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Abstract 

Balancing systemic iron levels within narrow limits is critical for human health, as both 

iron deficiency and overload lead to serious disorders. There are no known 

physiologically controlled pathways to eliminate iron from the body and therefore iron 

homeostasis is maintained by modifying dietary iron absorption. Several dietary factors, 

such as polyphenols, are known to greatly affect iron absorption. Furthermore, it is 

proposed that polyphenols can affect iron status by regulating expression and activity of 

proteins involved in either the systemic regulation of iron metabolism or iron 

absorption. To reveal how polyphenols affect iron metabolism, experiments which 

included intraperitoneal (IP) or forced feeding (gavage) treatment of Sprague Dawley 

rats with quercetin, polyphenol which is plentiful in the diet, were performed. These 

treatments were followed by the evaluation of iron-related genes and iron content in 

duodenum, liver, spleen, kidney and serum. Results revealed that quercetin treatment, 

IP or gavage, provoked iron deficiency. Oral treatment mainly affected iron absorption, 

mostly by changing the expression of iron transporters. Additionally, with in vivo 

uptake studies it was shown that quercetin reduces duodenal iron uptake by direct 

chelation of iron consequently increasing apical iron uptake and decreasing basolateral 

iron release from enterocyte. IP treatment mainly affected systemic iron homeostasis, 

mainly through up-regulation of hepcidin expression in liver and kidney. Additionally, 

in in vitro studies quercetin metabolites and other polyphenols showed a notable effect 

on hepcidin expression in human liver HepG2 cells, as well as on inflammatory and 

iron-related genes in THP1 cells. Results showed that polyphenols have multiple effects 

on iron homeostasis. Thus, polyphenols may have important consequences for 

conditions that are low in iron such as anaemia. Alternatively, polyphenols have 

therapeutic potential for iron overload diseases, potentially as a part of chelato-therapy. 
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1. INTRODUCTION 

1.1 Biological importance of iron 

Studying chemistry of iron in detail, it is easy to see why iron is essential for life. 

Namely, under physiological conditions, iron is mainly present in two forms, ferrous 

(Fe
2+

) and ferric (Fe
3+

). The Fe
2+

/Fe
3+

 system facilitates variety of redox potentials 

that can be fine adjusted by different ligands (from about -0.5 V to about +0.6 V), 

which almost entirely corresponds to the redox potential range of utmost importance 

for biological systems. That is why iron complexes are uniquely suitable for a variety 

of catalytic processes and reactions which are of great biological significance, such 

as electron transfer and acid-base reactions (Crichton, 2001; Lieu et al., 2001). 

Iron carries out a variety of significant roles in biological systems, mostly as a part of 

iron-containing proteins. Haemoproteins are a large group of iron-containing proteins 

where the iron is bound to a porphyrin molecule (haem) which is bound to the 

different proteins with diverse functions. There are three main categories of 

haemoproteins: oxygen carriers (haemoglobins, myoglobins and neuroglobins), 

activators of molecular oxygen (cytochrome oxidase, cytochrome P450s, catalases 

and peroxidases) and electron transport proteins (cytochromes; Yehuda and 

Mostofsky, 2010; Ying–Wu and Jiangyun, 2013). 

The second group of iron-containing proteins is the iron-sulphur proteins (Fe–S 

proteins), where iron is bound to sulphur by thiol groups from cysteine or inorganic 

sulphide. Fe–S proteins are widespread in all living organisms and express numerous 

actions. Namely, they are included in redox and non-redox reactions as part of 
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different enzymes, like succinate dehydrogenase and aconitase, and proteins involved 

in the electron transfer chain (Crichton, 2001; Lill and Muhlenhoff, 2006). 

The third class of iron-containing proteins presents a diverse group of proteins that 

do not contain iron in a haem or Fe–S form. One group is mononuclear non-haem 

iron enzymes, which include lipoxygenases, aromatic amino-acid hydroxylases, 

prolyl and lysyl hydroxylases, etc. Additionally, there is the dinuclear non-haem iron 

protein group, consisting of ribonucleotide reductase and ferritins or proteins 

involved in iron transport, such as transferrins (Crichton, 2001). 

Summing activities of the above mentioned proteins, it is apparent that iron is crucial 

for many important processes, such as: oxygen transport and storage, cellular 

respiration and energy production, the electron transport chain of mitochondria, 

synthesis of DNA, RNA and proteins, regulation of gene expression, cell 

proliferation and differentiation. In addition, iron is indispensable for normal brain 

function, psychomotor development and cognitive performance (especially in 

infants), endurance and physical performance, the inflammatory response (iron 

deficiency greatly reduces resistance to infection), pregnancy (40% of all maternal 

prenatal deaths are linked to anaemia), thyroid function, production and metabolism 

of catecholamines and other neurotransmitters, drug metabolism, etc. Hence it is 

evident that nearly every cell and organism require iron for life (World Health 

Organization, 2001; Dunn et al, 2007; Sharp and Srai, 2007; Yehuda and Mostofsky, 

2010). 

On the other hand the property of iron to easily change its oxidative stage can also be 

toxic, mainly due to its ability to produce free radicals when it is not bound by 
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proteins and is free in a labile iron pool. Iron takes part in a reaction, known as the 

Fenton reaction, where the hydroxyl radical (HO
•
) is the end product. HO

•
 is the most 

toxic reactive oxygen species (ROS) which can damage all classes of biomolecules. 

Consequently, unrestrained production of HO
•
 leads to cell injuries and death and 

gives rise to numerous severe pathological states (Halliwell and Gutteridge, 2007). 

The Fenton reaction initiates the chain reaction (equation 1), which is then followed 

by the reactions (equations 2 and 3) in which more and more HO
•
 is produced 

(Koppenol, 2001). 

Fe
2+

 + H2O2 → Fe
3+

 + HO• + HO
-
 equation 1 

HO• + H2O2 → H2O + O2
•- + H

+
 equation 2 

O2
•- + H

+
 + H2O2 → O2 + HO• + H2O equation 3 

Thus, balancing systemic iron levels within narrow limits in an organism is crucial, 

as both iron deficiency and iron overload lead to serious haematological, metabolic 

and neurodegenerative disorders, which belong to the most frequent disorders 

worldwide, as well as carcinogenesis (Hentze et al., 2004). 

1.2 Distribution and homeostasis of body iron 

The total iron content of the adult human organism is estimated around 4 g (~ 35 

mg/kg woman, ~ 45 mg/kg for men). About 52% of total body iron is found as part 

of haemoglobin in circulating erythrocytes or erythrocyte precursors, 40% in 

complex with ferritin or hemosiderin as intracellular pool (liver and reticulo-

endothelial macrophages), 7.5% in muscle as part of myoglobin, 0.5% as part of the 

catalytic centre of a variety of enzymes (cytochromes, catalase, peroxidases, 
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flavoproteins, etc.) and 0.1% as transferrin-bound iron in the circulation (see Figure 

1–1; Andrews, 1999; Lieu et al., 2001). 
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Figure 1–1 Distribution of body iron 

The adult human body have approximately 4 g of iron, with more than half (>2 g) 

incorporated in the haemoglobin of developing erythroid precursors (300 mg) and 

mature circulating erytrocytes (1800 mg). Remaining body iron is found in a transit 

pool in reticulo-endothelial macrophages (600 mg) or stored in hepatocytes (1000 

mg) complexed with ferritin. A smaller part is present in muscles within myoglobin 

(300 mg), while only a minor amount is present in plasma bound to transferin (3 mg) 

or incorporated in other proteins and enzymes that include iron in their structures. 

Approximately, 10–20 mg of iron is daily consumed by diet, from which only 1–2 

mg is absorbed. The same amount is lost every day by blood loss of different 

etiology, shedding of the skin and sloughed enterocytes. 
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Body iron homeostasis is maintained by regulating the iron levels in plasma 

(transferrin-bound iron), which is determined by four coordinated processes: 

duodenal iron absorption, macrophage iron recycling, hepatic iron storage and 

erythropoiesis. Erythropoiesis, the production of red blood cells in bone marrow, 

requires nearly 30 mg iron each day, the main part of which comes from the 

recycling of iron via reticulo-endothelial macrophages (> 28 mg/day). Macrophages 

ingest old or damaged erythrocytes, process them and release recycled iron to plasma 

transferrin. The pool of transferrin-bound iron (~ 3 mg) is very dynamic and 

undergoes recycling more than 10 times daily. Furthermore, when in balance, each 

day the body absorbs 1–2 mg of iron by duodenal enterocytes and at the same time 

loses 1–2 mg of iron by nonspecific iron losses, such as exfoliation of enterocyte, 

skin and hair loss, menstruation and some gastrointestinal blood loss (see Figure 1–

1). Bearing in mind that there is no known physiologic mechanism for controlling 

iron excretion and that macrophage-mediated iron recycling cannot be sufficient for 

maintaining erythropoiesis over the long term, absorption of dietary iron in 

duodenum is of great importance in keeping iron homeostasis in balance 

(Papanikolaoua and Pantopoulos, 2005; Beaumont and Delaby, 2009). 

1.3 Mechanism of dietary iron uptake 

Nutritional iron absorption occurs primarily in the duodenum, on the apical (luminal) 

membrane of the enterocytes, and is tightly regulated by bioavailable iron, iron 

stores, erythropoietic drive and inflammation. The average diet daily contains about 

10–20 mg of iron from which only 1–2 mg is absorbed. There are two types of 
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dietary iron: non-haem iron, which is present in food from both animal or plant 

origin, and haem iron, which is present only in food of animal origin. 

Absorption of non-haem iron in the intestine comprises the following (Srai et al., 

2002; see Figure 1–2): 

1. Reduction of Fe
3+

 and uptake of Fe
2+

 from the diet through the apical membrane 

of enterocytes. In the diet iron is mainly present as Fe
3+

. However, the absorption 

of Fe
2+

 is more efficient than Fe
3+

. In order to increase Fe
3+

 bioavailability, Fe
3+ 

firstly needs to be reduced. Duodenal cytohrome b (Dcytb) is an iron-regulated 

ferric reductase, highly expressed on the apical membrane of duodenal 

enterocytes (described in detail in Section 1.3.1.1; McKie et al., 2001). After 

being reduced by Dcytb, Fe
2+

 is transported across the apical membrane by the 

divalent metal transporter 1 (DMT1; described in detail in Section 1.3.1.2; 

Gunshin et al., 1997). 

2. Intracellular processing of iron and iron transport to the basolateral membrane 

of enterocytes. There is not much information about the mechanism of 

intracellular iron transport. However, it is supposed that it is closely related to 

vesicular transport. The fate of absorbed iron is closely related to the body’s 

demands for iron. If there is a need for more iron, then iron is exported from the 

cell via the basolateral membrane of enterocytes which is followed by iron 

binding to transferrin (Tf; described in detail in Section 1.3.1.6) and transport to 

peripheral tissues that require iron. If there is no need for additional iron in the 

body, iron is stored in the cell in the form of ferritin (described in detail in Section 
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1.3.1.3), the main iron storage protein, and returned to the lumen at a time when 

the villus enterocytes die (Sharp and Srai, 2007). 

3. Transfer of iron through the basolateral membrane to the circulation. The 

mechanism of Fe
2+

 transport through the basolateral membrane includes 

synchronized activity of two proteins, ferroportin (FPN; described in detail in 

Section 1.3.1.4; Abboud and Haile, 2000; Donovan et al., 2000; McKie et al., 

2000) and transmembrane copper-dependent ferroxidase, hephaestin (Heph; 

described in detail in Section 1.3.1.5; Vulpe et al., 1999; Chen et al., 2004). 

Before entering the circulation, Fe
2+

 firstly needs to be oxidized to the Fe
3+ 

state, 

which is catalyzed by hephaestin, the intestinal ferroxidase. Fe
3+ 

then binds to the 

serum glycoprotein Tf (described in detail in Section 1.3.1.6; MacGillivray et al., 

1983), the key iron transporting protein in the serum and extracellular fluids. 

The uptake mechanism for non-haem and haem iron differs across the apical 

membrane of the enterocyte, while it follows the same pathway once iron is inside 

the cell (see Figure 1–2). Even though the mechanism of haem absorption is not fully 

characterized, haem carrier protein 1 (HCP1) was identified as protein for haem 

uptake on the apical membrane of duodenal enterocytes (Shayeghi et al., 2005). Once 

inside the cell, haem is degraded by haem oxygenase (HO–1; Tenhunen et al., 1969) 

and the released iron enters an intracellular iron pool. After that, absorbed iron from 

the haem source follows the pathway of absorbed non-haem iron. 



19 

 

Figure 1–2 Mechanism of non-haem and haem iron absorption in duodenal cells 

Non-haem iron from food is firstly reduced by the ferric reductase Dcytb yielding 

Fe
2+

, which afterwards enters the enterocytes via DMT1. On the other hand, haem is 

absorbed via HCP1, subsequently broken down by HO–1, after which free Fe
2+

 from 

haem joins a common cell iron pool with iron from the non-haem source. If body 

iron stores are high, iron may be stored in the cell complexed with ferritin as Fe
3+

 

and eventually lost when the cell is discarded from the intestinal villus tip. 

Otherwise, iron efflux into the circulation via FPN, subsequently being re-oxidised 

through Heph to enable loading into Tf, after which it is transferred to peripheral 

tissues that require iron. 

1.3.1 Proteins involved in iron absorption and transport 

1.3.1.1 Duodenal cytochrome B (DcytB) 

Dcytb (or Cybrd1) is an iron-regulated protein with ferric reductase activity, highly 

expressed on the human duodenal apical membrane next to DMT1. The primary role 

of Dcytb is to reduce non-haem iron (Fe
3+

 to Fe
2+

) prior to its transport inside the cell 

via DMT1 (see Figure 1–2; McKie, 2008). The structure of the Dcytb protein 

consists of 286 amino acids with six transmembrane domains and was revealed using 

a subtractive cloning strategy by McKie et al. in 2001. Furthermore, it has been 
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shown in vitro that Dcytb expresses dual, ferric and cupric reductase activity 

(Wyman et al., 2008). 

Dcytb mRNA and protein levels are up-regulated by hypoxia (described in detail in 

Section 1.4.3) and iron deficiency, which strongly supports its role in iron uptake and 

metabolism (Zoller et al., 2003; Wyman et al., 2008). Recently it has been shown 

that the transcriptional modulation of Dcytb expression can be regulated by 

transcriptional factor hypoxia-inducible factor (Hif) –2α (Shah et al., 2009). 

Specifically, the activity of enzymes that modulate Hif–2α ubiquitination is 

supported by ascorbate, Fe
2+

 and O2. Thus, low ascorbic acid levels, iron deficiency 

and hypoxia, hold back Hif–2α ubiquitination, enhance Hif–2α levels and support 

Dcytb expression. In addition, ascorbic acid has been recognized as a Dcytb helper 

by supplying electrons for Fe
3+

 reduction, and thus has a dual role in regulation of 

Dcytb activity (Oakhill et al., 2008; Luo et al., 2014). 

Interestingly, in contrast to other genes important for iron uptake, such as DMT1 and 

FPN, Dcytb transcript lacks an iron-responsive element (IRE), one of the key players 

in the control of iron metabolism (described in detail in 1.4.1). 

Moreover, it was shown that over-expression of Dcytb in Caco–2 or MDCK (Madin–

Darby canine kidney) cells, significantly increased iron absorption, clearly indicating 

that Dcytb plays an important role in iron transport (Latunde–Dada et al., 2008; 

Wyman et al., 2008). Also, it was shown that Dcytb is increased in the duodenum of 

iron-deficient patients, which is associated with a desirable increase of iron 

absorption. On the other side, it was shown that in iron-overload patients, Dcytb 

levels in the duodenum are decreased (Zoller et al., 2003). However, the essential 
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role of Dcytb in iron uptake in humans was the subject of uncertainty. Namely, there 

are no reports on a direct connection between mutations in human Dcytb and iron 

metabolism disorders. Additionally, it was shown that there was no significant 

disturbance of iron homeostasis in Dcytb knockout mice. Still, absence of iron 

deficiency in humans with mutated Dcytb and Dcytb knockout mice could be 

explained by the presence of other reductase enzymes in the gut and substrates that 

could reduce iron, such as ascorbic acid (Gunshin et al., 2005). However, to date 

Dcytb still remains the only known reductase in the human duodenum that is 

regulated by increased physiological demands for iron.  

1.3.1.2 Divalent metal transporter 1 (DMT1) 

DMT1 (Nramp2 or DCT1) is a divalent metal protein transporter located on the 

apical membrane of enterocytes which, after reduction of iron by Dcytb, transports 

Fe
2+

 inside the cell (see Figure 1–2). DMT1 was first identified in 1995 (Gruenheid 

et al., 1995), but its activity as an iron transporter was revealed subsequently when a 

DMT1 mRNA construct was transfected into Xenopus oocytes and iron uptake 

activity was observed (Gunshin et al., 1997). It is believed that DMT1 acts as proton 

symporter, transporting one H
+
 for each Fe

2+
, and therefore iron uptake is supported 

by the mildly acidic environment of the duodenum (Gunshin et al., 1997). Moreover, 

DMT1 is confirmed to have the ability to transport other divalent metals, such as 

Mn
2+

, Cu
2+

, Cd
2+

, Zn
2+

, Co
2+

, Ni
2+

 and Pb
2+

 (Garrick et al., 2003). 

The importance of DMT1 in iron uptake was highlighted by study with DMT1 gene 

mutations in two animal models, microcytic anaemia mice and Belgrade rats 

(Fleming et al. 1997; Fleming et al., 1998). Both models showed a severe iron 
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deficiency phenotype due to impaired iron uptake. Moreover, humans with DMT1 

mutations exhibited hypochromic microcytic anemia, which undoubtedly indicates a 

significant role for DMT1 in iron homeostasis (Mims et al., 2005; Lam–Yuk–Tseung 

et al., 2006). 

Humans have two types of DMT1 proteins, with 561 and 570 amino acids, having 12 

transmembrane domains. Two variants of mRNA differ at their C-terminus by the 

presence or absence of a specific IRE sequence on the 3’ untranslated region (UTR). 

Thus, +IRE and -IRE DMT1 types are controlled by both the intracellular iron pool 

or an IRE-independent mode of metal regulation, respectively (described in detail in 

Section 1.4.1; Gunshin et al., 1997; Fleming et al., 1998; Lee et al., 1998; Au et al., 

2008). However, it was shown in vitro in an intestinal Caco–2 cell line that hepcidin, 

a main controller of systemic iron homeostasis, is a negative regulator of DMT1 

expression of both RNA and protein levels (Yamaji et al., 2004; Mena et al., 2008). 

Recently it was revealed that duodenal DMT1 is down-regulated by hepcidin via 

proteasome internalization and degradation, similar to FPN in macrophages 

(described in detail in Sections 1.3.1.4 and 1.4.2; Brasse–Lagnel et al., 2011). 

Hepcidin is a small, liver-secreted hormone which plays a central role in iron 

metabolism by inhibiting iron absorption in the duodenum, liberation of iron from 

macrophages after recycling of senescent erythrocytes and iron which is stored in 

hepatocytes (described in detail in Section 1.4.2). Additionally, it was recently shown 

that Hif–2α, but not Hif–1α, induces DMT1 transcription, in the same manner as 

Dcytb, which is evidence that DMT1 levels are also controlled by hypoxia (described 

in detail in Section 1.4.3; Mastrogiannaki et al., 2009). 
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1.3.1.3 Ferritin 

Ferritin is the main intracellular iron storage protein present in almost all living 

organisms and expressed in numerous cell types. Ferritin was discovered more than 

70 years (1937) by the French scientist Laufberger who crystallized ferritin from 

horse spleen (Laufberger, 1937). Inside the cell (e.g. the enterocyte) surplus iron is 

stored by ferritin in a redox inactive form, thus preventing formation of new free 

radicals, which can be highly toxic for the cell. However, under conditions of iron 

demand in the cell or organism, iron can be released from ferritin. In other words, in 

humans ferritin acts as a buffer against cell iron deficiency and iron overload. 

Ferritin is in the form of a shell with a cavity (a.k.a. nanocage structure) where up to 

4500 iron atoms can be loaded in a form of ferric oxide, Fe2O3 (Theil, 2011). It 

comprises 24 subunits of two types: H (heavy; 21 kDa) and L (light; 19 kDa) which 

combine in different ratios with a tissue-specific distribution. Prior to iron storage, 

oxidation of Fe
2+

 to Fe
3+

 occurs in the ferritin H subunit (Arosio et al., 2009; Bou–

Abdallah, 2010). 

The ferritin structure is highly conserved in bacteria, plants and animals and follows 

the same pattern of expression regulation: iron availability and oxidative stress. In 

mammals, post-transcriptional regulation is based on the presence of an IRE 

sequence on both H and L ferritin mRNA 5’UTRs, which facilitate up-regulation of 

ferritin synthesis when iron is present in excess. In contrast, during iron deficiency 

ferittin synthesis is blocked in order to increase iron bioavailability (described in 

detail in Section 1.4.1; Theil, 2007). Oxidative stress regulates levels of ferritin at the 

transcriptional level by an upstream antioxidant responsive element (ARE) on ferritin 
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genes. Both nuclear factor erythroid 2-related factor (Nrf2) and JunD transcriptional 

factors are involved in the transcriptional activation of H and L ferritin via ARE after 

oxidative stress, therefore protecting cells from oxidative stress induced by higher 

levels of iron. Moreover, the Nrf2 pathway is enhanced by haem through which 

haem also up-regulates ferritin levels on transcription level (described in detail in 

Section 1.4.3; Hintze et al., 2007). Additionally, ferritin levels are up-regulated by 

the cytokines tumour necrosis factor-α (TNF–α) and interleukin (IL)–6 and 

inflammation (Torti and Torti, 2002). 

1.3.1.4 Ferroportin (FPN) 

FPN is the single known mammalian iron exporter which facilitates efflux of iron to 

the circulation through the basolateral membrane of the enterocyte together with the 

coordinated action of a ferrioxidase Heph (see Figure 1–2). Besides, being essential 

for iron absorption from the diet, FPN is the crucial iron exporter in different cell 

types, such as hepatocytes and macrophages, thus takes part in the distribution of 

iron between tissues (Ward and Kaplan, 2012). FPN is a protein comprising 571 

amino acids with a mass of 62 kD, whose discovery was made at the same time by 

three independent groups, using three different methods, and thus was given three 

different names: metal transporter 1, iron-regulated protein 1 and FPN1 (Abboud and 

Haile 2000, McKie et al., 2000, Donovan et al., 2000, respectively). In this work, the 

name ferroportin or its abbreviation FPN will be used. 

The mechanism of iron transport via FPN is not fully understood. However, it is 

considered that Fe
2+

 is substrate for FPN, because FPN needs additional ferroxidase 

activity in order to provide iron for Tf (Ward and Kaplan, 2012). 
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The pivotal role of FPN in iron homeostasis has been extensively documented 

showing that the absence of FPN provokes disruption of iron homeostasis. An 

experiment with mice, where removal of FPN was done in utero, resulted in viable 

but underdeveloped mice with severe iron deficiency. Specifically, selective 

inactivation of FPN in the duodenum resulted in low iron concentrations right after 

the birth, demonstrating that FPN is of great importance for iron absorption. Also, 

general inactivation of FPN in an organism revealed iron overload in the liver, spleen 

and duodenum, provoking anaemia and pointing out that FPN is a major iron 

exporter in the body (Donovan et al., 2005). The connection between mutations in 

FPN and loss of its function and subsequently iron retention in Kupffer cells and 

macrophages in humans was first identified by Montosi et al. 2001, and was named 

“FPN disease“. Nowadays, this disorder is classified as most common non-

haemochromatosis protein (HFE) haemochromatosis (HH), which belongs to the 

group of hereditary iron loading disorders associated with the reduction in levels of 

the peptide hormone hepcidin (described in detail in 1.4.2 and 1.4.4; Pietrangelo, 

2010; Pietrangelo et al., 2011). 

FPN levels are regulated by a number of mechanisms. Like Dcytb and DMT1, FPN 

transcription is also supported by the presence of Hif–2α induced by hypoxia 

(described in detail in Section 1.4.3; Mastrogiannaki et al., 2009). Also, like ferritin, 

the FPN gene contains an ARE promoter and its transcription is controlled by 

oxidative stress through the Nrf2 pathway. Similarly, transcription of FPN is 

demonstrated to be up-regulated by iron and haem and it is considered that these 

paths of regulation include Nrf2 transcriptional factor (described in detail in Section 

1.4.3; Marro et al., 2010; Ward and Kaplan, 2012). In addition, transcription of FPN 

is proven to be up-regulated by other metals (e.g. Zn and Cd; Troadec et al., 2010). 
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At the transcriptional level FPN is down-regulated by inflammation induced by 

lipopolysaccharide (LPS; Ludwiczek et al., 2003; Harada et al., 2011). 

Post-transcriptionaly, FPN is regulated by the IRE/IRP (iron-regulatory protein) 

system (described in detail in Section 1.4.1). mRNA of FPN has an IRE sequence at 

its 5’UTR, by which translation of FPN is inhibited by low levels of iron and 

increased by high levels of iron in the cell (Hentze et al., 2004). 

Post-translationally, FPN can be regulated by two known mechanisms. Firstly, FPN 

levels can be regulated by the hepatic hormone hepcidin. This mechanism was 

elucidated by Nemeth et al. 2004b, who demonstrated that hepcidin attached to FPN 

on the cell membrane induced its internalization (described in detail in Section 

1.4.2). Additionally, post-translational internalization of FPN can be driven by a 

hepcidin-independent mechanism. Specifically, FPN is degraded in the absence of 

the multicopper oxidase ceruloplasmin (Cp), while it is stable when Cp is present 

(Jeong and David, 2003). 

1.3.1.5 Hephaestin (Heph) 

Heph is a membrane-bound copper-dependent ferroxidase that takes part in iron 

export from the intestinal epithelium to the circulation, where it binds to Tf, in 

synchronized activity with the FPN transporter (see Figure 1–2). It is believed that 

Heph facilitates iron trafficking by oxidizing the soluble Fe
2+

 into the Fe
3+

, prior to 

its release by FPN. The role of Heph in iron export from enterocytes to the 

circulation was established by experiments with the sex-linked anaemia (sla) mouse, 

where iron export was inhibited leading to intestinal iron accumulation and systemic 

iron deficiency. The sla mouse contains a mutation that generates Heph with 
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impaired structure and thus can take up iron normally from the diet into enterocytes, 

but is unable to facilitate iron export (Vulpe et al., 1999; Chen et al., 2004). 

Heph is 50% identical with Cp, the serum multi-copper ferroxidase, which assists in 

iron export from various tissues. Both ferroxidases contain iron- and copper-binding 

sites, have similar functions but different locations. Namely, Heph is mainly 

expressed in the small intestine and anchored to the membrane where it plays an 

important role in the uptake of iron from the diet. Cp is soluble plasma protein, 

mainly expressed in liver and has a role in the redistribution of iron from the liver 

and other internal organs (Petrak and Vyoral, 2005; Chen et al., 2006). 

In contrast to most proteins involved in iron homeostasis, Heph activity is neither 

regulated via the IRE/IRP system nor hepcidin (described in detail in Sections 1.4.1 

and 1.4.2). Also, it is recognized that Heph expression is more responsive to systemic 

iron levels than to iron levels in enterocytes. In iron-deficient conditions, Heph 

mRNA levels increase, whereas in contrast, high iron concentration causes a 

decrease in Heph mRNA in vivo (Sakakibara and Aoyama, 2002; Chen et al., 2003). 

Specifically, a down-regulation of Heph expression was proven in the duodenum of 

patients with hereditary HH (Stuart et al., 2003), while mRNA and protein levels are 

up-regulated by iron deficiency, which strongly supports its role in iron uptake and 

metabolism (Zoller et al., 2003). Also, reduced interactions between FPN and Heph 

in rats after iron ingestion indicate that this is a regulatory mechanism for limiting 

further iron absorption (Yeh et al., 2011). Still, by now, no human disease has been 

associated with a Heph mutation (Petrak and Vyoral, 2005). 
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Also Heph requires copper for its structural stability and enzymatic activity and 

consequently copper levels affect Heph activity. To be exact, copper deficiency leads 

to a marked decrease in Heph expression and ferroxidase activity (Nittis and Gitlin, 

2004), while it was observed when copper is abundant an increase in Heph mRNA 

occurs (Han and Wessling–Resnick, 2002).  

1.3.1.6 Transferrin (Tf) 

Tf is monomeric non-haem iron-binding glycoprotein. Its main function is to 

transport iron safely around the body from site of iron absorption to places of iron 

storage and usage. One molecule of plasma Tf can bind reversibly two atoms of Fe
3+

 

with high affinity (Aisen et al., 1978). Chelation of iron by Tf has a few functions: it 

maintains Fe
3+

 in a soluble form under physiologic conditions, it maintains Fe
3+

 in a 

redox-inert state preventing the generation of toxic free radicals, it facilitates 

regulated iron transport and cellular uptake and it has an indirect defensive role 

against infections by making iron unavailable to potential pathogens which require 

iron for growth (Brock et al., 1987; Gkouvatsos et al., 2012). When not bound to 

iron, Tf is known as apo-transferrin (apo–Tf), while holo-transferrin (holo–Tf) is the 

iron-saturated form of Tf. Tf is mainly synthesized in liver (Zakin, 1992), while it is 

present in different body fluids, such as plasma, bile, lymph, cerebrospinal fluid, 

breast milk and amniotic fluid (Qian et al., 2002). The concentration of Tf in plasma 

ranges from 2 g/L to 3 g/L, and the in vivo half-life of the Tf is eight days (Gomme et 

al., 2005). 

At any time plasma Tf binds less than 0.1% of total body iron (3 mg; see Figure 1–

1). Two millions of new erythrocytes are produced every second by the bone 



29 

marrow, which requires a daily supply around 30 mg of iron. In order to meet the 

needs of erytrocyte production, plasma Tf turns over more than 10 times a day 

(Cavill, 2002). Because iron absorbed from diet is limited, the main source of plasma 

iron is the reticulo-endothelial macrophages: senescent erythrocytes are phagocytized 

by macrophages in the spleen, liver and bone marrow. Macrophages degrade 

haemoglobin, liberate Fe
2+

 and export it through FPN by synchronized iron re-

oxidation to Fe
3+

 by Cp, and load it to Tf, if the body requires extra iron (Wang and 

Pantopoulos, 2011). Tf saturation reflects body iron stores and the balance between 

reticulo-endothelial iron release and bone marrow uptake. Around 30% of the Tf 

iron-binding sites are saturated under normal conditions. This partial saturation of Tf 

presents a shield for preventing iron toxicity, because it makes it possible to tolerate 

a sudden change of plasma iron levels. In humans, Tf saturation less than 15% 

indicates iron deficiency, whereas 45% and more is sign for iron overload (Hentze 

and Muckenthaler, 2010). 

The mechanism of cellular uptake of Tf-bound iron from plasma involves diferric Tf 

binding to transferrin receptor (TfR) 1 and endocytosis of the complex Tf/TfR1. 

After releasing Fe
3+

 from Tf into the endosome, iron is reduced and transported to 

the cytosol via DMT1. Consequently, apo–Tf is exported back to the circulation, 

while TfR1 is recycled on to the cell surface ready for another iron uptake cycle. 

TfR1 is expressed in many cell types, such as developing erythroid cells, hepatocytes 

and placental syncytiotrophoblasts (Hémadi et al., 2004). 

Interestingly, holo–Tf expresses a significant regulatory function in the expression of 

hepcidin, a systemic regulator of iron homeostasis (described in detail in Section 
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1.4.2). Namely, the increase in Tf saturation (i.e. increase in holo–Tf concentration), 

but not apo–Tf provokes an increase in hepcidin excretion (Lin et al., 2007). 

