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The Kaposi’s sarcoma-associated herpes virus (KSHV) K3 viral
gene product effectively down-regulates cell surface MHC class
I. K3 is an E3 ubiquitin ligase that promotes Lys63-linked
polyubiquitination of MHC class I, providing the signal for
clathrin-mediated endocytosis. Endocytosis is followed by sorting
into the intralumenal vesicles (ILVs) of multivesicular bodies
(MVBs) and eventual delivery to lysosomes. The sorting of MHC
class I into MVBs requires many individual proteins of the four
endosomal sorting complexes required for transport (ESCRTs). In
HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of
RNAi-mediated depletion of individual proteins of the ESCRT-0
and ESCRT-I complexes and three ESCRT-III proteins showed
that these are required to down-regulate MHC class I. However,
depletion of proteins of the ESCRT-II complex or of the ESCRT-
III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged
MVB protein 6), failed to prevent the loss of MHC class I from
the cell surface. Depletion of histidine domain phosphotyrosine

phosphatase (HD-PTP) resulted in an increase in the cell surface
concentration of MHC class I in HeLa cells expressing the KSHV
K3 ubiquitin ligase. Rescue experiments with wild–type (WT) and
mutant HD-PTP supported the conclusion that HD-PTP acts as
an alternative to ESCRT-II and VPS20/CHMP6 as a link between
the ESCRT-I and those ESCRT-III protein(s) necessary for ILV
formation. Thus, the down-regulation of cell surface MHC class
I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not
employ the canonical ESCRT pathway, but instead utilizes an
alternative pathway in which HD-PTP replaces ESCRT-II and
VPS20/CHMP6.
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INTRODUCTION

Kaposi’s sarcoma-associated herpes virus (KSHV) down-
regulates MHC class I molecules from the surface of infected
cells through the action of virally encoded K3 and K5 ubiquitin E3
ligases, thereby allowing evasion of the host immune system [1].
KSHV K3 (KK3) promotes the polyubiquitination of MHC class
I molecules through formation of a Lys63-linked ubiquitin chain
added to a conserved lysine in the middle of the cytosolic tail of
each MHC class I molecule [2–4]. Following the stable expression
of KK3 in HeLa cells (HeLa-KK3 cells), newly synthesized
MHC class I molecules that have trafficked through the secretory
pathway to the plasma membrane are polyubiquitinated, rapidly
endocytosed by a clathrin and epsin/Eps15 R-dependent route and
targeted for lysosomal degradation [1,4]. This lysosomal targeting
requires the endosomal sorting complex required for transport
(ESCRT) proteins HRS and TSG101 [2,5].

In mammalian cells, the formation of multivesicular
bodies (MVBs) commences in early endosomes following

the recruitment of ESCRT proteins, which are mammalian
homologues of yeast class E vacuolar protein sorting (Vps)
proteins [6–8]. These proteins function both in the formation
of the intralumenal vesicles (ILVs) of MVBs as well as in
sorting the ubiquitinated membrane proteins into these vesicles.
In yeast, structural and functional studies have led to a model
in which there is sequential recruitment of ESCRTs-0, I, II
and III, followed by the AAA-ATPase (ATPase associated with
a variety of cellular activities) Vps4p that disassembles the
ESCRT complexes from the limiting membrane of the MVB
[9–11]. Yeast ESCRT-III consists of a core complex of four
components (Vps2p, Vps20p, Vps24p and Vps32p/Snf7p) with
four peripheral/regulatory proteins and it is the polymerization
of Vps32p/Snf7p together with the co-assembly of Vps24p and
Vps2p that drives ILV budding from the endosome’s limiting
membrane by a spring-like mechanism [12,13].

Although depletion of either the mammalian ESCRT-0 protein
HRS or the ESCRT-I protein TSG101 in HeLa-KK3 cells
protected MHC class I molecules from lysosomal degradation
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by recycling them to the cell surface [5], we observed that
depletion of each of the three ESCRT-II proteins (VPS22, VPS25
and VPS36), had no effect [14]. In the present study, we
examined the requirement for other ESCRT proteins in the down-
regulation of KK3-polyubiquitinated MHC class I. We found
that although the core ESCRT-III proteins VPS32B, VPS24 and
VPS2A were required, the remaining core ESCRT-III protein
VPS20/CHMP6 (charged MVB protein 6) was not needed. In
contrast, the Bro1p/Vps31p-related protein HD-PTP [also known
as histidine-domain protein tyrosine phosphatase non-receptor
type 23 (PTPN23)] was necessary for MHC class I down-
regulation. The effects of HD-PTP mutants suggested that HD-
PTP acts as an alternative linker between ESCRT-I and ESCRT-III,
thus indicating that a non-canonical ESCRT pathway is used to
sort KK3-polyubiquitinated MHC class I into MVBs.

