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Joint Channel and Doppler Offset Estimation in
Dynamic Cooperative Relay Networks

Ido Nevat, Gareth W. Peters, Arnaud Doucet, and Jinhong Yuan, Senior Member, IEEE

Abstract—We develop a new and efficient algorithm to solve the
problem of joint channel and Doppler offset estimation in time-
varying cooperative wireless relay networks. We first formulate
the problem as a Bayesian dynamic nonlinear state space model,
then develop an algorithm, which is based on particle adaptive
marginal Markov chain Monte Carlo, method to jointly estimate
the time-varying channels and static Doppler offsets. We perform
detailed complexity analysis of the proposed algorithm and show
that it is very efficient and requires moderate computational
complexity. In addition, we develop a new version of the recursive
marginal Cramér–Rao lower bound and derive expressions for
the achievable mean-square error. Simulation results demonstrate
that the proposed algorithm outperforms the state-of-the-art algo-
rithms and performs close to the Cramér–Rao lower bound.

Index Terms—Particle filter, MCMC, channel estimation,
Doppler offset estimation, cooperative relay networks.

I. INTRODUCTION

R ELAY based systems, first introduced by van der Meulen
[1], have recently received considerable attention due to

their potential in wireless applications. Relaying techniques
provide spatial diversity, improve energy efficiency, and re-
duce the interference level of wireless channels [2], [3]. To
utilize such systems, an accurate channel state information
(CSI) is required at the destination. When the communicating
terminals and relays are mobile, the wireless channels form a
cascade of mobile-to-mobile channels, and change rapidly with
time. These wireless channels can be accurately modeled as
a dynamic time-varying system (State-Space model) [4]–[6].
In these practical scenarios, the problem is not only to accu-
rately estimate the time varying channels but also the unknown
Doppler offsets [5], [7], [8]. This problem is refereed to as joint
channel estimation and Doppler offset estimation and is the
focus of this paper.

A few partial solutions have been proposed in the literature
and are based on various simplifying assumptions: a state-space
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model was proposed in [4] where a sub-optimal algorithm,
based on linear estimator (i.e. Kalman filter) was developed.
However, the authors assumed that the Doppler offset is known.
They reported that the relay speed has a significant impact
on the BER performance, and it is important to estimate the
Doppler offset in cases where it is unknown a-priori. In [5], [8],
the problem of joint channel estimation and Doppler offset
estimation was considered. However, the authors assumed that
the speed of the mobile terminals is known, allowing the for-
mulation of the problem as a non-linear state-space model and
solving via Sequential Monte Carlo (SMC) methods. The prob-
lem of data detection for OFDM systems with carrier frequency
offset over unknown doubly selective channels was addressed
in [9] where the authors utilized an Expectation-Maximization
(EM) type approach. In [10], an algorithm for data detection
utilizing superimposed training symbols was developed utiliz-
ing a linear minimum mean square error (LMMSE) criterion.

In contrast to [4], [5], [8], we solve the practical problem of
joint channel and Doppler offset estimation for the case that
the speed of the mobile terminals is unknown. This scenario
is of importance since in practice the destination node has no
knowledge of the speeds at which the source and the relays are
moving. This means that the Doppler offsets are unknown to
the destination and need to be jointly estimated along with the
channels coefficients. We address this problem by developing
a Bayesian state-space model which incorporates the unknown
Doppler offsets.

In this paper we develop a new and efficient algorithm to
perform joint channel estimation (tracking) and Doppler offset
estimation. The algorithm we develop is based on advanced
Monte Carlo techniques which combine the strength of non-
linear filtering frameworks, such as SMC, with adaptive ver-
sions of Markov chain Monte Carlo (MCMC) techniques [11].

In addition, we develop a novel Bayesian model formulation,
for which we study the properties and demonstrate efficiently
how to make inference for such a state space model structure. In
this regard, we perform detailed computational complexity and
make a fair comparison between the algorithms we develop. We
asses the performance of our algorithm by developing a lower
bound on the achievable Mean Square Error (MSE) via the
dynamic CRLB. We perform extensive simulations and show
that the proposed algorithm performs close to the lower bound.

Notation: random variables are denoted by upper case letters
and their realizations by lower case letters; bold face to denote
vectors and non-bold for scalars; super script will be used to
refer to the index for a particular relay in the network; sub-script
will denote discrete time, where h1:T denotes h1, . . . , hT ; and
in the sampling methodology combining MCMC and particle
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Fig. 1. System model of the relay network with a single source and L relays,
communicating to the destination.

filtering we use the following notation [·](j, i) to denote the j-
th state of the Markov chain for the i-th particle in the particle
filter. In addition, we denote the proposed Markov chain state
by [·]∗(j, i), and δ(·) denotes the delta of Dirac.

II. SYSTEM DESCRIPTION

We consider the case where one mobile station is transmitting
to a Base Station (BS) via L relays, which may be mobile
or stationary, see Fig. 1. We consider a training symbol based
system [5], thus a data detection is not considered in this paper.
We consider frequency-flat fading channels, and the extension
to multi-path channels is straight forward, for example via the
use of OFDM modulation.