Similarly to DMT1, TfR1 mRNA has an IRE on its 3’UTR, and thus is post-

transcriptionaly regulated by the IRE/IRP system (described in detail in Section 

1.4.1). Therefore in iron deficiency, IRE/IRP interactions stabilize TfR1 mRNA and 

support increased iron uptake and prevention of iron storage (Gkouvatsos et al., 

2012). Furthermore, during iron deficiency Tf synthesis is increased significantly in 

the liver (Idzerda et al., 1986). Also, levels of Tf are increased after hypoxia through 

Hif–1α (Rolfs et al., 1997).  

Additionally, besides TfR1 there is also TfR2, which differs in a couple aspects from 

the TfR1. While TfR1 is ubiquitously expressed, TfR2 expression is limited to 

hepatocytes and erythroid precursors. Unlike TfR1, TfR2 is not regulated by IRPs, as 

its mRNA does not contain IRE elements. Moreover, even though in transfected cells 

TfR2 binds holo–Tf, in vivo it does not rescue the embryo-lethality of Tfr1
-/-

 mice, 

implying that TfR2 has a function that is distinct from TfR1 and unrelated to iron 

transport. Also, the affinity of TfR2 for holo–Tf is significantly lower than that of 

TfR1 (Fleming et al., 2000; West et al., 2000; Silvestri et al., 2014). Even though it 

seems that TfR2 does not have an important role in acquisition of iron, undoubtedly 

it has an essential role in regulation of iron homeostasis. Namely, TfR2 has an ability 

to bind HFE and this action represents a key sensor for circulating iron and activating 

hepcidin synthesis as a response to an elevated transferrin saturation (described in 

detail in Section 1.4.2). Contrary, TfR1–HFE interaction may serve to withdraw HFE 

away from participation in a hepcidin up-regulatory pathway, which is greatly 

different from TfR2–HFE interaction intention. 
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The importance of Tf in humans is evident with individuals with atransferrinaemia 

(described in detail in Section 1.4.4). Also, in humans mutation in the TfR2 gene 

lead to HH (described in detail in Section 1.4.4), while this is not a case with TfR1 

(Schmidt et al., 2008; Fleming, 2009). 

1.4 Regulation of iron homeostasis 

1.4.1 IRE/IRP system – cellular regulation of iron homeostasis 

The central role in the cellular regulation of the iron homeostasis is the post-

transcriptional IRE/IRP control machinery which is highly dependent on iron 

availability in the cell. More specifically, inside the cell iron metabolism is 

controlled by the binding of IRP1 or IRP2 to cis-regulatory mRNA sequences IREs. 

IRE/IRP interactions regulate the expression of the mRNAs which encode proteins 

important for iron acquisition (TfR1 and DMT1), storage (ferritin H and L subunit) 

and export (FPN). Additionally, this system controls expression of Hif–2α, which is 

also responsible for Dcytb, DMT1 and FPN expression (Muckenthaler et al., 2008). 

The presence of iron inside the cell is the key regulator of the IRE/IRP system. 

Namely, the IRE-binding activity of both IRP (IRP1 and IRP2) is increased when 

iron is low and decreased when iron is high. Additionally, the regulatory outcome 

depends on the position of the IRE on the mRNA sequence. Namely, if IRPs bound 

to IREs that are on the 3’UTR end of mRNA this will stimulate its translation by 

mRNA stabilization and prevention of its degradation by a ribonuclease (RNase). 

Contrary, if IRE is on the 5’UTR end of mRNA, binding of IRP will lead to 

inhibition of translation (see Figure 1–3). Specifically, when iron is limited, IRPs 
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bind to IREs which stabilize the mRNAs that have IREs on their 3’UTR (such as 

TfR1 and DMT1) and repress the translation of the mRNAs which have IREs on 

their 5’UTR (such as ferritin and FPN). Together, the sequence of these events leads 

to an increase of cellular iron uptake (i.e. absorption in duodenum, hepatocyte 

intake). In contrast, high iron levels diminish the stability of IRE-IRP complex, 

which supports translation of ferritin and FPN mRNAs, and blocks translation of 

TfR1 and DMT1 mRNAs, and eventually decreases intracellular iron levels 

(Leipuviene and Theil, 2007; Recalcati et al., 2010). 

  

 

Figure 1–3 Iron-dependent regulation of IRE/IRP system 

When iron levels are low, IRPs bind to IREs, and thus repress translation of 5’ IRE-

containing mRNAs (a) or support translation of 3’ IRE containing mRNAs (b). In 

contrast, when iron levels are high IRPs lose binding affinity to IREs, and increase 

the translation of 5’ IRE containing mRNAs (a) and the degradation of 3’ IRE-

containing mRNAs (b). 
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IREs are 26–30 nucleotide-long hairpin-forming sequences on the 3’ or 5’UTR of 

mRNA of proteins important for iron absorption. The loop sequence, which is highly 

conserved in all IREs, is presumably required for efficient IRP binding (Piccinelli 

and Samuelsson, 2007). 

IRP1 and IRP2 defer partially in their structure and mechanism of action, but have 

the same role in iron metabolism. IRP1 is a protein containing an iron-sulphur cluster 

unit, which besides its role in regulation of iron metabolism has cytosolic aconitase 

activity. In iron-deficient cells, IRP1 operates as a RNA-binding protein, but in iron-

replete cells the [4Fe–4S] cubane cluster is formed inside the IRP1, leading to 

destabilization of IRP1-IRE complex and expression of aconitase activity. During a 

change in iron levels, there is no change in IRP1 protein levels, just a change in its 

binding activity to IRE. However, IRP2 is produced de novo during iron deficiency, 

while it is rapidly degraded during high iron concentrations in the cells. IRP2 is 

highly homologous to IRP1, however IRP2 does not have a Fe–S cluster unit and 

does not display aconitase activity (see Figure 1–4). Both IRPs are present in all 

tissues, but IRP1 is mainly dominant in liver, spleen, kidney, heart, while in 

duodenum IRP1 and IRP2 are present in similar amounts (Iwai et al., 1998; Cairo 

and Pietrangelo, 2000; Volz, 2008). 
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Figure 1–4 Diferences in IRP1 and IRP2 

High iron levels favor the formation of the iron-sulphur cluster, which obstruct IRE 

binding and generate aconitase activity in IRP1, while it leads to IRP2 degradation. 

In contrast, low iron levels inhibit iron-sulphur cluster formation in IRP1 and support 

de novo synthesis of IRP2, thus facilitating IRP1 and IRP2 binding to IRE. 

There are known disorders in humans in which the molecular basis of the disease can 

be addressed to IRE/IRP system regulatory components. Namely, in the hereditary 

disease hyperferritinaemia cataract syndrome mutations in the IRE sequence of 

ferritin L-chain occur, while autosomal dominant iron overload is a consequence of a 

mutation in the apical loop sequence on the IRE sequence of ferritin H-chain (Girelli 

et al., 1995; Kato et al., 2001; Roetto et al., 2002). Also, it was shown that mice with 

no both types of the IRP gene die early during embryonic period, which indicates a 

significant function of the IRE/IRP system in development. Conversely, analysis of 

mice lacking either IRP1 or IRP2 reveals that the two IRPs can largely compensate 

the function of each other (Meyron–Holtz et al., 2004; Galy et al., 2005; Smith et al., 

2006; Galy et al., 2008). 
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1.4.2 Hepcidin – systemic regulation of iron homeostasis 

1.4.2.1 Discovery and structure of hepcidin 

Exactly thirteen years ago, two serendipitous discoveries occurred where two 

different groups of scientists isolated a new protein, one from blood (Krause et al., 

2000) and one from urine (Park et al., 2001). No one thought that the discovery of 

this new small protein would have a crucial role in iron metabolism and that it 

presented the start of a novel era in iron metabolism research. This new protein was 

named hepcidin. 

Hecidin is a 25-amino acid peptide hormone, containing four disulphide bridges, 

with weak antimicrobial activity and a highly conserved structure. It is primarily 

synthesized in hepatocytes as an 84-amino acid pre-pro-peptide which undergoes 

rapid intracellular processing into several smaller peptides, among which the 25 

residue protein with eight cysteine residues is the biologically active form of 

hepcidin (Hunter et al., 2002). 

1.4.2.2 Role of hepcidin 

Hepcidin is a main regulator of systemic iron homeostasis and its essential role in 

iron metabolism was confirmed in a number of in vivo studies. In 2001, the leading 

role of hepcidin in iron homeostasis was demonstrated by Nicolas et al. in hepcidin 

gene-knockout mice which developed severe iron overload with iron accumulation in 

liver, pancreas and heart. Furthermore, the same group demonstrated that mice over-

expressing hepcidin were born with severe iron-deficiency anaemia and died soon 

after birth (Nicolas et al., 2002). Apart from hepcidin’s role in systemic iron 
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regulation it was shown that hepcidin is in a close relationship with rate of the iron 

absorption in the duodenum. Namely, an experiment with adult rats that were 

switched from an iron-replete diet to an iron-deficient diet showed that hepcidin 

expression inversely correlates with the expression of duodenal iron transporters and 

iron absorption (Frazer et al., 2002). These findings were followed by numerous 

confirmations of the essential role of hepcidin in iron homeostasis in humans. 

Generally, the discovery of hepcidin and its role in iron homeostasis remarkably 

improved our understanding of the pathogenesis of the most common and often fatal 

iron disorders, such as HHs (described in detail in1.4.4). 

FPN, as it was described in detail in Section 1.3.1.4, is a transporter crucial for iron 

efflux from different cell types. Nowadays, it is confirmed that FPN is not only an 

iron exporter, but is also a receptor for hepcidin, which is particularly important 

during iron overload. As a result of hepcidin binding to FPN endocytosis of FPN 

occurs, leading to its proteolysis in lysosomes. This action makes hepcidin the main 

regulator of systemic iron homeostasis. Namely, hepcidin controls iron efflux from 

cells and keeps circulating iron at the proper level, preventing iron overload and 

production of toxic ROS (Nemeth et al., 2004b). By binding to FPN, hepcidin 

controls the main supply routes of iron into the circulation, such as: iron absorbed 

from diet in duodenal enterocytes, iron from macrophages liberated during recycling 

of senescent erythrocytes and iron which is stored in hepatocytes. In other words, 

when hepcidin concentrations are low, FPN is re-synthesized and re-expressed at the 

cell surface and iron enters into circulation at a high rate. When hepcidin 

concentrations are high, FPN is internalized and iron is trapped in enterocytes, 

macrophages and hepatocytes (Ganz, 2011). 
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1.4.2.3 Regulation of hepcidin expression 

The gene encoding hepcidin (HAMP) is strongly expressed in liver hepatocytes. 

However, there is slight, but not insignificant, production of hepcidin by other cell 

types, such as: macrophages, kidney, adipocytes and pancreatic -cells. To limit iron 

toxicity in periods of iron overload, hepcidin expression is physiologically induced to 

decrease circulating iron levels. Vice versa, during iron deficiency, erythropoesis and 

hypoxia, hepcidin expression is reduced to allow efficient iron mobilization 

(described in detail in Section 1.4.3). Interestingly, hepcidin production is induced 

during the inflammation process by what is believed to be related to its ability to 

lower the extracellular iron, a nutrient whose reduced availability can limit the 

proliferation of invading microorganisms (described in detail in Section 1.4.3; Viatte 

and Vaulont, 2009).  

Hepcidin mRNA does not contain an IRE, as other proteins important for iron 

homeostasis do. This indicates that hepcidin is regulated by iron and signaling 

pathways other than the IRE/IRP system. The only known routes of regulation of 

hepcidin expression are at the transcriptional level. On the basis of all the 

information on the regulation of hepcidin expression this model arises (see Figure 1–

5): (1) the membrane bone morphogenetic protein (BMP) receptor and its signaling 

components are the key regulatory machinery which control the transcription of 

hepcidin via the SMAD (mainly SMAD4) pathway in hepatocytes; (2) hemojuvelin 

(HJV) is an iron-specific adaptor ligand of the BMP receptor that boosts its 

sensitivity to BMPs; (3) neogenin binds to HJV also enhancing BMP signaling; (4) 

iron levels in the liver are sensed by BMP6, an activating ligand of the BMP 

receptor, that increases in hepatic iron overload (5) extracellular iron concentration is 
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sensed through the interaction of holo–Tf with TfR1 and TfR2, in coordination with 

HFE as a mediator of the holo–Tf uptake by TfRs; (6) TfR2 and HFE interaction 

increase the sensitivity of the BMP receptor to its ligands in a holo-Tf-dependent 

manner, perhaps by interactions with HJV; (7) transmembrane protease, serine 6 

(TMPRSS6) seems to be stabilized by iron deficiency, leading to cleavage and 

inactivation of HJV and thus inhibits further hepcidin expression (Ganz, 2011; 

Pietrangelo, 2011; Ganz and Nemeth, 2012). 

When research on hepcidin’s role in humans started to emerge, it was firstly 

discovered that patients with juvenile haemochromatosis (JHH) had negative 

hepcidin mutations generating severe iron overload (Roetto et al., 2003). Namely, 

JHH is one of several types of HH, where mutation of HJV is the major cause 

(Gkouvatsos et al., 2014). Moreover, deficiency in hepcidin is the fundamental issue 

in every HH, which confirms the essential role of hepcidin as a negative regulator of 

iron absorption and iron efflux in humans (described in detail in Section 1.4.4). 
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Figure 1–5 Regulation of hepcidin transcription by iron 

The BMP receptor and its signaling components are the key regulatory machinery 

which controls the transcription of hepcidin via the SMAD pathway in hepatocytes. 

Iron levels in the liver are sensed by BMP6, an activating ligand of the BMP 

receptor, that increases during hepatic iron overload while extracellular iron 

concentration is sensed through the interaction of holo–Tf with TfR1 and TfR2, in 

coordination with HFE as a mediator of the holo–Tf uptake by TfRs. TfR2 and HFE 

interaction increase the sensitivity of the BMP receptor to its ligands in a holo-Tf-

dependent manner, perhaps by interactions with HJV. HJV is an iron-specific adaptor 

ligand of the BMP receptor, while neogenin binds to HJV, both boosting its 

sensitivity to BMPs during iron overload. TMPRSS6 seems to be stabilized by iron 

deficiency, leading to cleavage and inactivation of HJV and thus inhibits further 

hepcidin expression. 

1.4.3 Erythropoiesis, hypoxia, inflammation and oxidative stress – 

additional regulation mechanisms of iron homeostasis 

Increased production of erythrocytes in bone marrow, in order to improve the O2-

carrying capacity of the circulation, presents a major adaptation pathway to anaemia 

and hypoxia. In order to support erythrocyte production during anaemia or hypoxia, 

up-regulation of protein erythropoietin (Epo) by kidneys and liver occurs. This event 
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decreases hepcidin levels which results in an increase absorption of dietary iron and 

mobilization of iron from macrophages and hepatocytes to maintain erythropoiesis, 

autonomously of iron stores. Even though it was proven in vitro and in vivo that Epo 

inhibits hepcidin production, the exact mechanism of action is still not fully 

understood (Pinto et al., 2008; Huang et al., 2009). 

During hypoxia, O2-regulated transcription factors Hif–1 and Hif–2 are elevated in 

order to induce erythropoiesis by activation of renal and hepatic Epo synthesis. Hif–1 

and Hif–2 comprise O2-sensitive α subunits (Hif–1α and Hif–2α) and a constitutively 

expressed β subunit (Hif–β). While O2 levels are normal (normoxia), a regulatory α 

subunit is modified by iron-dependent prolyl hydroxylases (PHDs) and degraded 

through the ubiquitin/proteasome pathway. Under hypoxia, PHD activity is inhibited 

and the α subunit is translocated into the nucleus, where it binds to the β subunit. The 

heterodimeric Hif binds to the hypoxia-response elements (HREs), the regulatory 

sequence of the target gene, supporting the transcription of corresponding genes. Epo 

is one of these target genes, while in vivo studies showed that Hif–2 is the main 

regulator of Epo. Interestingly, it was proven in vivo that HAMP suppression by the 

Hif pathway occurs indirectly via stimulation of Epo-induced erythropoiesis. 

However, even though HAMP promoter contains several HREs, Hifs binding to them 

remains controversial (Peyssonnaux et al., 2007; Liu et al., 2012a). Additionally, 

hypoxia controls expression of genes important for iron absorption in the duodenum 

through Hif–2α, such as Dcytb, DMT1 and FPN (Mastrogiannaki et al., 2009; Shah 

et al., 2009). Also, levels of Tf are increased after hypoxia through Hif–1α (Rolfs et 

al., 1997). Interestingly, expression of Hif–2α is control by IRE/IRP machinery. This 

provides evidence that different ways of iron homeostasis control are mutually 
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dependent, include many factors and make complex network of machinery for fine 

tuning of iron levels in organism. 

During infection and inflammation, hepcidin levels are increased as a host defence 

mechanism in order to reduce iron levels and make it non-available to invading 

microorganisms. Thus, inflammation has a great influence on iron homeostasis and 

by up-regulation of hepcidin cause down-regulation of intestinal iron absorption, iron 

export from macrophages and hepatocytes and thereby decreased serum iron levels. 

It was proven in vivo that IL–6 has a stimulatory effect on hepcidin transcription. 

Specifically, in urine of human volunteers levels of hepcidin increased 7-fold after 

infusion with recombinant human IL–6 which was followed with a significant 

decrease in serum iron and transferrin saturation (Nemeth et al., 2004a). 

Additionally, IL–6 knock-out mice failed to produce surplus hepcidin mRNA in 

response to induced inflammation, indicating that IL–6 is necessary for hepcidin 

induction and hypoferremia during inflammation in mice (Nemeth et al., 2004a). In a 

separate study, after individuals were injected with LPS, IL–6 was significantly up-

regulated within 3 hours after injection, which was followed by an urinary hepcidin 

increase which peaked within 6 hours and a large decrease in serum iron (Kemna et 

al., 2005). This study confirmed the previous statement and highlighted the 

importance of general inflammation in iron homeostasis. It is speculated that 

cytokines other then IL–6 may also contribute to the up-regulation of hepcidin during 

inflammation. However, this effect was not proven in vivo up to now (Armitage et 

al., 2011; Nairz et al., 2014). 

Oxidative stress presents a disturbance in the equilibrium between the presence of 

ROS and antioxidant defence mechanisms, in favour of ROS, leading to damage of 
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cell components and provoking pathogenesis of numerous disorders. However, 

oxidative stress induces a battery of genes encoding antioxidant and detoxifying 

enzymes. Nrf2 is a transcription factor which binds to ARE in response to oxidative 

stress, initiating the synthesis of enzymes that will “fight“ against elevated levels of 

reactive species. The mechanism by which the binding of Nrf2 to ARE is induced is 

still not fully understood. Though, it is known that when oxidative stress is not 

present Nrf2 forms an inactive complex with kelch-like ECH-associated protein 1 

(Keap1) in the cytoplasm. This interaction supports Nrf2 ubiquitination and 

degradation. In contrast, when increased levels of intracellular ROS occur, 

destabilization of the Keap1-Nrf2 interaction takes place, allowing Nrf2 to dissociate 

from Keap–1 and translocate to the nucleus. In the nucleus, Nrf2 will join to an 

additional transcriptional factor Maf in order to form a complex that binds to ARE on 

DNA. This will up-regulate transcription of numerous antioxidative and 

cytoprotective proteins which have ARE region, such as: HO–1, superoxide 

dismutase 1, quinone reductase (QR), catalase, sulfiredoxin, thioredoxin, 

peroxiredoxins, glutathione peroxidase, glutathione reductase, glutathione S–

transferase (GST) and γ–glutamine cysteine ligase (Halliwell and Gutteridge, 2007; 

Johnson et al., 2008; Klaassen and Reisman, 2010; Gan and Johnson, 2014). 

Oxidative stress is strongly associated with high levels of free iron in the cell. With 

this in mind, it is no surprise that in periods of oxidative stress actions that maintain 

iron export out of the cell and storage are supported. Thus, in order to avoid 

additional oxidative stress in the cell, levels of FPN and ferritin H- and L-chain are 

up-regulated by the Nrf2 pathway. Interestingly, haem acts like a stabilizer of the 

Nrf2-Maf complex and thus supports its binding to ARE. By bringing together 

knowledge about haem and its proven role in the Nrf2 pathway, it can be concluded 
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that phagocytosis of erythrocytes by reticulo-endothelial macrophages and release of 

haem up regulates: HO–1 to activate haem degradation, ferritin H- and L-chain to 

accumulate iron released from the haem and FPN to export iron out of the cell for 

further transport via circulation (Marro et al., 2010). 

1.4.4 Disorders of iron metabolism of different etiology 

In this chapter iron metabolism disorders, such as: HH, iron-refractory iron 

deficiency anaemia (IRIDA), atransferrinaemia, -thalassaemia, iron deficiency 

anaemia (IDA), anaemia of inflammation (AI) or anaemia of chronic disease (ACD), 

are described. Additionally, a description of how these disorders are treated is also 

included. 

HHs mainly belongs to disorders of hepcidin and ferroportin functions, and are 

characterized as a group of genetic disorders described by excessive absorption of 

dietary iron and its accumulation in the liver and other organs. The prime 

consequence is liver injury leading to cirrhosis and hepatocellular carcinoma. In 

addition, iron toxicity can also damage other organs. Early diagnosis and use of 

recommended therapy to maintain normal body iron stores is crucial and can prevent 

all known complications of HHs. If untreated, HHs may lead to death from cirrhosis, 

diabetes, malignant hepatoma or cardiac disease (Niederau et al., 1994). Deficiency 

of hepcidin is the fundamental issue in every HH (see Figure 1–6). In humans, there 

are several types of HH: HFE-associated, TfR2-associated, HJV-associated, FPN-

associated and HAMP-associated, as a consequence of mutation of genes for HFE, 

TfR2, HJV, FPN and hepcidin, respectively. The most severe types of HH are 

associated with HAMP and HJV. Loss of TfR2 or HFE causes an intermediate level 
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of hepcidin deficiency, while loss of FPN results in hepcidin-resistance type of HH 

(Pietrangelo, 2010).  

 

Figure 1–6 Iron absorption during some iron metabolism disorders connected 

with hepcidin 

During high and long-lasting levels of hepcidin expression in liver, caused by 

inflammatory stimuli, internalization and degradation of FPN in enterocyte occurs 

leading to impaired iron absorption through the enterocyte, intracellular iron 

accumulation and low plasma iron levels (A). While iron metabolism is in balance, 

hepcidin levels are normal and in accordance with iron demands (B). HH is a 

consequence of impaired hepcidin expression, causing increased iron import from the 

diet and overload of iron in plasma (C). 

Human iron disorder caused by mutations in the gene encoding the TMPRSS6 

enzyme is known as IRIDA. IRIDA is characterized by low iron and transferrin 

saturation and inappropriate elevation of hepcidin levels in serum. 

Atransferrinaemia, hereditary deficiency of Tf, is a rare autosomal recessive disorder 

as a consequence of Tf gene mutations. Without Tf and impaired supply of iron to 

the bone marrow, individuals develop severe, microcytic, hypochromic, iron-

deficiency anaemia. These individuals need erythrocyte transfusions from birth in 



45 

order to survive. This state leads to increased intestinal iron absorption. However, 

absorbed iron is transported inadequately in the plasma because non-Tf bound iron 

cannot be imported by erythroid precursors. Consequently, iron is taken up by other 

organs, which leads to a paradoxical iron overload of non-erythropoietic tissues. This 

disorder also leads to low hepcidin levels (Beutler et al., 2000; Heeney and Andrews, 

2004) 

-thalassaemia, a type of iron-loading anaemia, is a secondary disorder of hepcidin 

function in which mutation of the gene for -globin, the subunit which together with 

α-globin makes up haemoglobin, occurs. Therefore, synthesis of haemoglobin is 

impaired, facilitating ineffective erythropoiesis which is stimulated by constant high 

levels of Epo, leading to low levels of hepcidin. Thus, both significant iron overload, 

with hyper-absorption of dietary iron despite high serum transferrin, and anaemia, 

due to impairment in erythrocyte synthesis, occur. A transfusion is effective 

treatment for these patients because it increases hepcidin due to lowering of Epo 

concentrations and provides normal erythropoiesis, at least for a while (Origa et al., 

2007; Ganz, 2011). 

Standard therapies for iron overload disorders are phlebotomy and use of chelation 

therapy. During phlebotomy, around 500 mL of blood is removed once or twice 

weekly from patients until levels of ferritin falls under 20 mg/mL. This leads to 

anaemia, which induces iron mobilization from iron stores. Once the patient has 

reached a satisfactory iron levels, phlebotomy is performed several times per year 

over the lifetime (Adams and Barton, 2010; Yehuda and Mostofsky, 2010). 
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When phlebotomy is not an adequate way for iron overload treatment, chelation 

therapy is often used to remove excess iron stores. Additionally, it is considered by 

many that phlebotomy is an obsolete technique and that chelation therapy is the gold 

standard for treating iron overload of different etiologies. The aim of chelation 

therapy is to scavenge free iron from circulation and tissues by forming complexes 

which are excreted in the faeces and/or urine. Several iron chelator drugs have been 

developed, such as deferoxamine (DFO), deferiprone (DFP) and deferasirox (DFX), 

which are administrated orally or subcutaneously. DFO, DFP and DFX bind iron at a 

different molar ratio chelator : iron, 1:1, 3:1 and 2:1, respectively (see Figure 1–7). 

Today, research in the hope of finding new iron chelator drugs which could chelate 

iron from tissues more effectively is evolving (Poggiali et al., 2012). Interestingly, it 

has been confirmed that iron is a crucial element for tumour proliferation, thus the 

potential role of iron chelation therapy in the treatment of cancer should be 

considered in the near future (Hann et al., 1988; Zacharski et al., 2008). 
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Figure 1–7 Complexes of chelation therapy drugs with iron 

Contrary to iron overload disorders, there are iron deficiency disorders, generally 

known as anaemias. Commonly, anaemia is a condition in which there are not 

enough healthy erythrocytes in the circulation which leads to inadequate oxygen 

distribution and consequently disturbance in the maintenance of normal 

physiological function of tissues, such as liver, brain, muscles, etc. (World Health 

Organisation, 2007). 

There are many types of anaemia and these can arise as a result of a wide variety of 

causes that can be single, but more often coexist. Globally, the most significant 

contributor to the anaemia is iron deficiency, known as IDA. The main causes for 
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IDA are low dietary iron intake, poor absorption of iron from diet at a period of life 

when iron requirements are particularly high (described in detail in Section 1.4.5). 

Other recognized causes of anaemia, such as heavy blood loss or extensive 

menstruation are also recognized (World Health Organisation, 2008). 

Additionally, anaemia and hypoferraemia that occurs as consequence of chronic 

infections and inflammatory disorders is known as AI or ACD. AI is a systemic iron 

disorder characterized with decreased iron, iron binding capacity and intestinal iron 

absorption, as well as impaired erythropoiesis, while iron is trapped in macrophages 

and liver, indicating impaired mobilization of iron from stores. AI is a consequence 

of cytokine (mainly IL–6) mediated induction of hepcidin production as a response 

to chronic inflammation (see Figure 1–6; Franchini et al., 2010; Yehuda and 

Mostofsky, 2010). 

To be more precise, anaemia is a consequence of both poor nutrition and poor health. 

Increased risk of maternal and child mortality is one of the main concerns of severe 

anaemia. Additionally, the negative consequences of IDA on cognitive and physical 

development of infants and on general performance, particularly work productivity in 

adults, are also great concern. To be more precise, iron deficiency is the most 

common and widespread nutritional disorder in the world. The World Health 

Organization declares iron deficiency as one of the 10 leading risk factors for 

disease, disability and death in the world today. Iron deficiency affects mostly 

children and women in practically all countries. It can be estimated that most 

preschool children in non-developed countries and at least 30–40% in developed 

countries are iron-deficient, and nearly half of the pregnant women in the world are 

estimated to be anaemic (World Health Organisation, 2001; World Health 
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Organization, 2002; World Health Organisation, 2007; World Health Organisation, 

2008). 

Details on how diet habits affect iron deficiency, as well as routes how iron 

deficiency can be overcome are described in detail in Sections 1.4.5 and 1.6. 

1.4.5 Bioavailability of iron 

Mechanisms of keeping iron metabolism in homeostasis greatly differ from those of 

other metals. Namely, there is no known physiologic mechanism for iron excretion 

and thus 90% of daily needs for iron are obtained from an endogenous source, such 

as the breakdown of old or damaged erythrocytes by reticulo-endothelial 

macrophages. Unavoidably, there are regular daily iron losses, such as shedding of 

skin cells, sweating, miscellaneous bleeding in intestine, menstrual bleeding, etc. 

Thus, to keep iron in balance, it is essentially that iron is supplied by diet, especially 

during growth of infants, children and adolescents and the reproductive period in 

women, particularly during pregnancy (Hurrell and Egli, 2010; Abbaspour et al., 

2014). In  
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Table 1–1 it can be clearly seen that daily requirements of absorbed iron differ 

greatly between individuals of different age, sex and state.  
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Table 1–1 Daily requirements of absorbed iron
 
in individuals of different age, 

sex and state 

age/state 
absorbed iron in duodenum

a
 

(mg/day) 

4–12 months 0.96 

13–24 months 0.61 

2–5 years 0.70 

6–11 years 1.17 

12–16 years (girls) 2.02 

12–16 years (boys) 1.82 

adult males 1.14 

women during lactation 1.31 

women during menstruating period 2.38 

women during postmenopausal period 0.96 

pregnant women 

requirement during pregnancy greatly 

depends on the woman’s iron status 

before pregnancy, these values are 

given as average 

1
st
 trimester of pregnancy 0.8 

2
nd

 & 3
rd

 trimester of pregnancy 6.3 
acalculations were done on basis on average weight (DeMaeyer et al., 1989; Abbaspour et al., 

2014) 

As mentioned previously, dietary iron occurs in two forms: haem and non-haem. 

Haem iron makes 10–15% of total iron from diet in meat-eating populations, but, it is 

estimated to contribute ≥40% of total absorbed iron. However, non-haem iron 

absorption is much lower, and it varies between 2%–20%. In contrast to non-haem 

iron whose bioavailability is highly dependent on the presence of iron absorption 

promoters or inhibitors in the diet, dietary factors have little effect on haem iron 

absorption (Hurrell and Egli, 2010). 

The low bioavailability of non-haem iron contributes greatly to IDA, which is the 

most prevalent nutritional deficiency worldwide, estimated to affect two billion 

people especially in low-income populations where consumption of meat is low 

(World Health Organisation, 2007). On the other hand, low bioavailability of non-

haem iron is a problem in population groups eating only a plant-based diet, 



52 

vegetarians and vegans, whose popularity is rising in modern societies. In order to 

compensate for lost iron and keep iron homeostasis in balance, it is of utmost 

importance that absorption of iron is sufficient. Thus, it is essential to understand in 

detail the mechanism of iron absorption in the duodenum as well as to target its 

promoters or inhibitors. Additionally, for individuals affected with iron deficiency it 

is important to know what food is rich in highly bioavailable iron and try to consume 

it as much as possible. In Table 1–2 it can be seen what are the average levels of total 

iron in common foods. 
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Table 1–2 Amount of total iron in common foods 

food total iron g/g 

sources of non-haem iron 

spinach 260 

tea 250 

salad rocket 154 

parsley 90 

lettuce 65 

red cabbage 61 

tomato 36 

red bean 35 

red pepper 31 

cucumber 29 

broccoli 29 

garlic 28 

banana 27 

cauliflower 25 

corn flour 25 

onion 23 

Nescafe 22 

wheat 20 

strawberry 19 

potato 15 

carrot 15 

apple 15 

eggplant 14 

flour 12 

kiwi 6 

peach juice 1.53 mg/L 

orange juice 0.68 mg/L 

sources of haem iron 

ostrich fillet 24 

lamb chop 22 

beef topside 19 

pork loin 4 

chicken breast 4 
(Lombardi–Boccia et al., 2002; Tokalıoğlu and Gürbüz, 2010) 

 

However there are recognized inhibitors of iron absorption whose occurrence in food 

should be addressed in iron-deficient individuals. Major inhibitors of iron absorption 

from the diet are phytate, polyphenols, calcium and proteins. 
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Phytate (inositol hexakisphosphate; see Figure 1–8) is a primary phosphorous storage 

molecule in plants and cannot be digested by humans. 