EXPERIMENTAL

Cells and antibodies

HeLa and HeLa KK3 cells were as previously described and were
grown as adherent monolayers in RPMI-1640 medium (Gibco-
BRL) supplemented with 10% fetal calf serum (FCS) [5].

The mouse monoclonal anti-MHC class I (w6/32) antibody
was from Sigma–Aldrich, the mouse anti-MHC class I (HC10)
antibody a gift from Hidde Ploegh (Whitehead Institute for
Biomedical Research, Cambridge, Massachusetts, U.S.A.), the
FITC-w6/32 and HRP (horseradish peroxidase)-w6/32 mouse
monoclonal antibodies from Serotec, the mouse monoclonal anti-
TSG101 (4A10) antibody from Gene Tex, the mouse monoclonal
anti-ubiquitin (FK2) antibody from Enzo Life Sciences, the goat
anti-mouse IgG (highly cross-absorbed) conjugated to Alexa
Fluor 647 from Invitrogen, the mouse anti-calnexin antibody
(AF8) a gift from Michael Brenner (Harvard Medical School,
Boston, Massachusetts, U.S.A.), the rabbit polyclonal anti-
calreticulin (PA3-900) antibody from Affinity Bioreagents, the
rabbit polyclonal anti-ALIX antibody a gift from Harald Stenmark
(Centre for Cancer Biomedicine, Oslo University Hospital,
Montebello, N-0379 Oslo, Norway) and the rabbit polyclonal
anti-GFP antibody a gift from Matthew Seaman (Cambridge
Institute for Medical Research, Hills Road, Cambridge, U.K.). For
immunogold EM we used rabbit polyclonal anti-Oregon green
488/FITC (A-889) antibody from Molecular Probes. Protein A
conjugated to 15 nm colloidal gold was from the Department of
Cell Biology, University of Utrecht, Utrecht, The Netherlands.

To generate the rabbit polyclonal antibody to human VPS20/
CHMP6 (coded 8086), a GST–VPS20 fusion protein was
expressed in bacteria and purified in the manner described
previously [15] and used to immunize rabbits at Harlan Sera-Lab
Ltd.

siRNA knockdowns

The siRNA oligonucleotides used were siGENOME SMART
or ON-TARGET plus pools from Dharmacon as follows:
HRS, L-016835-00; TSG101, M-003549-01; VPS25, M-005201-
00; VPS20, D-005060-00; VPS32A, M-020698-00; VPS32B,
M-018075-00; VPS24, M-004696-01; VPS2A, M-020247-00;
VPS2B, M-004700-00; HD-PTP, M-009417-01 (and single
duplexes oligo3, D-009417-03 and oligo4, D-009417-04). For
ALIX the siRNA duplex was as previously used [14]. For
the VPS20 rescue experiment the siRNA was oligo1 with
the sense sequence 5′-UCACCCAGAUCGAAAUGAAUU and
for the HD-PTP rescue experiment the siRNA was oligo2

described by Doyotte et al. [16], with the sense sequence 5′-
GCAAACAGCGGAUGAGCAAUU.

The siRNA double transfection protocol with cells harvested
on day 5 was as described by Motley et al. [17] and used
previously [14], except that medium containing 20 % FCS was
added immediately following transfection, not after 4 h. For
TSG101 knockdown, cells were transfected on days 1 and 2 and
harvested on day 4 to prevent extensive cell death experienced
with the 5 day protocol. For CHMP2A/VPS2A knockdown, cells
were only transfected on day 1 because long-term depletion of
this protein caused cell death. Knockdown was assessed either by
immunoblotting following SDS/PAGE as described previously
[14], with molecular mass protein markers from NewEngland
Biolabs, GE Healthcare Life Sciences and Bio-Rad, or by real
time quantitative PCR. Ambion® Cells-to-CT

TM kits were used for
mRNA extraction and cDNA conversion, followed by TaqMan®

gene expression assays for real time PCR, with TaqMan®

primer/probe sets from Life Technologies including: VPS24,
VPS32B, HD-PTP. Quantification of transcripts was according
to Larionov et al. [18].