A. Relay Network Model

i. Consider a wireless relay network with one mobile source
node, transmitting symbols in frames of length T to a BS
via L mobile relays.

ii. We consider a half duplex transmission model in which
the data for a given frame are transmitted via a two step
procedure. In the first step, the source node broadcasts
a frame to all the relay nodes. In the second step, the
relay nodes transmit the processed frame, termed the relay
signals, to the destination node in orthogonal fashion, i.e.
non-interfering channels via time division or frequency
division multiplex, see for example [12], [13].

iii. The time-varying channels follow a Gauss-Markov
model [14], [15]. The l-th relay channel is modeled as
a two stage latent random process, where H

(l)
n is the

wireless channel between the source and the l-th relay, and
G

(l)
n is the wireless channel between the l-th relay and the

destination. These channels can be expressed at time n as:

H(l)
n =α(l)H

(l)
n−1 +

√
1−
(
α(l)
)2
Υ(l)

n

G(l)
n =β(l)G

(l)
n−1 +

√
1−
(
β(l)
)2
Ω(l)

n ,

where Υ
(l)
n ∼ CN (0, 1), Ω(l)

n ∼ CN (0, 1).

iv. The velocities of both the user and the relays are random
unknown quantities and constant over a frame and fol-
low a uniform distribution VM ∼ U [0, vmax] and V

(l)
R ∼

U [0, vmax], respectively, where vmax is a practical upper
bound.

v. The channel coefficients α(l) and β(l) are modeled accord-
ing to Jakes’ model as [6]

α(l) = J0

(
2π

VMfc
c

Ts

)
J0

(
2π

V
(l)
R fc
c

Ts

)

= J0

(
2πF

(l)
M→RTs

)
J0

(
2πF

(l)
R→DTs

)
,

β(l) = J0

(
2π

VMfc
c

Ts

)
= J0

(
2πF

(l)
M→RTs

)
, (1)

where J0 is the zeroth-order Bessel function of the first
kind, fc is the carrier frequency, c is the speed of light
and Ts is the sampling period (e.g. symbol duration, frame
length etc.) [16], [17].

vi. The received signal at the l-th relay is a random variable
given by

R(l)
n = snH

(l)
n +W (l)

n , l ∈ {1, . . . , L},

where at time n, H(l)
n is the channel coefficient between

the transmitter and the l-th relay, sn is the transmitted pilot
symbol and W

(l)
n is the noise realization associated with

the relay receiver.
vii. The received signals at the destination is given by

Y (l)
n = f (l)

(
R(l)

n

)
G(l)

n + V (l)
n , l ∈ {1, . . . , L},

where at time n, G(l)
n is the channel coefficient between

the l-th relay and the receiver. The model we develop
is general enough to allow for many different possible
relay functions, in the form of f (l)(R(l)) : R �→ R, for any
continuous d-differentiable functions f (l)(R(l)) ∈ C

d[R]
on the real line. As an example consider a relay function
given by the popular Amplify-and-Forward with constant
gain [18], [19], with function

f (l)
(
R(l)
)
=

√
1

σ2
h + σ2

g +
σ2
v

E[|sn|2]
R(l)

n

where E[|sn|2] is the average symbols power.
viii. All received signals are corrupted by i.i.d. zero-mean

additive white complex Gaussian noise (AWGN). At the
l-th relay at the n-th transmitted symbol is denoted by
W

(l)
n ∼ CN (0, σ2

w). Then at the receiver this is denoted
by V

(l)
n ∼ CN (0, σ2

v).
Based on the aforementioned assumptions, the following

state-space model expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
H

(l)
n = α(l)H

(l)
n−1 +

√
1−
(
α(l)
)2
Υ

(l)
n ,

G
(l)
n = β(l)G

(l)
n−1 +

√
1−
(
β(l)
)2
Ω

(l)
n ,

Y
(l)
n = f (l)

(
snH

(l)
n +W

(l)
n

)
G

(l)
n + V

(l)
n .



6572 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 12, DECEMBER 2014

B. Channel and Doppler Offset Estimation Formulation

To complete the problem formulation, we need to derive the
distribution of transformed random variables J0(2πF

(l)
M→RTs)

and J0(2πF
(l)
R→DTs) in (1). This is presented in the following

Lemma, where we set vmax = c
πfcTs

, to accommodate for a
wide range of velocities, carrier frequencies and symbol rates.

Lemma 1: Under a uniform prior distribution of the mobile
velocity, VM ∼ U [0, vmax], its Doppler offset can be approxi-
mated to follow a Beta distribution as follows:

J0

(
2π

VMfc
c

Ts

)
∼ Beta(1, 1/2).

Proof: We expand J0

(
2π VMfc

c Ts

)
via Taylor Series ex-

pansion around 0:

J0

(
2πVMfcTs

c

)
=

∞∑
m=0

(−1)m

m!Γ(m+ 1)

(
1

2

2πVMfcTs

c

)2m

≈
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m=0

(−1)m

m!Γ(m+ 1)

(
πVMfcTs

c

)2m

(K=1)
≈ 1−

(
πVMfcTs

c

)2

.

Next, we note that
(

πVMfcTs

c

)
∼ U [0, 1], and therefore, by

utilizing the power function distribution, we obtain that(
πVMfcTs

c

)2
∼ Beta(1/2, 1). Then, by using the mirror-image

symmetry of the Beta distribution, we obtain the final result. �
We can now express the posterior distribution of the wireless

channels and the Doppler offsets as, presented in (2), shown at
the bottom of the page, where

α(1:L), β(1:L), g
(1:L)
1:T , h

(1:L)
1:T , y

(l:L)
1:T

Δ
= α,β,g1:T ,h1:T ,y1:T .

