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FICTITIOUS DOMAIN METHODS USING CUT ELEMENTS:
III. A STABILIZED NITSCHE METHOD FOR STOKES’ PROBLEM
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Abstract. We extend our results on fictitious domain methods for Poisson’s problem to the case of
incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead
boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical
degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty
term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are
considered.
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1. Introduction

In our previous work [14] we considered a fictitious domain method for Poisson’s problem that used Nitsche’s
method to impose boundary conditions. Herein we will extend this approach to the case of Stokes’ problem. The
complication, compared with [14], is that the mutual satisfaction of the boundary conditions on the unfitted
boundary and the discrete inf-sup condition leads to difficulties. This is not surprising since the discrete inf-sup
condition requires a careful balancing of the spaces for velocity and pressure approximation and since the
boundary can cut the elements in an almost arbitrary fashion, uniformity can not, in general, be guaranteed. In
the present paper we follow the ideas of [7, 15]. We assume either that the velocity-pressure pair used satisfies
the discrete inf-sup condition in the interior of the domain or that a symmetric stabilization method is used.
Stability up to the mesh boundary is then obtained by a ghost penalty term.

Since we obtain stability uniformly over the domain, we can prove that the condition number is bounded
irrespectively of how the boundary cuts the mesh. Optimal convergence estimates are then obtained for smooth
solutions using suitable extensions of the exact solution. Here it is important that the ghost-penalty terms are
weakly consistent to the right order, but still ensures sufficient control of the non-physical degrees of freedom.

Previous work on fictitious domain methods for Stokes include the multiplier method of Girault, Glowinskin,
and Pan [20] and the penalty method of Angot [3]. We remark that these methods employ continuous approx-
imations which is a fundamental problem since there is a need to accommodate kinks in the derivative across
the interface for optimal convergence. An exception is the fat boundary method by Maury and co-workers,
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e.g., [10], in which a fixed point iteration scheme is employed to couple two different but dependent problem
outside and inside the artificial boundary. We also refer to related work by Haslinger and Renard [22] and
Amdouni, Moakher and Renard [2] using different stabilizations of Lagrange multiplier methods. Work on cut
elements in mixed methods for Stokes (or incompressible elasticity), outside the realms of fictitious domains,
include [7], where a stabilized P1P0 method was used, the X-FEM methods of Amdouni et al. [1], where the
inf-sup stable P2P0 element was used, and of Legrain, Moës, and Huerta [23], who used the inf-sup stable MINI
element.

2. The stokes problem

Let Ω be a bounded domain in R
2 with polygonal boundary Γ (possibly with smooth curved faces). The

Stokes’ problem takes the form, find the velocities u and the pressure p such that

−μΔu+ ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γ.

(2.1)

Here f ∈ [L2(Ω)]2, Δu = [Δu1, . . . , Δud] Let (u, v)X denote the L2-scalar product on X ,

(u, v)X :=
∫

X

uv dx,

with associated norm ‖u‖0,X := (u, u)
1
2
X . The Sobolev norms associated with the spaces Hk(X) will be denoted

by ‖u‖k,X . We let L2
0(Ω) denote the functions in L2(Ω) with zero average. Formally we obtain the weak

formulation by multiplying (2.1) by a function (v, q) ∈ [H1
0 (Ω)]2 × L2

0(Ω) = V × Q and integrating by parts,
leading to the problem of finding (u, p) ∈ V × Q such that

(μ∇u, ∇v)Ω − (p, ∇ · v)Ω + (q, ∇ · u)Ω = (f ,v)Ω , for all (v, q) ∈ V × Q, (2.2)

where
(∇u, ∇v)Ω :=

∫
Ω

∇u : ∇v dx.

On more compact form the problems reads: find (u, p) ∈ V × Q such that

B[(u, p), (v, q)] = (f ,v)Ω, for all (v, q) ∈ V × Q, (2.3)

where
B[(u, p), (v, q)] := (μ∇u, ∇v)Ω − (p, ∇ · v)Ω + (q, ∇ · u)Ω.

For the purposes of the analysis we will assume that u ∈ [Hα(Ω)]2, p ∈ Hβ(Ω), with α ≥ 2 and β ≥ 1.

3. The finite element formulation

In a standard finite element method the mesh is fitted to the boundary or interpolates the boundary to
some suitable order. Instead we propose to solve (2.1) approximately on a family of quasi-uniform, conforming
triangulations Th, such that Ω̄ ⊂ Th but Th �⊂ Ω̄. However for all triangles K ∈ Th there holds K ∩ Ω �= ∅ and
we define the domain covered by Th by ΩT := ∪K∈Th

K. In the analysis we use the notation a � b for a ≤ Cb,
where C denotes a generic constant that may change at each occurrence, but is independent of h and of the
interface position under the assumptions made precise in following section.