For the VPS20 rescue experiment, myc-VPS20 containing three
silent mutations in the region of sequence identity with oligo1
siRNA was cloned into pIRESneo2 and the resulting plasmid used
to transfect HeLa cells with TransIT-HeLa Monster® followed
by antibiotic selection of stably expressing cells. Subsequent
treatment of these cells with oligo1 or the ON-TARGET plus
pool siRNA for VPS20 was as described above.

For the HD-PTP rescue experiments, plasmids containing
oligo2 siRNA-resistant or -sensitive DNA sequences encoding
wild-type (WT) and L202D/I206D mutant HD-PTP [16], were a
gift from Philip Woodman (Faculty of Life Sciences, University of
Manchester, Manchester, U.K.) and the HD-PTP-encoding DNA
sequences were amplified and cloned into pEGFP-C3. A single
knockdown transfection protocol was used. HeLa KK3 cells were
transfected on day 1 with oligo2 as normal, but 12 h later were
transfected with pEGFP-C3 plasmid using Effectene from Qiagen.
The transiently transfected cells were harvested on day 4.

Flow cytometric analysis

Cells were harvested, incubated in suspension with anti-MHC
Class I w6/32 antibody and goat anti-mouse IgG conjugated
to Alexa Fluor 647 before analysis using a FACScalibur (BD
Bioscience), as previously described [14]. Control incubations
were with the secondary goat anti-mouse IgG conjugated to
Alexa Fluor 647 alone. To compare the effects of knockdowns
in different experiments, FlowJo software was used to calculate
the geometric mean of the fluorescence intensity peak for each
particular knockdown and compared with a mock knockdown.
Paired t tests were used for statistical comparison. For the HD-
PTP rescue experiments, GFP-positive cells were gated as those
cells with a higher green fluorescence than untransfected HeLa-
KK3 cells.

Pulse-chase labelling

Radiolabelling and immunoprecipitation of MHC class I was as
previously described [5,19]. In brief, after depletion of individual
ESCRT proteins with siRNA, HeLa-KK3 cells were labelled
for 10 min at 37 ◦C with (35S) cysteine/(35S)-methionine using
EasyTagTMEXPRESS35S Protein Labeling Mix from Perkin
Elmer, followed by incubation at 37 ◦C for 3 h in chase medium
lacking radioactive amino acids. Samples were removed at
0 min, 45 min or 3 h. Following lysis with 1% Triton X-100,
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primary immunoprecipitation with the conformation-specific
mouse monoclonal anti-MHC class I (w6/32) was followed
by denaturation in 1% SDS and re-immunoprecipitation with
the ‘non-conformational’ anti-MHC class I mouse monoclonal
antibody HC10 and subsequent SDS/PAGE and autoradiography.

Antibody uptake and EM

For the antibody uptake studies shown in Figure 1, HeLa-
KK3 cells grown on glass coverslips in RPMI-1640 medium
were pre-treated overnight at 37 ◦C with IFNγ (200 units/ml
Peprotech EC) to increase the concentration of cell surface
MHC class I [20]. This pre-treatment had no effect on
cell morphology. For all antibody uptake studies, cells in
RPMI-1640 were incubated with either HRP-w6/32 or FITC-
w6/32, initially for 2 h at 0 ◦C followed by incubation for
90 min at 37 ◦C. The 90 min incubation was selected to ensure
loading of late endosomal compartments, following preliminary
immunofluorescence microscopy experiments (result not shown).
More than 90 % of w6/32 bound to cell surface MHC class I at
pH 7.4 remained bound when the medium was acidified to pH 5.5
and the presence of HRP or FITC did not interfere with antibody
uptake when compared with the uptake of unlabelled w6/32 by
immunofluorescence confocal microscopy (result not shown),
consistent with labelled w6/32 being used to monitor traffic of
MHC class I through endosomes. Cells incubated with HRP-
w6/32 were subsequently washed with PBS at room temperature,
fixed with 2% paraformaldehyde/2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer for 1 h at room temperature, washed
in PBS, incubated with DAB (3,3′-diaminobenzidine)/H2O2

