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Abstract

A major problem facing the realisation of scalable solid-state quantum computing

is that of overcoming decoherence � the process whereby phase information encoded

in a quantum bit (`qubit') is lost as the qubit interacts with its environment. Due to

the vast number of environmental degrees of freedom, it is challenging to accurately

calculate decoherence times T2, especially when the qubit and environment are highly

correlated.

Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, are

amenable to fast quantum control with pulsed magnetic resonance. They also pos-

sess `optimal working points' (OWPs) which are sweet-spots for reduced decoherence

in magnetic �elds. Analysis of sharp variations of T2 near OWPs was previously

based on insensitivity to classical noise, even though hybrid qubits are situated in

highly correlated quantum environments, such as the nuclear spin bath environ-

ment of 29Si impurities. This presented limited understanding of the underlying

decoherence mechanism and gave unreliable predictions for T2.

In this thesis, I present quantum many-body calculations of the qubit-bath dy-

namics, which (i) yield T2 for hybrid qubits in excellent agreement with experiments

in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath

and (iii) expose signi�cant di�erences between quantum-bath and classical-�eld de-

coherence. To achieve these results, the cluster correlation expansion was adapted

to include electron-nuclear state mixing. In addition, an analysis supported by ex-

periment was carried out to characterise the nuclear spin bath for a bismuth donor

as the hybrid qubit, a simple analytical formula for T2 was derived with predictions

in agreement with experiment, and the established method of dynamical decoupling

was combined with operating near OWPs in order to maximise T2. Finally, the

decoherence of a 29Si spin in proximity to the hybrid qubit was studied, in order to

establish the feasibility for its use as a quantum register.
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Ask not what your bath can do for your qubit,
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lated values. Figure adapted from Morley et al. (2013). . . . . . . . . . . . 89

3.6 Rabi oscillations demonstrate coherent control of both of the 4 GHz hybrid
electron-nuclear transitions. At higher magnetic �elds, the 11-10 resonance
becomes an ESR transition, whereas the 10-9 resonance becomes an NMR
transition. Controlling this NMR transition in the past has required π pulses
of ≥ 4 µs, two orders of magnitude longer than the 32 ns π pulses we use
here. Figure adapted from Morley et al. (2013). . . . . . . . . . . . . . . . 90
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11-10 transition experiences 10% faster nutation, as expected. Pulsed mea-
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4.1 Pulsed ENDOR measured for bismuth-doped silicon with frequency 9.8 GHz
at which ten ESR lines are observed, the resonance peaks due to interactions
of the donor with 29Si nuclei at inequivalent lattice sites. The isotropic hy-
per�ne couplings were extracted from the spectrum at the highest magnetic
�eld. As the �eld is varied, the smooth lines follow the resonance positions
according to Equation (4.10). Solid and dotted lines distinguish between
the two peaks observed for each coupling, each corresponding to one of the
two donor levels involved in the ESR transition. Only the peaks labelled X1

and X2, in addition to a third pair not resolved here, were found to show
anisotropy from performing ENDOR as a function of crystal orientation.
Figure adapted from Balian et al. (2012). . . . . . . . . . . . . . . . . . . . 94

4.2 Si:Bi ENDOR spectra for the |11〉 → |10〉 ESR transition at 9.75 GHz
microwave excitation obtained as a function of θ, where (θ − θ0) is the
angle between the external magnetic �eld and the [111]-direction. The three
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4.3 Simulated ENDOR as a function of magnetic �eld B, showing collapse of
the hyper�ne couplings for the |12〉 → |9〉 Si:Bi ESR transition. The OWP
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4.4 Simulated ENDOR at the B = 188.0 mT OWP (upper panel) and experi-
mental spectrum at 9.755 GHz (lower panel), for the |12〉 → |9〉 Si:Bi ESR
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4.5 Experimental (B = 0.4799 T, at ESR excitation frequency 9.75 GHz) and
extrapolated (simulated) ENDOR spectra for Si:Bi, for the |12〉 → |9〉 ESR
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4.6 Dependence of the (aiso, T ) = (3.36± 0.03, 2.56± 0.03) MHz peak (Belli
et al., 2011) on the crystal orientation angle θ with and without the mixing
polarisation terms for the |12〉 → |9〉 ESR transition in Si:Bi. The �eld B =
0.4799 T corresponds to 9.75 GHz. Fields B = 0.2114 T and B = 0.1586 T
are at the cancellation resonance for levels |9〉 and |12〉 respectively, and B =
0.1888 T is near the OWP. The curves were obtained using Equation (4.9) in
the case of mixing included. For curves excluding mixing, the polarisation
terms were �xed to ±1 at all �elds in Equation (4.9). . . . . . . . . . . . . 105

5.1 Convergence of the two-cluster correlation expansion for spin echo decays
in Si:Bi at 4 GHz with respect to the superlattice size. Pairs of 29Si nuclei
with separations up to the 3rd nearest neighbour distance in the silicon
lattice were included in the calculation. The error bars are the standard
deviation of the mean intensity after 100 random spatial and initial state
con�gurations of 29Si nuclei, and the external magnetic �eld was chosen to
be B = 0.3446 T so the |11〉 → |10〉 Si:Bi transition was excited. Figure
adapted from Morley et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Convergence of the two-cluster correlation expansion for spin echo decays in
Si:Bi at 4 GHz with respect to the pair-separation cut-o�. The maximum
distance between paired 29Si nuclei is increased by pairing 1st, 2nd and 3rd
nearest neighbours. Convergence is achieved for the 3rd nearest neighbors.
The 1st, 2nd and 3rd nearest neighbour separations in the silicon lattice
are

√
3

4 a0,
√

2
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√
11
4 a0 respectively, with a0 = 5.43 Å. The results

are compared for a range of lattice sizes. The error bars are the standard
deviation of the mean intensity after 100 random spatial and initial state
con�gurations of 29Si nuclei, and the external magnetic �eld was chosen to
be B = 0.3446 T so the |11〉 → |10〉 Si:Bi transition was excited. Figure
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5.3 Example spin-echo coherence decays measured for both Si:Bi transitions
at 4 GHz, with a temperature of 10 K. The echo coherence decay is lim-
ited by 29Si nuclear spins, as parameterized by T2 in the �tting function
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of the line is of the order of the standard deviation of the mean intensi-
ties after 100 random spatial con�gurations of 29Si nuclei. As discussed in
Chapter 2, the refocusing π-pulse removes static magnetic �eld noise from
29Si couplings to the qubit. The magnetic �eld direction was perpendicular
to the [111] crystal direction. Figure adapted from Morley et al. (2013). . . 116
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5.5 Coherence times of hybrid electron-nuclear qubits as a function of temper-
ature for both resonances at 4 GHz with previously published data at 10
GHz (Morley et al., 2010) for comparison. The 4 GHz spin-lattice relaxation
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cases smaller than the symbol. Figure adapted from Morley et al. (2013). . 118
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5.6 Suppression of spin bath decoherence near OWPs of the hybrid qubit in a
nuclear spin bath (natSi:Bi). Figure was adapted from Balian et al. (2014).
Each dot represents the T2 extracted from coherence decays obtained using
the cluster correlation expansion (CCE). The coherence times are the Hahn
spin echo T2, and near the OWPs, these were extracted from the short-time
behaviour of CCE2 decays, since pair correlations are strongly suppressed
on the actual timescale of T2 near OWPs. Such short-time T2 times are in
agreement with those obtained from full decays of the converged CCE3 near
OWPs established in Balian et al. (2015) (see Section 5.4.3 for details). . . 119

5.7 Suppression of Bi-29Si spin bath decoherence for the |12〉 → |9〉 ESR tran-
sition. Simulated ENDOR and nuclear spin di�usion coherence times T2

(Hahn echo) as a function of magnetic �eld B, showing collapse of the hy-
per�ne couplings and a sharp increase in T2 as the �eld approaches the
B = 188.0 mT optimal working point (OWP). The dashed line is a �t. Fig-
ure adapted from Balian et al. (2012). Coherence times in the OWP region
were extracted from the short-time behaviour of CCE2 (Details are given in
Section 5.4.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8 Calculated donor Hahn spin echo decays from which coherence times in
Figure 5.7 were extracted. Figure adapted from Balian et al. (2012). Decays
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5.9 Shows quantum many-body calculations of the Hahn spin echo using the
cluster correlation expansion (CCE) method. (a) Near OWPs, calculations
using a bath of independent spin pairs only (red, CCE2) do not even predict
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(2014) to yield good agreement with experiments; this indicates that three-
cluster results too give good agreement with measurements. The formula
is discussed in Chapter 6. Higher order CCE can encounter numerical di-
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for the discrepancies with CCE5. (b) Far from the OWP, independent pairs
(CCE2) already give results in good agreement with CCE3-5 as well as ex-
periments. The single-spin free induction decay (FID) is also shown for
comparison. Note that the analytical formula approximates the decay by
a pure Gaussian. CCE calculations were performed for a bismuth donor in
natural silicon for B along [100] and the |14〉 → |7〉 transition for which
BOWP = 799 G. In (a), B = 795 G while for (b), B = 3200 G. Figure
adapted from Balian et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . 122

5.10 Comparison between theoretically predicted and measured T2 in natSi:Bi for
various transitions, showing remarkable agreement across a wide range of
mixing regimes � magnetic �elds and transitions quanti�ed by |Pu − Pl|.
The Bi donor concentration was ≤ 1016 cm−3, and decoherence times are
limited by 29Si spin di�usion. Figure adapted from Balian et al. (2014). . . 124

5.11 Calculations convolved with Gaussian B-�eld distribution of width 0.42 mT
(arising from inhomogeneous broadening from the nuclear spin bath) show
an excellent �t with the experimental Hahn echo decay around an ESR-
type OWP (B ∼ 80 mT), with no free �t parameters. Figure adapted
from Balian et al. (2014) and the experimental data was �rst published in
Wolfowicz et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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5.12 Angular dependence of T2 for an ESR transition of Si:Bi. Rotation was
performed about the [112] axis in the [110] - [111] plane with θ from [110].
The best match to experiment was obtained for a 5◦ tilt in the rotation axis
and a zero-o�set of 20◦. Figure adapted from Balian et al. (2014). . . . . . . 126

5.13 Shows that the hybrid qubit coherence time as a function of magnetic �eld
(T2(B)) is not necessarily inversely proportional to the frequency-�eld gra-
dient df/dB. Red solid line is T2 calculated using the cluster correlation
expansion (CCE); black dotted-dashed line is T2 ∝ 1/(df/dB). (a) T2(B)
around a typical ESR-type `optimal working point' (OWP) of Si:Bi cannot
be �tted by df/dB, except locally. The df/dB lines have been rescaled to �t
either the OWP region or the asymptotic regions; they cannot �t both. The
blue dashed lines are calculated using the closed-form formula described in
Chapter 6. (b) The single NMR-type `clock transition' (CT) of Si:As at
B ' 0.39 T (where df/dB = 0), exempli�es a CT which is not an OWP (i.e.
there is no enhancement in T2). Si:Bi also has such CTs. Calculations were
performed for the natural abundance of 29Si (4.67%). Figure adapted from
an earlier version of Balian et al. (2014) (arXiv:1302.1709v3 [cond-mat.mes-
hall] (2013) ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Illustration of the evolution of the bath states in the Hilbert space spanned
by {|↑↓〉 , |↓↑〉} under the in�uence of their dipole coupling (C12) and their
mutual detuning δJ caused by interaction with the central spin. Figure
adapted from Balian et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Illustration of the evolution of the bath states in the Hilbert space spanned
by {|↑↓〉 , |↓↑〉} under the in�uence of their dipole coupling (C12) and their
mutual detuning caused by interaction with the central spin. At both OWPs
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et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Shows that OWP regimes are dominated by slow oscillating terms while
ESR regimes are dominated by fast oscillating terms in Equation (6.9). (a)
Compares decays obtained from Equation (6.9) (exact) with decays obtained
from Equation (6.15) (slow oscillations only). (b) Compares decays obtained
from Equation (6.9) (exact) with decays obtained from Equation (6.10) (fast
oscillations only). Figure adapted from Balian et al. (2014). . . . . . . . . . 139

6.4 The individual contribution of each spin pair in the bath to the total (1/T2)2

near OWPs, from Equation (6.13). Data are shown for two magnetic �eld
orientations. For large |δJ |, coherence times become nearly independent of
|δJ |. The scale of T2 is set by a comparatively small N ∼ 102 set of strongly-
coupled spins (|PiδJ | � |C12|), illustrated in the red box. B = 79.8 mT
(about 0.1 mT o�set from the OWP) and Pi ' 0.1. γN = 8.465 MHz/T
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the bismuth electron (de Sousa and Das Sarma, 2003b). Figure adapted
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6.5 Theoretical contributions of spin pairs to T2(Hahn), coloured according to
n-th nearest neighbors relative to the black nucleus as illustrated in the last
panel. First nearest neighbors dominate decoherence for rotation angles
θ ' 30◦. At θ = 0◦, �rst nearest neighbor contributions are diminished and
second and third nearest neighbors contribute the most to T2. Rotation is
performed about [011̄] in the [011]− [100] plane, with θ from [100]. Figure
adapted from Balian et al. (2014). Details of the silicon crystal structure
are given in Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Comparison of calculated T2(Hahn) and T2(FID) for the various ESR-type
and NMR-type transitions of Si:Bi for which T2 was measured (Figure 6.8)
covering a wide magnetic �eld range. Near OWPs (where |Pu − Pl| � 1),
T2(Hahn)/T2(FID) ' 2. Figure adapted from Balian et al. (2014). . . . . . 146

6.7 (a) The predicted T2 values as a function of magnetic �eld for a variety of
allowed transitions in Si:Bi, using Equation (6.1) derived in the text (la-
belled `analytical'), show eight OWPs where decoherence is suppressed. We
also plot the magnetic �eld-frequency gradient (df/dB); though scaled by
an arbitrary constant in order to match the range of estimated T2 values,
the discrepancies with Equation (6.1) are evident. In the left panel, tran-
sitions with no OWP are shown only faintly. (b) The analytical expression
Equation (6.1) derived in the text is in good quantitative agreement with
CCE2 numerics, but df/dB is not. (c) Calculations convolved with Gaussian
B-�eld distribution of width 0.42 mT (arising from inhomogeneous broaden-
ing from the nuclear spin bath) show an excellent �t with the experimental
Hahn echo decay around an ESR-type OWP (B ∼ 80 mT) (Wolfowicz et al.,
2013), with no free �t parameters. Figure adapted from Balian et al. (2014). 148

6.8 Comparison between theoretically predicted and measured T2 in natSi:Bi for
various transitions, showing remarkable agreement across a wide range of
mixing regimes |Pu − Pl|. The label `analytical' refers to Equation (6.1).
Measurements were made at 4.8 K using ESR with a microwave frequency
of 9.77 or 7.03 GHz (�lled symbols), or electron-nuclear double resonance
(ENDOR) between 200 MHz and 1 GHz using the method described in
Morton et al. (2008) (empty symbols), at magnetic �elds between 100 and
450 mT. These parameters are all in the regime where |Pu − Pl| ≈ df/dB.
The Bi donor concentration was ≤ 1016 cm−3, and coherence times are
limited by 29Si spin di�usion. The theoretical points are based on a predicted
value for C(θ) = 0.42 ms. In the lower panel, the decay rates are normalised
by |Pu − Pl| to highlight the e�ect of |Pu|+ |Pl|, and shown relative to the
case when |Pu| = |Pl|. Figure adapted from Balian et al. (2014). . . . . . . 150

7.1 Illustrates coherence enhancement as B → BOWP (the Hahn spin echo time
T

(1)
2 is plotted). The OWP is for a bismuth donor in natural silicon, inves-

tigated experimentally in Wolfowicz et al. (2013) and Balian et al. (2014).
The OWP curve was calculated using the analytical formula Equation (6.1).
OWP results are for the |14〉 → |7〉 transition for which BOWP = 799 G.
Inset: The CPMG dynamical decoupling sequence consists of the initial π/2
pulse, followed by the −τ − π − τ−echo sequence repeated N times, as
described in Section 2.2.3. Figure adapted from Balian et al. (2015). . . . . 155
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7.2 Shows dependence of the coherence on the number of dynamical decoupling
pulses N , (a) near an optimal working point (OWP) and (b) far from an
OWP, for modest numbers of N . (a) For B close to BOWP, the T2 times
show comparatively little response to dynamical decoupling. Further, even
though the initial coherence is extended with increasing N , the decays be-
come ever more oscillatory. For low N , the independent pairs contribution
is largely eliminated. Inset of (a): Showing complete suppression of the
independent pairs contribution near an OWP; but showing also its grad-
ual revival as N increases. (b) In contrast, far from the OWP, substantial
(order of magnitude) enhancement of the T2 time by dynamical decoupling
is achieved with a moderate (preferably even) number of pulses. Decays
for independent pair contributions (dashed lines, CCE2) and the converged
quantum many-body numerics (solid lines, CCE4) are also compared, in-
dicating that as N & 10, once again, the independent pair contribution
is su�cient. CCE calculations were performed for CPMGN on a bismuth
donor in natural silicon for B along [100] and for the |14〉 → |7〉 transition
for which BOWP = 799 G. In (a), B = 795 G while for (b), B = 3200 G. The
converged CCE in (a) corresponds to CCE3. Figure adapted from Balian
et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Shows coherence decays for large numbers (N) of dynamical decoupling
pulses (a) near and (b) far from OWPs; as shown in the inset of Figure 7.2(a),
for such high N , correlations from independent pairs once again dominate
the decays in all regimes so CCE2 is converged and plotted. The behaviour
at OWPs is now sensitive to N but the decays here become increasingly os-
cillatory as N and T2 both become large; we attribute this to large numbers
of bath spin-pair frequencies becoming resonant with the pulse spacing. It
indicates the behaviour one might expect in a single-shot single spin study.
The smooth lines are �ts to the decays and indicate the expected coherence
decay after ensemble averaging. CCE calculations were performed for a bis-
muth donor in natural silicon for B along [100] and BOWP = 799 G. Figure
adapted from Balian et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 E�ect of dynamical decoupling (CPMG with even pulse numbersN) asN →
∞. Plots T [N ]

2 /T
[1]
2 showing enhancement of the electron spin coherence time

T2 as a function of pulse number N , relative to the N = 1 Hahn echo value.
We �nd that while dynamical decoupling far from the OWP enhances T2 by
an order of magnitude with about 10 pulses, in contrast, close to an OWP,
enhancement is marginal for dynamical decoupling with low N . For high N ,
enhancements near and far from OWPs become comparable. Even-pulsed
CPMG is shown as it is more e�ective than CPMG with odd numbers of
pulses. The coherence times are when the CPMG decays in Figure 7.2 and
the �ts to the decays in Figure 7.3 have fallen to 1/e. Results are for Si:Bi in
natural silicon for the |14〉 → |7〉 transition for which BOWP = 799 G. For the
�eld value near the OWP (B = 795 G), T [1]

2 ' 96 ms while T [1]
2 ' 0.79 ms in

the 6=OWP regime (B = 3200 G). Figure adapted from Balian et al. (2015). 164
7.5 Sharp B-�eld dependence of T2 for various CPMG orders near an OWP. In-

homogeneous broadening from 29Si nuclei can be incorporated by convolving
the decays with a Gaussian B-�eld distribution centred about B (here cen-
tred about 797 G) and with standard deviation w ' 2 G (dashed line). For a
donor concentration of 3×1015 cm-3, T2 is limited by donor-donor processes
at about 300 ms (Wolfowicz et al., 2013). The T2 lines were calculated for
bismuth donors in natural silicon using the CCE up to 3rd order and for
B ‖ [1̄10]. The OWP under investigation is shown in red at 799 G. Figure
adapted from Balian et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . 165
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8.1 Decoherence of electronic spin qubits (or equivalently hybrid qubit in the
unmixed limit with the two levels separated by ESR frequencies) by a
�ip-�opping nuclear spin bath in natural silicon. The background plots
the spatial electronic wavefunction; blue denotes the strong-detuning re-
gion, where the energy cost of a bath spin �ip ∆±e ∝ ±(J1 − J2) ex-
ceeds the strongest intra-bath coupling C12; it thus corresponds to the
usual de�nition of the �frozen-core� region. However, electronic spin de-
coherence is dominated by an active zone (purple colour) of pairs of nu-
clear spins which are actually within the blue strongly detuned region, with
|∆±e /C12| = |(J1 − J2)/C12| ∼ 10 for Si:P (see Chapter 6 for details). The
reason is that, while for large |∆±e | �ip-�op amplitudes are strongly damped,
qubit state-dependence of the quantum bath evolution, essential for the en-
tanglement between the electronic spin and bath which produces decoher-
ence, is also proportional to ∆±e . Spin pairs for which J1 = J2 (equivalent
pairs) have no e�ect on electronic decoherence and were not considered in
previous studies. Figure adapted from Guichard et al. (2015). . . . . . . . 170

8.2 Decoherence of a proximate nuclear spin qubit (labelled �A�) by a quantum
bath of nuclear spin pairs outside the frozen core. In contrast to electron spin
decoherence (for which the detuning is fully state-dependent, see Figure 8.1),
the detuning is now ∆e + ∆±n : there is now potentially a very large state-

independent component ∆e ∝ (J1−J2) which simply damps the bath noise,
in addition to a state-dependent component ∆±n ∝ ±(C1A−C2A) which leads
to qubit-bath entanglement and thus decoherence. For large R (distance
from donor site), the bath spin interaction with both the electron spin and
nuclear qubit is dipolar, thus |∆±n /∆e| ∼ 10−4 so very weak contributions
from an extremely large bath of 108 pairs for 50 . R . 350 Å must be
combined to obtain a converged decay. Figure adapted from Guichard et al.

(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.3 Convergence of large bath model with respect to intra-bath dipolar coupling

(a) and with respect to bath size (b). The �gure indicates that decoherence
is dominated by spins with C12 ∼ 0.01 − 1 Hz and a bath of spins within
R . 350 Å of the origin, combining the contributions from 5×108 spin pairs.
Calculations were performed for the case of Si:P, for X-band and magnetic
�eld orientation B0 = [100], yielding a T2n of 2 s for a single nuclear 29Si
spin sited at the origin. This represents an estimate for the upper bound
for the coherence time if the far bath is the dominant process. Due to the
large nuclear spin bath, the coherence decays are insensitive to the choice of
random spatial realisation of the bath. Figure adapted from Guichard et al.

(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
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8.4 Decoherence of a proximate nuclear spin qubit (labelled �A�) by a quantum
bath of nuclear spin pairs inside the frozen core. See also Figure 8.2 for
a comparison with decoherence outside the frozen core. The detuning on
�ip-�opping bath pairs is ∆e + ∆±n ; i.e., a sum of a potentially very large
state-independent component ∆e ∝ (J1 − J2), which damps decoherence in
addition to a state-dependent one ∆±n ∝ ±(C1A − C2A) which drives de-
coherence. In the frozen core there are comparatively few spin impurities.
For equivalent pairs however, J1 = J2 ≡ J so ∆e ' 0. Their density is de-
termined by the symmetry of the electronic wavefunction. The requirement
for strong state-selective detuning implies also that one member of the pair
must be close enough to the qubit to allow appreciable direct dipolar cou-
pling (as opposed to long-range coupling between nuclear spins mediated by
the electron spin). Pairs which also satisfy this requirement (exempli�ed by
the upper, but not the lower, equivalent pair) are rare but even a few dozen
su�ce to exceed the contribution of the ∼ 108 far-bath spin pairs shown in
Figure 8.2. Figure adapted from Guichard et al. (2015). . . . . . . . . . . . 180

8.5 Density of equivalent pairs (EPs) as a function of distance from the donor
site. The separate contributions from di�erent types of shells is shown, as
well as the total density, assuming a purely isotropic contact interaction
(left) or a correction for anisotropic behaviour (right). The density of EPs
is approximately constant for R & 10 Å, but the innermost proximate spins
typically interact with fewer EPs. Figure adapted from Guichard et al. (2015).182

8.6 Simulations of coherence decays of a set of proximate nuclear qubits cor-
responding to a range of electron-qubit hyper�ne couplings JA in MHz.
The blue lines correspond to isotropic electron-bath coupling only and yield
T2 ≈ 0.2− 0.3 s; red lines show the e�ect of symmetry reduction due to the
anisotropy of couplings: we compare the e�ect of desymmetrisation if we
constrain EPs to have in addition the same orientation condition (i.e. same
(n̂B · n)2). The e�ect is to produce T2 in the seconds timescale. Figure
adapted from Guichard et al. (2015). . . . . . . . . . . . . . . . . . . . . . . 184

8.7 Top panels: Calculated Hahn echo decays for proximate spins in a Si:P
system in natural silicon for (a) JA = 0.1 MHz and (b) JA = 3.8 MHz,
where JA is the hyper�ne coupling between the proximate spin and the donor
electron. Red or blue correspond to decoherence driven by equivalent pairs
(EP) while grey corresponds to far bath decoherence. The blue lines include
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Ŝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electron spin operator, Ŝ = (Ŝx, Ŝy, Ŝz).
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1 | Introduction

Decoherence is the loss of phase information encoded in a quantum system as the

system interacts with a far larger environment (Zurek, 2003). A certain degree of

immunity from the destructive e�ects of decoherence, sometimes even achievable by

directly suppressing the process, is an essential requirement for the successful re-

alisation of technological devices that actively exploit quantum phenomena. These

include fault-tolerant quantum processors (Shor, 1996) and quantum memory (Si-

mon et al., 2010). Thus, it is of great practical importance to accurately predict

the timescale of decoherence � characterised by the coherence time T2 � and also to

develop methods of extending T2 times.

It is also of fundamental interest to understand how decoherence due to quan-

tum environments di�ers from decoherence driven by classical noise sources. By

quantum environment, we mean that the system encoding the quantum informa-

tion is situated in an environment with which it is highly correlated or entangled,

leading to signi�cant system-environment `back-action' and environment-memory

e�ects (Breuer and Petruccione, 2002; Maniscalco and Petruccione, 2006; Mazzola

et al., 2012). More speci�cally, the environment dynamics is sensitive to the state

of the central spin system (Yao et al., 2006; Liu et al., 2007). A quantum spin bath

is an example of such an environment; in general, decoherence of a central spin sys-

tem coupled to a spin bath arises from many-body spin interactions inside the bath

(Witzel et al., 2005; Yang and Liu, 2008a). The extent to which many-body corre-

lations play a role in quantum dynamics is of broad interest in condensed matter

physics (Ma et al., 2014).

Thus, in this thesis, we address problems of both practical and fundamental

physical importance. On one hand, understanding and reliably predicting decoher-
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ence provides a useful guide to experimentalists working on implementing quantum

technologies; also of importance is developing methods of mitigating decoherence.

On the other hand, the study of decoherence serves as a valuable tool to probe the

rich physics of many-body quantum systems and the extent to which these can be

approximated using classical models.

1.1 Motivation

Individual electronic and nuclear spins in silicon are among the prime contenders

for realising scalable quantum technologies (Zwanenburg et al., 2013). In particular,

due to its long-lived coherence and fast manipulation time, the electronic spin of

a shallow donor in silicon is a promising candidate for implementing the quantum

analogue of the classical bit � the qubit; in a solid state system (Morley, 2015).

Decoherence for silicon donor qubits is often limited by the naturally-occurring

29Si nuclear spin bath (de Sousa and Das Sarma, 2003a,b). The phosphorus donor

has been widely studied (Kane, 1998), but more recently, there has been growing

interest in bismuth, the deepest of the Group V donors in silicon (Morley et al.,

2010; George et al., 2010; Mohammady et al., 2010). It was proposed that deco-

herence would be strongly suppressed and T2 signi�cantly enhanced for the bismuth

system at particular magnetic �eld values termed `optimal working points' (OWPs)

(Mohammady et al., 2010). The presence of OWPs at experimentally accessible

magnetic �elds is due to the strong quantum state-mixing of the donor electronic

spin with the host nuclear spin, hence the term `hybrid electron-nuclear qubit'.

The scenario of decoherence driven by a spin bath is not only limited to silicon

donor qubits (de Sousa and Das Sarma, 2003b; Witzel et al., 2005; Abe et al., 2010;

Witzel et al., 2010), but is of considerable signi�cance for a range of other physical

implementations of quantum information processing, including quantum dots in

environments with a variety of nuclear spin impurities (de Sousa and Das Sarma,

2003b; Witzel et al., 2005; Yao et al., 2006; Liu et al., 2007; Witzel and Das Sarma,

2008; Weiss et al., 2012, 2013; Webster et al., 2014), and nitrogen-vacancy (NV)

29



CHAPTER 1. INTRODUCTION

centres in the 13C spin bath of diamond.1

At �rst glance, it seems impossible to accurately solve for the closed system-bath

dynamics for a bath of spins, due to the large number of spin degrees of freedom

involved. Nevertheless, cluster expansion techniques, the most general of which is the

cluster correlation expansion (CCE) (Yang and Liu, 2008a,b, 2009) have provided a

solution. In the CCE and analogous formalisms, accurate simulation of experimental

coherence decays becomes computationally tractable since the bath is decomposed

into independent contributions from many small sets or clusters of spins (de Sousa

and Das Sarma, 2003a,b; Witzel et al., 2005; Witzel and Das Sarma, 2006; Yao

et al., 2006). Fortunately, it turns out that for most problems of practical interest

in quantum information the expansions converge for clusters containing at most half

a dozen or so spins.

The CCE has been used with considerable success to model central spin deco-

herence in a variety of systems, including the the silicon spin bath, despite the large

number of bath spins involved (Abe et al., 2004; Witzel and Das Sarma, 2006; Abe

et al., 2010; Witzel et al., 2010). However, in all cases prior to the work presented

herein, the CCE was implemented and applied for the central system limited to the

case of a simple electronic or nuclear spin.2 Moreover, previous calculations of T2 for

the hybrid qubit relied on analyses involving classical noise models (George et al.,

2010). As we shall see, these models do not give reliable T2 times in all regimes. In

George et al. (2010), weak state-mixing of the central spin in a nuclear spin bath

was investigated by simply allowing for the variation of an e�ective electronic gy-

romagnetic ratio which quanti�es the response to external classical magnetic �elds.

Although this classical treatment and analogous ones are valid in some regimes,

they do not reliably describe the crucial OWP regions, and also, cannot account

for certain `forbidden transitions' which allow fast quantum control of the hybrid

qubits. Our primary aim was to solve this problem by considering the full quantum

1See (Takahashi et al., 2008; Maze et al., 2008; Bar-Gill et al., 2012; Zhao et al., 2011b, 2012a;
Reinhard et al., 2012; de Lange et al., 2012).

2At the time of writing, and after correspondence with S.J.B. and Professor Tania Monteiro,
Dr. Wen-Long Ma and Professor Ren-Bao Liu applied the CCE to the hybrid qubit for the purpose
of investigating the semi-classical nature of a nuclear spin bath near OWPs (Ma et al., 2015). The
code used in (Ma et al., 2015) was checked against our code.
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state-mixing of the hybrid qubit in many-body calculations of decoherence driven

by a nuclear spin bath.

It is also of experimental interest to investigate how and when the commonly

applied method of dynamical decoupling (Viola and Lloyd, 1998) can be combined

with operating near OWPs in order to further extend coherence times. In dynamical

decoupling, the central qubit is subjected to a sequence of electromagnetic pulses

separated in time; environmental noise is suppressed when the frequency of the noise

spectrum is less than or equal to the inverse of the pulse spacing in the sequence.

However, interest in the silicon spin bath has recently shifted beyond its de-

structive decohering role. For example, the need remains to establish the feasibility

of using nuclear spin impurities for quantum information applications (Cappellaro

et al., 2009; Akhtar et al., 2012; Pla et al., 2014), especially when the nuclear spins

are in proximity to a donor. For example, nuclear spins in the bath can act as reg-

isters storing quantum information (Cappellaro et al., 2009; Waldherr et al., 2014;

Taminiau et al., 2014).

As mentioned in the opening paragraphs, understanding decoherence is not only

motivated by practical reasons. It is of fundamental importance in physics to deter-

mine the di�erences between decoherence caused by classical magnetic �eld �uctua-

tions and decoherence driven by quantum baths. Also, it is interesting to elucidate

the many-body nature of a spin bath (Witzel et al., 2005; Yang and Liu, 2008a;

Witzel et al., 2010; Zhao et al., 2012a; Witzel et al., 2012; Ma et al., 2014); are

experiments fully described by only considering sets of independent pairs of bath

spins? Or are sets containing n > 2 bath spins required? In other words, we wish

to determine to what degree many-body system-bath correlations are important.

In many cases of central spin decoherence problems, the dominant contribution to

the combined dynamics arises from pairs of bath spins (the so-called pair correlation)

(Yao et al., 2006); in e�ect, from the magnetic noise due to the independent `�ip-

�opping' of spin pairs. Contributions from larger clusters are usually only needed

for high accuracy (Witzel et al., 2010, 2012; Zhao et al., 2012a).
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1.2 Outcomes

In the work presented herein, the numerical CCE method was adapted and im-

plemented to include the state-mixing of the hybrid qubit (details of the code are

given in Appendix A). In fact, any complex multi-spin system coupled to other spin

systems in the interacting many-body bath can be simulated with our implemen-

tation. It provided the �rst theoretical demonstration of suppression of spin bath

decoherence near OWPs (Balian et al., 2012), subsequently veri�ed in experiments

(Wolfowicz et al., 2013; Balian et al., 2014). Coherence decays and T2 times were

obtained in perfect agreement with experiments for forbidden transitions (Morley

et al., 2013), near OWPs (Balian et al., 2014), and in the usual regimes far from

OWPs (Balian et al., 2014). As for dynamical decoupling, in order to extend the

already long coherence times near OWPs, a large number of dynamical decoupling

pulses must be applied, in contrast to the usual regimes away from OWPs (Balian

et al., 2015).

As a parallel study to complement our understanding of nuclear spin bath deco-

herence, we analysed the system-bath interaction for the case of the hybrid qubit,

and found clear spectroscopic signatures of the central state-mixing and of OWPs

by comparing our theory with pulsed magnetic resonance experiments (Balian et al.,

2012). These experiments resolved groups of nuclear bath spins at equivalent crystal

sites and thus motivated us to investigate the feasibility of using nuclear spins for

quantum memory. We studied the decoherence of such nuclear impurities in prox-

imity to a donor and found that the nuclear T2 time far exceeds that for the case of

an impurity in the absence of a donor (Guichard et al., 2015).

It was already mentioned that some e�ects of the state-mixing of the hybrid

qubit can be adequately described using classical noise models. In some cases, this

description is su�cient, however, we �nd that near the important OWP regions,

a full quantum treatment of the system-bath dynamics including the central sys-

tem mixing is necessary for obtaining the experimentally observed coherence decays

(Balian et al., 2014).
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We also identify qualitative di�erences between the classical and quantum mod-

els, using a closed-form analytical T2 formula for the decoherence of donors in silicon

which we derive (Balian et al., 2014). The formula also predicts T2 values in excel-

lent agreement with experiment and numerical CCE calculations. Also, we �nd that

classical noise models sometimes give `false positives' for the existence of sweet-spots

for decoherence in quantum baths.

Finally, we present the only case where there is almost complete suppression

of the usual pair correlations provided that one is operating near OWPs and with

su�ciently low orders of dynamical decoupling (Balian et al., 2015). We �nd that

clusters containing at least three bath spins (3-body clusters) are required to recover

the experimentally measured decays.

For the rest of this chapter, before providing an outline of the thesis, we review

the �eld of quantum information processing with donor qubits in silicon, the various

methods of mitigating decoherence, and the quantum theory of spin decoherence.

We start with brie�y de�ning the general problem of decoherence and give a more

comprehensive account for the case of spin baths in Chapter 2.

1.3 The Problem of Decoherence

All known quantum algorithms o�ering speed-up over their classical counterparts

rely either on quantum superposition, quantum entanglement or both (Nielsen and

Chuang, 2010). We begin by introducing these two concepts. In quantum comput-

ing, the classical two level system known as the `bit' is replaced by its quantum

version � the qubit (Audretsch, 2007; Nielsen and Chuang, 2010):

|ψ〉 = α |0〉+ β |1〉 . (1.1)

The classical bit is always either in state |0〉 or |1〉, whereas the qubit can be in any

general superposition |ψ〉 of the two states forming the complete orthonormal basis

{|0〉 , |1〉}, as shown in Equation (1.1), where α and β are complex numbers. As
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Figure 1.1: The states of any two-level quantum system (a qubit) can be represented
as points on the surface of the Bloch sphere (Nielsen and Chuang, 2010).

illustrated in Figure 1.1, all normalised single qubit states (|α|2 + |β|2 = 1) can be

represented as points on the surface of a unit sphere known as the Bloch sphere, with

the polar (θ) and azimuthal (φ) angles related to the amplitudes α and β according

to

α = cos

(
θ

2

)
, β = eiφ sin

(
θ

2

)
. (1.2)

Quantum entanglement is a property of multipartite quantum systems. Two

qubits (A and B) are said to be entangled if their combined state is not separable,

or equivalently, not a product state such as |0〉A ⊗ |1〉B. For example,

|ψ〉AB =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) (1.3)

is a (maximally) entangled state and has no classical analogue.

The loss of information contained in a qubit state due to its interaction with

a far larger environment is quanti�ed by two characteristic timescales: T1 and T2

(Schweiger and Jeschke, 2001). These are illustrated in Figure 1.2. Decoherence is

the mechanism by which the quantum phase information is lost and is represented

by T2 (Breuer and Petruccione, 2002). The single qubit state can be expressed using

a density matrix which acts on the 2-dimensional Hilbert space (spanned by the
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basis {|0〉 , |1〉}):

ρ =

 |α|2 αβ∗

α∗β |β|2

 . (1.4)

The phase information is contained in the o�-diagonals of the density matrix and

as the system evolves in its environment, the decay rate of the o�-diagonals is given

by 1/T2.

(a)

(b)

Figure 1.2: Loss of information encoded in a qubit can be (a) a classical or (b) a
purely quantum process. (a) Classical loss of information is decay along the z-axis
of the Bloch sphere (Figure 1.1) and is characterised by T1. (b) Decoherence is the
process by which the phase information is lost (on a timescale de�ned by T2) and can
be visualized as `spreading' of the qubit state on the equator of the Bloch sphere.

Classical information is lost by `T1' or `relaxation' processes which involve direct

bit �ips (depolarisation); i.e. |0〉 ↔ |1〉. Unlike a typical `T2 process', relaxation

involves the exchange of some form of energy, usually mediated by phonons in the

bath and is manifested as time decay in the diagonals of the density matrix. Relax-

ation is also a source of errors in quantum computing, however, for our systems of

interest, temperatures are low enough (< 15 K) to completely ignore T1 processes,

and the T1 time far exceeds the coherence time T2.

Given a qubit system prepared in some superposition, or two qubits in an entan-

gled state, it is desirable to preserve these initial states for as long as possible as the

system interacts with its often uncontrollable environment. Ignoring relaxation, this
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translates to extending the coherence time T2. A wide range of quantum technolo-

gies, including fault-tolerant quantum computation, rely on coherence times longer

than the times required to navigate the state on the Bloch sphere, and preferably

as long as possible.

1.4 Quantum Information Processing in Silicon

There are two primary advantages of choosing the silicon platform for quantum

information applications. First, silicon is a good `semiconductor vacuum'; in other

words, coherence times in silicon are long compared to those in other solids. Second,

there has been decades of unprecedented technological progress in conventional sili-

con electronics since the invention of the transistor around 1950; silicon is also cheap

and easily available, and has good potential for scalability. In this section, we re-

view the recent progress in silicon quantum electronics with a particular focus on the

hybrid donor qubit. Zwanenburg et al. (2013) provide a recent and comprehensive

review of the �eld.

A novel proposal for quantum computing in silicon was put forward by Kane

(Kane, 1998), in which the nuclear spins of phosphorus donors would be used as

qubits, with the donor electrons mediating qubit interactions. The nuclei were

chosen as qubits since nuclear spin coherence times typically far exceed electronic

spin coherence times. However, the price to pay is the much longer manipulation

time of nuclear spins compared to that of electrons. More recently, coherence times

of electronic spins have caught up and interest has shifted towards using electronic

spins as long-lived qubits with fast quantum control.

In our case, the qubit is formed out of a pair of eigenstates of the mixed system

comprised of a host nuclear spin interacting with the donor electron spin. Hence, it

only makes strict sense to talk of separate electronic and nuclear spins of the mixed

system in the high-�eld limit, where the interaction Hamiltonian becomes negligible.

