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Abstract

Over recent years Value of Information analysis has become more widespread in health-economic
evaluations, specifically as a tool to perform Probabilistic Sensitivity Analysis. This is largely due
to methodological advancements allowing for the fast computation of a typical summary known as
the Expected Value of Partial Perfect Information (EVPPI). A recent review discussed some estim-
ations method for calculating the EVPPI but as the research has been active over the intervening
years this review does not discuss some key estimation methods. Therefore, this paper presents
a comprehensive review of these new methods. We begin by providing the technical details of
these computation methods. We then present a case study in order to compare the estimation
performance of these new methods. We conclude that the most recent development based on non-
parametric regression offers the best method for calculating the EVPPI efficiently. This means
that the EVPPI can now be used practically in health economic evaluations, especially as all the
methods are developed in parallel with R functions to aid practitioners.

Keywords: Probabilistic Sensitivity Analysis; Value of Information; Computation Methods;
EVPPI 1

1 Introduction

Health economic models are used to predict the costs and health effects of competing healthcare
technology decision options. Model input parameters are informed by real-world study evidence
and are therefore rarely known with certainty. The typical method for assessing input uncertainty
is Probabilistic Sensitivity Analysis (PSA), i.e. Monte Carlo or bootstrap sampling from the input
parameter probability distribution coupled with model evaluation in order to generate samples of
predicted costs and effects. PSA is a fundamental component of any health economic evaluation
and is recommended by Health Technology Assessment (HTA) bodies such as the National Institute
for Health and Care Excellence (NICE) in the UK [12], across other countries in Europe [15] and
beyond [9, 14].

A fully decision-theoretic approach to PSA is based on the analysis of the value of information
(VoI) [21], an increasingly popular method in health economic evaluation [1, 5, 7, 10, 11, 16–
18, 22, 28]. A VoI analysis quantifies the expected value of obtaining perfect information about
the underlying model parameters. Because it is usually impossible to obtain perfect information,
this analysis places an upper bound on the cost of additional research aimed at reducing this
uncertainty.

The main advantage of the analysis of the VoI is that it directly addresses the potential implic-
ations of current uncertainty, not only in terms of the likelihood of modifying the current decision
in light of new and more definitive evidence, but also in terms of the opportunity cost of the
incorrect decision. If this cost is low, there is little value in agonising about the decision, even
for a low probability of cost-effectiveness, as the implicit penalty is negligible if the decision turns
to be wrong in the face of new evidence. Therefore, the probability of cost-effectiveness alone
can dramatically overstate decision sensitivity. For this reason, it has been advocated that VoI
measures should also be presented when representing decision uncertainty [2, 8, 16, 24].

1Financial support for this study was provided in part by grants from EPSRC [Anna Heath] and Mapi [Dr. Gianluca
Baio]. The funding agreement ensured the authors independence in designing the study, interpreting the data, writing,
and publishing the report.
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Despite the useful features of a VoI analysis, its uptake in health economic evaluation has been
slow. VoI analysis has been hindered by two factors in the main. First, the interpretation of the
expected value of information is not straightforward as VoI measures are theoretically unbounded,
making interpretation more challenging.

Secondly, and perhaps more importantly, VoI measurements can be computationally costly
unless restrictive assumptions are made [33]. Practically, it is typically easy to calculate numerically
(but not analytically) the expected value of learning all the model parameters perfectly. This is
known as the (overall) Expected Value of Perfect Information (EVPI). However, this has often
little practical use, as it will be rarely possible to learn all the model parameters at once in a
new study. Thus, the decision-maker is usually interested in the expected value of information
about subsets of parameters. This will indicate which parameters are driving decision uncertainty,
and thus where future research may add value. This subset analysis is called the Expected Value
of Perfect Partial Information (EVPPI), and it is this analysis that is computationally costly.
Therefore, significant effort has been invested in developing more efficient methods for computing
EVPPI [6, 16, 23, 25, 27, 31, 32].

A relatively recent review [13] discussed some of these methods. However, research in this
area has been active over the last few years. We present and evaluate these recent methodological
advances, concluding that the most recent developments made in [32] offer the best method for
approximating the EVPPI.