We will use the following notation for mesh related quantities. Let hK be the diameter of K and h =
maxK∈Th

hK . By
Gh := {K ∈ Th : K ∩ Γ �= ∅}
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we denote the set of elements that are intersected by the boundary. For an element K ∈ Gh, let ΓK := Γ ∩ K
be the part of Γ intersecting K.

We make the following assumptions regarding the mesh and the boundary (from [21]).

• A1: We assume that the triangulation is non-degenerate, i.e. there exists C > 0 such that,

hK/ρK ≤ C ∀K ∈ Th

where hK is the diameter of K and ρK is the diameter of the largest ball contained in K.
• A2: We assume that Γ intersects the boundary ∂K of an element K in Gh exactly twice and each (open)

edge at most once.
• A3: Let ΓK,h be the straight line segment connecting the points of intersection between Γ and ∂K. We

assume that ΓK is a function of length on ΓK,h; in local coordinates

ΓK,h = {(ξ, η) : 0 < ξ < |ΓK,h|, η = 0}

and
ΓK = {(ξ, η) : 0 < ξ < |ΓK,h|, η = δ(ξ)}.

Since the curvature of Γ is bounded almost everywhere, the assumptions A2 and A3 are always fulfilled on
sufficiently fine meshes. These assumptions essentially demand that the interface is well resolved by the mesh.

We denote the set of interior faces of the triangles in Th by Fh. The faces of triangles in Gh, that are not on
the mesh boundary ∂ΩT will be denoted FG,

FG := {F ∈ ∂K for some K ∈ Gh and F ∩ ∂ΩT �= F}.

Associated with Th we have the finite element spaces

Vh =
{
v ∈ [C0(Ω)]2 : v|K ∈ [Pk(K)]2, ∀K ∈ Th

}
,

Qh =

{
q ∈ L2(Ω) :

∫
Ω\Gh

q dx = 0; q|K ∈ Pm(K), ∀K ∈ Th

}
.

Remark 3.1. Herein we restrict the discussion to this simple choice of spaces; however, the extension of the
results to other spaces, using for instance bubble enriched velocities, is immediate. The orders m and k above
can be thought of as the highest full polynomial order of the space.

The finite element discretisation now takes the form: find (uh, ph) ∈ V h × Qh such that

Bh[(uh, ph), (vh, qh)] + Sh[(uh, ph), (vh, qh)] = (f ,vh), (3.1)

for all (vh, qh) ∈ Vh × Qh, where

Bh[(uh, ph), (vh, qh)] := ah(uh,vh) + bh(ph,vh) − bh(qh,uh)

where
ah(uh,vh) =

∫
Ω

μ∇uh : ∇vhdx −
∫

Γ

(μ∇uhn) · vh ds

−
∫

Γ

(μ∇vhn) · uh ds +
∑

K∈Gh

∫
ΓK

γμμh−1
K uh · vh ds,

and
bh(ph,vh) = −

∫
Ω

ph∇ · vh dx +
∫

Γ

phvh · n ds.



862 E. BURMAN AND P. HANSBO

Here, γμ ∈ R
+ is a term designed to ensure coercivity of the bilinear form ah(·, ·), cf. Lemma 4.2. The term

Sh[(uh, ph), (vh, qh)] := γpsh(ph, qh) + γggh[(uh, ph), (vh, qh)],

where γp ≥ 0 and γg ∈ R
+ are free parameters, denotes a stabilization term consisting of one part s(ph, qh)

that ensures the inf-sup condition in the bulk in case it is not satisfied by the spaces Vh ×Qh, and another part
gh[(uh, ph), (vh, qh)] := μgu(uh,vh) + μ−1gp(ph, qh) that denotes a ghost penalty term active in the interface
zone only. The subscripts u and p denote that different weights are used for velocities and pressures in the
penalty term. The stabilization operator will be assumed to satisfy the following upper bounds,

Sh[(vh, qh), (vh, 0)] � μ‖∇vh‖2
0,ΩT (3.2)

and
Sh[(vh, qh), (0, qh)] � μ−1‖qh‖2

0,ΩT . (3.3)

The role of the ghost penalty term is to enforce the following strengthened stability

μ‖∇vh‖2
0,ΩT � μ‖∇vh‖2

0,Ω + gh[(vh, 0), (vh, 0)]

and
μ−1‖qh‖2

0,ΩT � μ−1‖qh‖2
0,Ω\Gh

+ gh[(0, qh), (0, qh)] (3.4)

for (vh, qh) ∈ Vh × Qh. The operator gh[(·, ·), (·, ·)] must satisfy certain weak consistency properties and conti-
nuity properties that will be specified in the following. Examples of valid ghost penalty terms have been given
in [6, 14, 16] and will be recalled in the next section.