Next, based on the marginal posterior in (2), we define the
quantities of interest, namely the MAP and MMSE estimators:(
α̂MAP, β̂

MAP
, ĥMAP

1:T , ĝMAP
1:T

)
= argmax

α,β,g1:T ,h1:T

p(α,β,g1:T ,h1:T |y1:T ).(
α̂MMSE, β̂

MMSE
, ĥMMSE

1:T , ĝMMSE
1:T

)
=E[α,β,g1:T ,h1:T |y1:T ]

=

∫
p(α,β,g1:T ,h1:T |y1:T)αβ g1:T h1:T dα dβ dh1:T dg1:T.

(3)

The posterior model in (2) is very high dimensional with
L(3T + 2) parameters and highly nonlinear. We now show that
the model admits a block factorization structure, which means
that the particle filters may be run as two filters separately i.e.
independently and therefore can exploit a parallel implementa-
tion design.

Lemma 2: The posterior distribution in (2) factorizes accord-
ing to the following independence structure

p(α,β,g1:T ,h1:T |y1:T ) =

L∏
l=1

p
(
α(l), β(l), g

(l)
1:T , h

(l)
1:T |y

(l)
1:T

)
,

with respect to the number of parallel relay transmission paths.
We will take advantage of Lemma 1 in the design of the
PMCMC algorithm to reduce the variance of the incremental
importance weights, leading to an increased efficiency of the al-
gorithm we develop. Note, the incremental importance weights
are the importance sampling weights calculated at each iteration
or stage of the Sequential Monte Carlo filter.

C. Deriving the Likelihood Function Via Augmented Bayesian
Posterior Model

In order to obtain (3), we need to derive the likelihood

function in (2), p
(
y
(l)
n |α(l), β(l), g

(l)
n , h

(l)
n

)
. To achieve that we

p(α,β,g1:T ,h1:T |y1:T )
∝ p(y1:T |α,β,g1:T ,h1:T )p(g1:T ,h1:T |α,β)p(α,β)

=

L∏
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[
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n

)
p
(
w(l)

n

)
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n p
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write the marginal distribution at the l-th relay as

p
R

(l)
n

(
r|sn, g(l)n , h(l)

n

)
= p
(
snh

(l)
n + w(l)

n |sn, h(l)
n , g(l)n

)
= CN

(
snh

(l)
n , σ2

w

)
.

Then, finding the distribution of the random variable after

the relay function is applied i.e. the distribution of f̃
(l)
n

Δ
=

f
(
r
(l)
n

)
G

(l)
n given sn, h

(l)
n , g

(l)
n , involves the following change

of variable formula

p
(
f̃ (l)
n |sn, h(l)

n , g(l)n

)
=p

R
(l)
n

((
f̃ (l)
n

)−1

|sn, h(l)
n , g(l)n

)∣∣∣∣∣∂f̃ (l)

∂r
(l)
n

∣∣∣∣∣
−1

,

which can not always be written down analytically for an
arbitrary relay function. The second complication is that even

if f̃ (l)
n = f

(
r
(l)
n

)
G

(l)
n is known, one must then solve the fol-

lowing convolution to obtain the likelihood:

p
(
y(l)n |sn, g(l)n , h(l)

n

)
= p
(
f̃ (l)
n |sn, g(l)n , h(l)

n

)
⊗ p

V
(l)
n

=

∫ ∞

−∞
p
(
f̃
(
z|sn, g(l)n , h(l)

n

))
p
V

(l)
n

(
y(l)n − z

)
dz,

where ⊗ denotes the convolution operation. Typically this will
be intractable to evaluate pointwise.

We solve this problem via augmented Bayesian posterior
p(α,β,g1:T ,h1:T ,w1:T |y1:T ), containing auxiliary variables
W1:T which we marginalize out numerically in our sampling
algorithm to obtain the posterior corresponding to (2). Under
the augmented model, the likelihood function can now be
expressed as

y(l)n |sn, g(l)n , h(l)
n , w(l)

n ∼ CN
(
f (l)
(
snh

(l)
n + w(l)

n

)
g(l)n , σ2

v

)
.

III. JOINT CHANNEL AND DOPPLER ESTIMATION VIA

ADAPTIVE PARTICLE MCMC

In this section we develop a novel algorithm which is based
on adaptive Particle MCMC (PMCMC) methodology [20]. This
will provide a very efficient algorithm to find the MAP and
MMSE estimates in (3). In particular, we develop the Marginal
Metropolis-Hastings within Rao–Blackwellized particle filter
algorithm. Our algorithm provides very efficient sampling
mechanism from the full conditional posterior in (2) by oper-
ating on the factorisation of the joint space (α,β,g1:T ,h1:T ).
The key advantage of our algorithm is that it allows us to
jointly update the entire set of posterior parameters at each
iteration and only requires calculation of the marginal accep-
tance probability in the Metropolis-Hastings (MH) algorithm.
We achieve this by embedding a particle filter estimate of
the optimal proposal distribution for the latent process into
the MCMC algorithm. This allows the Markov chain to mix
efficiently in the high dimensional posterior parameter space
due to the particle filter approximation of the optimal proposal
distribution in the MCMC algorithm, thereby allowing high-
dimensional parameter block updates even in the presence of

strong posterior parameter dependence. To develop the algo-
rithm we begin by writing the MH acceptance probability for
the augmented model (α,β,h1:T ,g1:T ,w1:T ):

A ([α,β,h1:T ,g1:T ,w1:T ]
∗; [α,β,h1:T ,g1:T ,w1:T ](j))

= min

(
1,

p ([h1:T ,g1:T ,w1:T ,α,β]∗|y1:T )

p ([h1:T ,g1:T ,w1:T ,α,β](j)|y1:T )