We begin by formalising the EVPPI calculation and briefly discussing the methods from the
previous review. We then present two methods for single-parameter EVPPI before discussing the
most recent developments based on non-parametric regression. Then, we compare the performance
of these methods using a fictional but realistic example of economic modelling. From our analysis,
it appears that all methods produce comparable results and have similar standard errors and
computational time. Finally, we present some discussion to suggest that, although they are still
affected by some computational limitations, non-parametric regression methods offer the most
suitable EVPPI approximation method.

2 Notation and basic concepts

Health economic decision making aims at determining the optimal intervention in terms of costs
and health effects, among a number T of options, often set to T = 2. In general we can consider the
case where a larger number of interventions is available, although in practice it is uncommon that
T > 5. Usually, we consider t = 0 as the standard intervention currently available for treatment
of a specific condition and t = 1, . . . , T as a (set of) new option(s) being assessed.

Each alternative t = 0, . . . , T is valued by means of a utility function, typically defined in terms
of the monetary net benefit

nbt = ket − ct.
Here, (et, ct) is the health economic response, typically subject to individual variability expressed
by a joint probability distribution p(e, c | θ), indexed by a set of relevant parameters θ, while k is
the willingness to pay.

In a full Bayesian setting, a complete ranking of the alternatives is obtained by computing
the overall expectation of this utility function over both individual variability and parameter
uncertainty

NBt = kE[et]− E[ct],

i.e. the expectation here is taken with respect to the joint distribution p(e, c,θ) = p(e, c | θ)p(θ).
The option t associated with the maximum overall expected utility NB∗ = maxtNBt is deemed
to be the most “cost-effective”, given current evidence.

However, when performing PSA, we consider the expected utility taken with respect to indi-
vidual variability only (i.e. as a function of the parameters θ)

NBt(θ) = kE[et | θ]− E[ct | θ],

which, in line with [2], we term the “known-distribution” net benefit. In this case, the expectation
is taken with respect to the conditional distribution p(e, c | θ). Thus, while NBt is a deterministic
quantity, NBt(θ) is a random variable (randomness being induced by uncertainty in the model
parameters θ) and E [NBt(θ)] = NBt.

The vector of parameters can in general be split in two components θ = (φ,ψ), where φ is the
sub-vector of parameters of interest (i.e. those that could be investigated further) and ψ are the
remaining “nuisance” parameters. To calculate the EVPPI, we compute a weighted average of the
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net benefit for the optimal decision at every point in the support of φ after having marginalised
out the uncertainty due to ψ:

EVPPI = Eφ

[
max

t
Eψ|φ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)] , (1)

where maxt Eψ|φ [NBt(θ)] is the value of learning φ with no uncertainty. Of course, this is only
an idealised state of nature, as we will hardly even be in the position of completely eliminating
the uncertainty on φ; thus, we then average over its current probability distribution.

3 A review of available methods for the computation
of the EVPPI in health economic evaluations

It is rarely possible to calculate the EVPPI analytically as the known distribution net benefit is
often a complicated function of the underlying parameters. Additionally, it is generally challenging
to calculate analytically the expectation of a maximum, as is required in the first term of (1). For
this reason, a wealth of papers have been dedicated to finding accurate approximation methods
for the EVPPI.

3.1 EVPPI approximation methods requiring additional sampling
or underlying assumptions

The most recent methodological review of these methods [13] presented four approximation pro-
cedures for the EVPPI. Two of these methods are computationally intensive and derive directly
from the construction of the first term in (1). The other two methods can only be used when the
known-distribution net benefit function fulfils certain conditions, generally involving some form of
linearity in the parameter sets and/or simplifying distributional assumptions. These methods are
considerably faster in terms of computational time.

