote a
row. In many applications, it is desirable to express a prior distribution on the partition
that is a function of X, i.e. p(ρn |X), instead of letting the probability of the partition
depending (a priori) only on the cardinality of the clusters. We call this type of models
Random Partition Model with Covariates (RPMx).

We will focus on RPMx models that admit a DPM representation. To this end we
allow the cohesion function to include the covariates, however, we assume that the overall
probability of a partition is still specified as the product of cohesion functions of each
cluster:

p(ρn |X) ∝
k∏
j=1

c(Sj,X
ρ
j ) (9)

where, for j = 1, . . . k, Xρ
j is the subset of the rows of X associated with cluster j. In

the following sections we will review the most popular choices of covariate dependent
cohesion functions.

In a regression framework, when the research interest is in modelling the relationship
between a response variable y and a set of covariates X, i.e. studying the distribution
of p(y | X,θ), the application of RPMx models has been very frequent. This is mainly
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for two reasons. First, RPMx are flexible models, which allow to cluster the observations
according to patterns within the covariates and then to specify a cluster-specific regression
model. Secondly, they often lead to improved predictions: if we want to predict the
response for a new subject with a specific set of covariates, then a RPMx model will
assign higher probability that the new subject belongs to the cluster that contains the
most similar covariates profile.

3.1 Augmented Response Models

The most common strategy to include information aboutX into the partition model in a
DPM framework has been to treat each covariate as a random variable, i.e. by specifying a
suitable probability model. Müller et al. [1996] were the first to introduce this idea within
the DPM framework. In their work they consider an augmented model defined on Z =
(y,X) and their objective is to estimate the smooth function g(X) = E(y | X). They
approach the problem by modelling Z as a DPM of (D + R)-dimensional distributions,
where R is the dimension of the response variable (usually R = 1). Let Λ∗ be the matrix
containing the unique parameters for the k clusters, (Λ∗1, . . . ,Λ

∗
k). Considering now a new

observation z̃ = (ỹ, x̃), its predictive distribution can be derived as:

p(ỹ, x̃ | Λ∗) ∝
k∑
j=1

njp(ỹ, x̃ | Λ∗j) + α

∫
p(ỹ, x̃ | Λ)dG0(Λ)

In practice x̃ is known, but assuming uncertainty about its realized value allows us to
rearrange the latter equation as

p(ỹ | x̃,Λ∗) ∝
k∑
j=1

njp(x̃ | Λ∗j)p(ỹ | x̃,Λ∗j) + α

∫
p(ỹ | x̃,Λ)p(x̃ | Λ)dG0(Λ)

using Bayes’ theorem. The quantity njp(x̃ | Λ∗j) depends on the cardinality of group j
and on a measure of how likely it is that the new observation will be clustered in group
j, based on the value of its covariates. The latter is the likelihood of the observed x̃.
The smooth function g(X) is then estimated by taking the expectation of p(ỹ | x̃,Λ∗).
Muller, Erkanli and West describe in details the case where Z is a mixture of multivariate
Gaussian distribution. This leads to easy calculations and to close form expression for
g(X).

A similar approach has been adopted by Müller et al. [2011]. They have originally
proposed a modification of a PPM, the PPMx (PPM with covariates), to incorporate
measures of similarity among the covariates within each cluster employing the following
structure for the prior on the partition:

p(ρn |X) ∝
k∏
j=1

c(Sj)f(Xρ
j ), (10)

where f(·), called similarity function, is an ad hoc function that takes large values for
highly similar values of the covariates. The authors propose as a default choice for
f(·) a probability distribution. In this way f(Xρ

j ) can be seen as the likelihood of the
covariates belonging to cluster j, from which the cluster specific parameters have been
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integrated out. Given the cluster specific parameters for the covariates, the auxiliary
joint probability of a PPMx is:

f(y,X,θ∗, ζ∗1, . . . , ζ
∗
D, ρn) ∝

k∏
j=1

∏
i∈Sj

[
p(yi | θ∗j ,xi)f(xi | ζ∗j1, . . . , ζ∗jD)

]
p(θ∗j )f(ζ∗j )c(Sj)

(11)
where θ∗ and ζ∗1, . . . , ζ

∗
D represent the unique values of the parameters of the distribution

of the response and of the covariates for the k clusters respectively. Equation 11 shows
that the PPMx is a generalization of the methodology proposed in Müller et al. [1996].
Taking c(Sj) in Equation 11 to be the cohesion function implied by the DP and the
covariates to be random variables with distribution p(xi | ζi1, . . . , ζiD) (thus allowing
the similarity function to be a valid probability density for the covariates), the PPMx
simply reduces to a DPM on the joint distribution of the response and the covariates
representable by the following hierarchy:

y1, . . . , yn |X,θ
ind∼ p(yi | xi, θi)

x1, . . . ,xn | ζ1, . . . , ζn
ind∼ p(xi | ζi) (12)

(θ1, ζ1), . . . , (θn, ζn) | G iid∼ G

G ∼ DP(α,G0)

with G0 = G0θ × G0ζ , θ = (θ1, . . . , θn) and ζi = (ζi1, . . . , ζiD). Both Equation 11 and
12 define a PPMx, in which θ and ζ are assumed a priori independent. Therefore we
conclude that every DPM can be represented as a PPMx, but the reverse is not always
true. For this relation to hold, it is necessary that p(yi,xi | θi, ζi) = p(yi | θi,xi)p(xi | ζi).
In this perspective the PPMx generalizes the work by Müller et al. [1996] allowing for
the possibility of user-specific models for the covariates (via the similarity function).