×q ([h1:T ,g1:T ,w1:T ,α,β](j); [h1:T ,g1:T ,w1:T ,α,β]∗)

q ([h1:T ,g1:T ,w1:T ,α,β]∗; [h1:T ,g1:T ,w1:T ,α,β](j))

)
(4)

Next we specify the Markov transition kernel, given by
q([h1:T , g1:T , w1:T , α, β](j); [h1:T , g1:T , w1:T , α, β]∗). We
propose a particular choice of proposal that will provide a
significant dimension reduction in evaluation of the acceptance
probability. Our choice to move from a state at iteration j to a
new state at iteration (j + 1) is split into two components:

q ([h1:T ,g1:T ,w1:T ,α,β]∗; [h1:T ,g1:T ,w1:T ,α,β](j))

= p ([h1:T ,g1:T ,w1:T ]
∗|[α,β]∗,y1:T ) q ([α,β]∗|[α,β](j)) .

(5)

The first component involves the sampling of a trajectory
for g1:T ,h1:T ,w1:T , while the second component involves a
Markov transition kernel to sample the static parameters α,β.
Plugging (5) into the acceptance probability in (4) results in
the dimension reduction in the acceptance probability over
the latent path space. This solution involves marginalization
over the path space g1:T ,h1:T ,w1:T to obtain the marginal
likelihood required to evaluate the dimension reduced marginal
MH acceptance probability. In other words, the acceptance
probability is evaluated only on the parameter space and not
on the full parameter space and the latent space.

To utilize this MH algorithm, we need to solve the following
two problems:

Problem I: The marginal likelihood p(y1:T |α,β) which is
used in the evaluation of (4) can not be obtained analytically.
This is due to the fact that marginalization of the joint likelihood
over the path space involves the following integration

p(y1:T |α,β)=

T∏
n=1

p(yn|y1:n−1,α,β)

=

∫ [ T∏
n=1

p(yn|hn,gn,wn,α,β)

×p(hn,gn,wn|y1:n−1,α,β)

]
dh1:T dg1:T dw1:T

which can not be performed analytically.
Problem II: We need to evaluate and sample from the distri-

bution of the latent path space p(h1:T ,g1:T ,w1:T |y1:T ,α,β).
This can be achieved by constructing the sequence of
distributions recursively, over the path space given by {p(h1,
g1,w1|y1, [α,β](j)), p(h1:2,g1:2,w1:2|y1:2, [α,β](j)), . . . ,
p(h1:T ,g1:T ,w1:T |y1:T , [α,β](j))} via a two step filter
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recursion involving the Chapman-Kolmogorov equation:
Stage I (Prediction):

p (hn,gn,wn|y1:n−1, [α,β](j))

=

∫
p (hn,gn,wn|hn−1,gn−1,wn−1, [α,β](j))

×p(hn−1,gn−1,wn−1|y1:n−1, [α,β](j))dhn−1dgn−1dwn−1.

Stage II (Update):

p (hn,gn,wn|y1:n, [α,β](j))

=
p(yn|hn,gn,wn,[α,β](j)) p (hn,gn,wn|y1:n−1, [α,β](j))

p (yn|y1:n−1, [α,β](j))

which can not be performed analytically.
We now develop the solutions to Problem I and Problem II.

A. Solution for Problem I and Problem II

We solve Problem I and Problem II by decomposing the
Markov transition kernel according to (4). We approximate the
first component in (4) via a Rao–Blackwellized particle filter
and the second component in (4) is constructed as an adaptive
MH Markov transition kernel. These solutions detailed below
provide the particle filter based estimates which are utilized in
the PMCMC algorithm, to approximate the acceptance proba-
bility of the ideal choice, given in (4).

p̂ (h1:T ,g1:T ,w1:T |y1:T , [α,β]∗(j + 1))

=

N∑
i=1

[Ξ1:T ](j, i)δ[h1:T ,g1:T ,w1:T ](j,i)(h1:T ,g1:T ,w1:T )

p̂ (y1:T |[α,β]∗(j + 1)) =

T∏
n=1

(
1

N

N∑
i=1

[ξn](j, i)

)
, (6)

where [Ξ1:T ](j, i) and [ξn](j, i) are the normalized importance
weight on the path space and the incremental importance
weight at time n, respectively, for the i-th particle at the j-th
iteration.

We now present how to construct the Markov transition
kernel in (5) for the PMCMC algorithm. We first present the
proposal for the latent states (Rao–Blackwellized particle filter)
followed by the proposal for the static parameters (adaptive
MCMC).

Obtaining the approximation given in (6) involves a
Rao–Blackwellized particle filter detailed below.

1) Particle Filter for p(h1:T ,g1:T ,w1:T |y1:T ,α,β): We
develop a Rao–Blackwellized version of SMC to recursively
approximate p(h1:T ,g1:T ,w1:T |y1:T ,α,β). The proposal ker-
nel can be decomposed as

p (g1:T ,h1:T ,w1:T |y1:T , [α,β](j))

= p (g1:T |h1:T ,w1:T ,y1:T , [α,β](j))︸ ︷︷ ︸
Kalman filter

× p (h1:T ,w1:T |y1:T , [α,β](j))︸ ︷︷ ︸
Particle filter

, (7)

which involves a particle filter with a conditional Rao–
Blackwellization achieved via a Kalman filter recursion
conditional on each particles state realization. The Rao–
Blackwellized particle filter estimate of (7) is given by the
importance weighted particle approximation

p̂ (h1:T ,g1:T ,w1:T |y1:T , [α,β](j))

=

N∑
i=1

[Ξ̃](j, i)p (g1:T |[h1:T ,w1:T ,α,β](j, i),y1:T ) . (8)