CH

CH

CH

CH

CH

CH

O O

O

O O

O

H2PO3

H2PO3

H2PO3

PO3H2

PO3H2

PO3H2

 

Figure 1–8 Structure of phytate 

It is believed that phytate forms a complex with iron through its phosphate ester 

groups making it nonabsorbable and it is considered as the main inhibitor of non-

haem iron absorption. The inhibitory effect of phytate has been proven, but particular 

food preparation methods, such as milling, heat treatment, soaking, germination, 

fermentation, addition of ascorbic acid or enzyme phytase, can remove or degrade 

phytate and thus partially or totally eliminate its negative effect on non-haem iron 

absorption (Siegenberg et al., 1991; Hurrell et al., 2003; Hurrell, 2004; Hurrell and 

Egli, 2010). However, low concentrations of phytate (2–10 mg/meal) express a 

negative effect on non-haem iron absorption. Considering that some foods contain 

phytate in considerable concentrations (see Table 1–3), even much more than 

common food containing non-haem iron (see Table 1–2), consumption of phytate-

rich plants should be under attention. 
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Table 1–3 Phytate content in selected foods 

food phytate mg/g 

walnut 40 

pistachio nuts 28 

hazelnut 23 

wheat cereal 11 

wheat bread 3 
(Harland et al., 2004) 

Polyphenols are group of natural products greatly distributed in food of plant origin 

(described in detail in Section 1.5). It has been proven by numerous studies that 

polyhenols significantly inhibit iron absorption. The connection between polyphenols 

and iron metabolism is described in detail in1.6. 

Calcium has been shown to have an inhibitory effect on both non-haem and haem 

iron absorption. The mechanism of the inhibitory effect of calcium on iron 

absorption is not known, but it is speculated that it could block initial iron uptake by 

the enterocyte (Hallberg et al., 1992). Inhibition of iron absorption has been 

demonstrated even with a calcium concentration that is common in the daily dietary 

intake. This fact could represent a general health problem because widespread and 

recommended use of calcium supplements, manly for the prevention of osteoporosis, 

can bring about problem with iron absorption (Roughead et al., 2005; Hurrell and 

Egli, 2010). 

Particular proteins are also proven to have an inhibitory effect on iron absorption 

such as: milk, soybean and egg proteins, albumin, casein and whey (Cook and 

Monsen, 1976; Hurrell et al., 1988; Hurrell et al., 1989; Lynch et al., 1994). 

On the other hand, the main dietary enhancers of iron absorption are ascorbic acid 

and muscle tissue. It is proven that ascorbic acid improves non-haem iron absorption, 

mainly due to its ability to reduce Fe
3+

 to Fe
2+

 and thus make it available for 
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transport by DMT1. The amount of ascorbic acid that expresses a positive effect on 

non-haem iron absorption is approximately 30–100 mg daily, which corresponds to 

the recommended dietary intake for ascorbic acid. However, in foods of plant origin, 

such as, fruits and vegetables, the supporting effect of ascorbic acid might be reduced 

by the inhibiting effect of polyphenols and phytate (Gillooly et al., 1983; Ballot et 

al., 1987; Hallberg et al., 1989; Siegenberg et al., 1991; Carr and Frei, 1999; Teucher 

et al., 2004). In contrast to the positive effect of ascorbic acid on non-haem iron 

absorption after a single meal, improvement in iron status after chronic 

supplementation with ascorbic acid was not observed in humans. The reason for this 

occurrence is not yet fully understood (Cook and Reddy, 2001).  

Muscle tissue, known as “meat factor“, also showed a positive effect on non-haem 

iron absorption, the same as ascorbic acid, but it was hard to demonstrate the same 

activity after a longer consumption. There is evidence that this could be attributed to: 

cysteine-containing peptides, glycosaminoglycans and L–α–glycerophosphocholine 

and their ability to reduce and chelate iron (Hurrell et al., 2006; Storcksdieck 

Bonsmann and Hurrell 2007; Armah et al., 2008).  

Nowadays three approaches are recognized as ways to deal with IDA and they can be 

practices alone or in combination with each other: change in dietary habits by means 

of diversity and modification of the diet in order to improve nutritional value and 

iron bioavailability, supplementation (intake of iron in higher doses not with food), 

and fortification (the addition of iron into food during food processing). A change of 

dietary habits so that intake of food rich in both haem and non-haem iron, as well as 

promoters of iron absorption, is increased, while intake of inhibitors of iron uptake 

should be decreased. Even though it showed significant practical limitations, a 
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change of dietary habits is the favoured way of treating IDA. Apart from fact that it 

is hard to change individuals’ dietary preference, food rich in highly bioavailable 

iron, such as meat, is expensive especially in developing countries.  

Supplementation is an efficient and cost-effective way of treating IDA over short 

periods of time, such as pregnancy. However, insufficient coverage of all parts of the 

world and compliance is a major limitation to the effectiveness of iron 

supplementation programs (Yip and Ramakrishnan, 2002). Iron supplementation is 

carried out orally or, very rarely by injection. Frequently used forms of iron in 

supplements include Fe
2+

 and Fe
3+

 salts, such as SO4
2-

, gluconate, fumarate and 

citrate. High doses of supplemental iron may cause gastrointestinal side effects, such 

as nausea and constipation. Other forms of supplemental iron, such as haem iron, 

carbonyl iron, iron amino-acid chelates and polysaccharide-iron complexes, are also 

available and are believed to manifest fewer gastrointestinal side effects compared 

with salts (World Health Organization, 2001; Lynch, 2005). 

Iron fortification of food is considered as the most cost-effective route for lowering 

incidence of IDA all over the world. Generally, iron fortification refers to the 

addition of iron to foods consumed by all or most of the population and it is 

regulated by the government. Milled cereals are frequently the subject of iron 

fortification and showed a successful outcome in making populations less iron-

deficient. Also, it was estimated that iron fortification is economically more 

favourable than iron supplementation (Baltussen et al., 2004; Lynch, 2005). 



58 

1.5 Plant phenols 

Phenols are plant secondary metabolites that include a great number of structurally 

diverse compounds. Chemically speaking, phenols are compounds which contain one 

(phenol) or more (polyphenols) aromatic rings, bearing one or more hydroxyl groups, 

which can be esterified, etherified or glycosylated. Generally, phenols and 

polyphenols represent all secondary metabolites whose syntheses go through the 

shikimate/phenylpropanoid or the “polyketide“ acetate/malonate pathway, or by 

combination of two of them, producing monomeric or polymeric phenols. 

Additionally, phenols are uncommon in bacteria, fungi and algae but are ubiquitously 

present in the plant kingdom. The phenolic profile of an individual plant strongly 

depends on plant species and thus can be used as a reliable taxonomic marker 

(Cheynier et al., 2013). 

Throughout evolution, plants have developed adaptive mechanisms which are 

reflected in their ability to produce a great number of phenolic secondary 

metabolites. Though, phenols are not compulsory in the processes such as plant 

growth and development, they have pivotal role for plants’ interactions with the 

environment, reproduction and defence. From an evolutionary point of view it is easy 

to see why plants produce such a great collection of secondary compounds compared 

with animals. Namely, they cannot rely on physical mobility to escape predators or 

perform successful pollination. Thus, they had to developed exuberant chemical 

systems in order to survive. Plants need phenols for protection against herbivores, 

microbes, viruses or other plants, as signal compounds to attract pollinating or seed 

dispersing animals, protection from ultraviolet radiation or oxidants and fluctuation 

of organic and inorganic nutrients from soil. Phenols are generally soluble in polar 
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organic solvents, unless being entirely esterified, etherified or glycosylated. Also, 

most phenol glycosides are water-soluble but the corresponding aglycones are 

usually less so. Due to the presence of an aromatic ring, all phenols demonstrate 

intense absorption in the ultraviolet part of the spectrum. Furthermore, phenols that 

give colour to plants absorb light in the visible region as well. 

On the basis of the phenol skeleton, several classes of phenols have been 

categorized: C6 (phenols, benzoquinones), C6–C1 (phenolic acids), C6–C2 

(acetophenones, phenylacetic acids), C6–C3 (hydroxycinnamic acids, coumarins, 

phenylpropanes, chromones), C6–C4 (naphthoquinones), C6–C1–C6 (xanthones), C6–

C2–C6 (stilbenes, anthraquinones), C6–C3–C6 (flavonoids, isoflavonoids), (C6–C3)2 

(lignans, neolignans), (C6–C3–C6)2 (biflavonoids), (C6–C3)n (lignins), (C6)n (catechol 

melanins) and (C6–C3–C6)n (condensed tannins) (Robards, 2003; Lattanzio et al., 

2006; Cheynier et al., 2013). 

1.5.1 Flavonoids 

Flavonoids are one of the largest groups of plant phenols and, by now, more than 

8000 structures of flavonoids have been identified. These secondary metabolites are 

widely distributed in plants and are classified in a number of subgroups, of which 

one representative of flavones, flavonols, isoflavones, flavanones, flavanonols, 

flavanols, anthocyanins, chalcones and aurones subgroup is presented in Figure 1–9. 
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Figure 1–9 Structure of some classes of flavonoids 

As with other phenols, flavonoids also have numerous functions in plants, such as: 

protection against ultraviolet radiation and phytopathogens, a protective response 

during stress, signaling during development and growth, auxin transport and 

coloration of flowers for attraction of insects during pollination (Bradshaw and 

Schemske, 2003; Falcone Ferreyra et al., 2012). 

Apart of being valuable for the plant kingdom, flavonoids are also beneficial to 

human health. Namely, flavonoids have played a key role in the successful 

traditional medical treatments of ancient times and their use has continued up to the 

present day. In addition to being highly bioactive, they express low toxicity, which 
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makes their medicinal use very attractive. Flavonoids express many positive 

therapeutical properties which have been experimentally confirmed. For medicine, 

the most valuable property of flavonoids is their ability to effectively scavenge 

highly toxic free radicals. Free radical species occur in the course of numerous 

physiological processes and can initiate damage of nucleic acid, lipid and protein 

structures, resulting in disturbance of vital cellular functions and causing a wide 

range of disorders. Thus, today it is almost impossible to separate free radical 

reactions from almost any disorder. Apart from keeping biomolecules safe from free 

radical attack, flavonoids take part in many biochemical processes in an organism, 

such as: regulation of expression of cell cycle regulatory proteins, inhibition of signal 

transduction pathways or enzyme activity. As a consequence, flavonoids express 

many beneficial health actions, such as: lowering blood pressure and risk of 

cardiovascular disorders, decreasing the incidence of carcinogenesis and 

neurodegeneration, inhibiting platelet aggregation and the inflammatory response, as 

well as lowering levels of bad LDL cholesterol (Sharma, 2014).  

To give answer to question as to why flavonoids express numerous physiological 

properties is not easy, but the most probable answer lies in the fact that they are 

highly reactive and can enter into almost any type of reaction known to organic 

chemistry. Namely, they can take part in oxidation-reduction, acid-base and free-

radical reactions and hydrophobic interactions, while their substituents can modify 

electronic induction, resonance and steric hindrance. Additional, flavonoids make 

stable complexes with metal ions, such as iron, and thus express their antioxidative 

property, which is all together of particular interest for this thesis (described in detail 

in Section 1.6). 
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All flavonoids share a common origin – the amino acid phenylalanine. Initially, 

phenylalanine is synthesized in the shikimate pathway, while its further processing 

goes through the phenylpropanoid pathway until a certain flavonoid structure is 

formed (see Figure 1–10; Cheynier et al., 2013). As one of the main aims of this 

thesis is to elucidate the effect of the flavonoid quercetin on iron homeostasis, the 

biosynthesis of flavonoids in plants will be described with quercetin as an example. 

Biosynthesis of other flavonoids follows a similar route, but due to page limitations 

other routes will not be described. For the same reason, the following headings will 

be mainly concentrated on quercetin. 

Synthesis of quercetin (see Figure 1–10) starts with the shikimate pathway and its 

initial reaction of aldol condensation of phosphoenolpyruvate (PEP; glycolytic 

intermediate) and erythrose–4–phosphate (pentose phosphate pathway intermediate) 

to give a C7 sugar, 2–dehydro–3–deoxyarabinoheptulosonate–7–phosphate (DAHP), 

which will convert to shikimate. Shikimate will after phosphorylation and reaction 

with PEP give chorismate. Chorismate will transform to phenylalanine giving the 

basic phenylpropanoid skeleton. Phenylpropanoid metabolism is controlled by the 

enzyme phenylalanine ammonia–lyase (PAL), which catalyzes a non-oxidative 

deamination of phenylalanine to cinnamic acid. Hydroxylation of cinnamic acid will 

give 4–coumaric acid whose carboxyl group will be activated in a reaction with 

CoA–SH, giving 4–coumaroyl–CoA. 4–coumaroyl–CoA combines with three 

molecules of malonyl–CoA (an intermediate in fatty acid biosynthesis) forming the 

flavonoid skeleton naringenin chalcone by the enzyme chalcone synthase. 

Afterwards, enzyme chalcone isomerase catalyzes the cyclization of chalcone to the 

flavanone naringenin, a basic structure for further synthesis of all classes of 

flavonoids. Quercetin is formed after hydroxylation and oxidation of naringenin. 
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Furthermore, quercetin is glycosylated with different sugars to make glycosides, the 

main forms of quercetin in plants (Cheynier et al., 2013; Sharma, 2014). 
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Figure 1–10 Synthesis of quercetin 

1.5.2 Absorption and metabolism of flavonoids in humans 

Absorption and metabolism of flavonoids will be explained with quercetin as an 

example due to limited space and the specific aim of this thesis. However, other 

flavonoids follow the same or similar mechanism of absorption and metabolism 

described for quercetin. 
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Quercetin, the most abundant flavonol in plant diet, is mainly present in plants in its 

highly hydrophilic glycosylated forms, mainly as -glycosides of various sugars. The 

dominant types of quercetin glycosides differ in plants. However, the main forms 

present in plants are quercetin–3–O–rutinoside (rutin), quercetin–3–O–galactoside 

(hyperoside), quercetin–3–O–glucoside (isoquercitrin), quercetin–3–O–rhamnoside 

(quercitrin) and quercetin–4’–O–glucoside (spiraeoside; Lee and Mitchell, 2012). 

Prior to absorption in the gut, flavonoids first need to be freed from plant tissue by 

chewing in the oral cavity and then processed by digestive juices in the intestine or 

by microorganisms in the colon. Generally, there are two main routes of quercetin 

glycoside absorption by the enterocyte. Firstly, absorption goes via a transporter 

followed by deglycosylation within the enterocyte by cytosolic glycosidase. 

Secondly, deglycosylation can occur firstly by luminal hydrolases followed by 

transport of the aglycone by passive diffusion or via different transporters. It is 

demonstrated that quercetin glucosides can be taken up by the enterocyte through the 

sodium-dependent glucose transporter (SGLT1) with subsequent deglycosylation 

inside the enterocyte by cytosolic –glycosidase. Also, quercetin glucosides can 

firstly undergo luminal hydrolysis by lactase phlorizin hydrolase (LPH) and 

afterwards are absorbed inside the enterocyte by passive diffusion or a transporter-

mediated mechanism (Walle et al., 2000; Wolffram et al., 2002; Day et al., 2003; 

Ziberna et al., 2014). Specifically, quercetin can use glucose transporter (GLUT)–1, 

–3 and –4 to enter cells and thus operate as an inhibitor of glucose transport (Strobel 

et al., 2005). The nature of the sugar moiety greatly influences the route and rate of 

quercetin absorption in the gut. Namely, it is suggested that 3–O–glucosylation of 

quercetin improves its absorption in the small intestine, even compared with 

absorption rate of quercetin alone. On the other hand, quercetin glucosides 
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containing rhamnose (rutin) could not be absorbed in the small intestine, and are 

believed to be absorbed in the colon after deglycosylation (Hollman et al., 1999; 

Morand et al., 2000; Day et al., 2003). 

Definition of bioavailability states that bioavailability is the portion of an initially 

administered dose of drug that reaches the systemic circulation unchanged. 

Considering that, flavonoid bioavailability is very low mostly due to extensive 

metabolism at the intestinal level. Namely, further biotransformation of quercetin 

aglycone involves glucuronidation, sulfonation and methylation of hydroxyl groups, 

which primarily occur in enterocytes and hepatocytes. Specifically, the major 

quercetin metabolites detected in plasma are quercetin–3’–sulphate and quercetin–3–

glucuronide. It is assumed that they are produced in the small intestine, pass into the 

portal vein and are further converted into other metabolites in the liver, such as 

isorhamnetin–3–glucuronide, quercetin diglucuronide, quercetin glucuronide 

sulphate, methylquercetin diglucuronide, etc. After returning to the bloodstream they 

are excreted in urine via kidneys. Additionally, a portion of quercetin is converted to 

low molecular weight phenolic acids, such as 3–hydroxyphenylpropionic acid, 3,4–

dihydroxyphenylpropionic acid and 3–methoxy–4–hydroxyphenylpropionic acid 

(Olthof et al., 2003; Mullen et al., 2006). 

1.5.3 Occurrence and intake of dietary flavonoids 

Nowadays, a growing body of evidence confirms different beneficial health effects 

of dietary flavonoids. Consequently, the scientific community takes more and more 

interest in the levels and types of flavonoids that are taken up in the diet. This is 

particularly interesting in the scope of modern concept of so called “functional food”, 
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food that apart from nutritional value expresses additional functions, such as health-

promotion or disease prevention. Namely, flavanols and anthocyanidins have been 

associated with reduction of risk of cardiovascular disease, while anthocyanidins 

efficiently protect LDL cholesterol oxidation (Schroeter et al., 2010). It had been 

shown that flavonoids express organ-specificity for cancer prevention, so intake of a 

quercetin–rich diet was proven to be in positive correlation with protection against 

lung and intestinal cancer (Lam et al., 2010; Ekström et al., 2011). 

Flavonoids are present in nearly all edible fruits, vegetables and other foods of plant 

origin. Generally, the human population is consuming notable amounts of flavonoids 

on a daily basis being more in regions where the diet is mainly based on plant 

sources. It is estimated that the average daily intake of flavonoids in the United 

States of America is 20–34 mg, in Finland 24 mg, Japan 63 mg and Netherlands 73 

mg (Beecher, 2003). The daily intake of quercetin in the Western diet was estimated 

to be approximately 15 mg. In Table 1–4 contents of dominant dietary flavonoids 

and quercetin in selected foods that are regularly consumed in Western diet are 

listed. 
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Table 1–4 Flavonoids and quercetin content of selected foods 

food 

mg of flavonoid aglycone
*
/ 

100 g of fresh weight 

of edible portion 

mg of quercetin aglycone/ 

100 g of fresh weight 

of edible portion 

red onion 56.61 39.21 

onion 26.02 20.30 

cranberry 132.08 14.84 

blueberry 180.82 7.67 

fig 8.07 5.47 

lettuce 4.63 4.16 

apple 15.15 4.01 

spinach 11.44 3.97 

broccoli 11.96 3.26 

tomato 5.95 2.76 

green tea 137.93
**

 2.49
**

 

black tea 118.27
**

 2.19
**

 

red wine 171.88
***

 2.11
***

 

garlic 3.61 1.74 

cauliflower 1.02 0.54 

potato 0.49 0.49 

strawberry 13.35 0.48 

red cabbage 210.67 0.36 

parsley 233.16 0.28 

red pepper 0.86 0.23 

carrot 0.6 0.21 

banana 13.69 0.06 

cucumber 0.17 0.04 

eggplant 85.73 0.04 

kiwi 2.18 0.04 

white wine 2.22
***

 0.04
***

 
*total content represents sum of 26 dominant dietary flavonodis (isorhamnetin, kaempferol, 

myricetin, quercetin, apigenin, luteolin, eriodictyol, hesperetin, naringenin, catechin, 

gallocatechin, epicatechin, epigallocatechin, epicatechin–3–gallate, epigallocatechin–3–

gallate, theaflavin, theaflavin–3–gallate, theaflavin–3’–gallate, theaflavin–3,3’–digallate, 

thearubigins, cyanidin, delphinidin, malvidin, pelargonidin, peonidin, petunidin) 

**values for tea are given as mg/100 g (100 mL) of tea infusions, while tea was prepared 

with 1 g tea leaves/100 mL boiling water 

***values are converted from liquid to weight basis 

(Bhagwat et al., 2014) 

1.6 The connections between quercetin and iron homeostasis 

Flavonoids are known for their numerous health benefits which are mostly attributed 

to their ability to scavenge highly reactive free radical species. However, flavonoids’ 

antioxidative potential is, at least partially, associated with their ability to chelate 
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iron. By chelating iron, flavonoids reduce the accessibility of iron to oxygen and 

consequently diminish oxygen high toxicity, e.g. by inhibiting production of HO
•
 in 

Fenton reaction (Mladěnka et al., 2011). Like most other flavonoids, it was proven 

that quercetin possesses a high ability to chelate iron (Leopoldini et al, 2006). As one 

of the main aims of this thesis is to investigate the effect of quercetin on iron 

homeostasis, this section will be mainly concentrated on quercetin in the light of iron 

metabolism. The preferred site for iron chelation by quercetin is its 3–hydroxyl and 

4–carbonyl group. Specifically, for complexes containing one iron and one quercetin, 

the binding strength has an order 3–4 > 4–5 > 3’–4’. Moreover, the 3–4 chelation site 

is also preferred for complexes which are formed between one iron and two or three 

quercetin molecules (see Figure 1–11; Ren et al., 2008). In addition, it is estimated 

that quercetin, like most other flavonoids, forms a complex with Fe
3+

 with a greater 

stability than Fe
2+

. Even though when quercetin initially forms a complex with Fe
2+

, 

Fe
2+

 will autooxidise to Fe
3+

 (Perron and Brumaghim, 2009).  
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Figure 1–11 Structures of complexes between Fe
3+

 and quercetin 
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Considering that quercetin is a powerful chelator of iron, a couple of ways of how it 

can modulate iron homeostasis come to mind. Namely, intracellularly it could lower 

free iron and thus change the influence of the IRE/IRP regulatory system in iron 

homeostasis. Bearing in mind that many proteins that have a pivotal role in iron 

homeostasis, such as FPN, ferritin, DMT1, TfR1 and Hif–2α, are regulated by the 

IRE/IRP system (described in detail in1.4.1), the quercetin effect becomes even more 

important. Additionally, quercetin could inhibit iron absorption and redistribution 

during iron overload by chelating it and thus affecting iron status. Over 30 years ago 

it was shown that consumption of tea is in accordance with low non-haem iron 

bioavailability (Disler et al., 1975; Rossander et al., 1979). Consequently, flavonoids, 

or polyphenols, from the tea were recognized as the main cause for low non-haem 

iron absorption. Today, flavonoids, among them quercetin, are considered as one of 

the main dietary inhibitors of iron absorption in the duodenum. Even though the 

exact mechanism of how flavonoids inhibit non-haem iron absorption is still not fully 

elucidated, it is strongly believed that its power to chelate iron is mainly responsible 

for this action (Petry, 2014). In contrast, it was shown that quercetin may operate as a 

substrate for DcytB by increasing its reduction potential and providing more Fe
2+

 for 

cellular uptake by DMT1 (Vlachodimitropoulou et al., 2010). Furthermore, it has 

been proven in cells that quercetin is able to activate Nrf2 pathway by supporting its 

nuclear translocation and transcriptional activity (Granado–Serrano et al., 2012). In 

view of the fact that levels of FPN and H and L ferritin are also known to be 

transcriptionaly up regulated by Nrf2 pathway (described in detail in1.4.3), quercetin 

could affect iron homeostasis and help cells defending against oxidative stress. 

In diseases connected with an imbalance in iron homeostasis (described in detail in 

Section 1.4.4) organ-specific iron accumulation is present, even under conditions of 



70 

anaemia. In order to bring iron levels back into balance, chelato therapeutics are 

applied. Potent chelato therapeutics should be able to go through iron-overloaded 

tissues, complex iron by forming stable and redox-inactive iron and transfer it to 

transferrin in the circulation. Known chelato therapeutic drugs fulfill more or less 

listed requirements (Poggiali et al., 2012; described in detail Section 1.4.4). However, 

it has been proven in vitro that quercetin is able to decrease intracellular iron and to 

transfer it to transferrin. These significant findings suggest that quercetin could be a 

valuable representative of chelato therapeutics for iron-redistribution therapy. Yet, 

this fact still needs to be proven with in vivo studies (Baccan et al., 2012). On the 

other hand, it is clear that quercetin should be avoided in IDA, especially during oral 

consumption of iron either as a natural constituent of the diet or as a food 

supplement. 

All of the above mentioned possible impacts of quercetin on iron homeostasis 

become even more significant in view of the fact that quercetin is consumed 

regularly in considerable amounts (see Table 1–4) and that nowadays its 

supplementation is supported due to numerous health benefits. On the other hand, as 

imbalance in iron homeostasis is connected with many diseases, flavonoids may have 

important applications in their treatment. Hence it is of great importance to fully 

understand how dietary flavonoids interact with intake and homeostasis of iron. The 

main body of this thesis will try, at least partially, to address this issue. 
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1.7 Aims of study 

The main aim of this thesis was to elucidate the mechanisms underlying the effects 

of polyphenols, mainly quercetin, on iron homeostasis in vivo. 

The specific aim of each Chapter of this thesis was: 

1. To investigate the effect of oral quercetin on iron metabolism, mainly iron 

absorption in duodenum, in an in vivo rat model (Chapter 3). 

2. To investigate the chelation effect of polyphenols on non-haem iron absorption in 

duodenum applying an in vivo uptake method in rats (Chapter 4). 

3. To investigate the effect of intraperitoneal (IP) quercetin on iron metabolism, 

mainly systemic iron homeostasis, in an in vivo rat model (Chapter 5).  

4. To elucidate the effects of different polyphenols on iron-related genes expression 

in HepG2 cells, an in vitro hepatic model (Chapter 6). 

5. To elucidate changes in iron-related and inflammation-related gene expression 

induced by different polyphenols in THP1 cells, a macrophage iron-recycling in 

vitro model (Chapter 7). 
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2. GENERAL MATERIALS AND METHODS 

2.1 Chemicals and standards 

chemical or standard supplier 
catalogue 

number 

3,4’–dimethoxy–5,7,3’–

trihydroxyflavone  

(3,4’–dimethylquercetin) 

abcr GmbH, Germany AB151842 

3’,4’,5,7–tetrahydroxy–3–

methoxyflavone  

(3–O–methylquercetin) 

Extrasynthese, France 1342 

55
Fe PerkinElmer, USA NEZ 043 

59
Fe PerkinElmer NEZ 037 

acetic acid (CH3COOH) Sigma–Aldrich, UK ARK2183 

acetone Sigma–Aldrich 270725 

Antibiotic/Antimycotic solution Sigma–Aldrich A5955 

ascorbic acid Sigma–Aldrich 95210 

bathophenanthrolinedisulfonic acid 

disodium salt hydrate 
Sigma–Aldrich B1375 

carbonyl iron Sigma–Aldrich C3518 

chloroform Sigma–Aldrich C2432 

diethyl pyrocarbonate (DEPC) treated 

water 

Life Technologies Ltd., 

Ambion 
AM9916 

dimethyl sulfoxide (DMSO) Sigma–Aldrich D8418 

DNase I 
Life Technologies Ltd., 

Invitrogen 
AM2222 

DNase I Buffer 
Life Technologies Ltd., 

Ambion 
AM8170G 

Dulbecco’s phosphate–buffered saline 

(PBS; 1×) without Ca
2+

 and Mg
2+

 

PAA Laboratories Ltd., 

UK 
H15–002 

epicatechin Extrasynthese 0977 S 

ethanol VWR, USA 20821.330 

Foetal Bovine Serum (FBS) 
Life Technologies Ltd., 

Gibco, USA 
10270–106 

FBS, heat inactivated 
Life Technologies Ltd., 

Gibco 
10500–064 

formic acid (HCOOH) Sigma–Aldrich 56302–50ML–F 

genistein Sigma–Aldrich 92136 

GlutaMAX™–I 
Life Technologies Ltd., 

Gibco 
35050–038 

HEPES sodium salt 

(Na–HEPES) 
Sigma–Aldrich H8651 

hydrochloric acid (HCl) Sigma–Aldrich H1758 

iron (III) chloride hexahydrate 

(FeCl3 × 6H2O) 
Sigma–Aldrich F2877 
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iron-deficient diet Special Diet Service, UK  

isopropyl alcohol Sigma–Aldrich I9516 

isorhamnetin Extrasynthese 1120 S 

isorhamnetin–3–O–glucoside Extrasynthese 1228 

LPS 
Enzo Life Sciences Inc., 

UK 

ALX–581–008–

L002 

methanol Sigma–Aldrich 34860 

pentobarbitone sodium 
Pentoject – obtained from 

Animalcare Ltd., UK 
/ 

phorbol 12–myristate 13–acetate (PMA) Sigma–Aldrich P1585 

potassium chloride (KCl) VWR BDH9258 

quercetin Sigma–Aldrich Q4951 

quercetin–3,3’,4’,7–tetramethylether  

(tetra–methylquercetin) 
Extrasynthese 1074 

quercetin–3,4’–di– 

O–glucoside 
Extrasynthese 1347 S 

quercetin–3,5,7,3’,4’–pentamethylether  

(penta–methylquercetin) 
Extrasynthese 1285 

quercetin–3–O–glucuronide Extrasynthese 1315 

resveratrol Extrasynthese 4963 S 

RM1 diet Special Diet Service, UK  

RPMI–1640 Medium Sigma–Aldrich R8758 

sodium acetate (CH3COONa) Sigma–Aldrich W302406 

sodium chloride (NaCl) VWR 27810.295 

Solvable™ PerkinElmer 6NE9100 

tamarixetin  

(4’–O–methylquercetin) 
Extrasynthese 1140 S 

thioglycolic acid Sigma–Aldrich T3758 

trichloroacetic acid  

(CCl3COOH) 
Sigma–Aldrich T4885 

TRIzol
®

 reagent 
Life Technologies Ltd., 

Ambion 
10296–028 

Trypsin EDTA (1×) 0.05%/0.02% in 

Dulbecco’s phosphate–buffered saline 
PAA Laboratories Ltd. L11–004 

William’s E Medium, without phenol 

red, without L–Glutamine 
PAA Laboratories Ltd. E15–073 

2.2 Animal care and treatments 

Rats were supplied by the Comparative Biology Unit, Royal Free Campus, UCL 

Medical School, London, UK. All experimental procedures were approved by the 

University College London local animal ethics committee and were conducted in 

accordance with the UK Animals (Scientific Procedures) Act, 1986. In all 
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experiments male Sprague Dawley (SD) rats were used. After weaning (three weeks 

old) SD rats were placed on a low iron (25 ppm iron) diet or a regular (RM1, 156 

ppm iron) diet for two weeks and allowed free access to water throughout. 