(1 mg/ml DAB; 4 μl of H2O2 in 10 ml of PBS) for 10 min in
the dark at room temperature and processed for transmission
EM as described previously [21]. For immunogold EM, cells
incubated with FITC-w6/32 were washed with PBS, fixed with
4% paraformaldehyde/0.1% glutaraldehyde in 0.1 M sodium
cacodylate buffer for 1 h at room temperature, processed and
frozen ultrathin sections (50–70 nm) prepared and labelled with
anti-FITC and gold-conjugated protein A as previously described
[21]. For quantification, MVBs were defined as membrane-bound
vacuoles that contained more than one internal vesicle. Following
uptake of FITC-w6/32 into HeLa-KK3 cells, 7839 gold particles
were counted in total on six independently labelled EM grids from
two separate experiments and after VPS20 depletion 1535 gold
particles were counted on three independently labelled EM grids.

RESULTS

Endocytosed polyubiquitinated MHC class I is delivered to MVBs

The previously established requirement for HRS and TSG101 in
down-regulating cell surface MHC class I and targeting
polyubiquitinated MHC class I for lysosomal degradation in
HeLa-KK3 cells following endocytosis, implied that this protein
was trafficking to lysosomes via MVBs [2,5]. To confirm this,
we carried out anti-MHC class I antibody uptake experiments
on HeLa-KK3 cells followed by EM analysis. We observed
labelling of MVBs with electron dense reaction product after
uptake of HRP-conjugated anti-MHC class I antibodies followed
by incubation with DAB/H2O2 (Figure 1A). We also examined
HeLa-KK3 cells by immuno–EM after endocytosis of FITC-
conjugated anti-MHC class I and detection with anti-FITC
antibody. Internalized anti-MHC class I was consistently observed
within multi-vesicular structures, particularly on ILVs within
MVBs (Figure 1B). Quantification showed that 44.9 +− 7.7% of

Figure 1 MHC class I molecules from the cell surface of HeLa-KK3 cells
are endocytosed into MVBs but not the TGN

(A) HeLa-KK3 cells treated with IFNγ and incubated with HRP-conjugated anti-MHC class I
for 90 min at 37◦C were fixed, incubated with DAB/H2O2 and processed for EM. Endocytosed
HRP-labelled anti-MHC class I antibodies accumulated in MVBs (arrowheads), as revealed by
the electron dense HRP/DAB reaction product. Scale bar, 1 μm. (B) HeLa-KK3 cells were treated
with IFNγ , incubated with FITC-conjugated anti-MHC class I for 90 min at 37◦C and frozen
ultrathin sections were immunolabelled with anti-FITC (15 nm gold). A representative MVB is
shown containing accumulated endocytosed anti-MHC class I antibodies (arrowhead). Scale
bar, 200 nm. (C) Quantification of immunogold labelled FITC-conjugated anti-MHC class I on
frozen ultrathin sections after uptake for 90 min at 37◦C. Mean +− S.E.M. of gold particles
counted. Abbreviation: OMA, other membrane-associated gold particles.

the anti-MHC class I was in compartments defined as MVBs after
90 min uptake of cell-surface bound anti-MHC class I antibodies
(Figure 1C). The remainder was associated with other membranes,
including tubular and vesicular elements, consistent with it being
in the endocytic pathway.

The effect of depletion of different ESCRT proteins on
down-regulation of polyubiquitinated MHC class I

To investigate the requirement for different ESCRT proteins in
the down-regulation of KK3-polyubiqitinated MHC class I we
determined the amount of MHC class I on the surface of HeLa-
KK3 cells by cytofluorometric analysis after incubation with
various siRNAs. In agreement with previous experiments [2,5],
depletion of either the ESCRT-0 protein HRS or the ESCRT-I
protein TSG101 increased the surface concentration of MHC class
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Figure 2 The effect of depleting ESCRT proteins on down-regulation of virally-ubiquitinated MHC class I