We can now perform a Kalman filter recursion to obtain
p(g1:T |[h1:T ,w1:T ,α,β](j, i),y1:T ) for each particle, which
is optimal for this conditionally linear Gaussian state structure.
The recursive construction of the SIR particle filter under
Rao–Blackwellized scheme estimate in (8) therefore proceeds
according to the following recursive steps involving unnormal-
ized importance weights, given by

[Ξ̃n](j, i) ∝ [Ξn−1](j, i)p(yn|y1:n−1, [h1:n,w1:n,α,β](j, i)),

where the incremental importance weight is given by the
marginal evidence at time n, p(yn|y1:n−1, [h1:n,w1:n,α,
β](j, i)) and it is directly obtained as an output in each stage
of the Kalman filter. The conditional Kalman filter recursion at
time n, for the i-th particle and the j-th marginal Metropolis
proposed static parameters involves obtaining recursively the
sufficient statistics for the conditional mean (MMSE) and co-
variance matrix of p(gt|[h1:t,w1:t,α,β](j, i),y1:T ) according
to the following Kalman filter recursion:

ỹ = yn − f (sn[hn](j, i)) [μn|n−1](j, i)

S=f(sn[hn](j, i))[μn|n−1](j, i)[Σn|n−1](j, i)f(sn[hn](j, i))

× [μn|n−1](j, i) + σ2
wI

K = [Σn|n−1](j, i)f (sn[hn](j, i)) [μn|n−1](j, i)
�S−1

[μn|n](j, i) = [μn−1|n−1](j, i) +Kỹ

[Σn|n](j, i)=
(
I−Kf(sn[hn](j, i))[μn|n−1](j, i)

)
[Σn|n−1](j, i).

2) Adaptive MCMC for Static Parameters α, β: We now
present the proposal kernel, q([α,β]∗|[α,β](j)), for the static
parameters in (5). The static parameters are updated via an
adaptive MH proposal comprised of a mixture of Gaussians.
Adaptive MCMC attempts to improve the mixing rate by
automatically learning better parameter values of the MCMC
algorithm while it is running. In particular, one of the mixture
components has a covariance structure which is adaptively
learnt on-line. The mixture proposal distribution for parameters
[α,β] at iteration j of the Markov chain is given by,

q ([α,β](j); [α,β](j + 1))

= w1N

(
[α,β](j + 1); [α,β](j),

(2.38)2

d
Σj

)
+ (1− w1)N

(
[α,β](j + 1); [α,β](j),

0.12

d
I2L,2L

)
,

(9)

where I2L,2L is the identity matrix of size 2L. Here, Σj is
the current empirical estimate of the covariance between the
parameters of α,β estimated using samples from the PMCMC
chain up to time j, and w1 is a mixture proposals weight which
we set according to the recommendation of [21] and are based
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on optimality conditions presented in [22]. The PMCMC joint
channel and Doppler offset estimation algorithm is presented in
Algorithm 1.

Algorithm 1 Joint Channel and Doppler Estimation via
Particle Adaptive MCMC
1: Initialize [α,β,h1:T ,g1:T ,w1:T ](1) by sampling each

value from the corresponding priors.
2: for j = 2, . . . , J do

Sample [α,β]∗(j + 1) ∼ q([α,β](j); [α,β](j + 1))
according to (9):

3: Sample a realization u1 from U1 ∼ U [0, 1]
4: if u1 ≥ w1 then sample [α,β](j + 1) then

Sample [α,β](j + 1) from the adaptive compo-
nent as follows:

5: Estimate Σj , the empirical covariance of α, β,
using samples {[α,β](i)}i=1:j .

6: Sample

[α,β](j + 1) ∼ N

(
α,β; [α,β](j),

2.382

d
Σj

)
;

7: else
Sample [α,β](j + 1) from the non-adaptive com-
ponent as follows:

8: Sample

[α,β](j + 1) ∼ N

(
α,β; [α,β](j),

0.12

d
Id,d

)
9: end if

10: Run the Rao–Blackwellized particle filter with N par-
ticles to obtain:

p̂ (h1:T ,g1:T ,w1:T |y1:T , [α,β]∗(j + 1))

p̂ (y1:T |[α,β]∗(j + 1))

11: Compute the MH acceptance probability in (4).
12: Sample a realization u1 from U1 ∼ U [0, 1].
13: if

A ([α,β,h1:T ,g1:T ,w1:T ](j)

[α,β,h1:T ,g1:T ,w1:T ]
∗(j + 1)) > u1

then
14:

[α,β,h1:T ,g1:T ,w1:T ](j + 1)

= [α,β,h1:T ,g1:T ,w1:T ]
∗(j + 1)

15: else
16:

[α,β,h1:T ,g1:T ,w1:T ](j + 1)

= [α,β,h1:T ,g1:T ,w1:T ](j)

17: end if
18: end for

IV. CRAMÉR–RAO LOWER BOUND FOR CHANNEL

COEFFICIENTS AND DOPPLER OFFSETS

In this section we derive the Bayesian Cramér–Rao Lower
Bound (BCRLB) for the channel coefficients and the Doppler
offset parameters.