As we shall see, the advantages of the hybrid qubit for quantum computing arise

when operating in regimes where the electronic and nuclear spin states are strongly

mixed.

36



CHAPTER 1. INTRODUCTION

Most experiments measuring coherence times are performed on ensembles of

spins. However, for quantum information applications it is essential to build to

single-atom devices. Fortunately, in some cases, ensemble T2 measurements are in

good agreement with the corresponding T2 for single-atom devices. It is important

to note that there has been much progress in recent years in single-spin detection

and read-out for both quantum dots (Kawakami et al., 2014; Veldhorst et al., 2014)

and donor qubits in silicon (Morello et al., 2010; Pla et al., 2012, 2013; Muhonen

et al., 2014; Pla et al., 2014).

1.4.1 Silicon Spin Bath

In natural silicon, 4.67% of crystal sites are occupied by the nuclear spin-1/2 29Si

isotope, rather than the spin-0 28Si. It is this spin bath that provides the leading

source of decoherence in silicon at low temperatures (T . 15 K).3 For a donor

electron spin (without OWP or dynamical decoupling enhancement), T2 is limited

to a few hundred microseconds (Tyryshkin et al., 2003; George et al., 2010; Morley

et al., 2010). Similarly, a spin bath highly rich in nuclear spins exists for III-V

semiconductor quantum dots, limiting T2 to less than 1 µs (Koppens et al., 2008).

This is also the case in diamond, where decoherence is instead driven by 1% 13C

spin-1/2 isotopes, resulting in T2 ' 200 µs of an NV centre (Gaebel et al., 2006).

A successful means of controlling decoherence is to employ isotopically enriched

samples,4 whereby the percentage of 29Si impurities is reduced. The donor electron

spin in such samples can exhibit long T2 times up to 20 ms (Tyryshkin et al.,

2012). However, isotopic enrichment is a di�cult process and some nuclear spins

remain. Even in isotopically enriched silicon, T2 of an ensemble of donors is limited

by an all-dipolar many-body spin system (Witzel et al., 2010; Tyryshkin et al.,

2012; Wolfowicz et al., 2012; Witzel et al., 2012). Therefore, studying the nuclear

bath is useful even in the case of its absence in enriched samples as the decoherence

3See (de Sousa and Das Sarma, 2003a,b; Tyryshkin et al., 2003; Witzel et al., 2005; George
et al., 2010; Morley et al., 2013; Balian et al., 2014, 2015).

4See (Abe et al., 2004, 2010; Tyryshkin et al., 2003, 2006; Steger et al., 2011; Tyryshkin et al.,
2012; Simmons et al., 2011; Steger et al., 2012; Weis et al., 2012; Wolfowicz et al., 2012; Saeedi
et al., 2013; Muhonen et al., 2014).
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mechanisms in that case can be analogous to the case of the nuclear bath. Moreover,

as discussed below, the nuclear impurity spins can be potentially useful for quantum

memory (Akhtar et al., 2012; Pla et al., 2014; Guichard et al., 2015).

1.4.2 Donors in Silicon

A promising approach for silicon-based quantum information processing and memory

involves electronic or nuclear spins of donor atoms in silicon, which are amenable to

high �delity manipulation by means of electron spin resonance (ESR) and nuclear

magnetic resonance (NMR), respectively. Most studies have considered phosphorus

(31P) donors in silicon.5 More recently, several di�erent groups have investigated

another Group V donor, 209Bi.6 The bismuth system o�ers new possibilities for

quantum information processing. For example, strong optical hyperpolarisation was

demonstrated (Morley et al., 2010; Sekiguchi et al., 2010), allowing for e�cient

initialization of the host nuclear spin. Transitions which are forbidden at high

magnetic �elds and which allow for fast control of the hybrid bismuth system were

predicted (Mohammady et al., 2010, 2012) and observed later in Morley et al. (2013).

Most importantly, the bismuth donor has OWPs, where both spin bath decoherence

is suppressed (Balian et al., 2012; Wolfowicz et al., 2013; Balian et al., 2014) and

the donor becomes insensitive to classical �eld �uctuations (e.g. instrument noise)

(Mohammady et al., 2012; Wolfowicz et al., 2013). Near OWPs in natural silicon,

the electronic spin coherence time is increased by over two orders of magnitude

(Wolfowicz et al., 2013; Balian et al., 2014) from 0.5 ms (Morley et al., 2010; George

et al., 2010). A review of donors in silicon for quantum information processing was

recently conducted by Morley (2015).

5See (Kane, 1998; Scho�eld et al., 2003; Stoneham et al., 2003; Tyryshkin et al., 2003; Fu et al.,
2004; Morley et al., 2008; McCamey et al., 2010; Morello et al., 2010; Greenland et al., 2010;
Simmons et al., 2011; Steger et al., 2011; Dreher et al., 2012; Fuechsle et al., 2012; Pla et al., 2012;
Tyryshkin et al., 2012; Pla et al., 2013; Saeedi et al., 2013; Muhonen et al., 2014).

6See (Morley et al., 2010; George et al., 2010; Mohammady et al., 2010; Sekiguchi et al., 2010;
Belli et al., 2011; Weis et al., 2012; Mohammady et al., 2012; Wolfowicz et al., 2012; Balian et al.,
2012; Morley et al., 2013; Wolfowicz et al., 2013; Balian et al., 2014, 2015).

38



CHAPTER 1. INTRODUCTION

1.4.3 Nuclear Spin Impurities

Interest in nuclear spin impurities has now moved far beyond their role as a destruc-

tive source of decoherence. One application is sensing of a few nuclear 29Si spins in

silicon (Müller et al., 2014; Lang et al., 2015) and 13C spins in diamond (Zhao et al.,

2011a; Kolkowitz et al., 2012; Zhao et al., 2012b; Kolkowitz et al., 2012; Taminiau

et al., 2012; Müller et al., 2014).7 Another is using the nuclear spins for quantum

memory (Ladd et al., 2005; Robledo et al., 2011; Akhtar et al., 2012; Pla et al.,

2014; Guichard et al., 2015; Wolfowicz et al., 2015b). There is even a proposal for

an all-silicon quantum computer using 29Si spins (Ladd et al., 2002). The coherence

time of a single 29Si nuclear spin was measured at about 6 ms (Pla et al., 2014), in

good agreement with measurements in ensembles (Dementyev et al., 2003).

Recently, quantum registers were demonstrated in diamond by combining the

central electronic qubit with proximate nuclear spins (Cappellaro et al., 2009; Wald-

herr et al., 2014; Taminiau et al., 2014). The decoherence mechanisms of nuclear

spins proximate to a donor in silicon was studied in Guichard et al. (2015), yield-

ing coherence times in excellent agreement with the measured timecale of 1 s in

Wolfowicz et al. (2015b).

1.5 Extending Coherence Lifetimes

There are two distinct techniques of proven e�ectiveness for extending the coherence

lifetime of spin qubits without having to eliminate the nuclear spin impurities. One is

dynamical decoupling, whereby the qubit is subjected to a carefully timed sequence

of control pulses; the other is tuning the qubit towards OWPs, which are sweet-spots

for reduced decoherence in magnetic �elds. It is also of interest to combine the two

7We note that another solid-state system with great potential for quantum technologies is that
of nitrogen vacancy (NV) colour centres in diamond (Gaebel et al., 2006; Robledo et al., 2011; Zhao
et al., 2012a,b; Kolkowitz et al., 2012; Bernien et al., 2013; Bar-Gill et al., 2013). Spin-dependent
optical read-out and polarisation are possible, electronic spin coherence times at room temperature
are in the ms timescale (Gaebel et al., 2006; Zhao et al., 2012a) and can reach 1 s with dynamical
decoupling at about 77 K (Bar-Gill et al., 2013). Also, entanglement between between qubits
separated by three metres has been demonstrated (Bernien et al., 2013). A similar system which
is gaining much interest and can also be operated at room temperatures is that of defects in silicon
carbide (Koehl et al., 2011; Yang et al., 2014).
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techniques in order to achieve the longest coherence time.

1.5.1 Optimal Working Points

In 2002, a ground-breaking study of superconducting qubits established the useful-

ness of OWPs (Vion et al., 2002) which were then studied as parameter regimes

where the system becomes � to �rst order � insensitive to �uctuations of external

classical magnetic �elds (Vion et al., 2002; Martinis et al., 2003; Makhlin et al., 2004;

Makhlin and Shnirman, 2004; Falci et al., 2005; Ithier et al., 2005; Steger et al., 2011;

Cywi«ski, 2014). More recently, OWPs were studied for coupled InGaAs quantum

dots (Weiss et al., 2012, 2013) and in systems with substantial electron-nuclear spin

mixing such as the bismuth donor system (Mohammady et al., 2010, 2012; Balian

et al., 2012; Wolfowicz et al., 2013; Balian et al., 2014, 2015). OWPs for the bismuth

donor were investigated theoretically in Mohammady et al. (2010, 2012); Balian et al.

(2012, 2014) and Balian et al. (2015) and also experimentally (Wolfowicz et al., 2013;

Balian et al., 2014), extending ensemble electronic spin T2 times in natural silicon

from 0.5 ms (George et al., 2010; Morley et al., 2010) to 100 ms (Wolfowicz et al.,

2013). OWPs have also been investigated in isotopically enriched silicon (Wolfowicz

et al., 2013). Measured electronic spin coherence times near and far from OWPs are

summarized in in Table 1.1.

It is useful to note that a wide variety of important defects in the solid state

possess central spin state-mixing. These include donors in silicon (Morley, 2015), NV

centres in diamond (Zhao et al., 2012a), transition metals in II-VI materials (George

et al., 2013) and rare-earth dopants in silicates (Fraval et al., 2005; Wolfowicz et al.,

Sample T2 far from OWP (ms) T2 near OWP (ms)
Natural (with 29Si) 0.5 100

Enriched 28Si 20 2000

Table 1.1: Measured electronic spin coherence times T2, illustrating the enhancement
of coherence by operating near OWPs. The values shown are for the bismuth donor
in silicon. In natural silicon and far from OWPs, coherence times were measured
in George et al. (2010) and Morley et al. (2010). Away from OWPs in enriched
samples, coherence times were measured in Wolfowicz et al. (2012) and Tyryshkin
et al. (2012), and coherence times near OWPs were measured in Wolfowicz et al.

(2013) and Balian et al. (2014).
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2015a). The OWPs for spin bath decoherence of donors in silicon are a direct result

of this mixing.

Earlier studies of other systems which have sweet-spots for insensitivity to clas-

sical �eld noise (Vion et al., 2002) led to theoretical analyses of the dependence of

T2 on �eld noise (Ithier et al., 2005; Martinis et al., 2003), both at and far from the

sweet-spots. In contrast, it was only recently that a general analytical expression

for T2 (near and far from OWPs) was obtained for spin systems decohered by spin

baths (Balian et al., 2014).

In Mohammady et al. (2010) and Mohammady et al. (2012), a set of minima

and maxima were found in the transition frequency-�eld parameter space of dipole-

allowed transitions of the bismuth donor. These df/dB = 0 points, later dubbed

`clock transitions' (Wolfowicz et al., 2013), were �rst identi�ed as OWPs: line nar-

rowing and reduced sensitivity to temporal and spatial noise in magnetic �eld B

over a broad region of �elds (closely related to df/dB = 0 extrema) were found.8

They were also investigated experimentally (Wolfowicz et al., 2013). However, it

was found later that the suppression of spin bath decoherence cannot be reliably ex-

plained in terms of the classical analysis involving df/dB (Balian et al., 2012, 2014).

In contrast, the insensitivity to classical �eld noise such as instrumental noise can in

fact be adequately accounted for using df/dB arguments (Mohammady et al., 2012;

Wolfowicz et al., 2013).9

The OWPs represent a potentially complementary technique, e�ective for both

natural silicon and partially enriched samples. In addition, our work suggests that

OWPs may also be e�ective in suppressing residual e�ects such as donor-donor

interactions, which are the limiting decoherence mechanism in samples with low

concentrations of nuclear impurities (Mohammady et al., 2010; Witzel et al., 2010;

Wolfowicz et al., 2012; Witzel et al., 2012; Wolfowicz et al., 2013). Finally, we note

that to date, all single-atom donor experiments have used phosphorus donors, and

experiments measuring OWP coherence times have been for ensembles of bismuth

8 Note that df/dB = 0 points (CTs) also exist for nuclear transitions of the phosphorus donor
(Steger et al., 2011).

9 Suppression of nuclear spin bath �uctuations can also be achieved in self-assembled quantum
dots by induced inhomogenous strain (Chekhovich et al., 2015).
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donors.

1.5.2 Dynamical Decoupling

Dynamical decoupling is one of the most established methods for extending coher-

ence times.10 It involves subjecting the qubit spin to a sequence of microwave or

radio frequency pulses. A wide variety of solid state spin qubits have been studied

under dynamical decoupling control; these include Group V donors in silicon,11 ni-

trogen vacancy centres in diamond (de Lange et al., 2010; Zhao et al., 2012a; Pham

et al., 2012; Wang et al., 2012a; Bar-Gill et al., 2013), GaAs quantum dots (Zhang

et al., 2008), rare-earth dopants in silicates (Fraval et al., 2005; Zhong et al., 2015),

malonic acid crystals (Du et al., 2009) and adamantane (Peng et al., 2011).

The record coherence time for any spin system in a solid was measured at 6

hours in a rare-earth dopant using dynamical decoupling (Zhong et al., 2015). In

silicon, the longest coherence time at room temperature exceeds 30 minutes with

dynamical decoupling on ensembles of ionized donors in an isotopically enriched

sample (Saeedi et al., 2013). At cryogenic temperatures, this coherence time is

3 hours. Coherence times enhanced by dynamical decoupling in ensemble donor

experiments are summarized in Table 1.2 (enriched silicon) and Table 1.3 (natural

silicon). For single donor devices, the extension of T2 by dynamical decoupling

for enriched and natural silicon are shown in Table 1.4 and Table 1.5 respectively.

The coherence time of the 29Si impurity has been extended to 25 s using dynamical

decoupling (Ladd et al., 2005). As for a 29Si spin in proximity to a donor, dynamical

decoupling was recently applied to extend T2 from 1 to 4 s (Wolfowicz et al., 2015b).

It is also of practical importance to understand whether dynamical decoupling

and OWP techniques may be advantageously combined for a quantum bath of nu-

clear spins. In Cywi«ski (2014), the two techniques were investigated for insensitivity

10See (Carr and Purcell, 1954; Meiboom and Gill, 1958; Viola and Lloyd, 1998; Viola et al., 1999;
Morton et al., 2006; Uhrig, 2007; Witzel and Das Sarma, 2007a,b; Lee et al., 2008; Yang and Liu,
2008c; Morton et al., 2008; Biercuk et al., 2009; Ng et al., 2011; Witzel et al., 2014a; Ma et al.,
2014; Ma et al., 2015; Balian et al., 2015).

11See (Tyryshkin et al., 2006; Tyryshkin et al., 2010; Wang and Dobrovitski, 2011; Pla et al.,
2012, 2013; Wang et al., 2012b; Steger et al., 2012; Saeedi et al., 2013; Ma et al., 2014; Muhonen
et al., 2014; Witzel et al., 2014a; Ma et al., 2014; Ma et al., 2015; Balian et al., 2015).
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Coherence time T2 Hahn spin echo (ms) Dynamical decoupling (ms)
Electronic 20 500

Nuclear (neutral donor) 42,000 180,000
Nuclear (ionized donor) 27,000 10,800,000 (3 hours)

Table 1.2: Measured ensemble coherence times without (Hahn spin echo) and with
dynamical decoupling in isotopically enriched 28Si. Coherence times for the electron
spin were measured in Tyryshkin et al. (2012), Wolfowicz et al. (2012) (Hahn), and
Tyryshkin and Lyon (2012) (dynamical decoupling). Nuclear spin coherence times
for the neutral and ionized donor were measured in Steger et al. (2012) and Saeedi
et al. (2013) respectively.

Coherence time T2 Hahn spin echo (ms) Dynamical decoupling (ms)
Electronic 0.5 4

Nuclear (neutral donor) 1000 �

Table 1.3: Measured ensemble coherence times without (Hahn spin echo) and with
dynamical decoupling in natural silicon. Nuclear spin coherence times were mea-
sured in Petersen et al. (2013), Balian et al. (2014) and Wolfowicz et al. (2015b).
Electronic spin coherence times were measured in Tyryshkin et al. (2006), George
et al. (2010), Morley et al. (2010) (Hahn), and Ma et al. (2014) (dynamical decou-
pling).

Coherence time T2 Hahn spin echo (ms) Dynamical decoupling (ms)
Electronic 1 550

Nuclear (neutral donor) 20 20
Nuclear (ionized donor) 1800 3560

Table 1.4: Measured single-donor device coherence times without (Hahn spin echo)
and with dynamical decoupling in isotopically enriched 28Si. The coherence times
were measured in Muhonen et al. (2014). Note that for the neutral donor, the
limiting decoherence mechanism was unknown, and is likely to not be of magnetic
origin.

Coherence time T2 Hahn spin echo (ms) Dynamical decoupling (ms)
Electronic 0.2 0.5

Nuclear (neutral donor) 3.5 7
Nuclear (ionized donor) 60 132

Table 1.5: Measured single-donor device coherence times without (Hahn spin echo)
and with dynamical decoupling in natural silicon. The electronic spin coherence
times were measured in Pla et al. (2012) and the nuclear ones in Pla et al. (2013).
The 7 ms value was obtained by private communication with the lead author of Pla
et al. (2013).

to classical �eld noise. For donor electronic qubits in silicon, it is known that due to

inhomogeneous broadening from naturally-occurring 29Si spin isotopes, there was a

signi�cant gap between the T2 ∼ 100 ms in natural silicon near an OWP (Wolfowicz
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et al., 2013; Balian et al., 2014), and the T2 ∼ 2 s in isotopically enriched 28Si with

a low donor concentration at the same OWP (Wolfowicz et al., 2013). Also, dynam-

ical decoupling may be useful when it is convenient to operate with the magnetic

�eld close to but not exactly at the OWP. Recently, dynamical decoupling was used

to extend T2 near OWPs from 100 ms to about 1 s (Balian et al., 2015; Ma et al.,

2015).

1.5.3 Summary of Coherence Times
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Ladd et al. (2005)
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(2013)
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Figure 1.3: Cryogenic (T . 15 K) coherence times T2 of donor qubits in natural
or isotopically enriched silicon, extended by dynamical decoupling, optimal work-
ing points or by combining the two methods. Initial (unenhanced) times are for
the Hahn spin echo. Electronic and nuclear spin coherence times correspond to
microwave and radio frequency transitions respectively. Both single-atom and en-
semble measurements are shown. Coherence times of proximate nuclear qubits are
also shown for comparison.

Coherence times for hybrid donor qubits as well as proximate nuclear qubits in

silicon are summarized in Figure 1.3. It is clear that the best method of enhancing

coherence is by combining dynamical decoupling with operation at OWPs. It can

also be seen that ensemble measurements of electronic spin coherence times are in

44



CHAPTER 1. INTRODUCTION

good agreement with measurements in bulk. Nuclear coherence times are expected

to exceed those for the electron due to the smaller gyromagnetic ratio of nuclei.

Finally, by operating near OWPs in natural silicon (even without dynamical de-

coupling), coherence times can reach timescales measured in isotopically enriched

silicon. We note that dynamical decoupling and operation near OWPs have not yet

been investigated in enriched silicon.

1.6 Quantum Theories of Spin Decoherence

It goes without saying that solving for the joint system-bath dynamics as a closed

system is a practically impossible task due to the large number of bath spins involved

and the exponential complexity of numerical diagonalisation of the Hamiltonian.

The framework of open quantum systems (Breuer and Petruccione, 2002) o�ers

good approximations in many systems; however, treating cases with strong system-

back action and environment-memory remains extremely challenging within this

framework. Another inconvenience is that the usual form of Wick's theorem is not

available for spin degrees of freedom, thus preventing the use of Feynman diagrams

in many-body spin dynamics (Witzel and Das Sarma, 2006).

For a long time, theories of spin decoherence were based on stochastic models

which were phenomenological in that the noise spectrum of the environment had

to be chosen. See, for example, Klauder and Anderson (1962). The `cluster expan-

sion' was the �rst �no-free-parameter� quantum theory of spin decoherence and was

developed much later in 2006 (Witzel et al., 2005; Witzel and Das Sarma, 2006),

following a study considering the individual intra-bath interaction rates of indepen-

dent pairs of bath spins (de Sousa and Das Sarma, 2003b). The `pair-correlation

approximation' immediately followed (Yao et al., 2006),12 which coincides with the

cluster expansion to second order; i.e., involving contributions from independent

pairs of bath spins. The `linked-cluster expansion' (Saikin et al., 2007) and `disjoint

cluster' (Maze et al., 2008) methods followed, and also accounted for many-body

12An early example of the role of entanglement in decoherence can be found in Schliemann et al.

(2002).
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e�ects beyond the pair correlations in Yao et al. (2006). Saikin et al. (2007) also

provided a simple diagrammatic representation.

The most general many-body theory is the `cluster correlation expansion' (CCE)

(Yang and Liu, 2008a,b, 2009) which we use for our numerical calculations. At its

level concerning only correlations from pairs of bath spins, the CCE corresponds

to the pair-correlation approximation (Yao et al., 2006). The CCE is equivalent to

the original cluster expansion for su�ciently large baths (Witzel and Das Sarma,

2006), and is closely related to the linked cluster expansion (Saikin et al., 2007).

The theory has also been developed for calculations of ensembles of central spins

(Yang and Liu, 2009) and also modi�ed for the case of the central spin system in a

spin bath of the same species (Witzel et al., 2012).

It remains an active area of research to identify situations where the quantum

theory of decoherence can be adequately explained in terms of classical or semiclas-

sical noise models (Balian et al., 2014; Witzel et al., 2014b; Ma et al., 2015). The

role of n > 2-body correlations has also been actively studied. It is often the case

that such many-body results o�er corrections over decoherence driven by the lowest-

order contributions (Witzel et al., 2010, 2012; Zhao et al., 2012a; Ma et al., 2014).

However, near an OWP, independent pair correlations are almost completely sup-

pressed for low to moderate orders of dynamical decoupling and clusters involving

three bath spins dominate the decoherence dynamics (Balian et al., 2015).

1.7 Outline of Thesis

The thesis is structured as follows. In Chapter 2, we summarize the basics of mag-

netic resonance for quantum information processing and describe in detail the theory

of spin bath decoherence. In Chapter 3, the hybrid qubit is introduced as the cen-

tral spin system, with emphasis on its state mixing and fast quantum control, using

bismuth donors in silicon as an example. Chapter 4 contains experimental measure-

ments characterizing the hybrid qubit-silicon spin bath interaction for Si:Bi and a

theoretical spectral identi�cation of OWPs. Numerically calculated coherence times

of the hybrid qubit in all regimes, including forbidden transitions and OWPs, are
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presented and compared with experiment in Chapter 5. Also included in Chapter 5

are comparisons between quantum-bath and classical-�eld decoherence, the suppres-

sion of pair correlations, and many-body CCE results. The analytical formula for

coherence times of the hybrid qubit in a nuclear spin bath is derived in Chapter 6 and

its predictions compared with experiment and numerical calculations. In Chapter 7,

dynamical decoupling and operation at OWPs are combined in order to maximise

coherence times of the hybrid qubit. Chapter 8 comprises our study of nuclear impu-

rity qubits proximate to the hybrid qubit in the high-�eld limit (phosphorus-doped

silicon). Finally, we conclude and present ideas for future work in Chapter 9.
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This is the �rst of two consecutive chapters which primarily serve as background

for the original work presented in the thesis. We �rst describe the basic principles

behind the experiments with which we compare our theories. We proceed with

the basic theory of decoherence driven by quantum spin baths. The discussion also

covers the pure dephasing approximation which is used extensively in our work. The

next section reviews the particular decoherence mechanism known as spin di�usion,

together with all the terms in the spin Hamiltonians involved. Finally, we describe

the cluster correlation expansion which is used to solve for the many-body dynamics

and hence calculate coherence times of a central spin system under pulse control and

interacting with a spin bath with non-zero intra-bath couplings.

2.1 Magnetic Resonance for

Quantum Information Processing

Spins in solids can be manipulated using magnetic resonance. The basic princi-

ples of magnetic resonance and more advanced experimental techniques are give in

Schweiger and Jeschke (2001). In this section, we introduce the basic principles and

describe the experiments with which we motivate and compare our theories.

The energies of a spin system are quantized in a static and uniform magnetic �eld

of strength B. By applying a second, time-dependent oscillating �eld perpendicular

to the �rst and with frequency matching the energy di�erence between any two of the

quantized energy levels |u〉 and |l〉 (u ≡`upper', l ≡`lower'), a transition |u〉 → |l〉 is
induced between the two levels. This is valid for any complex Hamiltonian, provided
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the excitation frequency is chosen to match the frequency di�erence between the

desired pair of eigenstates.

If the oscillating �eld is applied continuously in time, the experiment is classi-

�ed as `continuous wave' (CW), otherwise the term `pulsed' is used. We are mainly

concerned with pulsed magnetic resonance for controlling the general quantum state

of a qubit in the basis {|0〉 ≡ |u〉 , |1〉 ≡ |l〉}. In pulsed magnetic resonance experi-

ments, instead of driving the spin between its upper and lower states continuously,

sequences of magnetic pulses with speci�c pulse durations are applied to navigate

the quantum state anywhere on the surface of the Bloch sphere (Figure 1.1), or

equivalently, to create arbitrary superpositions of the upper and lower states as

shown in Equation (1.1).

Choosing the uniform magnetic �eld B along the z-axis, transition amplitudes

are proportional to the matrix element 〈u| σ̂x |l〉 (or 〈u| σ̂y |l〉), where σ̂x (σ̂y) is the
Pauli-X (-Y ) operator and the x(y)-axis is along the excitation �eld.1 The transition

probability is proportional to the modulus squared of this amplitude.

2.1.1 Electron Spin Resonance

Magnetic resonance experiments in which the excitation frequency is in the mi-

crowave range (i.e. corresponding to GHz frequencies) are termed electron spin

resonance (ESR) experiments. This is because, typically, the spin system being

addressed is an electron spin, with an energy splitting of order GHz in a uniform

magnetic �eld. The so-called Zeeman interaction of a spin with a uniform magnetic

�eld is discussed in detail in Section 2.4.1. For a magnetic �eld of magnitude B

quantized along the z-axis, the good quantum number is the magnetic quantum

number, which for an electron spin takes one of two values mS = ±1
2
corresponding

to energies proportional to ±B
2
(eigenvalues of the z-projection of spin Ŝz). High

�delity single-qubit operations are possible using pulsed ESR (Morton et al., 2005).

The usual ESR selection rule is |∆mS| = 1, implying a single �ip of the elec-

tron spin. The transition amplitude is proportional to the matrix element 〈u| Ŝx |l〉
1See Appendix B for the Pauli operators.
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involving only the electronic spin. Hence, the intensity of an ESR spectral line is

proportional to | 〈u| Ŝx |l〉 |2. Finally, it is important to note that because of control

under a microwave �eld, the time taken to manipulate electronic spins by pulsed

ESR is often on the order of nanoseconds.

2.1.2 Nuclear Magnetic Resonance

Nuclear spin energy splitting are typically of order MHz. Hence, nuclear magnetic

resonance (NMR) requires radio frequencies for resonance. The selection rule in-

volves a single nuclear spin �ip and control is much slower than in ESR, typically

on microsecond timescales. The matrix element required for calculating transition

amplitudes and thus probabilities involves only nuclear Îx terms.

2.1.3 Electron-Nuclear Double Resonance

Electron-nuclear double resonance (ENDOR) measures radio frequency splittings

of ESR transitions. To obtain an ENDOR spectrum, an ESR experiment is per-

formed as a function of a radio frequency excitation. When the radio frequency

radiation is resonant with an NMR transition, changes are seen in the ESR signal

if the populations of the relevant energy levels change. Thus, associated with an

ENDOR spectrum is an ESR transition, with each of the two levels split. If the

latter splittings are of order MHz, they are observed in the ENDOR spectrum.

2.1.4 Rabi Oscillations

Coherent quantum control is often demonstrated using a basic CW experiment

whereby the qubit is driven between the upper and lower states by continuous ex-

citation and in which so-called Rabi oscillations are observed. For simplicity, we

consider an electron initially in the mS = −1/2 state. When a sinusoidally oscillat-

ing excitation �eld of frequency ν is applied, the probability P (t) as a function of

time t for the electron to occupy the higher energy state labelled by mS = +1/2 is

given by

P (t) =

(
ν1

νr

)2

sin2{πνr (t− t0)}, (2.1)
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Figure 2.1: (a) Rabi oscillations on- and o�-resonance. The vertical axis is the
probability P (t) for the electron spin to occupy the higher in energy of its two
energy levels and is given by Equation (2.1). The blue line is for the on-resonance
case when the excitation and splitting frequencies match (ν = νB = 9 GHz). The
red line is for o�-resonance: vB is increased to 9.001 GHz. (b) The probability P (t)
decays rapidly as a function of the detuning ∆ν ≡ |ν − νB|. Here, t is �xed to half
the time period of on-resonance Rabi osciallations (0.5 µs).

where νr is the Rabi frequency:

ν2
r = ν2

1 + (ν − νB)2 , (2.2)

ν1 is the amplitude of the excitation �eld in frequency units and νB is the frequency

di�erence between the two electronic spin states.

The probability P (t) is plotted in Figure 2.1 for an excitation �eld of amplitude

ν1 = 1 MHz. Figure 2.1(a) compares the probability for the on-resonance case for

which ν = νB = 9 GHz and the case for o�-resonance with a �nite frequency di�er-

ence or detuning ∆ν ≡ |ν−νB| = 1 MHz. The probability for the on-resonance case

always reaches unity. As the frequency di�erence ∆ν ≡ |ν − νB| is increased, mov-

ing away from resonance, the maximum probability drops and the Rabi frequency

increases. The sharp drop in the maximum P (t) as we move away from resonance is

illustrated in Figure 2.1(b). Whether on- or o�-resonance, decoherence damps Rabi

oscillations.

51



CHAPTER 2. SPIN DECOHERENCE

2.2 Measuring Coherence Times

The magnetic resonance experiments in which coherence times are measured involve

special pulse sequences which we now describe. The simplest of these is the free

induction decay (FID), in which a pulse is applied to �ip spins in an initially polarised

sample to create superpositions of two of the eigenstates. The corresponding polar

�ip angle from either pole of the Bloch sphere to the equator gives the pulse its name:

π/2-pulse. After the system evolves in time, the xy-plane or in-plane magnetisation

of the sample is measured and is proportional to the coherence. The Hahn spin

echo involves a sequence with one refocusing or π-pulse and can be classi�ed as the

lowest order dynamical decoupling sequence which is applied to extend coherence

times before making the measurement to determine T2. Higher-order dynamical

decoupling sequences apply a train of more than one such refocusing pulses.

2.2.1 Free Induction Decay

The simplest way of measuring the spin coherence time T2 is to prepare the desired

state of the qubit using an excitation pulse of the correct duration, then leave it to

evolve freely in its environment. If the qubit is initially polarised in state |u〉 or |l〉,
the normalised state after the π/2-pulse will be the superposition

|ψ〉 =
1√
2

(|u〉+ eiφ |l〉) . (2.3)

After a period of free evolution of duration t in the qubit's environment, the

o�-diagonal of the (reduced) qubit density matrix is proportional to

〈
σ̂+
〉 ≡ 〈σ̂x〉+ i 〈σ̂y〉 , (2.4)

in which the expectation values are evaluated in the �nal state immediately before

measurement. The signal in the FID experiment of a single qubit is proportional to

this quantity. For measurements on an ensemble of N qubits, the in-plane macro-
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scopic magnetisation vector is the measured quantity:

Mxy ∝
N∑
n=1

(〈σ̂x〉n x̂ + 〈σ̂y〉n ŷ) (2.5)

for the uniform magnetic �eld along ẑ as usual. Experimentally, it is possible to

distinguish between the x̂ and ŷ components, but the coherence is often quoted as

the magnitude of Mxy. Note that the polarisation of the sample, for example when

making a measurement to determine T1, is related to Mz. Finally, even for a single

qubit, experiments are often repeated and a time average over initial states of the

bath is reported.

We are mainly concerned with the single-spin FID which is the intrinsic coher-

ence time of a single central spin system. In measurements of ensembles of such

systems, the FID T2 time is usually dominated by static inhomogeneous magnetic

�eld broadening from multiple qubits, and is often quoted as T ∗2 . The latter coher-

ence time is far shorter than the intrinsic coherence time T2.

2.2.2 Hahn Spin Echo

The Hahn spin echo (Hahn, 1950) sequence removes qubit noise originating from

static magnetic �elds. This includes the inhomogeneous �eld broadening responsible

for the short T ∗2 ensemble coherence time described above. Following a π/2-pulse,

the qubit is allowed to evolve for some time period τ after which a π- or refocusing

pulse is applied to rotate the state by 180◦ about an axis perpendicular to the

Bloch vector on the equator. After a further period τ of free evolution, a spin echo

is observed with intensity proportional to the coherence. The pulse sequence is

illustrated in Figure 2.2. To measure the coherence time, the sequence is performed

for a range of increasing τ , and coherence decay is obtained as a function of t = 2τ .

The time taken to apply the refocusing times is much shorter than τ , and in most

theoretical analyses, the refocusing pulse is assumed to be instantaneous.
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Figure 2.2: The Hahn echo sequence applies a π/2-pulse followed by free evolution
of time duration τ . The refocusing π-pulse follows and a spin echo is observed
after a further time period of τ . To measure the coherence time T2, the sequence is
repeatedly performed by varying τ and the in-plane magnetisation observed (at the
echo time) as a function of t = 2τ .

2.2.3 Carr-Purcell-Meiboom-Gill Sequence

The dynamical decoupling sequence we study is the Carr-Purcell-Meiboom-Gill

(CPMG) (Carr and Purcell, 1954; Meiboom and Gill, 1958; Witzel and Das Sarma,

2007a) sequence, which applies a set of N periodically spaced near-instantaneous

refocusing pulses (CPMGN) as illustrated in Figure 2.3. The Hahn spin echo se-

quence corresponds to CPMG1. The CPMG sequence is capable of removing noise

from time-�uctuating magnetic �elds. The frequency of noise removed depends on

N or the interval between refocusing pulses 2τ . The experiment to measure T2 is

repeated by varying τ and decoherence is observed as a function of t = 2τN .

Sp
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Repeating unit

Figure 2.3: The CPMG dynamical decoupling sequence consists of the initial π/2
pulse, followed by the −τ − π− τ− sequence repeated N times, after which an echo
is observed.

Measured coherence times we compare our theories with are either for the Hahn

spin echo or higher-order CPMG sequences on an ensemble of central spin systems.

Nevertheless, we also analyse the simpler single-spin FID which is relevant for single-

spin experiments (not T ∗2 ) and compare it with the Hahn echo. We also derive our

54



CHAPTER 2. SPIN DECOHERENCE

analytical T2 formula for nuclear spin di�usion for the case of the single-spin FID,

and numerically account for the e�ect of the Hahn spin echo.

2.3 Spin Bath Decoherence

The decay in coherence of a central spin system interacting with a bath of other

spins can be related to its entanglement with the bath (Breuer and Petruccione,

2002; Witzel et al., 2005; Yao et al., 2006; Liu et al., 2007; Yang and Liu, 2008a).

In this section, we describe the problem of central spin decoherence, as illustrated

in Figure 2.4.

CS
Bath

Interaction

Figure 2.4: Central spin decoherence of a system interacting with a far larger
environment or bath. The central system (CS) need not be a spin-1/2 with two
energy levels and in general is formed out of two eigenstates of a complex spin
Hamiltonian (i.e. a transition between upper and lower levels |u〉 → |l〉).

Consider closed system-bath dynamics governed by total Hamiltonian

Ĥtot = ĤCS + Ĥint + Ĥbath. (2.6)

Here, ĤCS denotes the central spin (or qubit) Hamiltonian completely isolated from

the environment. All system-bath interaction terms are included in Ĥint, while the

bath degrees of freedom, including intra-bath couplings (essential for decoherence)

are contained in Ĥbath (Figure 2.4).

Suppose that at some initial time t0 the central system's state is prepared in a

coherent superposition of a pair of its energy eigenstates (|u〉 and |l〉). For example,

this is the case after applying a π/2-pulse in a FID or Hahn spin echo experiment.

Immediately after preparing the state, we assume that the qubit and bath are in a
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product state (i.e. unentangled). The combined initial system-bath state is thus

|ψ(t0)〉 =
1√
2

(|u〉+ |l〉)⊗ |B(t0)〉 , (2.7)

where the initial bath state is |B(t0)〉.
Now suppose that the system evolves under Ĥtot (Equation (2.6)) until time t

according to the time-dependent Schrödinger equation

i
d

dt
|ψ(t− t0)〉 = Ĥtot |ψ(t− t0)〉 (2.8)

with ~ = 1. The formal solution is |ψ(t− t0)〉 = Û(t − t0) |ψ(t0)〉 with the unitary

free evolution operator given by

Û(t− t0) = e−iĤtot(t−t0), (2.9)

for time-independent Hamiltonians. The unitary evolution operator Û may also

represent a dynamical decoupling sequence. For example, for the Hahn spin echo

we have

Û(t) = e−iĤtott/2Π̂e−iĤtott/2. (2.10)

where for simplicity we have chosen t0 = 0. The free evolution, can be written as

follows:

e−iĤtott/2 =
∑
n

|φn〉 e−iEnt/2 〈φn| , (2.11)

after performing the eigendecomposition of the Hamiltonian Ĥtot to obtain the en-

ergy eigenbasis {|φn〉} with eigenvalues {En}. Assuming the time taken for the

π-pulse is much shorter than t, the π-pulse operator is given by

Π̂ =

(
σ̂x +

∑
n6=u,l

|n〉 〈n|
)
⊗ 1̂B, (2.12)

where 1̂B denotes the bath identity and σ̂x is the Pauli-X gate |u〉 〈l|+ |l〉 〈u|.
After evolution to time t, the central system and bath states are in general

entangled. Writing the combined system-bath density operator ρ̂(t) = |ψ(t)〉 〈ψ(t)|,
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the coherence of the system is characterised by the o�-diagonal of its reduced density

matrix:

ρ+−
CS (t) = 〈u|TrB [ρ̂(t)] |l〉 = 〈u|

(∑
k

〈k| ρ̂(t) |k〉
)
|l〉 , (2.13)

which is obtained by tracing out the bath degrees of freedom; the {|k〉} here form
an orthonormal basis for the bath. The quantity of interest is the o�-diagonal

L(t) = ρ+−
CS (t)/ρ+−

CS (0), (2.14)

normalised such that L(t = t0 = 0) ≡ 1. For this initial time, the phase information

contained in the initial state of the system is fully known. The normalization to unity

is important for the formulation of the cluster correlation expansion as described

in Section 2.5. The coherence L(t) is proportional to 〈σ̂±〉 ≡ 〈σ̂x〉 ± i 〈σ̂y〉. The

density operator is Hermitian, so it does not matter which o�-diagonal (ρ+−
CS ∝ 〈σ+〉

or ρ−+
CS ∝ 〈σ−〉) we consider. Importantly, |L(t)| is proportional to the signal in an

experiment probing the transverse magnetisation.

2.3.1 Initial Bath State

Since nuclear bath energies in a magnetic �eld B typically exceed intra-bath interac-

tion strengths, we assume a thermal initial state of the bath (unentangled) (Witzel,

2007):

ρ̂B(t0) =
∑
n

Pn |Bn(t0)〉 〈Bn(t0)| '
⊗
n

(∑
m

pnm |bnm〉 〈bnm|
)
, (2.15)

where |bnm〉 are eigenstates of the bath Hamiltonian excluding intra-bath interaction

terms Ĥ0
bath. For thermal equilibrium,

ρ̂B(t0) ≈ exp

[
−Ĥ

0
bath

kBT

]
, (2.16)

where kB is the Boltzmann constant. Assuming the high-T limit, which is valid

for the energies of Ĥ0
bath and the temperatures we consider, the initial bath density

matrix reduces to the identity; i.e. for a given n, the states |bnm〉 occur with equal
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probability pnm.

We note that for small baths, whether for ensemble measurements or single spins,

the coherence can be sensitive to sampling from the initial ensemble (Yang and Liu,

2009) and the use of a randomly chosen pure state of the bath is not valid. However,

the baths we consider in general consists of a very large number of spins (� 104)

and for such su�ciently large baths, it is valid to consider a pure initial bath states

chosen at random with equal probability amongst the energy eigenstates of Ĥ0
bath.

