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Abstract
In this paper, we revisit a Legendre-tau method for two-point boundary
value problems with a Caputo fractional derivative in the leading term,
and establish an L2 error estimate for smooth solutions. Further, we apply
the method to the Sturm-Liouville problem. Numerical experiments indi-
cate that for the source problem, it converges steadily at an algebraic rate
even for nonsmooth data, and the convergence rate enhances with problem
data regularity, whereas for the Sturm-Liouville problem, it always yields
excellent convergence for eigenvalue approximations.
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1. Introduction

We consider a boundary value problem involving a left-sided Caputo
fractional derivative in the leading term. Given a potential q ∈ L∞(D),
D = (0, 1), the problem reads

− C
0D

α
x u+ qu = f in D, u(0) = u(1) = 0, (1.1)

where f ∈ L2(D), α ∈ (1, 2) is the order of the derivative, and C
0D

α
x u is the

left-sided Caputo derivative of order α defined in (2.3) below. In case of
α = 2, C

0D
α
x u coincides with the usual second-order derivative u′′, and the

model (1.1) recovers the classical two-point boundary value problem. We
also study the related eigenvalue problem: find u and λ ∈ C such that

− C
0D

α
x u+ qu = λu in D, u(0) = u(1) = 0. (1.2)
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The motivations of the models (1.1) and (1.2) stem from the mathe-
matical modeling of anomalous diffusion, especially superdiffusion, in which
the mean squares variance grows faster than that in a Gaussian process.
The space fractional derivative admits a micro interpretation as asymmetric
Lévy flights. Such phenomena were observed in applications, e.g., geophys-
ical flows and magnetized plasmas [6]. In practice, the derivation is often
done for the Riemann-Liouville fractional derivative. We refer readers to
[1] for a derivation and physical explanations for solute transport in sub-
surface flow. However, the Caputo derivative gives a number of distinct
features: more regular solution profile [6], mass conservation and physical
flux/boundary condition [35, 27].

The accurate simulation of the model (1.1) has received much interest.
Amongst existing methods, finite difference methods (FDM) [31, 29, 26]
and finite element methods (FEM) [7, 16, 17, 19, 34] are predominant, but
mostly for the Riemann-Liouville derivative. The study on the Caputo
case is scarce, despite its convenient treatment of boundary conditions. In
[30], a FDM was developed for (1.1) with a Robin boundary condition, and
convergence rates were provided; see also [11] for a comparative numerical
study. Jin et al [16] developed a variational formulation for the Caputo
derivative, and showed the convergence of the Galerkin FEM. We also refer
to [10] for a new interpretation of the Caputo derivative in Sobolev spaces.

The nonlocality of the fractional derivative leading to almost dense lin-
ear systems, and thus poses significant storage challenge. One idea to rem-
edy the challenge is to discretize fractional derivatives with spectral meth-
ods. Several spectral methods for fractional differential equations (FDEs)
were proposed [22, 23, 12, 25, 3, 8, 32], which we briefly review below.

For the diffusion equation with a Riemann-Liouville derivative in time,
Li and Xu [22] developed a first space-time spectral Galerkin method, which
is exponentially convergent for smooth solutions, and provided a rigorous
convergence analysis; see also [23] for space-time fractional diffusion. Han-
ert [12] proposed a pseudo-spectral method for discretizing a Caputo de-
rivative in time with Mittag-Leffler functions. Mokhtary and Ghoreishi
[25] presented a spectral tau method for initial value problems with a Ca-
puto derivative, and gave L2 error estimates. Li et al [21] derived recursive
formulae based on Legendre, Chebyshev and Jacobi polynomials for ap-
proximating the Caputo derivative, and proposed a collocation method for
solving initial/boundary value problems. Ford et al [8] developed a spectral
collocation method using non-polynomials. Tian et al [32] suggested a poly-
nomial collocation method for fractional differential equations. Bhrawy and
Al Shomrani [3] described a Legendre tau method for FDEs involving mul-
tiple Caputo derivatives with constant coefficients, a Legendre tau method
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based on Legendre-Gauss-Lobatto quadrature for FDEs with variable co-
efficients and a collocation method.