(A) Summary of cytofluorometric analysis of cell surface expression of MHC class I in HeLa-KK3 cells after depletion of individual ESCRT proteins with siRNA pools. In each experiment geometric
mean fluorescence data from siRNA-treated cells were compared with data from mock-treated cells, normalized to 100 %. Mean +− S.E.M., number of experiments in brackets, P-values **�0.01,
*<0.05. (B–G) Representative cytofluorometry traces of cell surface expression of MHC class I in HeLa-KK3 cells following depletion of individual ESCRT proteins (unfilled black traces). Traces for
secondary antibody controls (filled black traces), mock-treated HeLa-KK3 (unfilled grey traces) and HeLa (filled grey traces) cells are also shown. The effectiveness of knockdown is shown by either
immunoblotting or real time quantitative PCR (mean +− S.E.M. of three samples). CALR, calreticulin. (H) Pulse-chase analysis of degradation of MHC class I HeLa-KK3 cells following depletion of
individual ESCRT proteins. The immunoprecipitation of CANX (calnexin), with mouse anti-CANX antibody AF8 from the pulse-chase radiolabelled cell lysates provided the input lysate control.
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I (Figure 2A). This was observed as a shift in cytofluorimetry
traces to the right (Figure 2B for representative individual
trace after TSG101 depletion), indicating an inhibition of KK3-
mediated MHC class I down-regulation. Depletion of the ESCRT-
II protein VPS25 failed to increase the cell surface concentration
of MHC class I (Figures 2A and 2C), as previously reported
(Figure 8 in [14]) and there was also no effect of depleting
ALIX (Figures 2A and 2D), a mammalian homologue of yeast
Bro1p/Vps31p that can provide an alternative to ESCRT-II in link-
ing TSG101 of ESCRT-I to VPS32/CHMP4 in ESCRT-III [22,23].

The human homologues of the core yeast ESCRT-III
proteins are VPS20/CHMP6, VPS24/CHMP3, VPS2/CHMP2
and VPS32/CHMP4, but whereas the former pair each have
a single mammalian isoform, VPS2/CHMP2 has two isoforms
and VPS32/CHMP4 has three. Depletion of VPS24/CHMP3
(Figures 2A and 2E) and VPS2A/CHMP2A (Figure 2A), but not
CHMP2B/VPS2B (Figure 2A), resulted in an increase in MHC
class I on the surface of HeLa-KK3 cells. In agreement with
a previous study [24], depletion of VPS32B/CHMP4B but not
VPS32A/CHMP4A or VPS32C/CHMP4C specifically increased
cell surface MHC class I (Figures 2A and 2F and result not
shown). All the observed increases in cell surface MHC class
I described above after siRNA treatment, occurred in HeLa-KK3
but not HeLa cells and were confirmed with at least two of the
individual oligonucleotides making up each siRNA pool (result
not shown).

Although depletion of VPS24/CHMP3 and one isoform of each
of VPS2/CHMP2 or VPS32/CHMP4 in HeLa-KK3 cells caused
an increase in cell surface MHC class I, no effect was seen
when the fourth core subunit of ESCRT-III, VPS20/CHMP6,
was depleted (Figures 2A and 2G). Moreover, pulse-chase
radiolabelling experiments in HeLa-KK3 cells showed that,
consistent with this observation, there was degradation of the
MHC class I after depletion of VPS20/CHMP6 in contrast with
the protection from degradation observed after depletion of
VPS24/CHMP3 or TSG101 (Figure 2H). A similar lack of effect
of depleting VPS20/CHMP6 on the stimulation of MHC class I
degradation by KK3 was previously reported by Langelier et al.
[25], without showing data.

Depletion of VPS20/CHMP6 alters the morphology of endocytic
compartments

In our experiments, the absence of an effect of depleting
VPS20/CHMP6 on cell surface MHC class I was observed despite
a profound effect on the morphology of the endosomal system
with the appearance of enlarged, ubiquitinated compartments
in up to 80% of the cells (Figure 3A). These enlarged,
ubiquitinated compartments were also LAMP1-positive (result
not shown) and were seen when either HeLa or HeLa-KK3
cells were incubated with a pool of four VPS20/CHMP6 siRNA
oligonucleotides. Similar effects were seen when the cells were
incubated with three single oligonucleotides from the siRNA pool
(see Figure 3A for oligo1), although in individual experiments
with the single oligonucleotides, the proportion of cells with
enlarged, ubiquitinated compartments varied from ∼10%–
70%, broadly correlating with the extent of VPS20/CHMP6
depletion assessed by SDS/PAGE of ∼40%–90% (result not
shown). The enlarged, ubiquitinated compartments had some
similarities to those observed previously when ESCRT proteins
such as HRS or TSG101 were depleted [26,27]. Given the
variability in the proportion of cells clearly showing the enlarged,
ubiquitinated compartment phenotype after VPS20/CHMP6
depletion with single siRNA oligonucleotides, we designed a

rescue experiment. The enlarged, ubiquitinated compartments
formed after incubation with oligo1, but not the siRNA pool,
could be rescued by expressing oligo1 siRNA-resistant myc-
tagged VPS20/CHMP6 (Figures 3A–3C). Transmission EM
showed that clusters of MVBs were often associated with the
enlarged compartments (Figure 3D). Endocytosed FITC-labelled
antibodies to MHC class I were still delivered to these MVBs in
the VPS20/CHMP6-depleted HeLa-KK3 cells (Figure 3E), with
40.3 +− 1.3% of the antibodies being associated with MVBs in
these cells, after 90 min of antibody uptake.