The most important computationally intensive method is a two-step Monte Carlo procedure
that was first formalised in [6]. For this method, Monte Carlo sampling is used to approximate both
the inner and outer expectations in the first term of (1). The conditional expectation Eψ|φ[NBt(θ)]
must be calculated using a nested simulation as it is dependent on φ. Therefore, the main limitation
of this method is the immense computation power needed to calculate an accurate estimate for
the EVPPI. Although theoretically Monte Carlo simulation can give any desired accuracy, the
number of nested simulations necessary to produce accurate estimates would generally require an
infeasibly long computation time, making this method impractical, despite theoretically offering
good estimation properties. The second expensive algorithm uses numerical integration to reduce
the number of nested samples needed. However, it does not offer a significant computational
saving when compared to the two-step Monte Carlo method and is impractical for high-dimensional
subsets of φ.

The faster, restrictive methods for EVPPI calculation include the unit loss integral approxim-
ation, which assumes the parameters of interest φ are approximately normal and uses this approx-
imation to derive analytical results. The second restrictive approximation was first developed in
[16] under the assumptions that the net benefit is a linear function in the “nuisance” parameters
ψ and that these are independent of the relevant parameters φ (although these conditions can be
slightly relaxed [6, 23]). These assumptions ensure that it is possible to calculate the EVPPI using
the samples from the parameters distribution, which are already available from PSA. However,
this approximation deteriorates if the independence assumption is not valid.

More recently, Madan et al. [23] explored some re-parametrisations and approximations of the
net benefit such that this method can be used when its original formulation does not conform to
these restrictive conditions. For example, if the net benefit is non-linear in ψ but ψ and φ are
independent, it would then simply be possible to re-parametrise the problem so that NBt is linear
in a new parameter set ψ′ = f(ψ).

All of these methods rely on additional information about the model — either to perform
more sampling or to check whether it conforms to certain conditions — making EVPPI calcula-
tion challenging, both methodologically and computationally. However, since the review of [13],
significant developments have been made allowing the EVPPI to be calculated quickly using the
data already available as part of a standard PSA procedure with no knowledge of the underlying
model structure.
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3.2 Approximations for Single Parameter EVPPI

Recently, two methods have been specifically developed to approximate the EVPPI for a single
parameter, φ, which rely on the same underlying ideas: i) provided the optimal decision remains
constant, the first term for the EVPPI can be approximated by the average known-distribution
net benefit value within this set; and ii) if a treatment option is optimal at one point in the
parameter set, it is still optimal for parameter values “close to” that original point. For a set of S
simulated parameter values (θ1, . . . ,θS), it is possible, therefore, to approximate the first term in
(1) provided there is some assurance that the optimal decision remains constant within the sets of
interest.

3.2.1 Strong and Oakley

The first method [31] is based on the idea that if the parameter space is split into “small” subsets,
the optimal decision is unlikely to change within each of these subsets, as it is reasonable to assume
it is locally constant.

Thus, to calculate the EVPPI, it is necessary to determine subsets of the simulated values of
NBt(θ) for which the simulated values of φ are similar. Practically, this is achieved by reordering
the observed known-distribution net benefit values so that they have to same order as the simulated
values for φ — note that since it is assumed that φ is a scalar, ordering is trivial. This list of
ordered values is then split into M small sub-lists of length L = S

M
. Within each sub-list the

average known-distribution net benefit is calculated for each treatment option and the maximum
within each subset is used as an estimate for the first term in equation (1), in correspondence of
the simulated value for φ.

Therefore, the following strategy can be used:

1. Sample S values from the distribution of the parameters θ; we indicate these as θ1, . . . ,θS .

2. At each iteration s = 1, . . . , S, use the simulated parameter vector θs to compute the estim-
ated known-distribution net benefit NBt(θ

s) for each treatment option t.

3. Sort the simulated values of the parameter of interest in ascending order — for simplicity,
we write the sorted vector as ϕ1, . . . , ϕS , where minφ = ϕ1 < . . . < ϕS = maxφ.

4. Re-order the estimated known-distribution net benefits as NBt(ϕ
1), . . . ,NBt(ϕ

S), where
NBt(ϕ

s) is the net benefit corresponding to the s−th ordered simulated value of φ.

5. Split the ordered list of known-distribution net benefits into m = 1, . . . ,M sub-lists Lm and
compute the average in each of the sub-lists and for each treatment t to obtain

N̂Bm
t (θ) =

1

L

∑
j∈Lm

NBt(ϕ
j).