Nevertheless, we consider the case of averaging the complex coherence over such

random initial pure states, both for time-averaged measurements and measurements

on ensembles of qubits. In the latter case, not only the bath states vary for a single

realisation, but also for bath spin positions.

2.3.2 Pure Dephasing

If we assume that during the combined system-bath free evolution the states of the

CS remain unchanged, the �nal state can be written as

|ψ(t)〉 =
1√
2

(
e−iEut |u〉 ⊗ |Bu(t)〉+ e−iElt |l〉 ⊗ |Bl(t)〉

)
. (2.17)

Here, it is clear that the central system and bath are in general entangled and that

the bath evolves di�erently
∣∣Bu/l(t)〉 depending on the state of the system |u〉 / |l〉.

The phases e−iEu/lt are physically not important as they disappear when we take

the modulus of L(t).

It is easy to show that tracing over the bath and taking the o�-diagonal of the

resulting reduced density matrix is equivalent to evaluating the overlap between the

bath states correlated with the upper and lower system states:

L(t) ∝ 〈Bu(t)|Bl(t)〉 = 〈B(0)|T̂ †uT̂l|B(0)〉. (2.18)

The measured temporal coherence decays can be simulated if one can accurately

calculate this overlap. Even for extremely large baths, the initial bath states are the

usual thermal states. Thus, the challenge is to evaluate the unitaries T̂u and T̂l.
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For our systems of interest, the pure dephasing model (i.e. keeping only inter-

action and bath terms which don't depolarise the states of the central system) is

justi�ed since the energies of the system dominate over typical system-bath and

intra-bath couplings. Note that in contrast to the case of an electronic spin-1/2

qubit, for the mixed spin qubits which we describe in Chapter 3, if the coherence is

evaluated by directly evolving the total Hamiltonian in Equation (2.6), the depolar-

ising terms are not just those involving Ŝx and Ŝy, but also Ŝz.

2.4 Spin Di�usion

2-body
3-body

4-body
Donor

electron

Donor
nucleus

Figure 2.5: Coherences of the central electronic spins are dephased primarily by a
surrounding quantum bath of clusters of 2, 3, 4 or more nuclear spin impurities (for
natural silicon, pictured) or other donors (for isotopically enriched silicon). Figure
adapted from Balian et al. (2015).

We now introduce the mechanism which dominates decoherence in silicon and

also in diamond at cryogenic temperatures (i.e. assuming T is small enough such

that T1 � T2, which is satis�ed when T < 15 K or so). Nuclear spin di�usion is

the process by which a central electronic spin in a solid decoheres due to a nuclear

spin bath (de Sousa and Das Sarma, 2003b; Witzel et al., 2005; Yao et al., 2006;

Witzel and Das Sarma, 2006). The term spectral di�usion is also used to describe

the same process. The problem can be adapted to cases when the central spin and

the bath are of the same species and the underlying physics of the process is the
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same (Witzel et al., 2010, 2012). The following discussion concerns nuclear spin

di�usion which is often the case encountered in our decoherence studies, and we use

the term spin di�usion to refer to the general problem regardless of the nature of

the central system or spin bath.

In nuclear spin di�usion, bath spins are coupled via the magnetic dipole inter-

action, for example, between 29Si nuclei in silicon or 13C nuclei in diamond, both

spin-1/2 species. The scenario of a donor qubit in silicon is illustrated in Figure 2.5.

In natural silicon, the fractional abundance of 29Si is fnatSi = 0.0467 (de Sousa and

Das Sarma, 2003b). The bath Hamiltonian is a sum over nuclear Zeeman and dipolar

Hamiltonians

Ĥbath = ĤD + ĤNZ,

ĤNZ =
∑
n

Ĥ
(n)
NZ , Ĥ

(n)
NZ = γnBÎ

z
n,

ĤD =
∑
n<m

Ĥ
(nm)
D , Ĥ

(nm)
D = În · D(rnm) · Îm, (2.19)

where the bath spins În have nuclear gyromagnetic ratios γn, D is the dipolar tensor

and rnm is the separation vector between localized nuclear spins labelled n and m.

The Zeeman and dipolar interactions are discussed in Section 2.4.1 and Section 2.4.2

respectively. The central spin system interacts with the bath spins primarily through

the electron-nuclear hyper�ne interaction:

Ĥint = ĤHF =
∑
n

Ĥ
(n)
HF , Ĥ

(n)
HF = Ŝ · J (ren) · În, (2.20)

where Ŝ represents the central electron, J is the hyper�ne tensor described in Sec-

tion 2.4.3, and ren is the electron-nuclear separation. Although anisotropic terms

in the interaction Hamiltonian modulate the coherence (Witzel et al., 2007), they

have little e�ect on the T2 timescale. Therefore, the isotropic hyper�ne interaction

can be assumed:

Ĥint '
∑
n

JF(rn)Ŝ · În =
∑
n

JF(rn)

[
Ŝz Îzn +

1

2
(Ŝ+Î−n + Ŝ−Î+

n )

]
, (2.21)
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where JF is the strength of the Fermi contact interaction which depends on the nu-

clear position rn,2 and is described in Section 2.4.3. We refer to any terms involving

a product of two z-spin projections as an `Ising term', such as the �rst term in the

square brackets on the R.H.S. of Equation (2.21).

Due to the disparity between the nuclear Zeeman energies and typical dipolar

couplings, the dipolar interaction is usually assumed to be secular as described in

Section 2.4.2. The secular dipolar interaction includes only terms containing ÎznÎ
z
m

and Î+
n Î
−
m + Î−n Î

+
m. The latter term is why the phrase `�ip-�opping' spins is used to

describe such bath dynamics. Nuclear spin di�usion with an Ising-only hyper�ne

interaction is further referred to as `indirect �ip-�ops', to distinguish it from the

T1-like process of `direct �ip-�ops' which involves the �ip-�op of a bath spin with

the central spin (Tyryshkin et al., 2012).

Most of our results are presented for indirect �ip-�ops in a nuclear spin bath.

However, these results are easily generalizable, especially in the context of mitigating

decoherence driven by indirect �ip-�ops in a bath which has the same spin species

as the central spin system; for example, in isotopically enriched samples where the

abundance of 29Si is reduced (Witzel et al., 2010, 2012; Tyryshkin et al., 2012).

2.4.1 Zeeman Interaction

For simplicity, we begin by describing the Zeeman interaction of a magnetic �eld

with a single electron spin in vacuum (Schweiger and Jeschke, 2001; Weil and Bolton,

2007). Consider an electron in a static and uniform magnetic �eldB which we choose

along the z-axis. Associated with the electron is the intrinsic angular momentum ~S

called spin. Due to spin and the non-zero electronic charge e, the electron possesses

a non-zero magnetic dipole moment µ given by

µ =
e

2me

~S, (2.22)

2The origin of the coordinate system is taken as the point when the electron-nuclear separation
ren is zero.
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where me is the electronic mass and ~S is the spin angular momentum vector.

The component of ~S along z is quantized: it can take either one of the values

mS~ = ±1
2
~. Thus, the component of µ along z is

µz = γe~mS, (2.23)

where the constant of proportionality γe = e/2me is the electron gyromagnetic ratio.

De�ning the Bohr magneton as βe ≡ |e|~/2me and including the g-factor for the

free electron ge needed to relate its magnetic moment to an angular momentum in

quantum theory, Equation (2.23) becomes

µz = −geβemS (2.24)

where the free electron g-factor is measured to be ge = 2.0023193043617(15) and is

well predicted by quantum electrodynamics. Note that this value is for the electron

in vacuum and in a solid ge in general is di�erent.

The energy U of a magnetic dipole moment µ in a magnetic �eld B is given by,

U = −µ ·B (2.25)

and for a single electron, this becomes

U = −µzB = geβeBmS. (2.26)

The two levels, labelled by mS = ±1/2, are referred to as the electronic Zeeman

energies, and the energy splitting �eldB is sometimes called the Zeeman �eld. For a

transition between the two states, the frequency ν of an excitation �eld B1 inducing

the transition must match the energy di�erence ∆U between the two states (i.e.

hν = ∆U = geβeB). By treating the electron as a classical magnetic dipole moment

in a static magnetic �eld, it can be shown that the electron precesses about the �eld
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with frequency νB, a process known as Larmor precession:

νB = geβeB/h. (2.27)

The Zeeman Hamiltonian describing the response of a general spin Ŝ in B is

written

ĤZ = γB · Ŝ, (2.28)

with gyromagnetic ratio γ and we have set ~ = 1. At this point, we note that all

our energies are in angular frequency units of rad s−1 (Ĥ → Ĥ
~ ) unless otherwise

indicated. In some cases, angular frequency units are scaled by 1/2π, and this is

indicated using frequency units Hz.

Choosing B along the z-axis, ĤZ = γBŜz. For spin-1/2 species, Ŝ = σ̂/2,

where σ̂ ≡ (σ̂x, σ̂y, σ̂z) is the three-vector of Pauli operators (Appendix B). The

gyromagnetic ratios for a donor electron in silicon and a 29Si impurity, both spin-

1/2 species, are given in Table 2.1. The nuclear gyromagnetic ratios of Group V

donors in silicon are given in Table 3.1. The sign of γ determines whether the

classical magnetic moment associated with the spin precesses in the clockwise or

anticlockwise direction about the magnetic �eld.

Spin species γ (M rad s−1 T−1)
Electron in silicon +1.7591× 105

29Si nucleus +53.1903

Table 2.1: Gyromagnetic ratios γ for a donor electron in silicon (Feher, 1959) and a
29Si nucleus (Stone, 2005).

2.4.2 Dipolar Interaction

The magnetic dipole interaction (Schweiger and Jeschke, 2001) between two localized

spins În and Îm with gyromagnetic ratios γn and γm is

Ĥ
(nm)
D = În · D(rnm) · Îm, (2.29)
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Figure 2.6: The magnitude of the secular dipolar coupling, shown here between two
29Si nuclei with gyromagnetic ratio γ = 53.1903 M rad s−1 T−1, falls as the cube
of the separation R between the interacting spins. Here, the crystal orientation is
such that the direction of the magnetic �eld is parallel to the line connecting the
two spins (i.e. θ = 0). The red dots with integer labels mark the strengths for the
1st to 4th nearest neighbor distances in the silicon crystal structure (Appendix C).
The nearest neighbor distances are

√
3

4
a0,
√

2
2
a0,
√

11
4
a0 and a0 respectively, with lattice

parameter a0 = 5.43 Å.

where rnm denotes the relative position vector of the two spins and the components

of the dipolar tensor are given by

Dij(rnm) =
µ0

4πr3
nm

γnγm~

(
δij − 3

r
(i)
nmr

(j)
nm

r2
nm

)
, (2.30)

where µ0 = 4π×10−7 NA−2 is the permeability of free space, δij the Kronecker delta

and i, j = x, y, z.

In a su�ciently strong and uniform magnetic �eld, the dipolar interaction can

be simpli�ed by keeping only secular or energy conserving terms:

Ĥ
(nm)
D ' CnmÎ

z
nÎ

z
m −

Cnm
4

(
Î+
n Î
−
m + Î−n Î

+
m

)
, (2.31)

with strength Cnm given by:

Cnm =
µ0

4π
γnγm~

(1− 3 cos2 θnm)

r3
nm

. (2.32)
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Here, θnm is the angle between the line connecting the spins and the z-axis.

For coupling among nuclear spins in the silicon spin bath, the dipolar strength

is at most a few k rad s−1. Since the gyromagnetic ratios of these nuclei are of

order tens of M rad s−1 T−1, the secular approximation is justi�ed for magnetic �eld

strengths as weak as about 100 mT (Witzel and Das Sarma, 2008).

In order to illustrate the radial dependence of the dipolar interaction, the ab-

solute of the maximum strength (i.e. |C(θ = 0)|(R)) is plotted in Figure 2.6 as a

function of separation distance R between a pair of 29Si nuclei. For 29Si, the value

of γn is given in Table 2.1.

2.4.3 Hyper�ne Interaction
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Figure 2.7: Isotropic hyper�ne couplings (Fermi contact only) for a bismuth donor
electron in silicon interacting with a 29Si impurity, as a function of distance between
the donor and the impurity. The donor is situated at the origin and the z = 0
plane is shown. Including spins in the white box is enough for obtaining convergent
coherence decays for nuclear spin di�usion using the cluster correlation expansion.
The black square (of side length 5.43 Å) represents the conventional cubic cell of
the diamond cubic crystal structure.

The magnetic interaction between an electron Ŝ and localized nuclei În is essen-

tially given by Equation (2.29). However, due to the spatial extent of the electron
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wavefunction in a solid, such as in the case of a donor electron, we evaluate

Ĥ
(n)
HF = 〈Ψ(re)| În · D(ren) · Ŝ |Ψ(re)〉 =

∫
d3re|Ψ(re)|2În · D(ren) · Ŝ, (2.33)

where ren = re − rn is the electron-nuclear separation (de Sousa and Das Sarma,

2003b). In other words, the electron's position is taken into account by evaluating

the expectation value of the interaction in the electron wavefunction Ψ(re) in real

space. This integral has a singularity at ren = 0, or when the electron is at the

nuclear site. The singularity gives rise to the Fermi contact interaction:

JF(rn) =
2

3
γeγn~µ0 |Ψ(rn)|2 , (2.34)

where γe (γn) is the electronic (nuclear) gyromagnetic ratio. Importantly, the Fermi

contact interaction only contains the nuclear position rn and the origin of the coordi-

nate system is at ren = 0. The full interaction is expressed using the hyper�ne tensor

J which is decomposed into the Fermi contact and a residual dipolar interaction:

Ĥ
(n)
HF = În · J (ren) · Ŝ = JF(rn)δij + 〈Ψ(re) |Dij(rn)|Ψ(re)〉 . (2.35)

The Fermi interaction is isotropic and the anisotropic dipolar part is e�ective for nu-

clei at su�ciently large distances from the origin, where the electron can be assumed

localized. Due to the large mismatch between electronic and nuclear gyromagnetic

ratios and a su�ciently strong magnetic �eld, the hyper�ne interaction above can

be written in secular form and keeping only an Ising term (de Sousa and Das Sarma,

2003b):

Ĥ
(n)
HF '

[
JF(rn)− µ0

4π
γnγe~

(1− 3 cos2 θn)

r3
n

Θ(rn − r0)

]
Ŝz Îzn, (2.36)

where rn ≡ |rn| and Θ(rn−r0) is the Heaviside step function; i.e. the electron-nuclear

residual dipolar interaction is non-zero for r > r0 (for donors in silicon, r0 ≈ 20 Å).

The Kohn-Luttinger donor electronic wavefunction (de Sousa and Das Sarma,

2003b) is often employed for the silicon donors, to evaluate the probability density

at the nuclear site |Ψ(rn)|2. The wavefunction is derived from e�ective mass theory.
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It leads to oscillations and near-exponential decay of the hyper�ne contact strength

according to

JF(r) =
4

9
γeγn~µ0 [F1(r) cos (k0x) + F2(r) cos (k0y) + F3(r) cos (k0z)]2 (2.37)

where r ≡ rn = (x, y, z), k0 = (0.85)2π/a0 and γe is the electron gyromagnetic ratio

in silicon. The cubic lattice parameter is a0 (see Appendix C for the silicon crystal

structure) and η is the charge density on each crystal site. The relevant envelope

functions are:

F1(r) =
exp

[
−
√

x2

(nb)2
+ y2+z2

(na)2

]
√
π(na)2(nb)

, (2.38)

F2(r) = F1(r) with {x→ y, y → z, z → x}, (2.39)

F3(r) = F1(r) with {x→ z, y → x, z → y}, (2.40)

where a and b are lengths characteristic to the donor and n =
√

0.029 eV/εi with

the electron ionization energy εi in eV.

Numerical values for a Group V donor in silicon interacting with 29Si impurities

are given in Table 2.2. Calculated couplings using the values in Table 2.2 are plotted

in Figure 2.7 as a function of distance from the donor electron. The electronic and

nuclear gyromagnetic ratios are given in Table 2.1, the silicon lattice constant is

a0 = 5.43 Å and the ionization energies of the Group V donors in silicon are in

Table 3.1.

Parameter Value
Charge density η 186

Length a 25.09 Å
Length b 14.43 Å

Table 2.2: Numerical values for calculating the hyper�ne interaction between a donor
electron spin in silicon and a 29Si spin impurity (de Sousa and Das Sarma, 2003b).

We note that for our calculations the residual dipolar interaction in Equa-

tion (2.35) is assumed to be secular and only becomes e�ective after a distance

of na from the origin. The value of na is about 20 Å for silicon donors.
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2.4.4 Hyper�ne-Mediated Interaction

The hyper�ne-mediated interaction (also known as the RKKY interaction) (Yao

et al., 2006; Liu et al., 2007), is a long-range coupling between two nuclear spins

mediated by an electron hyper�ne-coupled to each of the two nuclei. It results from

the �ip-�op part of Î · Ŝ terms in the hyper�ne interaction in Equation (2.35). For

a pair of nuclei, using perturbation theory, it can be approximated as

Ĥ
(nm)
RKKY ' −

JF,nJF,m
4γeB

(
Î+
n Î
−
m + Î−n Î

+
m

)
Ŝz. (2.41)

For decoherence of hybrid qubits, the intra-bath dipolar interaction dominates over

the RKKY. Also, for the case of the Hahn echo, it is suppressed. However, the

RKKY becomes important when considering nuclear spin decoherence in Chapter 8.

We now proceed to explain the CCE for approximating the many-body dynamics

of a central spin system in a spin bath. The CCE has been extensively applied for

both nuclear spin di�usion (see e.g. Balian et al. (2014)) and spin di�usion due to

an all-dipolar electron spin system (see e.g. Witzel et al. (2012)).

2.5 Cluster Correlation Expansion

As stated in Chapter 1, it is not in practice possible to exactly solve for the dynamics

for tens of thousands of bath spins. For spin baths with strong back action with

the qubit, cluster expansion methods (Witzel et al., 2005; Witzel and Das Sarma,

2006; Yang and Liu, 2008a,b, 2009; Witzel et al., 2012) have enabled realistic nu-

merical simulations of the joint system-bath dynamics, predicting coherence times

in remarkable agreement with experiment (see e.g. Balian et al. (2014) or Ma et al.

(2014)). Here we describe the most general of these � the cluster correlation ex-

pansion (CCE) (Yang and Liu, 2008a,b, 2009). The CCE also happens to have the

simplest formulation which we outline in this section.

In the CCE and analogous formalisms, Ĥtot is diagonalised for sets or `clusters'
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of bath spins of varying sizes up to some maximum cut-o� size and the coherence

decay is obtained from a product over all cluster contributions in the bath.3 Clusters

are illustrated for the case of the hybrid qubit in silicon in Figure 2.5.

2.5.1 General Formalism

We �rst derive the CCE and later discuss its physical motivation. We wish to

calculate the complex coherence function L(t) as a function of time t (regardless of

any dynamical decoupling pulses). Let the set of all spins in the bath be denoted

by R, and write the exact coherence as LR(t) ≡ L(t). This quantity results from

exactly solving the closed system-bath dynamics, then tracing out the entire bath

to obtain the o�-diagonal of the reduced density matrix of the central system. Even

for tens of spins in the bath, this problem is practically impossible on a classical

supercomputer.

Figure 2.8: The CCE decomposes the set of all bath spins R into all its subsets or
`clusters' of spins: · · · ⊆ Q ⊆ P ⊆ R.

We now decompose the bath into all its subsets or clusters P , as illustrated in

Figure 2.8, and note that these subsets include R, the entire bath itself. For a given

P , the coherence LP(t) is evaluated by considering the central system and bath spins

contained only in P . This de�nes the reduced problem for P . In other words, the

reduced problem for P has all bath spins outside of P completely �frozen�.

We now expand the reduced problem for LP(t) as a product of cluster correlation

3We note that the term `cluster' simply refers to a collection of spins and does not imply that
these spins must be localized.
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terms L̃P(t):

LP(t) =
∏
Q

L̃Q(t). (2.42)

Equation (2.42) essentially de�nes the CCE. The cluster correlation or `tilde' terms

are de�ned recursively by re-writing Equation (2.42),

LP(t) =
∏
Q⊆P

L̃Q(t)

= L̃P(t)
∏
Q⊂P

L̃Q(t), (2.43)

hence,

L̃P(t) =
LP(t)∏
Q⊂P L̃Q(t)

. (2.44)

Thus, the cluster correlation term for the cluster of spins P is given by solving for

LP(t) and recursively dividing by lower order correlations formed by Q, the proper
subsets of P . Once all the cluster correlation terms are obtained, LR(t) ≡ L(t) is

exactly recovered using the CCE:

LR(t) =
∏
P

L̃P(t). (2.45)

As it stands, the exact CCE (Equation (2.45)) seems practically useless because

the correlation term for R contains the exact solution LR. The strength of the CCE

method becomes evident when the expansion is truncated to include subsets bound

by the number of spins they contain:

L[k](t) =
∏
|P|≤k

L̃P(t). (2.46)

2.5.2 Convergence and Heuristics

Equation (2.46) is the k-th order truncation to the CCE (which we denote by CCEk)

and includes clusters for no more than k spins in each cluster. The expansion's

success is judged by its convergence with respect to k, and also how small k is. The

CCE can be said to be converged at k = k′ when |L[k′](t) − L[k′+1](t)|, |L[k′](t) −
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Figure 2.9: `CS' denotes the central spin system or qubit, in its environment, or
bath `B' of interacting spins. Clusters of 2 (a), 3 (b) and 4 (c) spins are depicted,
with all intra-bath interactions shown as lines connecting the spins. There are no
clusters outside the sphere around the qubit, and clusters which include spins far
away from one another are excluded (d).

L[k′+2](t)|, . . . ,� 1,∀t. For example, if there is little di�erence in the coherence

decay for CCE2 and the decays for CCE3 and CCE4, then the CCE is reasonably

converged at k = 2. Also, the practicality of the CCE is limited by the order of

convergence.

Whether or not the CCE converges and the order of convergence depend on the

relative interaction strengths in the bath and interaction Hamiltonians. Practically,

heuristic cut-o�s are also imposed. For example, the dipolar interaction decays as

the inverse cube of the inter-spin separation. Therefore, only spins separated by

some cut-o� distance are allowed to form clusters as the contribution from farther

away spins is relatively negligible. Also, for nuclear spin di�usion, the extent of the

electronic wavefunction imposes a radial cut-o� for the superlattice cube or sphere

in which clusters are formed. Heuristic cut-o�s are illustrated in Figure 2.9.

2.5.3 Physical Motivation

The product of coherences in the CCE is motivated by the fact that for two clusters

A and B that are su�ciently far apart so that the interactions between spins in A
and those in B are negligible compared to interactions inside the individual clusters,

it can be shown that the combined coherence is well approximated by the product
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LAB ' LALB. The task is to compute the correction Lcorr as the interactions

between A and B are increased, in order to obtain the exact value of LAB:

LAB = LALBLcorr. (2.47)

For simplicity, consider three spins labelled 1, 2 and 3 and assume that the lowest-

order contribution to the coherence is pairwise �ip-�ops, given by L(1,2)L(1,3)L(2,3).

The correction required to take into account collective many-body �ip-�ops is simply

Lcorr =
L(1,2,3)

L(1,2)L(1,3)L(2,3)

≡ L̃(1,2,3), (2.48)

giving the true or non-factorisable 3-body correlation which we denote using L̃(1,2,3).

Since the lowest-order correlations in this example are from two-clusters, the true

non-factorizable correlation equals the in general factorizable correlation: L̃(i,j) =

L(i,j). Thus, for many pairs and triplets in the bath, the coherence is given by

L =
∏
(i,j)

L̃(i,j)

∏
(i,j,k)

L̃(i,j,k). (2.49)

Equation (2.49) motivates the systematic expansion Equation (2.45), which takes

into account n-body correlations.

2.5.4 Beyond the Standard CCE

The discussion so far has not made any reference to the initial state of the bath. For

a pure product initial state, the reducible correlation terms L(t) for each cluster are

calculated by simply considering a product state of eigenstates of the non-interacting

bath Ĥ0
bath. For relatively small baths, the coherence calculated can be highly sen-

sitive to initial state sampling. Also, for a non-factorizable or entangled initial bath

states, the CCE described above is not valid. The ensemble-averaged CCE has been

developed for these reasons (Yang and Liu, 2009). However, these cases are not

encountered in our work and the quantities of interest are largely insensitive to the

choice of initial product bath states we use.

72



CHAPTER 2. SPIN DECOHERENCE

Another important modi�cation of the CCE exists (Witzel et al., 2010, 2012)

in which Ising interactions with spins external to each cluster are included in addi-

tion to the usual interactions within the cluster. In addition, an e�cient method of

averaging over initial bath states has been developed (Witzel et al., 2012). These

modi�cations were required to speed up convergence and to remove numerical in-

stabilities for the all-dipolar problem of a central electron spin interacting with an

electron spin bath.

Finally, we note that the expansion need not formally be a product expansion.

In fact, the CCE has been reformulated using sums and di�erences of correlation

terms (Witzel et al., 2014b).

2.5.5 Pair Correlations

The lowest non-trivial CCE order for spin di�usion is k = 2 or CCE2. This only

involves the qubit-bath dynamics involving pairs of spins in the bath � pair correla-

tions.

If a pure dephasing model is assumed, as described in Section 2.3.2, the bath

dynamics is governed by e�ective Hamiltonians depending on the state of the central

system. In other words, the total Hamiltonian has a form such that terms depending

on the states of the central system are uncoupled. These state-dependent uncoupled

Hamiltonians are:

ĥi ≡ 〈i| (Ĥint + Ĥbath) |i〉 , (2.50)

written for state |i〉.
An orthonormal basis for two spin-1/2 particles is |↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉. Here,

|↑↓〉 ≡ |↑〉⊗|↓〉, where |↑ / ↓〉 denotes spin up/down. Therefore, the state-dependent
Hamiltonians above act on this basis. Furthermore, for a secular �ip-�op intra-bath

interaction, the only matrix elements involved in the interaction are those involving

the states |↑↓〉 and |↓↑〉. The other two polarised states only contribute a phase

factor which disappears when the modulus of the coherence is taken. Note that

care must be taken when averaging over initial bath states and coherences of unity

in this model must be accounted for the polarised states. The state-dependent

73



CHAPTER 2. SPIN DECOHERENCE

Hamiltonians can be written using 2× 2 matrices in the basis {|↑↓〉 , |↓↑〉}:

ĥi = a1̂ + bσ̂ ·Hi, (2.51)

where σ̂ is the three-vector of Pauli operators and Hi is an e�ective �eld about which

these so-called `pseudospins' precess. The length of the state-dependent pseudo�elds

gives the pseudospin precession frequency and is obtained by diagonalising Equa-

tion (2.51). The identity term in Equation (2.51) is dynamically uninteresting, con-

tributing a constant shift to the pseudospin energies. This central state-dependent

dynamics has been applied for a variety of spin problems including quantum dots

and NV centres (Yang and Liu, 2008a,b, 2009; Yao et al., 2006, 2007; Liu et al.,

2007; Zhao et al., 2012a), the latter involving one-spin cluster dynamics at the low-

est non-trivial order.

2.5.6 Many-Body Correlations

We use the term `many-body or n-body correlations' to refer to qubit-bath dynamics

containing non-negligible contributions from clusters including more than two bath

spins (n > 2). For example, in spin di�usion, collective �ip-�ops of three bath

spins are referred to as to 3-body correlations. It is of fundamental interest to

isolate such many-body correlations (Ma et al., 2014; Balian et al., 2015). These are

rare occurrences, and most of the decoherence problems in this thesis are described

by only considering pair correlations (or CCE2). However, we shall see that near

an OWP and for low to moderate pulsed dynamical decoupling, 3-body clusters

dominate the dynamics.

2.6 Conclusion

In conclusion, the current chapter primarily serves as a resource for understanding

our theoretical results in subsequent chapters dealing with decoherence. The basic

principles of magnetic resonance, in particular experiments measuring coherence

times were outlined. The problems of central spin decoherence and spin di�usion
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were introduced and �nally, we described the CCE for solving for the many-body

qubit-bath dynamics. In summary, here we have described Ĥbath and Ĥint. In the

next chapter, we discuss ĤCS for the hybrid qubit.
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3 | The Hybrid Qubit

This chapter primarily concerns the central spin Hamiltonian ĤCS for our central

spin decoherence problem with total Hamiltonian given by Equation (2.6). The

central system we consider is in general a mixed electron-nuclear or `hybrid' qubit.

It is often the case that magnetic resonance transitions are between states which

are eigenstates of the magnetic �eld or Zeeman Hamiltonian described in Sec-

tion 2.4.1. The central Hamiltonian may, for example, contain multiple uncoupled

spins. The basis of eigenstates in this case is the product of states labelled by the

magnetic quantum numbers (of z-projection spin operators) of the non-interacting

spin species. The term `mixed' here refers to the case when the eigenstates can

no longer be approximated using these Zeeman states, but instead involve their

entanglement.1

Electronic spin manipulation times are much shorter compared to those of nuclear

spins. For the hybrid qubit, however, we show that an NMR transition in the

high-�eld limit can be manipulated on short ESR timescales in the mixing regime.

For quantum information applications, the shortest manipulation time and longest

coherence time are highly desirable. The coherence times of the hybrid qubit are

the topic of Chapter 5 for the Hahn spin echo and Chapter 7 for higher orders of

dynamical decoupling.

In what follows, we present the spin Hamiltonian of the hybrid qubit and its

eigendecomposition. Examples are the Group V donors in silicon, in particular

bismuth donors, due to their exceptionally strong mixing. We then describe fast

quantum control of the hybrid qubit, published in Morley et al. (2013). The latter

1The term `mixing' in this thesis should not be confused with a probability distribution of pure
states. We use the term to refer to entanglements of high-�eld eigenstates of a strongly-interacting
spin system situated in a magnetic �eld.
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reference also contains numerical simulations of coherence times which we present

in Chapter 5, and use to con�rm the dominant decoherence mechanism in the ex-

periments of Morley et al. (2013). This study not only demonstrated fast control,

but also relatively long coherence times of the hybrid qubit.

3.1 Group V Donors in Silicon

Our hybrid electron-nuclear qubit can be implemented as one of the Group V hydro-

genic impurities in silicon. These are phosphorus, arsenic, antimony and bismuth

in increasing period of the periodic table. The notation Si:X is used to denote

X-doped silicon, where X is one of the four donor atoms. Silicon has four valence

electrons, thus a Group V impurity donates a single electron which at low enough

temperatures is localized at the substitutional site of the donor nucleus (Stoneham,

2001). The host impurity nuclear spin is coupled to the donor electron spin via the

isotropic Fermi contact hyper�ne interaction (which we describe in detail in Sec-

tion 2.4.3 for the case of a donor electron and a bath nucleus). Ionization energies of

the donors, their nuclear gyromagnetic ratios, nuclear spin quantum numbers and

electron-nuclear hyper�ne coupling strengths are given in Table 3.1.

Donor X εi,X (eV) γX (M rad s−1 T−1) IX AX (M rad s−1)
Phosphorus 31P 0.044 −108.41 1/2 7.3846× 102

Arsenic 75As 0.049 −45.95 3/2 1.2467× 103

Antimony 121Sb 0.040 −64.44 5/2 1.174× 103

Bismuth 209Bi 0.069 −43.775 9/2 9.2702× 103

Table 3.1: Nuclear gyromagnetic ratios γX , donor electron ionization energies εi,X ,
nuclear spin total quantum numbers IX and isotropic hyper�ne coupling strengths
AX of the Group V donors in silicon (Si:X). Values for εi,X and AX can be found
in Feher (1959) and values for γX and IX in Stone (2005).

3.1.1 Spin Hamiltonian and Eigenspectrum

The e�ective spin Hamiltonian of a donor in silicon (Si:X) in a magnetic �eld B

along the z-axis is given by the sum of Zeeman and hyper�ne terms (Mohammady
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et al., 2010, 2012),

ĤSi:X = ω0

(
Ŝz + δX Î

z
X

)
+ AX ÎX · Ŝ, (3.1)

where the electron Larmor precession frequency is ω0 = γeB and γe is the gyro-

magnetic ratio of the electron spin in silicon. The hyper�ne interaction between the

host nuclear and donor electron spins is well-approximated by considering only the

isotropic Fermi contact part, here denoted by AX , to distinguish it from hyper�ne

coupling to the bath JF. The nuclear gyromagnetic ratio is contained in δX = γX/γe,

which is much smaller than γe (i.e. |δX | � 1).

For the case of the Zeeman and hyper�ne terms having comparable magnitudes

(ω0 ∼ AX), the matrix representation of the Hamiltonian in Equation (3.1) is no

longer diagonal in the the Zeeman basis |mS〉 ⊗ |mI〉 ≡ |mS,mI〉, where mS =

±1/2 and mI = −IX ,−IX + 1, . . . , IX . This competition between the two terms

is signi�cant for the donor systems at typical magnetic �eld strengths for ESR

experiments (B ' 0.1−0.6 T), especially for bismuth which has the largest hyper�ne

strength.

It is easy to show that the sum of spin z-projections commute with the Hamil-

tonian: [
ĤSi:X , Ŝ

z + ÎzX

]
= 0, (3.2)

and thus a good set of quantum numbers for the eigenbasis of Equation (3.1) are

−|IX+S|,−|IX+S|+1, . . . , IX+S. These label the mixed or `adiabatic' eigenstates

|±,m〉 which mix the Zeeman basis to (at most) doublets of constant m = mS +

mI with energies E±m (ω0). Due to the commutation relation Equation (3.2), the

Hamiltonian Equation (3.1) can be divided into two one-dimensional Hamiltonians

acting on bases

{|1/2, IX〉}, {|−1/2,−IX〉},

and 2I two-dimensional Hamiltonians acting on

{|±1/2,m∓ 1/2〉 , |∓1/2,m± 1/2〉},
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the latter with |m| ≤ IX − 1/2. In other words, in its matrix representation in the

Zeeman basis, the Hamiltonian is in block form composed of 2×2 matrices of which

there are 2I and two 1×1 entries. Eigenstates of the one-dimensional Hamiltonians

are those which have m = ±|IX + 1/2| and they remain unmixed at all magnetic

�eld, with energies

Em=±|IX+1/2| (ω0) = ±ω0

2
(1− 2δXIX) +

AXIX
2

. (3.3)

The two-dimensional Hamiltonian for each doublet is

Ĥm6=±|IX+1/2| =
A

2

(
Rm cos θmσ̂

z +Rm sin θmσ̂
x − εm1̂

)
, (3.4)

where

cos θm =
Ωm(ω0)

Rm(ω0)
, (3.5)

sin θm =
∆m

Rm(ω0)
, (3.6)

and,

Rm(ω0)2 = Ω2
m(ω0) + ∆2

m, (3.7)

Ωm(ω0) = m+ ω̃0(1 + δX), (3.8)

ω̃0 =
ω0

AX
, (3.9)

∆2
m = (IX + 1

2
)2 −m2, (3.10)

εm =
1

2
(1 + 4ω̃0mδX) . (3.11)

Diagonalising the above Hamiltonian, the eigenstates |±,m〉, mixed in the product

Zeeman basis are given by

|±,m〉 = am

∣∣∣∣mS = ±1

2

〉
⊗
∣∣∣∣mI = m∓ 1

2

〉
± bm

∣∣∣∣mS = ∓1

2

〉
⊗
∣∣∣∣mI = m± 1

2

〉
,

(3.12)
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with amplitudes

am = cos
θm
2
, (3.13)

bm = sin
θm
2
, (3.14)

and corresponding eigenenergies

E±m (ω0) =
AX
2

[
−1

2
(1 + 4ω̃0mδX)±Rm(ω0)

]
. (3.15)

In the notation |±,m〉, the two unmixed eigenstates are thus |+, IX + 1/2〉 and
|−,−|IX + 1/2|〉.

We often write the adiabatic eigenstates using the notation |i〉 = 1, 2, . . . , d,

where d = (2S+1)(2IX +1) = 4IX +2. The transformations between the two labels

|i〉 ↔ |±,m〉 are given by,

|i〉 =

∣∣∣∣∣∣∣
+ for 2IX + 2 ≤ i ≤ 4IX + 2

− for 1 ≤ i ≤ 2IX + 1
, |2IX + 1− i| − S − IX

〉
(3.16)

|±,m〉 =

∣∣∣∣∣∣∣
3IX − S + 2 +m

S + IX −m

〉
. (3.17)

It is clear that a2
m+b2

m = 1 (eigenstates are normalised). The di�erence (a2
m−b2

m)

is proportional to the expectation value of the electron spin z-projection,

〈±,m| Ŝz |±,m〉 = ±1

2
(a2
m − b2

m) = ± cos θm =
Ωm(ω0)

Rm(ω0)
≡ Pi(ω0)

2
, (3.18)

half the polarisation Pi(ω0) for the i-th eigenstate |i〉 ≡ |±,m〉. For the unmixed

system, we take the limit ω0 → ∞ so Rm → Ωm and the polarisation ±1 for the

bare electron is recovered (i.e. 〈Ŝz〉 = ±1/2).
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3.1.2 Frequency-Field Gradient

Denoting the excitation frequency for the two levels in a transition as f , at df/dB =

0 points, decoherence from classical �eld noise is signi�cantly reduced (Mohammady

et al., 2012). The Hellmann-Feynman theorem (Cohen-Tannoudji et al., 1977) states

that the derivative of the energy with respect to some parameter in the Hamiltonian,

in this case the magnetic �eld B, is obtained by evaluating the derivative of the

expectation value of the Hamiltonian in the corresponding energy eigenstate. Thus,

dEi
dB

= 〈i| dĤSi:X

dB
|i〉

= 〈i| d
dB

(
γeBŜz + γXBÎ

z
X + AX ÎX · Ŝ

)
|i〉

= γe〈Ŝz〉i + γX〈ÎzX〉i. (3.19)

The excitation frequency is simply f = (Ei=u − Ei=l)/2π for a magnetic resonance

transition |i = u〉 → |i = l〉 between an upper (i = u) and a lower (i = l) level.

Therefore, the frequency-�eld gradient is given by

df

dB
=

1

2π

[γe
2

(Pu − Pl) + γX

(
〈ÎzX〉u − 〈ÎzX〉l

)]
, (3.20)

and it can be shown that the B values for which df/dB = 0, satisfy,

0 = Pu(B)− Pl(B) +
δX(ml −mu)

1 + δX
, (3.21)

where mu/l are the mS +mI quantum numbers for the two levels.

3.1.3 Cancellation Resonances

When Ωm = 0, the polarisation Pi vanishes. Also, the σ̂z term in Equation (3.4) is

zero, and thus the eigenstates become those of σ̂x:

∣∣Ψ±〉 =
1√
2

(∣∣∣∣12 ,m− 1

2

〉
±
∣∣∣∣−1

2
,m+

1

2

〉)
. (3.22)
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Typically, due to the large mismatch between electronic and nuclear gyromagnetic

ratios, δX � 1 and hence Ωm ' m + ω̃0. Thus, the Bell-like eigenstates above

occur at magnetic �elds corresponding to ω̃0 ' −m. For −(IX − 1/2) ≤ m ≤ 0,

these �eld values correspond to Landau-Zener (LZ) crossings. The LZ points have

OWPs (see below) midway between them in θm coordinates. Fields when the doublet

Hamiltonian reduces to a sum of σ̂z and σ̂x with the same coe�cients may also be

of special interest.

3.1.4 Optimal Working Points

For coupling of the electronic spin to a nuclear spin bath, the OWPs considered in

this thesis and discussed in Chapter 5. Chapter 6 and Chapter 7 occur when Pu = Pl

for the transition |u〉 → |l〉. Since typically, δX � 1, some OWP and df/dB = 0

points (Equation (3.21)), can be extremely close in magnetic �eld.

3.2 Bismuth Donor

The bismuth donor is special among the Group V donors in two aspects. First, the

hyper�ne coupling is the strongest of all the Group V donors (Table 3.1). The large

hyper�ne value means that there is signi�cant electron-nuclear mixing for �elds in

the range `intermediate ESR �eld regime': B ' 0.1 − 0.6 T. Second, the bismuth

nucleus has the highest dimension of Hilbert space since IBi = 9/2, giving 2(9+1) =

20 energy levels and thus a large number of states for possible manipulation in

quantum information applications. The strong hyper�ne and large IBi lead to the

largest number of OWPs among the silicon donors. We note that for an OWP,

IX > 1/2 and hence the Si:P system (IP = 1/2) unfortunately does not have any.