Alternatively, Park and Dunson [2010] have proposed a Generalized Product Partition
Model (GPPM) to include information on the covariates in a PPM. The authors consider
the covariates as generated by some probability distribution and first infer a PPM on
the covariates only. Subsequently the posterior probability of the partition for the model
on the covariates is used as prior probability for the partition of the response variable.
This leads to the same joint model in Equation 11 under the assumption of independence
between the parameters of the covariates and response models.

Within the PPMx framework in Equation 11, the sampling model p(yi | θ∗j ,xi) does
not necessarily need to be a linear regression. Hannah et al. [2011] have extended Equation
11 to the broader Generalized Linear Model (GLM) framework through the appropriate
specification of p(yi | θ∗j ,xi). This generalization allows the users to handle different
types of data. They refer to this model as DP-GLM (see also Shahbaba and Neal [2009]).
A parametric version of the DP-GLM constitutes a particular case of the Hierarchical
Mixture of Experts (HME) model introduced by Jordan and Jacobs [1994] and specified
in a Bayesian framework by Bishop and Svenskn [2002].

An R package is available for the PPMx (https://www.ma.utexas.edu/users/pmueller/
prog.html#PPMx).

3.2 Profile Regression

Profile Regression (PR; Molitor et al. [2010]) offers an alternative strategy to account
for covariate information when specifying the partition prior model. Molitor et al. [2010]
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describe the case of a binary outcome y = (y1, . . . , yn) which is common in epidemiologic
applications, but the model is easily generalized to different types of response variable.
The PR model consists of two submodels. The first one is the model for the response:

yi | pi ∼ Bernoulli(pi)

with a logistic regression on the mean pi:

log

(
pi

1− pi

)
= θ∗j + κwi,

wherewi is a set of confounding variables with coefficients κ while θ∗j is a random intercept
depending on the cluster allocation for observation i, with si = j.

The second submodel is a mixture model on the covariates, such that conditioning on
the cluster assignment vector, the probability of a specific covariate profile becomes:

xi | ζ∗1, . . . , ζ∗D ∼ p(xi | ζ∗j1, . . . , ζ∗jD), (13)

where ζ∗jd is the element of ζ∗d corresponding to cluster j and to the d-th covariate.
In order to consistently estimate the posterior distribution of the partition and the

partition specific parameters, the authors propose to model jointly the random intercepts
of the first submodel and the parameters of the covariates model in sub-model 13 ac-
cording to a DP with parameter α and G0, with G0 being the product measure of G0θ

and G0ζ . In this way the resulting partition is informed by the information within the
covariates and the response.

This model can also be specified as an augmented response DPM model. Exploiting
the relation between DPM and PPM and ignoring the confounding variables, we can
rewrite the joint probability of the PR in a PPMx framework as follows:

p(y,X,θ∗, ζ∗1, . . . , ζ
∗
D, ρn) ∝

k∏
j=1

∏
i∈Sj

[
p(yi | θ∗j )p(xi | ζ∗j1, . . . , ζ∗jD)

]
p(θ∗j )p(ζ

∗
j1, . . . , ζ

∗
jD)c(Sj)

where the cohesion function in Equation 11 becomes c(Sj) =
∏k

j=1 α(nj−1)!, p(θ∗j ) = g0θ
and p(ζ∗j1, . . . , ζ∗jD) = g0ζ . This construction obviously defines a DPM of distributions on
(y,X).

An R package for PR is available on CRAN (http://cran.r-project.org/web/
packages/PReMiuM/) and presented in Liverani et al. [2015].

3.3 Dependent Dirichlet Process

An alternative way to introduce covariate dependent clustering in the DPM is to allow
the weights and/or the locations in the stick breaking construction of the DP in Equation
1 to depend on covariates. In particular, a covariate dependent DPM can be represented
in the following way:

Gx =
∞∑
k=1

ψk(x)δθk (14)

ψk(x) = φk(x)
k−1∏
j=1

[1− φj(x)] ,
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under the constraint that
∑∞

k=1 ψk(x) = 1. ψk(·) is a function of the covariates. In this
context x represents a point in some covariate space X and φk(x) is a realization of a
suitable Beta distribution. The model defined in Equation 14 is a particular case of the
Dependent Dirichlet Process (DDP, MacEachern [1999]). Each Gx is still marginally a
DP for each x. In its original formulation, the DDP model allows for both covariates
dependent weights (as in Equation 14) as well as for covariates dependent locations.
However, in terms of clustering, Equation 14 presents the most relevant construction.
In this case the specification of a distribution for ψk(x) is central, as it determines the
structure of the dependence between the covariates and the weights, and consequently the
way the covariate profiles inform the clustering structure. Although assuming that ψk(x)
are rescaled Beta random variables guarantees that the Gx are marginally still a Dirichlet
process (see, for example, the covariates order-based stick-breaking of Griffin and Steel
[2006]), several authors have preferred to use different models for φk(x) in order to allow
for more flexible stick-breaking processes. Examples include the kernel stick-breaking in
Dunson and Park [2008], the probit stick-breaking in Chung and Dunson [2009] and in
Rodriguez and Dunson [2011] and the logistic stick-breaking in Ren et al. [2011] among
the others.