In these existing works on the Legendre tau method, rigorous error es-
timates for FDEs with a Caputo derivative in space are still not available.
This is not surprising since the solution theory for such problems is still
under development [17], and the analysis of the tau method is known to
be challenging even for the classical two point boundary value problems
[28]. For problem (1.2), there are very few numerical methods, including a
shooting method [18] and a Galerkin FEM [16]; see also [14] for the secto-
rial property of the Caputo derivative and [13] for the smallest eigenvalue
(under a different boundary condition). Jin et al [16] developed a FEM
with second-order convergence, and established its (suboptimal) conver-
gence rates. To the best of our knowledge, the Legendre tau method has
not been applied to problem (1.2).

In this work we revisit the Legendre tau method [15, 4, 5]. For problem
(1.1), it has been considered in [3], but without analysis. The purpose of
this study is three-folded. First, we provide rigorous error estimates for
problem (1.1) with q ≡ 0, which is the main theoretical contribution of the
work. Second, we present numerical experiments with nonsmooth data.
This aspect is important in practice, since solutions to FDEs generally
have only limited regularity even for smooth problem data; see [8] for an
excellent account on this aspect. Our findings indicate that the method
converges steadily at an algebraic rate for problem (1.1). Third, the method
is applied to problem (1.2), and it exhibits fast convergence for both smooth
and discontinuous potentials. Surprisingly, with a Legendre approximation
of order N , about one half of the computed eigenvalues are reliable with an
absolute error less than 10−3. In sum, our essential contributions include
rigorous error estimates, numerical experiments with nonsmooth data and
extension to eigenvalue problems.

The rest of the paper is organized as follows. In Section 2, we describe
preliminaries of fractional calculus, especially fractional-order Sobolev spaces.
Then in Section 3, we describe the Legendre tau method, and discuss its
convergence for the source problem. In Section 4, we present numerical
experiments to illustrate the convergence behavior and efficiency of the
scheme. Throughout, we use the notation c, with or without a subscript,
to denote a generic constant, and it may differ at different occurrences, but
it is always independent of the polynomial order N .

2. Preliminaries on fractional calculus

In this part, we recall preliminaries on fractional calculus and frac-
tional order Sobolev spaces. We first recall the definitions of Caputo and
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Riemann-Liouville fractional derivatives. For any positive non-integer real
number β with n − 1 < β < n, n ∈ N, the (formal) left-sided Caputo
fractional derivative of order β is defined by (see, e.g., [20, p. 92])

C
0D

β
x φ = 0I

n−β
x

(
dnφ

dxn

)
, (2.3)

and the (formal) left-sided Riemann-Liouville fractional derivative of order
β is defined by [20, pp. 70]:

R
0D

β
x φ =

dn

dxn

(
0I
n−β
x φ

)
. (2.4)

Here 0I
γ
x for γ > 0 is the left-sided Riemann-Liouville integral operator of

order γ defined by

( 0I
γ
xφ)(x) =

1

Γ(γ)

∫ x

0
(x− t)γ−1φ(t)dt.

It satisfies a semigroup property: for γ, δ > 0, there holds [20, p. 73]

0I
γ+δ
x φ = 0I

γ
x 0I

δ
xφ, ∀φ ∈ L2(D). (2.5)

The right-sided versions of fractional-order integrals and derivatives are
defined analogously by

(xI
γ
1 φ)(x) =

1

Γ(γ)

∫ 1

x
(t− x)γ−1φ(t) dt,

C
xD

β
1φ = (−1)nxI

n−β
1

(
dnφ

dxn

)
, R

xD
β
1 φ = (−1)n

dn

dxn

(
xI
n−β
1 φ

)
.