3.2.1 Energy Levels and X-Band Transitions

The energy spectrum as a function of magnetic �eld for Si:Bi is shown in Figure 3.1.

The eigenstates can be labelled in multiple ways: in order of increasing energy (|i〉,
i = 1, 2, . . . , 20), in the Zeeman basis in the high-�eld limit (|mS,mI〉, mS = ∓1

2
,
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Figure 3.1: The spectra of donor spin systems such as arsenic, antimony or bismuth
(pictured) are a�ected by strong mixing between the electron and host nuclear spin,
at magnetic �elds B smaller or comparable to the hyper�ne coupling A, allowing a
richer behaviour than unmixed electron spins. The plot shows the eigenspectrum of
Si:Bi as a function of magnetic �eld B labelled in order of increasing energy |i〉 using
integers 1, . . . , 20, in the Zeeman basis |mS〉⊗ |mI〉 ≡ |mS,mI〉 (i.e. as B →∞) and
using the adiabatic basis |±,m〉. Strong mixing of the Zeeman basis is evident in
the region B ' 0.1 − 0.3 T due to competition between the Zeeman and hyper�ne
Hamiltonians. At particular �eld values termed optimal working points (OWPs),
decoherence can be strongly suppressed. The arrows indicate the transitions with
four of the most signi�cant OWPs. The colours match for the two states in each
doublet labelled by m. Figure adapted from Mohammady et al. (2010) and Balian
et al. (2015).

mI = −9
2
,−7

2
, . . . , 7

2
, 9

2
), or the adiabatic basis (|±,m〉, −5 ≤ m ≤ 5). Since the

Zeeman basis is no longer the eigenbasis of the Hamiltonian, the usual ESR and

NMR selection rules presented in Chapter 2 do not apply. Nevertheless, we refer

to |±,m〉 ↔ |∓,m− 1〉 and |±,m〉 ↔ |±,m− 1〉 as ESR-type and NMR-type

transitions respectively, noting that |−,m〉 ↔ |+,m− 1〉 are dipole forbidden in the

high �eld limit.

The CW ESR spectrum for Si:Bi at an excitation frequency of f = 9.7 GHz

(X-band) is shown in Figure 3.2 showing 10 spectral lines. This is a region of weak
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Figure 3.2: Experimental CW ESR spectrum of bismuth-doped silicon at excita-
tion frequency f = 9.7 GHz (red lines) showing good agreement with the resonance
positions predicted by theory (black dots). Ten transitions |i = u〉 → |j = l〉 are
observed with i = 11, . . . , 20 and j = 10, . . . , 1 (see horizontal dashed line in Fig-
ure 3.3). Figure adapted from Mohammady et al. (2010).

mixing. The resonance positions are in excellent agreement with the analytical

expressions for the eigenspectrum described above.

3.2.2 OWPs, CTs and Other Special Fields

The OWPs we consider correspond to suppression of decoherence in quantum spin

environments. Si:Bi has four ESR-type and four-NMR type OWPs. These OWPs

are all doublets, so there are in fact 16 separate OWP transitions. The OWPs we

primarily consider are the ESR-type ones corresponding to states |12〉 → |9〉 and
|14〉 → |7〉 occurring at B ' 0.19 T and B ' 0.08 T respectively. The transitions

corresponding to four ESR-type OWPs are labelled in Figure 3.1, while the other

four correspond to forbidden transitions close by. It is important to note that all

of these couple two neighbouring avoided crossings. Selection rules are detailed in

(Mohammady et al., 2012), but OWP transitions have ∆m = ±1 which implies

that 〈u|Ŝz|l〉 = 0 meaning that magnetic �eld �uctuations do not induce bit �ips

|u〉 ↔ |l〉 (assuming Ising-like coupling to the bath).

An important consequence of the strong mixing in Si:Bi is the existence of mul-

tiple df/dB = 0 maxima and minima in the f − B parameter space. These are

shown in Figure 3.3. There are df/dB = 0 minima for the |15〉 → |6〉, |14〉 → |7〉,
|13〉 → |8〉, |12〉 → |9〉, and |11〉 → |8〉 transitions in the frequency range 5−7.5 GHz

and two maxima for |12〉 → |11〉 and |9〉 → |8〉 close to 1 GHz. The df/dB = 0 points
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Figure 3.3: ESR excitation frequency f as a function of magnetic �eld B for
bismuth-doped silicon. The df/dB = 0 extrema correspond to magnetic �elds at
which classical noise decoherence is signi�cantly reduced. The dashed horizontal
line shows the X-band excitation frequency at 9.7 GHz, corresponding to the mea-
sured spectrum in Figure 3.2. The labelled transitions are those at S-band (4 GHz)
and the black integers label the cancellation resonances, where the electronic Zee-
man and hyper�ne terms cancel in the donor Hamiltonian (Equation (3.1)). Figure
adapted from Mohammady et al. (2010).

are referred to as `clock transitions' (CTs) (Wolfowicz et al., 2013) and correspond to

where decoherence arising from classical �eld noise is reduced (Mohammady et al.,

2012). They are distinct from the OWP points, albeit in close proximity to them in

magnetic �eld.

One might also consider the possibility of creating a superposition of two states

|u〉 and |l〉 at a single avoided crossing; for example, the superposition |11〉+ |9〉 in
Figure 3.1, at the avoided crossing between these states at B ' 0.21 T. Although the

|11〉 → |9〉 transition is never allowed, such a superposition might be created by a two

pulse excitation from level |10〉. Both states are at zero energy gradient (dEu,l/dB =

0) so coherences are to �rst order insensitive to dephasing noise; however, as shown in
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Mohammady et al. (2012), in that case 〈u|Ŝz|l〉 6= 0 so magnetic �uctuations couple

the states in the superposition and thus coherence is vulnerable to depolarisation

by magnetic noise.

The cancellation resonance points are where the hyper�ne interaction cancels

the Zeeman splitting. They occur for Si:Bi at magnetic �elds ω0 ' −mA and

m = 0,−1,−2,−3,−4, labelled in Figure 3.3. They correspond to the avoided

crossings seen in Figure 3.1. Finally, the �eld for which ω̃0 ' 7 corresponds to

df/dB = 0 maxima CTs and NMR-type OWPs for the |12〉 → |11〉 and |9〉 → |8〉
transitions, and is where the doublet donor Hamiltonian is proportional to (σ̂x+ σ̂z).

3.3 Fast Quantum Control

The current section concerns pulsed ESR control of the hybrid qubit on the nanosec-

ond timescale as demonstrated by experiments in Morley et al. (2013). The coher-

ence times for the hybrid qubit for the transitions and magnetic �elds at which the

experiments were performed are presented in Chapter 5. The experiments presented

herein were carried out by Dr. Petra Lueders at ETH Zurich with assistance from

Dr. Gavin Morley and Dr. Hamed Mohammady, who are all co-authors of Morley

et al. (2013), which is published work co-authored by S.J.B., contributing to the

theme of the thesis.

Magnetic resonance involves transitions between doublets adjacent in m (i.e.

m → m ± 1), using the notation of energy states of the hybrid qubit as described

above. The usual ESR and NMR selection rules correspond to single electronic

and nuclear spin �ips respectively as discussed in Section 2.1. These selection rules

are in the usual `unmixed regime' or equivalently in the limit of B → ∞. The

time taken to manipulate electronic spins by pulsed ESR is often on the order of

nanoseconds; much faster than pulsed NMR manipulation of nuclei which typically

takes microseconds. This is because the gyromagnetic ratio of the electron is of

order GHz T−1 whereas for nuclei it is on the MHz T−1 scale. If electrons and

nuclei were to be used for quantum information processing, the shortest possible

86



CHAPTER 3. THE HYBRID QUBIT

total manipulation time is highly desirable. Importantly, the manipulation time

must also be shorter than the coherence time in order to implement quantum error

correction protocols.

3.3.1 Forbidden Transitions

An important consequence of the strong mixing for the hybrid qubit (implemented as

Si:Bi) is the existence of ESR transitions of its eigenstates which are ESR-forbidden

at high �elds but can be manipulated using fast ESR pulses in the strong mixing

or hybrid regime. Furthermore, as we shall see in Chapter 5, the qubit coherence

times in the hybrid regime can be up to �ve orders of magnitude longer than the

manipulation times and are limited by nuclear spin di�usion by a 29Si spin bath. We

use the term hybrid because in this regime the electron and nucleus are hybridized

(Equation (3.12)) or near 50:50 superpositions of bare electronic and nuclear spin

Zeeman states.

3.3.2 S-Band Transitions

To access the hybrid regime in Si:Bi, a 4.044 GHz ESR excitation frequency was

used (S-band). As can be seen in Figure 3.3, this corresponds to two transitions:

|10〉 → |9〉 and |11〉 → |10〉 at B = 145.6 mT and B = 345.0 mT respectively. The

CW ESR spectrum at this frequency is shown in Figure 3.4, in which the resonance

positions are well predicted by analytical diagonalisation (Equation (3.12)) of the

donor Hamiltonian (Equation (3.1)).

In the high-�eld limit at f ' 4 GHz, the observed transitions are:

(|11〉 → |10〉)B→∞ ≡
∣∣∣∣mS =

1

2
,mI = −9

2

〉
→
∣∣∣∣−1

2
,−9

2

〉
, (3.23)

(|10〉 → |9〉)B→∞ ≡
∣∣∣∣mS = −1

2
,mI = −9

2

〉
→
∣∣∣∣−1

2
,−7

2

〉
(3.24)

and respect the usual selection rules, the �rst being an ESR transition and the

second an NMR one. Clearly, the second transition violates the ESR selection rule

and is not expected to be seen in ESR spectra. This is indeed the case in the high
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Figure 3.4: Magnetic resonance spectrum of bismuth-doped silicon (Si:Bi) at 4 K
with 4.044 GHz CW excitation (S-band). The predicted positions of both Si:Bi
resonances are shown as stars. The bismuth dopant concentration is about 3 ×
1015 cm−3 and the magnetic �eld was perpendicular to the [111] direction of the
doped silicon crystal. Figure adapted from Morley et al. (2013).

�eld limit. However, in the hybrid regime, this ESR forbidden transition is observed

as shown in Figure 3.4.

The ESR transition amplitudes are given by matrix elements of the electron

x-spin projection:

〈10| Ŝx |9〉 ∝ sin

(
θ−4

2

)
, (3.25)

〈11| Ŝx |10〉 ∝ cos

(
θ−4

2

)
. (3.26)

The states |11〉 and |9〉 form them = −4 doublet. For B = 0.15 T or the |11〉 → |10〉
transition, θ−4 = 0.62π and for the other transition θ−4 = 0.28π. The ratio of the

modulus of the transition amplitudes is therefore

| 〈11| Ŝx |10〉 |
| 〈10| Ŝx |9〉 | ' 1.1. (3.27)

The Rabi oscillation frequency is proportional to the transition amplitude. Thus,

this ratio (in the hybrid regime) predicts the same order of magnitude manipulation
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for an ESR transition and a (high-�eld) NMR one. Usually, the Rabi oscillations

are 103 times slower for NMR relative to ESR. The transition rate is proportional to

the square of the amplitude, hence, this ratio predicts a ratio of magnetic resonance

intensities of about 1.12 ≈ 1.2. This calculated value is in agreement with the

measured intensities as shown in Figure 3.5.
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Figure 3.5: The areas under the Gaussians (obtained by integrating the spectra in
Figure 3.4) are in the ratio area11−10/area10−9 = 1.2, in agreement with calculated
values. Figure adapted from Morley et al. (2013).

3.3.3 Rabi oscillations

Rabi oscillations were used to demonstrate coherent control of the hybrid electron-

nuclear qubit. The pulse sequence of the experiment is as follows: τ − π/2 − t −
π − t − echo. The experiment varies the �rst pulse τ , rotating the qubit from the

upper towards the lower transition by some polar angle on the Bloch sphere. The

lower eigenstate is reached if the angle is π and the time taken is the duration of

the π-pulse as described in Chapter 2. The usual Hahn echo experiment follows

the �rst pulse in order to obtain a good signal. The period of Rabi oscillations is

simply twice the π-pulse time. The time taken for the π-pulse is quoted as the qubit

manipulation time.

The Rabi oscillations for the two transitions at 4 GHz are shown in Figure 3.6.

The Fourier transformation of the Rabi signal (Figure 3.7) reveals that the inverse

of the Rabi frequency is about 1/66 ns−1, corresponding to a qubit manipulation

time of 32 ns. The ratio of the two Rabi frequencies extracted from the experimental

data is about 1.1 and is in agreement with the calculation in Equation (3.27). In
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Figure 3.6: Rabi oscillations demonstrate coherent control of both of the 4 GHz
hybrid electron-nuclear transitions. At higher magnetic �elds, the 11-10 resonance
becomes an ESR transition, whereas the 10-9 resonance becomes an NMR transition.
Controlling this NMR transition in the past has required π pulses of ≥ 4 µs, two
orders of magnitude longer than the 32 ns π pulses we use here. Figure adapted
from Morley et al. (2013).
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Figure 3.7: . Fourier transforming the Rabi oscillations in Figure 3.6 reveals that the
11-10 transition experiences 10% faster nutation, as expected. Pulsed measurements
used 16 ns π/2 pulses and 32 ns π pulses with two-step phase cycling. Figure adapted
from Morley et al. (2013).

the high-�eld limit, the |10〉 → |9〉 transition would be a pure NMR transition and

thus require manipulation times of order microseconds.
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3.4 Conclusion

In summary, we introduced the spin Hamiltonian of the hybrid electron-nuclear

qubit and analytical expressions for its energies and eigenstates. We then discussed

the bismuth donor as a hybrid qubit. The calculated eigendecomposition of the

hybrid qubit leads to resonance positions in excellent agreement with experiment at

both X-band and S-band excitation frequencies, commonly used for ESR studies.

By accessing ESR-forbidden transitions by operating in the hybrid regime, a factor

of 125 speed-up can be achieved in the qubit manipulation time, from 4 µs in the

high-�eld limit to 32 ns in the hybrid regime. However, we note that this speed-up is

limited by the power of the microwave �eld driving the transition. The fundamental

speed-up, on the other hand, is limited by the ratio of the electronic to host nuclear

gyromagnetic ratios, and is a factor of 1/δBi ≈ 4, 000.
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4 | Interaction of Hybrid Qubit

with a Nuclear Spin Bath

The content of this chapter was published in Balian et al. (2012). Here, we present

pulsed ENDOR experiments using bismuth-doped silicon which enable us to charac-

terise the coupling between the hybrid qubit and the surrounding spin bath of 29Si

impurities. This spin bath provides the dominant decoherence mechanism (nuclear

spin di�usion) at low temperatures (< 16 K) for the hybrid qubit. At magnetic

�elds corresponding to OWPs, we demonstrate a collapse in the strength of the

qubit-bath interaction. This serves as a clear spectroscopic signature of OWPs at

which decoherence is suppressed as shown in Chapter 5.

Relevant for decoherence of the hybrid qubit, the experiments suggest that

anisotropic hyper�ne contributions are comparatively weak, and isotropic couplings

dominate; hence anisotropic couplings can be safely neglected in calculating hyper-

�ne couplings for our decoherence simulations. Importantly this means that the

form of the suppression of decoherence at OWPs is largely independent of crystal

orientation.

The central hybrid qubit is coupled to the 29Si spin bath via the electron-nuclear

hyper�ne interaction introduced in Section 2.4.3. In general, the hyper�ne inter-

action is in tensor form and includes the e�ects of both isotropic and anisotropic

couplings. Anisotropic couplings depend on the direction of the magnetic �eld rela-

tive to the crystal (or equivalently, the `sample orientation'). The crystal structure

of silicon is described in Appendix C.

The pulsed ENDOR measurements (as opposed to continuous-wave) also moti-

vate the possibility of addressing nuclear impurity spins for quantum information
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applications. We present decoherence mechanisms for such spins in Chapter 8.

4.1 Pulsed ENDOR Measurements

The nature of the qubit-bath interaction is investigated by means of pulsed EN-

DOR (Schweiger and Jeschke, 2001). Previous ENDOR studies of Si:Bi used radio

frequencies of at least several hundreds of MHz (Morley et al., 2010; George et al.,

2010), and thus could not probe the weak couplings to the nuclear spin bath. In

contrast, radio frequencies of a few MHz were used in the work we present. With this

approach, we successfully measured the hyper�ne couplings of the bismuth donor to

29Si impurities and determined their anisotropy.

The experiments spectroscopically resolve and characterise a set of distinct Jn
as de�ned in Equation (2.35), corresponding to occupancy of inequivalent lattice

sites by 29Si impurities, and whether or not these have any anisotropic character.

4.1.1 Experimental Method

Pulsed ENDOR experiments were carried out by Dr. Micha Kunze and Professor

Chris Kay at UCL who are co-authors of Balian et al. (2012). The Davies ENDOR

pulse sequence was used (Schweiger and Jeschke, 2001), which applies the sequence

πmw−τ1−πrf−τ2− π
2
mw−τ3−πmw−τ3−echo, where the microwave frequency (mw)

is chosen to excite one ESR transition and the radio frequency (rf) is stochastically

varied between 2 − 12 MHz or 2 − 7 MHz to excite all nuclear spin transitions in

this region. 256 ns long πmw-pulses and a 128 ns long π
2
mw-pulse were used. For

optimal signal-to-noise ratio and resolution, a πrf-pulse of 10 µs was used. Pulse

delays were set to τ1 = 1 µs, τ2 = 3 µs, and τ3 = 1.5 µs and a shot repetition

time of 1.3 ms was employed to give a good signal-to-noise ratio. All experiments

were carried out at 15 K on an E580 pulsed EPR (≡ESR) spectrometer (Bruker

Biospin) equipped with pulsed ENDOR accessory (E560D-P), a dielectric ring EN-

DOR resonator (EN4118X-MD4), a liquid helium �ow cryostat (Oxford CF935), and

a radio frequency ampli�er (ENI A-500W). The donor concentration of the sample

was 3 × 1015 cm−3 and the magnetic �eld was directed perpendicular to the (111)
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crystal plane.
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Figure 4.1: Pulsed ENDOR measured for bismuth-doped silicon with frequency
9.8 GHz at which ten ESR lines are observed, the resonance peaks due to inter-
actions of the donor with 29Si nuclei at inequivalent lattice sites. The isotropic
hyper�ne couplings were extracted from the spectrum at the highest magnetic �eld.
As the �eld is varied, the smooth lines follow the resonance positions according to
Equation (4.10). Solid and dotted lines distinguish between the two peaks observed
for each coupling, each corresponding to one of the two donor levels involved in the
ESR transition. Only the peaks labelled X1 and X2, in addition to a third pair not
resolved here, were found to show anisotropy from performing ENDOR as a function
of crystal orientation. Figure adapted from Balian et al. (2012).

4.1.2 Experimental Results

While not o�ering the higher frequency resolution attainable with CW ENDOR

(Feher, 1959; Hale and Mieher, 1969a,b), the pulsed ENDOR measurements per-

mit us to adequately constrain calculated hyper�ne couplings and thus demonstrate

the reliability of our numerical simulations of T2. In particular, we established
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that isotropic couplings to the spin bath dominate over anisotropic ones. As men-

tioned above, a further motivation for pulsed experiments in contrast to CW is to

investigate the feasibility of an alternative possibility for QIP: to simultaneously

manipulate the 29Si spins as spin-1/2 qubits, along with the donors (Akhtar et al.,

2012). Measured ENDOR spectra at ESR excitation frequency f ' 9.755 GHz are

presented in Figure 4.1, together with a list of the extracted qubit-bath hyper�ne

couplings.

4.2 Calculating Resonance Positions

For the magnetic �eld range B ' 0.1 − 0.6 T in Figure 4.1, there is signi�cant

mixing of the high-�eld Si:Bi energy eigenstates (Figure 3.1). We now proceed to

derive an expression for the ENDOR resonance positions, taking into account the

e�ect of the central-state mixing. We note that in Equation (2.35) describing the

hyper�ne interaction in Section 2.4.3, the Fermi contact part is always isotropic. The

remainder of the interaction has both anisotropic and isotropic components. Here,

since we are interested in measurements of the interaction, we make no reference to

the Fermi contact part of the interaction and instead divide the tensor into isotropic

and anisotropic components. Also, since we are measuring the interaction, there is

no need to write down the spatial electronic wavefunction.

4.2.1 Hyper�ne Tensor

To investigate the qubit-bath interaction, we add to the central spin Hamiltonian

the interaction Hamiltonian and a single spin-1/2 29Si nuclear Zeeman term:

ĤENDOR = ĤSi:Bi + γnBÎ
z + Î · J · Ŝ, (4.1)

where J here is the hyper�ne tensor for coupling to a single 29Si nucleus and γn

is the 29Si gyromagnetic ratio given in Table 2.1. The donor Hamiltonian ĤSi:Bi is

given by Equation (3.1). Interactions of 29Si nuclei at di�erent lattice sites with the
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same donor electron can be treated by summing independent such hyper�ne terms:

Ĥint = ĤSi:Bi +
∑
l

(
γnBÎ

z
l + Îl · Jl · Ŝ

)
. (4.2)

Nuclear 29Si�29Si and 209Bi�29Si dipolar interactions are much weaker and thus neg-

ligible compared to the electron-nuclear hyper�ne interaction. This is because the

latter involves the product of electronic and nuclear gyromagnetic ratios which is

∼ 1000 stronger than a product of two nuclear gyromagnetic ratios as seen from

Table 2.1 and Table 3.1.

The hyper�ne tensor is diagonal in the molecular frame (MF); this coordinate

system is one in which the external �eld direction is collinear with the line connecting

the central bismuth and 29Si sites (Schweiger and Jeschke, 2001):

JMF =


aiso − T 0 0

0 aiso − T 0

0 0 aiso + 2T

 , (4.3)

where T and aiso are scalars. Rotating the operator
(
Î · J · Ŝ

)MF

by angle θ towards

the laboratory z-axis (along B), where θ is the angle between the z-axis and the line

connecting the 29Si spin and the donor site in the molecular frame, gives
(
Î · J · Ŝ

)
in the laboratory frame in terms of T , aiso and the rotation angle θ:

ĤENDOR = ĤSi:Bi + γnBÎ
z + αÎzŜz + βÎxŜz, (4.4)

where

α =
[
(aiso − T ) + 3T 2 cos2 θ

]
,

β = 3T sin θ cos θ, (4.5)

and we have ignored non-secular terms involving Ŝx and Ŝy. This secular approxima-

tion which reduces the hyper�ne interaction to the simpler form above is motivated

by the disparity between the central spin (electronic Zeeman and host hyper�ne)
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and donor-29Si hyper�ne energy scales. Non-secular terms lead to transitions be-

tween ESR levels. To simulate the ENDOR resonance positions, we wish to describe

nuclear transitions (MHz) for each of the two ESR levels (GHz) independently. The

Hamiltonian above appears in Schweiger and Jeschke (2001) and the term Ŝz Îy

vanishes if we choose the 29Si nucleus to lie in the xz-plane.

4.2.2 Expression for Resonance Positions

For a transition between the central spin states |u〉 → |l〉, we choose the basis formed

by the states

|u〉 ⊗ |↑〉 ,
|u〉 ⊗ |↓〉 ,
|l〉 ⊗ |↑〉 ,
|l〉 ⊗ |↓〉 ,

(4.6)

where |↑〉 (|↓〉) is the spin up (down) eigenstate of the non-interacting 29Si spin-1/2.

The matrix representation of the 4× 4 Hamiltonian in this basis is

HENDOR =

 hu 0

0 hl


hu/l =

 Eu/l + γnB
2

+
αPu/l

4

βPu/l

4

βPu/l

4
Eu/l − αPu/l

4
− αPu/l

4


(4.7)

where Eu/l are the energies of the central states |u〉 / |l〉. Straightforward diagonali-

sation of hu/l gives the expression for the ENDOR resonance frequency at ESR level

|i〉 , i = u, l, written in units of Hz:

∆f (i) =
1

2π

√(
γnB

2
ω0 +

α⊥Pi(B)

4

)
sin2 θ +

(
γnB

2
ω0 +

α‖Pi(B)

4

)
cos2 θ, (4.8)
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with α‖ and α⊥ given by

α = α‖ cos2 θ + α⊥ sin2 θ,

α‖ = aiso + 2T,

α⊥ = aiso − T.

(4.9)

Note that in the case when there is no angular dependence of an ENDOR line (i.e.

T = 0), Equation (4.9) reduces to

∆f
(i)
iso,l(B) =

1

2π

∣∣∣∣γnB +
aiso,lPi(B)

2

∣∣∣∣ (4.10)

written for coupling to a single 29Si at site l. Equation (4.10) above can also be

obtained using �rst order time-independent perturbation theory with the hyper�ne

interaction taken as the perturbation Hamiltonian. It is also in perfect agreement

with full numerical diagonalisation of the Hamiltonian in Equation (4.7).

4.3 Extracting Qubit-Bath Couplings

The isotropic couplings in Figure 4.1 were extracted from the measured spectra

by �tting to the data Gaussians of equal width and using the expression Equa-

tion (4.10). The same expression and a single set of couplings gave excellent agree-

ment with data at 10 di�erent magnetic �elds (ESR lines). In particular, the ob-

served pattern of half a dozen highest frequency 29Si resonances moving to a mini-

mum at B ' 0.2 T, then increasing again, is directly attributable to mixing of the

states of the bismuth donor: i.e., here |Pi| has a minimum.

The following procedures were adopted to extract the central positions of EN-

DOR peaks. We �rst deal with those peaks which showed no angular dependence

as a function of the crystal orientation (isotropic case). We later discuss the exper-

imental data as a function of crystal orientation.
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4.3.1 Isotropic Case

Multiple Gaussians sharing a full width at half maximum (FWHM) of 0.12 MHz

gave a good �t to the |11〉 → |10〉 experimental spectrum (ESR line 10, counting

from low to high �eld, which is equivalent to the i label for the �nal state). The

central positions of peaks at radio frequencies higher than the 29Si nuclear Zeeman

frequency (γnB ≈ 4.8 MHz) were used to extract hyper�ne couplings employing

Equation (4.10) rearranged for aiso. We note that this was done only for peaks which

showed no angular dependence; the anisotropic case is discussed in the following sub-

section (Figure 4.2). This set of extracted couplings and Equation (4.10) were then

used to predict the resonance positions at frequencies lower than γnB ≈ 4.8 MHz

for the same ESR line (i.e. for the |11〉 ESR level). The last step was repeated for

each of the two ESR states of the other nine Si:Bi ESR lines observed at X-band �

i.e. as a function of B, using Equation (4.10).

The predicted positions for the nine ESR lines are in excellent agreement with

the experimental peak positions as seen in Figure 4.1. The appearance and number

of multiple sideband peaks at lower �elds (e.g. see the lowest-�eld ESR line) were

found to be dependent on the radio frequency pulse length used in the experiment,

and thus such peaks were not attributed to 29Si sites.

4.3.2 Anisotropic Case

Ten out of the twelve couplings extracted from data were found to be purely isotropic.

The highest-�eld spectrum was measured for a range of crystal orientations and only

three weak-intensity ENDOR peaks showed orientation-dependent frequencies and

hence anisotropy. Two are indicated by X1 and X2 in Figure 4.1: The correspond-

ing two couplings with non-zero anisotropy were found to have (aiso,X1 ' 2.8, TX1 '
2.4) MHz and (aiso,X2 ' 0.4, TX2 ' 2.8) MHz by �tting the more general form for

resonance positions with non-zero T , Equation (4.9). A previous ESEEM (electron

spin echo envelope modulation) study identi�ed a single anisotropic coupling (Belli

et al., 2011), attributed to E-shell (nearest neighbor) 29Si. The third line we identify

is �tted by coupling constants consistent with the anisotropic coupling in Belli et al.
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(2011). For most crystal orientations, this line is masked by much higher intensity

lines arising from isotropic couplings.
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Figure 4.2: Si:Bi ENDOR spectra for the |11〉 → |10〉 ESR transition at 9.75 GHz
microwave excitation obtained as a function of θ, where (θ−θ0) is the angle between
the external magnetic �eld and the [111]-direction. The three smooth lines are �ts
of Equation (4.9), and were used to extract values of the isotropic and anisotropic
parts of the hyper�ne coupling aiso and T respectively, as well as the o�set angle θ0

which was not known during the experiments.

We now describe the procedure of extracting the three peaks which were found
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to show θ dependence. Figure 4.2 shows line 10 spectra obtained for a range of

orientation angles between the external �eld and the [111]-direction of the sample

crystal. However, the other angle required to fully determine the crystal orientation

relative to the magnetic �eld was unknown in the experiment. Thus, the functional

form ∆f (11) (θ − θ0, aiso, T ) (Equation (4.9)) was used with free parameters for each

peak aiso, T and a constant o�set θ0. We managed to �t three curves with this ex-

pression to all the spectra as θ was varied. The peak with (aiso, T ) ≈ (3.4, 2.6) MHz

is consistent with the one previously identi�ed in ESEEM spectra for ESR line 10

[(aiso, T ) = (3.36± 0.03, 2.56± 0.03) MHz (Belli et al., 2011)]. However, this peak

is not apparent in Figure 4.1 due to its position and small area at the orientation

angle used to perform the measurements in Figure 4.1. The two other couplings

were found to have (aiso, T ) ≈ (0.4, 2.8) MHz and (aiso, T ) ≈ (2.8, 2.4) MHz. It

can be seen that for the peaks with non-zero T , the di�erence between theory and

experiment can be up to about 0.1 MHz at low �eld (see, for example, ESR lines 5

to 2 in Figure 4.1). The deviation is likely due to the experimental uncertainties in

the orientation angle θ. In obtaining the rotation spectra in Figure 4.2, the exper-

imental uncertainty in θ was estimated at εθ ≈ ±20. This leads to a maximum of

ε∆f ≈ ±0.1 MHz shift in the resonance positions of those peaks for which values of

aiso and T were extracted from the rotation spectra.

4.4 Collapse of Couplings

The magnitude of the polarisation |Pi(ω0)| becomes small close to OWPs (Balian

et al., 2014) and df/dB = 0 minima (Mohammady et al., 2010, 2012). Thus,

Equation (4.10) tends to the 29Si Zeeman frequency γnB. This also holds in the

anisotropic case (Equation (4.9)). In e�ect, near these points, the donor might be

said to approximately decouple from the bath. For example, for the ESR transition

|12〉 → |9〉 P12(B) = 0 at B = 157.9 mT and P9(B) = 0 at B = 210.5 mT. We note

that there is however no B-�eld value where both the upper and lower levels have

|Pi(B) = 0|: As we see later, this is not actually essential for complete suppression of

spin di�usion. The actual OWP for suppression of decoherence is at B = 188.0 mT,
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where P12 = P9 (Balian et al., 2014). For this transition, the df/dB = 0 point occurs

when

P12 − P9 − 2δBi
(1 + δBi)

= 0. (4.11)

The third term on the left is of order 10−4 and hence the OWP and frequency-�eld

minimum are very close as discussed earlier.

Figure 4.3: Simulated ENDOR as a function of magnetic �eld B, showing collapse
of the hyper�ne couplings for the |12〉 → |9〉 Si:Bi ESR transition. The OWP is at
0.188 T. Figure adapted from Balian et al. (2012).

4.4.1 Isotropic Case

Figure 4.3 shows a colour map of the qubit-bath hyper�ne spectrum for a high den-

sity of magnetic �elds for the |12〉 → |9〉 Si:Bi ESR line. The spectra were simulated

as a function of B, using Equation (4.10) and centered about the 29Si nuclear Zee-

man frequency. Strikingly, as B approaches the OWP at 0.188 mT, the �comb� of

radio frequency hyper�ne lines narrows to little more than the width of a single line.

This suggests a drastic reduction in the value of the hyper�ne couplings, indicating

that the bismuth donor has become largely decoupled from the 29Si spin bath. Note

that as we see in Chapter 5, Chapter 6 and Chapter 7, the enhancement of coherence

times involves treatment of the qubit-bath entanglement and the fact that hyper�ne

couplings are reduced does not fully explain the suppression of decoherence. Nev-
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ertheless, this behaviour of collapse in the couplings does provide a spectroscopic

signature of OWPs or frequency-�eld extrema.

Figure 4.4: Simulated ENDOR at the B = 188.0 mT OWP (upper panel) and
experimental spectrum at 9.755 GHz (lower panel), for the |12〉 → |9〉 Si:Bi ESR
transition. Individual Gaussian �ts to the data and their sum are also shown in the
lower panel. Figure adapted from Balian et al. (2012).

The collapse in the hyper�ne couplings is illustrated further in Figure 4.4. The

lower panel shows the measured spectrum at 9.755 GHz. Using our experimentally

determined hyper�ne couplings, the corresponding spectrum at the OWP is shown in

the upper panel of Figure 4.4, demonstrating clearly the narrowing of the spectrum

[corresponding to the same parameters as Figure 4.3 but at the precise �eld value

of the OWP]. The spectra for a range of magnetic �elds is also shown in Figure 4.5,

including at the cancellation resonance points. The panels in Figure 4.5 can be

thought of as horizontal slices of the high-B-density plot in Figure 4.3, rotated to

show the intensity on the vertical axis. It can be seen clearly that the most signi�cant

suppression of the mostly isotropic couplings occurs near the OWP at B ' 188 mT.

In constructing the theoretical spectra in Figure 4.3, Figure 4.4 and Figure 4.5,

the various areas under Gaussian peaks and the FWHM ≈ 0.10 MHz shared by all

peaks were extracted from �tting to the |12〉 → |9〉 experimental spectrum. For

each coupling, the area of the lower frequency |12〉 peak was set equal to that of the

the higher frequency |9〉 peak. This was done in order to eliminate to some extent

the linear damping in intensity as the radio frequency is lowered in pulsed ENDOR
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(Schweiger and Jeschke, 2001). Finally, the extracted peak centres were shifted for

lower �elds according to Equation (4.10).
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Figure 4.5: Experimental (B = 0.4799 T, at ESR excitation frequency 9.75 GHz)
and extrapolated (simulated) ENDOR spectra for Si:Bi, for the |12〉 → |9〉 ESR
transition. Gaussian peaks were �tted to the experimental spectrum. The spectra
for B = 0.2114 T and B = 0.1586 correspond to the cancellation resonance for levels
|9〉 and |12〉 respectively. The B = 0.189 T spectrum is near the OWP. To construct
the theoretical spectra, Gaussians peak centres from the experimental spectrum were
shifted according to Equation (4.10) as the �eld B was varied.

It is worth mentioning that near df/dB = 0 points or OWPs, since Pu ' Pl, the

ENDOR frequencies for the two ESR levels in the case of isotropic peaks becomes

equal (Equation (4.10)), resulting in a single peak in the ENDOR spectrum for each

coupling.
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Figure 4.6: Dependence of the (aiso, T ) = (3.36± 0.03, 2.56± 0.03) MHz peak
(Belli et al., 2011) on the crystal orientation angle θ with and without the mixing
polarisation terms for the |12〉 → |9〉 ESR transition in Si:Bi. The �eld B = 0.4799 T
corresponds to 9.75 GHz. Fields B = 0.2114 T and B = 0.1586 T are at the
cancellation resonance for levels |9〉 and |12〉 respectively, and B = 0.1888 T is near
the OWP. The curves were obtained using Equation (4.9) in the case of mixing
included. For curves excluding mixing, the polarisation terms were �xed to ±1 at
all �elds in Equation (4.9).

4.4.2 Anisotropic Case

Figure 4.6 shows the theoretical θ dependence of the peak with (aiso, T ) = (3.36, 2.56)

MHz (Belli et al., 2011) as the �eld is lowered for the |12〉 → |9〉 transition, for the
two cases of allowing P (B) to vary with B (mixing included), and �xing |P (B)| = 1
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(unmixed). This anisotropic peak was identi�ed for the unmixed level |10〉 (Belli
et al., 2011). The results illustrate the signi�cance of the mixing term or polarisation

P (B) in causing the suppression of θ dependence, or equivalently the anisotropic

part of the hyper�ne coupling at �elds close to OWP.

4.5 Conclusion

In conclusion, we presented measurements of the hyper�ne couplings between a

hybrid qubit (bismuth donor) and a spin bath of 29Si impurities which suggest

that isotropic couplings dominate. In using pulsed ENDOR as opposed to CW, we

demonstrated the feasibility of 29Si nuclei as qubits. The decoherence of 29Si nuclei

is the topic of Chapter 8. We further demonstrated the suppression of couplings

in both cases of isotropic and anisotropic couplings, serving as a clear signature of

OWPs which are discussed in Chapter 5, Chapter 6 and Chapter 7. Our results

motivate both spectroscopic and decoherence measurements for the Si:Bi system in

the excitation frequency range 5− 7.5 GHz for ESR-type OWPs and around 1 GHz

for NMR-type ones (Figure 3.3).

We note that by using much higher-resolution CW ENDOR and by performing

experiments which adequately sample all crystal directions, it is possible to map

hyper�ne couplings to shells of 29Si with known positions from the donor site, as

was achieved for the Si:P system in Hale and Mieher (1969a) and Hale and Mieher

(1969b). However, this requires considerable experimental e�ort; also, as we shall

see in later chapters, hyper�ne couplings calculated using e�ective mass theory (Sec-

tion 2.4.3) su�ce to give coherence decays in excellent agreement with experiment.

Nevertheless, the order of magnitude and range of measured couplings agree with

the calculated values, and this give us con�dence in using the model described in

Section 2.4.3 for our decoherence studies of the hybrid qubit. Later in Chapter 8,

for decoherence of 29Si nuclear impurities, we propose a model which relies heavily

on symmetries of the electronic wavefunction, and thus would bene�t much more

from experimental `J → rn' mapping o�ered by CW studies.
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Hybrid Qubit

This chapter concerns the decoherence dynamics of the hybrid qubit. We investigate

the decoherence mechanism and calculate coherence times using the CCE for the

Hahn spin echo and single-spin FID. We also compare our results to experimental

coherence measurements. Although the Hahn spin echo is the lowest order CPMG

dynamical decoupling sequence, it is often the case that the shortest measured T2

times for solid-state systems are reported for this sequence (in order to remove

static magnetic �eld inhomogeneities as discussed in Section 2.2.2). Therefore, we

discuss the Hahn echo in the current chapter, and present higher-order dynamical

decoupling sequences (CPMGN , N > 1) in the next chapter.

We begin by describing our numerical method of calculating coherence times of

the hybrid qubit. We then present calculated coherence times for the hybrid qubit

at the forbidden transitions for which fast quantum control was demonstrated as

discussed in Chapter 3. These were the �rst CCE calculations taking into account

full quantum state-mixing of the central system for decoherence in a spin bath. The

calculations were performed and published in Morley et al. (2013) by S.J.B. with

supervision from Dr. Wayne Witzel at Sandia National Laboratories, USA. Prior

to these results, only weak state-mixing was investigated for Si:Bi in the unmixed

regime by varying an e�ective gyromagnetic ratio (≡ df/dB) as a function of B

(George et al., 2010). This treatment limited access to forbidden transitions. Also,

as we shall see below and found in Balian et al. (2014) which partly studies for

di�erences between spin bath and classical noise decoherence, e�ective gyromagnetic

ratio (or equivalently df/dB (Vion et al., 2002)) treatments do not reliable describe
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decoherence of the hybrid qubit in all regimes.

In Chapter 3, OWPs were introduced as �eld values corresponding to suppression

of decoherence in spin baths. Here, we present the �rst validation of OWPs as sweet-

spots, �rst published in Balian et al. (2012). We proceed to numerically calculate

coherence times across orders of magnitude variation as a function of magnetic

�eld B, and �nd excellent agreement with experiment in nearly all �eld regimes

(published in Balian et al. (2014)).

For the Hahn spin echo near OWPs, we �nd that in order to simulate coherence

times, one must consider clusters of three interacting spins within the many-body

quantum bath, since independent pairs do not even give �nite T2 decay times; i.e.

OWPs almost completely suppress decoherence driven by pair correlations. In all

regimes except for OWP regions for the Hahn spin echo and moderate CPMG (as we

shall see in Chapter 7), the usual independent pairs of �ip-�opping spins dominate.

This �nding formed the �rst part of our work published in Balian et al. (2015); the

other part concerns N > 1 dynamical decoupling and is the topic of Chapter 7.