The choice of the distribution for ψk(x) determines the DDP (or a dependent stick-
breaking), which can then be used used as mixing measure in a hierarchical model:

p(yi | x,θ) =
∞∑
k=1

ψk(x)p(yi | θk)

Note that it is also possible to assume a regression model for y, p(yi | x, θk) instead of
p(yi | θk).

A related approach is the Weighed Mixture of DP (WMDP) by Dunson et al. [2007],
which can be thought of as a finite mixture of DP distributed components, one for each
covariate level. The weights of this mixture are specified as functions of the covariates.
The resulting random measures maintain covariate independent locations and can be used
conveniently to specify an infinite mixture model with covariates dependent weights.

3.4 Other Methods

In this section we briefly present two other methods that can be used to specify covariate
dependent DPM.

The first is the Restricted DPM (RDPM) model introduced by Wade et al. [2013]. The
authors modify the usual structure of the DPM models by enforcing a strict dependence
of the distribution of the partition on covariate proximity. This is achieved by restricting
the probability measure on the partition implied by the DPM to satisfy an ordering rule
for the covariates. The authors propose a covariate dependent probability distribution of
the following form:

p(ρn | x) =
αk

α(n)

n!

k!

k∏
j=1

1

nj
Isσx (1)≤...≤sσx (n),

where sσx(1), . . . , sσx(n) is a permutation of the cluster assignment vector implied by, for
example, an increasing order of x1, . . . , xn when x is a one-dimensional covariate. It can
be shown that this construction satisfies the Ewens sampling law (Ewens [1972]) for the
probability on the cluster frequencies. This same law is satisfied by partitions implied by
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Equation 3. This class of models is appealing because it does not assume any distribution
on the covariates when accounting for the covariate similarity. The authors show how
to perform posterior inference in the RDPM through efficient MCMC algorithms. The
mixing properties of the MCMC scheme are improved by restricting the parameter space
of the cluster assignment to satisfy the covariate ordering condition.

A second alternative is represented by the Enriched Dirichlet Process Mixture (EDPM)
model described in Wade et al. [2014]. The strength of this method consists in its abil-
ity to create nested partitions (i.e. partitions within sets of a partition). To this end,
the authors specify a DPM model for the response variable, setting a DP prior on the
parameters of the sampling model for y. A DP prior dependent on the parameters of
the response is used for the parameters of the probability model on the covariates. This
construction leads to a nested clustering structure of the observations: a first level of
clustering is at the response level, whereas a second level is obtained within the clusters
formed at the first stage according to a DPM model on the covariates.

4 Covariate Dependent DPM and Variable Selection
Increasing research interest has been devoted to developing variable selection strategies in
covariate dependent DPM models. Bayesian methods allow performing variable selection
by specifying a prior on model space. See O’Hara et al. [2009] for a review of the main
Bayesian variable selection strategies. In this section we will describe separately tools for
augmented response models, Profile Regression and Dependent Dirichlet Process.

4.1 Variable Selection for Augmented Response Models

A variable selection strategy for the PPMx has been proposed by Müller et al. [2011] and
described in details by Quintana et al. [2015]. Without loss of generality we start our
discussion by considering the PPMx from the RPM point of view. It is possible to rewrite
the similarity function in Equation 10 as the product of the similarity functions of each
individual covariate, i.e. f(Xρ

j ) =
∏D

d=1 f(xρjd), where x
ρ
jd is the sub-vector of elements of

column d of X which include the elements corresponding to cluster j. Variable selection
is then introduced employing binary indicators γ∗jd for j = 1, . . . k and d = 1, . . . , D within
the distribution of the partition:

p(ρn |X,γ) ∝
k∏
j=1

c(Sj)
D∏
d=1

f(xρjd)
γ∗jd . (15)

The presence of the binary indicators allows the probability of the partition to depend
on a subset of covariates within each cluster. In fact, γ∗jd = 0 eliminates the effect on
the distribution of the partition of covariate d in cluster j. The model is completed
by introducing in the hierarchy a prior distribution for the indicators. In particular,
the authors propose to use Bernoulli prior distributions with the probability of success
modeled using a logistic link.

Alternatively, Kunihama and Dunson [2014] consider an augmented response model
and they propose a method for testing for conditional independence of the response and
a specific covariate given all the other covariates. This involves the conditional mutual
information for measuring the intensity of the dependence.
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4.2 Variable Selection for PR

Papathomas et al. [2012] investigate the problem of performing variable selection within
the Profile Regression framework when all the covariates are categorical (see also Pa-
pathomas and Richardson [2014]). Let us recall that PR can be decomposed into two
sub-models: a model on the covariates and one on the response. These are linked by
using a joint DP prior on the set of parameters common to both the submodels. In order
to introduce variable selection we need to rewrite Equation 13 in the following way:

xi | ζ∗j1, . . . ζ∗jD ∼
D∏
d=1

p(xid | ζ∗jd).

Variable selection is then performed by replacing the distribution of each covariate with:

pVS (xid | ζ∗jd, πd) = πdp(xid | ζ∗jd) + (1− πd)rd(xid), (16)

where the overscript VS indicates that the implied probability has been modified to
perform variable selection, πd ∈ [0, 1] is a continuos weight and rd(xid) indicates the
proportion of times covariate d takes value xid. From Equation 16 it is evident that large
values of πd indicate that covariate d is informative in terms of clustering.