6. Compute ̂EVPPI =
1

M

M∑
m=1

max
t

N̂Bm
t (θ).

The approximation given by this method is highly sensitive to the value of M . If M is large,
the EVPPI is close to the overall EVPI estimate. At the other end of the scale, if M is small,
the EVPPI is approximately 0. Strong and Oakley [31] use a normal approximation to estimate
the upward bias of the EVPPI calculated using this method. They suggest choosing M to be the
largest number of subsets such that the upward bias falls below a pre-specified threshold value,
say 0.1. In this manner, the upward bias of the EVPPI estimate is controlled but, hopefully, the
downward bias, present for small values of M , is avoided.

3.2.2 Sadatsafavi et al.

This second method for single parameter EVPPI [27] can be thought of as an extension to the
previous one, although both were developed concurrently. In this case, the ordered list

NB(θ) =

 NB0(ϕ1) · · · NB0(ϕS)
NB1(ϕ1) · · · NB1(ϕS)
· · ·

NBT (ϕ1) · · · NBT (ϕS)


is split in an informed manner. The algorithm searches for the point(s) at which the parameter of
interest is directly responsible for a change in the optimal decision. Although, in general, variations
in a parameter may induce a change in the optimal decision a large number M of times, in practice
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a single parameter is unlikely to modify it more than once or twice over the range of values selected
for the willingness-to-pay. Provided we search for the correct number of decision changes for the
parameter in question, the method calculates the true EVPPI values, asymptotically as the number
of PSA samples goes to infinity.

The algorithm developed by Sadatsafavi et al. is identical to that of Strong and Oakley de-
scribed in the previous section in steps 1-4, but then proceeds as follows:

5. Split the ordered list of net benefits into m = 1, . . . ,M sub-lists Lm. In this case, the list
of known-distribution net benefit values is split at M points,

(
ϕL1 , . . . , ϕLM

)
, known as the

segmentation vector. This means that the m−th sub-list contains all the net benefit values
calculated with the value ϕ such that ϕLm ≤ ϕ < ϕLm+1 .

6. Calculate and store N̂Bm
t (θ) =

1

L

∑
j∈Lm

NBt(ϕ
j).

7. Maximise over all possible segmentation vectors to compute

̂EVPPI = max
(ϕL1 ,...,ϕLM )

1

M

M∑
m=1

max
t

N̂Bm
t (θ).

It is important to note that this method is also sensitive to the choice of M . It can be shown
that the EVPPI estimate is asymptotically unbiased if we search for the true underlying number of
decision changes. Therefore, Sadatsafavi et al. suggest a systematic method for choosing M , based
on a visual tool for determining the number of decision changes. This tool plots the cumulative
sum of the differences between the known-distribution net benefits for the two treatment options.
When the optimal decision changes, so does the sign of the difference between the two treatment
options. Thus, a change in optimal decision is shown by an extremum for this cumulative sum.
An example of this visual tool is given in the supplementary material. Despite the usefulness of
the visual tool, it can be difficult to identify extrema making EVPPI estimates using this method
unreliable in certain situations.

Both these single-parameter estimation methods are dependent on their inputs making “black-
box” calculations difficult. In addition, since the publication of these two methods, further research
has been developed that allows to calculate multi-parameter EVPPI using the PSA samples and
non-parametric regression methods.

3.3 Non-parametric regression for EVPPI calculations

The basic idea proposed initially by Oakley [25] and developed further by Strong et al. [32] is
that regression methods can be used to approximate the EVPPI. Specifically, Strong et al. [32]
demonstrate that the known-distribution net benefit can be approximated, based on sampled
parameter values. In particular, since health economic models are likely to be complicated functions
of the underlying parameters, flexible regression methods should be used, in order to limit the
number of assumptions on the relationship between the known-distribution net benefit and the
parameters.