5.1 Fitting Coherence Decays

Before presenting coherence calculations and measurements it is important to brie�y

discuss how T2 times are extracted from coherence decays. For high temperatures

(& 14 K), coherence decays for donors in silicon are exponential and limited by the

spin-lattice relaxation T1. For the lower, cryogenic, temperatures we consider the

coherence times are temperature independent and are well-�tted to a combination

of exponential and stretched exponential time decays:

S = exp

(
− t

T ′2
−
[
t

T2

]n)
. (5.1)

For the Hahn spin echo case, t = 2τ , where τ is the time either side of the refocusing

pulse. The stretched exponential part with time constant T2 in Equation (5.1)

characterises nuclear spin di�usion, and for this process, the exponent n is known

to be about 2 (Witzel et al., 2005), thus resulting in a near-Gaussian decay in
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coherence. In Equation (5.1), all other decoherence mechanisms, including those

arising from donor-donor interactions from measurements on an ensemble of donors,

are characterised by T ′2. Clearly, the shortest decoherence time is the limiting one.

Note that for a decay of form exp [−(t/T2)n], T2 is the time taken for the coherence

to drop to 1/e of its initial value and this holds ∀ n.

5.2 Numerical Method:

CCE with Central State Mixing

The CCE method was described in detail in Section 2.5. It is a well-established

method for accurately calculating the coherence decay L(t) of a central spin system

in a quantum spin bath (Yang and Liu, 2008a,b, 2009). The code for our imple-

mentation of the CCE is open-source and free to use under the GNU licence (see

Appendix A for details and how to cite). Here, we describe the method used to

calculated coherence decays of the hybrid qubit in a bath of 29Si impurities, using

our implementation of the CCE. We also present results which we use to estab-

lish numerical convergence of the coherence decays with respect to heuristic cluster

cut-o�s.

The CCE was applied for nuclear spin di�usion in a dipolar 29Si bath coupled

to the qubit via the hyper�ne interaction as described in Chapter 2. Importantly,

the central spin Hamiltonian did not include a bare electron with an e�ective gy-

romagnetic ratio taking account of mixing as in previous studies (George et al.,

2010). Instead, we used the full donor Hamiltonian Equation (3.1) in Chapter 3,

including electron-nuclear mixing. We did not include phonon-induced relaxation

e�ects in our simulations, as temperatures were cold enough such that T1 � T2.

Also, the donor concentration was much less than that of the 29Si nuclei and hence

donor-donor decoherence was expected to be on much longer timescales and hence

neglected in our studies.
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5.2.1 Initial State

For our simulations, crystal sites of a cubic silicon superlattice (see Appendix C

for details) were uniformly populated with 29Si nuclei (I = 1/2) with the natural

fractional abundance of 0.0467 and with equal probability of spin-up (|↑〉) and spin-

down (|↓〉) forming the pure product initial bath state. The size of the superlattice

giving convergent coherence decays was established as we describe below.

We assumed that the bath is not initially entangled with the bismuth donor.

The bismuth donor was then put into an equal superposition of the two eigenstates

being excited: |ψ(t0)〉 = 1√
2

(|u〉+ |l〉)⊗ |B(t0)〉.

5.2.2 Dynamics

For the closed dynamics of each reduced problem (i.e. for the bismuth donor and

cluster of bath spins), the total Hamiltonian comprised of nuclear Zeeman and dipo-

lar intra-bath interaction terms given in Equation (2.19) (assuming a secular dipolar

interaction (Section 2.4.2)), as well as the isotropic hyper�ne interaction in Equa-

tion (2.21). Such reduced problem Hamiltonians were decomposed to obtain the

free evolution operators Û(τ).

Note that in the CCE method, the pure dephasing approximation is not required,

and the interaction Hamiltonian in general includes terms which depolarise the states

of the central system. Our CCE calculations include the Ŝ−Î+ + Ŝ+Î− terms in the

hyper�ne interaction Hamiltonian Equation (2.21), but we �nd that these give small

corrections to the case when only Ŝz Îz terms are included. This was expected due

to the large mismatch between electronic and nuclear gyromagnetic ratios.

The mixed Zeeman basis of the hybrid qubit was employed as described in Chap-

ter 3. To save computational time, we note that in our implementation, the full

20-dimensional basis was truncated to exclude matrix elements which remain unin-

volved in the dynamics for all times. This is because the donor Hamiltonian is in

block diagonal form (of at most 2× 2 matrices) and only those Zeeman basis states

required to fully represent the two energy levels for the transitions are involved in the

dynamics. We note however for levels forming doublets, even for the simple Ising-
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only hyper�ne interaction involving only Ŝz-coupling, since 〈±,m| Ŝz |∓,m〉 6= 0,

the Zeeman states for the level with which the transition level forms a doublet are

also required. For example, if one of the levels in the transition is |+,m〉, then the

four Zeeman states |±1/2,m∓ 1/2〉 , |∓1/2,m± 1/2〉 are in general needed. Note

that for transitions between doublets adjacent in m (and assuming an Ising-only

interaction to the bath), four Zeeman states in total are required.

When including the non-Ising terms in the hyper�ne interaction, the 20 basis

states are strictly required. However, our numerical results show that (i) the e�ect

of the non-Ising term is negligible as mentioned above, and (ii) even if the non-Ising

term is included with the truncated basis above, the results are indistinguishable

from the case of including the full 20-dimensional basis with non-Ising terms. The

latter is indicative of the weakening perturbative e�ect of the non-Ising terms as an

increasing number of spin �ips are required to navigate into states far in m from

those involved in the transition.

To calculate the electron-bath hyper�ne couplings, we use the Kohn-Luttinger

electronic wavefunction for the bismuth donor in silicon with an ionization energy

of 0.069 eV as described in Section 2.4.3. Calculated qubit-bath couplings were of

the same order as those obtained from the data in Chapter 4. The experimental

data presented in Chapter 4 suggested that isotropic couplings to the bath domi-

nate; hence anisotropic couplings were neglected and the simulations were largely

insensitive to orientation (apart from the orientation dependence in the intra-bath

dipolar interaction).

In obtaining the 29Si�29Si dipolar terms it was assumed that the external mag-

netic �eld was large enough to conserve the total 29Si Zeeman energy, hence assuming

the secular dipolar approximation. The strength of the dipolar interaction was cal-

culated as shown in Section 2.4.2, with the magnetic �eld direction chosen to match

that in experiments with which we compare our calculated decays.

As for dynamical decoupling control (including the 1-pulse Hahn echo), we as-

sumed negligible duration of the π-pulse compared to the total evolution time and

applied instantaneous spin-�ip pulse(s). We note that for a spin system with more
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than a pair of energy eigenstates, the non-resonant states (i.e. |i 6= u, l〉) must re-
main unchanged when applying refocusing pulses. Therefore, the π-pulse operator

was taken as (|u〉 〈l| + |l〉 〈u| +∑n6=u,l |n〉 〈n|) ⊗ 1̂B, in which the sum includes the

other non-resonant eigenstates which can be formed in the Zeeman representation

of |u〉 and |l〉.
Finally, the �nal state is written as a density matrix and the partial trace over

the bath computed to recover the reduced density matrix of the central system.

The orthonormal basis used to perform the trace operation is formed of all possible

product states of the cluster bath. The o�-diagonal of the reduced density matrix

corresponds to the coherence as described in Chapter 1 and Chapter 2. The resulting

reducible coherences are then used in the CCE formalism as described in Section 2.5.

5.2.3 Cluster Heuristics and CCE Convergence

The total size of the spin bath is dictated by the spatial extent of the wavefunction

which decays exponentially with distance from the donor site, and a superlattice of

side length 160 Å (with 104 impurities) gives convergent coherence decays. Figure 5.1

shows convergence of the CCE as we increase the lattice space diagonal. The donor

was situated at the centre of a cubic superlattice of side length that was varied from

30 Å to 182 Å. Including spins outside the 160 Å cube had minor e�ect on the

coherence decays.

Due to cubic decay of the dipolar interaction as the distance between a pair of 29Si

spins is increased, it is not necessary to include all spin clusters in the calculation.

At the lowest non-trivial CCE order (CCE2),1 spins separated by at most the 4-th

nearest neighbor distance in silicon (
√

11a0/4, where a0 = 5.43 Å) are enough to

give convergent decays (provided the CCE converges at the two-cluster level with

respect to cluster size). Convergence in the separation cut-o� as it is increased from

the nearest neighbour to the 3rd nearest neighbour distance are shown in Figure 5.2.

To choose three-clusters (i.e. including clusters of three bath spins), we loop

over all sites in the crystal and add to each two-cluster only those spins that are at

1One-cluster contributions (CCE1) have a minor modulation e�ect on the spin echo decay and
were not included in our CCE simulations.
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most separated by
√

11a0/4 from any of the two spins in the two-cluster. The same

procedure was applied to choose higher-order clusters, by adding spins to clusters

one order down. The numbers of 2, 3, 4, and 5-clusters found with these heuristic

cut-o�s are each of order ≈ 104. The total computational time taken to diagonalise

all these reduced problems is at most about a day on a desktop machine for a single

initial bath state, with the most intensive (CCE5) of our calculations.2
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Figure 5.1: Convergence of the two-cluster correlation expansion for spin echo
decays in Si:Bi at 4 GHz with respect to the superlattice size. Pairs of 29Si nuclei
with separations up to the 3rd nearest neighbour distance in the silicon lattice were
included in the calculation. The error bars are the standard deviation of the mean
intensity after 100 random spatial and initial state con�gurations of 29Si nuclei, and
the external magnetic �eld was chosen to be B = 0.3446 T so the |11〉 → |10〉 Si:Bi
transition was excited. Figure adapted from Morley et al. (2013).

5.2.4 Initial State Averaging

Finally, in order to simulate multiple experimental runs on the same spatial bath

con�guration (time-average), the coherence calculated for each reduced problem

can be solved for all the non-interacting bath eigenstates in the cluster and the

results averaged. This e�ect can also be simulated by applying the CCE to di�erent

random con�gurations of initial bath state (i.e. random sampling from the thermal

2We note that calculations using all 20 levels of Si:Bi take much longer.
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Figure 5.2: Convergence of the two-cluster correlation expansion for spin echo
decays in Si:Bi at 4 GHz with respect to the pair-separation cut-o�. The maximum
distance between paired 29Si nuclei is increased by pairing 1st, 2nd and 3rd nearest
neighbours. Convergence is achieved for the 3rd nearest neighbors. The 1st, 2nd and
3rd nearest neighbour separations in the silicon lattice are
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respectively, with a0 = 5.43 Å. The results are compared for a range of lattice sizes.
The error bars are the standard deviation of the mean intensity after 100 random
spatial and initial state con�gurations of 29Si nuclei, and the external magnetic �eld
was chosen to be B = 0.3446 T so the |11〉 → |10〉 Si:Bi transition was excited.
Figure adapted from Morley et al. (2013).

ensemble) and obtaining the mean over these results. However, this method takes

longer computational time. Also, for measurements on an ensemble of qubits, the

results should be averaged over di�erent spatial as well as initial state con�gurations

of the bath. However, we note that the di�erences in coherence between the di�erent

averages are not signi�cant for the large spin baths we consider.

Note that all these averages are over the complex coherence (coherent averag-

ing); the real and imaginary parts of the coherence correspond to orthogonal axes

of the in-plane magnetisation. The modulus of the coherence should strictly only be

taken at the end of the calculation. Nevertheless, applying the modulus to coher-

ences before averaging (incoherent averaging) does not signi�cantly a�ect the decays.

Before discussing coherence times near OWPs, we begin by presenting our simu-

lations of T2 for the hybrid qubit at S-band frequencies, where fast quantum control
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was experimentally demonstrated in Chapter 3.

5.3 Coherence Times at Forbidden Transitions

In this section, we present calculated coherence times of the hybrid qubit in natural

silicon at S-band ESR excitation frequency (f ≈ 4 GHz) where fast Rabi oscillations

were demonstrated as described in Chapter 3 for the forbidden transition of Si:Bi.

Importantly, our CCE calculations enabled us to attribute the dominant deco-

herence mechanism for the hybrid qubit at S-band to nuclear spin di�usion from the

spin bath of 29Si nuclear impurities. We compare our simulations with experimental

data and establish a coherence time which can be up to �ve orders of magnitude

longer than the qubit manipulation time in this regime.

5.3.1 Numerical Results

The calculated decays are shown in Figure 5.3 as solid lines. We �tted the decays

with the same function as used for �tting to the experimental data (Equation (5.1)),

and an e�ectively in�nite T ′2 (over 1018 s) was obtained, indicating the lack of an

exponential component (this was expected as donor-donor processes were ignored

in our calculations). The values for the exponent n were obtained as 2.25 for the

|10〉 → |9〉 transition and 2.28 for the |11〉 → |10〉 transition with standard errors on

the �ts of ±0.01; the values of the exponent are in agreement with those obtained

for nuclear spin di�usion in previous studies (Witzel et al., 2005). As for the T2

values, these were 0.314 ± 0.0005 ms for |11〉 → |10〉 and 0.340 ± 0.0007 ms for

|10〉 → |9〉(using the standard errors on the �ts). The value of T2 for the |11〉 → |10〉
transition is slightly shorter than for the |10〉 → |9〉 and we attribute this trend to

the smaller gradient df/dB for the |10〉 → |9〉 transition.

5.3.2 Comparison with Experiment

Our CCE decays are shown in Figure 5.3 and compared to experimental Hahn spin

echo decays at S-band. The CCE simulations had no free parameters extracted
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Figure 5.3: Example spin-echo coherence decays measured for both Si:Bi transitions
at 4 GHz, with a temperature of 10 K. The echo coherence decay is limited by 29Si
nuclear spins, as parameterized by T2 in the �tting function exp (−t/T ′2 − tn/T n2 ),
where T ′2 is the spin coherence time expected after isotopic enrichment. The expo-
nent n was used as a �tting parameter. The smooth thin lines are these �ts whereas
the smooth thick lines show a simulation with no free parameters using the cluster
correlation expansion. This shows that 29Si impurities dominate the spin decoher-
ence. The thickness of the line is of the order of the standard deviation of the
mean intensities after 100 random spatial con�gurations of 29Si nuclei. As discussed
in Chapter 2, the refocusing π-pulse removes static magnetic �eld noise from 29Si
couplings to the qubit. The magnetic �eld direction was perpendicular to the [111]
crystal direction. Figure adapted from Morley et al. (2013).

from the experiment, thus demonstrating that 29Si impurities dominate the spin

echo decay at low temperatures. Values for the exponent from �ts to experimental

data are shown in Figure 5.4 and are in agreement with the expected nuclear spin

di�usion n of near-Gaussian (n ' 2). The small discrepancies between theory

and experiment are expected to be mainly due to ignoring possibly undiscovered

sources of decoherence in the simulation and limited knowledge of the donor electron

wavefunction. The experimental coherence times also show the expected trend due

to df/dB.
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Figure 5.4: Dependence of the �tting exponent n on temperature, showing the
expected range of n ≈ 2 expected for nuclear spin di�usion. Figure adapted from
Morley et al. (2013).

5.3.3 Discussion

Measured coherence times in natural silicon, including those extracted from the

experimental decay curves in Figure 5.3, are shown in Figure 5.5 as a function of

temperature. It can be seen that T2 can reach 0.4 ms, in good agreement with the

predicted theoretical values above, while T ′2 can be about 4 ms. There are no OWPs

in this region for the hybrid qubit, and hence no signi�cant enhancement of T2.

Therefore, the best strategy possible is to use isotopic enrichment to reach the 4 ms

coherence time.

It is important to note that if the hybrid qubit was approximated as a simple spin-

1/2 with an e�ective �eld-dependent gyromagnetic ratio as in George et al. (2010),

it would not be possible to obtain coherence decays for the forbidden transition

|10〉 → |9〉.
The S-band coherence measurements were performed by Dr. Petra Lueders, Dr.

Gavin Morley and Dr. Hamed Mohammady at ETH Zurich.
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Figure 5.5: Coherence times of hybrid electron-nuclear qubits as a function of
temperature for both resonances at 4 GHz with previously published data at 10
GHz (Morley et al., 2010) for comparison. The 4 GHz spin-lattice relaxation rates
are 1/T1. The error bars show the standard errors, which are in many cases smaller
than the symbol. Figure adapted from Morley et al. (2013).

5.4 Coherence Times at Optimal Working Points

As introduced in Chapter 1, the OWPs of the hybrid qubit we consider are those

near where there is suppression of decoherence from spin bath environments. OWPs

can be understood by considering the qubit-bath entanglement and the back-action

of the qubit on the environment.

5.4.1 Loss of Which-Way Information

OWPs correspond to B-�eld values where the unitaries associated with the upper

and lower central qubit states equalise: T̂l ' T̂u, occurring when Pu ' Pl as found in

Balian et al. (2014). This means that the combined qubit-bath state after evolution

following a π/2-pulse (Equation (2.17)) can now be written as

|ψ(t)〉 =
1√
2

(
e−iEut |u〉+ e−iElt |l〉)⊗ T̂u(t) |B(0)〉 , (5.2)
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with the product form preserved (assuming pure dephasing). Crucially, the state is

no longer entangled and the `which-way' information in the environment or the back-

action of the central qubit on the environment is minimal. Therefore, entanglement-

induced (quantum bath) decoherence is suppressed:

|L(t)| = |〈B(0)|T̂ †u(t)T̂u(t)|B(0)〉| = |〈B(0)|1̂|B(0)〉| = 1. (5.3)

In practical realisations, OWPs have become closely associated with �eld values

where the frequency-�eld gradient df/dB = 0 (Wolfowicz et al., 2013) or `clock

transitions'. However, for donor spin systems, the OWP is close to but not exactly

at the df/dB = 0 point, and not all df/dB = 0 points are OWPs as shown in Balian

et al. (2014). In the latter, it was also shown that it is not possible to �t functional

forms of df/dB to describe the coherence T2(B) for all B.
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Figure 5.6: Suppression of spin bath decoherence near OWPs of the hybrid qubit
in a nuclear spin bath (natSi:Bi). Figure was adapted from Balian et al. (2014).
Each dot represents the T2 extracted from coherence decays obtained using the
cluster correlation expansion (CCE). The coherence times are the Hahn spin echo
T2, and near the OWPs, these were extracted from the short-time behaviour of CCE2
decays, since pair correlations are strongly suppressed on the actual timescale of T2

near OWPs. Such short-time T2 times are in agreement with those obtained from
full decays of the converged CCE3 near OWPs established in Balian et al. (2015)
(see Section 5.4.3 for details).
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Figure 5.7: Suppression of Bi-29Si spin bath decoherence for the |12〉 → |9〉 ESR
transition. Simulated ENDOR and nuclear spin di�usion coherence times T2 (Hahn
echo) as a function of magnetic �eld B, showing collapse of the hyper�ne couplings
and a sharp increase in T2 as the �eld approaches the B = 188.0 mT optimal working
point (OWP). The dashed line is a �t. Figure adapted from Balian et al. (2012).
Coherence times in the OWP region were extracted from the short-time behaviour
of CCE2 (Details are given in Section 5.4.3).

5.4.2 Suppression of Nuclear Spin Di�usion

In this section, we present numerical CCE calculations showing enhancement of the

spin di�usion coherence time T2 at an OWP (Balian et al., 2012, 2014). The orders

of magnitude enhancement for coherence times at two OWPs of the hybrid qubit is

illustrated in Figure 5.6.

The CCE simulations were performed for the |12〉 → |9〉 and |12〉 → |11〉 Si:Bi
transitions. Once again, low temperatures were assumed and hence phonon-induced

relaxation e�ects ignored. We also assumed that the donor concentration was low

such that the decoherence was dominated by nuclear spin di�usion from the 29Si

spin-1/2 bath and not by donor-donor processes.

Figure 5.7 which shows the behaviour around the B = 188.0 mT OWP associated

with the |12〉 → |9〉 transition, superposed on the colour map of the qubit-bath

hyper�ne spectrum (Figure 4.3). The behaviour of T2 was striking and unexpected:
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Figure 5.8: Calculated donor Hahn spin echo decays from which coherence times
in Figure 5.7 were extracted. Figure adapted from Balian et al. (2012). Decays are
for CCE2 (Hahn echo), shown here for short times. For converged decays near the
OWP see Section 5.4.3.

The coherence time predicted by CCE simulations increases asymptotically at the

OWP. Away from the OWP, the results agree well with experimentally measured

values of approximately 0.7 ms (George et al., 2010). In George et al. (2010), in

a regime of weak state-mixing, simulations using an e�ective gyromagnetic ratio

indicated that T2 was slightly reduced (by about 5%) in a regime corresponding

far from the OWP (but with some weak df/dB variation). These results, on the

other hand (which in contrast to George et al. (2010) employed a full treatment of

the quantum eigenstate mixing) show rather an e�ect very sharply peaked about

the OWP: Nuclear spin di�usion is predicted to be largely suppressed, but over an

extremely narrow magnetic �eld range.

Figure 5.8 shows a sample of CCE spin echo decays from which the T2 times in

Figure 5.7 were extracted, and also serves to further illustrate the sharp increase

in T2. Similar suppression is present for other OWPs in Si:Bi. OWPs are also

expected to lead to suppression of decoherence arising from the interaction with a

bath of donors (Mohammady et al., 2010).

The calculated coherence decays in Figure 5.7 and Figure 5.8 are the average
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over 100 initial spatial con�gurations of 29Si.

5.4.3 Many-Body Correlations

101 102

Time (ms)

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

CCE2
CCE3
CCE4
CCE5
Analytical
FID

10-1 100 101

Time (ms)

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

1 10
0.85

0.90

0.95

1.00

CCE2
CCE3
CCE4
CCE5
Analytical
FID

(a) OWP: BOWP-B = 4 G (b) ≠OWP: B = 3200 G

Figure 5.9: Shows quantum many-body calculations of the Hahn spin echo using
the cluster correlation expansion (CCE) method. (a) Near OWPs, calculations
using a bath of independent spin pairs only (red, CCE2) do not even predict a
�nite decay time but, surprisingly, calculations with clusters of three spins (blue,
CCE3) are already well-converged. The dashed lines used a closed-form equation
derived from the short time behaviour, found in Balian et al. (2014) to yield good
agreement with experiments; this indicates that three-cluster results too give good
agreement with measurements. The formula is discussed in Chapter 6. Higher order
CCE can encounter numerical divergences (which can be attenuated by ensemble
averaging); this accounts for the discrepancies with CCE5. (b) Far from the OWP,
independent pairs (CCE2) already give results in good agreement with CCE3-5 as
well as experiments. The single-spin free induction decay (FID) is also shown for
comparison. Note that the analytical formula approximates the decay by a pure
Gaussian. CCE calculations were performed for a bismuth donor in natural silicon
for B along [100] and the |14〉 → |7〉 transition for which BOWP = 799 G. In (a),
B = 795 G while for (b), B = 3200 G. Figure adapted from Balian et al. (2015).

In the high-�eld regime of the hybrid qubit where the state-mixing is weak, CCE2

or the pair-correlation approximation is a good approximation to the coherence when

considering only dipolar interactions in the bath a�ecting the spin echo, as these are

at most a few kHz and hence perturbative compared to the hyper�ne interactions

in the MHz range involving the donor electron. Experimental Hahn echo decays are

well predicted by CCE2 in these regimes or for simple spin-1/2 qubits without OWPs

(Witzel and Das Sarma, 2006). However, this argument does not hold in regions

close to an OWP as seen in Chapter 4 where the collapse of hyper�ne couplings

to the bath was demonstrated. In the vicinity of the OWPs (where Pu ' Pl), the
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CCE2 Hahn echo decay fails to converge at all times and no decays can be obtained

other than initially, for a short time.3

We �nd that to simulate recently measured Hahn echo decays at OWPs (lowest-

order dynamical decoupling), one must consider clusters of three interacting spins,

since independent pairs of bath spins (pair correlations) do not even give �nite T2

decay times. The CCE2 Hahn echo results (for all t) are at odds with experiment

since they predict in�nite coherence times (Balian et al., 2014). As mentioned above,

coherences decay initially, then after a short time, the decays stop.

In order to clarify the origin of the measured coherence decays, we employ quan-

tum many-body simulations of the system-bath dynamics using the CCE including

contributions from clusters of up to 5 spins (CCE5). The CCE3 − 5 many-body

calculations we undertake are signi�cantly more computationally challenging than

CCE2 or pair correlation calculations. The converged numerical results are pre-

sented in Figure 5.9 both near and far an OWP of Si:Bi for the Hahn spin echo, the

latter denoted 6̀=OWP'. We show that including three-spin clusters (CCE3) gives

converged results while qubit-bath correlations from only spin pairs (CCE2) give

little decay (red line) except at short timescales. The three-spin clusters su�ce to

give decays in good agreement with experimental results (Wolfowicz et al., 2013).

Importantly, it can also be seen that all orders have similar short time behaviour and

that the inclusion of the three-clusters in e�ect recovers the short time behaviour

of the pair decays. Hence, the short time behaviour of the pair correlation decay is

su�cient to establish an order-of-magnitude estimate of T2.

It is worth clarifying the physical meaning of the above-mentioned three-cluster

result. It is not a matter of enlarging the quantum bath with additional nuclear spin

clusters of the same size. As illustrated in Figure 2.5, a three-spin cluster (blue)

can be decomposed into three distinct �ip-�opping pairs (each nuclear spin can

contribute to more than one �ip-�opping pair). Put simply, if all such three-clusters

in a given, randomly generated set of impurities in a crystal are decomposed into

the constituent �ip-�opping pairs, an in�nite decay time is obtained. If, however,

3Single-central spin free induction decay (FID), in contrast, gives �nite decays at all magnetic
�elds and is discussed in Chapter 6.

123



CHAPTER 5. COHERENCE TIMES OF HYBRID QUBIT

the exact same con�guration of spin impurities are aggregated into the `triangle'

structures illustrated in Figure 2.5, the correct experimental behaviour emerges. To

our knowledge, there is no other example of a central spin system which so fully

eliminates the pair-driven dynamics.

5.4.4 Comparison with Experiments

We compare our CCE simulations (short-time CCE2 Hahn echo) with experiment

across a broad range of magnetic �elds and transitions in Figure 5.10; for ESR-

type transitions in the high-�eld and OWP regions (�lled symbols) and NMR-type

transition (empty symbols) where T2 varies by orders of magnitude. The measured

values are in excellent agreement with the CCE calculations.

Measurements were made at 4.8 K using ESR with a microwave frequency of

9.77 or 7.03 GHz (�lled symbols), or electron-nuclear double resonance (ENDOR)

between 200 MHz and 1 GHz using the method described in Morton et al. (2008)

(empty symbols), at magnetic �elds between 100 and 450 mT. The experiments were

performed by Dr. Gary Wolfowicz at UCL under supervision from Professor John

Morton.
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Figure 5.10: Comparison between theoretically predicted and measured T2 in
natSi:Bi for various transitions, showing remarkable agreement across a wide range
of mixing regimes � magnetic �elds and transitions quanti�ed by |Pu − Pl|. The Bi
donor concentration was ≤ 1016 cm−3, and decoherence times are limited by 29Si
spin di�usion. Figure adapted from Balian et al. (2014).

As shown in Figure 5.6, T2 varies sharply with magnetic �eld over a small region
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of B; especially for ESR-type OWPs (corresponding to an order of magnitude over a

few G). Therefore, for direct quantitative comparisons between the calculations and

experimental ensemble measurements, inhomogeneous broadening due to 29Si, which

has full width at half maximum (FWHM) of about 4 G in natural silicon, might

also have to be considered. This e�ect is not only important for predicting the rate

of experimental decays but also their shape. The broadening can be simulated by

convolving the calculated decays LB(t) with a Gaussian magnetic �eld distribution

with standard deviation w ' 2 G:

DB(t) =
1

w
√

2π

∫
e
−(B−B′)2

2w2 LB(t)dB′. (5.4)

The ESR-type OWP point in Figure 5.10 (the �rst data point where Pu is closest

to Pl), is the result of the convolution (with B = BOWP) shown in Figure 5.11, in

good agreement with experiment. The long-time discrepancy is probably due to

the fact that the individual theoretical decays were obtained using the short-time

behaviour of CCE2.
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Figure 5.11: Calculations convolved with Gaussian B-�eld distribution of width
0.42 mT (arising from inhomogeneous broadening from the nuclear spin bath) show
an excellent �t with the experimental Hahn echo decay around an ESR-type OWP
(B ∼ 80 mT), with no free �t parameters. Figure adapted from Balian et al. (2014)
and the experimental data was �rst published in Wolfowicz et al. (2013).
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5.4.5 Angular Dependence
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Figure 5.12: Angular dependence of T2 for an ESR transition of Si:Bi. Rotation was
performed about the [112] axis in the [110] - [111] plane with θ from [110]. The best
match to experiment was obtained for a 5◦ tilt in the rotation axis and a zero-o�set
of 20◦. Figure adapted from Balian et al. (2014).

The strength of the dipolar interaction C12 depends on the angle between the

vector joining the interacting spins and the direction of the magnetic �eld B as

discussed in Section 2.4.2. As a result, T2 varies with the orientation of the crystal

sample relative to B (de Sousa and Das Sarma, 2003b; Witzel and Das Sarma, 2006;

Tyryshkin et al., 2006; George et al., 2010).

T2 was measured as a function of crystal orientation as shown in Figure 5.12.

X-ray di�raction using the back-re�ection Laue technique showed the rotation axis

to be close to [112]. The external magnetic �eld is in the rotation plane, de�ned by

the angle θ such that θ = 0◦ and θ = 90◦ correspond to the �eld parallel to [110]

and [111] respectively. However, there are experimental uncertainties in both the

initial angle θ = 0◦ and the position of the rotation axis. In order to determine the

best crystal orientation to use in the simulations, CCE calculations as a function of

orientation were compared with experimental measurements as shown in Figure 5.12.

The best match to experiment was obtained for the rotation axis tilted about [111]

by 5◦ from [112], and a 20◦ shift in θ.

All the points in Figure 5.10 used θ = 135◦, except for the �rst point correspond-

ing to the ESR-type OWP (smallest polarisation di�erence). A di�erent sample with
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the �eld aligned along [011] was used for the latter point. The bismuth donor con-

centration of the ESR-type OWP point was also di�erent ([Bi] = 1016 cm−3) from

the rest of the points ([Bi] = 3 × 1015 cm−3). The di�erence in [Bi] is not ex-

pected to a�ect coherence times in the regimes studied, which are not dominated

by donor-donor e�ects.

5.4.6 Quantum Bath vs. Classical Noise
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Figure 5.13: Shows that the hybrid qubit coherence time as a function of magnetic
�eld (T2(B)) is not necessarily inversely proportional to the frequency-�eld gradient
df/dB. Red solid line is T2 calculated using the cluster correlation expansion (CCE);
black dotted-dashed line is T2 ∝ 1/(df/dB). (a) T2(B) around a typical ESR-type
`optimal working point' (OWP) of Si:Bi cannot be �tted by df/dB, except locally.
The df/dB lines have been rescaled to �t either the OWP region or the asymptotic
regions; they cannot �t both. The blue dashed lines are calculated using the closed-
form formula described in Chapter 6. (b) The single NMR-type `clock transition'
(CT) of Si:As at B ' 0.39 T (where df/dB = 0), exempli�es a CT which is not an
OWP (i.e. there is no enhancement in T2). Si:Bi also has such CTs. Calculations
were performed for the natural abundance of 29Si (4.67%). Figure adapted from an
earlier version of Balian et al. (2014) (arXiv:1302.1709v3 [cond-mat.mes-hall] (2013)
).

Classical noise models relate coherence times as a function of B to various orders

and powers of df/dB (Vion et al., 2002; Ithier et al., 2005; Martinis et al., 2003;

Mohammady et al., 2012; Wolfowicz et al., 2012, 2013):

(T2(B))−1 = C

{
df(B)

dB
,

(
df(B)

dB

)2

, . . . ,
d2f(B)

dB2
,

(
d2f(B)

dB2

)2

, . . .

}
, (5.5)
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where C is a �eld-independent constant which in general depends on the central

spin, bath and interaction Hamiltonians. The simplest of these is T2 ∝ 1/(df/dB).

This treatment provides an intuitive interpretation of sweet-spots where df/dB ' 0;

changes in the central-state splitting ∆f are insensitive to changes in magnetic �eld

�uctuations ∆B and hence the initial superposition of the qubit has enhanced pro-

tection from noise. This argument is valid for random classical noise such as instru-

ment noise. However, for the case of ∆B arising from a quantum spin environment,

we �nd that df/dB cannot account for the global B dependence of T2. This is il-

lustrated for Si:Bi in Figure 5.13(a). It is only possible to �t 1/(df/dB) locally (for

some B range, but not all B) to CCE T2(B) curves.

Also shown in Figure 5.13 is that while some of the OWPs are coincident with

CTs where df/dB → 0, others (in particular the NMR-type OWPs) are not; such

as the CT for Si:As in Figure 5.13(b). The reason for this deviation is that Ĥint

di�ers from a magnetic �eld-type term (∝ (Sz + δXI
z
X)). In other words, while Ĥint

determines the form of the interaction between the central spin system and the bath,

it is ĤCS which determines df/dB. If Ĥint and ĤCS are of di�erent form, then clock

transitions are not OWPs. In the case of nuclear spin di�usion for Si:Bi systems, for

B ∼ 1 T, there is still su�cient mixing between the electronic and nuclear degrees of

freedom so that it is the contact hyper�ne interaction (∝ Sz and not ∝ (Sz+δXI
z
X))

which dominates the e�ect of Ĥint, thus we may neglect the interaction between the

bismuth nuclear spin and the bath, even for NMR-type transitions. However, in this

range, the nuclear Zeeman term contributes signi�cantly to df/dB for NMR-type

transitions (see Equation (3.20) for an exact expression for df/dB).

5.5 Conclusion

In summary, we presented coherence times of the hybrid qubit in the natural silicon

spin bath, calculated using the CCE, and in numerous parameter regimes; these are

for magnetic �elds near and far from OWPs (the latter in the unmixed regime),

both for ESR-type and NMR-type transitions (Balian et al., 2014, 2015), and also

for ESR-forbidden transitions (Morley et al., 2013). In all cases, our numerical
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calculations are in good agreement with experiments.

The coherence times we reported for the hybrid qubit at S-band forbidden tran-

sitions (Morley et al., 2013) can be longer than those of the pure electron but

are shorter than for the case of a nucleus. The coherence times are �ve orders of

magnitude longer than the timescale for manipulation (32 ns manipulation time as

described in Chapter 3). Without OWPs, the relevant coherence time for quantum

computation with the hybrid qubit is the shortest one; that of the pure electron spin.

The longest qubit manipulation time is that of the pure nucleus and dominates the

time taken for a quantum computation. Thus, the hybrid qubit at S-band o�ers the

possibility of preventing the `worst of both worlds': the limiting coherence time is

at least as long while the manipulation time is enhanced by orders of magnitude.

We further presented the �rst demonstration of suppression of spin bath decoher-

ence at OWPs (Balian et al., 2012), later veri�ed by experiments (Wolfowicz et al.,

2013; Balian et al., 2014). Near an ESR-type OWP, coherence times of the hybrid

qubit in natural silicon are increased from about 0.5 ms to 100 ms. Here, quantum

control can also be achieved with fast ns pulses, as the transition matrix element is

primarily electronic.

An underlying question of physical interest is when decoherence is the result of

the magnetic noise from independently �ip-�opping pairs of spins and when consid-

eration of the many-body nature of the quantum bath is important. The answer

is also of use for practical reasons. For one, if decoherence is due to �ip-�opping

pairs, there are widely used models (such as the analytical pseudospin expressions

in Chapter 6) which can be used to accurately calculate decays. Otherwise, more

complex many-body numerics become essential to simulate and fully understand

experimental behaviours. The clear result is that for the Hahn spin echo (and also

for low to moderate pulsed dynamical decoupling as will be seen in Chapter 7), the

elimination of correlations from independent pairs is so drastic at OWPs, that many-

body numerics (CCE3) is almost indispensable for full understanding and accuracy

(Balian et al., 2015).

In summary, for the FID and Hahn spin echo, the latter in regions away from
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OWPs, pair correlations give converged coherence decays and hence a reliable T2 can

be extracted. Near OWPs, the Hahn echo only decays for an initial time period much

shorter than the timescale of T2, however, extrapolating the short-time behaviour

for long times gives the correct timescale. The experiments we compare to are all

for the Hahn echo, and the short-time pair correlations give the correct T2. We

�nd that up to three spin clusters are needed to achieve converged CCE Hahn echo

decays near OWPs. These higher-order CCE results are in agreement with our pair

correlation results for the short-time Hahn (and the analytical formula described in

Chapter 6).

Finally, we illustrated the signi�cant di�erences between decoherence from clas-

sical �eld noise and quantum bath decoherence by comparing our CCE calculations

to df/dB models (Balian et al., 2014). The content we present in the next chapter

further illustrates such di�erences and clear signatures of quantum bath decoher-

ence, by analysing pair correlations and deriving a closed-form T2 formula for the

hybrid qubit in a nuclear spin bath.
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and T2 Formula

In this chapter, we present a derivation for a closed-form T2 formula for nuclear spin

di�usion of the hybrid qubit, �rst published in Balian et al. (2014). The formula also

clari�es signi�cant di�erences between decoherence driven by classical �eld noise

and quantum bath decoherence. In order to obtain the formula, we analyse the

pair correlations for the single-spin FID case. We then numerically establish the

relationship between the Hahn spin echo and single-spin FID, scaling the formula to

account for the Hahn spin echo case and compare its predictions with experiments

for the Hahn spin echo.

The formula also clearly exposes qualitative di�erences between decoherence

driven by a quantum spin bath and decoherence due to classical magnetic �eld

�uctuations. We derive the formula by showing that the spin dynamics separate

naturally into terms acting on very di�erent timescales. The formula is valid for the

hybrid qubit in both the mixed and unmixed regimes, the latter corresponding to a

bare electron spin. The coherence time is given as a function of the polarisation (for

each level and as described in Chapter 3) which quanti�es the mixing as a simple

analytical function of B. The formula is

T u→l2 (B, θ) ' C(θ)
|Pu(B)|+ |Pl(B)|
|Pu(B)− Pl(B)| , (6.1)

written for a transition |u〉 → |l〉 at magnetic �eld B. The constant, C(θ), depends

only on magnetic �eld orientation, the density of nuclear spin impurities and their

gyromagnetic ratio. Equation (6.1) is shown to give excellent agreement with CCE
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numerics and experimental data for both ESR-type and NMR-type transitions near

and far from OWP regimes.

6.1 Hybrid Pseudospins

Figure 6.1: Illustration of the evolution of the bath states in the Hilbert space
spanned by {|↑↓〉 , |↓↑〉} under the in�uence of their dipole coupling (C12) and their
mutual detuning δJ caused by interaction with the central spin. Figure adapted
from Balian et al. (2014).

In order to investigate the suppression of decoherence at OWPs and also for �elds

and transitions far from OWPs, here we analyse only pair correlations which can be

treated as independent pseudospins as explained in Section 2.5.5. For the case of

the FID at all magnetic �elds and in unmixed regimes far from OWPs for both the

FID and Hahn spin echo, CCE2 gives convergent decays and so an analysis based

on pseudospins is fully justi�ed. Near OWPs however, the Hahn spin echo only

decays for some initial time and higher-order numerics are needed for converged

decays as was shown in Chapter 5. However, the initial decay of the Hahn echo

gives a good indication of the T2 timescale. All our pseudospin results agree with

experimental measurements of T2 for the Hahn echo near OWPs in this early-decay

approximation.