Subsequently, animals were subject to different gavage or IP treatments with 

quercetin or 10% DMSO. Additionally, separate groups of animals had no specified 

treatments prior to uptake studies (described in detail in Section 2.3). In Figure 2–1 

time line of performed treatments and in Table 2–1 and Table 2–2 a detailed 

description of performed treatments is given. At the end of the experimental 

procedure animals were killed by administering a terminal dose of pentobarbitone 

sodium (120 mg/kg body weight, IP) and blood samples were removed via cardiac 

puncture. Subsequently, serum was separated from clotted blood sample after 

centrifugation for 10 minutes at 5000g, rapidly frozen in liquid nitrogen before being 

stored at -80ºC and afterwards used for serum iron and transferrin saturation 

measurements (described in detail in Section 2.4). Additionally, duodenum, liver, 

spleen and kidney were removed and rapidly frozen in liquid nitrogen before being 

stored at -80ºC and subsequently used for tissue non-haem iron measurements 

(described in detail in Section 2.5) and gene expression levels determination 

(described in detail in Section 2.5). However, animal groups 5 and 6 (see Table 2–1) 

and 11 and 12 (see Table 2–2) were the subject of uptake studies (described in detail 

in Section 2.3) and were neither killed by the specified procedure nor blood or tissue 

samples were collected as detailed above. 
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Figure 2–1 Time line of performed treatments 
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Table 2–1 Detailed description of performed gavage treatments 

group type of treatment time of treatment 

number of 

animals 

per group 

type of diet 

corresponding  

treatment from 

Figure 2–1 

1 
control 

a
d

m
in

is
tr

a
ti

o
n

 b
y
 g

a
v
a
g
e
 

10% DMSO 
5 hours prior to dissection 

5 
iron-deficient diet A 

treated quercetin 50 mg/kg 5 

2 
control 10% DMSO 

18 hours prior to dissection 
4 

iron-deficient diet A 
treated quercetin 50 mg/kg 4 

3 
control 10% DMSO 

18 hours prior to dissection 
3 

RM1 diet A 
treated quercetin 50 mg/kg 3 

4 
control 10% DMSO 10 days in the row; 

the 10
th
 day treatment was performed 

4 hours prior to dissection 

5 
iron-deficient diet A 

treated quercetin 50 mg/kg 5 

5
*
 

control 10% DMSO 
5 hours prior to uptake experiment 

5 
iron-deficient diet C 

treated quercetin 50 mg/kg 5 

6
*
 

control 10% DMSO 18 hours and 5 hours prior to uptake 

experiment 

5 
iron-deficient diet B 

treated quercetin 50 mg/kg 5 
*
animals were subject to uptake studies (described in detail in Section 2.3) 
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Table 2–2 Detailed description of performed IP treatments 

group type of treatment time of treatment 

number of 

animals 

per group 

type of diet 

corresponding 

treatment from 

Figure 2–1 

7 

treated 
a
d

m
in

is
tr

a
ti

o
n

 b
y
 I

P
 

quercetin 50 mg/kg 

0 hours prior to dissection 4 

iron-deficient diet D 

treated 2 hours prior to dissection 4 

treated 5 hours prior to dissection 4 

treated 12 hours prior to dissection 4 

treated 18 hours prior to dissection 4 

8 
control 10% DMSO 18 hours and 5 hours prior to 

dissection 

5 
iron-deficient diet B 

treated quercetin 50 mg/kg 5 

9 
control 10% DMSO 18 hours and 5 hours prior to 

dissection 

4 
RM1 diet B 

treated quercetin 50 mg/kg 4 

10 

control 10% DMSO 

5 hours prior to dissection 

4 

iron-deficient diet A 

treated quercetin 2 mg/kg 4 

treated quercetin 5 mg/kg 4 

treated quercetin 10 mg/kg 4 

treated quercetin 20 mg/kg 4 

11
*
 

control 10% DMSO 
5 hours prior to uptake experiment 

5 
iron-deficient diet A 

treated quercetin 50 mg/kg 5 

12
*
 

control 10% DMSO 18 hours and 5 hours prior to uptake 

experiment 

5 
iron-deficient diet B 

treated quercetin 50 mg/kg 5 
*
animals were subject to uptake studies (described in detail in Section 2.3) 
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2.3 In vivo iron uptake 

After the animal care procedure and treatments (described in detail in Section 2.2), 

groups of SD rats were subjected to uptake studies. Namely, SD rats were 

anesthetized with 60 mg/kg pentobarbitone sodium IP and 10 cm long segments of 

duodenum (starting 1 cm distal to the pylorus) were cannulated and rinsed free of 

their contents with warm saline (0.9% w/v of NaCl), followed by air. Uptake buffer 

(200 µL), containing Na–HEPES (14.6 mmol/L), NaCl (127.4 mmol/L), KCl (3.2 

mmol/L), ascorbic acid (4.0 mmol/L) and 
59

Fe
2+

 (
55

Fe; 0.2 mmol/L) was instilled into 

the duodenal segment, which was then tied off. However, in experiments with SD 

rats that were not treated prior to uptake studies, 1 mmol/L of either quercetin or 3–

O–methylquercetin or 4’–O–methylquercetin or 3,4’–dimethylquercetin or penta–

methylquercetin or resveratrol (stock solutions prepared in DMSO:ethanol [1:1]) was 

added to uptake buffer. In the corresponding control groups, DMSO:ethanol (1:1) 

was added to buffer instead of the polyphenols. The effect of each polyphenol on 

iron absorption was investigated in a group of five SD rats. In uptake studies with 

quercetin, 3–O–methylquercetin, 4’–O–methylquercetin, 3,4’–dimethylquercetin and 

penta–methylquercetin 
59

Fe was used. However, due to a change in regulations at the 

time when the experiment with resveratrol was performed instead of 
59

Fe,
 55

Fe was 

used. 

During the experiment rat body temperature was maintained at 37°C using a 

thermostatically controlled heating blanket. After 30 minutes, blood samples (≤2 

mL) were collected via cardiac puncture and put in pre-weighed tubes, and blood 

weight was determined afterwards. In the experiment where 
55

Fe was used, after 30 

minutes 1 mL blood was also removed via cardiac puncture and but placed in tubes 
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containing anticoagulant. The segment of duodenum was removed and washed with 

approximately 40 mL of solution containing 154 mmol/L NaCl, 0.1 mmol/L ascorbic 

acid, 0.01 mmol/L FeCl3 to displace any 
59

Fe or 
55

Fe bound to the mucosal surface. 

The duodenal segment was cut longitudinally to form a flat sheet, and the mucosa 

was removed by scraping, placed into a pre-weighed tube, and its weight determined. 

Appropriate blood and mucosa samples were gamma counted (Wallac 1282 

Compugamma Counter Model 1283) for the determination of 
59

Fe activity. However, 

in the experiment where 
55

Fe was used mucosa was digested in 2 mL Solvable™ and 

a 50 µL sample of the digestant was counted on the liquid scintillation counter 

(Packard Scintillation Counter Model 2900) in duplicate for the determination of 
55

Fe 

activity. In the corresponding animal group blood was centrifuged and a 50 µL 

aliquot of plasma was counted in duplicate to determine 
55

Fe activity. Results were 

expressed as a percentage of absorbed radioactive iron retained in duodenal mucosa 

or transferred to blood. Namely, it was considered that absorbed radioactive iron is 

distributed between mucosa of cannulated duodenum and total body blood, and that 

sum of their counts is 100%. The percentage of 
59

Fe or 
55

Fe transferred to the entire 

blood volume of the animal was calculated using the equation: total blood volume = 

(body weight*0.06) +0.77 (Lee and Blaufox, 1985). In Figure 2–2 the experimental 

procedure is presented schematically.  
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Figure 2–2 Time line of uptake experiment 

2.4 Serum iron and transferrin saturation measurements 

Serum iron and transferrin saturation were measured by using a commercial kit 

(Pointe Scientific Inc., USA cat. no. I7504) as instructed by the manufacturer and 

described below. 

2.4.1 Measurement of serum iron 

All samples, blank and standard probes were prepared for spectrophotometric 

measurements in duplicate in 96-well plate. Forty microliters of each standard, serum 

sample and water was added into standard, sample and blank wells. Iron buffer 

reagent (200 μL) was added to each well and the absorbance reading (A1) was taken 

at 560 nm by a plate reader (Thermo/LabSystems 352 Multiskan MS Microplate 

Reader) after mixing. Iron colour reagent (4 μL) was added to each well and plate 

was incubated at 37ºC for 10 minutes. Again the absorbance was measured at 560 

nm named A2 and the serum iron was calculated with the following equation: 
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(A2 sample - A1 sample)/(A2 standard - A1 standard) × 500 = serum iron (μg/dL) 

2.4.2 Determination of transferrin saturation levels 

All samples, blank and standard probes were prepared for spectrophotometric 

measurements in duplicate in 96-well plates. Forty microliters of each standard and 

sample was added to standard and sample wells. Eighty microliters of water was 

added to the blank well and 40 μL of water was added to standard well. 40 μL of iron 

standard was added to the sample wells. Unsaturated iron binding capacity (UIBC) 

reagent (160 μL) was added to each well and after mixing the absorbance reading 

(A1) was measured at 560 nm. Iron colour reagent (4 μL) was added to each well and 

plate was incubated at 37ºC for 10 minutes. Again the absorbance was measured at 

560 nm named A2. UIBC, total iron binding capacity (TIBC), and transferrin 

saturation were measured by using the following equations: 

500 - (A2 sample - A1 sample)/(A2 standard - A1 standard) × 500 = UIBC (μg/dL) 

serum iron + UIBC = TIBC (μg/dL) 

serum iron/TIBC × 100 = transferrin saturation (%) 

2.5 Tissue non-haem iron determination 

The tissue non-haem iron content was determined by using a modified method of a 

method firstly reported by Torrance and Bothwell (1980). Namely, tissues 

(duodenum, liver, spleen) were oven dried at 50ºC for 72 hours and subsequently 

weighed. The dried tissues were digested in 1 mL of acid mixture (30% HCl and 
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10% CCl3COOH) at 65°C over 20 hours. Blanks were prepared in the same way, but 

without tissue. After cooling, samples, blank and standard probes were prepared for 

spectrophotometric measurements in triplicate in plastic cuvettes as presented in 

Table 2–3 Preparations of samples for tissue non-haem iron determination. 

Table 2–3 Preparations of samples for tissue non-haem iron determination 

 
sample/blank 

μL 

working chromogen 

reagent  

(mL) 

dH2O 

μL 

working iron 

solution 

(μL) 

sample 25 sample 1 225 0 

standard 25 blank 1 100 125 

blank 25 blank 1 225 0 

All samples were incubated at 37°C for 10 minutes, after which measurements of 

absorbance (A) were made at 535 nm using a spectrophotometer (Cary 100, Agilent 

Technologies) and non-haem levels in tissues were calculated using the following 

equation: 

[(A sample - A blank)/(A standard - A blank)]×[11.169/dry weigh (dw; g)] × 

[(2500/150)/(2500/250)] = tissue non-haem iron (μg/g dw) 

The working chromogen reagent and working iron solution were freshly prepared 

just before the assay. The composition of the reagents was as follows: 

Chromogen reagent was prepared by mixing 50 mg bathophenanthrolinedisulfonic 

acid disodium salt hydrate and 500 μL of thioglycolic acid and afterwards made up to 

50 mL of dH2O (stable for 1 month in dark bottle). 

Working chromogen reagent was prepared on the day of experiment by mixing one 

volume of previously described chromogen reagent, five volumes of saturated 

solution of CH3COONa and five volumes of dH2O. 
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Stock iron standard solution was prepared by mixing 22.3 mg of carbonyl iron 

powder with 1096 μL HCl. Afterwards, solution was left to stand overnight and 

made up to 20 mL with dH2O (stable indefinitely when stored tightly sealed). 

Working iron solution was prepared on the day of experiment by mixing 50 μL of 

stock iron standard solution, 27 μL of HCl and 423 μL dH2O. 

2.6 Cell culture 

2.6.1 HepG2 cells 

HepG2 cells were cultured in William’s E medium without phenol red and L–

glutamine. The medium was supplemented with 10% (v/v) FBS, 2 mM L–glutamine 

(1% v/v GlutaMAX™–I) 100 U/mL penicillin, 100 µg/mL streptomycin and 0.25 

µg/mL amphotericin B (1% v/v Antibiotic/Antimycotic solution). All supplements 

were filtered through a 0.2 μm pore size filter (Merck Millipore, USA, Cat no. 

SLGS033SB). The cell were seeded onto 75 cm
2
 cell plastic culture flasks with vent 

cap (Corning, USA, cat. no. 430641) and grown in an incubator at 37ºC with 5% 

CO2 until they were 70–75% confluent. The culture medium was changed every two 

days. To subculture the HepG2 cells the culture medium was carefully removed and 

the adherent cells were washed three times with 10 mL PBS without Ca
2+

 and Mg
2+

. 

To release the cells from the flask 10 mL of 0.05% Trypsin–EDTA was added for 10 

minutes. Detached cells were transferred into a 50 ml sterile tube (Thermo Fisher 

Scientific Inc., USA, Cat. no. 352070) containing 10 mL of culture medium in order 

to deactivate trypsin activity and pelleted by centrifugation (1400g for 3 minutes). 

The supernatant was removed and the cell pellet was re–suspended in 10 mL of fresh 
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culture medium. To disperse the cells further, the cell suspension was filtered 

through a 40µm sterile cell strainer (Corning, USA, cat. no. 352340) on top of a 50 

mL sterile tube. Cell numbers and percentage of viable cells were determined by 

using the haemocytometer and the trypan blue exclusion test.  

2.6.1.1 Treatment of HepG2 cells 

Prior to treatments cells were plated in 6-well plates (Greiner Bio–One, USA, cat no. 

657160) with seeding density 5 × 10
5
 (viable cells/well). HepG2 cells were treated 

with polyphenols at 90% confluence. Polyphenols, epicatechin, 3–O–

methylquercetin, isorhamnetin, tamarixetin, 3,4’–dimethylquercetin, penta–

methylquercetin, quercetin–3–O–glucuronide, resveratrol and quercetin were 

dissolved in serum–free culture medium in concentration of 100 µM, and were added 

to the cell plates for 5 hours. In control wells for 3–O–methylquercetin and 

resveratrol an equal volume of ethanol was added instead of the compound (final 

concentration 0.1%); for epicatechin, isorhamnetin, tamarixetin, 3,4’–

dimethylquercetin, quercetin–3–O–glucuronide, quercetin an equal volume of 

DMSO was added instead of the compound (final concentration 0.125%); for penta–

methylquercetin equal volume of ethanol:DMSO was added instead of compound 

(final concentration 0.09% ethanol/0.09% DMSO). All probes were done in 

triplicate. After treatment cells were washed 3 times in PBS and were subject to 

RNA isolation and gene expression (hepcidin, FPN and HO–1) analysis (described in 

detail in Section 2.7). 
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2.6.2 THP1 cells 

The THP1 cells were cultured in RPMI–1640 with L–Glutamine and NaHCO3. The 

medium was supplemented with 10% (v/v) heat inactivated FBS, 100 U/mL 

penicillin, 100 µg/mL streptomycin and 0.25 µg/mL amphotericin B. All 

supplements were filtered through a 0.2 μm pore size filter. The cells were seeded 

onto 75 cm
2
 straight neck vented tissue culture flasks (Thermo Scientific, Nunc, 

USA, cat. no. 153732) and grown in an incubator at 37ºC with 5% CO2. The THP1 

cells remained in cell suspension and were maintained between 2–9 x 10
5
 cells/mL. 

To subculture the cells, the cell suspension was collected in a 50 mL sterile tube and 

pelleted by centrifugation (1400g for 3 minutes). The supernatant was removed and 

the pellet was re-suspended in 5 mL of culture medium. Cell numbers and percentage 

of viable cells were determined by using the haemocytometer and the trypan blue 

exclusion test. 

2.6.2.1 Treatment of THP1 cells 

Prior to treatments cells were plated in 6-well plates for 24 hours (Greiner Bio–One, 

USA, cat no. 657160) with seeding density 1 × 10
6
 (cells/well). 100 nM PMA in 

DMSO was added for a further 24 hours to promote differentiation of monocytes into 

macrophages. The PMA-containing medium was removed and replaced with serum–

free medium for 24 hours before treatment.  

THP1 cells were treated with quercetin, quercetin–3–O–glucuronide and tamarixetin 

(30 µM) for 0, 5 and 18 hours. In control wells an equal volume of DMSO was 

added instead of the compound (final concentration 0.04%). All probes were done in 
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triplicate. After treatment, cells were subject to RNA isolation and gene expression 

(hepcidin and FPN) of analysis (described in detail in Section 2.7). 

Other batches of THP1 cells were treated with LPS in the presence or absence of 

quercetin, isorhamnetin and quercetin–3–O–glucuronide (30 µM). Namely, LPS (500 

ng/mL, dissolved in medium) was added to cells 2 hours after polyphenols. Cells 

were treated with LPS for 18 hours. In control wells an equal volume of DMSO was 

added instead of the compound (final concentration 0.04%). All probes were done in 

triplicate. After treatment cells were subject to RNA isolation and gene expression 

(IL–6, IL–1β, TNF–α, inducible nitric oxide synthase (iNOS) and cyclooxygenase–2 

(COX–2)) analysis (described in detail in Section 2.7). 

2.7 Gene expression levels by Real–Time Polymerase Chain 

Reaction (RT–PCR) 

2.7.1 RNA extraction by TRIzol® reagent 

Precautions were taken against contamination of samples with RNAses. The bench 

working area was cleaned with RNaseZAP (Life Technologies Ltd., Ambion, USA 

AM9780 and AM9784), disposal gloves were worn at all times, and sterile 

disposable plasticware and pipettes for RNA work only were used. 

RNA extraction was carried out using TRIzol
®
/chloroform extraction and isopropyl 

alcohol precipitation according to the manufacturer’s instructions (Chomczynski and 

Sacchi, 1987). TRIzol
®
 reagent was added to the cells or frozen tissue (1 mL was 

used per well of six well plate or 100 mg tissue) in sterile 1.5 mL micro centrifuge 

tube. Cell samples were homogenized by repeatedly passing the cell suspension 
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through a syringe and needle (BD, UK, Cat no. 300600, 25 G (orange)). Tissue 

samples were homogenized by pellet pestles (Sigma–Aldrich, UK, Cat no. Z359971 

and Z359947). Samples were then incubated at room temperature for 5 minutes for 

complete dissociation of nucleotide/protein complexes. Chloroform (200 µL) was 

added to the samples and samples were shaken vigorously by hand for 15 seconds. 

Tubes were incubated at room temperature for 3 minutes and then centrifuged at 12 

000g for 15 minutes at 4ºC. The mixture separated into a lower red, phenol-

chloroform phase, which contained DNA and protein, and a colourless upper 

aqueous phase containing the RNA. The aqueous phase was carefully removed with 

a pipette and transferred to a clean 1.5 mL tube and the lower organic phase was 

discarded.  

The RNA was precipitated form the aqueous phase with isopropyl alcohol (500 µL) 

by inverting the tubes. Samples were incubated at room temperature for 10 minutes 

and then centrifuged at 12000g for 15 minutes at 4ºC. The supernatant was discarded 

and the RNA pellet was washed with 1.2 mL 70% ethanol by vortexing followed by 

centrifugation at 7500g for 5 minutes at 4ºC. Ethanol was discarded and the final 

RNA pellet air–dried. RNA pellet was resuspended in DEPC-treated water 

(approximately 50 µL for cell sample and 500 µL for tissue sample) and kept at 60ºC 

for 10 minutes. After this, RNA samples were kept on ice at all times. 

The concentration of extracted RNA was measured using a NanoDrop 2000c UV–

VIS spectrophotometer, Thermo Scientific. RNA quality was assessed by using the 

A260/280 ratio. RNA with a ratio between 1.8 and 2.00 indicates RNA free of 

protein contamination. The RNA samples were kept at -80ºC until required. 
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2.7.2 Complementary DNA (cDNA) synthesis 

In order to prevent DNA contamination, firstly RNA samples were incubated in a 

thermal cycler (MJ Research PTC–200) with DNase I (RNase-free) enzyme for 30 

minutes and an additional 10 minutes at 37ºC and 70ºC, respectively. A total reaction 

mixture consisted of 1 µg of RNA, 1 µL DNase I Buffer, 0.5 µL DNase I and made 

up by DEPC treated water to 11 µL for each sample. As soon as treatment was 

finished samples were placed at 4ºC until required. 

After DNase I treatment cDNA synthesis was performed using a VersoTM cDNA kit 

(Thermo Scientific, Cat no. AB–1453/B). The following components were added 

into each tube: 4 µL 5 × cDNA synthesis buffer, 2 µL dNTP mix, 1 µL anchored 

Oligo dT, 1 µL RT enhancer and 1 µL Verso enzyme mix. The tubes were places 

back into the thermal cycler for further 60 and 2 minutes incubation periods at 42ºC 

and 95ºC, respectively. Samples were kept at 4ºC for immediate use or at -20ºC to be 

used later. 

2.7.3 Real-Time PCR amplification 

Real-time quantitative gene analysis was performed using a LightCycler® 480 

System (Roche Diagnostics GmbH, Germany) and a LightCycler 480 SYBR Green I 

Master kit (Roche Diagnostics, Cat no. 04707516001). SYBR green is a fluorescent 

dye that binds to the minor groove of DNA and fluoresces only when bound to 

double stranded DNA, but not single stranded DNA. SYBR green is excited at 494 

nm and emits light at 521 nm. Monitoring the emission at 521 nm allows indirect 

quantification of double stranded DNA in the reaction tube. Fluorescence was 

measured at 521 nm within each reaction tube of a 96-well plate following 

completion of every PCR extension step. The PCR cycle at which the fluorescence 
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reaches the threshold value is used as a measure of relative template concentration. 

The second derivative maximal method was used to determine threshold values of 

fluorescence. Cycle threshold (Ct) values were obtained for each gene of interest and 

the glyceraldehyde 3–phosphate dehydrogenase (GAPDH) internal standard. Gene 

expression was normalized to GAPDH and represented as ΔCt values. For each 

sample the mean of the ΔCt values was calculated. Relative gene expression was 

normalized to 1.0 (100%) of controls. Each PCR reaction contained 0.3 µM of each 

specific primer, forward and reverse, 6 µL of SYBR Green I Master, 1 µL of cDNA 

made up by DEPC treated water to 11 µL for each sample. Samples without cDNA 

were included as negative controls. The primers for genes of interest were 

synthesized by Sigma Aldrich. The primers for the internal standard gene GAPDH 

was obtained from Primer Design, UK (Cat no. HK–SY–ra–600). For the primers’ 

sequences see  
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Table 2–4 Primer sequences used in this study. qPCR plates were centrifuged and 

placed in a LightCycler® 480 System real-time cycler with the following 

programme: 

step temperature time cycles 

initial denaturation 95ºC 10 minutes 1 

denaturation 95ºC 10 seconds 

50 annealing 60ºC 10 seconds 

extension 72ºC 10 seconds 

metltcurve 95ºC 5 seconds 1 

cooldown 65ºC 1 minute 1 
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Table 2–4 Primer sequences used in this study 

gene 
forward 
(5’→3’) 

reverse 
(5’→3’) 

Dcytb 

(rat) 
TCCTGAGAGCGATTGTGTTG TTAATGGGGCATAGCCAGAG 

DMT1 
(rat) 

GCTGAGCGAAGATACCAGCG TGTGCAACGGCACATACTTG 

ferritin 

(rat) 
CACTCTTCCAGGATGTGCAG ACAGAGGTGAGGGTCTGTGC 

FPN 
(rat) 

TTCCGCACTTTTCGAGATGG TACAGTCGAAGCCCAGGAC 

GST 

(rat) 
AGACATCCACCTGCTGGAAC GGCTGCAGGAACTTCTTCAC 

hepcidin 
(rat) 

AGACACCAACTTCCCCATATG ACAGAGACCACAGGAGGAATTCT 

Hif–1α 

(rat) 
TGCTTGGTGCTGATTTGTGA GGTCAGATGATCAGAGTCCA 

Hif–2α 
(rat) 

CCCCAGGGGATGCTATTATT GGCGAAGAGCTTCTCGATTA 

OH–1 

(rat) 
TGCTCGCATGAACACTCTG TCCTCTGTCAGCAGTGCC 

QR 
(rat) 

GCTTTCAGTTTTCGCCTTTG GAGGCCCCTAATCTGACCTC 

COX–2 

(human) 
CAGCACTTCACGCATCAGTT CGCAGTTTACGCTGTCTAGC 

FPN 
(human) 

CAGTTAACCAACATCTTAGC AAGCTCATGGATGTTAGAG 

GAPDH 

(human) 
TGGTATCGTGGAAGGACTC AGTAGAGGCAGGGATGATG 

hepcidin 
(human) 

CTGCAACCCCAGGACAGAG GGAATAAATAAGGAAGGGAGG 

IL–1β 

(human) 
TGAGCTCGCCAGTGAAATGA CATGGCCACAACAACTGACG 

IL–6 
(human) 

AGTACCCCCAGGAGAAGATTCC TGAAGAGGTGAGTGGCTGTCTGT 

iNOS 

(human) 
AAAGACCAGGCTGTCGTTGA ACGGGACCGGTATTCATTCT 

OH–1 

(human) 
GTTGGCACCATGGAGCGTCCG AGCCGTCTCGGGTCACCTGG 

TNF–α 

(human) 
TGGCGTGGAGCTGAGAGATA TGGGTGAGGAGTACATGGGT 
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2.8 LC–MS/MS analysis of quercetin and selected quercetin 

metabolites in rat serum  

2.8.1 Preparation of serum 

In order to remove proteins from serum prior to LC–MS/MS analysis, acetone (50 

µL) and CH3COOH (2 µL) were vigorously mixed with serum (50 µL). Additionally, 

1 µL genistein (1 µg/mL in methanol) was added to the mixture as an internal 

standard. The mixture was centrifuged at 7000g for 15 minutes; the supernatant was 

removed and was subject to further LC–MS/MS analysis. 

2.8.2 LC–MS/MS analysis 

Analysis was performed on an Agilent Technologies 1200 Series high–performance 

liquid chromatograph coupled with Agilent Technologies 6410A Triple Quad tandem 

mass spectrometer with electrospray ion source, and controlled by Agilent 

Technologies MassHunter Workstation software – Data Acquisition (ver. B.03.01). 

Separation was carried out using a Zorbax Eclipse XDB–C18 analytical column (4.6 

× 50 mm, 1.8 μm particle size). The column was maintained at 50ºC and a binary 

gradient separation was performed using a flow rate of 1 mL/min. The mobile phase 

consisted of 0.05% HCOOH in water (A) and 100% methanol (B). The gradient 

profile started at 30% B, reaching 70% B in 6.00 minutes, then 100% B at 9.00 

minutes, holding 100% B until 12.00 minutes, with a post-time of 3 minutes. The 

injection volume was 10 μL and the autosampler needle was washed with acetonitrile 

between injections to eliminate carryover. Eluted components were detected by MS, 

using the ion source parameters as follows: nebulization gas (N2) pressure 60 psi, 
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drying gas (N2) flow 11 L/min and temperature 350ºC, capillary voltage 4 kV. All 

compounds were quantified in selected reaction monitoring mode. Compound–

specific, optimized MS/MS parameters are given in Table 2–5. For all the 

compounds, peak areas were determined using the Agilent MassHunter Workstation 

Software – Qualitative Analysis (ver. B.03.01). Calibration curves were plotted and 

samples’ concentrations calculated using OriginLab’s Origin Pro (ver. 8.0) software. 

Table 2–5 Optimized LC–MS/MS parameters 

compound 
retention 

time 

(min) 

ionisation 

mode 

fragmentor 
voltage 

(V) 

precursor 
ion 

(m/z) 

product 
ion 

(m/z)* 

collision 
energy 

(V)* 

quercetin–3,4’–di–O–
glucoside 

1.46 ni 200 625 463, 301 15, 35 

quercetin–3–O–

glucuronide 
2.11 ni 145 477 301, 151 20, 20 

isorhamnetin–3–O–
glucoside 

2.94 ni 180 477 314, 243 30, 45 

quercetin 3.65 ni 130 301 151 20 

genistein 4.09 ni 145 269 133 30 

tamarixetin/isorhamnetin 4.76 ni 150 315 300 20 

penta–methylquercetin 6.17 pi 175 373 312, 357 25, 30 
 

ni – negative ionization 

pi – positive ionization 

*second number represents qualifier ion parameter 

2.9 Statistical analysis 

All quantitative data are presented as mean ± standard error of the mean (SEM) of at 

least three different independant trials. Statistical significant difference between two 

groups through all study was determined using the Student’s two-tailed unpaired t-

test. Statistical significance was set at p≤0.05. Charts were drawn using Microsoft 

Office Excel 2007. Graphs were drawn using Origin software version 8.0. 
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3. EFFECT OF ORAL QUERCETIN ON IRON 

HOMEOSTASIS 

3.1 Introduction 

In mammals iron excretion is not regulated, therefore regulation of iron homeostasis 

is tightly controlled by intestinal iron absorption, so it matches daily obligatory loses. 

This is particularly important throughout periods of high iron demand, such as 

growth of infants, children and adolescents and the reproductive period for women, 

particularly in pregnancy, during which poor iron absorption can lead to impairment 

of health, in both mother and child (Papanikolaoua and Pantopoulos, 2005; 

Abbaspour et al., 2014). It is important that systemic levels of iron must be balanced 

within a narrow range, as both iron overload and iron deficiency are detrimental to 

human health leading to metabolic, neurodegenerative and haematological disorders. 

There are two forms of iron, haem and non-haem iron. Non-haem iron availability in 

duodenum is regulated by a number of dietary factors, which either enhance or 

inhibit absorption in the duodenum. Non-haem iron is mainly present as the Fe
3+

 

form which is very poorly bioavailable. In order for this to be available/absorbed, 

Fe
3+

 iron must be reduced to Fe
2+

 form. This is achieved by the combined action of 

Dcytb, a ferrireductase that is present on the apical membrane of the duodenal 

enterocyte or dietary reducing agent, such as dietary ascorbic acid. Reduced iron in 

the Fe
2+

 form is then transported across the apical iron symporter, DMT1. Fe
2+

 is 

then transferred across the basolateral membrane via an iron exporter, FPN, 

reoxidised by a membrane-attached ferroxidase, Heph, and loaded on to Tf. 
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In addition to dietary enhancers there are number of components in our diet which 

have an inhibitory effect on non-haem iron absorption in duodenum, included 

amongst these are phytic acid and polyphenols. This property of polyphenols is 

mostly attributed to their ability to chelate iron. The inhibitory effect of polyphenols 

has been demonstrated in single meal studies in human volunteers and acute in vitro 

studies. The long term effect of consuming elevated levels of polyphenols on iron 

status and mechanism of action is not clear (Disler et al., 1975; Rossander et al., 

1979; Hurrell et al., 1999; Hurrell and Egli, 2010; Petry, 2014). 

The flavonol quercetin is the most abundant flavonoid in our diet and is especially 

enriched in onions, tea and apples. 