HD-PTP is required for the down-regulation of polyubiquitinated
MHC class I

In the canonical ESCRT pathway found in yeast, ESCRT-
II binds to Vps20p and triggers the homo-oligomerization
of Vps32p/Snf7p [12]. Given that ESCRT-II, VPS20/CHMP6
and ALIX were not required for down-regulation of KK3-
polyubiquitinated MHC class I in HeLa-KK3 cells we searched
for another protein that could link mammalian ESCRT-I to
VPS32/CHMP4 in ESCRT-III. We investigated the effect of
depletion of the protein HD-PTP that is structurally related to
ALIX and is a mammalian homologue of yeast Bro1p/Vps31p
[28]. HD-PTP can bind to the ESCRT-I components TSG101 and
UBAP1 as well as having a central Bro1 domain that can interact
with CHMP4B [29,30]. In contrast with the lack of effect when
depleting ALIX in HeLa-KK3 cells, the knockdown of HD-PTP
with a pool of four siRNAs resulted in a significant increase
in the cell surface concentration of MHC class I (Figures 4A
and 4B). The effect was closest to that seen when depleting
VPS2A (Figure 2A) when geometric mean fluorescence was
measured over five experiments (Figure 4A). All four single
oligonucleotides in the pool had similar effects (Figures 4C and
4D for oligo3 and oligo4; other results not shown) and there
was no change in cell surface MHC class I when control HeLa
cells were treated with the pool (Figure 4E). The pool of siRNAs
and the single oligonucleotides in the pool all reduced HD-PTP
transcript levels >90% (Figure 4F). We then designed a rescue
experiment based on a previous study in which depletion of HD-
PTP was shown to reduce the transfer of fluid phase markers and
the EGFR (epidermal growth factor receptor) to lysosomes [16].
As expected, siRNA-sensitive GFP-tagged HD-PTP expressed in
transiently transfected HeLa-KK3 cells was depleted by treatment
with a single siRNA duplex (oligo2) but oligo2 siRNA-resistant
GFP-tagged HD-PTP was not (Figure 5A). In a population
of HeLa-KK3 cells transiently transfected with WT siRNA-
resistant GFP-tagged HD-PTP (WT GFP-HD-PTPRNAires), cell
surface MHC class I was analysed separately in the GFP-positive
and GFP-negative cells. The cytofluorimetry trace of MHC class
I in the GFP-positive cells expressing WT GFP-HD-PTPRNAires

showed almost no shift to the right after oligo2 knockdown,
demonstrating a rescue (Figure 5B). This was in contrast with
the expected rightward shift of the MHC class I cytofluorimetry
trace in the GFP-negative, HD-PTP-depleted cells from the same
oligo2-treated, transiently transfected population (Figure 5C).
Rightward shifts of MHC class I cytofluorimetry traces, showing
no rescue, were also observed in oligo2-treated, transiently
transfected HeLa-KK3 cells expressing WT siRNA-sensitive
GFP-tagged HD-PTP (WT GFP-HD-PTP; Figure 5D) or a siRNA-
resistant GFP-tagged L202D/I206D mutant HD-PTP (Mut GFP-
HD-PTPRNAires; Figure 5E). The L202D and I206D mutations are
in the Bro1 domain and prevent binding to VPS32B/CHMP4B
[16]. Thus, the data shown in Figure 5 are consistent with the
binding of HD-PTP to VPS32B/CHMP4B being required for
down-regulation of MHC class I in HeLa-KK3 cells.
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Figure 3 The effect of depleting VPS20/CHMP6 on endocytic compartments