We assume that the following stability condition holds for Vh × Qh, for all ph ∈ Qh there exists vph ∈
Vh ∩ H1

0 (Ω \ Gh) such that
‖vph‖1,Ω\Gh

≤ cp1μ
−1‖ph‖0,Ω\Gh

(3.5)

and
cp2μ

−1‖ph‖2
0,Ω\Gh

≤ bh(ph,vph) + s(ph, ph), (3.6)

where s(ph, ph) is a stabilization operator that may be zero if the velocity-pressure spaces are chosen so as to
satisfy the relations (3.5) and (3.6) without it. Conditions (3.5) and (3.6) simply mean that we either use an
inf-sup stable velocity pressure pair in the interior of the domain, or a pressure stabilized finite element method
with symmetric stabilization. For relevant results on inf-sup stable elements we refer for instance to [9, 11, 13]
and for stabilized finite element methods that may be used in the present context to [5, 8, 12, 15, 16, 19].

Remark 3.2. Note that the displacements and the pressures are defined also in the domain Th \Ω where they
have no physical significance. Only the penalty term is active in this zone.

Remark 3.3. Since the pressure is determined only up to a constant we have imposed the condition∫
Ω\Gh

qh dx = 0, ∀qh ∈ Qh.

This is convenient both from the point of view of analysis and of implementation,

The formulation (3.1) satisfies the following consistency relation.

Lemma 3.4 (Galerkin orthogonality). Let (uh, ph) be the solution of the finite element formulation (3.1) and
(u, p) ∈ [H2(Ω)]2 × H1(Ω) be the solution of (2.3). Then

Bh[(uh − u, ph − p), (vh, qh)] = −Sh[(uh, ph), (vh, qh)] ∀(vh, qh) ∈ Vh × Qh. (3.7)

Proof. Using the formulation (3.1) we may write

ah(u,vh) + bh(p,vh) − bh(qh,u) = (f ,vh). (3.8)

The claim follows by noting that bh(qh,u) = 0 and by integrating by parts in the remaining two terms on the
left hand side and using equation (2.1). �
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3.1. Examples of ghost penalty operators

Depending on what polynomial order is used in the approximation spaces the ghost penalty operator must
be designed differently. For high order polynomial approximation the ghost penalty term must give control of
all polynomial orders. This can be achieved by adding a penalty on the jump of derivatives of all orders,

gσ(vh, wh) :=
∑

F∈FG

k∑
j=1

h
2(j−1)+σ
K

∫
F

[Djvh][Djwh] ds. (3.9)

Here [v] denotes limε→0+(v(x+εnF )−v(x−εnF )), with nF normal to F , and Djv denotes the partial derivative
of order j in the normal direction. The evaluation of high order derivatives can be avoided since this operator is
equivalent to a local projection stabilization operator: for each face F ∈ FG we introduce the pair of elements K
and K ′ such that F = K ∩ K ′ and set K̂F := K ∪ K ′. The penalty operator is then defined over all K̂F as
follows

gσ(vh, wh) :=
∑

F∈FG

(
hσ−3 (vh − GF vh) , wh

)
K̂F

,

where GF uh is a projection onto a polynomial on the two elements having F as a face defined by GF vh ∈ Wl(K̂F )
such that (

τ−1GF vh, zh

)
K̂F

=
(
τ−1vh, zh

)
K̂F

, ∀zh ∈ Wl(K̂F ).

where the projection space Wl(K̂F ) is defined by

Wl(K̂F ) := {zh ∈ Pl(K̂F )}, l ≥ 0.

Observe that l must be chosen larger than or equal to k for the velocities and larger than or equal to m− 1 for
the pressure in order to ensure weak consistency.

The simplest case is obtained for H1-conforming piecewise affine approximation, where the form (3.9) reduces
to a penalty on the jump of the normal gradient between adjacent elements. The jump operator is defined by

gσ(vh, wh) :=
∑

F∈FG

∫
F

hσ[∇vhnF ] · [∇whnF ] ds

with the natural, component wise extension to vector valued functions v := (v1h, v2h),

gσ(vh,wh) :=
2∑

i=1

∑
F∈FG

∫
F

hσ[∇vihnF ] · [∇wihnF ] ds.

Then the ghost penalty operator takes the form

gh[(uh, ph), (wh, qh)] := μg1(uh,wh) + μ−1g3(ph, qh).

Note the different scaling in h for the operators acting on the velocity and the pressure. This is because the
pressure is controlled in the L2-norm and the velocity in the H1-norm. It is easy to prove that the bounds (3.2)
and (3.3) hold.