The aims of this study were to investigate the acute and long term effect of oral 

quercetin on iron metabolism in vivo (in rats) and to determine the mechanism of 

how quercetin influences iron absorption in rats. 
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3.2 Results 

3.2.1 Acute effect of quercetin on iron metabolism in vivo 

The acute effect of quercetin on iron methabolism was studied in vivo in rats 5 hours 

after oral administration of quercetin (50 mg/kg body weight) or 10% DMSO 

(control). After weaning rats were placed on low iron diet for two weeks. At the end 

of the experimental procedure animals were whether killed by administering a 

terminal dose of pentobarbitone sodium and blood samples were removed via cardiac 

puncture or were subject to uptake studies. Regarding first animal group, serum was 

separated and used for serum iron and transferrin saturation measurements using 

stadard spectrophotometric methods. Additionally, duodenum, liver and spleen were 

removed and subsequently used for tissue non-haem iron spectrophotometric 

measurements and gene expression levels determination. Uptake studies comprised 

of instaling 
59

Fe
2+

 inside the cannulated duodenum for 30 minutes while rats were 

anesthetized. After 30 minutes, blood samples were collected via cardiac puncture 

and duodenal mucosa was scraped away and subsequently gamma counted for 

determination of 
59

Fe activity. 

3.2.1.1 Acute effect of quercetin on serum iron and transferrin 

saturation 

Serum iron and transferrin saturation levels were significantly decreased in rats 

treated with a single dose of quercetin (50 mg/kg) by gavage five hours before being 

used for experiments (see Figure 3–1). 
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Figure 3–1 Acute effect of orally administered quercetin on serum iron and 

transferrin saturation in rats. 

The acute effect of quercetin on serum iron and transferrin saturation were measured 

5 hours after oral administration of quercetin (50 mg/kg body weight) or 10% DMSO 

(control) to rats. Data are mean ± SEM; n=5 rats per group; *denotes significant 

difference from the 10% DMSO control group (p<0.05). 

3.2.1.2 Acute effect of quercetin on duodenal iron transporters and 

Dcytb gene expression and iron content 

Five hours after oral administration of a single dose of quercetin, quantitative RT–

PCR analysis of rat duodenal iron transporters and Dcytb revealed a significant up-

regulation of DMT1. But no change in expression in any of the other genes was 

observed (see Figure 3–2). In addition, no significant difference was observed in 

duodenal iron levels between the treated and control groups (see Figure 3–3). 
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Figure 3–2 Acute effect of orally administered quercetin on duodenal iron 

transporters and Dcytb gene expression in rats. 

Rats were given a single gavage containing quercetin (50 mg/kg body weight) or 

DMSO 10% (control). After 5 hours, RNA was isolated from duodenal tissue to 

measure changes in iron transporters and Dcytb mRNA levels. Data are mean ± 

SEM; n=5 rats per group; *denotes significant difference from the 10% DMSO 

control group (p<0.05). 
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Figure 3–3 Acute effect of orally administered quercetin on duodenal iron 

content in rats. 

The acute effect of quercetin on duodenal iron content was measured 5 hours after 

oral administration of quercetin (50 mg/kg body weight) or 10% DMSO (control) to 

rats. Data are mean ± SEM; n=5 rats per group. 

3.2.1.3 Acute effect of quercetin on liver hepcidin, FPN and HO–1 

gene expression and iron content 

Analysis of hepcidin, FPN and HO–1 gene expression in liver of rats sacrificed five 

hours after oral treatment with quercetin, showed a significant, more then double, 

reduction in hepcidin mRNA levels (see Figure 3–4). However, expression of FPN 

and HO–1 mRNA stayed the same after the same treatment (see Figure 3–4). In 

addition, no difference was observed in liver iron levels between the treated and 

control groups (see Figure 3–5). 



100 

 

Figure 3–4 Acute effect of orally administered quercetin on liver hepcidin, FPN 

and HO–1 gene expression in rats. 

Rats were given a single gavage containing quercetin (50 mg/kg body weight) or 

DMSO 10% (control). After 5 hours RNA was isolated from liver tissue to measure 

changes in corresponding mRNA levels. Data are mean ± SEM; n=5 rats per group; 

*denotes significant difference from the 10% DMSO control group (p<0.05). 

 

 

Figure 3–5 Acute effect of orally administered quercetin on liver iron content in 

rats. 

The acute effect of quercetin on liver iron content was measured 5 hours after oral 

administration of quercetin (50 mg/kg body weight) or 10% DMSO (control) to rats. 

Data are mean ± SEM; n=5 rats per group. 
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3.2.1.4 Acute effect of quercetin on spleen hepcidin and FPN gene 

expression and iron content 

Five hours after oral treatment with quercetin rats were sacrificed and estimation of 

hepcidin and FPN mRNA levels was done. Analysis showed a significant increase in 

both hepcidin and mRNA levels (see Figure 3–6). Additionally, the spleen iron level 

was significantly greater in the treated animal group compared with the control group 

(see Figure 3–7). 

 

Figure 3–6 Acute effect of orally administered quercetin on spleen hepcidin and 

FPN gene expression in rats. 

Rats were given a single gavage containing quercetin (50 mg/kg body weight) or 

DMSO 10% (control). After 5 hours RNA was isolated from spleen tissue to measure 

changes in corresponding mRNA levels. Data are mean ± SEM; n=5 rats per group; 

*denotes significant difference from the 10% DMSO control group (p<0.05). 
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Figure 3–7 Acute effect of orally administered quercetin on spleen iron content 

in rats. 

The acute effect of quercetin on spleen iron content was measured 5 hours after oral 

administration of quercetin (50 mg/kg body weight) or 10% DMSO (control) to rats. 

Data are mean ± SEM; n=5 rats per group; *denotes significant difference from the 

10% DMSO control group (p<0.05). 

3.2.1.5 Acute effect of quercetin on iron absorption in duodenum 

Mucosal 
59

Fe uptake in rat duodenum was significantly increased five hours after a 

single dose of quercetin given orally by gavage (50 mg/kg; see Figure 3–8). In 

contrast, in the same group of animals, mucosal 
59

Fe transfer was significantly 

decreased after the same treatment (see Figure 3–8). 
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Figure 3–8 Acute effect of orally administered quercetin on iron absorption in 

duodenum in rats. 

Rats were given a single gavage containing quercetin (50 mg/kg body weight) or 

DMSO 10% (control). After 5 hours mucosal 
59

Fe uptake and 
59

Fe transfer were 

measured. Data are mean ± SEM; n=5 rats per group; *denotes significant difference 

from the 10% DMSO control group (p<0.05). 

3.2.2 Longer-term effect of quercetin on iron metabolism in vivo 

The longer-term effect of quercetin on iron methabolism was studied in vivo in rats 

18 hours after oral administration of quercetin (50 mg/kg body weight) or 10% 

DMSO (control). After weaning rats were placed on low iron diet or regular diet for 

two weeks. At the end of the experimental procedure animals were killed by 

administering a terminal dose of pentobarbitone sodium and blood samples were 

removed via cardiac puncture. Subsequentlly, serum was separated and used for 

serum iron and transferrin saturation measurements using stadard spectrophotometric 

methods. Additionally, duodenum, liver and spleen were removed and subsequently 

used for tissue non-haem iron spectrophotometric measurements and gene expression 

levels determination. 
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Longer-term effect of quercetin on iron absorption in duodenum was sudied in rats 

treated by a double gavage containing quercetin (50 mg/kg body weight) or 10% 

DMSO, for 18 hours and then 5 hours. Afterwards, uptake studies were performed 

where 
59

Fe
2+

 was put inside the cannulated duodenum for 30 minutes while rats were 

anesthetized. After 30 minutes, blood samples were collected via cardiac puncture 

and duodenal mucosa was scraped away and subsequently gamma counted for 

determination of 
59

Fe activity. 

3.2.2.1 Longer-term effect of quercetin on serum iron and 

transferrin saturation 

Serum iron and transferrin saturation levels were significantly decreased in rats fed 

on iron-deficient diet and treated with a single dose of quercetin (50 mg/kg) by 

gavage eighteen hours before being used for experiment (see Figure 3–9; A). 

However, the oppsite outcome was observed in the same parameters in rats fed on 

RM1 diet and treated with single dose of quercetin (50 mg/kg) by gavage eighteen 

hours before being used for experiment. In the treated group serum iron and 

transferrin saturation levels were significantly increased compared with control (see 

Figure 3–9; B). 
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Figure 3–9 Longer-term effect of orally administered quercetin on serum iron 

and transferrin saturation in rats. 

The longer-term effect of quercetin on serum iron and transferrin saturation was 

measured 18 hours after oral administration of quercetin (50 mg/kg body weight) or 

10% DMSO (control). Data are mean ± SEM; n=4 (A); 3 (B) rats per group; 

*denotes significant difference from the 10% DMSO control group (p<0.05). 
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3.2.2.2 Longer-term effect of quercetin on duodenal iron 

transporters and Dcytb gene expression and iron content 

Analysis of the iron transporters (DMT1 and FPN) and Dcytb mRNA expression in 

duodenum of rats fed an iron-deficient diet and sacrificed eighteen hours after oral 

treatment with quercetin showed a significant reduction in DMT1 and FPN mRNA 

levels. It should be noted, that mRNA levels of DMT1 changed nearly 10-fold, while 

levels of FPN changed nearly 2–fold. Additionally, after the same treatment levels of 

Dcytb mRNA levels stayed the same (see Figure 3–10; A). Furthermore, in the 

duodenum of the same group of animals, levels of HIF–1α and HIF–2α mRNA were 

also examined, but no expression was observed (results not shown). The same 

treatment, but with rats fed on RM1 diet, brought about a significant increment in 

Dcytb and FPN mRNA levels between 2- to 3-fold (see Figure 3–10; B). In the same 

group of animals levels of DMT1 mRNA were also increased but not significant (see 

Figure 3–10; B). Duodenal iron levels increased significantly after single longer-term 

oral quercetin treatment in rats fed on an iron-deficient and a normal diet with 

respect to iron content (Figure 3–11; A and B, respectively). 
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Figure 3–10 Longer-term effect of orally administered quercetin on duodenal 

iron transporters and Dcytb gene expression in rats. 

The longer-term effect of quercetin on duodenal iron transporters and Dcytb gene 

expression was measured 18 hours after oral administration of quercetin (50 mg/kg 

body weight) or 10% DMSO (control). Data are mean ± SEM; n=4 (A); 3 (B) rats 

per group; *denotes significant difference from the 10% DMSO control group 

(p<0.05) 
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Figure 3–11 Longer-term effect of orally administered quercetin on duodenal 

iron content in rats. 

The longer-term effect of quercetin on duodenal iron content was measured 18 hours 

after oral administration of quercetin (50 mg/kg body weight) or 10% DMSO 

(control). Data are mean ± SEM; n=4 (A); 3 (B) rats per group; *denotes significant 

difference from the 10% DMSO control group (p<0.05). 
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3.2.2.3 Longer-term effect of quercetin on liver hepcidin, FPN and 

related gene expression and iron content 

Analysis of hepcidin, FPN and HO–1 mRNA expression in liver of rats fed an iron-

deficient diet and sacrificed eighteen hours after oral treatment with quercetin did not 

show significant changes in their levels compared with controls (see Figure 3–12; A). 

Furthermore, in the liver of the same group of animals levels of GST and QR mRNA 

were also followed, but no significant change was evidenced (results not shown). 

The same treatment, but with rats fed on a RM1 diet, caused a significant increase in 

FPN mRNA levels of nearly 4-fold, while mRNA levels of hepcidin and HO–1 were 

not affected with the applied treatment (see Figure 3–12; B). In the same group of 

animals levels of GST were analyzed, but no significant change occurred (results not 

shown). Liver iron levels increased in both groups of animals, but a significant 

change was only evidenced after single longer-term oral quercetin treatment in rats 

fed on an iron-deficient diet where iron levels increased 1.5-fold (Figure 3–13; A). 
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Figure 3–12 Longer-term effect of orally administered quercetin on liver 

hepcidin, FPN and HO–1 gene expression in rats. 

The longer-term effect of quercetin on liver hepcidin, FPN and HO–1 gene 

expression was measured 18 hours after oral administration of quercetin (50 mg/kg 

body weight) or 10% DMSO (control). Data are mean ± SEM; n=4 (A); 3 (B) rats 

per group; *denotes significant difference from the 10% DMSO control group 

(p<0.05). 
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Figure 3–13 Longer-term effect of orally administered quercetin on liver iron 

content in rats. 

The longer-term effect of quercetin on liver iron content was measured 18 hours after 

oral administration of quercetin (50 mg/kg body weight) or 10% DMSO (control). 

Data are mean ± SEM; n=4 (A); 3 (B) rats per group; *denotes significant difference 

from the 10% DMSO control group (p<0.05). 
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3.2.2.4 Longer-term effect of quercetin on spleen hepcidin and FPN 

gene expression and iron content 

Analysis of hepcidin and FPN mRNA expression in the spleen of rats fed on an iron-

deficient diet and sacrificed eighteen hours after oral treatment with quercetin 

showed a noteworthy decrease in hepcidin mRNA expression. In addition, FPN 

mRNA levels in the same group of animals were lower but not significant (see 

Figure 3–14; A). The same treatment, but in rats fed on a RM1 diet, did not cause a 

significant change in the two examined mRNA levels (see Figure 3–14; B). Spleen 

iron levels significantly increased in the first group of animals (see Figure 3–15; A), 

while in animals where the RM1 diet was applied, no significant change in spleen 

iron levels was observed (Figure 3–15; B). 
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Figure 3–14 Longer-term effect of orally administered quercetin on spleen 

hepcidin and FPN gene expression in rats. 

The longer-term effect of quercetin on splenic hepcidin and FPN gene expression 

was measured 18 hours after oral administration of quercetin (50 mg/kg body 

weight) or 10% DMSO (control). Data are mean ± SEM; n=4 (A); 3 (B) rats per 

group; *denotes significant difference from the 10% DMSO control group (p<0.05). 
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Figure 3–15 Longer-term effect of orally administered quercetin on spleen iron 

content in rats. 

The longer-term effect of quercetin on splenic iron content was measured 18 hours 

after oral administration of quercetin (50 mg/kg body weight) or 10% DMSO 

(control). Data are mean ± SEM; n=4 (A); 3 (B) rats per group; *denotes significant 

difference from the 10% DMSO control group (p<0.05). 
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3.2.2.5 Longer-term effect of quercetin on iron absorption in 

duodenum 

The effect on iron absorption in duodenum after longer-term gavage was similar to 

that following the shorter-term quercetin gavage treatment shown previously (see 

3.2.1.5). Namely, mucosal 
59

Fe uptake was significantly increased after a double 

dose of quercetin (50 mg/kg) given orally by gavage eighteen hours and then five 

hours before the experiment (see Figure 3–16). In contrast, in the same group of 

animals, mucosal 
59

Fe transfer was significantly decreased after the same treatment 

(see Figure 3–16). 

 

Figure 3–16 Longer-term effect of orally administered quercetin on iron 

absorption in duodenum in rats. 

Rats were given a double gavage containing quercetin (50 mg/kg body weight) or 

10% DMSO, for 18 hours and then 5 hours, after which mucosal 
59

Fe uptake and 
59

Fe transfer were measured. Data are mean ± SEM; n=5 rats per group; *denotes 

significant difference from the 10% DMSO control group (p<0.05). 
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3.2.3 Chronic effect of quercetin on iron metabolism in vivo 

The chronic effect of quercetin on iron methabolism was studied in vivo in rats after 

oral administration of quercetin (50 mg/kg body weight) or 10% DMSO (control), 

where quercetin tretement was applied once per day during 10 days. Afterwards, 

animals were killed by administering a terminal dose of pentobarbitone sodium and 

blood samples were removed via cardiac puncture. Subsequentlly, serum was 

separated and used for serum iron and transferrin saturation measurements using 

stadard spectrophotometric methods. Additionally, duodenum, liver and spleen were 

removed and subsequently used for tissue non-haem iron spectrophotometric 

measurements and gene expression levels determination. 

3.2.3.1 Chronic effect of quercetin on serum iron and transferrin 

saturation 

Serum iron and transferrin saturation levels were unchanged in rats after ten days 

oral quercetin treatment (50 mg/kg each day) compared with controls (see Figure 3–

17). 
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Figure 3–17 Chronic effect of orally administered quercetin on serum iron and 

transferrin saturation in rats.  

The chronic effect of quercetin on serum iron and transferrin saturation were 

measured after oral administration of quercetin (50 mg/kg body weight) or 10% 

DMSO (control), during 10 days, single per day. Data are mean ± SEM; n=5 rats per 

group. 

3.2.3.2 Chronic effect of quercetin on duodenal iron transporters 

and Dcytb gene expression and iron content 

Analysis of iron transporters (DMT1 and FPN) and Dcytb mRNA expression in 

duodenum of rats day–to–day treated with quercetin during ten days showed a 

significant decrease in DMT1, Dcytb and FPN mRNA levels (2.2, 1.6 and 1.8 fold, 

respectively; see Figure 3–18). Furthermore, in the duodenum of the same group of 

animals levels of HIF–1α and HIF–2α mRNA were also followed. However there 

was no change in HIF–1α levels, while there was no expression of HIF–2α mRNA 

levels (results not shown). In addition, no difference was observed in duodenal iron 

levels between the treated and control groups (see Figure 3–19). 
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Figure 3–18 Chronic effect orally administered quercetin on duodenal iron 

transporters and Dcytb gene expression in rats. 

The chronic effect of quercetin on duodenal iron transporters and Dcytb gene 

expression was measured after oral administration of quercetin (50 mg/kg body 

weight) or 10% DMSO (control), during 10 days, single per day. Data are mean ± 

SEM; n=5 rats per group; *denotes significant difference from the 10% DMSO 

control group (p<0.05). 



119 

 

 

Figure 3–19 Chronic effect of orally administered quercetin on duodenal iron 

content in rats. 

The chronic effect of quercetin on duodenal iron content was measured after oral 

administration of quercetin (50 mg/kg body weight) or 10% DMSO (control), during 

10 days, single per day. Data are mean ± SEM; n=5 rats per group. 

3.2.3.3 Chronic effect of quercetin on hepcidin, FPN and HO–1 gene 

expression and iron content 

Analysis of hepcidin, FPN and HO–1 mRNA expression in liver of rats fed on an 

iron-deficient diet and treated daily with quercetin for ten days showed a noteworthy 

increased in HO–1 levels (see Figure 3–20). However, other mRNA levels (hepcidin 

and FPN) were unchanged after chronic treatment with quercetin compared with 

control (see Figure 3–20). In addition, liver iron levels decreased significantly after 

the same treatment compared with the control (see Figure 3–21). 
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Figure 3–20 Chronic effect of orally administered quercetin on liver hepcidin, 

FPN and HO–1 gene expression in rats. 

The chronic effect of quercetin on liver hepcidin, FPN and HO–1 gene expression 

was measured after oral administration of quercetin (50 mg/kg body weight) or 10% 

DMSO (control), during 10 days, single per day. Data are mean ± SEM; n=5 rats per 

group. Data are mean ± SEM; n=5 rats per group; *denotes significant difference 

from the 10% DMSO control group (p<0.05). 

 

Figure 3–21 Chronic effect of orally administered quercetin on liver iron 

content in rats. 

The chronic effect of quercetin on liver iron content was measured after oral 

administration of quercetin (50 mg/kg body weight) or 10% DMSO (control), during 

10 days, single per day. Data are mean ± SEM; n=5 rats per group; *denotes 

significant difference from the 10% DMSO control group (p<0.05). 
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3.2.3.4 Chronic effect of quercetin on spleen hepcidin and FPN gene 

expression and iron content 

Analysis of hepcidin and FPN mRNA expression in spleen of rats fed on an iron-

deficient diet and treated daily with quercetin for ten days showed no significant 

change between treated and control animal group (see Figure 3–22). However, spleen 

iron levels decreased significantly after the same treatment compared with the 

control group (see Figure 3–23). 

 

Figure 3–22 Chronic effect of orally administered quercetin on spleen hepcidin 

and FPN gene expression in rats. 

The chronic effect of quercetin on spleen hepcidin and FPN gene expression was 

measured after oral administration of quercetin (50 mg/kg body weight) or 10% 

DMSO (control), during 10 days, single per day. Data are mean ± SEM; n=5 rats per 

group. 
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Figure 3–23 Chronic effect of orally administered quercetin on spleen iron 

content in rats. 

The chronic effect of quercetin on splenic iron content was measured after oral 

administration of quercetin (50 mg/kg body weight) or 10% DMSO (control), during 

10 days, single per day. Data are mean ± SEM; n=5 rats per group; *denotes 

significant difference from the 10% DMSO control group (p<0.05). 

3.2.3.5 Distribution of quercetin metabolites in serum after oral 

guercetin administration 

Quantitative analysis of quercetin and five selected quercetin metabolites in rat 

serum, after short-term, longer-term and chronic oral quercetin treatment, was 

performed using the LC–MS/MS technique. The contents of the determined 

compounds are presented in Table 3–2. Only quercetin–3–O–glucuronide was 

detected in the serum of the rats treated short-term or longer-term with quercetin, 

while no other examined compounds were identified. After short-term oral quercetin 

treatment (rats were treated with single dose of quercetin (50 mg/kg) given by 

gavage five hours before being used for experiment) the concentration of quercetin–
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3–O–glucuronide was 12.65 ng/mL of serum. The lower concentration of quercetin–

3–O–glucuronide (0.37 ng/mL of serum) was determined in rats fed a RM1 diet and 

treated with a single dose of quercetin (50 mg/kg) by gavage eighteen hours before 

the experiment. After chronic oral quercetin treatment neither quercetin nor the five 

selected metaboplites were detected. 
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Table 3–1 Concentrations of quercetin and selected quercetin metabolites in rat serum after acute, longer-term and chronic oral 

quercetin treatment determined by LC–MS/MS technique 

treatment* 

content of quercetin and selected quercetin metabolites 

(ng/mL serum) 

quercetin–3,4’–di– 

O–glucoside 

quercetin–3– 

O–glucuronide 

isorhamnetin–3– 

O–glucoside 
quercetin isorhamnetin 

quercetin–3,5,7,3’,4’–

penthamethylether 

acute treatment 

(5 hours before 

experiment; 

iron-deficient diet) 

10% DMSO (control) nd nd nd nd nd nd 

quercetin (50 mg/kg) nd 12.65 ± 0.99 nd nd nd nd 

longer–term treatment 

(18 hours before 

experiment; RM1 diet) 

10% DMSO (control) nd nd nd nd nd nd 

quercetin (50 mg/kg) nd 0.37 ± 0.023 nd nd nd nd 

chronic treatment 

(single day-to-day during 

ten days; 

iron-deficient diet) 

10% DMSO (control) nd nd nd nd nd nd 

quercetin (50 mg/kg) nd nd nd nd nd nd 

nd – not detected 

*serum from rats treated with quercetin 18 hours before experiment and fed on an iron-deficient diet are not included in the study due to the lack of serum 
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3.3 Discussion 

In this chapter short–term, longer–term and chronic effects of quercetin administered 

orally by gavage on iron homeostasis in rats were investigated. All the results are 

summarised in Table 3–2. The results indicate that the period of gavage with 

quercetin had significant, but somewhat different, effects on iron homeostasis and 

gene expression. To be more precise, in the shor-term, longer-term and chronic 

setting quercetin generally caused iron deficiency in rats that were fed on an iron-

deficient diet prior to the experiment. Iron deficiency was evident from the 

significant reduction in liver and spleen iron pools, as well as the reduction in serum 

iron and transferrin saturation levels. However, these results came as no surprise 

because many authors previously have shown that consumption of a diet rich in 

polyphenols caused iron deficiency in vivo. For example, thirty years ago Merhav et 

al. (1985) recognized that the main cause of IDA in infants in Israel was regular tea 

drinking, while Hamdaoui et al. (2005) and Marouani et al. (2007) provided evidence 

for iron deficiency after tea consumption in rats. My results indicate that oral 

quercetin treatment generally induced iron deficiency in all treated groups. However, 

there is a great difference in the change of gene expression of the monitored mRNA 

levels and tissue iron levels in duodenum, liver and spleen, between the different 

treated groups. 
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Table 3–2 Summary of the effect of oral quercetin on iron homeostasis 

treatment obtained results 

acute treatment 

(5 hours before experiment; 

iron-deficient diet) 

10% DMSO (control) Serum: Iron↓*, transferrin saturation↓* 

Duodenum: DMT1↑*, Dcytb↑, GLUT1↑, SGLT1=, FPN↑, Iron= 
Liver: Hepcidin↓*, FPN=, HO–1↑, Iron= 

Spleen: Hepcidin↑*, FPN↑*, Iron↑* quercetin (50 mg/kg) 

longer-

term 

treatment 

(18 hours before 

experiment; iron-
deficient diet) 

10% DMSO (control) 
Serum: Iron↓*, transferrin saturation↓* 

Duodenum: DMT1↓*, Dcytb↓, GLUT1=, SGLT1↑*, FPN↓*, HIF–1α (no expression), HIF–2α (no 

expression), Iron↑* 
Liver: Hepcidin↓, FPN=, HO–1=,GST↑, QR↓, Iron↑* 

Spleen: Hepcidin ↓*, FPN↓ Iron↑* 
quercetin (50 mg/kg) 

(18 hours before 

experiment; RM1 
diet) 

10% DMSO (control) Serum: Iron↑*, transferrin saturation↑* 
Duodenum: DMT1↑, Dcytb↑*, GLUT1 no expression, SGLT1↑*, FPN↑*, Iron↑* 

Liver: Hepcidin↑, FPN↑*, HO–1↑, GST=, Iron↑ 

Spleen: Hepcidin=, FPN=, Iron= quercetin (50 mg/kg) 

chronic treatment 

(single day-to-day during ten 

days; 

iron-deficient diet) 

10% DMSO (control) Serum: Iron=, transferrin saturation= 

Duodenum: DMT1↓*, Dcytb↓*, GLUT1↓, SGLT1↓*, FPN↓*, HIF–1α↓, HIF–2α no expression, Iron↑ 

Liver: Hepcidin=, FPN↓, HO–1↑*, Iron↓* 

Spleen: Hepcidin↑, FPN=, Iron↓* 
quercetin (50 mg/kg) 

results in red and marked with * indicate that parameter significantly differ from treated and corresponding control group 

↑ indicate that parameter increased, but not significantly, between treated and corresponding control group 

↓ indicate that parameter decreased, but not significantly, between treated and corresponding control group 

= indicate that parameter did not change in treated group compared with corresponding control group 
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Specifically, short-term oral quercetin treatment, caused a significant up-regulation 

of mRNA for the iron transporter DMT1 mRNA in enterocytes. This result seems 

logical as an organism during iron deficiency makes every effort to boost iron 

uptake. This outcome was also confirmed previously in duodenal biopsy specimens 

of iron-deficient patients. Zoller et al., (2001) showed that both mRNA and protein 

levels of DMT1 and FPN were significantly up-regulated in iron-deficient patients 

compared with healthy subjects. Similarly, up-regulation of DMT1, Dcytb and FPN 

mRNA levels was reported in the duodenum of four iron-deficient mice strains 

(Dupic et al., 2002), while McKie et al. (2001) confirmed an increase in Dcytb 

mRNA and protein levels in the duodenum of iron-deficient mice. However, in this 

thesis, Dcytb and FPN mRNA levels were increased but not significantly, regardless 

of iron deficiency. However, it is not clear whether changes in mRNA levels of 

proteins that are involved in iron uptake are due to iron deficiency caused by 

quercetin or directly by quercetin itself. There is no evidence in the literature that 

polyphenols, or specifically quercetin, affect duodenal gene expression in this 

manner in vivo, apart from a recent study where following polyphenol-rich bean 

consumption for six weeks by chickens, levels of DMT1, Dcytb and FPN mRNA did 

not show any significant difference (Tako et al., 2014). An in vitro experiment with 

Caco–2 cells treated with quercetin for 24 hours did not show a significant change in 

DMT1 or Dcytb, while FPN mRNA levels were decreased (Hoque and Sharp, 2010), 

whereas treatment with flavonoid-rich berry extract for 16 hours decreased DMT1 

mRNA levels in the same cells (Alzaid et al., 2010). 

Furthermore, in our study quercetin administered orally short-term to rats caused a 

decrease in liver hepcidin mRNA expression. This is likely to reflect the low 
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transferrin saturation and low iron in the serum of rats treated with quercetin for 5 

hours. A decreased expression of liver hepcidin has been shown to be associated with 

iron deficiency and induction of DMT1 mRNA (Frazer et al., 2004; Papanikolaou et 

al., 2005). In contrast to liver hepcidin, in the same group of rats, spleen hepcidin 

mRNA levels were significantly up-regulated. One possible explanation for this is 

that polyphenols increase hepcidin expression in both tissues, but only the liver 

hepcidin expression is sensitive to serum iron levels and this is the dominant factor in 

the repression of hepcidin expression. The other possible explanation is that hepcidin 

expression is regulated in a tissue-specific manner in response to quercetin 

administration. Independent of the mechanism of increased hepcidin expression in 

spleen, it is tempting to suggest that the increased hepcidin in the spleen binds to 

spleen FPN, leading to its internalization which leads to a decreased iron efflux 

thereby causing an increased spleen iron and decreased serum iron and transferrin 

saturation as observed in this study. However, this view should be confirmed with an 

increase in FPN protein levels, not just with mRNA. Furthermore, decreased serum 

iron will also be contributed by a decreased efflux of iron from the duodenum in 

quercetin-treated rats as shown in this study with uptake experiments. The effect of 

quercetin on iron efflux is likely to be independent of hepcidin as liver hepcidin 

expression levels, the major contributor to serum iron, are significantly decreased 

after quercetin treatment. However, increased spleen FPN expression in quercetin 

treated rats is in agreement with previous studies which have shown that polyphenols 

increase FPN expression by promoting its expression by increasing Nrf2 levels 

which then bind to an ARE in the promoter of FPN (Marro et al., 2010). Also it 

could be proposed that the increased spleen FPN expression is a direct consequence 

of a decrease in hepatic hepcidin levels, which leads to splenic FPN re-expression on 
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the membrane. Also, these results support the view that internalization of FPN as a 

response to hepcidin is tissue- and cell-specific. Namely, it was shown that 

macrophages respond more acutely to a hepcidin challenge, while the duodenum 

appears to be less sensitive to a rise in hepcidin levels (Chaston et al., 2008; 

Masaratana et al., 2011). Moreover, FPN levels in spleen might be under post-

transcriptional IRE/IRP control, which when iron levels in tissue are high, expression 

of FPN is up-regulated (Muckenthaler et al., 2008). 

However, uptake studies after short–term, as well as after longer-term, quercetin 

treatment caused a significant increase of mucosal iron uptake, while there was a 

significant decrease in iron efflux from enterocytes. These results solidly confirm 

that quercetin plays an important role in the bioavailability of non-haem iron in the 

duodenum. In particular, decreased iron transfer is probably due to chelation of iron 

by quercetin which increases apical uptake of iron, but prevents basolateral transport. 

This explanation can be applied to all polyphenols that have a noticeable capacity to 

chelate iron, particularly those which are abundant in the diet. These results were 

only preliminary to a further, more detailed, study of the chelation property of 

quercetin and its effect on iron absorption in duodenum, which is presented in 

Chapter 4. 

Furthermore, the possibility cannot be discarded that quercetin, or its metabolites, 

have direct effects on the expression of proteins involved in iron absorption and 

systemic homeostasis, and that together with chelation this modifies iron 

metabolism. This fact is even more important bearing in mind that uptake studies 

after longer-term quercetin treatment showed a decrease in iron uptake. Eighteen 

hours is a long period for quercetin to remain in lumen or inside the enterocyte, thus, 
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it is more likely that after 18 hours there is no quercetin in place to form a complex 

with iron, and the only explanation of its effect is to cause changes in expression of 

proteins involved in iron metabolism. 