A. Bayesian CRLB of Channel Coefficients g1:T ,h1:T

The BCRLB provides a lower bound on the MSE matrix for
estimation of the path space parameters which correspond in

our model to the estimation of the latent process states x1:T
Δ
=

g1:T ,h1:T ,w1:T . We denote the Fisher Information Matrix
(FIM), used in the CRLB, on the path space by [F1:T (x1:T )](j)
and marginally by [Fn(xn)](j) for time n in the path space,
conditional on the proposed static parameters at iteration j of
the algorithm. Assuming regularity holds for the probability
density functions, the BCRLB inequality states that the MSE
of any estimator is bounded as:[
F−1
n (Xn)

]
(j)≤Ep(xn,y1:n|α,β)

[
(Xn−X̂n)(Xn−X̂n)

H
]
.

This formulation assumes prior knowledge of the static param-
eters α and β. In the following Lemma we develop a modified
version of the BCRLB by marginalizing numerically over the
static parameters.

Lemma 3: The Bayesian CRLB for the channel coefficients,
h and g, is expressed as

Ep(xn,y1:n)

[
(Xn − X̂n)(Xn − X̂n)

H
]

� 1

J

J∑
j=1

Ep(xn,y1:n|α,β)

{
[Xn−X̂n][Xn−X̂n]

H |[α,β](j)
}
,

where xn
Δ
= [gn,hn,wn].

Proof:

Ep(xn,y1:n)

[
(Xn − X̂n)(Xn − X̂n)

H
]

=

∫ {
[Xn − X̂n][Xn − X̂n]

H
}

× p(xn,y1:n,α,β)dxndy1:ndαdβ

=

∫
Ep(xn,y1:n|α,β)

{
[Xn−X̂n][Xn−X̂n]

H|α,β
}
p(α,β)dαdβ

≈ 1

J

J∑
j=1

Ep(xn,y1:n|α,β)

{
[Xn−X̂n][Xn−X̂n]

H |[α,β](j)
}
.

�
Next, we develop a recursive algorithm to perform the evalu-

ation of the BCRLB for the expectation Ep(xn,y1:n|α,β){[Xn −
X̂n][Xn − X̂n]

H |[α, β](j)}. This is based on the representa-
tion in Lemma 3 which can be combined with the BCRLB
recursive expression for the channel coefficients given in
Theorem 1.

Theorem 1: The Bayesian CRLB for the channel coeffi-
cients, h and g is given in (10), shown at the bottom of the
next page.

Proof: See Appendix A. �
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B. Bayesian CRLB of Doppler Offset Parameters α, β

We now develop a numerical solution to obtain the CRLB for
the Doppler offset parameters. The expression for the FIM for
α, β is:

∇∇θ

∫
p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

where θ = [α, β]. To begin, we obtain an unbiased particle
estimate of

∫
p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T in each stage of

the PMCMC algorithm. This results in a set of J evalua-
tions of this marginal likelihood from the PMCMC algorithm
giving {p̂(y1:T |[θ](j))}j=1:J according to the unbiased es-
timator described previously. We then obtain the following
expression:

p(y1:T |θ) =
∫

p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

≈ p̂(y1:T |θ)

=

T∏
n=1

(
1

N

N∑
i=1

[ξn](j, i)

)
, (12)

with incremental particle weight [xin](j, i) given at iteration
j of the PMCMC for the i-th particle a function of parameter
θ. The estimate in (12) is unbiased as studied in [23] and
furthermore, according to [23, Proposition 9.4.1, page 301] the
following central limit theorem holds,

√
N

(
p̂(y1:T |θ)
p(y1:T |θ)

− 1

)
d→ N

(
0, γ2(θ)

)
for a γ2(θ) which is problem specific and finite. Therefore, we
can confidently utilize these estimates {p̂(y1:T |[θ](j))}j=1:J

from each iteration of the PMCMC algorithm to construct a

continuous and differentiable kernel density estimator given
generically for all θ by

p̂K(y1:T |θ) =
1

Jh

J∑
j=1

K

(
θ − [θ](j)

h

)
,

where K(·) is the kernel which is a symmetric but not neces-
sarily positive function that integrates to one and h > 0 is a
smoothing parameter called the bandwidth. Given the smooth
kernel density estimator which can be differentiated to obtain
the Hessian around the mode and obtain the CRLB for the
Doppler offset parameters:

∇∇θ

∫
p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

≈ ∇∇θ p̂K(y1:T |θ)|θ=mode(θ) . (13)

V. ALGORITHMIC COMPUTATIONAL

COMPLEXITY ANALYSIS

We now derive the computational complexity comparison
between each of the algorithms. The computational cost of each
of these algorithms is split into three parts: the first cost in-
volves constructing and sampling from the proposal; the second
significant computational cost comes from the evaluation of
the acceptance probability for the proposed new Markov chain
state; and the third is related to the mixing rate of the overall
MCMC algorithm as affected by the length of the Markov chain
required to obtain estimators of a desired accuracy. We define
the following building blocks for a single MCMC iteration
and their associated complexity, measured by O(·) as order of
magnitude and Cm and Ca are the complex multiplications and
complex additions, respectively:

1) Exact sampling of a random variable ≈ O(1).
2) Likelihood evaluation of

T∏
n=1

L∏
l=1

p
(
y(l)n |α(l), β(l), g(l)n , h(l)

n

)
≈ TL(Cm + Ca) +O(1).