In a nutshell, for each simulated value of the parameters s, Strong et al. propose to approximate
the inner conditional expectation in (1) as

NBt(θ
s) = Eψ|φs [NBt(φ

s,ψs)] + εs,

with εs ∼ Normal(0, σ2
ε). Furthermore, the conditional expectation can be thought of as a function

of φ only, as the conditional expectation is dependent on the value of φ. Therefore, the problem
can be formulated as

NBt(θ
s) = gt(φ

s) + εs,

for which the φs are “observed” values (obtained via Monte Carlo sampling) for the independent
variables and NBt(θ

s) is the “observed” dependent variable.
Strong et al. [32] provide R code [29] for two alternative non-parametric regression methods:

Generalised Additive Models (GAMs) [19] and Gaussian Processes [26]. Both these methods offer
a large amount of flexibility but other regression methods could be used. In a general sense, the
EVPPI estimate is calculated by:

1. Sample S values
(
θ1, . . . ,θS

)
from the distribution of the parameters.

2. Calculate the net benefit NBt(θ
s) for each observed parameter vector θs and treatment

option t.
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3. For each treatment option t, fit a regression curve with φs as the observed “covariates”
and NBt(θ

s) as the observed “dependent” variable, for the s−th “unit” of analysis (i.e.
simulations).

4. For each treatment t, find the s−th fitted values gt(φ
s) by inputting the observed values φs

into the regression curves.

5. Calculate ̂EVPPI =
1

S

S∑
s=1

max
t
gt(φ

s)−max
t

1

S

S∑
s=1

gt(φ
s)

This non-parametric regression method was published most recently and thus represents the cur-
rent state of the research into estimation methods for the EVPPI. However, in spite of the relative
complexity of this method, “black-box” calculations are possible using automatically chosen hyper-
parameters for both non-parametric methods as they require little additional inputs from the user.
This allows for the creation of general purpose functions [29] and the web application Sheffield
Accelerated Value of Information (SAVI [30]) which allows users to calculate EVPPI. This web app
also produces some standardised output, graphics, tables, that can be easily presented in formal
reports. All these methods are also implemented in the R package BCEA [3, 4].

4 Comparison of methods

This section compares the EVPPI estimates given by the methods discussed in this review and the
two-step Monte Carlo procedure. Firstly, a case study pertaining to influenza infection vaccination
is presented. We then discuss how the EVPPI estimates were calculated with regards to the
input values for the single-parameter methods. Next, we present the results of our analysis; all
five methods give approximately the same EVPPI estimate, with the same standard error for
the four new methods. Therefore, the methods should be compared on their ease and speed of
implementation and applicability.

4.1 Case Study - Vaccine

A Bayesian health-economic model is proposed to analyse the effect of the influenza vaccine on
health-outcomes and costs. This example is relatively simple but complex enough to be intract-
able analytically. Therefore, the parameters values must be sampled from their joint posterior
distribution using Markov Chain Monte Carlo (MCMC) methods.

Two treatment options are considered, either the vaccine is available to the population (t = 1),
or not (t = 0). If a patient gets influenza, they are treated with anti-viral drugs and will often
visit the GP. Complications may occur, including pneumonia and hospitalisation – in which case
there will be some indirect costs such as time off work. The cost of the treatment is the acquisition
cost of the drugs, the time in hospital, the GP visits and the cost of the vaccine. The benefit
of the treatment is measured in QALYs (Quality Adjusted Life Years), where each adverse effect
contributes negatively to the benefit.

There are 28 key parameters in the model representing the probability of infection, the re-
duction in risk due to the vaccine, the occurrence of complications, the monetary costs of the
interventions and the QALY loss due to different health states. A detailed discussion of the full
model parametrisation is presented in [2]. The single parameter EVPPI was calculated for all of
these 28 parameters using all the methods outlined.

4.2 Analysis

This analysis compares the methods presented by estimating single parameter EVPPI, as some of
the methods are only suitable for single-parameter estimation. As previously discussed, both single
parameter estimation methods have input values that greatly affect the estimation. For the Strong
and Oakley method, the number of subsets must be specified by the user and for the Sadatsafavi
et al. method, the number of decision changes for each parameter is needed. The estimates are
very sensitive to this choice. In fact, for the Sadatsafavi et al. method, if the visual tool indicates
that the parameter does not affect the decision, this is equivalent to indicating that the EVPPI
is equal to 0. This means that in some cases visual indications are used to determine the EVPPI
rather than objective analysis.