It was pointed out previously that longer-term oral quercetin treatment caused iron 

deficiency in animals fed an iron-deficient diet. Namely, 18 hours after quercetin 

treatment serum iron and transferrin saturation levels were reduced significantly. 

This result is the same as after short-term oral quercetin treatment. Surprisingly, 

levels of iron in spleen and liver were significantly higher, which is not in 

accordance with the iron-deficient status. This occurrence was previously shown for 

spleen after short-term oral quercetin treatment. At this moment is it hard to explain 

this results. Additionally, in the same group of animals, duodenal iron was increased 

which confirms previously explained hypotheses that quercetin supports iron uptake, 

but not iron transfer across mucosa. Iron retention in the duodenum probably down-

regulated DMT1 mRNA levels, as shown in this thesis, through the IRE/IRP control 

mechanism, such that when iron levels in tissue are high, expression of DMT1 is 

supressed (Muckenthaler et al., 2008). Though the same control mechanism should 

increase FPN levels in the duodenum, FPN mRNA levels decreased. However, it was 

proven that duodenal enterocytes express a FPN transcript, FPN1B, which lacks the 

IRE and thus is not affected by iron-excessive conditions (Zhang et al., 2009). Thus, 

the FPN -IRE form could mostly contribute to FPN down-regulation in the intestine 

under overall iron-deficient conditions. However, this is just an assumption as the 

mechanism of this action is hard to explain with the current limited data. Splenic 

hepcidin mRNA also decreased, however this occurrence is also hard to explain. 

However following results discussed previously, this data supports the hypothesis of 

different tissue-specific hepcidin isoforms. Namely, proven effects that lower 
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hepcidin should increase DMT1 levels in the duodenum was absent, as well as up-

regulation of FPN. 

After chronic ten-day-long treatment with quercetin, animals became iron-deficient, 

as both spleen and liver iron pools decreased. This was observed previously in vivo. 

Namely, quercetin reduced the liver iron content after an induced tissue iron-

overload. This effect was attributed to the ability of quercetin to combine with non-

haem iron in tissue, transport it to the bloodstream and excrete it from the body, 

which supported the use of quercetin and other polyphenols as medicines in iron-

related disorders (Zhang et al., 2011). This issue was also confirmed in this study for 

both liver and spleen. This also supports the need for further research of polyphenols 

as potential new chelating drugs. Furthermore, the observed reduction in iron pools 

was most probably due to the tendency of to keep serum iron levels in balance. 

Surprisingly, at the same time, levels of the duodenal iron transporters decreased. 

Specifically, mRNA levels of DMT1, Dcytb and FPN were significantly down 

regulated. Additionally, in the same group of animals duodenal iron was slightly 

increased, which could partly explain this outcome. Namely, it is discussed 

previously that quercetin supports iron uptake, but not iron transfer, across mucosa. 

Thus, iron retention in the duodenum could down-regulate DMT1 mRNA levels 

through the IRE/IRP control system. However, down-regulation of Dcytb and FPN 

during iron deficiency is difficult to explain, particularly in the light of data showing 

up-regulation of the examined genes after longer-term quercetin treatment. Also, 

HO–1 mRNA levels were up-regulated in the liver of the same animals, which is in 

accordance with the established observation fact that polyphenols, particularly 

quercetin, increase the levels of antioxidant enzymes (Liu et al., 2012b). 
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Results from the group of animals that was kept on a normal diet and treated with 

quercetin for 18 hours, differ considerably from previous results. Namely, animals 

were not iron-deficient. Furthermore, levels of serum iron and transferrin saturation 

increased. Additionally, mRNA levels of Dcytb and FPN in the duodenum and FPN 

in the liver increased significantly. Up-regulation of these genes corresponds to a 

iron-deficient state, as was discussed earlier. Also, duodenal iron levels increased, 

which confirms that quercetin promotes duodenal iron uptake. The complexity of 

changes in parameters could be the result of an initial iron-deficient state, while after 

eighteen hours the animal has regained normal iron balance. By comparing results 

from animals fed an iron-deficient and normal diet, it is evident that the iron content 

of the diet greatly affects the investigated parameters of iron metabolism. In the 

literature it is known that differences in dietary iron content greatly affects 

expression of iron metabolism-related genes (Li et al., 2013). However, it looks like 

those animals that are kept on an iron-deficient diet are more suitable models for 

research in the field of iron metabolism, because they are more sensitive to applied 

treatments and the results are more pronounced. 

Furthermore, it was proven in vivo that HIF–2α is a main transcriptional factor which 

regulates the expression of genes involved in iron uptake and is critical for 

compensating iron deficiency by increasing iron absorption. Namely, it was shown 

that HIF–2α expression is significantly induced by iron deficiency in the duodenum 

and that it is followed by increase in DMT1 and Dcytb levels (Shah et al., 2009). 

However, this view was not confirmed in this study. Specifically, there was no 

expression of HIF–2α mRNA in the duodenum of treated rats, regardless of iron 

deficiency and changes in DMT1 and Dcytb mRNA levels. 
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Analysis of quercetin and selected quercetin metabolites concentrations in rat serum 

after short-term, longer-term and chronic oral quercetin treatment by LC–MS/MS 

technique aimed to assess which metabolites are present in the serum and at what 

concentration. This was important for subsequent experiments in which THP1 cells 

and HepG2 cells were treated with metabolites in order to investigate their potential 

role in expression of iron metabolism-related genes. The result of qualitative and 

quantitative studies in this thesis are in agreement with previous data where one of 

the dominant quercetin metabolites in serum was also quercetin-glucuronide, present 

in similar concentrations to those shown here. Additionally, results confirmed that 

quercetin has a short half–life as it was not detected in serum more than 5 hours after 

oral treatment (Gee et al., 2004; Justino et al., 2004; Moon et al., 2008). 

3.4 Conclusions 

In conclusion, short-term, longer-term and chronic oral administration of quercetin 

caused iron deficiency in rats. Furthermore, after different time of treatments, single 

or double dose and different concentrations of quercetin, the disturbance in iron 

balance was compensated by different mechanisms. However, the main mechanism 

seems to be an increase of iron absorption and release of iron from liver and splenic 

pools. 

Additionally, data confirms that quercetin increases mucosal iron uptake and inhibits 

iron efflux from duodenal mucosa. Still it is not clear if this effect is only due to 

chelation of iron by quercetin or whether quercetin, or its metabolites, has a direct 

effect on the expression of proteins involved in iron absorption and systemic 

homeostasis. Specifically, oral quercetin treatment mostly affected mRNA levels of 
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duodenal DMT1, Dcytb and FPN. These results also indicate that oral quercetin has a 

great effect on iron absorption and a minor effect on systemic iron regulation. 

However, the exact mechanism of the action of quercetin on iron metabolism 

remains to be fully elucidated. 
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4. MECHANISM OF THE DIRECT EFFECT OF 

QUERCETIN ON INTESTINAL IRON ABSORPTION 

IN THE DUODENUM 

4.1 Introduction 

Balancing systemic iron levels within narrow limits is critical for human health, as 

both iron deficiency and iron overload leads to serious haematological, metabolic 

and neurodegenerative disorders. In mammals there are no known pathways to 

eliminate excess iron from the body and therefore iron homeostasis is maintained by 

its absorption, recycling and its loss (Yehuda and Mostofsky, 2010). Therefore to 

maintain iron balance, especially during the growth period and pregnancy when extra 

iron is needed, essential iron must be provided by the food. 

Nutritional iron absorption occurs primarily in the duodenum, on the apical (luminal) 

membrane of the enterocytes, and is tightly regulated by bioavailable iron, iron 

stores, erythropoietic drive and inflammation. From a common diet, average iron 

bioavailability rate is low. Namely, approximately 10–20 mg of iron is consumed 

daily by diet, from which 10% is absorbed. This amount of absorbed iron fulfils daily 

needs, but it can be easily reduced eventually leading to IDA. There are two types of 

dietary iron: non-haem iron, which is present in food from both animal or plant 

origin, and haem iron, which is present only in food of animal origin. Haem iron 

makes up only 10–15% of the total iron from the diet in meat-eating populations, but, 

it is estimated to contribute more then 40% of total absorbed iron. Despite its great 

occurrence in general diet, rate of non-haem iron absorption is much lower than it is 

the case with haem iron (Hurrell and Egli, 2010).  
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Low bioavailability of non-haem iron contributes greatly to IDA, which is the most 

prevalent nutritional deficiency worldwide, estimated to affect two billion people 

(World Health Organisation, 2007), especially in low-income countries where 

people’s diets are based on plants and where consumption of meat is low, and 

consequently, availability of haem iron is minimal. On the other hand, the same 

problem occurs in groups eating mostly or strictly plant based diet, such as 

vegetarians and vegans whose popularity is rising in modern societies, or in groups 

which do not consume meat due to religious issues. 

It is generally believed that bioavailability of non-haem iron highly depends on 

presence of promoters or inhibitors of dietary iron absorption. On the other hand, it is 

supposed that dietary factors have little effect on haem iron absorption. Among 

inhibitors of iron absorption, dietary polyphenols are marked as one of the most 

potent. Polyphenols are a group of plant secondary metabolites which include vast 

number of structurally diverse compounds. From a chemical point of view, they are 

compounds which contain one or more aromatic rings, bearing one or more hydroxyl 

groups, which can be esterified, etherified or glycosylated. Polyphenols are present 

in nearly all edible fruits, vegetables and other food of plant origin, as well as in 

beverages. Generally, human population consumes notable amounts of polyphenols 

on a daily basis, approximately 1 g and even more in the regions where diet is mainly 

based on plant sources, such as in developing countries. Dietary polyphenols are 

receiving increasing attention worldwide due to their proven health benefits for a 

variety of disorders (Havsteen, 2002). However, the negative impact of dietary 

polyphenols on non-haem iron absorption in duodenum has been highlighted 

previously (Cook et al., 1995; Hurrell et al., 1999; Samman et al., 2001; Kim et al., 

2008; Petry et al., 2010). The exact mechanism of how polyphenols reduce 
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bioavailability of non-haem iron is not fully understood, but it is proposed that 

polyphenols have this effect as a result of their ability to chelate iron (Petry et al., 

2010; Kim et al., 2011). 

Bearing in mind that IDA is the most prevalent nutritional deficiency worldwide 

(World Health Organisation, 2007) and dietary polyphenols are consumed in 

increasing levels due to their health benefits, it is important to elucidate the exact 

mechanism by which dietary polyphenols suppress non-haem iron absorption in the 

duodenum. By elucidating the mechanism, polyphenol consumption could be 

optimised in order to contribute to overall health. 

The polyphenol quercetin, a wel-known iron chelating agent, is ingested daily in 

great amounts (16 mg/day; Olthof et al., 2000) and thus it was considered worthwhile 

to investigate the chelation effect of quercetin, its methylated forms, and resveratrol, 

a polyphenol that do not possess iron chelation ability, on duodenal non-haem iron 

absorption using an in vivo uptake method. 
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4.2 Results 

To investigate the effects of quercetin on duodenal non-haem iron absorption, the in 

situ duodenal loop method was carried out, where either quercetin (aglycone) or 

methylated quercetin isoforms or resveratrol were introduced into the rat duodenum 

together with radioactive iron. Afterwards, radioactive measurements of blood 

samples and duodenal mucosa were preformed in order to estimate mucosal iron 

uptake and mucosal iron transfer. 

In the presence of quercetin, 3–O–methylquercetin, 4’–O–methylquercetin, 3,4’–

dimethylquercetin, but not penta–methylquercetin, there was a significant increase in 

mucosal 
59

Fe uptake compared with the untreated control group (see Figure 4–1). 

The increase in uptake was significantly higher in the presence of quercetin aglycone 

and 4’–O–methylquercetin compared with the other methylated forms (see Figure 4–

1). Additionally, there was no difference in mucosal 
55

Fe uptake when resveratrol 

was introduced compared with the untreated control group (see Figure 4–2).  
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Figure 4–1 Effect of quercetin and its metabolites on mucosal iron uptake in 

rats 

Effects of quercetin and its methylated analogues on iron transport in vivo were 

measured using the in situ duodenal loop method. 
59

Fe and polyphenol were added to 

the lumenal uptake buffer and mucosal iron uptake was measured. Data are mean ± 

SEM; n=5 rats per group; groups with no common letters are significantly different 

from each other (p<0.05). 

 

 

Figure 4–2 Effect of resveratrol on mucosal iron uptake in rats 

Effect of resveratrol on iron transport in vivo was measured using the in situ 

duodenal loop method. 
55

Fe and resveratrol were added to the lumenal uptake buffer 

and mucosal iron uptake was measured. Data are mean ± SEM; n=5 rats per group. 
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Furthermore, 
59

Fe release from the intestinal mucosa into the blood was significantly 

diminished in the presence of quercetin, 3–O–methylquercetin, 4’–O–

methylquercetin, 3,4’–dimethylquercetin, but not penta–methylquercetin, compared 

with the control group (see Figure 4–3). The decrease iron transfer was significantly 

emphasized in the presence of quercetin aglycone and 4’–O–methylquercetin 

compared with the other methylated forms (see Figure 4–3). In contrast, when 

resveratrol was introduced into the duodenum together with 
55

Fe, iron transfer was 

the same as in the control group (see Figure 4–4). 

 

Figure 4–3 Effect of quercetin and its metabolites on mucosal iron transfer in 

rats 

Effects of quercetin and its methylated analogues on iron transport in vivo were 

measured using the in situ duodenal loop method. 
59

Fe and polyphenol were added to 

the lumenal uptake buffer and mucosal iron transfer was measured. Data are mean ± 

SEM; n=5 rats per group; groups with no common letters are significantly different 

from each other (p<0.05). 
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Figure 4–4 Effect of resveratrol on mucosal iron transfer in rats 

Effect of resveratrol on iron transport in vivo was measured using the in situ 

duodenal loop method. 
55

Fe and resveratrol were added to the lumenal uptake buffer 

and mucosal iron transfer was measured. Data are mean ± SEM; n=5 rats per group. 

4.3 Discussion 

In Chapter 3 of this thesis it was shown that quercetin increases iron uptake and 

retention by the duodenal mucosa in vivo. However, it is not clear what is the exact 

mechanism behind this phenomenon, but it is assumed that iron chelation by 

quercetin could play an important role. 

Previously it has been shown that the preferred site for iron chelation by quercetin is 

between the 3–hydroxyl and 4–carbonyl group. However, for complexes containing 

one iron and one quercetin molecule, the binding strength of chelation site has an 

order 3–4 > 4–5 > 3ʼ–4ʼ (see Figure 4–5; Ren et al., 2008). Moreover, the 3–4 

chelation site is also preferred for complexes which are formed between one iron and 

two or three quercetin molecules (see Figure 4–5; Ren et al., 2008). 



142 

5

7

O

2

4
3

3'
4'

OH

OHOH

OH

OH

OH

Fe
3+

57

O

2

4

3

3'
4'

O
H

O
H

OHOH

OH

OH

Fe
3+

5 7

O2

4

3

3'
4'

O
H

O
H

OH OH

OH

OH

5

7

O

2

4
3

3'
4'

OH

OHOH

OH

OH

OH

Fe
3+

Fe
3+

5

7

O

2

4
3

3'
4'

OH

OHOH

OH

OH

OH

 

Figure 4–5 Structures of complexes between Fe
3+

 and quercetin 

Therefore, in order to elucidate the importance of iron chelating by quercetin in 

transepithelial iron transport, in vivo uptake experiments were performed with 

quercetin aglycone and the methylated forms of quercetin, as well as resveratrol (see 

Figure 4–6). The main aim of this experiment was to determine whether replacing 

the putative iron-binding groups of quercetin would influence iron transport across 

the intestine. Additionally, an experiment was performed with the polyphenol 

resveratrol, which lacks iron chelating ability. 
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Figure 4–6 Structures of methylated forms of quercetin and resveratrol 

Results in this thesis revealed that when quercetin was introduced into the duodenum 

together with 
59

Fe, 85% of the total absorbed iron stayed in the mucosa, while only 

15% crossed into the circulation. These results were opposite to those in the control 

group where no polyphenol was introduced into duodenum and 89% of total of 

absorbed 
59

Fe was detected in the circulation. Additional uptake studies with the 

methylated quercetin forms showed that the iron chelation power of the investigated 

compounds was in correlation with the decrease of transepithelial iron transport. The 

iron chelation power of the examined compounds decrease in the order quercetin > 

4’–O–methylquercetin > 3–O–methylquercetin ≥ 3,4’–dimethylquercetin > 

pentamethylquercetin. In the same order amount of transepithelial iron transport 

increased. Namely, when each polyphenol, quercetin, 4’–O–methylquercetin, 3–O–

methylquercetin, 3,4’–dimethylquercetin and pentamethylquercetin, was introduced 
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into duodenum 15%, 35%, 73%, 73% and 91% of total of absorbed iron was detected 

in the circulation, respectively. In accordance with that, mucosal uptake decreased in 

same order and when each of listed polyphenols was introduced into duodenum, 

85%, 65%, 27%, 27% and 9% of total of absorbed iron stayed in mucosa, 

respectively). Our data clearly indicate that the greatest increase in transepithelial 

iron transport was observed with compounds where 3–hydroxyl groups were 

methylated (3–O–methylquercetin, 3,4’–dimethylquercetin and 

pentamethylquercetin). In contrast, when the 3–hydroxyl group was present, that is in 

quercetin and 4’–O–methylquercetin, there was a decrease in transepithelial iron 

transport. These results demonstrate that chelation of iron by the 3–hydroxyl group 

of quercetin is an important determinant of iron uptake in the duodenum. In other 

words, transepithelial iron transport increased as the iron chelating power of the 

compounds decreased. 

This is also confirmed with the experiment with resveratrol where inhibition of 

transepithelial iron transport was lacking (i.e. resveratrol does not have structural 

characteristics which are required for iron chelation, such as hydroxyl and carbonyl 

group in near vicinity or galloyl group). Resveratrol was chosen as the polyphenol 

abundant in a plant-based diet, particularly in red wine that is known to decrease iron 

absorption in intestine (Bezwoda et al., 1985; Cook et al., 1995). 

The above results firmly confirm that the decrease in mucosal iron transfer is due to 

chelation of iron by quercetin which increases apical uptake of iron, but prevents 

basolateral transport. This explanation can be applied to all polyphenols that have a 

noticeable capacity to chelate iron, particularly those which are present in the diet 

and thus can directly affect iron absorption. This phenomenon was previously shown 
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for other polyphenols, particularly for (–)–epigallocatechin–3–gallate, but in in vitro 

conditions using Caco–2 cells as a model system (Kim et al., 2008; Kim et al., 2011). 

Kim et al. (2008; 2011) reported their finding as unexpected as it was common to 

think that polyphenols inhibit iron absorption by preventing mainly apical uptake of 

non-haem iron. My findings greatly contribute to a revision of this concept, 

especially by providing the first in vivo results. Further information that supports this 

hypothesis is the fact that the quercetin–Fe complex is considerably stable in 

gastrointestinal conditions. Namely, it was proven in vitro, by mimicking conditions 

that occur in the stomach, that the recovery of quercetin–Fe complex is up to 45%, 

which supports the importance of chelation of iron by quercetin in the human body 

(Escudero et al., 2014). 

However, the precise place of iron chelation by quercetin is still uncertain. It is still 

unknown whether chelation occurs in the duodenal lumen or the cytosol of duodenal 

enterocytes. One explanation could be that iron is chelated by quercetin in the 

duodenal lumen by forming the apical–membrane–permeable quercetin–Fe complex 

that cannot cross the basolateral membrane of enterocyte. Despite its great size, there 

are in vitro reports that support transport of the quercetin–Fe complex across the cell 

membrane in both directions (Baccan et al., 2012). Furthermore, there is evidence 

that quercetin–Fe complex is transported by GLUTs transporters 

(Vlachodimitropolou et al., 2011), which could also be the case in vivo. Furthermore, 

even though it was proven that quercetin can be transported via GLUTs 1, 3 and 4 

transporters, quercetin is lipophilic enough so it can easily cross lipid bilayers 

without interaction with transporters (Strobel et al., 2005; Cunningham et al., 2006; 

Vlachodimitropoulou et al., 2011). A second possibility is that that quercetin could 

influx into the cell and then form a complex with free iron. Additionally, it was 
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shown that quercetin may operate as a substrate for DcytB by increasing its reduction 

potential and providing more Fe
2+

 for cellular uptake by DMT1 

(Vlachodimitropoulou et al. 2010). Knowing this, quercetin could firstly chemically 

reduce non-haem iron and thus increase apical uptake followed by formation of the 

quercetin–Fe complex inside the cell. However, this hypothesis would not affect the 

results in this study, as ascorbic acid was added to the uptake buffer which is likely 

to keep free iron in the Fe
2+

 form. Therefore both luminal and cytosolic iron 

chelation, or their combination, can provoke iron accumulation within duodenal 

mucosa in vivo. However, in both cases the quercetin–Fe complex could remain in 

the enterocyte due to the inhibition of FPN function or simply because the quercetin–

Fe complex would be too bulky to be transported by FPN. Furthermore, the 

quercetin–Fe complex inside the cell could be a negative signal for the IRE/IRP 

system and thus destabilize FPN mRNA. Thus by chelating iron quercetin could 

lower free iron levels inside the cell and thus trigger the post-transcriptional IRE/IRP 

control system, such that when iron levels in tissue are reduced, expression of FPN is 

decreased (Muckenthaler et al., 2008). Furthermore, the possibility that quercetin or 

its metabolites have direct inhibitory effects on the function of FPN should not be 

discounted. Together these mechanisms could account for the increased mucosal iron 

retention observed in the present study. Furthermore, if a quercetin–Fe complex is 

formed inside the cell, it could be proposed that quercetin could affect absorption of 

haem iron too. Namely, quercetin could also prevent export of free iron for the haem 

source, after haem degradation by HO–1 which occurs in the cytosol after its 

absorption. This theory is only an assumption because not sufficient experimental 

work has been carried out to tnvestigate this further. 
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4.4 Conclusions 

In conclusion the presented results are the first evidence that specific polyphenols 

inhibit in vivo non-haem iron absorption in the duodenum through chelation. It was 

shown that quercetin chelates iron within via its 3–hydroxyl group and thus prevents 

transepithelial non-haem iron transport across the enterocyte by increasing apical 

iron uptake and decreasing the basolateral iron release. However, the precise place of 

iron chelation by quercetin, luminal or cytosolic, is still uncertain. The ultimate aim 

of this research is the use of polyphenols in the future as drugs for treating iron 

metabolism disorders. Specifically, quercetin and other polyphenols with chelation 

properties could be used as a part of so-called chelato-therapies, where their ability to 

chelate iron can be used in iron-overload conditions to reduce iron absorption or to 

modify tissue iron distribution. However, it is obvious that the use of quercetin and 

polyphenols should be avoided in iron deficiency, especially during oral 

consumption of iron, either as a natural constituent of the diet or as a food 

supplement. 
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5. SYSTEMIC EFFECTS OF QUERCETIN (IP) ON IRON 

HOMEOSTASIS 

5.1 Introduction 

Polyphenols are well known for their numerous health benefits, which are mostly 

attributed to their ability to scavenge highly reactive free radical species or up-

regulate transcription of cytoprotective enzymes (Williamson et al., 1996; Havsteen, 

2002; Molina et al., 2003; Masella et al., 2005; Sharma, 2014). 

Their antioxidant potential is, at least partially, associated with their ability to chelate 

iron. Despite iron’s essential role in life, excess iron is toxic. Namely, surplus iron 

induces oxidative stress and reactive oxygen species, which in turn causes the 

oxidation of lipids, proteins and nucleic acids (Halliwell and Gutteridge, 2007). The 

introduction of new iron chelating drugs may ultimately improve iron-chelation 

therapy for patients with iron overload diseases, such as -thalassemia and 

haemochromatosis. Research in the light of selecting the most effective and least 

toxic drug, or drug combinations, is evolving (Kontoghiorghes, 2003; Poggiali et al., 

2012). 

Like most other flavonoids, it was also proven  that quercetin possesses a high ability 

to chelate iron (Leopoldini et al, 2006). Furthermore, it has been proven in vivo that 

quercetin is able to decrease intracellular iron, which makes it as valuable 

representative of new chelato therapeutics for iron-redistribution therapy (Zhao et al., 

2005; Zhang et al., 2006; Zhang et al., 2011; Baccan et al., 2012). 
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Polyphenols were shown to up-regulate hepcidin along with up-regulation of 

transcription of a battery of cytoprotective genes, in a preliminary study in our lab 

using in vitro HepG2 culture cell model (personal communication with Henry K. 

Bayele and Sara Balesaria). It was reasoned that the hepcidin gene, as a main iron 

regulatory hormone, might be a member of the battery of genes that are involved in 

coordinating cellular responses to oxidative stress.  

The aims of this study were to investigate the effect of quercetin on systemic iron 

regulation in vivo (in rats) and determine the mechanism of its action. 
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5.2 Results 

5.2.1 Effects of quercetin IP administration on iron metabolism in 

vivo at various times after administration 

The effect of IP quercetin on iron methabolism was studied in vivo in rats 0 or 2, 5, 

12 and 18 hours after a single IP, or duoble IP 18 and then 5 hours before being 

sacrificed containing quercetin (50 mg/kg body weight) or 10% DMSO (control). 

After weaning rats were placed on low iron diet or regular diet for two weeks. At the 

end of the experimental procedure animals were killed by administering a terminal 

dose of pentobarbitone sodium and blood samples were removed via cardiac 

puncture. Subsequentlly, serum was separated and used for serum iron and 

transferrin saturation measurements using stadard spectrophotometric methods. 

Additionally, duodenum, liver, spleen and kidney were removed and subsequently 

used for tissue non-haem iron spectrophotometric measurements and gene expression 

levels determination. 

5.2.1.1 Effect of quercetin on serum iron and transferrin saturation 

Serum iron and transferrin saturation levels were significantly decreased five hours 

after a single IP treatment of quercetin (50 mg/kg) to rats fed on an iron-deficient 

diet, while 12 and 18 hours after the same treatment both serum iron and transferrin 

saturation increased significantly compared with the group that was killed right after 

the quercetin treatment (see Figure 5–1). Furthermore, serum iron and transferrin 

saturation levels decreased significantly in rats fed on an iron-deficient diet and 

treated with double quercetin IP treatment (see Figure 5–2; A). However, serum iron 
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and transferrin saturation in rats fed on normal iron diet and treated with double 

quercetin IP treatment showed no change (see Figure 5–2; B). 

 

 

Figure 5–1 Effects of a single quercetin IP treatment on serum iron and 

transferrin saturation in rats at different times. 

The effects of quercetin on serum iron and transferrin saturation were measured 0 or 

2, 5, 12 and 18 hours after a single IP containing quercetin (50 mg/kg body weight) 

or 10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; 

groups with no common letters are significantly different from each other (p<0.05). 
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Figure 5–2 Effects of double quercetin IP treatment on serum iron and 

transferrin saturation in rats. 

The effects of quercetin on serum iron and transferrin saturation were measured in 

rats that were IP with quercetin (50 mg/kg body weight) or 10% DMSO (control) 

eighteen and then five hours before being sacrificed. Data are mean ± SEM; n=5 (A); 

4 (B) rats per group; *denotes significant difference from the 10% DMSO control 

group (p<0.05). 
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5.2.1.2 Effect of quercetin on gene expression in duodenum, liver, 

spleen and kidney 

Analysis of iron transporters (DMT1, FPN) and Dcytb mRNA expression in 

duodenum of rats fed on an iron-deficient diet and sacrificed at different times after 

IP treatment with quercetin, generally showed a significant increase of all three 

examined genes. DMT1 mRNA levels increased significantly 12 hours after 

quercetin IP treatment (2.5-fold), while levels of Dcytb and FPN mRNA levels 

increased notably earlier then DMT1, i.e. 5 hours after the treatment (1.6- and 1.3-

fold, respectively). It should be noted, that mRNA levels of Dcytb followed the trend 

of a significant increase 12 and 18 hours after quercetin IP treatment (2.4- and 3.9-

fold, respectively; see Figure 5–3). Furthermore, after double quercetin IP treatment 

with rats fed on an iron-deficient diet, analysis of the same genes in duodenum 

showed the opposite results. Specifically, DMT1, Dcytb and FPN mRNA levels 

significantly decreased (5.7-, 4.4- and 2.0-fold, respectively; see Figure 5–4; A). Rats 

fed on a normal iron diet (RMI) and treated with quercetin showed no significant 

change in examined duodenal genes (see Figure 5–4; B). 
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Figure 5–3 Effects of a single quercetin IP treatment on duodenal iron 

transporters and Dcytb gene expression in rats at different times. 

The effects of quercetin on duodenal gene expression was measured 0 or 2, 5, 12 and 

18 hours after a single IP containing quercetin (50 mg/kg body weight) or 10% 

DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; groups 

with no common letters are significantly different from each other (p<0.05). 
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Figure 5–4 Effects of double quercetin IP treatment on duodenal iron 

transporters and Dcytb gene expression in rats. 

The effects of quercetin on duodenal gene expression was measured in rats that were 

treated with quercetin (50 mg/kg body weight) or 10% DMSO (control) eighteen and 

then five hours before being sacrificed. Data are mean ± SEM; n=5 (A); 4 (B) rats 

per group; *denotes significant difference from the 10% DMSO control group 

(p<0.05). 
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Analysis of hepcidin gene expression in liver, spleen and kidney of rats fed on an 

iron-deficient diet and sacrificed 5 hours after IP treatment with different quercetin 

concentrations showed a notably increase of examined gene expression in liver (see 

Figure 5–5). In spleen and kidney hepcidin gene levels fluctuated but not in as large 

range as in liver (see Figure 5–5). Namely, maximal change in hepcidin mRNA 

levels in liver occurred 5 hours after quercetin treatment, when levels of mRNA 

showed a 175-fold increase (see Figure 5–5). Additionally, maximal change in 

hepcidin mRNA levels in kidney occurred 12 hours after quercetin treatment, when 

levels of mRNA showed a 35-fold increase (see Figure 5–5). The peak change of a 2-

fold increase in hepcidin mRNA levels in spleen happened 2 hours after quercetin 

treatment (see Figure 5–5). Furthermore, after double quercetin IP treatment with rats 

fed on an iron-deficient diet, analysis of the hepcidin gene in liver showed an 

enormous increase of 1031-fold (see ; A). Furthermore, in the same animals a vast 

increase of hepcidin mRNA in kidney also occurred (9.5-fold), while the same did 

not occur in spleen (see ; A). Double quercetin IP treatment, but with rats fed on a 

RM1 diet, also brought a significant change in hepcidin mRNA levels in liver (3-fold 

increase), however hepcidin mRNA levels in spleen and kidney decreased 

significantly (2.3- fold and 1.6-fold, respectively, see ; B). 
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Figure 5–5 Effects of a single quercetin IP treatment on hepcidin gene 

expression in liver, spleen and kidney in rats at different times. 

The effects of quercetin on hepcidin gene expression in liver, spleen and kidney was 

measured 0 or 2, 5, 12 and 18 hours after a single IP containing quercetin (50 mg/kg 

body weight) or 10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats 

per group; groups with no common letters are significantly different from each other 

(p<0.05).
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Figure 5–6 Effects of 

double quercetin IP 

treatment on hepcidin 

gene expression in liver, 

spleen and kidney in 

rats. 