(A) Immunofluorescence confocal microscopy of HeLa cells stained with anti-ubiquitin antibodies, following mock knockdown or knockdown with either a pool of siRNAs or a single siRNA, oligo1
(upper panels). Lower panels show stably-transfected HeLa cells expressing oligo1 siRNA-resistant myc-tagged VPS20 (myc-VPS20RNAires HeLa cells), after the same knockdown treatments. Scale
bar = 10 μm (B) Immunoblotting to show expression of VPS20 and myc-tagged VPS20 in the HeLa cells and myc-VPS20RNAires HeLa cells following siRNA knockdown. *myc-VPS20; CALR,
calreticulin. (C) Proportion of cells with enlarged, ubiquitinated compartment phenotype in HeLa cells or myc-VPS20RNAires HeLa cells after depletion of endogenous VPS20 with either a pool of
siRNAs or oligo1. Mean +− S.E.M. (three coverslips, 50 cells per coverslip). (D) Transmission electron micrograph of a HeLa cell treated with the VPS20 siRNA pool, showing a swollen endocytic
compartment and associated MVBs. Scale bar = 500nm. (E) Transmission electron micrograph of an anti-FITC antibody (15 nm gold)-stained frozen section from a HeLa-KK3 cell allowed to
endocytose FITC-conjugated anti-MHC class I for 90 min at 37◦C after knockdown of VPS20. Two representative MVBs are shown containing accumulated endocytosed anti-MHC class I antibodies.
Scale bar = 200nm.
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Figure 4 The effect of depleting HD-PTP on down-regulation of virally ubiquitinated MHC class I

(A) Summary of cytofluorometric analysis of cell surface expression of MHC class I in HeLa-KK3 cells following mock knockdown or depletion of HD-PTP with an siRNA pool. Geometric mean
fluorescence data from siRNA-treated cells were compared with data from mock-treated cells, normalized to 100 %. Mean +− S.E.M., number of experiments in brackets, P-value **�0.01. (B–D)
Representative cytofluorometry traces of cell surface expression of MHC class I in HeLa-KK3 cells following depletion of HD-PTP (unfilled black traces) with an siRNA pool (B) or individual siRNAs
from the pool, oligo3 (C) and oligo4 (D). Traces for mock treated HeLa-KK3 cells (unfilled grey traces) and secondary antibody controls (filled black traces) are also shown. (E) Representative
cytofluorometry trace of cell surface expression of MHC class I in HeLa cells following depletion of HD-PTP with a siRNA pool (unfilled black trace). Traces for mock-treated HeLa cells (filled grey
trace) and secondary antibody control (filled black trace) are also shown. (F) Real time quantitative PCR to show the effectiveness of knockdown in the representative experiments shown in panels
(B–E). Mean +− S.E.M. of three samples.
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Figure 5 Rescuing the down-regulation of virally ubiquitinated MHC class I following knockdown of HD-PTP

(A) HeLa-KK3 cells were treated with either non-targeting siRNA (NT) or HD-PTP oligo2 siRNA on day 1 and then 12 h later transfected with pEGFP-C3 plasmids containing inserts encoding
WT, oligo2 siRNA resistant WT (WTRNAires) or oligo2 siRNA resistant L202D/I206D mutant (MutRNAires) GFP-HD-PTP. On day 4, the presence of GFP-HD-PTP in harvested cells was detected by
immunoblotting with anti-GFP. (B–D) Representative cytofluorometry traces of cell surface expression of MHC class I in HeLa-KK3 cells treated with oligo2 siRNA and transfected with GFP-HD-PTP
constructs (unfilled black traces). In (B and C), cells were treated with oligo2 siRNA and transfected with WT GFP-HD-PTPRNAires before analysing the GFP-positive (B) and negative (C) cells. In
(D), cells were treated with oligo2 siRNA and transfected with WT GFP-HD-PTP and, in (E), treated with oligo2 siRNA and transfected with L202D/I206D mutated Mut GFP-HD-PTPRNAires. Traces for
secondary antibody controls (filled black traces) and mock-treated HeLa-KK3 (unfilled grey traces) are also shown.
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DISCUSSION