To determine these influential input values, the suggested visual tool was used for each of the
28 parameters in the Vaccine case study2. It was decided that 23 out of the 28 parameters change

2The supplementary material gives a more in depth explanation of this visual tool and implements it for some of the
parameters
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the optimal decision once, the other parameters have no effect – these correspond to an EVPPI
equal to 0 in Table 1. For the Strong and Oakley [31] method, the upward bias of the EVPPI
estimate was assessed for all the parameters in the data set. The number of subsets was taken
as the largest number of subsets such that the upward bias remains below 0.1. The magnitude
of the bias differed for each parameter, and therefore the number of subsets needed to reduce the
upward bias below 0.1 was between 20 and 2. A larger number of subsets is associated with a
larger estimate for the EVPPI and so it is important to assess the correct number of subsets for
each parameter individually.

For the two-step MC procedure the outer loop had 1000 observed posterior samples for all the
parameters. As the case study is a Bayesian model, the inner loop of the 2 step MC procedure
used MCMC methods to draw a sample from the joint posterior distribution for all the parameters.
To ensure convergence and reduce autocorrelation, we took 2 chains of 100,000 samples each for
the inner loop, with a burn-in of 9,500 and thinning of 500. Therefore, the eventual sample of the
known-distribution net benefits had 1000 observations. The Monte Carlo error on this estimate
is still quite large; ideally we would have sampled more observations in the inner loop. This was,
however, too large a computational burden. To calculate the value of the current information, we
sampled from our MCMC procedure 5,000,000 times, with a burn-in of 9,500 and then thinned to
50,000. This sample size gives a Monte Carlo error on the estimate for the current information
around 0.04. As only two treatment options are considered, the incremental net benefit was stored
at the end of each loop. The maximum between the stored value and 0 was found for each loop.

Finally, the two different non-parametric regression methods suggested by Strong et al. [32]
were used to calculate the EVPPI by approximating the inner expectation in (1). This analysis was
carried out using the functions in [29]. For GAM regression, the functions use spline regression as
smoothing functions. The R function gam is used by [29] to fit the spline regression and gam chooses
the dimension of the underlying basis functions. Therefore, no additional input is needed for single
parameter GAM regression. For Gaussian Processes, Strong et al. use a specific model structure
to allow for the use of analytical results, therefore, no model structure needs to be specified by the
user and functions are provided to calculate the EVPPI with no additional inputs.

4.3 Results

Table 1 displays the single parameter EVPPI estimates for the five different methods. All the
methods give approximately the same results for each parameter. The two parameters with the
highest EVPPI are the same across all five methods: β1 and ω1. There is then some discrepancy
in the ordering, but the results only differ slightly, certainly in comparison to the Monte Carlo
error of the current information which is 0.04.

Figure 1 shows the EVPI and the EVPPI for β1 and ω1 for different values of the willingness-
to-pay, k. The analysis in this paper was undertaken for k = 20000 which is near the break-even
point between the two treatment options. Both the EVPI and the EVPPI reach a peak when the
optimal decision under current uncertainty changes. This is because the uncertainty is greatest at
the point when both strategies are equal. As the EVPPI is very small for most of the parameters,
even for a willingness-to-pay close to the break-even point, it is clear that uncertainty has little
impact on the decision in this example. If the values of k were to change greatly in this example,
we would be approximating very small EVPPI values and the MC error for the 2 step MC method
would completely dominate the estimates.

These results show that the approximation methods offer similar results for single parameter
EVPPI estimates and can therefore all be used to estimate the EVPPI. The variation between
the methods is likely to be due to the inherent nature of approximation. It is important to note
that the accuracy of the estimate of the EVPPI should only be reported to 1 or 2 decimal places
even when the analysis gives a much greater accuracy of calculation as all these methods only
approximate the true EVPPI.