For further details on these approaches we refer to [6, 17]. Numerical examples, both using gradient penalty
and the local projection approach, will be given in Section 7.
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3.2. Examples of pressure stabilization operators

Most symmetric pressure stabilization methods known in the literature may be used. For piecewise affine
approximations it may be particularly appealing to apply the interior penalty stabilization of [15] where

sh(ph, qh) := μ−1
∑

F∈Fh

∫
F

h3
F [∇ph · nF ] · [∇qh · nF ] ds

since in that case all stabilization of the pressure is handled in a unified fashion. Otherwise the classical
Brezzi−Pitkäranta stabilization [12] will work, as well as local projection type stabilizations [5], or other pres-
sure projection stabilizations [15, 16, 19]. The Brezzi−Pitkäranta stabilization may also serve as ghost penalty
term for the pressure, but has too poor consistency properties to be used for the velocities. Also in this case it
is easy to prove the upper bound (3.3).

4. Norms, continuity and stability

We will use the following norms on the trace of a function on Γ .

‖v‖2
1/2,h,Γ :=

∑
K∈Gh

h−1
K ‖v‖2

0,ΓK
,

‖v‖2
−1/2,h,Γ :=

∑
K∈Gh

h1
K ‖v‖2

0,ΓK
.

We note for future reference that
(u,v)Γ ≤ ‖u‖1/2,h,Γ ‖v‖−1/2,h,Γ . (4.1)

We also define norms associated with the discrete velocity and pressure approximations respectively:

‖uh‖2
V,T := ‖μ 1

2 ∇uh‖2
0,ΩT +

∥∥∥μ
1
2uh

∥∥∥2

1/2,h,Γ

and
‖ph‖Q,T := ‖μ− 1

2 ph‖0,ΩT .

For the analysis we will use the following mesh dependent norms defined for functions in [H2(X)]2 + Vh or
[H2(X)]2 × H1(X):

�v�2
X :=

∥∥∥μ
1
2 ∇v

∥∥∥2

0,X
+

∥∥∥μ
1
2 ∇vn

∥∥∥2

−1/2,h,Γ
+

∥∥∥μ
1
2 v

∥∥∥2

1/2,h,Γ

and
�(u, p)�2

∗ := �u �2
Ω +‖μ− 1

2 p‖2
0,Ω + ‖μ− 1

2 p‖2
−1/2,h,Γ

and on Vh × Qh the norm

�(uh, ph)�2
h := ‖uh‖2

V,T + ‖ph‖2
Q,T + Sh[(uh, ph), (uh, ph)].

Lemma 4.1 (Continuity of Bh[(·, ·), (·, ·)] and Sh[(·, ·), (·, ·)). Let vh,wh ∈ Vh, u ∈ V + Vh, qh, yh ∈ Qh and
p ∈ Q + Qh. Then there holds,

Bh[(u, p), (vh, qh)] � �(u, p) �∗ �(vh, qh)�h, (4.2)

Sh[(vh, qh), (wh, yh)] ≤ Sh[(vh, qh), (vh, qh)]1/2Sh[(wh, yh), (wh, yh)]1/2. (4.3)
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Proof. It follows from the Cauchy−Schwarz inequality and the trace inequality that

ah(u,vh) � �u �Ω ‖vh‖V,T ,

bh(qh,u) � ‖qh‖Q,T � u�Ω

and
bh(p,vh) � (‖μ− 1

2 p‖2
0,Ω + ‖μ− 1

2 p‖2
−1/2,h,Γ )1/2‖vh‖V,T .

We conclude by once again applying the Cauchy−Schwarz inequality.
By the symmetry of Sh[(·, ·), (·, ·)], the second claim is an immediate consequence of the Cauchy−Schwarz

inequality. �

Lemma 4.2 (Coercivity of ah(·, ·) and inf-sup stability of bh(·, ·)). There exists cg > 0 so that for any vh ∈ Vh

and qh ∈ Qh there holds,
cg‖vh‖2

V,T ≤ ah(vh,vh) + gh[(vh, 0), (vh, 0)], (4.4)

and with vph as in (3.5)–(3.6)

cgcp2‖qh‖2
Q,T ≤ bh(qh,vph) + s(qh, qh) + gh[(0, qh), (0, qh)]. (4.5)

Proof. First note that

ah(vh,vh) = ‖μ 1
2 ∇vh‖2

Ω − 2‖μ 1
2vh‖1/2,h,Γ‖μ

1
2 ∇vhn‖−1/2,h,Γ + γμ‖μ

1
2vh‖2

1/2,h,Γ ,

where γμ is a free parameter. Under assumptions A1−A3 the following inequality holds w ith CT independent
of the intersection of ∂Ω with the mesh,

‖∇vhn‖−1/2,h,Γ ≤ CT ‖∇vh‖0,ΩT .

The reason this trace inequality holds independently of the interface position is that the norm in the right hand
side is taken over all of ΩT . Now recall the property (3.4) of the ghost penalty term. Using the above trace
inequality followed by the arithmetic-geometric inequality we arrive at the relation

ah(vh,vh) + g[(vh, 0), (vh, 0)] ≥ cg‖μ
1
2 ∇vh‖2

0,ΩT − 1
2
cg‖μ

1
2 ∇vh‖2

0,ΩT + (γμ − 2C2
T c−1

g )‖μ 1
2vh‖2

1/2,h,Γ .