[
Jn(X̂n)

]
(j)

=

⎡⎢⎣
1

1−[β](j)2 0 0

0 1
1−[α](j)2 0

0 0 1
σ2
w

⎤⎥⎦

− 1

σ2
v

⎡⎢⎢⎢⎣
f2(rn) gn

(
f(rn)

∂f(rn)
∂hn

+ ∂f2(rn)
∂hn

)
gn

(
f(rn)

∂f(rn)
∂wn

+ ∂f2(rn)
∂wn

)
gn

(
f(rn)

∂f(rn)
∂hn

+ ∂f2(rn)
∂hn

)
−g2n

(
∂f(rn)
∂hn

)2
∂2f(rn)
∂h2

n
g2n

∂f(rn)
∂hn

∂f(rn)
∂wn

gnf(rn)
∂f(rn)
∂wn

g2n
∂f(rn)
∂wn

∂f(rn)
∂hn

g2n

(
∂f(rn)
∂wn

)2
⎤⎥⎥⎥⎦

−

⎡⎣ [β](j)
1−[β](j)2 0 0

0 [α](j)
1−[α](j)2 0

0 0 0

⎤⎦
⎛⎜⎝[Jn−1(X̂n−1)

]
(j) +

⎡⎢⎣
[β](j)2

1−[β](j)2 0 0

0 [α]2(j)
1−[α](j)2 0

0 0 0

⎤⎥⎦
⎞⎟⎠

−1 ⎡⎣ [β](j)
1−[β](j)2 0 0

0 [α](j)
1−[α](j)2 0

0 0 0

⎤⎦
(10)



NEVAT et al.: JOINT CHANNEL AND DOPPLER OFFSET ESTIMATION IN COOPERATIVE RELAY NETWORKS 6577

3) Prior evaluations of

T∏
n=1

L∏
l=1

p
(
h(l)
n |h(l)

n−1

)
p
(
g(l)n |g(l)n−1

)
p
(
g
(l)
1

)
p
(
h
(l)
1

)
×p
(
α(l)
)
p
(
β(l)
)
≈ 6TL(Cm + Ca) +O(1).

Based on these building blocks we estimate the overall
complexity of the proposed algorithms as follows.

A. Computational Complexity of Proposed PMCMC
Algorithm

1) Adaptive MCMC Component in (9): Complexity (2L×
2L+ 2L)O(1).

2) Rao–Blackwellized SIR Filter Component (7):
• Kalman filter component: TLO(1).
• SIR filter component: 2NLTO(1).
• Evaluation of marginal likelihood: NTO(1).
• Sampling SIR filter path space proposal: NO(1).
3) Evaluation of Acceptance Probability in (4): Complexity

(NT + 4L)O(1).
Therefore, the total cost of a single PMCMC iteration can be

approximated as (2L2 + TL+NT (2L+ 2) +N)O(1).
Now that we have obtained the computational complexity of

each MCMC iteration for both methods, we are able to perform
a fair comparison with respect to algorithmic complexity. This
will be presented in the next section.

VI. SIMULATION RESULTS

In this section, we present the performance of the proposed
algorithm via Monte Carlo simulations. Simulation Set-Up:
the channels are generated according to Rayleigh flat-fading
channel model with Jakes’ Doppler spectrum [24]. We consider
a carrier frequency of 6 GHz and a bandwidth of 10 kHz, which
is suitable for IEEE 802.16e [25]. The velocities of the mobile
terminal and the relay were set to 80 km/h and 100 km/h,
respectively, which correspond to α = 0.98 and β = 0.95.
The network topology used in the simulations involved a sin-
gle relay network, L = 1, and the relay processing function
f (l)(R(l)) is a constant gain Amplify and Forward. In all
simulations we ran a Markov chain of length 20,000 iterations,
discarding the first 5,000 samples as burnin, and used N =
5000 particles.

A. Analysis of Estimated MSE and BER Versus SNR

In this section we compare the performance of the proposed
PMCMC algorithm with: (i) MCMC-within-Gibbs sampler of
[26], where the number of iterations of the Gibbs sampler
is set such its overall computational complexity is the same
as our PMCMC algorithm. (ii) Extended Kalman filter based
approach coupled with Maximum Likelihood (see [27] for
details) to estimate the Doppler offsets α, β. These results are
evaluated for the channel estimation h,g and Doppler offsets
α, β MSE, followed by BER curves for different number of
relays. In addition we present the BCRLB results which serve

Fig. 2. Channel estimation performance for h (left panel) and g (right panel)
of the PMCMC algorithm compared with Gibbs-within-MCMC [26] and the
Extended Kalman filter [27] algorithms and the BCRLB. In both figures the
performance of the PMCMC algorithm is very close to the CRLB.

as the lower bound on the achievable MSE. The MSE results
are presented in Fig. 2. Clearly, there is a decrease in the
MSE as the SNR increases. In addition, since the estimate of
the channels g1:T is performed using the Rao–Blackwellizing
conditionally optimal Kalman Filter, this is reflected in the level
of the total MSE. The estimates for g1:T are more accurate than
those for the particle filter sampled estimates h1:T . We note
that the PMCMC algorithm achieves lower MSE than the Gibbs
sampler at every SNR. This indicates the superiority of the
PMCMC algorithm over the Gibbs sampler. We also note that
the Extended Kalman filter is unable to track correctly the non-
linear dynamic observation models, resulting in poor estimates
of the channels as well as the Doppler offsets. In addition
we present the BCRLB according to Theorem 1. The results
demonstrate that the proposed PMCMC algorithm performs
close to optimally.

In Fig. 3 we present the MSE for the Doppler offsets α and
β as a function of the SNR. We compare these with the BCRLB
developed in (13). Clearly as the SNR increases, the estimates
converge to the true parameter values. The results show that the
estimation of the Doppler offset β is more accurate than of α,
which is due to the use of the Rao–Blackwell theorem.