Given that all five methods considered produce broadly similar estimates for the single para-
meter EVPPI, it seems pertinent to investigate the standard error of the EVPPI calculated using
these methods, as well as the computation time required to produce the estimate. The single-
parameter estimation methods and the GAM regression take negligible time to find single para-
meter EVPPI estimates. The GP regression is also fast for single parameter EVPPI, taking around
2-4 seconds. The Monte Carlo procedure, however, takes around 55 minutes to calculate a single
parameter EVPPI estimate. Therefore, all the approximation methods offer significant computa-
tional savings.

Taking these computational times into account, the four estimation methods are approximately
equivalent, although the GP does take noticeably longer than the other methods. Therefore, an
investigation of the standard error was undertaken to see if one method outperforms the others.
Figure 2 shows the standard error for all the methods (excluding the Monte-Carlo procedure) for
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Parameter
Methods

SO SAD GP GAM MC

Probability of clinical outcomes

β1 1.15 1.17 1.11 1.11 1.06
β2 0.26 0.23 0.11 0.11 0.25
β3 0.24 0.15 0.03 0.03 0.07
β4 0.14 0.13 0.08 0.09 0.05
β5 0.28 0.25 0.07 0.12 0.06
β6 0.27 0.29 0.18 0.21 0.21
β7 0.35 0.4 0.3 0.3 0.25

Number of drugs prescribed δ 0.3 0.22 0.11 0.03 0.06
Probability of taking time off work η 0.11 0 0.04 0 0.06

Probability of receiving drugs
γ1 0.19 0.17 0.11 0.11 0.06
γ2 0 0 0.01 0.01 0.06

Number of days off work λ 0.41 0.44 0.41 0.43 0.43
Reduction in infection rate due to vaccine ρ 0.3 0.3 0.28 0.28 0.28
Probability of taking OTC medication ξ 0.24 0.13 0.03 0.03 0.06

QALY cost for each state

ω1 0.55 0.57 0.53 0.53 0.63
ω4 0.2 0.23 0 0 0.06
ω5 0.11 0.17 0.05 0.05 0.06
ω6 0.18 0.16 0.12 0.12 0.13
ω7 0.18 0.29 0.14 0.16 0.15

Vaccine coverage rate φ 0.13 0 0.02 0.02 0.06

Cost of resources

ψ1 0.17 0.17 0.13 0.13 0.07
ψ2 0.1 0.14 0.02 0.02 0.06
ψ3 0.37 0.37 0.31 0.31 0.29
ψ4 0.46 0.52 0.35 0.35 0.42
ψ5 0.44 0.38 0.24 0.38 0.25
ψ6 0.13 0.15 0.05 0.05 0.07
ψ7 0.2 0 0 0 0.07
ψ8 0.08 0 0 0 0.07

Table 1: The EVPPI values for the parameters in the Vaccine example using 5 different methods
discussed in this paper - Strong and Oakley single parameter estimation (SO), Sadatsafavi et al. single
parameter estimation (SAL), Gaussian Process (GP) and GAM regression (GAM) and two-step Monte
Carlo simulation (MC)

the four parameters with the highest EVPPI. Clearly, the standard error is similar across all four
methods and therefore there is little difference between the estimation properties of all 4 methods.

5 Discussion

This paper presents the current methods developed for approximating the EVPPI. It particularly
focuses on four EVPPI estimation methods that have been developed since an earlier review
paper on methods for estimating EVPPI [13]. We compared the estimation properties of these
4 estimation methods taking into the account the computational time required to approximate
the EVVPI and the standard error of the estimate. Despite varying in complexity, these 4 new
methods gave consistent results when compared with the 2-step MC procedure that derives directly
from the definition of the EVPPI and can thus be considered to provide the “true” value. The
four methods also have a similar standard error and computational time. Thus, their performance
should be compared on the basis of simplicity of implementation.