The effects of quercetin on 

hepcidin gene expression 

in liver, spleen and kidney 

was measured in rats that 

were IP with quercetin (50 

mg/kg body weight) or 

10% DMSO (control) 

eighteen and then five 

hours before being 

sacrificed. Data are mean 

± SEM; n=5 (A); 4 (B) 

rats per group; *denotes 

significant difference from 

the 10% DMSO control 

group (p<0.05).  
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Liver HO–1 gene expression notably changed in rats fed on an iron-deficient diet and 

sacrificed at different times after quercetin treatment (see Figure 5–7). The maximal 

change in HO–1 mRNA levels in liver occurred 5 hours after quercetin treatment, 

when levels of mRNA showed a 13.3-fold increase (see Figure 5–7). Additionally, 

levels of liver FPN mRNA did not change after the same quercetin treatment. In 

contrast to liver FPN, mRNA levels of spleen FPN fluctuated during the experiment, 

and reached a maximal decrease 2 and 12 hours after quercetin treatment (1.3- and 

1.35-fold, respectively; see Figure 5–7). Furthermore, double quercetin IP treatment 

with rats fed on an iron-deficient diet, caused a significant increase in mRNA levels 

of HO–1, ferritin and QR in liver (11.8-, 1.8- and 1.7-fold, respectively; Figure 5–8; 

A). The same treatment provoked a significant decrease in FPN mRNA levels in both 

liver and spleen (1.5- and 1.8-fold, respectively; Figure 5–8; A). Double quercetin IP 

treatment, but with rats fed on RM1 diet, brought about a significant change in liver 

HO–1 and spleen FPN mRNA levels (3.9- fold and 1.5-fold increase, respectively; 

see Figure 5–8; B), while other examined genes were not affected with the treatment. 
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Figure 5–7 Effects of a single quercetin IP treatment on FPN and HO–1 gene 

expression in liver and spleen in rats at different times. 

The effects of quercetin on liver and splenic gene expression was measured 0 or 2, 5, 

12 and 18 hours after a single IP containing quercetin (50 mg/kg body weight) or 

10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; 

groups with no common letters are significantly different from each other (p<0.05). 
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Figure 5–8 Effects of double quercetin IP treatment on relevant gene expression 

in liver and spleen in rats. 

The effects of quercetin on liver and splenic gene expression was measured in rats 

that were IP with quercetin (50 mg/kg body weight) or 10% DMSO (control) 

eighteen and then five hours before being sacrificed. Data are mean ± SEM; n=5 (A); 

4 (B) rats per group; *denotes significant difference from the 10% DMSO control 

group (p<0.05). 
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5.2.1.3 Effect of quercetin on iron content in duodenum, liver and 

spleen 

Single quercetin IP administration, during different time intervals, affected the iron 

content of duodenum, liver and spleen of rats fed with an iron-deficient diet (see 

Figure 5–9). Namely, duodenal iron levels significantly increased 2 hours after 

quercetin IP treatment. After that, duodenal iron followed an upward trend and 

reached its maximum value 12 hours after the treatment (see Figure 5–9). However, 

liver iron stayed the same until 18 hours after the treatment, when a significant 

decrease occurred (see Figure 5–9). Furthermore, spleen iron increased during the 

experiment and reached its maximum value 5 hours after the treatment. After 5 

hours, levels of spleen iron dropped, but were still being significantly higher than at 

the start of experiment (see Figure 5–9). 

Moreover, duodenal and liver iron levels increased significantly, while the iron levels 

of spleen stayed the same, in rats which were fed on an iron-deficient diet and 

received double quercetin IP treatment (see ; A). However, only liver iron increased 

significantly, while iron levels of duodenum and spleen stayed the same, after the 

same treatment in rats fed on a diet with a regular iron content (see ; B). 
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Figure 5–9 Effects of a single quercetin IP treatment on iron content in 

duodenum, liver and spleen in rats at different times. 
The effects of quercetin on duodenal, liver and splenic iron content was measured 0 

or 2, 5, 12 and 18 hours after a single IP containing quercetin (50 mg/kg body 

weight) or 10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per 

group; groups with no common letters are significantly different from each 

otherp<0.05) 
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Figure 5–10 Effects of 

double quercetin IP 

treatment on iron 

content in duodenum, 

liver and spleen in rats. 

The effects of quercetin on 

duodenal, liver and splenic 

iron content was measured 

in rats that were IP with 

quercetin (50 mg/kg body 

weight) or 10% DMSO 

(control) eighteen and 

then five hours before 

being sacrificed. Data are 

mean ± SEM; n=5 (A); 4 

(B) rats per group; 

*denotes significant 

difference from the 10% 

DMSO control group 

(p<0.05). 
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5.2.2 Effects of different IP dose of quercetin on serum iron 

metabolism in vivo 

The effect of IP quercetin on iron methabolism was studied in vivo in rats 5 after a 

single IP containing different quercetin concentrations (0, 2, 5, 10 and 20 mg/kg 

body weight) or 10% DMSO (control). At the end of the experimental procedure 

animals were killed by administering a terminal dose of pentobarbitone sodium and 

blood samples were removed via cardiac puncture. Subsequentlly, serum was 

separated and used for serum iron and transferrin saturation measurements using 

stadard spectrophotometric methods. Additionally, duodenum, liver, spleen and 

kidney were removed and subsequently used for tissue non-haem iron 

spectrophotometric measurements and gene expression levels determination. 

Effect of IP quercetin on iron absorption in duodenum was sudied in rats treated by a 

single IP 5 hours or double IP 18 hours and then 5 hours before experiment 

containing quercetin (50 mg/kg body weight) or 10% DMSO (control). Afterwards, 

uptake studies were performed where 
59

Fe
2+

 was put inside the cannulated duodenum 

for 30 minutes while rats were anesthetized. After 30 minutes, blood samples were 

collected via cardiac puncture and duodenal mucosa was scraped away and 

subsequently gamma counted for determination of 
59

Fe activity. 

5.2.2.1 Effect of quercetin on serum iron and transferrin saturation 

Serum iron and transferrin saturation levels were affected by single dose of quercetin 

(0, 2, 5, 10 and 20 mg/kg) given by IP five hours before being sacrificed (see Figure 

5–11). Namely, after IP quercetin treatment of 5 mg/kg serum iron and transferrin 



166 

saturation levels increased significantly. Furthermore, after IP quercetin treatment of 

10 and 20 mg/kg, they dropped compared with the 5 mg/kg dose group, but were 

significantly higher compared with the control group or the group treated with the 2 

mg/kg dose of quercetin (see Figure 5–11). 

 

Figure 5–11 Effects of different IP dose of quercetin on serum iron and 

transferrin saturation in rats. 

The effects of quercetin on serum iron and transferrin saturation were measured 5 

hours after a single IP containing quercetin (2, 5, 10 or 20 mg/kg body weight) or 

10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; 

groups with no common letters are significantly different from each other (p<0.05). 

5.2.2.2 Effect of quercetin on gene expression in duodenum, liver, 

spleen and kidney 

Analysis of the mRNA expression of the iron transporters (DMT1, and FPN) and 

Dcytb in the duodenum of rats fed on an iron-deficient diet and sacrificed five hours 

after IP treatment with different quercetin concentrations generally showed a 

significant increase in Dcytb and FPN mRNA. Namely, a quercetin dose of 5 mg/kg 

and 20 mg/kg provoked the highest jump of mRNA levels (see Figure 5–12). 
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However, DMT1 levels either decreased significantly or stayed the same after 

treatment with different quercetin concentrations (see Figure 5–12). 

 

Figure 5–12 Effects of different IP dose of quercetin on duodenal iron 

transporters and Dcytb gene expression in rats. 

The effects of quercetin on duodenal gene expression was measured 5 hours after a 

single IP containing quercetin (2, 5, 10 or 20 mg/kg body weight) or 10% DMSO 

(control) given to rats. Data are mean ± SEM; n=4 rats per group; groups with no 

common letters are significantly different from each other (p<0.05). 

Analysis of hepcidin gene expression in liver, spleen and kidney of rats fed on an 

iron-deficient diet and treated with different quercetin IP concentration (0-20 mg/kg) 

after 5 hours showed a notable increase of the examined gene only in liver (see 

Figure 5–13). Namely, a maximal change in hepcidin mRNA levels in the liver 

occurred 5 hours after 10 mg/kg quercetin treatment, when levels of mRNA showed 

a 50-fold increase (see Figure 5–13). While after other doses, levels of liver hepcidin 

mRNA varied but not significantly. Generally, levels of splenic and kidney hepcidin 

mRNA levels fluctuated after IP quercetin but not significantly, except in spleen after 

IP quercetin 20 mg/kg and kidney IP quercetin 10 mg/kg, when it reduced 
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significantly. Additionally, after different IP quercetin concentrations splenic FPN 

was not altered, while the same in spleen was significantly up-regulated only after a 

quercetin concentration of 20 mg/kg (see Figure 5–14). Furthermore, HO-1 mRNA 

levels increased significantly after 10 and 20 mg/kg IP quercetin 8- and 3.2-fold, 

respectively, compared with control (see Figure 5–14). 

 

Figure 5–13 Effects of different IP dose of quercetin on hepcidin gene 

expression in liver, spleen and kidney in rats. 

The effects of quercetin on hepcidin gene expression in liver, spleen and kidney was 

measured 5 hours after a single IP containing quercetin (2, 5, 10 or 20 mg/kg body 

weight) or 10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per 

group; groups with no common letters are significantly different from each other 

(p<0.05). 
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Figure 5–14 Effects of different IP dose of quercetin on FPN and HO–1 gene 

expression in liver and spleen in rats. 

The effects of quercetin on liver and splenic gene expression was measured 5 hours 

after a single IP containing quercetin (2, 5, 10 or 20 mg/kg body weight) or 10% 

DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; groups 

with no common letters are significantly different from each other (p<0.05). 

5.2.2.3 Effect of quercetin on iron content in duodenum, liver and 

spleen 

Different concentrations of quercetin IP treatment affected differently the iron 

content of duodenum, liver and spleen of rats fed with an iron-deficient diet (see 

Figure 5–15). Duodenal iron levels fluctuated depending on the applied quercetin 

concentrations. Namely, after 2 mg/kg quercetin IP treatment iron levels significantly 

increased, while when higher concentrations of IP quercetin was applied it exhibited 

decreasing trend (see Figure 5–15). Liver iron levels significantly changed only after 

10 and 20 mg/kg quercetin IP treatment (1.6- and 1.2-fold decrease compared with 

control, respectively), while it stayed the same after other applied concentrations (see 

Figure 5–15). Furthermore, spleen iron levels significantly dropped after 2 mg/kg 
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quercetin IP treatment, while it stayed the same after other applied quercetin 

concentrations compared with control (see Figure 5–15). 

 

Figure 5–15 Effects of different IP dose of quercetin on iron content in 

duodenum, liver and spleen in rats. 

The effects of quercetin on duodenal, liver and splenic iron content was measured 5 

hours after a single IP containing quercetin (2, 5, 10 or 20 mg/kg body weight) or 

10% DMSO (control) given to rats. Data are mean ± SEM; n=4 rats per group; 

groups with no common letters are significantly different from each other (p<0.05). 

5.2.3 Distribution of quercetin metabolites in serum after quercetin 

IP administration 

Quantitative analysis of quercetin and five selected quercetin metabolites in the 

serum of the rats, after different IP quercetin treatments, was performed using the 

LC–MS/MS technique. The contents of the determined compounds are presented in 

Table 5–1. Among the examined compounds only quercetin–3–O–glucuronide, 

quercetin and isorhamnetin were detected, while other examined compounds were 

not identified. Namely, after different time of single quercetin IP treatments (rats 

were treated with a single dose of quercetin (50 mg/kg) in different time periods, 
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from 0 to 18 hours, before being sacrificed) the concentration of quercetin–3–O–

glucuronide declined from 90.78 to 27.77 ng/mL in serum, while after 12 hours no 

compound was detected. In the same group of animals, parental quercetin declined in 

the same way as quercetin–3–O–glucuronide, while isorhamnetin was detected only 

in animals sacrificed right away after IP quercetin treatment. In sets of animals that 

were treated with a double dose of quercetin, where one group was on an iron-

deficient diet and the other on a normal iron content diet, quercetin–3–O–

glucuronide, quercetin and isorhamnetin were detected in similar amounts. In the last 

set of animals that were treated with increasing quercetin concentrations, only 

quercetin–3–O–glucuronide (from 11.65 to 113.57 ng/mL of serum) and quercetin 

(from 1.42 to 25.43 ng/mL of serum) were detected. 
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Table 5–1 Determined concentrations of quercetin and selected quercetin metabolites in rat serum after IP quercetin treatment by LC–

MS/MS technique 

treatment 

content of quercetin and selected quercetin metabolites 
(ng/mL serum) 

quercetin–3,4’–di– 
O–glucoside 

quercetin–3– 
O–glucuronide 

isorhamnetin–3– 
O–glucoside 

quercetin isorhamnetin 
quercetin–3,5,7,3’,4’–

penthamethylether 

d
if

fe
re

n
t 

ti
m

e 
o
f 

q
u

er
ce

ti
n

 t
re

a
tm

en
t 

0 hours before experiment 

quercetin 
(50 mg/kg) 

iron-deficient 
diet 

nd 90.8 ± 7.23 nd 104 ± 5.98 66.7 ± 3.24 nd 

2 hours before experiment nd 41.3 ± 3.22 nd 6.61 ± 0.45 nd nd 

5 hours before experiment nd 27.8 ± 1.78 nd 0.48 ± 0.01 nd nd 

12 hours before 
experiment 

nd nd nd nd nd nd 

18 hours before 

experiment 
nd nd nd nd nd nd 

18 hours and then 5 hours 

before experiment 

10% DMSO 
(control) 

nd nd nd nd nd nd 

quercetin 
(50 mg/kg) 

nd 22.6 ± 0.94 nd 20.9 ± 1.23 3.43 ± 0.23 nd 

18 hours and then 5 hours 
before experiment 

10% DMSO 

(control) 
RM1 diet 

nd nd nd nd nd nd 

quercetin 
(50 mg/kg) 

nd 99.8 ± 3.67 nd 13.3 ± 0.65 5.08 ± 0.39 nd 

tr
ea

tm
en

t 
w

it
h

 d
if

fe
re

n
t 

d
o
se

 o
f 

q
u

er
ce

ti
n

 

5 hours before experiment 

10% DMSO 
(control) 

iron-deficient 
diet 

nd nd nd nd nd nd 

quercetin 
(2 mg/kg) 

nd 16.8 ± 0.65 nd nd nd nd 

quercetin 

(5 mg/kg) 
nd 60.3 ± 3.21 nd nd nd nd 

quercetin 
(10 mg/kg) 

nd 11.6 ± 0.87 nd 1.42 ± 0.12 nd nd 

quercetin 
(20 mg/kg) 

nd 113 ± 2.89 nd 25.4 ± 1.23 nd nd 

nd - not detected 
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5.2.4 Effects of quercetin IP administration on iron absorption in 

duodenum 

After a single or double IP quercetin treatment, mucosal uptake and transfer of 
59

Fe 

remained the same. However, even though a slight increase in mucosal 
59

Fe uptake 

and a decrease in mucosal 
59

Fe transfer can be seen compared with controls, neither 

change was significant (see Figure 5–16; A and B). 
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Figure 5–16 Effects of quercetin IP administration on iron absorption in rat 

duodenum. 

The effect of quercetin on iron absorption was measured after single or double IP 

containing quercetin (50 mg/kg body weight) or 10% DMSO (control) given to rats. 

Data are mean ± SEM; n=5 rats per group. 
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5.3 Discussion 

In this chapter the effect of quercetin given IP on iron metabolism in rats was 

investigated. Summarizing results obtained in this chapter, it is evident that different 

IP time and concentrations of quercetin had significant, but somewhat different, 

effects on iron homeostasis and gene expression. Table 5–2 sums all the results 

obtained within this study. Additionally, when comparing results from the previous 

two chapters (Chapter 3 and 4), where rats were treated by polyphenols orally, with 

results from this chapter it is evident that the route of quercetin application affects 

iron metabolism. Namely, IP treatment mainly affected systemic iron homeostasis, 

mostly by regulating hepcidin expression, while oral quercetin mainly affected iron 

absorption. 

Specifically, after single quercetin treatment (50 mg/kg) major up-regulation of 

hepcidin mRNA occurred in liver and kidney. A vast increase in liver hepcidin was 

evident just 2 hours after quercetin treatment, reaching a peak after 5 hours (122- and 

175-fold, respectively). Subsequent, hepatic mRNA hepcidin levels decreased after 

12 and 18 hours, but were still significantly higher compared with the start of 

experiment (25- and 8-fold, respectively). Kidney mRNA hepcidin levels increased 

significantly 12 hours after quercetin application (35-fold), after which they went 

down, but still were higher than at the beginning of experiment. In the same 

experiment the impact of quercetin on splenic hepcidin mRNA was different from 

the same in the kidney and the liver. Namely, it reached a significant maximum 2 

hours after quercetin treatment (2-fold), followed with attenuation, reaching 

significant minimum 18 hours later (2-fold). 
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Table 5–2 Sums of results obtained in experiments regarding effects of IP quercetin on iron homeostasis 

treatment obtained results 

d
if

fe
re

n
t 

ti
m

e 
o
f 

q
u

er
ce

ti
n

 t
re

a
tm

en
t 

0 hours before 

experiment 

quercetin 
(50 mg/kg) 

iron-
deficient 

diet 

A 

tissue/serum parameter 

time of quercetin IP treatment 

(hours) 

0 2 5 12 18 

serum 
iron 

a ab 
↓

b 
↑

c 
↑

cd 

transfferin saturation 
a ab 

↓
b 

↑
c 

↑
cd 

duodenum 

DMT1 
a a a 

↑
b ab 

Dcytb 
a a 

↑
b 

↑
b 

↑
b 

FPN 
ac a 

↑
bd cde ae 

iron 
a 

↑
b 

↑
bd 

↑
c 

↑
d 

liver 

hepcidin 
a 

↑
b 

↑
bd 

↑
bd 

↑
cd 

FPN 
ab ac a b bc 

HO–1 
a 

↑
b 

↑
c 

↑
d 

↑
d 

iron 
a a a a 

↓
b 

spleen 

hepcidin 
a 

↑
b a a 

↓
c 

FPN 
a 

↓
b a 

↓
b ab 

iron 
a 

↑
b 

↑
b 

↑
b 

↑
b 

kidney hepcidin 
a a a 

↑
b 

↑
b 

 

2 hours before 
experiment 

5 hours before 
experiment 

12 hours before 

experiment 

18 hours before 

experiment 

18 hours and then  

5 hours before 
experiment 

10% DMSO 

(control) 

Serum: Iron↓*, transferrin saturation↓* 

Duodenum: DMT1↓*, FPN↓*, Dcytb↓*, Iron↓* 

Liver: Hepcidin↑*, FPN↓*, HO–1↑*, Ferritin↑*, QR↑*, GST↑, Iron↑* 
Spleen: Hepcidin↑, FPN↓*, Iron= 

Kidney: Hepcidin↑* 

quercetin 

(50 mg/kg) 

18 hours and then  

5 hours before 
experiment 

10% DMSO 

(control) 
RM1 diet 

Serum: Iron↓, transferrin saturation ↓ 

Duodenum: DMT1 no expression, Dcytb=, FPN↑, Iron↓ 

Liver: Hepcidin↑*, FPN=, HO–1↑*, Ferittin=, Iron↑* 
Spleen: Hepcidin↓*, FPN↑*, Iron↑ 

Kidney: Hepcidin↓* 

quercetin 

(50 mg/kg) 
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tr
ea

tm
en

t 
w

it
h

 d
if

fe
re

n
t 

d
o
se

 o
f 

q
u

er
ce

ti
n

 

5 hours before 

experiment 

10% DMSO 

(control) 

iron-

deficient 
diet 

B 

tissue/serum parameter 

concentration of quercetin IP 

treatment (mg/kg) 

0 2 5 10 20 

serum 
iron 

a a 
↑

b 
↑

c 
↑

c 

transfferin saturation 
a a 

↑
b 

↑
b 

↑
b 

duodenum 

DMT1 
a 

↓
bc a a ac 

Dcytb 
a a 

↑
b a 

↑
b 

FPN 
a ac 

↑
bc ac 

↑
bc 

iron 
a 

↑
b 

↑
b abc 

↓
c 

liver 

hepcidin 
a a ab 

↑
b ab 

FPN 
a a a a a 

HO–1 
a a ab 

↑
b 

↑
b 

iron 
a a ac 

↓
b 

↓
c 

spleen 

hepcidin 
a ab ab a 

↓
b 

FPN 
a a ab a 

↑
b 

iron 
a 

↓
b a a a 

kidney hepcidin 
a ab ab 

↓
b a 

 

quercetin 

(2 mg/kg) 

quercetin 

(5 mg/kg) 

quercetin 

(10 mg/kg) 

quercetin 
(20 mg/kg) 

in tables A and B ↑ indicates that the parameters significantly increased compared with the group treated with quercetin 0h before experiment or with 10% DMSO, 

respectively 

in tables A and B ↓ indicates that the parameters significantly decreased compared with the group treated with quercetin 0h before experiment or with 10% DMSO, 

respectively 

in tables A and B groups with no common letters are significantly different from each other (p<0.05) 

results in red and marked with * indicate that the parameters significantly differ from treated and control group 

↑ indicate that parameter increased, but not significantly, between treated and control group 

↓ indicate that parameter decreased, but not significantly, between treated and control group 

= indicate that parameter did not change in treated group compared with control group 
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However, when lower concentrations of quercetin were applied, the increase in hepcidin 

mRNA was not as elevated as after higher quercetin concentrations. Still, hepatic 

mRNA was increased 45-fold after a 10 mg/kg quercetin dose, while the hepcidin 

mRNA in spleen and kidney stayed the same or significantly decreased after 20 and 10 

mg/kg quercetin dose, respectively. The largest change in hepatic hepcidin mRNA 

occurred after double quercetin treatment in animals fed on iron-deficient diet. 

Specifically, hepatic hepcidin mRNA was up-regulated enormously, 1031-fold. The 

same pattern was followed by kidney hepcidin mRNA (9.5-fold), while no significant 

change occurred in splenic hepcidin. In the group that was on a RM1 diet, hepatic 

hepcidin mRNA increased, while in kidney and spleen it decreased significantly. 

Generally, hepatic and kidney mRNA hepcidin mainly expressed an upward trend after 

IP quercetin. However, differences in hepatic and kidney results are probably due to the 

different number of treatments (single and double), different quercetin concentrations 

(2–50 mg/kg) and different diets (RM1 and iron-deficient). In contrast to liver and 

kidney hepcidin, splenic mRNA hepcidin levels were significantly down-regulated or 

not altered by quercetin treatment. As mentioned in Chapter 3, the observation that 

hepcidin is regulated in a different way in different tissues is hitherto unknown. In the 

light of results from this thesis, it could be proposed that hepcidin is regulated in a 

tissue-specific manner by quercetin. However, based on these limited results it is very 

hard to give an explanation of different hepcidin expression in different tissues and 

additional work is needed to confirm and elucidate the mechanism of tissue-specific 

hepcidin transcriptional regulation. 

The massive increase of hepatic and kidney hepcidin mRNA levels in vivo after 

quercetin treatment observed in this study is surprising and not easy to explain. There 

are only two reports from the literature that reported a similar effect of polyphenols on 

hepcidin expression in liver. To be exact, Tang et al. (2014), showed in vivo that 
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quercetin efficiently supports hepcidin expression by intensification of the 

BMP6/SMAD4 signaling pathway, both suppressed by ethanol consumption. Of note, it 

is known that hepcidin transcription is mainly regulated by the BMP6/SMAD4 

signaling pathway (Ganz and Nemeth, 2012). Additionally, hepcidin suppression by 

alcohol abuse results in iron overload and predisposes the liver to more severe 

pathologies (Bridle et al., 2006). Tang et al. (2014) showed in mice that BMP6 and 

SMAD4 protein levels, as well as binding of SMAD4 to the HAMP promoter, were 

disabled by chronic alcohol exposure, directly leading to hepcidin suppression. 

Interestingly, quercetin treatment partially reset the ethanol effect on the 

BMP6/SMAD4 signaling pathway. Particularly, quercetin treatement after alcohol 

exposure was followed by increase in BMP6 and SMAD4 expression and SMAD4 

binding activity to the HAMP, subsequently leading to stimulation of hepcidin 

expression in liver and decrease of iron overload. In Tang et al. (2014), up-regulation of 

liver hepcidin, on both protein and mRNA levels, was documented after a 15 week long 

oral treatment with quercetin (100 mg/kg). Up-regulation of mRNA hepcidin levels was 

around 2-fold, which is not comparable with the vast increase of hepcidin mRNA 

evidenced within this study. Two results are hard to compare in the sense of the 

intensity of hepcidin up-regulation due to the different length and way of quercetin 

application. Additionally, results from this thesis showed that after IP treatment the 

concentration of quercetin and its metabolites in serum was higher compared with the 

oral treatment (see Table 3–2 and Table 5–1). Thus, quercetin applied IP could have a 

bigger impact on cell homeostasis due to its higher serum concentration. This could be a 

reason for the modest hepcidin increase after a 15 weeks long oral quercetin treatment 

compared with the opposite vast hepcidin up-regulation after double IP treatment. 

Vanhees et al. (2011) also confirmed in vivo quercetin-mediated regulation of hepcidin. 

Specifically, research showed that prenatal exposure to quercetin resulted in hepcidin 
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induction in adult mice. Authors hypothesized that after birth, when pups were no 

longer exposed to quercetin, improved bioavailability of dietary iron was experienced as 

an iron overload. Namely, the authors suspected that animals were ”developmentally 

programmed” to deal with lower iron levels in utero. The difference between the in 

utero and postnatal life conditions resulted in activating pathways for overcoming 

emerging ”iron overload”, such as hepcidin up-regulation. Again, it is hard to draw a 

parallel between the results from Vanhees et al. (2011) and results obtained in this thesis 

due to the distinct experimental design. However, there are a small number of studies 

reporting up-regulation of hepcidin by polyphenols. Thus some results in this study are 

hard to discuss and only preliminary explanation could be proposed. 

Apart from the suggestion that hepcidin is up-regulated by quercetin through the 

BMP6/SMAD4 signaling pathway, there are assumptions that it could also be regulated 

by the Nrf2–ARE signaling pathway. Namely, the liver, a main site of iron storage, is 

particularly exposed to the toxic effects of iron. The Nrf2–ARE signaling pathway plays 

a pivotal role in protecting the liver from disease induced by high iron. This pathway 

activates the transcription of a battery of cytoprotective genes encoding 

detoxification/antioxidant enzymes which terminate toxic iron effects. The important 

role of Nrf2 in inhibiting hepatic injury was shown in a couple in vivo models using 

Nrf2-null mice (Klaassen and Reisman, 2010). Furthermore, it was recently shown that 

Nrf2 protects mouse liver against toxicity and oxidative stress caused by iron overload 

(Silva–Gomes et al., 2014). Consequently, it could be proposed that Nrf2 signaling may 

coordinate hepcidin expression as an answer to iron overload and thus contribute to the 

prevention of hapatocytic cell injury. This hypothesis could be supported by parallel 

increases in the expression of the phase II genes HO–1 and QR recorded in this study 

after all the applied quercetin treatments (ranged from 13- to 2-fold). Of note, 

transcription of these enzymes is driven by the Nrf2–ARE signaling pathway as part of 



181 

a battery of cytoprotective machinery induced by oxidative stress (Klaassen and 

Reisman, 2010). These effects of quercetin are known from before (Williamson at el., 

1996; Liu et al., 2012; personal communication with Henry K. Bayele and Sara 

Balesaria). However, up-regulation of Nrf–2 by quercetin was also confirmed (Yao et 

al., 2007; Granado–Serrano et al., 2012). Based on the results from these thesis and 

observations of others, it could be proposed that the Nrf2 transcription factor was up-

regulated in the liver of examined animals by quercetin. Thus there is a great probability 

that the same signaling pathway induced hepcidin transcription. Furthermore, it was 

shown in vitro that HO–1 expression is also BMP6/SMAD4 dependent (Yan et al., 

2009). Thus, in the same manner as with above discussed Nrf2–ARE signaling pathway, 

this result indicates that hepcidin up-regulation could also go through the 

BMP6/SMAD4 pathway. However, these both hypotheses are only a sugestion and 

additional work is needed to confirm the discussed issues. Nevertheless, these results 

confirmed the well known fact that polyphenols, particularly quercetin, increase levels 

of antioxidant enzymes and support the body in its fight against destructive oxidative 

stress. 

Furthermore, an increase in hepcidin levels is expected to be followed by a reduction in 

FPN levels, mainly in spleen. Namely, the ”seesaw” relationship between hepcidin and 

FPN expression is well known (Nemeth et al., 2004; Ganz, 2011) and part of the results 

from this thesis are in agreement with this belief. Two and 12 hours after single 

quercetin treatment, levels of splenic FPN mRNA decreased while those of liver were 

unchanged. This confirmed previously reported views that spleen FPN is major target 

for hepcidin action (Chaston et al., 2008; Masaratana et al., 2011). The hepcidin effect 

on FPN was more pronounced after double quercetin treatment, where FPN mRNA 

levels declined in both liver and spleen, but in spleen more. However, in animals fed a 

RM1 diet this outcome was lacking. What is more, splenic FPN mRNA increased after 
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quercetin treatment, even though liver hepcidin mRNA increased in the same animal 

group. Similarly, the work of others also suggests that FPN itself may be up-regulated 

by antioxidants in vivo, which could partially explain the observed disagreement in 

results (Harada et al., 2011).  

High hepcidin, as well as reduction in FPN levels by hepcidin, should be followed by a 

retention of iron in tissue, precisely in liver and spleen. This pattern was followed after 

a double quercetin dose where iron levels in liver increased or were unchanged in 

spleen. Consequently, an increase in liver iron was followed by an increase in mRNA 

ferritin levels. However, after a single quercetin treatment, with a dose of 50 mg/kg, 

spleen iron was increased but liver iron decreased. Whereas, after a lower quercetin 

dose (ranging from 0 to 20 mg/kg) showed reduced iron stores both in liver and spleen. 

As mentioned before, differences in results of tissue iron levels could be due to the 

different number of treatments, different quercetin concentrations and different diets. 

Additionally, a reduction in iron stores by quercetin could be explained by its chelato 

properties. Particularly, it is confirmed in vivo that quercetin is able to decrease 

intracellular iron pools by chelating iron and taking it out from the cell. It is proposed 

that quercetin chelates iron and takes it out from the tissue to the blood stream and 

finally excretes it from the body (Morel et al., 1993; Zhao et al., 2005; Zhang et al., 

2006; Zhang et al., 2011; Baccan et al., 2012). These finding are of great importance for 

medicine as polyphenols, such as quercetin, could be use as chelator in iron 

redistribution therapy. 

An increase in hepcidin levels is proven to be followed by a decrease of intestinal iron 

absorption (Laftah et al., 2004; Mena et al., 2008). Particularly, it is proven that hepatic 

hepcidin expression is inversely proportional to expression of intestinal DMT1, Dcytb 

and FPN expression in vivo (Frazer et al., 2004; Yamaji et al., 2004; Chung et al., 2009; 
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Brasse–Lagnel et al., 2011). However, this occurrence was only partially confirmed in 

this thesis. Namely, after single quercetin treatment (dose 50 mg/kg) levels of duodenal 

mRNA DMT1, Dcytb and FPN stayed the same or were up-regulated 5 and more hours 

after treatment. Furthermore, after a single lower quercetin dose, the same pattern of 

duodenal genes’. regulation was followed. These results came as a surprise, because the 

opposite results were expected particularly in the light of detected increased hepcidin 

levels. Additionally, these results were in disagreement with observed increased iron 

duodenal levels. Namely, it would be expected that levels of DMT1 were down-

regulated by post-transcriptional the IRE/IRP control machinery, such that when iron 

levels in tissue are high, expression of DMT1 is inhibited (Muckenthaler et al., 2008). 