The authors compared their approach that uses continuous weights to a version that
employs cluster specific binary indicators for each covariate. This latter idea can be
represented in the following way:

pBVS (xid | ζ∗jd,γ∗d) = p(xid | ζ∗jd)
γ∗jdrd(xid)

(1−γ∗jd),

where γ∗jd = 1 indicates that covariate d is informative with respect to cluster j. This
approach is a generalization to Profile Regression of a solution proposed by Chung and
Dunson [2009].

The results presented by Papathomas et al. [2012] show comparable performances of
the two methods in terms of variable selection, although preference is given to continuos
weights due to faster MCMC convergence.

An extension of the methods above has been proposed by Liverani et al. [2015] to deal
with continuous covariates. This consists in modifying Equation 16 substituting rd(xid)
with a suitable summary, for example the observed mean of the d-th covariate.

4.3 Variable Selection for DDP

To the best our knowledge, general variable selection strategies have not been imple-
mented in the DDP framework. However, in the case of the dependent stick-breaking
process Chung and Dunson [2009] show how to perform covariate selection when the
weights of the random probability measure are constructed by a probit link stick-breaking.
Thus, recalling the stick-breaking procedure in Equation 14 the following specification is
proposed:

Gx =
∞∑
k=1

ψk(x)δθk (17)

ψk(x) = Φ (νk(x))
k−1∏
j=1

[1− Φ (νj(x))] ,
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where Φ(·) is the standard normal distribution and νk(·) is a linear predictor specified as
νk(x) = ξkx. Variable selection is then achieved by introducing binary indicators:

ξk ∼
D∏
d=1

p(ξkd | ak)γkd(δ0(ξkd))(1−γkd), (18)

where ak denotes the cluster specific parameter of the distributions of ξkd for all d. The
condition γkd = 0 prevents covariate d from having an effect on the k-th weight of Gx.
Considering a regression sampling model p(yi | xi,θk), it is possible to link the results
of the variable selection performed in Equation 18 directly to the parameters θkd in the
regression model for the response so that when γkd = 0 both θkd and ξkd are set equal to
0.

5 Variable Selection for Covariate Dependent Dirichlet
Process Mixtures of Regressions

In section 4 we have presented the main contributions to variable selection for DPM
models with covariate dependent partition structure. The methods described earlier allow
us to find the most influential variables in terms of clustering properties. In this case,
the research focus is not on the identification of covariates that have a high explanatory
power on a response variables, as, for example, in regression settings where the primary
interest is in modelling the relationship between a response y and a set of covariates.

Barcella et al. [2015] show how to perform variable selection in a regression framework
when assuming an augmented response model. They assume a standard regression model,
with a DPM prior on the regression coefficients. DPM prior distribution is specified on the
covariates to allow for covariate dependent clustering. Variable selection is performed by
specifying a spike and slab distribution (see George and McCulloch [1993] and Malsiner-
Walli and Wagner [2011] for reviews) as base measure in the DP prior for the regression
coefficients.

Spike and slab distributions are commonly used to perform variable selection in a
regression framework and recently they have been used to this aim in DPM models. An
example can be found in Kim et al. [2009], who assume a linear regression sampling model
with a DP prior on the regression coefficients with a spike and slab base measure of the
following form:

G0 =
D∏
d=1

(πdδ0(βd) + (1− πd)N(βd | µd, τd)). (19)

In this case the covariate are treated as fixed and we have a simple DPM of regression
models. Employing a spike and slab base measure allows some coefficients in some cluster
to be exactly equal zero, which is equivalent to performing variable selection within
clusters. The main interest of the authors is to exploit this set-up in multiple hypothesis
testing. A similar proposal can be found in Cai and Dunson [2005] for linear mixed
models and in Dunson et al. [2008] for binary regression (see also MacLehose and Dunson
[2010] and MacLehose et al. [2007]).

Building on the work of Kim et al. [2009], Barcella et al. [2015] assume that the co-
variates are generated from some distribution. Then, they specify a joint DP prior on the
regression coefficients and the parameters governing the distribution of the covariates,
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assuming a priori independence between the two sets of parameters. Assuming a spike
and slab base measure for the regression coefficients, this model allows to perform cluster
specific variable selection, while, at the same time, the clustering structure is informed
by both the covariate profiles and the relationship between response and covariates. The
authors refer to this model as Random Partition Model with covariate Selection (RPMS).
Note that in Kim et al. [2009] the clustering structure is determined only by the relation-
ship between response and explanatory variables.

5.1 RPMS: Model and Prior Specification

The RPMS can be generally represented by a hierarchy similar to the one in Equation
12.

y |X,B, λ ∼ N(y |XBT , λIn)

X | C ∼
n∏
i=1

D∏
d=1

Bernoulli(xid | ζid) (20)

(β1, ζ1), . . . , (βn, ζn) | G ∼ G

G ∼ DP(α,G0),

whereB and C are matrices of parameters with n rows and D columns. βi for i = 1, ..., n
is a D-dimensional vector and is a row of B and ζi for i = 1, ..., n is a D-dimensional
vector and is a row ofC. The RPMS in Equation 20 is designed in the original formulation
to handle binary covariates, even though changing the specification of the distribution of
the covariates enables us to include different type of variables. The base measure G0 has
the following form:

G0 =
D∏
d=1

{[πdδ0(βd) + (1− πd)N(βd | µd, τd)]Beta(ζd | aζ , bζ)}, (21)

and we can rewrite G0 = G0β ×G0ζ . Following Kim et al. [2009], Barcella et al. use the
following prior distributions:

π1, . . . , πD | ω1, . . . , ωD ∼
D∏
d=1

((1− ωd)δ0(πd) + ωdBeta(πd | aπ, bπ))

ω1, . . . , ωD ∼
D∏
d=1

Beta(ωd | aω, bω) (22)

τ1, . . . , τD ∼
D∏
d=1

Gamma(τd | aτ , bτ ).