We now present the effect that the channel estimation quality
has on BER as a function of number of relays. To perform the
detection, we implement the Maximum Likelihood detection
algorithm. In Fig. 4 we present the BER curves for different
number of relays L = {1, 4, 8}, where we used 2 pilot symbols
at the beginning of each frame followed by 98 data symbols
(i.e. frame length of 100 symbols). The results demonstrate
that spatial diversity does exist and that the BER provided by
our PMCMC algorithm is much lower than both the MCMC-
within-Gibbs approach as well as the Extended Kalman filter.

VII. CONCLUSION

We solved the problem of joint channel and Doppler offset
estimation in dynamic cooperative wireless mobile relay net-
works. We developed two algorithms to jointly estimate the
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Fig. 3. Estimation of Doppler offsets α (left panel) and β (right panel) of
the PMCMC compared with Gibbs-within-MCMC sampler of [26] and the
Extended Kalman filter approach of [27]. We also plot the BCRLB.

Fig. 4. Bit error rate (BER) curves for L = {1, 4, 8} relays for the PMCMC
algorithm and the MCMC-within-Gibbs sampler of [26] and the Extended
Kalman filter approach of [27].

time-varying channels and static Doppler offsets. We presented
complexity analysis of the proposed algorithms and showed
that they are very efficient. We developed a novel version
of the recursive marginal Cramér–Rao lower bound and de-
rived expressions for the achievable MSE. Simulation results
demonstrated that the proposed algorithms perform close to the
Cramér–Rao Lower Bound.

APPENDIX A
BAYESIAN CRLB ELEMENTS OF THEOREM 1

We utilize the recursive expression for the FIM [28]:[
Jn(X̂n)

]
(j) =

[
D22

n−1(x̂n)
]
(j)−

[
D21

n−1(x̂n)
]
(j)

×
(
[Jn−1(x̂n)] (j) +

[
D11

n−1(x̂n)
]
(j)
)−1 [

D12
n−1(x̂n)

]
(j).

Utilsing Lemma 3, and conditional on the previous Markov
chain state [α,β,X1:T ](j − 1) and the new sampled Markov
chain proposal for the static parameters at iteration j, [α,β](j),
we obtain the BCRLB.

We derive the terms [J1(x̂1)](j), [D12
n−1(x̂n)](j) and

[D11
n−1](j) for the Bayesian CRLB:

[J1(x̂1)] (j) = −E

[
∇x1

{∇x1
log p(x1)}T

]
= −E

[
∇x1

{
∇x1

[
g21
2σ2

g

,
h2
1

2σ2
h

,
w2

1

2σ2
w

]}T]

=

⎡⎢⎣
1
σ2
g

0 0

0 1
σ2
h

0

0 0 1
σ2
w

⎤⎥⎦ .
[
D11

n−1

]
(j) = −E

[
∇xn−1

{
∇xn−1

log p(xn|xn−1)
}T ]

=−E

⎡⎣∇xn−1

{
∇xn−1

[
(gn−βgn−1)

2

2(1−(β)2)
,
(hn−αhn−1)

2

2(1−(α)2)
,
w2

n

2σ2
w

]}T⎤⎦
=

⎡⎢⎣
[β](j)2

1−[β](j)2 0 0

0 [α](j)2

1−[α](j)2 0
0 0 0

⎤⎥⎦ .
[
D12

n−1(x̂n)
]
(j) =

[
D21

n−1(x̂n)
]
(j)

= −E

[
∇xn

{
∇xn−1

log p (xn|xn−1)
}T ]

=−E

⎡⎣∇xn

{
∇xn−1

[
(gn−βgn−1)

2

2(1−(β)2)
,
(hn−αhn−1)

2

2(1−(α)2)
,
w2

n

2σ2
w

]}T⎤⎦
=

⎡⎣ [β](j)
1−[β](j)2 0 0

0 [α](j)
1−[α](j)2 0

0 0 0

⎤⎦ .
[
D22

n−1(x̂n)
]
(j) = −E

[
∇xn

{∇xn
log p(xn|xn−1)}T

]
− E

[
∇xn

{∇xn
log p (yn|xn)}T

]
=−E

⎡⎣∇xn

{
∇xn

[
(gn−βgn−1)

2

2(1−(β)2)
,
(hn−αhn−1)

2

2(1−(α)2)
,
w2

n

2σ2
w

]}T⎤⎦
− E

⎡⎣∇xn

{
∇xn

[
(yn − f (shn + wn) gn)

2

2σ2
v

]}T
⎤⎦ ,

which is given in (14), shown at the bottom of the page.

[
D22

n−1(x̂n)
]
(j)=

⎡⎢⎣
1

1−[β](j)2 0 0

0 1
1−[α](j)2 0

0 0 1
σ2
w

⎤⎥⎦−
⎡⎢⎢⎢⎢⎣

f2(rn)
σ2
v

gnf(rn)
∂f(rn)
∂hn

+
∂f2(rn)

∂hn
gn

σ2
v

gnf(rn)
∂f(rn)
∂wn

+
∂f2(rn)
∂wn

gn

σ2
v

gnf(rn)
∂f(rn)
∂hn

+
∂f2(rn)

∂hn
gn

σ2
v

−g2
n

(
∂f(rn)
∂hn

)2 ∂2f(rn)

∂h2
n

σ2
v

g2
n

∂f(rn)
∂hn

∂f(rn)
∂wn

σ2
v

gnf(rn)
∂f(rn)
∂wn

σ2
v

g2
n

∂f(rn)
∂wn

∂f(rn)
∂hn

σ2
v

g2
n

(
∂f(rn)
∂wn

)2
σ2
v

⎤⎥⎥⎥⎥⎦
(14)
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