Choosing γμ > 2C2
T c−1

g proves the claim. The second inequality, (4.5) is immediate by combining (3.4), (3.5)
and (3.6). �

We will now prove a global version of the inf-sup condition directly on the form Bh[(·, ·), (·, ·)]. The proof
of the inf-sup condition works on a truncated domain, without the boundary. Once inf-sup control has been
established in the interior of the domain stability up to the mesh boundary is obtained using the ghost penalty
term. This means that within the domain Ω \Gh we must have surjectivity of the divergence operator. In order
for this to hold, the domain boundaries must be Lipschitz continuous uniformly in h. For any given mesh Th,
the boundary Ω \Gh is polygonal and hence Lipschitz. The uniformity in h follows from the Lipschitz continuity
of Γ and the shape regularity of the mesh family {Th}h.

In view of this preliminary discussion we may prove the main result.

Theorem 4.3. Let (uh, ph) ∈ Vh × Qh. Then

cs � (uh, ph)�h ≤ sup
(vh,qh)∈Vh×Qh

Bh[(uh, ph), (vh, qh)] + Sh[(uh, ph), (vh, qh)]
�(vh, qh)�h

· (4.6)
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Proof. First by Lemma 4.2 there holds

cg � (uh, 0)�2
h ≤ Bh[(uh, ph), (uh, ph)] + Sh[(uh, ph), (uh, 0)]. (4.7)

Consider the function vph of the stability relation (3.5) and (3.6) and observe that, again using the arithmetic-
geometric inequality,

ah(uh,vph) ≤ ‖μ1/2∇uh‖0,Ω\Gh
‖μ1/2∇vph‖0,Ω\Gh

≤ ‖μ1/2∇uh‖0,Ω\Gh
cp1‖μ−1/2ph‖0,Ω\Gh

≤ c2
p1/(cgcp2)‖μ1/2∇uh‖2

0,Ω\Gh
+ 1

4 cgcp2‖ph‖2
Q,T

and, using also (3.2),

Sh[(uh, ph), (vph, 0)] ≤ γgμ gu(uh,uh)
1
2 gu(vph,vph)

1
2

≤ γgμ
1/2gu(uh,uh)

1
2 cS‖∇vph‖0,ΩT

= γgμ
1/2gu(uh,uh)

1
2 cS‖∇vph‖0,Ω\Gh

≤ γggu(uh,uh)
1
2 cScp1μ

−1/2‖ph‖0,Ω\Gh

≤ γ2
g(cScp1)2/(cgcp2)gu(uh,uh) + 1

4cgcp2‖ph‖2
Q,T .

Using this inequality together with the stability conditions (3.5) and (3.6) and with (4.5) we have,

1
2cgcp2‖ph‖2

Q,T − c2
p1/(cgcp2)‖μ1/2∇uh‖2

0,Ω\Gh
− (γgcScp1)2/(cgcp2)gu(uh,uh) − sh(ph, ph)

≤ Bh[(uh, ph), (vph, ph)] + Sh[(uh, ph), (vph, 0)].

It follows that by taking vh = uh + ηvph, qh = ph with η < cgcp2/(2c2
p1)max (1, (γgcS)−2) we have with cη > 0

cη � (uh, ph)�2
h ≤ Bh[(uh, ph), (uh + ηvph, ph)] + Sh[(uh, ph), (uh + ηvph, ph)], (4.8)

provided γp is positive and γg is chosen big enough. To conclude, we only need to prove the stability estimate

�(uh + ηvph, ph)�h � �(uh, ph) �h .

This however follows immediately observing that

�(uh + ηvph, ph)�h ≤ �(uh, ph) �h + � (ηvph, 0)�h

and, since S[(vph, 0), (vph, 0)] = γgμ gu(vph,vph) and supp(vph) = Ω \ Gh, we have using (3.2),

�(ηvph, 0)�2
h = η2‖μ 1

2 ∇vph‖2
0,Ω\Gh

+ η2γggu(vph,vph) � η2‖μ 1
2 ∇vph‖2

0,Ω\Gh
.