A similar structure for hyperpriors has been proposed by Lucas et al. [2006] to induce
super-sparsity to the matrix of the regression coefficients. They further assume the same
λ for all the observations and λ ∼ Gamma(λ | aλ, bλ), while Kim et al. [2009] specify
a DP prior on λ for extra flexibility. A Gamma(α | aα, bα) distribution is given to the
precision parameter α of the DP process as suggested by Escobar and West [1995].

Posterior inference is performed through Markov Chain Monte Carlo (MCMC) tech-
niques with Gibbs samplers (see Neal [2000]). A detailed description of the algorithm
can be found in Barcella et al. [2015].
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Variable selection output can be summarized in various ways. We describe here two
possible alternatives. The first and more natural way is through exploring the posterior
distribution of the regression coefficients for a given profile of covariates. Alternatively,
fixing a convenient partition of the observations among those explored by the MCMC
permits to sample from the posterior of the regression coefficients within each cluster.

The RPMS model is a DPM model on the joint distribution of (y,X). Similarly to the
approach of Park and Dunson [2010], it is possible to express the predictive (conditional)
prior of the parameters for subject i using a modified Blackwell-MacQueen urn (Blackwell
and MacQueen [1973]), which includes information on the covariates as follows:

(βi, ζi) | B(i),C(i),xi ∼ q0(xi)G0(βi, ζi | xi) +
k∑
j=1

njqj(xi)(δβ∗j × δζ∗j ), (23)

where

q0(xi) = q̃α
D∏
d=1

∫
p(xid | ζ)dG0ζ

qj(xi) = q̃
D∏
d=1

p(xid | ζ∗jd)

B and C are matrices whose rows are respectively β1, . . . ,βn and ζ1, . . . , ζn (the super-
script (i) indicates that the i-th row has been removed), k is the number of unique rows in
the matrix [B(i),C(i)], obtained by binding column-wise the two matrices of parameters,
q̃ is a normalizing constant and we denote with × the product operation for measures.
The derivation of Equation 23 is presented in the appendix of the work by Park and
Dunson [2010].

The process defined in Equation 23 is useful to compute the predictive distribution
of the response variable when a new set of covariates becomes available. In fact, it turns
out that the predictive posterior distribution for ỹ, given its covariates x̃ is

p(ỹ | y,X, x̃) =

∫
p(ỹ | y,X, x̃,β, ζ)dp(β, ζ |X,y, x̃) (24)

and it can be computed numerically integrating G out of the joint probability model
using Equation 23 and integrating β and ζ through MCMC.

Moreover, from Equation 23 we can deduce that the prior probability for the i-th
observation to be in an occupied cluster, say the j-th, is the cluster probability implied
by the DP enriched by the marginal likelihood for the i-th row of the covariates. This
has the effect of encouraging observations with similar covariate profiles to be assigned
to the same cluster a priori.

We now need to define a measure of similarity between covariates. In the RPMS two
covariates are similar if they share the same generating distribution. This is a sensible
choice in the case of binary covariates because it encourages two observations to co-
cluster when, for example, they have the same probability of having the same covariate
taking value 1. When the covariates are continuos, it could be preferable to cluster
the observations by specifying a distance between covariates and define the covariate
proximity (instead of the likelihood similarity). An example is given by the Restricted
DPM (Wade et al. [2013]).
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The RPMS can also be described as a special case of PPMx. This is because the
regression coefficients and the parameters corresponding to the covariate distribution are
a priori independent. This becomes evident when considering the joint probability model:

p(ρn,y,X,B∗,C∗) =
k∏
j=1

∏
i∈Sj

[
p(yi | β∗j ,xi)p(xi | ζ∗j)

]
g0β(β∗j)g0ζ(ζ

∗
j)c(Sj), (25)

where B∗ and C∗ are the matrices with the unique rows β∗j and ζ∗j respectively and
c(Sj) is the DP cohesion function. g0β and g0ζ are the density of the distributions G0β

and G0ζ . Equation 25 also highlights the most important difference between the RPMS
and the models similar to the one defined in Kim et al. [2009], where a spike and slab
distribution is specified as base measure of the DP to perform variable selection, but
there is no probability model on the covariates.

Proposition 5.1. Consider the model defined in Kim et al. [2009] with DP base measure
G0 given in Equation 19. Consider also a unidimensional covariate. Then the cluster
characterized by the value β = 0 suffers a priori of an inflated preferential attachment
for any new observation. In particular, if an observation i is associated with βi = 0 then
the probability that the observation i′ co-clusters is:

p(βi′ = βi | βi = 0) =
1 + αω

α + 1
. (26)

This result can be extended for multidimensional covariates considering the vector βi
such that βi1 = . . . = βiD = 0.