6.1.1 Interaction and Bath Hamiltonians

For donors spin qubits in silicon, one may assume HCS � Hbath and thus ignore

non-secular terms in Ĥint. The interaction Hamiltonian Equation (2.21) for the n-th
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pair reduces to Ising form:

Ĥ
(n)
int =

∑
a=1,2

J (n)
a Ŝz Îzi , (6.2)

with Fermi contact hyper�ne coupling strengths J (n)
a . For the two interacting spin-

1/2 bath spins, assuming a large magnetic �eld and thus keeping only energy con-

serving terms, the dipolar interaction in Equation (2.19) simpli�es to

Ĥ
(n)
bath = C

(n)
12 Î

z
1 Î

z
2 − C

(n)
12

4
(Î+

1 Î
−
2 + Î−1 Î

+
2 ) (6.3)

where C(n)
12 is the strength of the dipolar coupling between the two bath spins for

pair n. Zeeman terms are also excluded from Ĥ
(n)
bath as these do not contribute to

decoherence. Neglecting the e�ect of Ĥint on the mixing of the central spin states,

the dynamics is governed by ĥ(n)
i (conditional on the state of the central spin):

ĥ
(n)
i ≡ 〈i| (Ĥ(n)

int + Ĥ
(n)
bath) |i〉 = −C12

4
1̂− 1

4
σ̂ ·H(n)

i , (6.4)

where the e�ective �eld is H
(n)
i = [C

(n)
12 , 0, Piδ

(n)
J ]. Here, δ(n)

J ≡ (J
(n)
1 − J (n)

2 ) is the

di�erence in hyper�ne couplings to the bath while σ̂ is the vector of Pauli matrices

acting on the bath basis {|↓↑〉 ≡ |↓〉⊗|↑〉 , |↑↓〉 ≡ |↑〉⊗|↓〉} and |↑〉 and |↓〉 denote the
nuclear spin-1/2 Zeeman states. The identity term is dynamically uninteresting; the

dynamics can in fact be considered simply as a precession about H
(n)
i . Diagonalising

the Hamiltonians in Equation (6.4) gives the pseudospin precession rates

ω
(n)
i =

1

4

√
(C

(n)
12 )2 + (Piδ

(n)
J )2, (6.5)

while the angle of H
(n)
i from the z-axis is

θ
(n)
i = tan−1 [C

(n)
12 /(Piδ

(n)
J )]. (6.6)

The pseudospins are illustrated in Figure 6.1.

For the hybrid qubit, the pseudospin dynamics is in most respects, quite sim-
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ilar to those investigated previously for electron (unmixed) qubits (Yang and Liu,

2008a,b, 2009; Yao et al., 2006, 2007; Liu et al., 2007; Zhao et al., 2012a). However,

the main di�erence is that for our case, the hybrid pseudospins have the electron

z-projection Ŝz replaced by the polarisation term Pi ≡ 2 〈i| Ŝz |i〉. While for an

electron, Pi = ±1 is a constant, for mixed systems the Pi(B) are strongly �eld-

dependent. The pseudospin analysis is framed in the pure dephasing approximation

and hence requires that the interaction Hamiltonian has negligible e�ect on the

mixing of the central spin states themselves, i.e. on Pi. Since HCS � Hint, this is

the case except extremely close to OWPs, where T2 becomes extremely sensitive to

small �uctuations in Pi.

6.2 Derivation of T2 Formula

We employ an analysis of the hybrid pseudospins and a range of other approxima-

tions described below to derive the formula. The analysis also provides an intuitive

picture of the system-bath dynamics, especially with respect to the magnetic �eld

approaching an OWP and far from it, and also for NMR-type and ESR-type tran-

sitions.

6.2.1 Short-Time Behaviour

The n-th cluster decay for a single spin pair n has been investigated analytically

for both the FID and Hahn echo case (Yao et al., 2006; Zhao et al., 2012a; Witzel

et al., 2005). We emphasize that this is the single-spin FID without inhomogeneous

broadening. In experiment, T2 is normally measured using a Hahn echo pulse se-

quence, in order to remove strong enhancements in decoherence arising from static

inhomogeneities. Although the Hahn echo can suppress some e�ects of the dynam-

ics, the FID and Hahn T2 times are of the same order, di�ering by at most a factor

of ≈ 2 even at OWPs, so we focus our analysis on the simpler FID expressions.

Although analytical forms for the time decays Lu→ln (t) from spin pairs are known

(Yao et al., 2007; Zhao et al., 2012a), a closed form for T2, su�ciently accurate for

experimental analysis is more di�cult. Each Lu→ln (t) is an oscillatory function, with
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frequencies given in terms of ω(n)
u and ω(n)

l and the full decays combines hundreds

or thousands of spin pair contributions.

A usual approach is to expand the decay as a power series |Lu→ln (t)| = 1 −∑
p=1 a

(n)
2p t

2p and to infer the order of magnitude of T2 from the early time behaviour.

However, for important cases like spin di�usion, a(n)
2 = 0 while a(n)

4 6= 0, predicting

a exp[−a(n)
4 t4] decay to leading order (Witzel et al., 2005; Yao et al., 2006, 2007),

in contrast to the observed decays of ∼ exp[−a(n)
2 t2] for typical spin systems, where

the Taylor coe�cient a(n)
2 is identi�ed as 1/T 2

2 . Thus it appears that in that case,

one cannot infer the character of the decay on timescales t ∼ T2 from the short time

behaviour (i.e. on timescales t ∼ ω−1
i ).

The observed exponential-quadratic (Gaussian) character of the coherence decay

has been demonstrated numerically for both Hahn echo decay and FID from cluster

expansion or linked-cluster expansion simulations (Witzel and Das Sarma, 2006;

Saikin et al., 2007). For the FID case speci�cally, a crossover from the exponential-

quartic to Gaussian behaviour was found on the microsecond timescale, arising from

the combined e�ect of many pair cluster contributions (Saikin et al., 2007). For spin

donors in silicon, T2 times are on the millisecond to second timescales, thus the

exponential-quartic regime is not relevant (though it may be appropriate for GaAs

quantum dots, which have shorter T2 times).

Below, we shall see that T2 times su�ciently reliable for experimental analysis

are obtainable analytically if we consider, separately, the di�erent frequency terms

involved in the pair correlation which act on very di�erent timescales. Thus, we

propose a very di�erent explanation for the observed decay form crossover in the

FID which does not require one to combine large numbers of cluster contributions.

We show that in fact the crossover originates naturally from a single pair correlation

term.

6.2.2 Bath State Overlap

As discussed in Chapter 2, the decay in coherence of the central spin can be related

to its entanglement with the bath. We assume an initial state such that the qubit
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and bath are unentangled, and the qubit is prepared in a coherent superposition

of its upper (|i = u〉) and lower (|i = l〉) states. The coherence for the FID in pure

dephasing for the n-th spin pair is given by

|Lu→lFID,n(|B(n)(0), t)〉| = |〈B(n)
u (t)|B(n)

l (t)| = 〈B(n)
l (0)|T̂ (n)†

u T̂
(n)
l |B(n)

u (0)〉|, (6.7)

which involves calculating the time-dependent overlap between bath states corre-

lated with the upper and the lower central spin states.

For simplicity, we drop the pair label n in what will follow until summing the

contribution from all spin pairs. The evolution of the bath during the FID of the

central spin follows Bi(t) = Ry(θi)Rz(2ωit)R
ᵀ
y(θi)B(0) in the matrix representation,

where Ry and Rz represent the usual rotation matrices (Nielsen and Chuang, 2010)

and B(0) is the initial bath state in the basis {(0 1)ᵀ : |↑↓〉 , (1 0)ᵀ : |↓↑〉} and in

general can be a superposition of |↑↓〉 and |↓↑〉. We can combine the unitaries for

the upper and lower state in one matrix and thus the bath overlap can be written

as

Lu→lFID (t) = Bᵀ(0)T∗ul(ω
−, ω+, t)B(0);

T∗ul(ω
−, ω+, t) = (6.8)

Ry(θu)

 eiω
−t cos θ− eiω

+t sin θ−

−e−iω+t sin θ− e−iω
−t cos θ−

Rᵀ
y(θl)

where θ± = 1
2
(θu ± θl) and ω± = ωu ± ωl. We see that expressions for the decays

arise naturally in terms of ω± rather than ωu and ωl as is usual.1

For the initial state B(0)ᵀ = (0 1) or (1 0), the time decay for FID is given by

|Lu→lFID (|↑↓〉 , t)| = |{T∗ul(ω−, ω+, t)}11|

=
∣∣∣D+e−iω

−t +D−e+iω−t +R+e−iω
+t +R−e+iω+t

∣∣∣ , (6.9)

where R± = 1
2

sin θ−(sin θ− ∓ sin θ+) while D± = 1
2

cos θ−(cos θ− ± cos θ+).

1This is also the case for the Hahn spin echo case.
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6.2.3 T2 Weights from Pairs

We now consider the contributions to the coherence which dominate the spin pair

correlation in di�erent regimes and timescales. We consider Equation (6.9) in three

principal limits:

(i). For an ESR-type transition in the high-�eld regime in which the states are

not mixed. This corresponds to Pu ' −Pl.

(ii). For an NMR-type transition in the high-�eld regime, or for any transition near

an OWP. Here, Pu ' Pl.

(iii). For an intermediate regime corresponding to a Landau-Zener crossing (Mo-

hammady et al., 2010) or cancellation resonance, where one of the Pi ' 0.

The pseudospin evolutions for the �rst two regimes are illustrated in Figure 6.2

ESR (High �eld) NMRESR (OWP)

〉

Z

Y

X

Z

Y

X

Z

Y

X
Z

X
uP
lP

δJ/12C

Z

X
uPlP

δJ/12C

Z

X
uPlP

δJ/12C

〉

Figure 6.2: Illustration of the evolution of the bath states in the Hilbert space
spanned by {|↑↓〉 , |↓↑〉} under the in�uence of their dipole coupling (C12) and their
mutual detuning caused by interaction with the central spin. At both OWPs and
NMR-type transitions, bath trajectories correlated with the upper and lower central
spin states follow similar trajectories and hence decoherence is suppressed compared
to ESR-type transitions. However, at ESR-type OWPs, |Pu,l| ' 0.1 leads to a larger
trajectory and proportionately shorter T2 values relative to NMR-type transitions.
Figure adapted from Balian et al. (2014).

For either (i) or (ii), since |Pu| ' |Pl| then ωu ' ωl and thus ω+/ω− � 1.

Hence, we infer that the R± terms act on very di�erent timescales from the terms

proportional to D±. We consider the R± and D± terms separately. If we set ω− = 0,
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we obtain the fast oscillating contribution:

|Lu→lFID (|↑↓〉 , t)|2 ' 1− 4
(
D+ +D−

) (
R+ +R−

)
sin2 ω+t

2
− 4R+R− sin2(ω+t). (6.10)

We now extract the contribution of each cluster to the total decoherence by means

of a power expansion; for short times we obtain

|Lu→lFID (|↑↓〉 , t)|2 ≈ 1− t2

T 2
2

≈ exp

[
−
(
t

T2

)2
]
, (6.11)

yielding the n-th cluster contribution to T2:

(
T

(n)
2

)−2

≈ [(D+ +D−
) (
R+ +R−

)
+ 4R+R−

] (
ω+
)2
. (6.12)

We now perform the incoherent averaging over initial bath states,
〈Lu→lFID (t)

〉 ≈
1
2

+ 1
2
|Lu→lFID (|↑↓〉 , t)| to allow for the fact that approximately half the bath spins are

in |↑↑〉 and |↓↓〉 states which cannot �ip-�op and obtain:

1

T
(n)
2

' 1

2
|sin θu − sin θl| ω

+

2
, (6.13)

noting that the �rst term is the di�erence in precession radii of the pseudospins,

while the second term denotes the average precession rate. In terms of the usual

�ip-�op models, we note that a larger precession radius corresponds to a larger �ip-

�op amplitude, while a larger precession frequency corresponds to a higher �ip-�op

frequency.

6.2.4 Separation of Timescales

We now distinguish between the two regimes (i) and (ii). For (i), for timescales

� (ω+)−1, as discussed above, we neglect the slow oscillations (i.e. those in ω−) in

Equation (6.9), which contribute only on very long timescales. We obtain the n-th

cluster contribution to T2 (Equation (6.13)) by Taylor expanding the decay with ω−

set to zero, i.e. using only the fast terms. For (ii), ω+/ω− � 1 is still valid but

|D±| � |R±| in Equation (6.9), and the slow oscillations dominate for timescales
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1/ω+ . t . 1/ω−. However, expanding these slow oscillations gives precisely the

same form as Equation (6.13).

Using Equation (6.13) in all cases, we can estimate a total T2 using

1

T 2
2

=
n=N∑
n=1

(
1

T
(n)
2

)2

, (6.14)

where for the converged CCE2 spin bath in natural silicon, N ' 104.

Importantly, including both fast (ω+) and slow (ω−) terms the power series (i.e.

expanding the full decay Equation (6.9)), the quadratic contributions cancel and the

pair correlation result simply gives an exponential-quartic dependence (not observed

in experiment) at leading order. Separation of the ω± timescales is useful not only

here, but also potentially in the unmixed ESR regimes of other spin systems. We

proceed to discuss the importance of separating timescales further.
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Figure 6.3: Shows that OWP regimes are dominated by slow oscillating terms
while ESR regimes are dominated by fast oscillating terms in Equation (6.9). (a)
Compares decays obtained from Equation (6.9) (exact) with decays obtained from
Equation (6.15) (slow oscillations only). (b) Compares decays obtained from Equa-
tion (6.9) (exact) with decays obtained from Equation (6.10) (fast oscillations only).
Figure adapted from Balian et al. (2014).

As mentioned above, care is needed when considering the (ii) regimes (OWP and

NMR) since here, Pu ' Pl and θu ' θl and thus D± � R±. Here, D+ + D− → 1
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while R± → 0. Decay timescales become long and comparable to 1/ω− while the R±

amplitudes are negligible and thus the slow oscillating components are important.

In that case, we would, in contrast to Equation (6.10), neglect the fast oscillations.

Then we obtain,

|Lu→lFID (|↑↓〉 , t)|2 ' 1− 4D+D− sin2 ω−t. (6.15)

In this case, (T
(n)
2 )−2 ≈ D+D− (ω−)

2. However, since

[(
D+ +D−

) (
R+ +R−

)
+ 4R+R−

] (
ω+
)2 → D+D−

(
ω−
)2

(6.16)

as Pu → Pl, the contribution to 1/T 2
2 from each cluster, in fact, still has the same

form as Equation (6.12). In other words, the relative weights obtained from the slow,

high-amplitude contributions are quite similar to those obtained by considering the

faster, lower oscillations and thus the T2 expression we derive below is still valid.

In Figure 6.3, we show the full temporal decay for all pairs

Lu→lFID (|↑↓〉 , t) =
N'104∏
n

Lu→lFID,n(|↑↓〉 , t), (6.17)

where Lu→lFID,n(|↑↓〉 , t) are given by Equation (6.9) and compare with the slow terms in

an OWP regime (Figure 6.3(a)) where Lu→lFID,n(|↑↓〉 , t) are given by Equation (6.15)

and the fast terms in the ESR regime (Figure 6.3(b)) where Lu→lFID,n(|↑↓〉 , t) are

given by Equation (6.10). Figure 6.3 shows that while the fast terms completely

dominate coherence decay in the ESR regime, the slow terms completely dominate

the decays in the OWP/NMR regime yet the form of the weights in the power

expansion is similar: if added, the two contributions thus cancel (albeit brie�y)

yielding the quartic-exponential decay. This decay is of course valid on extremely

short timescales t� (ω+)−1 but not on the T2 timescale.

In fact, the fast oscillation behaviour is not entirely straightforward. For the

slow oscillations, Equation (6.15) involves a single frequency and an approximate

exp [−(t/T2)2] decay is straightforwardly inferred. For the fast oscillations however,
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Equation (6.10) may be rewritten as follows for each spin pair:

|Lu→lFID (|↑↓〉 , t)|2 ' 1− sin2 θ− cos2 θ+ sin2(ω+t)

− sin2 2θ− sin2 ω+t
2

− 1

4
sin2 2θ− sin2(ω+t)

= 1− Ls(t)− (Ll1(t)− Ll2(t)) .

(6.18)

We see that it combines three separate interfering terms, where Ll1 oscillates at

half the frequency of the others. In fact, a power expansion of either one of the

individual terms Ls(t), Ll1(t) and Ll2(t) would yield the same weights expression

Equation (6.13). It is the ubiquitous nature of this (sin θu − sin θl)
2 (ω+)

2 term which

underlies the robustness of the �eld dependence of our T2 expression derived below.

We note that it is in fact the term Ls(t) = 1
4

(sin θu − sin θl)
2 (ω+)2 which yields

a quadratic dependence at short times. However, numerics show that it is the

1− (Ll1(t) + Ll2(t)) terms which overwhelmingly determine the decay on longer T2

timescales (but actually make little contribution on the t� (ω+)−1 timescale, where

there is once again a brief cancellation of these near equal amplitude oscillations).

Finally we consider regimes (iii), or the Landau-Zener regimes (there are four

such regions for Si:Bi). These do not �t the above analysis, which assumed |Pu| '
|Pl|. For the LZ points either Pu ' 0 or Pl ' 0. Thus, assuming Pu ' 0 we obtain,

|Lu→lFID (|↑↓〉 , t)|2 ' 1− sin2 θu sin2 ωut, (6.19)

and hence for t� (ωu)
−1, we have simply

|Lu→lFID (|↑↓〉 t)|2 ' 1− C2
12t

2. (6.20)
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Figure 6.4: The individual contribution of each spin pair in the bath to the total
(1/T2)2 near OWPs, from Equation (6.13). Data are shown for two magnetic �eld
orientations. For large |δJ |, coherence times become nearly independent of |δJ |. The
scale of T2 is set by a comparatively small N ∼ 102 set of strongly-coupled spins
(|PiδJ | � |C12|), illustrated in the red box. B = 79.8 mT (about 0.1 mT o�set
from the OWP) and Pi ' 0.1. γN = 8.465 MHz/T for 29Si and hyper�ne coupling
strengths were calculated using the Kohn-Luttinger electronic wavefunction with an
ionization energy of 0.069 eV for the bismuth electron (de Sousa and Das Sarma,
2003b). Figure adapted from Balian et al. (2014).

6.2.5 Strong Coupling Approximation

In Figure 6.4, we use Equation (6.13) to evaluate the strength of each 29Si spin pair's

individual contributions to decoherence of a bismuth donor spin in silicon. We plot

1/(T2)2 for each cluster, as a function of |δJ |, in regime (ii) i.e. close to OWPs and

NMR-type transitions. Strikingly, the spins are grouped into lines of constant C12,

corresponding to n-th nearest neighbor spins. Furthermore, for the spin pairs most

active in driving decoherence, 1/(T2)2 is only very weakly dependent on |δJ |. The

origin of this behaviour is clear from Equation (6.13): for large |PiδJ | � |C12|, the
term | sin θu − sin θl| ∝ |δ−1

J | while ω+ ∝ |δJ |, eliminating the dependence on the

hyper�ne coupling between the central spin and bath spins.

The insensitivity of the decoherence to the coupling between the central spin

and the bath might at �rst seem counter-intuitive. However, the physical origin of

this e�ect is thus: increasing the hyper�ne detuning ∝ |δ−1
J | damps the �ip-�opping

amplitudes; however within this model, the decrease in amplitude is exactly com-

pensated by a corresponding increase in �ip-�op frequency. We note that without

separation of timescales, the exponential-quartic decay constants which prevail at
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times t � ωi are dependent on δ2
J (Yao et al., 2007). In contrast, our model pre-

dicts that a comparatively small number of strongly coupled spins will dominate

the decoherence, and that their individual contributions to 1/T 2
2 are approximately

equal, although the individual coupling strengths |δ−1
J | vary by orders of magnitude,

ranging from ∼ 0.01 to 10 MHz.

To test the validity of this result at t ∼ T2 timescales, we ran CCE2 calcula-

tions for various �eld orientations. The dipolar coupling, C12 is a function of the

orientation θ of the magnetic �eld and hence the T2 values vary accordingly. For

B ‖ 〈011〉, for example, the N ∼ 102 strongest coupled spin pairs su�ce to set the

scale of T2. We have tested our model by running a CCE2 calculation with just

120 nearest-neighbor (NN) spin pairs (e.g. for B ‖ 〈011〉, CNN
12 = 2.4 kHz) which

satisfy |PiδJ | � |C12|, and con�rming the calculated T2 is approximately equal to

that considering all ≈ 104 spin pairs.

If we make the strong coupling approximation, the weights in Equation (6.13)

can also be written as:
1

(T
(n)
2 )2

' (θu − θl)2

42
(ω+)2. (6.21)

Then, noting θi ≈ C12/ωi and ω+ ≈ δJ(|Pu|+|Pl|) we easily obtain 1

T
(n)
2

∝ |Pu−Pl|
|Pu|−|Pl|

, for

the cases (i) and (ii) when |Pu| ' |Pl|, which include both the unmixed ESR limit as

well as the NMR and OWP limits. Summing the T2 contributions according to Equa-

tion (6.14), our �nal T2 expression is given by Equation (6.1): T2 ' C(θ) |Pu|+|Pl|
|Pu−Pl|

. For

most orientations, C(θ) ≈ 4/(CNN
12

√
N). However, as the magnetic �eld orientation

approaches B ‖ 〈100〉, the contribution of nearest-neighbor 29Si spin pairs vanishes,

while 2nd and 3rd nearest neighbors contribute similarly. We discuss further details

of the orientation dependence of T2 in the next section.

Approaching the high magnetic �eld limit, ESR-type transitions occur between

states where Pu ' −Pl, such that T2 ' C(θ), while for NMR-type transitions as well

as OWPs, Pu ' Pl, and decoherence by the nuclear spin bath is suppressed.2 Finally,

for the third regime (iii) where one of the Pi is zero, and hence the assumptions made

to obtain Equation (6.1) are not valid. Nevertheless, starting from Equation (6.9)

2In regimes where we can neglect the e�ect of the central nucleus in Ĥint.
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we obtain Equation (6.20) and after the usual bath average and sum over clusters,

we �nd T2 ∼ C(θ) in this regime, and hence Equation (6.1) remains a reasonable

approximation here.

6.3 Angular Dependence
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Figure 6.5: Theoretical contributions of spin pairs to T2(Hahn), coloured according
to n-th nearest neighbors relative to the black nucleus as illustrated in the last
panel. First nearest neighbors dominate decoherence for rotation angles θ ' 30◦.
At θ = 0◦, �rst nearest neighbor contributions are diminished and second and third
nearest neighbors contribute the most to T2. Rotation is performed about [011̄] in
the [011]− [100] plane, with θ from [100]. Figure adapted from Balian et al. (2014).
Details of the silicon crystal structure are given in Appendix C.

Due to angular dependence of the dipolar interaction, T2 varies with the orien-

tation of the crystal sample relative to B (de Sousa and Das Sarma, 2003b; Witzel

and Das Sarma, 2006; Tyryshkin et al., 2006; George et al., 2010). The dipolar

prefactor C(θ) in our analytical T2 formula (Equation (6.1)) depends on C12 and is
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Rotation angle θ 1-NN contribution to C(θ) Numerical C(θ)
(degrees) (ms) (ms)

90 0.37 0.40
74 0.35 0.39
55 0.32 0.37
30 0.41 0.45
0 None. 2�NN, 3�NN contributions: 0.97 1.1

Table 6.1: Numerical values of the dipolar prefactor C(θ) compared to C(θ) when
including only nearest neighbor spin pairs, demonstrating that �rst nearest neighbors
set the scale of T2 for rotation angles θ ' 30◦. For θ = 0◦, 1�NNs do not contribute
at all and 2,3�NNs largely determine T2. The total number of strongest spin pairs
for each orientation was chosen such that the T2 obtained was about 70 − 80% of
the total T2 when including all spin pairs in the bath. Rotation is performed about
[011̄] in the [011]− [100] plane, with θ from [100]. Table adapted from Balian et al.

(2014).

thus a function of crystal orientation. The prefactor is de�ned as

C(θ) =
4√∑

sNs

(
C

(s)
12

)2
, (6.22)

where s labels a unique value of spin pair dipolar strength C
(s)
12 , or �shell�, which

occurs Ns times. We see below that including shells up to s = 3 gives a good

estimate of C(θ), although for most angles s = 1 su�ces.

We now proceed to determine the full angular dependence of C(θ). The various

1/T 2
2 contributions of 29Si spin pairs as a function of crystal rotation angle are shown

in Figure 6.5. The data in Figure 6.5 was generated from Equation (6.13) near the

ESR-type OWP (for rotation around the [011̄] crystal direction) of Si:Bi in natural

silicon, however, our results are independent of B and the central donor species, up

to a scaling factor on 1/T 2
2 contributions.

In Figure 6.5, the di�erent shells are labelled according to whether the interacting

spins are �rst, second, third or fourth nearest neighbors (1�, 2�, 3�, 4�NNs). The

total T2 is obtained by summing 1/T 2
2 contributions from all spin pairs in the bath.

We pick the strongest N spin pairs (i.e., those with the largest 1/T 2
2 contribution)

such that the sum over 1/T 2
2 is about 70−80% of the total T2, and �nd that N ' 270

for θ = 0◦ and N ' 100 for all the other rotations considered. Contributions from
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1�NNs are dominant for θ ' 30◦. In Table 6.1, we show that 1�NNs su�ce to set

the scale of T2 for θ ' 30◦ by comparing C(θ) obtained from only 1�NNs to C(θ)

extracted from numerical CCE2 T2 and using Equation (6.1). For θ = 0◦, 2�NNs

and 3�NNs contribute the most, without any 1�NNs being involved in setting the

scale of T2. Including only the strongest 2�NN and 3-NN contributions, for θ = 0◦

we �nd C(0◦) ' 0.97 ms, compared to C(0◦) = 1.1 ms obtained using the numerical

T2. Thus, using the estimated C(θ) values in the �rst column of Table 6.1 provides

a reasonable estimate of the dipolar prefactor C(θ) as a function of crystal rotation.

6.4 Relating Hahn Spin Echo to FID
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Figure 6.6: Comparison of calculated T2(Hahn) and T2(FID) for the various
ESR-type and NMR-type transitions of Si:Bi for which T2 was measured (Fig-
ure 6.8) covering a wide magnetic �eld range. Near OWPs (where |Pu − Pl| � 1),
T2(Hahn)/T2(FID) ' 2. Figure adapted from Balian et al. (2014).

For the Hahn echo case, Lu→lHahn(2t) = B(0)ᵀT∗ul(ω
+, ω−, t)Tul(ω

+, ω−, t)B(0), not-

ing the exchange in order of ω± relative to the FID case in Equation (6.9). The

analysis for the Hahn case is less straightforward, but nevertheless for (ii), we esti-

mate, using numerical CCE2 results at short-times, that near NMR-type transitions

and OWPs, T2(Hahn) ≈ 2× T2(FID), while T2(Hahn) ≈ T2(FID) elsewhere.

While FID and Hahn echo decays are generally of the same order, within about

5 mT of an OWP, our calculated CCE2 Hahn echo (pair correlations) shows non-

decaying behaviour at timescales beyond a few ms � as seen in Chapter 5. In

contrast, the FID shows converged, near-Gaussian decays to zero intensity for all
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timescales and magnetic �elds. Nevertheless, there is always a period of initial near-

Gaussian decay for the Hahn echo near OWPs from which we extract T2(Hahn).

This initial period of convergence is extended to longer times as higher order cluster

contributions are taken into account as shown in Chapter 5. We estimate numerically

the ratio T2(Hahn)/T2(FID) as shown in Figure 6.6 and �nd that

T2(Hahn)/T2(FID) ≈ 2, (6.23)

near OWPs (where |Pu − Pl| � 1). Far from OWPs, the coherence times are to

within 10% as can be seen for the last ESR point in Figure 6.6 near Pu−Pl ' 2. In

the previous chapter, we saw that fully-converged higher-order CCE calculations are

in agreement with Equation (6.1) (with the factor of 2 scaling) and the short-time

CCE2 results near OWPs.

6.5 Comparison with Frequency-Field Gradient

We recall that the important mixing parameters Pi in the T2 formula (Equation (6.1))

may be evaluated analytically for an arbitrary donor species, for all �eld values.

Also, the formula is perfectly valid for the case of a simple electronic spin (un-

mixed regime). In this section, we investigate deviations of our formula from the

T2 ∼ df/dB dependence that one might expect from classical noise models. We also

compare the predictions of the formula with numerical CCE calculations, and in

the next section present comparisons with experiments. Also, we use the sensitivity

of T2 on magnetic �eld in the vicinity of OWPs (Balian et al., 2012) as a test of

Equation (6.1). The parameters we use are for the bismuth donor in the 29Si nuclear

spin bath (in both mixed and unmixed regimes).

In Figure 6.7, we plot Equation (6.1) for Si:Bi for allowed ESR-type and NMR-

type transitions across a range of magnetic �elds. It shows close agreement with

numerical CCE calculations including the e�ect of Ĥint on Pi (i.e. with non-secular

terms in Ĥint included). Both Equation (6.1) and CCE have distinctly di�erent

signatures from a curve proportional to df/dB, which would be expected in the case
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Figure 6.7: (a) The predicted T2 values as a function of magnetic �eld for a variety
of allowed transitions in Si:Bi, using Equation (6.1) derived in the text (labelled
`analytical'), show eight OWPs where decoherence is suppressed. We also plot the
magnetic �eld-frequency gradient (df/dB); though scaled by an arbitrary constant
in order to match the range of estimated T2 values, the discrepancies with Equa-
tion (6.1) are evident. In the left panel, transitions with no OWP are shown only
faintly. (b) The analytical expression Equation (6.1) derived in the text is in good
quantitative agreement with CCE2 numerics, but df/dB is not. (c) Calculations
convolved with Gaussian B-�eld distribution of width 0.42 mT (arising from inho-
mogeneous broadening from the nuclear spin bath) show an excellent �t with the
experimental Hahn echo decay around an ESR-type OWP (B ∼ 80 mT) (Wolfowicz
et al., 2013), with no free �t parameters. Figure adapted from Balian et al. (2014).

of classical �eld noise; and they cannot be �tted (except locally) by powers of df/dB.

A comparison of Equation (6.1) with experiment is shown in Figure 6.7(c).

Figure 6.7(a) illustrates eight OWPs where T2 → ∞: four ESR-type and four-

NMR type transitions (these OWPs are all doublets, so there are in fact 16 sep-

arate OWP transitions). The form of Equation (6.1) clari�es the origin of these

discrepancies. For low �elds, (B . 1 T) the denominator of Equation (6.1) is

|Pu−Pl| ≈ df/dB. Thus, it is the numerator (|Pu|+ |Pl|), which accounts largely for

the deviation from the form expected for analogous classical noise (T2 ∝ 1/(df/dB)).

At higher �elds (left panel of Figure 6.7(a)), we see that the formula does not
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coincide with the `false positives' of CTs (where df/dB → 0). The reason of such

false predictions of suppression of decoherence by CTs was given in Chapter 5.

In Figure 5.13(b), it can be seen that the formula is in agreement with CCE (no

suppression), while df/dB predicts suppression of decoherence.

In summary, in Equation (6.1), it is the denominator (|Pu − Pl|) which sets the

position of the OWPs: at these points the bath evolution becomes independent

of the state (|u〉 or |l〉) of the central spin, and so the system-bath entanglement

is zero (Figure 6.2). However it is the numerator (which can vary by an order of

magnitude in the range 0 ≤ B ≤ 1 T) which provides the most distinct signature of

the �back-action� between the quantum bath and central spin.

6.6 Comparison with Experiments

In this section the formula is compared with the experimental data already presented

in Chapter 5 for the hybrid qubit near and far from OWPs and for both ESR-type

and NMR-type transitions (Figure 5.10), obtained for Si:Bi in natural silicon. The

experimental data was collected by Dr. Gary Wolfowicz and Professor John Morton

at UCL.

Figure 6.8 shows T2 measurements of ESR-type transitions towards the high-�eld

regime, where |Pu − Pl| ' 2, and T2 for a variety of di�erent NMR-type transitions

where |Pu − Pl| varies by two orders of magnitude. It can be seen that the formula

gives excellent agreement with the measured values. The primary variation in T2 is

due to the |Pu−Pl| term; this is divided out in the lower panel of Figure 6.8, where

the additional variations due to |Pu|+ |Pl| are apparent in the experiment.

As discussed in Chapter 5, the donor ESR line is inhomogeneously broadened by

unresolved coupling to 29Si, leading to an e�ective Gaussian magnetic �eld variation

across the ensemble (FWHM of 0.42 mT for Si:Bi in natural silicon). Therefore, to

predict the measured T2 at an ESR-type OWP, we convolve Equation (6.1) with the

corresponding Gaussian magnetic �eld pro�le � Equation (5.4) with LB(t) replaced

by e−(t/T2)2 , where T2 is given by Equation (6.1) and B = BOWP. The convolution

D(t) is found to give a non-Gaussian decay, and reaches its e−1 value at 100 ms as
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shown in Figure 6.7(c), in close agreement with the experimental value of 93 ms for

the Si:Bi |14〉 → |7〉 OWP (Wolfowicz et al., 2013). The convolution sums T2(B)

contributions which vary over orders of magnitude and thus represents a sensitive

test of Equation (6.1) around an ESR-type OWP.

Equation (6.1) gives divergent T2 values at the OWP; comparison with CCE

indicates that it becomes unreliable within ∼ 0.01 mT of the OWP and non-secular

terms cap the maximum T2 . 10 s. However, the inhomogeneous broadening enables

us to use Equation (6.1) to predict the measured (�nite) T2 at an ESR-type OWP

by the convolution described above.
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Figure 6.8: Comparison between theoretically predicted and measured T2 in natSi:Bi
for various transitions, showing remarkable agreement across a wide range of mixing
regimes |Pu − Pl|. The label `analytical' refers to Equation (6.1). Measurements
were made at 4.8 K using ESR with a microwave frequency of 9.77 or 7.03 GHz
(�lled symbols), or electron-nuclear double resonance (ENDOR) between 200 MHz
and 1 GHz using the method described in Morton et al. (2008) (empty symbols),
at magnetic �elds between 100 and 450 mT. These parameters are all in the regime
where |Pu − Pl| ≈ df/dB. The Bi donor concentration was ≤ 1016 cm−3, and
coherence times are limited by 29Si spin di�usion. The theoretical points are based
on a predicted value for C(θ) = 0.42 ms. In the lower panel, the decay rates are
normalised by |Pu − Pl| to highlight the e�ect of |Pu| + |Pl|, and shown relative to
the case when |Pu| = |Pl|. Figure adapted from Balian et al. (2014).

The experimental data was obtained for θ = 135◦ as described in Chapter 5, and
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this corresponds to C(135◦) ' 0.4 ms using Table 6.1.3

We emphasize that the derivation of Equation (6.1) involves a range of approx-

imations. Assumptions have been made regarding the strong coupling approxima-

tions, the importance of certain spins and the numerically estimated FID to Hahn

scaling � T2 times from the FID formula are doubled when comparing with experi-

ments near OWPs. Thus, while one might expect agreement with experiment within

a factor of two, the agreement with data we obtain over such a large range is re-

markable and indicates that the form of T2 predicted by Equation (6.1) persists even

for the higher-order CCE calculations presented in Chapter 5.

6.7 Conclusion

In summary, we have shown that a �eld dependence given by T2(B) ∝ (|Pu|+ |Pl|)×
(|Pu − Pl|)−1, distinctly di�erent from classical �eld noise which yields T2(B) ∝
1/(df/dB), is a generic and robust feature of mixed electron-nuclear spin systems,

valid over a broad range of ESR-type and NMR-type transitions both close to and

far from OWPs. The range also includes the unmixed case in the limit Pu = −Pl.
By inspection of the short-time behaviour of the form of single-central spin FID

decays (which can be given analytically for each pair cluster), the simple closed-form

equation gave remarkable and accurate quantitative agreement with experiment in

all regimes. Although only based on pair correlations, the agreement was excellent

in regimes spanning orders of magnitude changes in T2, whether in the unmixed

limit of a spin-1/2 or at OWPs. The universal validity of Equation (6.1) is wor-

thy of discussion. Farther than about 100 G from the OWP, and where CCE is

converged at the pair correlation level, there is little di�erence between single-spin

FID and Hahn echo decays; thus, it is not surprising that an equation obtained

by considering the pair contribution to FID can accurately model the Hahn echo

experiments. Its validity within the OWP regions, however, is not yet fully un-

derstood. In particular, it remains unclear why a single C(θ) prefactor su�ces to

3For the ESR-type OWP point, i.e. with the lowest polarisation di�erence, B ‖ [011] and the
value of C(θ) is similar to the other points which all have θ = 135◦. Thus, the same prefactor was
used for all the points in Figure 6.8.
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accurately estimate experimental T2, whether very far or very close to OWPs; and

to describe di�erent OWP regions (of which there are 16 for Si:Bi, with Pu,l values

varying by close to an order of magnitude). This is especially surprising as the un-

derlying cluster dynamics (CCE2 or CCE3) is not unchanging. While not providing

an explanation, Figure 5.9 further demonstrates the validity of Equation (6.1) by

comparing to higher-order CCE in regimes where the CCE has not converged at the

pair correlation level (i.e. near OWPs).

The divergence of Equation (6.1) at the exact OWP point (where Pu = Pl) is

not physically signi�cant. In full quantum results, whether FID or converged Hahn,

non-Ising terms suppress the divergence and in experiments, line broadening due

to 29Si prevents B = BOWP. In any case, depending on the donor concentration,

for T2 & 0.2− 2 s, other mechanisms arising from donor-donor �ip-�ops contribute

signi�cantly to decoherence.

In addition to use of an OWP, decoherence by nuclear spin di�usion can be sup-

pressed by enrichment of the host using a spin-zero isotope (e.g. using enriched 28Si)

(Tyryshkin et al., 2012). The e�ect of reducing the nuclear spin concentration on T2

is explicit in the C(θ) term, but it also causes narrowing of the ESR linewidth and

hence reduces the e�ective magnetic �eld distribution to a narrower range around

the OWP. As the nuclear spin concentration becomes negligible, other decoherence

processes become dominant, including couplings to other (e.g. donor) spins which

can similarly be analysed for a quantum-correlated bath.

The next chapter investigates the application of dynamical decoupling sequences

by operating near OWPs, partly to determine the best strategy of maximizing T2

for the hybrid qubit.
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Hybrid Qubit

In this chapter, by means of quantum many-body calculations, we investigate the

e�ects of dynamical decoupling pulse sequences far from and near OWPs for the

hybrid qubit subject to decoherence from the silicon nuclear spin bath (Balian et al.,

2015). One of our aims is to clarify where and to what extent, the independent pair

contributions dominate for a quantum bath. Another aim is to establish the best

strategy for maximising coherence times of the hybrid qubit.

7.1 Maximizing T2

As mentioned in Chapter 1, one way of extending coherence times T2 in silicon is

to employ isotopically enriched silicon (with no nuclear impurities). However, the

nuclear spin bath has technological advantages, which is the topic of Chapter 8. It is

thus important to understand whether dynamical decoupling and OWP techniques

may be advantageously combined for a quantum bath of nuclear spins, without

having to resort to isotopic enrichment. For donor electronic qubits in silicon, it was

shown that due to inhomogeneous broadening from naturally-occurring 29Si spin

isotopes, there is a signi�cant gap between the T2 ∼ 100 ms in natural silicon near

an OWP (Wolfowicz et al., 2013; Balian et al., 2014) and the T2 ∼ 2 s in isotopically

enriched 28Si with a low donor concentration at the same OWP (Wolfowicz et al.,

2013). Also, dynamical decoupling may be useful when it is convenient to operate

with the magnetic �eld close to but not exactly at the OWP.

We employ up to CCE5 and compare coherence decays at an OWP with regimes
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far from an OWP (denoted by 6̀=OWP'). We �nd that while operating near OWPs,

dynamical decoupling sequences require hundreds of pulses for a single order of

magnitude enhancement of T2, in contrast to regimes far from OWPs, where only

about ten pulses are required.

7.2 Many-body Correlations

We also show that for low to moderate numbers of pulses (N ≈ 1− 16), not unlike

the Hahn spin echo in Chapter 5, decoherence at OWPs is no longer fully driven by

non-interacting pairs of bath spins, but instead involves the dynamics of clusters of

at least three interacting bath spins coupled to the qubit. In contrast, for 6=OWP

regimes, Hahn decays are well described by CCE2 (Witzel and Das Sarma, 2006). A

recent analysis based on the linked-cluster expansion method indicated that, for even

N , there is full suppression of the contribution from independent pairs (Ma et al.,

2014). In fact, in this work we �nd that the independent pairs, using CCE2, give T2

in the correct experimental timescale regardless of N , although for modest (even)

numbers of pulses N = 2, 4, 6, 8 there can be a signi�cant discrepancy between CCE2

and CCE4. For larger N , we �nd that CCE numerics including only independent

pairs (CCE2) once again gives converged decays in all regimes whether in OWP or

6=OWP regimes, so many-body calculations become progressively less important as

N → ∞. Hence, the only case of complete suppression of pair correlations occurs

near the OWP, for the Hahn spin echo and N . 16 pulse dynamical decoupling.