Then, by the stability of vph, (3.5), it follows that

�(ηvph, 0)�2
h � η2(1 + γg)c2

p1μ
−1‖ph‖2

0,Ω\Gh
≤ (c′η)2 � (uh, ph) �2

h . (4.9)

We conclude by combining (4.8) and (4.9), observing that cs = cη(1 + c′η)−1. �

Remark 4.4. Note that since the inf-sup condition is proved in the norm �(·, ·)�h that gives control of the ve-
locity and the pressure over all of ΩT , and we have continuity of Bh[(·, ·), (·, ·)] on discrete spaces in the same
norm, it is possible to prove that the condition number of the matrix is bounded independent of the interface/
mesh intersection following [14]. We omit the details.
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5. Approximation properties

We need to show that our approximating spaces Vh and Qh have optimal approximation properties on suitable
Hilbert spaces [Hα(Ω)]2 and Hβ(Ω), respectively, in the norms �(·, ·)�∗ and �(·, ·)�h. This follows from some
minor modifications of the analysis in [21]. We construct an interpolant of (v, q) by standard interpolants of
[Hk+1]2 × Hm-extensions of (v, q) as follows. Choose extension operators Es : Hs(Ω) → Hs(ΩT ) such that
(Ek+1v, Emq)|Ω = (v, q) and

‖Esw‖s,ΩT � ‖w‖s,Ωi , ∀w ∈ Hs(Ω), s = 0, . . . , max (α, β), (5.1)

cf. Dautray and Lions [18]. Let Ih : H1(ΩT ) → Vh be a standard quasi interpolant. We will use the same
interpolant for velocities and pressures, in the latter case I∗h : H1(ΩT ) → Qh. We define

v∗ := Eαv and I∗hv := Ihv
∗ (5.2)

and similarly for the pressure
q∗ := Eβq and I∗hq := Ihq∗. (5.3)

Using these definitions we prove the approximation results necessary for the analysis.

Theorem 5.1. The following approximation estimates hold for the interpolation operator defined in (5.2)
and (5.3)

‖v∗ − I∗hv‖V,ΩT + ‖q∗ − I∗hq‖Q,ΩT � hr−1μ
1
2 ‖v‖r,Ω + hsμ− 1

2 ‖p‖s,Ω, (5.4)

and
�(v − I∗hv, q − I∗hq)�∗ � hr−1μ

1
2 ‖v‖r,Ω + hsμ− 1

2 ‖p‖s,Ω, (5.5)

with r = min(k + 1, α) and s = min(m + 1, β) and for all v ∈ [H1
0 (Ω) ∩ Hα(Ω)]2 and p ∈ L2

0(Ω) ∩ Hβ(Ω).

For the proof of this we need the following variant of a trace inequality on a reference element that we recall
from [21] and state here without proof.

Lemma 5.2. Map a triangle K ∈ Gh onto the unit reference triangle K̃ by an affine map and denote by Γ̃K̃ the
corresponding image of ΓK . Under the assumptions A1−A3 of Section 3 there exists a constant C, depending
on Γ but independent of the mesh, such that

‖w‖2
0,Γ̃K̃

≤ C‖w‖0,K̃‖w‖1,K̃ , ∀w ∈ H1(K̃). (5.6)

Proof. (Thm. 5.1) Since the mesh is non-degenerate, it follows from Lemma 5.2, scaled by the map from the
reference triangle, that for s ∈ R

h−s
K ‖w‖2

0,ΓK
≤ C

(
h−1−s

K ‖w‖2
0,K + h1−s

K ‖w‖2
1,K

)
, ∀w ∈ H1(K).

Hence, using once standard interpolation estimates, there holds

h−1
K ‖v − I∗hv‖2

0,ΓK
≤ C

(
h−2

K ‖v∗ − Ihv
∗‖2

0,K + ‖v∗ − Ihv
∗‖2

1,K

)
≤ Chr−1

K ‖v∗‖2
r,K .

As a consequence, by the stability of the extension operator,

μ
1
2 ‖v − I∗hv‖1/2,h,Γ � μ

1
2 hr−1

K ‖v∗‖2
r,ΩT � μ

1
2 hr−1

K ‖v‖2
r,Ω.
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The first claim (5.4) then follows by standard interpolation estimates for the operator I∗h, and the stability of
the extension operator. Since

�(v − I∗hv, q − I∗hq)�∗ � ‖v∗ − I∗hv‖V,ΩT + ‖q∗ − I∗hq‖Q,ΩT

+ ‖μ 1
2 ∇(v − I∗hv)n‖−1/2,h,Γ + ‖μ− 1

2 (q − I∗hq)‖−1/2,h,Γ

we only need to upper bound the two remaining contributions in the right hand side. They may both be treated
similarly as ‖v − I∗hv‖1/2,h,Γ and we give the details only for the viscous fluxes. Lemma 5.2 applied to ∇wn
and scaling gives

hK‖∇wn‖2
0,ΓK

≤ C(‖w‖2
1,K + h2

K‖w‖2
2,K), ∀w ∈ [H2(K)]2.

Using this result applied to w = v∗ − Ihv
∗ and again standard interpolation estimates, it follows that

hK‖∇(v − I∗hv)n‖2
0,ΓK

� hK‖∇(v − I∗hv)‖2
0,ΓK

�
(
hK‖v∗ − Ihv

∗‖2
1,K + h2

K‖v∗ − Ihv
∗‖2

2,K

)
� h

2(r−1)
K ‖v∗‖2

r,K .