Proof. See Appendix A

The RPMS does not suffer of the same drawback even in the case of G0β being atomic
at zero (a spike and slab distribution), as long as G0ζ is non-atomic. In fact, considering
two draws from G0 = G0β × G0ζ , say (β1, ζ1) and (β2, ζ2) and assuming D = 1 without
loss of generality, Pr ((β1, ζ1) = (β2, ζ2)) = 0 because, even if Pr(β1 = β2) 6= 0 (that is
when they are both equal to 0), Pr(ζ1 = ζ2) = 0.

6 Simulation Study
Assuming that the covariates are random and specifying an augmented probability model
has the advantage of making posterior inference robust to model misspecification. We
illustrate this point with two simulation studies in which we compare the results of the
RPMS model with the model described in Kim et al. [2009], which, for simplicity, we
refer to as Spike and Slab Model (SSM). Furthermore, we present also the performances
of the Profile Regression (PR) and of its variable regression.

RPMS and SSM have the same hierarchical structure, except for the model for the
covariates. In what follows, we only consider categorical covariates and we choose the
same hyperparameters for both the models: aπ = 1, bπ = 0.15, aω = 1, bω = 0.15, aτ =
bτ = 1, aλ = bλ = 1, aα = bα = 1 and, only for the RPMS, aζ = bζ = 1. We do not
update the parameter µd and we fix it equal to 0 for all d. As mentioned above, in
both cases posterior inference is performed through MCMC algorithms. We initialize the
algorithm starting with one cluster and fixing the regression coefficients equal to zero and
the parameters for the covariates equal to 0.5 (this last specification is required only for
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the RPMS). We run 15000 iterations, discarding the first 5000 as burn in. The PR has
been initialized with the default values of the R package PReMiuM and 10000 samples
have been saved after discarding the first 5000. A Normal model for the response and a
Bernoulli model for the covariates have been assumed. Confounding variables have been
ignored. We focus exclusively on the variable selection via continuous indicators (see
Equation 16) following the suggestion of the authors.

6.1 Scenario 1

We simulate a dataset with n = 200 observations. We consider two binary covariates,
D = 2, and each entry xid of the design matrix is generated from a Bernoulli distribution
with mean equal to 0.5. The response yi is generated from N(xi1β̄i1+xi2β̄i2+xi1xi2β̄i3, 1),
where β̄i1 and β̄i2 denote the true value used to simulate the data. We generate two
clusters of observations of equal size, S1 and S2, with n1 = n2 = 100, by setting: β̄∗si=1 =

(3, 5, 9) in cluster 1 and β̄∗si=2 = (0, 5, 0) in cluster 2.
The data generating process contains an interaction term only in one of the clusters

(β̄i3 = 9). When fitting both the RPMS and the SSM, we intentionally do not specify in-
teraction terms in the regression sampling model. However the ability to perform variable
selection jointly with covariate dependent clustering enables the RPMS to achieve robust
predictive inference. To illustrate this property, let us consider the posterior distribution
of the regression coefficients obtained by the SSM and the RPMS respectively. Given
that the cluster allocation of the SSM depends only on the cardinality of the clusters,
the posterior of the regression coefficients under this model is invariant with respect to
the different patterns in the covariate vector. Figure 1 presents the posterior distribution
for the regression coefficients of the two covariates under the SSM. In the RPMS, since
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Figure 1: Posterior distribution of β∗j1 (left) and of β∗j2 (right) in scenario 1 for SSM.

cluster allocation depends also on patterns in the covariate space, the distribution of the
regression coefficients varies across different combinations of covariates. In our example
there can be four different combinations: x̃1 = x̃2 = 0, x̃1 = x̃2 = 1, x̃1 = 1 ∧ x̃2 = 0
and x̃1 = 0 ∧ x̃2 = 1. In Figure 2 we show the posterior distribution of the regression
coefficients obtained from RPMS, conditional on each of the four different covariates com-
binations. The fact that in RPMS the cluster assignment, and consequently the posterior
distribution of the coefficients, depends on the covariates allows us to detect the effect
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Figure 2: Posterior distribution of β∗j1 (top) and of β∗j2 (bottom) considering the four
possible combinations x̃1 = x̃2 = 0, x̃1 = x̃2 = 1, x̃1 = 1 ∧ x̃2 = 0 and x̃1 = 0 ∧ x̃2 = 1 in
scenario 1 for RPMS.

due to the interaction term by inferring a cluster in which it is more likely to find both the
covariates equal to one and then estimating the cluster specific regression parameters. On
the other hand, the SSM accounts for the interaction by estimating an extra component
in the mixture model defined for the regression coefficients (see the left density in Figure
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1).
Obviously, this difference has a direct effect on the predictive distribution of the re-

sponse. In Figure 3 we display the predictive distribution for the four combinations of the
covariates obtained when fitting the SSM. As the covariates do not inform the partition,
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Figure 3: Predictive distribution of y for the four possible combinations x̃1 = x̃2 = 0,
x̃1 = x̃2 = 1, x̃1 = 1 ∧ x̃2 = 0 and x̃1 = 0 ∧ x̃2 = 1 in scenario 1 obtained fitting the
SSM. The dashed line indicates the true density of the response for the four covariate
combinations.

the posterior distribution of the regression coefficients displays an extra component in
the mixture for each of the two regression parameters to accommodate for the interaction
effect. This introduces a bias in the estimate of the predictive distribution in all the cases
where at least one covariate is different from zero. This becomes more evident in the
predictive distribution for x̃1 = 1 and x̃2 = 0.