7.3 Correlation Time vs. Quantum Treatment

It is well established that for dynamical decoupling to be e�ective, the pulse spac-

ing τ = t/2N for a sequence of N control pulses (where t is the total evolution

time) cannot exceed the correlation time of the bath noise. But the relevant correla-

tion time, in turn, is an emergent property of the underlying microscopic quantum

bath, comprised of typically ∼ 104−105 signi�cant clusters of spins of di�erent cou-

pling strengths, di�erent sizes and subject to varying degrees of back-action from
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the central qubit. Therefore, to quantitatively simulate the response to dynami-

cal decoupling, a realistic simulation of the combined system-bath dynamics at the

microscopic level is important.

We also present an analysis involving hybrid pseudospins to understand the de-

gree of suppression of the usually dominant contribution from independent pairs of

�ip-�opping spins within the many-body quantum bath. Simple analytical expres-

sions for the behaviour of independent bath pairs coupled to the qubit aid under-

standing in all the regimes we consider.

For our dynamical decoupling calculations, we have chosen the CPMG sequence

which applies a set of N periodically spaced near-instantaneous pulses (CPMGN) as

described in Section 2.2.3. The OWP we investigate is for the |14〉 → |7〉 transition
of Si:Bi. The pulse sequence and OWP are illustrated in Figure 7.1.
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Figure 7.1: Illustrates coherence enhancement as B → BOWP (the Hahn spin echo
time T (1)

2 is plotted). The OWP is for a bismuth donor in natural silicon, investigated
experimentally in Wolfowicz et al. (2013) and Balian et al. (2014). The OWP curve
was calculated using the analytical formula Equation (6.1). OWP results are for
the |14〉 → |7〉 transition for which BOWP = 799 G. Inset: The CPMG dynamical
decoupling sequence consists of the initial π/2 pulse, followed by the −τ−π−τ−echo
sequence repeated N times, as described in Section 2.2.3. Figure adapted from
Balian et al. (2015).
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Figure 7.2: Shows dependence of the coherence on the number of dynamical de-
coupling pulses N , (a) near an optimal working point (OWP) and (b) far from an
OWP, for modest numbers of N . (a) For B close to BOWP, the T2 times show com-
paratively little response to dynamical decoupling. Further, even though the initial
coherence is extended with increasing N , the decays become ever more oscillatory.
For low N , the independent pairs contribution is largely eliminated. Inset of (a):
Showing complete suppression of the independent pairs contribution near an OWP;
but showing also its gradual revival as N increases. (b) In contrast, far from the
OWP, substantial (order of magnitude) enhancement of the T2 time by dynamical
decoupling is achieved with a moderate (preferably even) number of pulses. Decays
for independent pair contributions (dashed lines, CCE2) and the converged quan-
tum many-body numerics (solid lines, CCE4) are also compared, indicating that as
N & 10, once again, the independent pair contribution is su�cient. CCE calcula-
tions were performed for CPMGN on a bismuth donor in natural silicon for B along
[100] and for the |14〉 → |7〉 transition for which BOWP = 799 G. In (a), B = 795 G
while for (b), B = 3200 G. The converged CCE in (a) corresponds to CCE3. Figure
adapted from Balian et al. (2015).

7.4 Low and Moderate Pulsed CPMG

Details of the CCE simulations are the same as described in Chapter 5, but for

the CPMG sequence. The results shown are for the same single realisation of bath
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spin positions and the same initial product bath state. In this section we discuss

CPMGN with N = 1−16 and present higher-order CPMG in a later section below.

The coherence decays for the Hahn spin echo (N = 1) were presented in Chap-

ter 5. In Figure 7.2, these are plotted together with CPMG for N up to 16, both

near (Figure 7.2(a)) and far (Figure 7.2(b)) from OWPs, the decays corresponding

to converged CCE, and also pair correlations for the case close to OWPs (inset of

Figure 7.2(a)). One notable feature of the comparison near and far from OWPs is the

insensitivity of OWP behaviour to low numbers of pulses, in sharp contrast to the

6=OWP regime where there is a factor of 3 �jump� in T2 from CPMG1 to CPMG2;

while for larger N , we �nd T2 ∼ N . However, OWPs are extremely e�ective at

suppressing decoherence: for the point shown near the OWP, T2 ' 100 ms already

at CPMG1, while away from the OWP, to obtain comparable values, N ' 100

pulses are required as will be shown later. Previous studies, including the recent

study in Ma et al. (2014) of the ESR dynamics of a phosphorus donor at X-band

frequencies (a system without OWPs for electron qubit decoherence and which is

comparable to our 6=OWP regime), observed a sharp increase in the coherence time

between CPMG1 and CPMG2. Analysis with the linked-cluster expansion method

suggested that spin-pair contributions were fully suppressed (Ma et al., 2014). But

we show CCE2 in 6=OWP regimes to still give a reasonable approximation to the

magnitude of the observed T2 time, for both CPMG1 and CPMG2. In the case away

from an OWP, the FID is very similar to CPMG1. This is in contrast to the OWP,

where CCE2 gives no decay at all, while the FID gave decay curves comparable to

converged CCE3 (and Equation (6.1)). Thus, there is a drastic change from FID to

CPMG1 at OWPs; in contrast, for regimes away from an OWP, there is little change

between FID and CPMG1, but a strong enhancement for CPMGN with N > 1.

We �nd that three-spin clusters not only restore the CCE2 short-time decay, but

in fact su�ce to give results converged with respect to the many-body dynamics

(i.e. there is little di�erence between CCE3 and CCE5) for both Hahn echo decays

and modest N . 20 pulse numbers. For larger N , we �nd that CCE2 once again

gives converged decays.
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For any kind of spin di�usion, whereby the magnetic noise arises from �ip-

�opping (e.g. dipolar-coupled) spins in the bath (i.e. �indirect �ip-�ops�), the noise

from non-interacting pairs of bath spins provides a reasonable estimate for the T2

timescale of measured echo decays. For the case of isotopically-enriched samples,

where donor-donor dynamics replaces the nuclear bath, larger spin clusters (CCE3

to CCE6) represent a quantitative correction (Witzel et al., 2010, 2012). In our

case, unlike in Ma et al. (2014), CPMGN with small N eliminates pair dynamics

in the sense that CCE2 (using only clusters of two bath spins) does not even give

a �nite T2 time. Such complete suppression, and also in the absence of any higher

order N > 1 dynamical decoupling is quite exceptional.

The quantum numerics do evidence a clear dependence of the pair contribution

on pulse number N . For example, in the inset of Figure 7.2(a), we have shown

that, for a given �eld B in the vicinity of the OWP, as N increases to N ' 16, the

pair contribution once again gives signi�cant decay. To suppress decay for N = 16

one must choose a value of B even closer to the OWP. In fact this was one of

our main �ndings: whether at OWPs or far from OWPs, our comparisons between

many-body CCE3-5 and calculations involving only pairs show that increasing N

gradually restores the importance of the pair contribution, relative to N = 1 or

N = 2, where many-body e�ects are seen to make the dominant contribution.

7.5 Pseudospin Analysis

We now proceed to analyse correlations from independent pairs in order to obtain

insight on the e�ect of dynamical decoupling near and far from OWPs. We employ

the well-established pseudospin model of the system-bath dynamics as was used for

the single-spin FID in Chapter 6.

After preparing the initial qubit superposition, the CPMGN pulse sequence can

be summarized as [T̂ (τ) − π − T̂ (τ)]N , with �nal evolution time t = 2Nτ . The

unitaries T̂ (τ) represents free evolution and π denotes the refocusing pulse which

�ips between |u〉 and |l〉: |u〉 〈l| + |l〉 〈u| but leaves all other central states and the

bath unperturbed. Note that for the case of the numerical CCE calculations of any
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order (including central state depolarising terms), T̂ (τ) represents free evolution

under the total Hamiltonian in Equation (2.6). For the case of pseudospins, the

pure dephasing approximation must hold.

In the pair correlation approximation or CCE2, the coherence decay is simply

given by

L(t) =
∏
k

|L[N ]
k (t)|, (7.1)

where |L[N ]
k | is the decay contribution from the k-th spin pair for CPMGN and

the product is over all spin pairs in the bath. The analysis below considers the

individual pair decay envelopes |L[N ]
k | of which there are ≈ 104 in the bath and we

have dropped the label k for clarity.

In order to evaluate the bath state overlap (Equation (2.18)) or equivalently the

decoherence L[N ](t) as described in Chapter 2, we must �rst evaluate

|Bu,l(t)〉 = T̂
[N ]
u,l |B(0)〉 , (7.2)

where the unitaries T̂ [N ]
u,l for CPMGN are given by a product sequence of T̂ [0]

u and

T̂
[0]
l , which correspond to evolutions under the pseudospin Hamiltonians ĥu,l (Equa-

tion (6.4)): T̂ [0]
u,l = exp [−iĥu,l]. Refocusing pulses simply switch between u and l in

applying the unitaries. For example, for the simple case of the Hahn spin echo (i.e.

CPMG1), the unitaries are given by T̂ [1]
u,l = T̂

[0]
u,l T̂

[0]
l,u (note the order of u and l).

We �rst diagonalise ĥu,l. We can now write, for the Hahn echo (N = 1)

T̂
[1]
u,l = A01̂− iAu,l · σ̂, (7.3)

where Au = (Ax, Ay, Az) and σ̂ is the vector of Pauli matrices acting on the bath

basis: {|↓↑〉 , |↑↓〉}. The Au,l components depend on time and can easily be given
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explicitly in terms of the pseudospin parameters (Lang et al., 2015):

A0(τ) = cos(ωuτ) cos(ωlτ)− sin(ωuτ) sin(ωlτ) cos(θu − θl),

Ax(τ) = sin(ωlτ) cos(ωuτ) sin(θl) + cos(ωlτ) sin(ωuτ) sin(θu),

Ay(τ) = − sin(ωuτ) sin(ωlτ) sin(θu − θl),

Az(τ) = sin(ωlτ) cos(ωuτ) cos(θl) + cos(ωlτ) sin(ωuτ) cos(θu), (7.4)

where θi and ωi are the pseudo�eld angles and pseudospin frequencies respectively

(see Chapter 6 for details and the pseudospin Hamiltonian). The only term which is

not invariant with respect to the exchange u↔ l is Ay and thus Al = (Ax,−Ay, Az).
The coherence envelope for each spin pair |L[N ](t)| ∝ |〈B(0)|T̂ †[N ]

l T̂
[N ]
u |B(0)〉| is

obtained simply from L̂[N ](t) ≡ T̂
†[N ]
l T̂

[N ]
u . For both CPMG1 and CPMG2, the

unitarity of the evolution of upper relative to lower states is broken by a term

proportional to Ay. For CPMG1,

L̂[1](t) = 1̂− 2iAyσ̂yT̂
[1]
u . (7.5)

We can consider higher sequences; since T̂ [2]
u = T̂

[1]
u T̂

[1]
l and T̂ [2]

l = T̂
[1]
l T̂

[1]
u , we obtain

for CPMG2:

L̂[2](t) = 1̂− 4iAy(Azσ̂x − Axσ̂z)T̂ [2]
u . (7.6)

Both the above general expressions apply equally to either OWP or the 6=OWP

regimes. The only important di�erence between these regimes is that θu → θl for the

approach to an OWP and θu = π−θl for the spin away from the OWP. Alternatively,

from the explicit expressions for the components of Au,l, we see that the OWP

condition is Ay → 0; since Ay is the prefactor to both the above expressions, CPMG1

and CPMG2 are equally suppressed at OWPs.

For the thermal initial bath states |↓↑〉 or |↓↑〉, the temporal coherence decay for

the bath spin pair is |L[N ](t)| = | 〈↓↑| L̂[N ](t) |↓↑〉 | = | 〈↑↓| L̂[N ](t) |↑↓〉 | (the states

|↓↓〉 and |↑↑〉 are not involved in pure dephasing decoherence).

We can easily obtain the coherence decay envelopes for CPMG1 in general, as-
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suming pulse interval τ :

|L[1](t = 2τ)|2 = 1− 4A2
yA

2
0, (7.7)

emphasising that A0 ≡ A0(τ), Au,l ≡ Au,l(τ). For arbitrary even numbers of pulses,

CPMGN such that N/2 is an integer,

L[N ](t = 2Nτ) = 1− 2A2
y

A2
y + A2

0

sin2

[
Nφ(τ)

2

]
, (7.8)

where cosφ(τ) = A0(2τ). An equivalent expression was obtained in Zhao et al.

(2012a). Both expressions Equation (7.7) and Equation (7.8) are equally valid for

both regimes (OWP and 6=OWP).

7.5.1 Near Optimal Working Points

The only important di�erence between these regimes is that θu → θl for the approach

to an OWP and θu = π − θl for the spin away from the OWP. Alternatively, from

the explicit expressions for the components of Au,l, we see that the OWP condition

is |Ay| → 0. Thus, the suppression of qubit-bath correlations from pairs for OWPs

is of the same order for CPMG1, CPMG2 or any other even-pulsed CPMG: for all

bath spin pairs equally, the decay due to correlations from each independent pair

uniformly tends to zero as (Ay)
2 → 0 as B → BOWP.

The dependence onN is entirely contained in the sin2[Nφ(τ)/2] term. IfNφ(τ)�
1 then increasing N has a strong amplifying e�ect on the signal, while if Nφ(τ)� 1,

increasing N simply results in oscillatory behaviour. Near OWPs, from the expres-

sion for A0(2τ), we see that if θu = θl, φ(τ)/2 ' (ωu + ωl)τ . Hence we only expect

a response to dynamical decoupling if τ is su�ciently small (i.e. if τ . (ωu +ωl)
−1).

7.5.2 Far from Optimal Working Points

In contrast, for CPMG away from an OWP, the A2
y prefactor is still there, but is

not small. The origin of the suppression of correlations from independent pairs for

small numbers of pulses is more subtle to analyse with the pseudospin model. For
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CPMG2 in the 6=OWP limit, we obtain

|L[2](t)|2 = 1− 64A2
yA

2
0A

4
x. (7.9)

The large jump in T2 from CPMG1 to CPMG2 was also analysed in Ma et al. (2014).

In the notation of Ma et al. (2014), we see that for CPMG1, the decay envelope is

of order n2
x, while for CPMG2 it is of order n6

xn
2
z, where nx = sin θu = sin θl while

nz = cos θu = − cos θl. Since the bath spans all angles |θu,l| = [0, π/2] one cannot

a priori assume sin θu,l is small. However, previous numerical studies support the

idea that those spin pairs which have |J1 − J2| � |C12| (i.e. are strongly coupled to

the central system) and therefore small pseudospin angles, dominate the Hahn echo

contribution (Balian et al., 2014) (see strong coupling approximation Chapter 6).

For CPMG2, such strong-coupled spin pairs are strongly suppressed, and so T2

becomes dominated by more weakly coupled spin pairs which are less e�ective in

decohering the qubit.

7.6 High Order CPMG

We now investigate CPMGN , with 50 ≤ N ≤ 1000 pulses. For such large N ,

decays from independent pairs only (CCE2) are restored as well as the sensitivity

to dynamical decoupling at OWPs. Even for N = 16 (Figure 7.2) we see that

the initial period of no decay L(t) ∼ 1 is prolonged. For larger N (Figure 7.3),

the enhancement of coherence even at OWPs is clear, but however, the decays

become extremely noisy. The noise can be attributed to the timescales of individual

nearby spin clusters and the time interval between pulses. For these long coherence

times (T2 ∼ 1 s) there are very large numbers of resonances. The CPMG sequence

provides a means of amplifying noise from nearby clusters whenever pulse intervals

become resonant with the characteristic cluster frequency. While this makes CPMG

a valuable technique for spin detection (Zhao et al., 2012b), large numbers of such

resonances are undesirable if the aim is to protect qubit coherence. In contrast,

far from OWPs, the decays for high N remain relatively smooth. While the noise
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(b) ≠OWP: B = 3200 G

Figure 7.3: Shows coherence decays for large numbers (N) of dynamical decoupling
pulses (a) near and (b) far from OWPs; as shown in the inset of Figure 7.2(a), for
such high N , correlations from independent pairs once again dominate the decays
in all regimes so CCE2 is converged and plotted. The behaviour at OWPs is now
sensitive to N but the decays here become increasingly oscillatory as N and T2

both become large; we attribute this to large numbers of bath spin-pair frequencies
becoming resonant with the pulse spacing. It indicates the behaviour one might
expect in a single-shot single spin study. The smooth lines are �ts to the decays and
indicate the expected coherence decay after ensemble averaging. CCE calculations
were performed for a bismuth donor in natural silicon for B along [100] and BOWP =
799 G. Figure adapted from Balian et al. (2015).

at OWPs can be mitigated by ensemble averaging, this is likely to introduce a

considerable disadvantage in terms of single-shot operation of a single hybrid qubit.

7.7 Summary of Coherence Times

In sum, we have seen that a key di�erence between OWP and 6=OWP behaviours

arises from the A2
y ∝ sin2(θu − θl) prefactor which globally suppresses all indepen-

dent pair contributions on the approach to an OWP, and accounts for the drastic
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Figure 7.4: E�ect of dynamical decoupling (CPMG with even pulse numbers N) as
N → ∞. Plots T [N ]

2 /T
[1]
2 showing enhancement of the electron spin coherence time

T2 as a function of pulse number N , relative to the N = 1 Hahn echo value. We
�nd that while dynamical decoupling far from the OWP enhances T2 by an order
of magnitude with about 10 pulses, in contrast, close to an OWP, enhancement is
marginal for dynamical decoupling with low N . For high N , enhancements near
and far from OWPs become comparable. Even-pulsed CPMG is shown as it is more
e�ective than CPMG with odd numbers of pulses. The coherence times are when
the CPMG decays in Figure 7.2 and the �ts to the decays in Figure 7.3 have fallen
to 1/e. Results are for Si:Bi in natural silicon for the |14〉 → |7〉 transition for which
BOWP = 799 G. For the �eld value near the OWP (B = 795 G), T [1]

2 ' 96 ms while
T

[1]
2 ' 0.79 ms in the 6=OWP regime (B = 3200 G). Figure adapted from Balian

et al. (2015).

e�ect at OWPs, but which is independent of N and has little e�ect far from OWPs.

However, to analyse decays resulting from dynamical decoupling one must consider

the remainder of the expression in Equation (7.8), which re�ects the dependence on

N .

The ine�ectiveness of dynamical decoupling near OWPs for small N can also

be understood with an intuitive picture considering the relevant timescales of the

system. For dynamical decoupling to be e�ective, the time interval between pulses

(t/2N) must be shorter than to the correlation time of the bath τc. Since typical

intra-bath interactions are at most a few kHz, τc ∼ 1 ms. Near the OWP, ωu ' ωl

and θu ' θl, so the frequency of the bath noise spectrum (∼ ωu,l) is appreciably

higher than 1/τc and thus dynamical decoupling becomes ine�ective in extending

the coherence time T2 � τc. At short times and for high N however (t/2N < τC),

dynamical decoupling does protect the central system as evidenced for CPMG16

in Figure 7.2(a) and higher N in Figure 7.3. In contrast, dynamical decoupling is

far more e�ective in extending T2 away from the OWP and for relatively small N

164



CHAPTER 7. DYNAMICAL DECOUPLING OF HYBRID QUBIT

(Figure 7.2(b)); although the pseudospin frequencies are comparable, the pseudospin

�elds are in opposing directions (θu ' π − θl), thus, the frequency of noise is much

slower and becomes comparable to 1/τc ∼ 1/T2.

The enhancement of coherence times relative to the Hahn spin echo is shown for

increasing N in Figure 7.4. As an OWP is approached, dynamical decoupling gives

little enhancement in T2 with increasing N for the �rst 100 or so pulses, in sharp

contrast to regimes far from an OWP, where T2 scales roughly as N and there is a

substantial enhancement already between N = 1 and N = 2.

7.8 Inhomogeneous Broadening

784 786 788 790 792 794 796 798 800 802 804
Magnetic field, B (G)

101

102

T 2 (m
s)

CPMG2
CPMG4
CPMG8

BOWP

Donor-donor limit

Gaussian B-field
distribution

Figure 7.5: Sharp B-�eld dependence of T2 for various CPMG orders near an OWP.
Inhomogeneous broadening from 29Si nuclei can be incorporated by convolving the
decays with a Gaussian B-�eld distribution centred about B (here centred about
797 G) and with standard deviation w ' 2 G (dashed line). For a donor concen-
tration of 3 × 1015 cm-3, T2 is limited by donor-donor processes at about 300 ms
(Wolfowicz et al., 2013). The T2 lines were calculated for bismuth donors in nat-
ural silicon using the CCE up to 3rd order and for B ‖ [1̄10]. The OWP under
investigation is shown in red at 799 G. Figure adapted from Balian et al. (2015).

Finally, it is important to note that for direct quantitative comparisons between

our dynamical decoupling calculations and experimental ensemble measurements,

inhomogeneous broadening due to 29Si nuclei might also have to be factored in.
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This is because there is a sharp B dependence of T2 near an OWP over a narrow B

region.

The sharp variation of T2 with B over a few G near an OWP is shown in Fig-

ure 7.5 for various orders of CPMG. Inhomogeneous broadening of B due to 29Si

impurities has a FWHM of about 4 G in natural silicon. As described in Chapter 5

and Chapter 6, the broadening can be simulated by convolving the decays with a

Gaussian B-�eld distribution according to Equation (5.4).

Depending on the donor concentration, donor-donor processes may also need to

be included. For example, for a donor concentration of 3×1015 cm-3, T2 near an OWP

is limited by direct �ip-�ops of the central donor with other donors in the ensemble

(Wolfowicz et al., 2013). The measured T2 in isotopically enriched samples ranges

from 0.2− 2 s (T2 for a donor concentration of 3× 1015 cm-3 is 300 ms). Therefore,

care should be taken to include donor-donor processes very near the OWP (within

about 1 G), where nuclear spin di�usion coherence times are comparable to those

of donor-donor processes.

7.9 Conclusion

Understanding the interplay between OWPs and dynamical decoupling involves un-

derstanding of the quantum behaviour as a function of the two limits B → BOWP

and N →∞ corresponding to approaching an OWP and simultaneously increasing

the number of dynamical decoupling pulses.

For the Hahn spin echo case (Chapter 5) and for low to moderate pulsed dy-

namical decoupling, pair correlations are drastically suppressed and 3-body CCE

is essential for predicting and understanding decays near OWPs. Even away from

OWPs, it was shown that many-body e�ects make an appreciable contribution for

N . 10. However, once N → ∞ there is little di�erence between pair correlation

and higher-CCE results in all regimes.

For practical applications, one can hope to identify the best strategy for en-

hancing the coherence of donor qubits whilst still keeping the nuclear spin bath

of naturally occurring silicon for its potential technological use. We note that the
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magnetic �eld in Figure 7.2(a) and Figure 7.3(a) is about 4 G from the actual OWP.

Although in a theoretical calculation one can obtain a longer T2 at a point closer to

the OWP without dynamical decoupling, the ESR linewidth due to 29Si impurities

restricts the measured value at the OWP.

By operating near OWPs without dynamical decoupling, the maximum achiev-

able T2 is 0.1 s due to inhomogeneous broadening from the environmental nuclei

(Wolfowicz et al., 2013; Balian et al., 2014). For isotopically enriched samples in

which the nuclear spin bath is nearly eliminated, T2 at the OWP was measured to

be about 1 s and is limited by decoherence mechanisms involving donor-donor inter-

actions (Wolfowicz et al., 2013). Therefore, to bridge this single order of magnitude

di�erence in T2 for an ensemble at OWPs without resorting to isotopic enrichment,

dynamical decoupling should be applied with at least a few hundred pulses. The ef-

fect of dynamical decoupling in extending coherence times near an OWP is marginal

with a moderate number of pulses (up to N ∼ 16) in contrast to the usual regimes

far from OWPs. For high donor concentrations, the timescale of donor-donor deco-

herence is comparable to the T2 obtained in a nuclear spin bath, hence one might

also want to investigate suppressing those mechanisms with dynamical decoupling.

However, combining dynamical decoupling with OWPs is not without its draw-

backs. As T2 and N →∞, individual few-spin clusters in a silicon bath may become

resonant with the dynamical decoupling pulse spacing, resulting in very noisy decays

in single central spin realisations. Although ensemble measurements are una�ected

by this noise, this means that for single-qubit operations, if OWPs can be exploited,

their extraordinary potential for coherence suppression (which has no noisy decay

behaviour without dynamical decoupling) may be su�cient.

At the time of writing, Ma et al. (2015) (with experiments by Dr. Gary Wolfowicz

and Professor John Morton) reported T2 ' 1 s near an OWP with 128 dynamical

decoupling pulses in natural silicon. This is in broad agreement with our predictions

as can be seen in Figure 7.3 where we predict T2 ' 0.5 s with 100 pulses with B

shifted by 4 G from the OWP; the measurements were made 1.5 G from the OWP

and for 28 more pulses (Ma et al., 2015).
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8 | Decoherence of Nuclear Spins

Proximate to Hybrid Qubit

The content of this chapter di�ers from the rest in that the decoherence dynamics

studied is for nuclear spins; speci�cally, for a 29Si spin-1/2 (Guichard et al., 2015).

Hyper�ne couplings of proximate 29Si sites in an ensemble have been spectroscopi-

cally resolved by CW ENDOR (Hale and Mieher, 1969a,b) and also pulsed ENDOR

techniques (Morton et al., 2008; Balian et al., 2012; Wolfowicz et al., 2015b) as

described in Chapter 4. The pulsed experiments in Chapter 4 demonstrate the

feasibility of quantum control of such 29Si spins. Their coherence may also be inves-

tigated by pulsed ENDOR. As mentioned in Chapter 1, the Hahn echo coherence

time for a 29Si qubit in a spin bath formed of other 29Si spins is about 5 ms (De-

mentyev et al., 2003). Recently, Pla et al. (2014) measured T2 of a single 29Si spin

to be 6.4 ms, close to the measured bulk value reported in Dementyev et al. (2003).

Here, we investigate the situation of a nucleus in close proximity to the hybrid

qubit (or proximate nuclear spin). We show that in this case, coherence times can

reach the second timescale (Guichard et al., 2015), in agreement with ensemble

measurements (Wolfowicz et al., 2015b). Thus, the hybrid qubit in a sense enhances

the coherence of proximate nuclear spins. In this scenario, one can imagine a long-

lived quantum register (memory) implemented as the nuclear spin, while processing

is carried out on the donor qubit. As of now, there is no T2 measurement of a

single proximate nuclear spin in the presence of the donor. This parameter is of

interest to potential future realisations using nuclear spin registers in combination

with electronic qubits in silicon, analogous to the situation involving NV centres

and 13C nuclei in diamond (Cappellaro et al., 2009; Waldherr et al., 2014; Taminiau
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et al., 2014).

The theoretical work in this chapter was motivated by experiments measuring

coherence times of proximate nuclear spins by Dr. Gary Wolfowicz, Dr. Pierre

Mortemousque and Professor John Morton. The measurements were performed on

Si:P in the high-�eld limit. Hence, the hybrid qubit we study here is in the unmixed

ESR limit, implemented as Si:P which is equivalent to Si:Bi in the limit B → ∞
for our purposes; i.e. a simple electronic spin-1/2. The theoretical analysis was

published in Guichard et al. (2015) and the experimental measurements were very

recently reported in Wolfowicz et al. (2015b).

In short, we investigate the decoherence mechanism of a proximate nuclear im-

purity spin in the quantum bath formed of other impurity spins. We propose two

models of decoherence which give coherence times on the same timescale. Both are

spin di�usion models, analogous to the case of decoherence for the hybrid qubit

discussed in Chapter 5, Chapter 6 and Chapter 7; however, they di�er from usual

spin di�usion problems in terms of the properties of clusters which dominate the de-

coherence dynamics. The �rst is a very large nuclear spin bath far from the nuclear

qubit, comprising & 108 weakly contributing spin pairs. The second involves deco-

herence driven by pairs of symmetrically sited nuclear spin pairs, due to symmetries

of the donor electron wavefunction. There are only of order 102 such �equivalent

pairs�. In previous studies (i.e. for decoherence of donor spins or non-proximate

nuclear spins), both models produce negligible contributions to coherence decays

as will be explained below. Both models give T2 times of order 1 s in agreement

with measured proximate nuclear spin coherence times, con�rming the suitability

of proximate nuclei in silicon as very long-lived spin qubits. We also note that if

equivalent pairs represent a measurable source of decoherence, nuclear coherence

decays could provide sensitive probes of the symmetries of electronic wavefunctions.

8.1 The Frozen Core

Proximate spins lie within a so-called �frozen core� region, where the donor elec-

tronic hyper�ne interaction strongly suppresses nuclear dynamics. This is partly
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Figure 8.1: Decoherence of electronic spin qubits (or equivalently hybrid qubit in the
unmixed limit with the two levels separated by ESR frequencies) by a �ip-�opping
nuclear spin bath in natural silicon. The background plots the spatial electronic
wavefunction; blue denotes the strong-detuning region, where the energy cost of
a bath spin �ip ∆±e ∝ ±(J1 − J2) exceeds the strongest intra-bath coupling C12;
it thus corresponds to the usual de�nition of the �frozen-core� region. However,
electronic spin decoherence is dominated by an active zone (purple colour) of pairs
of nuclear spins which are actually within the blue strongly detuned region, with
|∆±e /C12| = |(J1 − J2)/C12| ∼ 10 for Si:P (see Chapter 6 for details). The reason
is that, while for large |∆±e | �ip-�op amplitudes are strongly damped, qubit state-
dependence of the quantum bath evolution, essential for the entanglement between
the electronic spin and bath which produces decoherence, is also proportional to
∆±e . Spin pairs for which J1 = J2 (equivalent pairs) have no e�ect on electronic

decoherence and were not considered in previous studies. Figure adapted from
Guichard et al. (2015).

the reason for the lack of understanding of the decoherence dynamics of proximate

nuclear spins in silicon. A pair of proximate nuclear spins can interact not only

via direct dipolar coupling (Section 2.4.2), but also via the long-range interaction

mediated by the central donor electronic spin (Section 2.4.4). In both cases, the

two spins may �ip-�op and this results in decoherence of either an electronic or

nuclear qubit, whichever is coupled to the �ip-�opping pair. However, in the case of
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strong hyper�ne coupling between the nuclear impurity pair and the electron spin,

the resulting energy detuning on each of the two members of the pair overwhelms

the dipolar coupling, suppressing the �ip-�op dynamics and in turn suppressing

decoherence within the frozen core region.

The idea of the frozen core is well-established in the ESR community (Khut-

sishvili, 1967; Wald et al., 1992; George et al., 2010), but more recently there has

been interest in utilizing it as a reservoir of protected qubits (Mildren and Rabeau,

2013) for the reasons outlined above. Therefore, it is of interest to determine coher-

ence times of proximate nuclear spins in the frozen core. The boundary radius RFC of

the frozen core is commonly set as the distance at which hyper�ne coupling strengths

have decreased to values comparable to the dipolar interactions between neighbour-

ing nuclear spins (Mildren and Rabeau, 2013). Representative values of the latter

may be inferred from measured linewidths; for example, the 127 Hz linewidth of 29Si

in natural silicon (Hayashi et al., 2008) corresponds to an estimated RFC ≈ 80 Å for

Si:P. As mentioned above, coherence times of proximate nuclear spins far outside

the frozen core, are a few ms.

The argument that large energy detunings in the frozen core drastically suppress

nuclear dynamics is not new. However, spin bath decoherence in terms of entan-

glement between the qubit (whether electronic or nuclear) and the environment has

not been previously investigated in the frozen core. Before discussing nuclear-qubit

spin decoherence, it is useful to summarise decoherence of the hybrid qubit with

reference to the frozen core, in terms of detuned �ip-�op nuclear bath dynamics �

Figure 8.1 (see Chapter 5 and Chapter 6 for a comprehensive account). The large

detunings in the frozen core lead to clear di�erences between decoherence of hybrid

(or electronic) and proximate qubits, even when in both cases the same nuclear bath

drives decoherence. Below, we take a more careful look at what is meant by the

frozen core and where, precisely, its boundaries lie. For example, for the electronic

qubits, decoherence is in fact dominated by impurities which lie within the usual

de�nition of the frozen core as was shown in Balian et al. (2014) (see Chapter 6

for details), and as illustrated in Figure 8.1, since the detuning fully contributes to
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qubit-bath entanglement. Decoherence of proximate qubits, discussed in detail for

the rest of this chapter, is summarised in Figure 8.2 and Figure 8.4.

8.2 Decoherence Dynamics of Nuclear Qubits

The two models we consider for proximate qubit decoherence in silicon arise from

the usual pairwise �ip-�ops of nuclear impurities, but under extreme conditions, not

encountered in previous decoherence studies such as that presented in Chapter 5

and Chapter 6.

As described in Chapter 2 and Chapter 5, it is not necessary to include all

combinatorially allowed spin clusters; within 350 Å of the donor site, there are

in total ∼ 1010 29Si spin pairs. The smaller fraction of signi�cantly contributing

clusters are found by numerical search of each randomly populated lattice realisation

by restricting the selection to, for instance, pairs within a certain distance and

hyper�ne coupling strength as explained in Chapter 2. However, inside the frozen

core, applying the normal distance (or coupling strengths) thresholds turned out to

be unreliable. Also, there is a drastic di�erence between the choice of spin clusters

which must be included in the quantum bath for each of our two models; a few

dozen for the equivalent pairs model, ∼ 108 for the far bath model.

Regardless of the choice of spin clusters, the basic decoherence dynamics of

proximate qubits is of the same physical origin as for the hybrid qubit in the unmixed

limit � pairwise �ip-�ops are predominately responsible for dephasing. The process

is equivalent to the usual CCE2 (pair correlations) but with detuning from the donor

electron spin. Before proceeding, we note that since the central and bath spins are of

the same species and higher correlations arising from larger clusters may be required

for high accuracy (Witzel et al., 2010, 2012), but in both our models would represent

only a minor quantitative correction, unlike the case encountered for the hybrid

qubits near OWPs, where there was complete suppression of the pair correlation

(as seen in Chapter 5). We summarise the basic decoherence mechanism of spin

di�usion below, but including the suppressive e�ect of state-independent detuning

provided by the electron spin, and emphasising the importance of state-dependent
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detuning which drives decoherence.

For the nuclear qubit (I = 1/2), we use the notation |±〉 to represent the upper

(spin-up; +) and lower (spin-down; −) states. The initial state after a π-pulse is

|ψ(t = 0)〉 =
1√
2

(|+〉+ |−〉)⊗ |B(0)〉 ⊗ |φ(0)〉 (8.1)

where |φ(0)〉 denotes the initial spin state of the e�ective donor electronic spin-1/2

which is not resonant with the external control pulses.

8.2.1 Spin Hamiltonian

The central spin Hamiltonian is simply a sum of Zeeman terms

ĤCS = γeBŜ
z + γnBÎ

z
A, (8.2)

where the qubit is labelled A and the high-�eld limit is assumed for the coupled

electron-nuclear donor at an ESR-type transition (i.e. no host donor nuclear spin

terms). Written for a pair of nuclear bath spins labelled by Îl (l = 1, 2), the inter-

action Hamiltonian is

Ĥint =
∑
l=1,2

(
Ŝ · Jl + ÎA · Dl

)
· Îl, (8.3)

whereby the qubit is coupled to the electron spin via the hyper�ne interaction

(J ; Equation (2.35)) and to the bath spins via the dipolar interaction (D; Equa-
tion (2.29)), which we take to be of secular form (Equation (2.31)). Because of the

high-�eld limit and the large mismatch between electronic and nuclear gyromagnetic

ratios, the hyper�ne interaction can be approximated to include only Ising terms

as given in Equation (2.36), with the residual electron-nuclear dipolar interaction

becoming e�ective farther than about 20 Å from the donor site for Si:P. The long-

range e�ect of non-Ising terms in the hyper�ne interaction (RKKY; Section 2.4.4)

are added as a correction to the intra-bath dipolar interaction as described in the

following subsection below. Note that for simplicity, we do not include explicitly the
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hyper�ne term coupling the electron to the resonant nuclear qubit A (JA), which

is only signi�cant in the speci�c (but minor) contribution from direct �ip-�opping

processes.

Finally, the bath Hamiltonian is given by a sum of two nuclear Zeeman terms

and the secular dipolar interaction (Equation (2.31)):

Ĥbath = γnB(Îz1 + Îz2 ) + C12Î
z
1 Î

z
2 −

C12

4
(Î+

1 Î
−
2 + Î−1 Î

+
2 ). (8.4)

8.2.2 Nuclear Pseudospins

Under the action of the total Hamiltonian, the initial product state in Equation (8.1)

evolves into an entangled state:

|ψ(t)〉 =
1√
2

([|+〉 ⊗ |B+(t)〉+ |−〉 ⊗ |B−(t)〉]⊗ |φ(t)〉) , (8.5)

where we have omitted the central-state phases as we take the modulus of the co-

herence below. As before, the coherence is given by the bath state overlap |L(t)| ∝
| 〈B+(t)|B−(t)〉 | and in the pair correlation approximation L(t) =

∏
n L(n)(t), where

L(n)(t) is the contribution from the n-th spin pair. To apply the pseudospin model

as was done in earlier chapters, the pure dephasing approximation is required (per-

turbative corrections due to state depolarisation are possible to implement later in

the formulation). We have already assumed an Ising form for the hyper�ne interac-

tion. As for the dipolar interaction of the qubit A to the bath spins, we numerically

�nd that the non-Ising terms (direct �ip-�ops) give negligible contribution to deco-

herence for both models. Neglecting such terms, the pseudpospin Hamiltonians for

the nuclear qubit in a bath of two �ip-�opping nuclei are written

ĥ± =
1

4
(∆±σ̂z + C12σ̂x) (8.6)

where we have omitted the identity term which does not contribute to pseudospin

coherence decays. The Pauli operators act on the basis {|↓↑〉 , |↑↓〉} of the two-spin-
1/2 bath.
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Crucially, the detuning is ∆± = ∆e±(C1A−C2A) for the proximate nuclear qubit,

where C1A and C2A are the dipolar coupling strengths between each bath nucleus

and the qubit. In this case, the electronic detuning ∆e ≡ |J1 − J2| represents a

potentially large contribution which is not sensitive to the qubit state. For the

Hahn echo case the coherence decay is given by:

|L(n)(t)| ' ∣∣1− 2α(n)(α(n) + iβ(n))
∣∣ , (8.7)

where

α = sin(ω+t) sin(ω−t) sin (θ+ − θ−),

β = sin(ω+t) cos(ω−t) sin θ+ + sin(ω−t) cos(ω+t) sin θ−, (8.8)

while θ± = tan−1 (C12/∆
±), the eigenvalues ω± =

1

4

√
(∆±)2 + (C12)2, and we have

dropped the pair label n for convenience. The larger θ±, the larger the amplitudes

of the �ip-�opping of nuclear spin-pairs which drives the decoherence.

When considering the contribution of �ip-�opping pairs that are within the frozen

core, we obtained excellent agreement between the pseudospin equations above and

numerical CCE2 provided that the well-known perturbative correction for the non-

Ising hyper�ne terms, i.e. the RKKY interaction (Section 2.4.4), was added to the

dipolar coupling when using Equation (8.7). The RKKY interaction was included by

adding to C12 the term (J1J2)/γeB. Note that for a numerical CCE calculation, the

long-ranged interaction emerges naturally if the hyper�ne interaction with non-Ising

terms is included and the above-mentioned correction should not be applied.

For pairs in the frozen core with di�erent hyper�ne couplings to the electron spin,

|∆±| ' ∆e � |C12|, thus θ± ' 0 and �ip-�ops become too strongly suppressed.

The qubit state sensitivity enters in Equation (8.7) mainly via the sin (θ+ − θ−)

prefactor and is also suppressed by ∆e. This imposes the further condition |∆±n | =
|(CA

1 −CA
2 )| & ∆e for a single individual pair to contribute appreciably to the decay.

Central to our modelling is the identi�cation of spin clusters within the frozen core

which can contribute non-negligibly to the decoherence of a proximate spin. We
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now consider two models and apply them to the particular case of natural Si:P.

8.3 Far Bath Model

Figure 8.2: Decoherence of a proximate nuclear spin qubit (labelled �A�) by a quan-
tum bath of nuclear spin pairs outside the frozen core. In contrast to electron spin
decoherence (for which the detuning is fully state-dependent, see Figure 8.1), the
detuning is now ∆e + ∆±n : there is now potentially a very large state-independent

component ∆e ∝ (J1 − J2) which simply damps the bath noise, in addition to a
state-dependent component ∆±n ∝ ±(C1A − C2A) which leads to qubit-bath entan-
glement and thus decoherence. For large R (distance from donor site), the bath
spin interaction with both the electron spin and nuclear qubit is dipolar, thus
|∆±n /∆e| ∼ 10−4 so very weak contributions from an extremely large bath of 108

pairs for 50 . R . 350 Å must be combined to obtain a converged decay. Figure
adapted from Guichard et al. (2015).