Summing again the contributions from K ∈ Gh, we deduce from (5.1) that

‖∇(v − I∗hv)n‖−1/2,h,Γ � hr−1‖v‖r,Ω. (5.7)

Similarly for the traces of the pressures

‖(q − I∗hq)‖−1/2,h,Γ � hs‖q‖s,Ω. (5.8)

�

To prove optimal convergence the stabilization operator Sh[(·, ·), (·, ·)] must be weakly consistent to the right
order. More precisely we will assume that the following Lemma holds.

Lemma 5.3. For all q ∈ Hβ(Ω), v ∈ [Hα(Ω)]2 there holds

Sh[(I∗hv, I∗hq), (I∗hv, I
∗
hq)] � h2(r−1)μ‖v‖2

r,Ω + μ−1h2s‖q‖2
s,Ω, (5.9)

with r = min(k + 1, α) and s = min(m + 1, β).

For a proof of this result we refer to [5, 8, 12, 13, 15, 16] for the pressure stabilization part and to [14, 16] for the
ghost penalty part.

6. A priori error estimates

Using the stability and continuity properties derived in the previous sections it is now straightforward to
show optimal convergence orders of the error.

Theorem 6.1. Assume that the solution (u, p) to problem (2.2) resides in [Hα(Ω)]2 ×Hβ(Ω). Then the finite
element solution (3.1) satisfies the error estimate

‖u− uh‖V + ‖p − ph‖Q � hr−1μ
1
2 ‖u‖r,Ω + hsμ− 1

2 ‖p‖s,Ω,

with r = min(k + 1, α) and s = min(m + 1, β).
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Proof. First we set ηh = uh − I∗hu and ζh = ph − I∗hp and note that

‖u− uh‖V + ‖p − ph‖Q ≤ ‖Eαu− uh‖V,ΩT + ‖Eβp − ph‖Q,ΩT

≤ ‖Eαu− I∗hu‖V,ΩT + ‖Eβp − I∗hp‖Q,ΩT + �(ηh, ζh) �h .

In view of Theorem 5.1 we only need to show the inequality for �(ηh, ζh)�h. By Theorem 4.3 we obtain

�(ηh, ζh)�h ≤ 1
cs

sup
Bh[(ηh, ζh), (vh, qh)] + Sh[(ηh, ζh), (vh, qh)]

�(vh, qh)�h
,

and by Galerkin orthogonality

�(ηh, ζh)�h ≤ 1
cs

sup
Bh[(u − I∗hu, p − I∗hp), (vh, qh)] − Sh[(I∗hu, I∗hp), (vh, qh)]

�(vh, qh)�h
·

The suprema above are taken over (vh, qh) ∈ Vh × Qh.
Applying now the continuity of Bh[(·, ·), (·, ·)], (4.2), and Sh[(·, ·), (·, ·)] (4.3), we obtain the best approximation

type inequality
�(ηh, ζh)�h � �(u− I∗hu, p − I∗hp) �∗ +Sh[(I∗hu, I∗hp), (I∗hu, I∗hp)]

1
2 .

We conclude using the approximation results of Theorem 5.1 and (5.9) �

Corollary 6.2. Under the same assumptions as in Theorem 6.1 there holds

Sh[(uh, ph), (uh, ph)]
1
2 � hr−1μ

1
2 ‖u‖r,Ω + hsμ− 1

2 ‖p‖u,Ω

and
�(u− uh, p − ph)�∗ � hr−1μ

1
2 ‖u‖r,Ω + huμ− 1

2 ‖p‖u,Ω,

with r = min(k + 1, α) and s = min(m + 1, β).

Proof. The proof is immediate since by the triangle inequality

Sh[(uh, ph), (uh, ph)]
1
2 ≤ Sh[(uh − I∗hu, ph − I∗hp), (uh − I∗hu, ph − I∗hp)]

1
2

+Sh[(I∗hu, I∗hp), (I∗hu, I∗hp)]
1
2

and
�(u− uh, p − ph)�∗ ≤ �(u− I∗hu, p − I∗hp) �∗ + � (uh − I∗hu, ph − I∗hp)�∗

� �(u− I∗hu, p − I∗hp) �∗ + � (uh − I∗hu, ph − I∗hp) �h .

The conclusion follows by Theorem 6.1 and the approximation results of Theorem 5.1. �

Using the Aubin−Nitsche duality argument we prove the following L2(Ω)-estimate for the displacements.
Consider the dual adjoint problem Let w and r be the solution of the problem

−μΔw − ∇r = ψ in Ω

∇ ·w = 0 in Ω

w = 0 on ∂Ω.