These contradictory results require more in-depth research in order to make clear 

conclusions as to why the iron transporters follow the observed pattern of expression. 

One of the possible explanations could be that quercetin expresses a direct effect on 

observed gene expression and that this mechanism could abolish the influence of 

hepcidin. However, after double quercetin treatment, where vast up-regulation of 

hepatic hepcidin occurred, duodenal mRNA levels of DMT1, Dcytb and FPN were 

significantly down-regulated, as well as duodenal iron levels. These results confirmed 

the results of earlier studies, where high hepcidin is followed by a reduction in iron 

transporters and absorption. 

Nevertheless, it would be expected that hepcidin up-regulation is followed by a 

reduction in serum iron and transferrin saturation (Kemna et al., 2005). Again, this 

principle was to some extent confirmed within this thesis. Namely, after a double 

quercetin dose, serum iron and transferrin saturation levels decreased as expected. 

Contrary, after a single quercetin treatment serum iron and transferrin saturation levels 

increased. This can partially be explained by reduced liver iron levels in some animal 

groups. In other words, iron could leave liver tissue through unaffected FPN and thus 
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increase iron serum levels. Also, increase in serum iron could indicate quercetin chelato 

property and its ability to take iron out from tissues. Additionally, as duodenal 

transporters were increased despite high hepcidin levels induced by quercetin, extra iron 

could come through intestinal absorption. 

On the other hand, uptake studies after IP quercetin treatment did not cause a change in 

mucosal iron uptake or transfer. These results came as a great surprise, especially after a 

double dose of quercetin, where quercetin enormously up-regulated mRNA hepcidin 

levels and affected iron transporter genes in the intestine. The results from uptake 

studies indicate that more in-depth studies need to be performed in order to confirm the 

exact affects of IP quercetin on iron absorption in vivo. 

On top of, it is shown that quercetin administrated IP at a concentration not less than 50 

gm/kg had the greatest effect on iron homeostasis 5 hours after single treatment. 

Additionally, double quercetin IP had a more distinct effect on iron homeostasis than 

single quercetin IP. Results from this Chapter, as well as from Chapter 3, point out that 

those animals kept on an iron-deficient diet are more suitable models for research in the 

field of iron metabolism, because they are more sensitive to the applied treatments and 

results are more pronounced. 

The aim of determination of quercetin and selected quercetin metabolites in rat serum 

after IP quercetin treatment by LC–MS/MS technique was to see which metabolites are 

present in the serum and at which concentrations. As it was mentioned in Chapter 3, this 

was important for subsequent experiments in which THP1 cells and HepG2 cells were 

treated with detected metabolites in order to investigate their potential role in expression 

of iron-metabolism related genes. Qualitative and quantitative studies showed that right 

after treatment quercetin was the dominant compound, but it was quickly metabolized to 
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quercetin–3–O–glucuronide and isorhamnetin. Higher concentrations of quercetin and 

its metabolites were observed in serum compared with the results of study after oral 

quercetin treatment, which confirms that quercetin absorbed in the intestine has a short 

half-life. Also, these results confirm that one of the dominant quercetin metabolites in 

serum is quercetin–glucuronide (Gee et al., 2004; Justino et al., 2004; Moon et al., 

2008). 

5.4 Conclusions 

In conclusion, IP administration of quercetin mainly affected systemic iron homeostasis, 

primary by a large up-regulation of hepatic and kidney mRNA hepcidin levels. This 

trend was not followed by splenic hepcidin mRNA, which suggest possible tissue-

specific hepcidin transcriptional regulation by quercetin. Furthermore, analysis of the 

presented data and previously  published results suggest that both BMP6/SMAD4 and 

Nrf2–ARE signaling pathways could be involved in dominant hepcidin up-regulation by 

polyphenols in vivo. Furthermore, after different administration times, single or double 

doses and different concentrations of quercetin, the organism reacted differently to high 

hepcidin levels. Generally, high hepcidin levels were followed by a reduction in mRNA 

FPN levels, mainly in the spleen. Additionally, it is confirmed that quercetin is able to 

decrease intracellular iron pools in vivo, possibly by chelating iron and taking it out of 

the cell. This fact could be particularly significant for new drug discoveries directed by 

natural product research targeting iron overload. Furthermore, results only partially 

confirmed that hepcidin reduces iron absorption. This fact points to a possible direct 

influence of polyphenols on the expression of duodenal genes involved in iron 

homeostasis. However, uptake studies after IP quercetin showed no change in iron 

absorption, even though significant change in genes involved in iron intestinal transport 

was observed. This indicates that more studies have to be done in order to explain the 
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quercetin effect on iron homeostasis, particularly iron absorption. Nevertheless, results 

confirmed the well-known fact that polyphenols, particularly quercetin, increase levels 

of antioxidant enzymes. This study provides a very good case for including hepcidin as 

an important factor involved in antioxidant effects, in addition to it being involved in 

the anti-inflammatory effects of quercetin. Above all, it is confirmed that polyphenols 

might be a new source of therapeutics for iron overload diseases and their role in iron-

removal therapy is worthy of further study. 
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6. EFFECT OF POLYPHENOLS ON GENE EXPRESSION 

OF IRON-RELATED PROTEINS IN HepG2 CELLS 

6.1 Introduction 

The main organ for regulation of systemic iron homeostasis is the liver. Apart from 

being the main site of hepcidin expression, it is also one of the main sites of iron 

storage. Hepcidin synthesis is stimulated by iron overload. Consequently, hepcidin 

binds to FPN and causes its degradation in order to prevent further iron export to the 

circulation (Ganz, 2011; Ganz and Nemeth, 2012). 

It was shown in previous chapters of this thesis that quercetin greatly affects iron 

metabolism in vivo, at the absorption stage and at the systemic level. However, it is 

difficult to decide whether it is quercetin or its metabolites that induce the observed 

effects. Furthermore, there is no literature data about a possible link between iron 

metabolism and quercetin metabolites. Bearing in mind the extensive metabolism of 

quercetin in the intestine and its short half-life (Gee et al., 2004; Justino et al., 2004; 

Moon et al., 2008), it was hypothesized that quercetin metabolites could be involved in 

changing iron metabolism. Thus, in order to get preliminary conclusions on these issues, 

the effect of quercetin and 6 chosen quercetin metabolites on hepcidin and FPN was 

studied in HepG2 cells, used as a hepatic in vitro model system. Furthermore, it was 

discussed in detail in Chapter 5 that two signalling pathways, Nrf2–ARE and 

BMP6/SMAD4, could regulate hepcidin expression. This is based on in vitro studies 

that show that HO–1 expression in response to polyphenol (quercetin) treatment is 

Nrf2–ARE- and BMP6/SMAD4-dependent (Yan et al., 2009; Klaassen and Reisman, 

2010). In order to see whether polyphenols other then quercetin can affect iron systemic 

metabolism in vitro, two polyphenols of diverse structure resveratrol and epicatechin 
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were also included in the study. Resveratrol and epicatechin are, as quercetin, abundant 

in a diet of plant origin and are potent antioxidant agents (Terao, 1999; Baur and 

Sinclair, 2006). In Chapter 4 it was shown that resveratrol does not affect iron 

absorption, however it was previously confirmed in vitro that (–)–epigallocatechin–3–

gallate and epicatechin–3–gallate, derivative epicatechin, inhibit non-haem iron 

absorption and decrease plasma iron (Thephinlap et al., 2007; Kim et al., 2008). A study 

of the effects of polyphenol of diverse structures could elucidate whether the well 

known fact that polyphenols inhibit iron absorption is due to their chelation or 

antioxidant properties, or both. 
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6.2 Results 

In this chapter the effect of polyphenols on gene expression of iron–related proteins, 

such as hepcidin, FPN and HO–1, in HepG2 cells was investigated. This study included 

quercetin and its metabolites that are identified in serum of animals treated with 

quercetin orally and IP (see Chapter 3 and 5). Also, metabolites that were not detected 

in serum in the scope of this thesis, but are known to be present in serum after 

consumption of quercetin, were included in this study. Additionally, resveratrol and 

epicatechin, polyphenols that are frequently consumed in a plant diet, were also the 

subject of this investigation. 

HepG2 cells were grown on 6-well plates for 24 hours and were treated with 

polyphenols (100 μM) for a further 5 hours. This was followed by RNA isolation and 

quantitative-PCR to measure changes in mRNA expression. 

In general, polyphenols induced a significant decrease in hepcidin mRNA levels. 

Namely, quercetin–3–O–glucuronide, isorhamnetin, tamarixetin, 3,4’–

dimethylquercetin, epicahtechin and resveratrol caused a 9-, 54-, 3.5-, 2-, 11- and 11-

fold decrease compared with the corresponding control, respectively (see Figure 6–1). 

In contrast, among all the investigated polyphenols only quercetin induced hepcidin 

mRNA levels of almost 3-fold compared with the control (see Figure 6–1). There was 

no significant effect of 3–O–methylquercetin and penta–methylquercetin on hepcidin 

expression. 

Furthermore, FPN mRNA was generaly significantly down regulated. To be exact, all 

investigated polyphenols, expect quercetin–3–O–glucuronide, 3–O–methylquercetin, 

resveratrol and penta–methylquercetin, decreased FPN mRNA levels (see Figure 6–2). 
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Contrary to what was expected, only epichatechin upregulated HO–1 mRNA levels in 

HepG2 cells, while other investigated polyphenols, such as quercetin, isorhamnetin, 

tamarixetin, 3,4’–dimethylquercetin and 3–O–methylquercetin, significantly decreased 

HO–1 gene expression (see Figure 6–3). 
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Figure 6–1 Effect of polyphenols on hepcidin mRNA expression in HepG2 cells 

HepG2 cells were treated with polyphenols (100 μM) for 5 hours. Instead of compounds 

DMSO (A), ethanol (B) or ethanol:DMSO (1:1) were added in corresponding control 

wells. Changes in mRNA expression were measured by qPCR. Data normalised to 

GAPDH. Data are mean ± SEM; n=3; groups with no common letters are significantly 

different from each other (p<0.05). 
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Figure 6–2 Effect of polyphenols on FPN mRNA expression in HepG2 cells 

HepG2 cells were treated with polyphenols (100 μM) for 5 hours. Instead of compounds 

DMSO (A), ethanol (B) or ethanol:DMSO (1:1) were added in corresponding control 

wells. Changes in mRNA expression were measured by qPCR. Data normalised to 

GAPDH. Data are mean ± SEM; n=3; groups with no common letters are significantly 

different from each other (p<0.05). 
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Figure 6–3 Effect of polyphenols on HO–1 mRNA expression in HepG2 cells 

HepG2 cells were treated with polyphenols (100 μM) for 5 hours. Instead of compounds 

DMSO (A), ethanol (B) or ethanol:DMSO (1:1) were added in corresponding control 

wells. Changes in mRNA expression were measured by qPCR. Data normalised to 

GAPDH. Data are mean ± SEM; n=3; groups with no common letters are significantly 

different from each other (p<0.05). 
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6.3 Discussion 

In this chapter the effect of quercetin, 6 quercetin metabolites, resveratrol and 

epichatechin on hepcidin, FPN and HO–1 expression was studied. Among the 

polyphenols investigated only quercetin induced a significant increase of hepcidin 

expression, while others mainly induced a significant decrease. It is discussed in 

Chapter 5 that hepcidin expression could be controlled by both the BMP6/SMAD4 and 

Nrf2–ARE signaling pathways. However, it is still unknown how quercetin, or other 

polyhenols, could affect these pathways and bring about an increase or decrease in 

hepcidin mRNA expression. It could be assumed that the answer could lie in the 

polyphenol structure. Namely, among investigated polyphenols, only quercetin has a 

free hydroxyl, carbonyl and galloyl group in close proximity (see Figure 6–4). This 

structural characteristic could be important for its interaction with signaling molecules 

controlling hepcidin expression and the final outcome could be dependent on it. This is 

only a preliminary assumption and the results and this hypothesis need to be confirmed 

in further research. Furthermore, this result is in accordance with previously presented 

results in this thesis. Namely, it was shown that liver and kidney hepcidin expression is 

up-regulated by IP quercetin in vivo (see Chapter 5.). In Chapter 5. possible ways of 

how quercetin could affect hepcidin expression are discussed in detail. 
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Figure 6–4 Structures of polyphenols included in this study 

Moreover, FPN expression was also affected by polyphenol treatment. Namely, only 

resveratrol significantly increased FPN mRNA levels, while quercetin, isorhamnetin, 

tamarixetin, 3,4ʼ–dimethylquercetin and epichatechin induced a significant decrease. 

Also, penta–methylquercetin induced an increase, while 3–O–methylquercetin induced 

a decrease, in FPN mRNA levels but it was not significant. It is difficult to explain why 

only resveratrol induced an increase in FPN mRNA levels. Again, structural differences 
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among the investigated polyphenols could have an important role in the observed 

increase (see Figure 6–4). Resveratrol and penta–methylquercetin are the only 

polyphenols, among those investigated, that could not chelate iron. This property could 

be important in the light of the fact that resveratrol and penta–methylquercetin cannot 

reduce intracellular iron. By chelating iron and lowering the intracellular liable iron 

pool, the IRE/IRP system could be activated in order to decrease FPN levels as the 

intracellular iron level is low (Muckenthaler et al., 2008). However, this is only a 

preliminary suggestion and this premise needs to be confirmed in further research. 

Furthermore, by this study again well known fact that high hepcidin induces FPN 

internalization is confirmed (Ganz, 2011). Namely, in HepG2 cells treated with 

quercetin, mRNA hepcidin was up-regulated which was followed by a reduction in FPN 

mRNA.  

Nonetheless, HO–1 mRNA levels were also followed in HepG2 cells after polyphenol 

treatment. However, the results came as a surprise. Namely, almost all polyphenols, 

except epichatechin, provoked a decrease in HO–1 mRNA levels. This is not in 

agreement with the well known fact that polyphenols support up-regulation of 

antioxidant enzymes, such as HO–1 (Ferrándiz and Devesa, 2008; Shah, et al., 2010). 

Also, these results are not in accordance with previous results from this thesis, where 

HO–1 mRNA levels were up-regulated in liver after both IP and oral quercetin 

treatment in vivo (see Chapter 3 and 5). It is discussed in detail in Chapter 5 that up-

regulation of HO–1 could be a confirmation that hepcidin expression is controlled by 

two pathways, Nrf2–ARE and BMP6/SMAD4. The results obtained with HepG2 cells 

argue against this hypothesis. However, future studies should focus on an in-depth 

analysis of this issue in order to determine the influence of polyphenols on hepcidin 

expression in hepatocytes. 
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6.4 Conclusions 

To summarise, the results presented give a preliminary indication that quercetin 

metabolites could have different effects on systemic iron metabolism compared to 

quercetin. Namely, it is shown that quercetin metabolites induce a reduction in hepcidin 

expression; while it was proven that quercetin induces a large great up-regulation in 

hepcidin levels both in vivo and in vitro. Furthermore, quercetin metabolites affected 

mRNA FPN levels in the same way as quercetin. This supports the belief that 

polyphenols affect intracellular iron metabolism by chelating iron and affecting the 

IRE/IRP machinery. Furthermore, it was shown that structurally diverse polyphenols 

could affect iron metabolism in a different way. Namely, it could be assumed that 

structural characteristics that enable iron chelation, in addition to general polyphenol 

antioxidant power due to free hydroxyl groups, could be of great importance in 

controlling iron metabolism. Surprisingly, the examined polyphenols did not induce up-

regulation of HO–1 mRNA levels, which is in great disagreement with previous 

research (Ferrándiz and Devesa, 2008; Shah, et al., 2010) and with results from this 

study (see Chapter 3 and 5).  
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7. EFFECT OF POLYPHENOLS ON GENE EXPRESSION 

OF IRON- AND INFLAMMATION-RELATED GENES 

IN THP1 CELLS 

7.1 Introduction 

Macrophages play a significant role in iron homeostasis. Namely, splenic and hepatic 

macrophages recycle senescent erythrocytes by which iron is released from haem by the 

action of HO‒1. Iron is effluxed into the circulation in response to systemic iron 

requirements. The release of iron from macrophages is mainly regulated by the 

interaction of the hormone hepcidin with the iron exporter FPN. Furthermore, 

macrophages are a key agent in inflammation-induced hypoferraemia. Namely, during 

infection and inflammation, IL–6 and other cytokines increase hepcidin synthesis, 

causing iron abstraction in macrophages. The resulting hypoferraemia limit the growth 

and pathogenicity of invading extracellular microbes and is an important means of host 

defence (Chung et al., 2009; Ganz, 2012). 

It was shown in previous chapters of this thesis that quercetin greatly affects iron 

metabolism in vivo, on both absorption and at the systemic level. However, it is hard to 

conclude whether quercetin or its metabolites induce the observed effects. In addition, 

there is no data in the literature about a possible link between iron metabolism and 

quercetin metabolites. Bearing in mind the extensive metabolism of quercetin in the 

intestine and its short half-life (Gee et al., 2004; Justino et al., 2004; Moon et al., 2008), 

it was hypothesized that quercetin metabolites could also be involved in affecting iron 

metabolism. In order to get preliminary data on the effect of quercetin and two chosen 

quercetin metabolites on macrophages regulated iron homeostasis, in vitro studies using 

THP1 cells were performed. THP1 cells are a human leukaemia monocytic cell line and 
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are an excellent in vitro model of human macrophages. In culture, these monocytes are a 

non-adherent cell type, but with the addition of PMA, the monocytes differentiate into 

macrophages and adhere to cell culture dishes. In the scope of this thesis effect of 

quercetin and two chosen quercetin metabolites on expression of hepcidin, FPN and 

inflammation related genes, such as IL–6, IL–1β, TNF–α, iNOS and COX–2, in THP1 

cells was studied. 
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7.2 Results 

The effect of polyphenols on gene expression of iron–related genes and inflammation-

related genes in THP1 cells were investigated. This study included quercetin and its 

metabolites that are identified in the serum of animals treated with quercetin orally and 

IP (see Chapter 3 and 5). 

THP1 cells were plated in 6-well plates for 24 hours and subsequently treated with 

PMA (100 nM) for a further 24 hours to promote differentiation of monocytes into 

macrophages. The PMA-containing medium was removed and replaced with serum-free 

medium for 24 hours before treatments with polyphenols. THP1 cells were treated with 

quercetin, quercetin-3-O-glucuronide and tamarixetin (30 µM) for 0, 5 and 18 hours. 

After treatment cells were subject to RNA isolation and gene expression analysis 

(hepcidin and FPN). 

Other batch of THP1 cells were treated with LPS in the presence or absence of 

quercetin, quercetin-3-O-glucuronide and tamarixetin (30 µM). Namely, LPS (500 

ng/mL) was added to cells 2 hours after polyphenols. Cells were treated with LPS for 18 

hours. This was followed by RNA isolation and quantitative-PCR to measure changes in 

mRNA expression of inflammation-related genes, such as IL-6, IL-1β, TNF-α, iNOS 

and COX-2. 

Generally, polyphenols induced a significant change in hepcidin mRNA levels. Among 

all the investigated polyphenols quercetin induced the greatest change in hepcidin 

mRNA levels in THP1 cells, with a 75-fold increase after 18 hours of treatment (see 

Figure 7–1). Quercetin–3–O–glucuronide, one of the main metabolites of quecetin, also 

induced an increase in the hepcidin mRNA level. However, that level was comparable 

with the hepcidin mRNA levels in control wells after 5 and 18 hours of treatment (see 
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Figure 7–1). The level of hepcidin mRNA fluctuated after tamarixetin treatment in 

THP1 cells. Firstly, after 5 hours it was significantly reduced (2.4-fold), and then 

significantly increased after 18 hours of treatment (1.4-fold) compared with untreated 

cells (see Figure 7–1). 

Furthermore, FPN mRNA oscillated during polyphenols’ treatment. In all treated wells 

mRNA FPN levels was significantly down-regulated after 5 hours (from 2- to 15-fold; 

see Figure 7–2). However, 18 hours after treatment quercetin and quercetin–3–O–

glucuronide induced a significant increase; while tamarixetin caused a significant 

decrease in FPN mRNA levels compared with the start of experiment (see Figure 7–2). 

 

Figure 7–1 Effect of polyphenols on hepcidin mRNA expression in THP1 cells 

THP1 cells were treated with polyphenols (30 μM) for 0, 5 and 18 hours. Instead of 

compounds DMSO was added in corresponding control wells. Changes in mRNA 

expression were measured by qPCR. Data normalised to GAPDH. Data are mean ± 

SEM; n=3; for the same treatment time groups with no common letters are significantly 

different from each other; for the same treatment groups with no common signs are 

significantly different from each other, (p<0.05). 
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Figure 7–2 Effect of polyphenols on FPN mRNA expression in THP1 cells 

THP1 cells were treated with polyphenols (30 μM) for 0, 5 and 18 hours. Instead of 

compounds DMSO was added in corresponding control wells. Changes in mRNA 

expression were measured by qPCR. Data normalised to GAPDH. Data are mean ± 

SEM; n=3; for the same treatment time groups with no common letters are significantly 

different from each other; for the same treatment groups with no common signs are 

significantly different from each other, (p<0.05). 

After LPS treatment, all the investigated inflammation-related genes were significantly 

up-regulated in differentiated THP1 cells. However, their levels were significantly 

altered with different polyphenol treatments. Namely, quercetin induced a significant 

down-regulation of IL–6, TNF–α, iNOS mRNA levels, while it induced a significant 

up-regulation of IL–1β and COX–2 mRNA levels in LPS stimulated THP1 cells (see 

Figure 7–3 to Figure 7–7). Furthermore, quercetin–3–O–glucuronide induced a 

significant down-regulation of TNF–α mRNA level, while it induced up-regulation of 

IL–6, IL–1β and iNOS mRNA levels in LPS stimulated THP1 cells (see Figure 7–3 to 

Figure 7–7). Tamarixetin induced a significant down-regulation only of IL–6 mRNA 

levels, while all other investigated mRNAlevels were significantly up-regulated (see 

Figure 7–3 to Figure 7–7). 
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Figure 7–3 Effect of polyphenols on IL–6 mRNA expression in THP1 cells 

THP1 cells were treated with LPS in the presence or absence of polyphenols (30 µM) 

for 18 hours. Instead of compounds DMSO was added in corresponding control wells. 

Changes in mRNA expression were measured by qPCR. Data normalised to GAPDH. 

Data are mean ± SEM; n=3; groups with no common letters are significantly different 

from each other (p<0.05). 

 

 

Figure 7–4 Effect of polyphenols on IL–1β mRNA expression in THP1 cells 

THP1 cells were treated with LPS in the presence or absence of polyphenols (30 µM) 

for 18 hours. Instead of compounds DMSO was added in corresponding control wells. 

Changes in mRNA expression were measured by qPCR. Data normalised to GAPDH. 

Data are mean ± SEM; n=3; groups with no common letters are significantly different 

from each other (p<0.05). 
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Figure 7–5 Effect of polyphenols on TNF–α mRNA expression in THP1 cells 

THP1 cells were treated with LPS in the presence or absence of polyphenols (30 µM) 

for 18 hours. Instead of compounds DMSO was added in corresponding control wells. 

Changes in mRNA expression were measured by qPCR. Data normalised to GAPDH. 

Data are mean ± SEM; n=3; groups with no common letters are significantly different 

from each other (p<0.05). 

 

 

Figure 7–6 Effect of polyphenols on iNOS mRNA expression in THP1 cells 

THP1 cells were treated with LPS in the presence or absence of polyphenols (30 µM) 

for 18 hours. Instead of compounds DMSO was added in corresponding control wells. 

Changes in mRNA expression were measured by qPCR. Data normalised to GAPDH. 

Data are mean ± SEM; n=3; groups with no common letters are significantly different 

from each other (p<0.05). 
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Figure 7–7 Effect of polyphenols on COX–2 mRNA expression in THP1 cells 

THP1 cells were treated with LPS in the presence or absence of polyphenols (30 µM) 

for 18 hours. Instead of compounds DMSO was added in corresponding control wells. 

Changes in mRNA expression were measured by qPCR. Data normalised to GAPDH. 

Data are mean ± SEM; n=3; groups with no common letters are significantly different 

from each other (p<0.05). 

7.3 Discussion 

In this chapter the effect of quercetin, quercetin–3–O–glucuronide and tamarixetin on 

expression of hepcidin, FPN and inflammation-related genes, such as IL–6, IL–1β, 

TNF–α, iNOS and COX–2, in THP1 cells was studied. 

Namely, all the investigated polyphenols induced significant changes in hepcidin and 

FPN mRNA levels. An increase in hepcidin mRNA levels after quercetin–3–O–

glucuronide and tamarixetin treatment was followed by a reduction in FPN mRNA 

levels. However, after quercetin treatment, when a significant change of hepcidin 

mRNA levels occurred (75-fold), FPN mRNA levels were also up-regulated. This result 

came as no surprise as similar results were observed in vivo in the spleen after quercetin 

treatment (Chapter 3 and 5). Specifically, the results from the in vivo studies suggested 

that hepcidin originating from spleen cannot cause internalization of FPN as hepatic 
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hepcidin does. The results from the in vitro studies with THP1 cells also support this 

hypothesis. Namely, it could be that hepatic hepcidin, mainly expressed by hepatocytes, 

is different from splenic hepcidin, mainly originating from macrophages. Nevertheless, 

the premise that hepcidin expresses different effects on FPN from different tissues is 

already known (Chaston et al., 2008). Moreover, it was known from before that 

macrophages express hepcidin and FPN (Nguyen, et al., 2006; Sow, et al., 2007), but 

this is the first result providing evidence that they can be affected by polyphenols. 

Twenty-five mg of iron per day from red blood cells is recycled by macrophages, which 

make them the major contributor to body iron turnover. Factors which can regulate this 

turnover might be important therapeutically for treating a number of iron-related 

disorders. In a view of this, results which indicate that polyphenols can affect iron-

related proteins in macrophages are of great importance. 

During infection and inflammation, hepcidin levels are increased as a host defense 

mechanism in order to reduce iron levels and make it non-available to invading 

microorganisms. It was proven in vivo that IL–6 has a stimulatory effect on hepcidin 

transcription and that it induces hypoferraemia during inflammation (Nemeth et al., 

2004; Kemna et al., 2005). Thus, it was worthwhile to make a parallel between proven 

hepcidin up-regulation by quercetin in vivo and polyphenols’ effect on inflammatory-

related genes in LPS-stimulated THP1 cells. In other words, the aim of this study was to 

investigate whether quercetin or its metabolites would induce expression of 

inflammatory-related genes that could be followed by an increase in hepcidin 

expression. Thus, expression of IL–6, IL–1β, TNF–α, iNOS and COX–2 mRNA in 

LPS-stimulated THP1 was followed after quercetin, quercetin–3–O–glucuronide and 

tamarixetin treatments. It was shown that all the investigated mRNAs were up-regulated 

at least after treatment of one of the investigated polyphenols. In general, tamarixetin- 

and quercetin–3–O–glucuronide-treatment caused greater up-regulation of the 
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investigated genes than quercetin. It is particularly interesting that IL–6 and IL–1β 

mRNA levels were greatly up-regulated by polyphenols’ treatment, because it is known 

that these cytokines up-regulate hepcidin expression (Lee et al., 2005). These findings 

indicate that polpyhenols could affect iron homeostasis by inducing inflammation. 

However, future studies should focus on an in-depth analysis of this issue in order to 

determine influence of polyphenols and their metabolites on iron homeostasis driven by 

inflammation in vivo. 

7.4 Conclusions 

To summarise, the results presented give a preliminary indication that quercetin and 

quercetin metabolites could have an effect on systemic iron metabolism by changing the 

expression of iron- and inflammation-related proteins in macrophages. Namely, it is 

shown that quercetin, quercetin–3–O–glucuronide and tamarixetin could affect 

expression of hepcidin and FPN mRNA levels in THP1 cells. Moreover, they induced 

expression of inflammatory-related genes in THP1 cells, which are proven to up-

regulate hepcidin expression (i.e. IL–6 and IL–1β). As macrophages play a significant 

role in iron homeostasis in health and during both infection and inflammation and iron-

related disorders, verified agents which could regulate iron metabolism in macrophages 

are of great importance. Thus, further research on how dietary polyphenols could 

interact with iron recycling and storage in macrophages is fully supported. 
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8. CONCLUSIONS 

8.1 General conclusions 

This thesis investigated the mechanisms underlying the effects of dietary polyphenols, 

particularly quercetin, which is one of the most dominant dietary polyphenol, on 

systemic iron regulation and iron absorption.  

From the reserach described in this thesis, it was concluded that: 

1. Oral administration of quercetin caused iron deficiency in rats, which was followed 

by increase in iron absorption rate and decrease in iron stores of liver and spleen. 

Specifically, oral quercetin treatment affected mRNA levels of duodenal DMT1, 

Dcytb and FPN. These results also indicated that oral quercetin has a great effect on 

iron absorption and a minor effect on systemic iron regulation. 

2. Polyphenols inhibit non-haem iron absorption in vivo by chelating it in duodenum. 

Specifically, by chelating iron quercetin prevents transepithelial non-haem iron 

transport across the enterocyte by increasing apical iron uptake and decreasing the 

basolateral iron release. 

3. IP administration of quercetin mainly affected systemic iron homeostasis, primary by 

a vast up-regulation of hepatic and kidney mRNA hepcidin levels and decreased 

intracellular iron pools. 

4. Different polyphenols and quercetin metabolites display different effects on the 

expression of iron-related genes in liver in vitro compared with quercetin. 
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5. Polyphenols express a significant effect on the expression of iron- and inflammation-

related genes in macrophages in vitro. 

8.2 Future work 

This thesis has investigated, discovered and proposed mechanisms of the action of 

polpyhenols, particularly quercetin, on iron metabolism in a well established in vivo 

model. In future, similar studies need to be carried out in humans to establish any 

possible benefits for those at risk of developing iron-related disorders. 

In this study, it has been shown that polyphenols, particularly quercetin, greatly affects 

mRNA levels of genes essential for iron absorption in the duodenum and systemic iron 

regulation. In further studies, western blotting of iron-related proteins in examined 

tissues should be performed in order to investigate changes in the examined proteins 

and thus confirm the proposed effects. 

It this thesis it was proven that polyphenols inhibit intestinal absorption of non-haem 

iron. However, it is still unknown how polyphenols affect haem iron absorption. Thus, 

further in vivo research should be done in order to investigate whether absorption of iron 

from a haem source could be affected by dietary polyphenols. 

In the present study it was proven that quercetin decreases the iron content of liver and 

spleen in vivo. Liver and spleen are the main iron storage organs, where during iron 

overload diseases a great increase in iron content occurs. Future research should 

confirm this beneficial effect of quercetin and other polyphenols in an iron overloaded 

mice model. 
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In this thesis it is observed that quercetin induces a great up-regulation of hepcidin in 

liver and kidney. However, the mechanism underlying this effect is not fully 

understood. In future, it should be investigated by which signalling pathway 

polyphenols, particularly quercetin, induce hepcidin up-regulation, with particular 

attention to the Nrf2–ARE and BMP6/SMAD4 signalling pathways. 

The ultimate goals of this kind of research are: 

 to examine the effects of dietary polyphenols on iron absorption and to establish 

a particular diet which will enhance iron absorption for patients affected with 

anaemia or inhibit iron absorption for patients diagnosed with iron-overload 

diseases; 

 to examine the therapeutic effects of polyphenols as chelato therapeutics for 

iron-redistribution therapy in human studies, focusing on patients with iron-

overload diseases. 
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