In the present study, we have shown that in HeLa-KK3 cells
down-regulation of KK3-polyubiquitinated MHC class I involves
traffic from the plasma membrane to lysosomes via MVBs. Our
siRNA knockdown experiments, together with data previously
published [5,14,24,25], are consistent with the down-regulation
requiring ESCRT-0 (HRS), ESCRT-1 (TSG101), plus three of
the four core components of ESCRT-III (VPS32B/CHMP4B,
VPS24/CHMP3 and VPS2A/CHMP2A), but not ESCRT-II
(VPS25) or the ESCRT-III protein VPS20/CHMP6. These data
imply that the canonical ESCRT pathway in which ESCRT-II
and VPS20/CHMP6 link ESCRT-I to the polymerization of the
ESCRT-III protein VPS32/CHMP4 cannot account for the sorting
into MVBs and down-regulation of KK3-polyubiquitinated MHC
class I. This contrasts with studies showing a requirement for
ESCRT-II in the down-regulation of a variety of transporters,
chemokine and growth factor receptors [31,32]. However, it
should be noted that ESCRT-II and VPS20/CHMP6 are not
required for the ESCRT-dependent processes cytokinesis and
retroviral budding from the cell surface [7,12]. In addition,
Vps20p is not required for ESCRT-dependent surveillance of
nuclear pore complex assembly in yeast [33] and VPS20/CHMP6
is not required for ESCRT-dependent plasma membrane wound
repair [34].

Although the Bro1p-related protein ALIX was found to
link ESCRT-I to ESCRT-III for the budding of the human
immunodeficiency virus [25] it is not required for down-
regulation of KK3-ubiquitinated MHC class I. We found that a
different Bro1p-related protein, HD-PTP, is required for the down-
regulation of KK3-polyubiquitinated MHC class I, consistent
with a non-canonical ESCRT pathway being used for the down-
regulation of this specific cargo. Interestingly, the L202D/I206D
mutant of HD-PTP that cannot bind VPS32B/CHMP4B [16],
was unable to rescue the effects of endogenous HD-PTP deletion
on KK3-mediated down-regulation of MHC class I, despite it
previously having been shown to be as effective as WT HD-
PTP in supporting EGF sorting into MVBs [16]. The role of
HD-PTP in sorting the EGFR appears to be more complex than
simply acting as a link between ESCRT-I and ESCRT-III, since
it also binds to STAM2 in mammalian ESCRT-0 and has been
proposed to combine with the deubiquitinating enzyme UBPY
to transfer EGFR from ESCRT-0 to ESCRT-III and help drive
the sorting of EGFR into MVBs [35]. Data from experiments
on Drosophila and/or mammalian cells has also implicated HD-
PTP in the endosomal sorting of integrins, E-cadherin and Toll
receptors [36–39], although in these cases its mechanism of action
is less clear.

It is well recognized that the molecular machinery to form
and sort ubiquitinated cargoes into MVBs in mammalian cells
has more complexity and diversity than the canonical ESCRT
pathway used in yeast [40]. A non-canonical ESCRT pathway
independent of HRS and TSG101, but requiring ALIX and
ESCRT-III proteins, has been shown to be responsible for
sorting a non-ubiquitinated G protein-coupled receptor, protease-
activated receptor 1, into MVBs for subsequent degradation
by lysosomal hydrolases [41]. Also, there is evidence for
more than one type of MVB in the same cell [42] and
for non-ESCRT-mediated formation and sorting into MVBs
[43–46]. In addition, studies of three mammalian ESCRT-III
proteins, VPS24/CHMP3, VPS60/CHMP5 and VPS2/CHMP2B,
have suggested a regulatory role in endosome–lysosome
fusion, distinct from MVB formation [47–49]. The effects of
depletion of VPS20/CHMP6 seen in the present study, with
the accumulation of tethered MVBs associated with swollen

LAMP1 positive endocytic compartments, are also consistent
with a regulatory role in endosome–lysosome fusion, although
they could equally imply that all ubiquitinated cargoes must be
correctly sorted into MVBs if they are to become competent for
fusion.

In summary, our data provide evidence of a non-
canonical ESCRT pathway to sort one particular cargo, KK3-
polyubiquitinated MHC class I, into MVBs in mammalian
cells. This pathway utilizes HD-PTP rather than ESCRT-II
and VPS20/CHMP6 in linking ESCRT-I to ESRCT-III. This
difference from the ESCRT pathway used to down-regulate other
cell surface proteins may reflect the homogeneity of the Lys63

polyubiquitin chains added to the MHC class I cytosolic
tail by KK3, which contrasts with the mixture of multiple
monoubiquitination and polyubiquitination and/or mixed linkage
polyubiquitin chains that has been reported for the cytosolic
tails of some other down-regulated membrane proteins and/or
by ubiquitination with other E3 ligases [50–52].
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