Figure 4 shows the predictive distributions obtained when fitting the RPMS. This
example highlights how covariate dependent clustering protects from model misspecifica-
tion, as it is evident from the top right panel in Figures 3 and 4 corresponding to both
covariates equal to 1.

We finally present the performances of the PR in this first scenario. It is worth noticing
that the PR leads to robust predictive inference thanks to the model on the covariates.
The latter permits to identify the four combinations of the covariates and then associates
to each of them a cluster specific mean in the response submodel. Consequently, PR
identifies also the particular combinations of covariates that activates the interaction
effect in one cluster. The results are presented in Figure 5

Figure 6 displays the continuous indicators employed by PR for performing variable
selection. These highlight that both covariates are important in terms of determining the
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Figure 4: Predictive distribution of y for the four possible covariate combinations x̃1 =
x̃2 = 0, x̃1 = x̃2 = 1, x̃1 = 1∧ x̃2 = 0 and x̃1 = 0∧ x̃2 = 1 in scenario 1 under the RPMS.
The dashed line denotes the true density for y for the four covariate combinations.

clustering structure. This is because the PR identifies clusters of response values sharing
the same mean and the same combination of covariates, compensating in this way the
model misspecification (note that in PR we are not regressing the response vector on the
covariate matrix).

We conclude highlighting that we have not included an intercept neither for RPMS
nor for SSM and, accordingly, we have generated the observations from a regression model
that does not include the intercept. This has been done to facilitate the presentation of
the results. We have also performed the same simulation of scenario 1 adding the intercept
to RPMS and SSM and using observations generated from a regression model including
cluster-specific intercepts and we have obtained equivalent results to those presented
above.

6.2 Scenario 2

For the second simulation study we consider n = 200 observations and we assign them
to 4 clusters, so that n1 = n2 = n3 = n4 = 50. We generate the response values from a
Normal distribution with cluster specific mean and unit precision. In particular, in the
first cluster we assume the mean to be equal 5, while in the second cluster equal to -5, in
the third cluster equal to 2 and in the forth cluster equal to 8. We also generate a matrix
of covariates with D = 4 reflecting the clustering structure above. In particular, each
covariate value is generated from a Bernoulli distribution with parameter ζ̄id. The values
of ζ̄id for each cluster are given in Table 1. In this scenario we include cluster-specific
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Figure 5: Predictive distribution of y for the four possible covariate combinations x̃1 =
x̃2 = 0, x̃1 = x̃2 = 1, x̃1 = 1 ∧ x̃2 = 0 and x̃1 = 0 ∧ x̃2 = 1 in scenario 1 under the PR.
The dashed line denotes the true density for y for the four covariate combinations.
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Figure 6: Posterior distribution of the continuous indicators π1 and π2 for PR in scenario
1. Values skewed toward 1 indicate the importance of the covariates for the clustering.

intercepts for both RPMS and SSM.
The covariates contribute to determine the clustering structure and the PR is able

to identify the covariates that are discriminant in terms of clustering. This is confirmed
by Figure 7, where the posterior of the continuous indicators for the variable selection
are skewed towards 1 for the first and the second covariate, and towards 0 for the third
and the fourth covariate. This indicates that the last two covariates do not bring any
clustering information.

Similarly to Scenario 1, the combinations of activated covariates are not distributed
uniformly across the clusters. For example, the profile x̃ = (0, 1, 0, 1) is more likely
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Table 1: Values of ζ̄id for covariates generation.
ζ̄id d = 1 d = 2 d = 3 d = 4
i ∈ S1 0.9 0.1 0.1 0.9
i ∈ S2 0.3 0.9 0.1 0.9
i ∈ S3 0.8 0.3 0.1 0.9
i ∈ S4 0.3 0.9 0.1 0.9
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Figure 7: Posterior distribution of the continuous indicators π1, π2, π3 and π4 for PR
in scenario 2. Values skewed toward 1 indicate the importance of the covariates for the
clustering.

to be observed in clusters S2 and S4. As a consequence, under the PR the predictive
distribution for this profile of covariates should be dominated by the Normal components
with mean -5 and 8, i.e. the cluster specific means corresponding to the second and the
fourth cluster. This is confirmed by the top panel in Figure 8.

The same figure depicts also the predictive distributions for the RPMS (middle panel)
and SSM (bottom panel) for the same combination of the covariates. Both distributions
show clearly the two components centered on the values -5 and 8 (and also a third
component with lower probability with mean 2). These distributions reflect the one
obtained by PR, but both RPMS and SSM reach this result in different ways.

RPMS uses the spike and slab prior distribution for the regression coefficients within
each cluster to set the coefficients for all for the covariates equal to 0, except the cluster-
specific intercept which is modeled jointly with the parameters of the covariates model. In
this way RPMS becomes equivalent to PR. This conclusion is also supported by looking
at the posterior distribution of the partition of the observations which can be investigated
using the posterior probabilities of co-clustering for all pairs of observations. These prob-
abilities highlight the four groups of observations used for generating the observations.
This result is equivalent to the one that we have obtained analyzing the clustering under
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ỹ | x̃ = (0, 1, 0, 1),y,X

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

RPMS
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Figure 8: Predictive distribution of y for the combination of covariates x̃ = (0, 1, 0, 1) in
scenario 2 for PR, RPMS and SSM (from the top).

PR. The robustness of the predictions using RPMS has been verified also for the other
possible combinations of the covariates.