(6.1)

We assume that the solution of the adjoint problem enjoys the regularity

‖μ 1
2w‖2,Ω + ‖μ− 1

2 r‖1,Ω ≤ cμ‖ψ‖0,Ω. (6.2)
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Proposition 6.3. Assume that α ≥ k + 1 and β ≥ m ≥ k − 1. Under the same assumptions as Theorem 6.1
and assuming that (6.1) and (6.2) holds. Then

‖u− uh‖0,Ω � hk+1(μ
1
2 ‖u‖k+1,Ω + μ− 1

2 ‖p‖k,Ω)

where the hidden constant is independent of h, and the interface/mesh intersection, but not of the polynomial
order nor of the viscosity μ.

Proof. Choosing ψ = u− uh, we may write

‖u− uh‖2
0,Ω = ah(u − uh,w) − bh(u− uh, r)

and proceed using Galerkin orthogonality and the Cauchy–Schwartz inequality to obtain

‖u− uh‖2
0,Ω = ah(u− uh,w − I∗hw) − bh(u− uh, r − I∗hr)

+ bh(I∗hw, p − ph) − Sh[(uh, ph), (I∗hw, I∗hr)]
= Bh[(u − uh, p − ph), (w − I∗hw, r − I∗hr)] − Sh[(uh, ph), (I∗hw, I∗hr)]
≤ �(u− uh, p − ph) �∗ �(w − I∗hw,w, r − I∗hr) �h .

+ Sh[(uh, ph), (uh, ph)]
1
2 Sh[(I∗hw, I∗hr), (I∗hw, I∗hr)]

1
2

≤ c(�(u− uh, p − ph) �∗ +Sh[(uh, ph), (uh, ph)]
1
2 )h(μ

1
2 ‖w‖2,Ω + μ− 1

2 ‖r‖1,Ω).

The claim now follows as a consequence of Proposition 6.1, Theorem 5.1 and the regularity hypothesis (6.2). �

7. Numerical examples

7.1. Convergence and stability

We consider an example with exact solution

ux = 20xy3, uy = 5x4 − 5y4, p = 60x2y − 20y3.

Our computational domain is a disc with center at the origin. The exact velocities are used as Dirichlet data
on the edge of the domain. We set μ = 1 and f = 0. The exact pressure integrates to zero, so we impose zero
average of the discrete pressure. The boundary of the domain is given by the isoline of a level set function
defined on a covering mesh using a piecewise linear interpolant, cf. Figure 1. Note that symmetry is avoided by
not centering the mesh.

We compare two methods: one stabilized using piecewise linear approximations for velocity and pressure
(P1P1), with the pressure stabilized in the whole domain using gradient jump; the velocity stabilization in the
cut element zone is stabilized in the same fashion, as discussed in Section 3.1. The second approach is to use
the MINI element of Arnold et al. [4]. This element is inf-sup stable, and so only needs stabilization in the cut
element zone. For the MINI element, we choose to use the local projection method of Becker et al. [6] with
projections onto linear functions on patches composed of the cut element and its cut neighbors (one projection
for each cut neighbor), as suggested in Section 3.1. The Nitsche parameter was chosen fixed as γμ = 10.

In Figues 2 and 3 we show the elevation of the discrete solution for the different elements. The convergence
for the different elements are shown in Figures 4, using γg = γp = 0.1, and 5, using γg = 0.1. Finally, in
Figure 6 we show the effect of lowering the size of the stabilization terms (equally much). For the P1P1, the
same stability term γp = γg is used in the whole of the domain, so this leads to global instability, whereas for
the MINI element, for which γp = 0, the stability loss is confined to the cut element zone.
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Figure 1. Level set isoline used to define the domain boundary.
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Figure 2. Elevation of the length of the velocity (left) and the pressure (right) for the stabilized
P1 − P1 method.
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Figure 3. Elevation of the length of the velocity (left) and the pressure (right) for the MINI
element.
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Figure 4. Convergence using the P1P1 element.
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Figure 5. Convergence using the MINI element.
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Figure 6. Elevation of the pressure for the P1P1 (left) and MINI (right) in the case of insuf-
ficient stabilization.
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Figure 7. Sensitivity of L2 errors with respect to the stabilization parameters.

7.2. Sensitivity with respect to the stabilization parameters

We also give a graph illustrating the sensitivity concerning convergence with respect to the parameters γμ,
γp, and γg. In Figure 7 we show the robustness of the velocity and pressure errors in L2(Ω) with respect to the
size of the different parameters. The variation of the parameters is carried out around a base state of γμ = 10,
γp = 0.1, and γg = 0.1. We are working with the stabilized element, so as γp → 0 we see an increase of the
error, whereas the function of γg is subsumed by γp in the case γg → 0. Note in particular the low sensitivity
of the errors with respect to several orders of magnitude of the stabilization parameters.
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