Two of the methods can only be used for single parameter EVPPI which clearly limits their
applicability. Additionally, a thorough understanding of the methods and the respective tools for
identifying the correct input values (visual tool, bias reduction) is essential before using of these
methods. The BCEA [4] package in R allows users to calculate single parameter EVPPI using either
method. However, the input values are still needed and a naive implementation of this function
will lead the experimenter to grossly over/under-estimate the single parameter EVPPI. Therefore,
these methods are largely superseded by the non-parametric regression method which are simpler
to use as well as being applicable to multi-parameter EVPPI.
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Figure 1: The EVPI and EVVPI for β1 and ω1 for willingness-to-pay thresholds varying between 0
and 50000. The Sadatsafavi et al. method with one decision change is used to calculate the single-
parameter EVPPI.

As the GAM regression requires negligible computational effort for single-parameter EVPPI,
it is the best method for approximating the EVPPI under these circumstances. However, for
larger subsets, the interaction structure of the parameter must be specified by the user. Thus,
the experimenter needs some understanding of GAM regression. Additionally, GAM regression is
mathematically unstable for larger subsets of parameters (≥ 6).

Therefore, the slower Gaussian Process regression is currently the only feasible option for larger
parameter subsets, especially where the experimenter has no information about the interaction
structures present in the parameter space. Unfortunately the Gaussian Process method takes
more computational time as the number of parameters increases and there is a trade-off between
the computational time spent fitting the model and the accuracy of the EVPPI estimate. For
example, for a PSA data set of size N the computational effort for the Gaussian Process regression
method is proportional to N3. Clearly, therefore, the smaller the PSA data set the faster the
EVPPI calculation. However, the more data available to fit the non-parametric regression the more
accurate the EVPPI estimate. An extension to the standard GP regression approach exploiting
results from the geostatistics literature is being investigated [20] and results appear to be promising
both in terms of accuracy and reduced computational time.

All the methods investigated in this paper can be implemented in suitable software, such as R

using the package BCEA [4] or using the standalone functions available from the original authors.
Therefore, to some extent they can be applied in a “black-box” sense; which may lead to a more
widespread use of EVPPI in health economic evaluations and allow decision makers to use Value
of Information methods to inform their decisions.
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A Visual Tool for Sadatsafavi et al. method

The Sadatsafavi et al. [27] method for single parameter EVPPI estimation relies on an input value
determining the number of changes in the optimal decision caused by the parameter of interest. To
aid the choice of this value Sadatsafavi et al. suggest a visual tool that, for every pair of decisions
t, t′, can be used to determine the number of changes in optimal decision. Firstly we must order
our PSA data in the parameter of interest, φ. Then, as a function of φ we define

Ĉt,t′(φ) =
1

S

S∑
s=1

I(φs < φ)(NBt(φ
s)−NBt′(φ

s)) (2)

where NBt(φ
s) is the observed utility value for the s-th lowest value of φ for treatment t. The

extrema in this estimator will correspond to a change in optimal decision. For example, if t is the
optimal decision until φ = 1 then as φ increases from 0 to 1, only positive terms will be summed,
then as the optimal decision changes after 1, negative terms will be summed and therefore the
value of Ĉ will decrease.

We plot the observed values for Ĉ against the parameter of interest. This allows us to visually
search for maxima or minima. As we only have empirical values and not a fully-specified function,
a computer cannot find the extrema. Using the Vaccine case study, Figure A shows the visual tool
for four the parameters to illustrate the difficulty faced in deciding whether a parameter affects
the optimal decision.

Firstly, we consider the tool for β1 (the top left-hand corner). Clearly, this plot has one
extremum, around 0.06. There is a very obvious change in direction for the graph. This is the
same for the graph for ω1, where the direction change is clearly around 3.5. These two parameters
are those with the highest EVPPI across all four methods, so the visual tool is highly effective for
parameters with high EVPPI.

Determining extrema is more challenging for β7 and ρ. The plot of β7 rises steadily before
possibly reaching a peak and decreasing slightly around 0.175. There may, therefore, be a decision
change but is less obvious than for β1 and ω1. For ρ it is challenging to ascertain whether we
have an extremum at 0.625. There does seem to be some slight decrease to 0.0625 but it is very
unclear. For this analysis, it was decided that ρ does cause the optimal decision to change giving
an EVPPI of around 0.3.
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Figure 3: The visual tool for determining the number of time the optimal decision changes for four
different parameters: β1, β7, ω1 and ρ.
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