In this far bath model, we consider the decoherence from distant nuclear spin

pairs, which are outside the frozen core and thus can �ip-�op appreciably. We

show that the typical contribution is so weak that we must include of order 108

�ip-�opping pairs outside the frozen core, at distances R = 50 − 350 Å from the

donor site, in order to obtain results converged with respect to bath size. In contrast,
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typical quantum-bath calculations of electronic spin decoherence require ∼ 103−104

pairs to obtain convergence. The far bath model is illustrated in Figure 8.2.

From numerical simulations with a very large spin bath, we �nd that distant

spin pairs outside the frozen core radius RFC individually make an extremely small

contribution to decoherence: the α ∝ sin (θ+ − θ−) prefactor scales the coherence

decays in Equation (8.7), since |L(t)| ∼ 1 − α2(. . . ). We can also show that the

approximate weight of the n-th pair, is of order (1/T
(n)
2 )2 ∝ sin2 (θ

(n)
+ − θ(n)

− ) (Balian

et al., 2014) (similar to the FID case in Chapter 6), assuming also the temporal

character of the associated magnetic noise is relevant: in other words, �ip-�op fre-

quencies ω± for the given pair cannot be orders of magnitude di�erent from ∼ 1/T2.

For a non-negligible contribution we would expect that Np sin2 (θ+ − θ−) ∼ 1 where

Np is a representative number of contributing spin pairs.

8.3.1 Convergence

Before presenting numerical convergence tests, we �rst give a heuristic argument in

order to establish the size of the convergent far bath. From the pseudospin model

(leaving out the n labels),

sin (θ+ − θ−) ' 2C12

ω

C1A − C2A

ω
, (8.9)

since ω± ' ω = 1
4

√
∆2
e + C2

12. Above, the factor 2C12/ω determines whether the

pair can �ip-�op appreciably and is signi�cant if |C12/∆e| ∼ 1. The second factor,

(C1A − C2A)/ω determines state distinguishability. For the far spins, the hyper�ne

mediated correction plays little role since J1 and J2 are small. For distances R &

100 Å, where the Fermi contact component of the hyper�ne interaction becomes

small, the residual dipolar hyper�ne interaction still makes a contribution to the

detuning which is much larger than (C1A − C2A). Here,

(C1A − C2A)

ω
∼ (C1A − C2A)

J1 − J2

∼ γn
γe
' 10−4. (8.10)
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Thus, the contribution of each such far bath spin pair is
(
γn

γe

)2

∼ 10−8, so only a

far bath with Np ∼ 108 contributing spin pairs can produce signi�cant decay. At

very large R, however, (C1A−C2A)/ω → (C1A−C2A)/C12 . But there is a minimum

value of the interaction C12 ≡ Cmin
12 where (Cmin

12 )−1 sets a timescale below which

the bath noise is too slow to contribute. As R → ∞, then (C1A − C2A)/Cmin
12 → 0,

so there is a maximum radius Rmax beyond which the far bath does not contribute

signi�cantly to decoherence.
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Figure 8.3: Convergence of large bath model with respect to intra-bath dipolar
coupling (a) and with respect to bath size (b). The �gure indicates that decoherence
is dominated by spins with C12 ∼ 0.01−1 Hz and a bath of spins within R . 350 Å of
the origin, combining the contributions from 5 × 108 spin pairs. Calculations were
performed for the case of Si:P, for X-band and magnetic �eld orientation B0 = [100],
yielding a T2n of 2 s for a single nuclear 29Si spin sited at the origin. This represents
an estimate for the upper bound for the coherence time if the far bath is the dominant
process. Due to the large nuclear spin bath, the coherence decays are insensitive to
the choice of random spatial realisation of the bath. Figure adapted from Guichard
et al. (2015).

The analysis above was tested numerically by means of CCE2 calculations using

a very large bath of nuclear spin pairs (excluding contributions from the second

model we present below) and testing the e�ect on coherence decays of increasing the

size of the bath. Figure 8.3 shows convergence with respect to bath size for Hahn

echo decays, for a nuclear spin at the origin (thus expected to give an upper bound

on the coherence). The C12 ≡ Cmin
12 ∼ 0.01− 0.1 Hz bound indicates that the pairs
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are within 40− 50 Å of each other and the calculation is converged with respect to

bath size if we include 5 × 108 spin pairs within Rmax . 350 Å of the origin. The

scale of the bath is remarkable, in comparison with comparable electronic spin or

hybrid qubit decoherence calculations with ∼ 104 pairs.

Although it is computationally feasible to solve for a bath of this magnitude

by CCE2 or analytical pseudospin methods, the uniformity of the bath means that

it is reliable to evaluate L in a smaller but geometrically representative sample of

the bath. In addition, no averaging over bath realisations (bath spin positions) was

required; the results are insensitive to whether one has a single spin or an ensemble.

8.4 Equivalent Pairs Model

In our second �equivalent pairs� (EP) model, the dephasing noise arises from a few

dozen nuclear spin pairs, well within the frozen core, for which:

(i). The members of the pair are symmetrically sited relative to the central spin

and thus have equivalent values of the hyper�ne detuning.

(ii). At least one member is su�ciently close to the nuclear qubit to have a sig-

ni�cant dipolar interaction, while the other can be remote. The nuclear spins

interact via the long-ranged hyper�ne interaction mediated by the electron.

The indirect �ip-�opping of these EPs is found to be most signi�cant, but we include

also the rarer contribution of direct �ip-�ops between the nuclear central spin and

any equivalent partner it might have. We obtain T2 values in the seconds timescale

both for individual realisations (relevant to single donor experiments) and also for

ensemble averages over many realisations. The EP model is illustrated in Figure 8.4.

8.4.1 Counting Equivalent Sites

The isotropic part of the hyper�ne interaction is modeled using the Kohn-Luttinger

wavefunction as described in Section 2.4.3. For phosphorus donors, the ionization

energy is 0.044 eV (Table 3.1). We can estimate the local densities of suitable EPs
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Figure 8.4: Decoherence of a proximate nuclear spin qubit (labelled �A�) by a quan-
tum bath of nuclear spin pairs inside the frozen core. See also Figure 8.2 for a
comparison with decoherence outside the frozen core. The detuning on �ip-�opping
bath pairs is ∆e + ∆±n ; i.e., a sum of a potentially very large state-independent com-
ponent ∆e ∝ (J1 − J2), which damps decoherence in addition to a state-dependent
one ∆±n ∝ ±(C1A−C2A) which drives decoherence. In the frozen core there are com-
paratively few spin impurities. For equivalent pairs however, J1 = J2 ≡ J so ∆e ' 0.
Their density is determined by the symmetry of the electronic wavefunction. The
requirement for strong state-selective detuning implies also that one member of the
pair must be close enough to the qubit to allow appreciable direct dipolar coupling
(as opposed to long-range coupling between nuclear spins mediated by the electron
spin). Pairs which also satisfy this requirement (exempli�ed by the upper, but not
the lower, equivalent pair) are rare but even a few dozen su�ce to exceed the con-
tribution of the ∼ 108 far-bath spin pairs shown in Figure 8.2. Figure adapted from
Guichard et al. (2015).

in the isotropic case before considering e�ects from any anisotropies in the hyper�ne

coupling arising from the residual electron-nuclear dipolar coupling.

In our simulations, the full lattice size ranges over [−N,N ] cubic cells of dia-

mond cubic for each dimension, resulting in 8N3 unit cells and hence 64N3 total

atomic sites (see Appendix C for details of the diamond cubic crystal structure).

Equivalent sites are those with the same hyper�ne interaction obtained using the
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Kohn-Luttinger wavefunction. We begin by considering the allowed coordinates of

the impurities in the crystal. Owing to the symmetry of the system, each site pos-

sesses several potential equivalent partners, for which positions can be deduced from

any allowed permutations of (±n1,±n2,±n3) and which lie on the surface of shells

of radius R = a0

4

√
n2

1 + n2
2 + n2

3, where n = (n1, n2, n3) is the integer vector for an

atomic site and a0 is the cubic lattice parameter. By consideration of the symmetries

of the wavefunction, we can assign each vector n to a shell s comprising ns = 48, 24,

12, 8, 6 or 4 partners and we �rst obtain Nns(N), the number of shells comprising

ns partners within a radius of R = Na0 from the center.

The ranges are adjusted to ensure summation over complete shells as follows.

First, we divide site vectors into three classes as shown in Table 8.1. Summations

must range between [−N,N ] for the 2 coordinates and [−N,N − 1] for the 0 co-

ordinate of class 1 sites giving 4N2(2N + 1) number of sites; between [−N,N ] for

class 2 giving (2N + 1)3 number of sites; and �nally between [−N,N − 1] for class

3 giving 8N3 number of sites.

Class 1 Class 2 Class 3
(0,2,2) (0,0,0) (3,3,3)
(2,0,2) (3,1,1)
(2,2,0) (1,3,1)

(1,1,3)

Table 8.1: The 8-site basis of the diamond cubic crystal structure (Appendix C)
grouped into three classes. Class X site vectors are obtained by modulo 4 transla-
tions of class X basis vectors.

For each class, the contribution to a shell comprising ns partners within a radius

of R = Na0 of the center as a function ofN is summarized in Table 8.2. Additionally,

class 2 contributes as 8N to ns = 8 and as 6N to ns = 6 and class 3 contributes as

8N to ns = 4.

We can now obtain estimates for Nns(N):

N12(N) = 4N2

N24(N) =
4

3
N(N2 − 1) +N2,

N48(N) =
2

3
N3 −N2 +

N

3
, (8.11)
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Figure 8.5: Density of equivalent pairs (EPs) as a function of distance from the
donor site. The separate contributions from di�erent types of shells is shown, as
well as the total density, assuming a purely isotropic contact interaction (left) or a
correction for anisotropic behaviour (right). The density of EPs is approximately
constant for R & 10 Å, but the innermost proximate spins typically interact with
fewer EPs. Figure adapted from Guichard et al. (2015).

ns 48 24 12
Class
1 24N2(N − 1) 12N(3N − 1) 12N

2 8N(N − 1)(N − 2) 36N(N − 1) 12N

3 � 16N(N − 1)(2N − 1) 24N(2N − 1)

Table 8.2: Class contribution to the equivalent sites group as a function of N . Table
adapted from Guichard et al. (2015).

while N8(N) = N6(N) = N,N4(N) = 2N . Then assuming a binomial distribution,

taking an abundance of p = 0.0467 for nuclear spin impurities in natural silicon, the

estimated average number of signi�cant EP in each shell is:

ζns
'
∑
k

(
ns
k

)
pk(1− p)ns−k k(k − 1)

2
, (8.12)

where
(
n
k

)
= n!

k!(n−k)!
is the binomial coe�cient. For the two dominant shells ζ48 ∼ 2.3

and ζ24 ' 0.6. In these cases, it is quite likely that any impurity spin has an

equivalent partner somewhere, albeit remotely located. Nevertheless, due to the

long-range electron-mediated coupling, a C12 of about tens of Hz is present. Within
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a sphere of radius N cubic cells, we expect the total number of EP to be simply:

NEP '
∑
s

ζns
Nns(N). (8.13)

For instance, within a radius of R = 100 Å, we �nd NEP ' 19, 000. For a proximate

nucleus however, one member of the pair must be dipolar-coupled to the resonant

spin (see caption of Figure 8.4) which is relevant within about m ∼ 3 cubic cells.

Each nuclear qubit thus interacts with other nuclei in the neighbouring (2m)3 ∼ 200

cells. We can de�ne a density of spin pairs:

D(ns, N = R/a0) =
ζns
Nns(N)

(2N)3
, (8.14)

which gives the mean number of EPs in each cubic cell as a function of distance,

R = Na0 from the electron. We see in Figure 8.5 (left panel) that the mean number

for large R is about 0.2− 0.3 pairs per cubic cell, thus each nuclear qubit interacts

with ∼ 50 potential EPs if anisotropy (right panel of Figure 8.5) is neglected.

8.4.2 E�ect of Anisotropy

For the numerical calculations of the echo decays, we carried out a careful search,

retaining about 500 equivalent spin pairs and averaging over 100 realisations of a

randomly generated lattice population with 4.67% of sites occupied by 29Si spins.

Two sets of calculations of the Hahn echo decays were carried out. The �rst employed

only the isotropic contact interaction and neglected anisotropic components of the

hyper�ne interaction. These calculations provide a lower bound for the T2 and

predicted decay rates T2 ∼ 0.2 − 0.3 s for di�erent values of the proximate qubit-

electron hyper�ne coupling JA.

A second set of calculations attempts to account for the anisotropy, which is less

easy to calculate reliably. We assumed that any degree of anisotropy detunes spin

pairs so much that their contribution became negligible. In e�ect, this model pro-

vides an upper bound for the expected T2 as not all shells are a�ected by anisotropy.

Thus to remain an equivalent pair we required that spins have the same (n̂B · n)2,
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where n̂B is the direction of the magnetic �eld. The e�ect is to reduce the symme-

tries but to increase the number of shells, i.e. for n̂B = [1, 0, 0] and the main shells

with ns = 48, 24, 12 partners, we have ns → ns/3 and therefore Nns → 3Nns (see

right panel of Figure 8.5). The two sets of calculations are compared in Figure 8.6.
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Figure 8.6: Simulations of coherence decays of a set of proximate nuclear qubits
corresponding to a range of electron-qubit hyper�ne couplings JA in MHz. The blue
lines correspond to isotropic electron-bath coupling only and yield T2 ≈ 0.2− 0.3 s;
red lines show the e�ect of symmetry reduction due to the anisotropy of couplings:
we compare the e�ect of desymmetrisation if we constrain EPs to have in addition
the same orientation condition (i.e. same (n̂B · n)2). The e�ect is to produce T2 in
the seconds timescale. Figure adapted from Guichard et al. (2015).

8.5 Coherence Times

Coherence times from calculated coherence decays employing each model and for

a representative set of proximate nuclear spins (quanti�ed by JA) are shown in

Figure 8.7. Example coherence decays are also shown in Figure 8.7. In both cases,

T2 is of order 1 s with a weak dependence on JA � the coherence times tend to

increase with larger JA, a trend also seen in the experiments in Wolfowicz et al.

(2015b).

For the EP model, we treat the anisotropic correction simply as a symmetry

lowering e�ect (see top panel of Figure 8.7). This is plausible as the resultant

detuning would be extremely large. Presently, it is not possible to fully include
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Figure 8.7: Top panels: Calculated Hahn echo decays for proximate spins in a Si:P
system in natural silicon for (a) JA = 0.1 MHz and (b) JA = 3.8 MHz, where
JA is the hyper�ne coupling between the proximate spin and the donor electron.
Red or blue correspond to decoherence driven by equivalent pairs (EP) while grey
corresponds to far bath decoherence. The blue lines include only the isotropic part of
the electron-bath hyper�ne interaction, while the red lines include both isotropic and
anisotropic contributions. Bottom panel (c): Calculated T2 values from both models
(red dots for EP model and grey dots for far bath). There is a weak trend for T2

to increase as the hyper�ne coupling increases (red line is a �t), possibly indicative
of the decreasing density of EPs as the distance from the donor site R → 0. In
the far bath model, the slight increase in decoherence with lower JA (grey line)
re�ects the fact that the lower JA proximate spins are slightly closer to the far bath.
Coherence times were obtained from decays averaged over 100 spatial realisations
of the bath, but typical single realisations gave the same timescale of decoherence.
Figure adapted from Guichard et al. (2015).

anisotropy using the Kohn-Luttinger wavefunction. The dipolar correction within

this framework was included with a Heaviside function (Section 2.4.3), and is thus

neglected for R . 20 Å. Given other uncertainties, the two EP calculations (with

and without the anisotropy correction) in the top panels of Figure 8.7 provide an

upper and a lower bound to T2. As both results are on the seconds timescales, they

su�ce for the practical aim of establishing the proximate nuclear spins as useful
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qubits.

If the actual Si:P wavefunction exhibits a degree of spatial symmetry comparable

with the Kohn-Luttinger wavefunction, then the EPs could be the dominant mech-

anism, albeit only slightly. However, it is likely that such symmetries are at least

partly broken; in that case, the far bath would limit T2. Given the uncertainties

in the wavefunction model, at present it is not possible to determine accurately the

contributions of EPs relative to the far bath, but fortuitously as the timescales are

comparable, one can still conclude that the resulting T2 is about 1 s.

To facilitate comparison with ensemble experiments, the EP results are averaged

over many realisations (the far bath model coherence decays are almost completely

insensitive to ensemble averaging). In the EP model, decoherence is primarily due to

the indirect �ip-�op process and this arises from only several dozen such EPs. Thus,

although results from single donors �uctuate between realisations, the corresponding

order of magnitude for T2 remains on the 1 s timescale, whether ensemble averaging

is carried out or not. The exception is the atypical realisation where the central

spin happens to have an equivalent site it can directly �ip-�op with. For proximate

central spins, which occur usually in inner shells with ns = 4, 8, 12, this is unlikely.

We �nd that the small subset of such realisations decohere rapidly. They contribute

little to the ensemble averaged T2 ∼ 1 s values but would clearly be unsuitable as

qubit registers unless some strategy to exploit the degeneracy is envisaged. Finally

and surprisingly, although the decay curves have a di�erent shape, the T2 values

from both models are comparable.

8.6 Conclusion

Here we investigated the coherence of nuclear spins lying within the so-called �frozen

core� surrounding the hybrid qubit in silicon, within a quantum bath framework. We

also calculated the coherence using a very large far bath of spins lying outside the

frozen core. We introduced a previously unstudied model, based on equivalent pairs

(EPs) deep within the frozen core, which we argue would limit the coherence of prox-

imate nuclear spins � provided the electronic wavefunction has the symmetries of the
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Kohn-Luttinger wavefunction (or even an alternative model with comparable levels

of symmetry). Within the EP model, decoherence is primarily due to an indirect

�ip-�op process arising from a few dozen such EPs. Given the importance of care-

fully locating the few dozen or so most important EPs which can be quite widely

separated, distance or coupling strength thresholds which are usually applied for

spin bath decoherence are not reliable. The EP model of dephasing is quite generic:

equivalent sites may play a role in any solid state qubit system with a su�ciently

dense nuclear spin bath. Our quantitative results, however, are at best indicative.

A more re�ned investigation could consider improved wavefunctions (Pica et al.,

2014) and more detailed inclusion of the e�ect of anisotropy. Experimental inves-

tigations including dependence on symmetry-breaking mechanisms (such as crystal

orientation and strain) will be useful to test our proposal of the EP model.

In summary, we considered two decoherence models for proximate nuclear qubits,

either of which, given certain assumptions, might contribute. Both models predict

29Si nuclear spin coherence times of order 1 s (using only a Hahn spin echo and no

higher dynamical decoupling), which is consistent with recent experimental mea-

surements (Wolfowicz et al., 2015b) showing such spins could be useful as potential

qubits. If electronic symmetries are important, then a strategy for breaking such

symmetries with external �elds might be considered to obtain an even longer T2;

if the far bath is dominant, partial isotopic enrichment might be more useful (con-

sideration of 29Si nuclear spin registers in the present study naturally precludes full

enrichment). We note that below 5 K, the electronic relaxation time T1 is also above

1 s and would not limit the nuclear spin coherence.
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The work presented in this thesis is the �rst theoretical study of decoherence of

hybrid electron-nuclear spin qubits driven by a quantum spin bath, and also of

nuclear qubits proximate to the hybrid qubit. By considering the full quantum state-

mixing of the hybrid qubit in many-body calculations of coherence decays using the

cluster correlation expansion (CCE), we obtain coherence times in perfect agreement

with experiment across orders of magnitude variation with applied magnetic �eld

and for an extensive set of resonant transitions. We also propose two decoherence

mechanisms for proximate nuclear qubits: the equivalent pair and the far bath

models, but expect the far bath to dominate experimental coherence decays because

equivalent pair decoherence relies heavily on the symmetries of an approximate

theoretical model for the donor wavefunction.1

The physical system we use to implement the hybrid qubit is the mixed donor

in silicon, focusing in particular on bismuth donors due to their atypically strong

state-mixing. As for the quantum bath, we consider the natural spin-1/2 bath

of silicon. However, we expect our theoretical methods to be applicable to other

solid-state systems such as quantum dots or nitrogen vacancy centres in diamond.

Our numerical CCE implementation is capable of handling any complex multi-spin

central and bath Hamiltonians (see Appendix A for details of the code).

Of interest to the experimental quantum information processing community, we

provide the theoretical means for reliable calculations of coherence times of hybrid

1We note that in a previous study of Overhauser �eld decay for quantum dots on much longer
timescales (minutes), dynamics is driven by �ip-�opping nuclear spins of similar energy interacting
via the hyper�ne-mediated interaction (Latta et al., 2011). However, in our equivalent pairs model
knowledge of symmetries of the wavefunction in silicon is essential in locating the spins with
equivalent hyper�ne coupling. Also, in our model at least one of the bath spins has to be within
a certain distance from the nuclear qubit for appreciable decay due to the hyper�ne-mediated
interaction.
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qubits in all magnetic �eld regimes, including the case of the simple unmixed qubit.

We also demonstrate how to enhance coherence times using operation at optimal

working points (OWPs), by employing dynamical decoupling pulse sequences, or by

combining the two methods. We derive a closed-form formula for coherence times

which gives remarkably accurate predictions and is simple to use despite capturing

the qubit-bath back-action without the need for a detailed numerical many-body cal-

culation. The �rst pulsed magnetic resonance (ENDOR) experiments were presented

for bismuth donors in the silicon spin bath, using which we �nd clear spectroscopic

signatures of OWPs and characterise the hybrid qubit-nuclear spin bath interaction

Hamiltonian. The pulsed experiments also demonstrate the feasibility of controlling

proximate nuclear impurity spins.

When it comes to addressing more fundamental issues such as the extent to which

classical magnetic �eld �uctuations are valid for describing decoherence driven by

quantum baths or the role of many-body correlations in qubit-bath dynamics, we

demonstrate that the hybrid qubit in a nuclear spin bath presents a good test bed for

investigating such issues. In particular, we demonstrate that near OWP regions, a

classical noise model based on frequency-�eld gradients does not reliably reproduce

coherence times. The formula for coherence times also identi�es clear di�erences

between the classical and quantum bath models. In addition, we present the only

case where the usual qubit-bath correlations from pairs of bath spins are almost

entirely diminished and clusters of three spins in the many-body bath are required

for converged coherence decays. This occurs near OWPs and for low to moderate

orders of dynamical decoupling.

Throughout our presentation, we have compared most of our theoretical results

with experimental measurements, �nding excellent agreement in nearly all cases.

In particular, theory-experiment comparisons were made for coherence calculations

of the hybrid qubit for forbidden transitions, ESR-type and NMR-type transitions,

near and far from OWPs and by combining OWPs with dynamical decoupling. Our

predicted timescale of decoherence for proximate nuclear qubits also agrees with

experiment.

189



CHAPTER 9. CONCLUSIONS

A brief summary of the main outcomes of the work was also given in Section 1.2.

For the rest of this chapter, we focus on the potential of the hybrid qubit (or a

mixed electron-nuclear spin system) for quantum information applications, and dis-

cuss other future work motivated by our results, including a proposal for isolating

increasing orders of many-body correlations.

It is clear that the hybrid qubit o�ers signi�cant advantages for quantum com-

puting and memory applications compared to the case of uncoupled electronic or

nuclear spins. We focus on three aspects: fast quantum control at forbidden transi-

tions, operation at OWPs, and coherence enhancement of proximate nuclear spins.

First, operating at ESR-forbidden transitions in the hybrid regime gives a factor

of 125 speed-up of quantum control relative to the high-�eld regime albeit at the

expense of shorter coherence times; if longer (pure nuclear) coherence times are

required (i.e. for memory rather than processing), the magnetic �eld may be ramped

up to the high-�eld regime. Nevertheless, qubit manipulation times are �ve orders

of magnitude shorter than coherence times in the hybrid regime. We established

that in this forbidden transition regime of proven fast control, coherence times are

limited by nuclear spin di�usion. Unfortunately, this 4 GHz excitation frequency

region does not correspond to an OWP region. Thus, coherence times here could be

extended by isotopic enrichment or dynamical decoupling. Second, for transitions

with OWPs, two orders of magnitude enhancement in coherence times are achievable

without the need for any isotopic enrichment or multi-pulse dynamical decoupling

control. Fast microwave-pulsed quantum control is also achievable for ESR-type

OWPs. Further enhancement of coherence at OWPs in natural silicon is possible,

but requires a large number of dynamical decoupling pulses � of order hundreds for

a single order of magnitude enhancement. Third, the hybrid qubit (in the unmixed

regime) features a frozen core, protecting proximate nuclear spins from quantum

bath noise and leading to almost three orders of magnitude nuclear coherence time

enhancement, thus making proximate nuclei ideal for use as quantum registers, while

the hybrid qubit is employed for processing. Finally, we note that a universal set of

quantum gates using the hybrid qubit are detailed in Mohammady et al. (2012).
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9.1 Future Work

As mentioned above, methods similar to those presented herein may be applicable

to other spin systems. For OWPs in donors, a host nuclear spin quantum number

exceeding I = 1/2 is required. Hence, all silicon donors except for phosphorus can

implement the hybrid qubit. To date, all single-donor measurements have been made

on phosphorus donors and all OWP experiments on ensembles of bismuth donors.

Systems of interest in quantum information processing which warrant modi�cation

or extension of our methods include quantum dots (Webster et al., 2014), especially

coupled dots (Weiss et al., 2012, 2013) and also nitrogen vacancy centres in diamond

(Zhao et al., 2012a). Also, some materials have a rich variety of nuclear impurities;

hence, heteronuclear spin baths become relevant.

Better knowledge of the donor electron wavefunction is expected to improve

our results for both the hybrid qubit and proximate qubits. More accurate mod-

els than the standard Kohn-Luttinger model exist, such as the model presented

in Pica et al. (2014). First, it is expected that limitations of the Kohn-Luttinger

wavefunction contribute to the small deviations between calculated and measured

coherence decays, whether for proximate nuclear or hybrid qubit decoherence. More

importantly, the equivalent pair model relies heavily on symmetries of the wave-

function. One way of gaining more information about the wavefunction is to better

characterise the nuclear spin bath by performing continuous wave magnetic reso-

nance which o�ers higher resolution than pulsed methods and which can be used

to assign hyper�ne couplings of the donor electron spin to nuclear spin impurity

positions or shells (Hale and Mieher, 1969a,b). We note that if the equivalent pair

model is con�rmed by some other means, it could be used to test the validity of

symmetries in wavefunction models. Also, in characterising the interaction to the

spin bath, a future improvement is thorough assessment of the errors in obtaining

the anisotropic hyper�ne couplings from rotation spectra, for which data with higher

angular resolution and knowledge of all relevant crystal directions are needed. Fi-

nally, understanding the dependence of sidebands in ENDOR spectra on the radio
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frequency pulse length should lead to an improved comparison between calculated

and measured peak positions at low �eld.

The validity of the analytical formula for coherence times near OWPs remains

partially understood. The �eld-independent prefactor in the formula was derived

from pair correlations. The short time approximation was also used. However, it is

not entirely clear how the formula is successful for longer times. In fact, the convolu-

tion of decays predicted by the formula near OWPs does show signi�cant discrepancy

with experiment at longer times (beyond T2) as seen in Figure 5.11. Three-clusters

are essential for coherence decays as a function of time reaching zero-coherence near

OWPs. More remarkable is that the formula gives accurate predictions for a range

of OWPs (where the pair of polarisations vary by about an order of magnitude) and

with large variations in coherence time regardless of the fact that the derivation is

based on an analysis of only pair correlations. One thing that is clear is that the

�eld-dependent component of the formula is a robust feature in all regimes. Also,

more work is needed to understand the factor of about 2 to 3 di�erence between

the Hahn spin echo and FID coherence times near OWPs, and the reduction of this

factor to about 1.1 as the �eld is set far from the OWP.

As for comparing classical and quantum bath decoherence, very recently it was

reported that the nuclear spin bath is of �semi-classical� nature near OWPs (Ma

et al., 2015). This seems to contradict a main result in this thesis. However, a

closer look at the study reveals that a quantum many-body calculation (CCE) is

in fact carried out to determine the correlation function of the bath which includes

a back-action term (|Pu| + |Pl|). Nevertheless, at the start of the thesis, we state

that qubit-bath back-action (or central state dependence of the bath evolution) is

a de�ning characteristic of what we mean by a quantum bath, and we compare

to previous classical models involving only a property of the qubit (frequency-�eld

gradient). Hence, the con�ict between our work and the study in Ma et al. (2015)

is simply resolved by the fact that we use a di�erent de�nition of classicality than

the one in Ma et al. (2015).

For isotopically enriched samples, where the nuclear spin bath is e�ectively elim-
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inated, decoherence is driven by donor-donor processes. The same spin system, a

donor spin, constitutes both the central system and bath. Decoherence is driven

by either spin di�usion from a �ip-�opping bath of donors coupled to the central

donor (indirect �ip-�ops) or �ip-�ops between the central donor and a bath donor

(a relaxation-type process involving single-spin bath clusters and known as direct

�ip-�ops). Indirect �ip-�ops are similar to the nuclear spin di�usion process and

are expected to be suppressed near OWPs. However, it is not clear if there are any

practically accessible sweet-spots for suppressing direct �ip-�ops (see for example,

Monteiro (2014)), which limit coherence times in enriched silicon at OWPs. If refo-

cusing pulses are applied on the all-dipolar donor system, decoherence is introduced

as a process known as instantaneous di�usion (Tyryshkin et al., 2012) which reduces

coherence times from seconds to the millisecond timescale. Again, it is not entirely

understood whether or not special magnetic �eld regions are experimentally feasible

for the hybrid qubit for suppressing this process (Monteiro, 2014). In order to ob-

tain accurate coherence decays for donor-donor decoherence, a modi�ed CCE with

external cluster awareness is needed for good accuracy (Witzel et al., 2012). Note

that near OWPs, coherence times from donor-donor processes can be comparable to

nuclear bath coherence times in natural silicon, provided the donor concentration

is high enough. Also, dynamical decoupling for donor-donor processes should be

investigated, as well as in combination with OWPs. Finally, it has been previously

demonstrated for phosphorus-doped silicon that line-broadening e�ects caused by

nuclear impurity spins in the bath suppress donor-donor �ip-�ops (Witzel et al.,

2010), thus future studies must consider partial isotopic enrichment and a mixture

of donor-donor and impurity-related decoherence mechanisms; i.e., what is the ideal

donor and impurity concentration for maximizing coherence times?

The width of spectral lines in a spin impurity environment presents a limit to

how closely the magnetic �eld can be adjusted towards the OWP. By investigating

partial enrichment, the best compromise between coherence times of the hybrid qubit

and the density of proximate nuclear spins could be established. As for proximate

nuclear qubits, we note that there is no T2 measurement of a single proximate
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spin. Coherence decays from single realisations may show oscillations due to the

few equivalent pairs. Also, studies on wavefunction symmetry-breaking mechanisms

could provide a good test of our equivalent pairs model.

It should be mentioned that as an OWP is approached, the likelihood of numeri-

cal divergences for high-order CCE increases. This is especially true for four-clusters

and surprisingly less so for �ve-clusters. The reason is not fully understood but the

divergences depend on the choice of bath realisations, are mitigated by averaging

over many realisations and most likely result numerically from divisions by near-

zeros.

Finally, additional work is needed to establish the many-body nature of the

silicon spin bath at OWPs. The 3-body correlations can have their origin in three-

clusters containing three �ip-�opping spins or renormalised �ip-�opping pairs; i.e.

two-clusters with detuning from frozen external spins. The possibility of isolating

many-body correlations of increasing order (i.e. 3-body, 4-body, . . . ) as the �eld

approaches closer to an OWP should also be investigated. Since the linewidth in

natural silicon limits how close to an OWP the magnetic �eld can be set, many-

body correlations should be studied for increasingly sparse spin baths with reduced

impurity concentrations.
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A.1 Overview

SpinDec is a C++ library for spin decoherence calculations written by S.J.B..1 It is

free to use and can be downloaded from Bitbucket or CCPForge:

https://bitbucket.org/sbalian/spindec

https://ccpforge.cse.rl.ac.uk/gf/project/spindec/

It should be cited as it appears in the thesis bibliography (see reference Balian (2015)

and Section A.5 for its BibTeX entry).

The code solves for the many-body dynamics of a central spin system coupled

to an interacting spin bath. It supports any complex multi-spin Hamiltonian for

both the central and bath Hamiltonians. Spin Hamiltonians can be constructed by

creating abstract spin interaction graphs and de�ning edges for interactions among

single spin vertices.

1seto.balian@gmail.com
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The cluster correlation expansion is implemented, special methods for donors in

silicon are available and methods are included for CPMG control. The repository

also includes an executable for calculating CPMG dephasing2 of donors in silicon

interacting with a 29Si nuclear spin bath. Special methods for quantum dots and

heteronuclear spin baths are under development.

This appendix includes installation and usage instructions for SpinDec.

A.2 Installation

The code has been tested on Linux and Mac OS X. Installation requirements are as

follows:

� Eigen (free): For linear algebra.

http://eigen.tuxfamily.org

� CMake (free): For building and installing.

http://www.cmake.org/

� boost (free): For program options. Only required for executable.

http://www.boost.org/

� Optional: Intel MKL optimization for Eigen.

https://software.intel.com/en-us/intel-mkl/

The following installation instructions are for a Unix-like environment without

root privileges. It also assumes you have Mercurial (hg) installed.

To get the code, type in a terminal with bash,

mkdir spindec

cd spindec

hg clone http ://www.bitbucket.org/sbalian/spindec .

2This includes FID and Hahn spin echo as well as higher pulsed CPMG.
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Now let's build it.

mkdir build

cd build

cmake .. -DCMAKE_INSTALL_PREFIX =/home/myusrname

make -j4 all

make install

The argument to cmake de�nes the installation location (here set to `myusrname',

which you should change to your user name). If you invoke cmake without specifying

the location, it will install to your default system pre�x (requires root). The -j4

option to make parallelises the build process using 4 cores. Make sure this number

does not exceed the number of cores for your machine.

If all went well, you should now have the static library and executables. The

library, headers and executables should be located in the following directories respec-

tively: /home/myusrname/lib, /home/myusrname/include, /home/myusrname/bin.

Optionally, to enable MKL optimization in Eigen, pass -DSPINDEC_USE_MKL=ON

to cmake. Obviously, you will need the proprietary MKL libraries for this step.

For further customization, see the included �le CMakeLists.txt (you will need to

understand cmake).

A.3 Usage

Documentation generated with doxygen is available, detailing the structure of the

code and explaining its use. To use SpinDec, just include the SpinDec/base.h

header in your source and link with libspindec. Also, the executable for nuclear

spin di�usion spindec-dsnsd has a �-help option.

Help can also be found directly in header �les (.h extension in include/SpinDec).

Source �les (.cpp extension in src/) may contain more information, usually geared

more towards implementation. See Section A.4 for examples of usage.
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A.4 Examples

First, follow the instructions under �Installation� (Section A.2). Then, open the

�le spindec/tests/spindec-test-cce.cpp to see the source with comments on

the example problem. Using the cluster correlation expansion up to 3rd order, it

calculates the Hahn spin echo decay of a central donor spin in silicon for a nuclear

spin bath (spin-1/2 29Si with a natural abundance of 4.7%). To see the decay, run

spindec-test-cce. The test executable is not installed, so run it in the build

directory. The source for spindec-dsnsd (src/spindec-dsnsd.cpp) should also

serve as a good example.

A.5 License and How to Cite

SpinDec is free to use under the GNU General Public License. See LICENSE �le

for more details. If you use any part of the code in a publication, please cite it as

follows:

S. J. Balian, Spindec: C++ Library for Spin Decoherence, http://www.bitbucket.

org/sbalian/spindec (2011-2015).

Below is the BibTeX entry:

@misc{SpinDec ,

title = {SpinDec: C++ Library for Spin Decoherence},

author = {Balian , Setrak J.},

howpublished = {http ://www.bitbucket.org/sbalian/spindec},

year = {2011 - -2015}

}

A.6 Version and History

As of June 15, 2015 the version number is 0.9 (late-stage beta - debugged, tested,

pro�led, optimized and checked for memory leaks). SpinDec is based on bits and

pieces of code for certain spin baths and central spin systems. These were written by

S.J.B. starting in 2011. Methods used to e�ciently �ll Hamiltonian matrix elements
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were originally written in Fortran by Professor Tania Monteiro. Development for

SpinDec as an open-source project started in May 2013.
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B | Pauli Operators

Any two-level observable can be described by linear combinations of the Pauli op-

erators σ̂k, k = 1, 2, 3 (Audretsch, 2007) and the 2 × 2 identity. The operators act

on the 2-dimensional Hilbert space and satisfy

σ̂iσ̂j = δij1̂ + i

3∑
k=1

εijkσ̂
k, (B.1)

where i, j = 1, 2, 3, δij is the Kronecker delta (δij = 1 for i = j, δij = 0 for i 6= j),

1̂ is the identity operator and the tensor εijk is totally antisymmetric in all indices

with ε123 = 1. Equivalently, the condition in Equation (B.1) can be written in terms

of the commutators and anti-commutators

[
σ̂i, σ̂j

]
= 2i

3∑
k=1

εijkσ̂
k, (B.2)

{
σ̂i, σ̂j

}
= 2δij1̂. (B.3)

The Pauli vector in the Cartesian basis σ̂ = (σ̂x, σ̂y, σ̂z) is often used to refer to the

operators. The operators are Hermitian ((σ̂k)† = σ̂k), unitary ((σ̂k)† = (σ̂k)−1) and

traceless (Tr[σ̂k] = 0), and have eigenvalues +1 and −1. Taking the orthonormal

basis of eigenvectors of σ̂z as {|0〉 , |1〉}, the matrix representations of the operators

in this basis are the Pauli matrices:

σx =

 0 1

1 0

 , σy =

 0 −i
i 0

 , σz =

 1 0

0 −1

 . (B.4)

The electron has a total spin quantum number S = 1/2 and its spin angular mo-
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mentum operators are related to the Pauli operators according to Ŝ = (Ŝx, Ŝy, Ŝz) =

σ̂/2. For a nuclear spin-1/2, we write I = 1/2 and Î = σ̂/2.

In quantum computing, the Pauli operators represent simple single-qubit gates.

For example, the Pauli-X gate (|0〉 〈1| + |1〉 |0〉) �ips |0〉 (|1〉) to |1〉 (|0〉) (Nielsen
and Chuang, 2010).

201



C | Silicon Crystal Structure

Silicon forms the diamond cubic crystal structure (Kittel, 1996). The diamond

cubic is two face-centred cubic (FCC) lattices, one displaced from the other by a

distance of 1
4
a0 along the body diagonals, where a0 is the conventional cubic cell

lattice parameter (i.e. side length of the cubic cell). For silicon, a0 = 5.43 Å. The

conventional cubic cell of the diamond cubic is illustrated in Figure C.1.

Figure C.1: Conventional cubic cell of the diamond cubic crystal structure. The
nearest neighbors distances (illustrated relative to the black atom) are

√
3

4
a0 (red),

√
2

2
a0 (blue),

√
11
4
a0 (green) and a0 (purple), where a0 is the lattice parameter. In

Miller index notation (Kittel, 1996), [100], [010] and [001] correspond to the direc-
tions along x̂, ŷ and ẑ respectively. For example, [111] is along the body diagonal.
Figure adapted from Balian et al. (2014).

The crystal structure can also be described by a simple cubic lattice and an 8-

site basis. We represent all atomic sites (the crystal structure) by an integer vector

n = (n1, n2, n3), the integers obtained from modulo 4 translations in all directions of

the 8 basis vectors. The 8 basis vectors are: (0,0,0), (0,2,2), (2,0,2), (2,2,0), (1,1,3),

(1,3,1), (3,1,1), and (3,3,3). The transformation to convert from integer to real space
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APPENDIX C. SILICON CRYSTAL STRUCTURE

R is

R(n1,n2,n3) =
a0

4
(n1x̂ + n2ŷ + n3ẑ) , (C.1)

in Cartesian coordinates, where the axes are parallel to those of the conventional

cubic cell.
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