Also SSM achieves robust predictions for the combination x̃ = (0, 1, 0, 1). This result
can be explained looking at the posterior distribution of the regression coefficients. The
posterior distribution of the intercept captures the levels of the response when the covari-
ates are all equal to 0. The posterior distribution of the first regression coefficient adjust
the posterior distribution of the intercept in order to identify the level of the response in
the first and third cluster. This happens because the first covariate is often equal to 1
in these two clusters and rarely in the others. The posterior distribution of the second
regression coefficient works as the first regression coefficient but for the second and fourth
cluster. Finally, the posterior distributions of the last two coefficients shrink toward zero,
since the respective covariates do not contain any information in terms of clustering. For
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these reasons SSM leads to the correct predictive distribution for all combinations of
the covariates. However, the posterior distribution of the partition of the observations
explores more configurations compared to RPMS because SSM uses less information to
estimate the clustering structure of the observations. Consequently, SSM identifies less
clearly the four clusters from which the data are generated.

7 Discussion
In this paper we have reviewed the most relevant literature on Dirichlet Process Mixture
models with covariate dependent weights and the corresponding techniques for variables
selection. Covariates can offer extra information on the partition of the data and account-
ing for possible structure within the covariates can improve the predictive performance
of the model.

The most common solution to account for the presence of covariates within a DPM
models consists of assuming the covariates as generated by a probability distribution
and therefore specifying a joint DPM model on the augmented space including both
response and explanatory variables. This solution is convenient in applications, as it
becomes straightforward to obtain covariate dependent weights in the DPM model. This
formulation has many advantages. In particular, it leads to improved predictions in
regression setups, still allowing for efficient computations. The major drawback of this
approach is related to the fact that considering a joint probability model for response and
covariates may lead to the likelihood being dominated by the covariate specific terms, a
problem that becomes particularly non-ignorable when dealing with a large number of
covariates. A solution to this problem is represented by the EDPM model (Wade et al.
[2014]). This model introduces two clustering steps: first the observations are clustered
on the basis of the response values and subsequently the model accounts for the covariate
patterns within each of the clusters of the response.

Alternative solutions can be found in the literature on covariate dependent Random
Partition Models, in particular in research concerning the Dependent Dirichlet Process
and dependent stick-breaking process in general. These techniques offer an elegant way
to account for the dependence of the weights in the stick-breaking representation on
covariate information. However, when dealing with continuous covariates (or categorical
with a large number of levels), these methods estimate a sequence of probabilities of
belonging to the clusters for each observed level of the covariates, leading to difficulties
in the interpretation of the clustering output. Moreover, posterior computations are
often challenging when Gx is not marginally a DP, forcing the user to employ parametric
approximations or expensive algorithms.

The variable selection techniques proposed in the literature for covariate dependent
RPMs aim at identifying the most influential covariate for the partition of the observa-
tions. Especially for the augmented response models (and consequently also for Profile
Regression), the likelihood of the model of the covariates can dominate the DPM when a
large number of covariates is involved. By introducing latent variables we can eliminate
the effect of specific covariates in determining the partition and consequently mitigate
this problem.

In many applications it is of interest to identify those covariates that best explain a
response variable. The RPMS model extends the augmented response models to allow
for variable selection in regression settings by specifying a spike and slab distributions

22



as base measures. Spike and slabs priors are commonly used in the Bayesian paradigm
to perform variable selection and recently they have been employed in non-parametric
settings in context of DPM of regressions. We have shown through simulations that spec-
ifying a model on the covariates leads to inference which is robust to misspecification
in the sampling distribution of the response. Of course, this comes at a computational
cost. We have compared the performance of the RPMS with the SSM, a similar model
where the covariates are considered fixed and not random. We have also presented re-
sults achieved using the PR. In the RPMS cluster assignment depends also on covariate
information, while in the SSM it is affected only by the response values. This difference
is reflected in the posterior distribution of the regression coefficients, which is dependent
on the particular pattern in the covariates when fitting a RPMS. Obviously, predictive
inference under the RPMS is specific to the particular vector of covariates of a hypothet-
ical new patient, while under the SSM the predictive distribution for a new individual
is independent of his/her covariate profile. Also PR is robust to model misspecification,
thanks to the model on the covariates. Finally, we have also highlighted the different
concept of variable selection employed by PR and RPMS (or SSM equivalently).

We would like to conclude this review by pointing out that this is still a very open
line of research and our main aim is to illustrate the most relevant contributions to date.

A Proof Proposition 5.1
Let us consider for simplicity i = 1 and i′ = 2. Employing the Blackwell-MacQueen urn
(Equation 3), for i = 1, β1 is drawn from the base measure G0 with probability 1. So there
is some positive probability that it will take value equal to 0 due to the atomic structure
of G0. Rewriting the conditional prior of β2 | (β1 = 0) as a Blackwell-MacQueen urn we
have that:

β2 | (β1 = 0) ∼ α

α + 1
G0 +

1

α + 1
δ(β1=0)(β2) =

=
α

α + 1
(ωδ0(β) + (1− ω)G0β) +

1

α + 1
δ(β1=0)(β2) =

=
α(1− ω)

α + 1
G0β +

1 + αω

α + 1
δ(β1=0)(β2)

Thus the probability p(β2 = β1 | β1 = 0) = 1+αω
α+1

, instead of the co-clustering probability
typical of the DP prior, which is equal to 1

α+1
(Antoniak [1974]). The exchangeability of

the Dirichlet Process ensures that this is valid for any i 6= i′.
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