Next we recall some function spaces. For any β ≥ 0, we denoteHβ(R) to
be the Sobolev space of order β on R with the inner product (φ, ψ)Hβ(R) =∫∞
−∞(1+|ξ|2)βφ̂(ξ)ψ̂(ξ)dξ, where φ̂ is the Fourier transform of φ, and denote

the norm by ‖ · ‖Hβ(R). For the unit interval D, we set Hβ(D) = {u|D :

u ∈ Hβ(R)} with the norm ‖u‖Hβ(D) = infv∈Hβ(R),v|D=u ‖v‖Hβ(R), and

H̃β(D) = {φ ∈ Hβ(R) : suppφ ⊂ D̄}, and denote by Hβ
0 (D) to be the

closure of C∞0 (D) by the norm ‖ · ‖Hβ(D), and by H−β(D) to be the dual

space of Hβ
0 (D). By [33, Theorem 4.3.2], if β − 1/2 /∈ Z, the space H̃β(D)

coincides with Hβ
0 (D). Throughout, we denote by ū the zero extension of u,

and define H̃β
L(D) = {φ ∈ L2(D) : φ̄ ∈ Hβ(−∞, 0)}, and likewise H̃β

R(D).

A function φ ∈ L2(D) can be identified with an element in H−β(D), and the
duality bracket 〈φ, ψ〉

H−β(D),Hβ
0 (D)

coincides with the L2(D) inner product

(φ, ψ)L2(D). Further, we write by ‖ · ‖X ∼ ‖ ·‖Y for (semi-)norms of Hilbert
spaces X and Y , if the two norms are equivalent.
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Now we recall a useful change of integration order formula:

(0I
β
xφ, ψ) = (φ, xI

β
1 ψ) ∀φ, ψ ∈ L2(D), (2.6)

the integration by parts formula [20, Lemma 2.7]

(R0D
β
x φ, ψ) = (φ,RxD

β
1 ψ) ∀φ ∈ H̃β

L(D), ψ ∈ H̃β
R(D), (2.7)

and the fundamental theorem of fractional calculus [20, p. 74]

R
0D

β
x 0I

β
xφ = φ ∀φ ∈ L1(D). (2.8)

Last we collect several results on fractional-order Sobolev spaces. The
proof of (2.9) and (2.10) is well known [22, 16], and hence omitted.

Theorem 2.1. Let β ∈ (0, 1/2), φ ∈ C∞0 (D). We have the following
(semi-) norm equivalences:

‖φ‖
Hβ

0 (D)
∼ ‖R0Dβ

x φ‖L2(D) ∼ ‖RxD
β
1 φ‖L2(D), (2.9)

‖φ‖2
Hβ

0 (D)
∼ (R0D

2β
x φ, φ)L2(D) ∼ (φ,RxD

2β
1 φ)L2(D), (2.10)

‖φ‖H−β(D) ∼ ‖0Iβxφ‖L2(D) ∼ ‖xI
β
1 φ‖L2(D), (2.11)

‖φ‖2H−β(D) ∼ (0I
2β
x φ, φ)L2(D) ∼ (φ, xI

2β
1 φ)L2(D). (2.12)

P r o o f. Note that for u ∈ Hβ
0 (D), the two norms ‖φ‖

Hβ
0 (D)

and

‖φ̄‖Hβ(R) are equal for β = 0, 1, and thus by interpolation [33] also equiva-

lent for any 0 < β < 1. Hence, by duality, for φ ∈ L2(D), we have

‖φ̄‖H−β(R) = sup
ψ∈Hβ(R)

(φ̄, ψ)L2(R)

‖ψ‖Hβ(R)

≥ sup
ψ∈Hβ(R),

supp(ψ)⊂D

(φ̄, ψ)L2(R)

‖ψ‖Hβ(R)

≥ sup
ψ∈Hβ

0 (D)

c
(φ, ψ)L2(D)

‖ψ‖
Hβ

0 (D)

= c‖φ‖H−β(D).

(2.13)

(a) proof of (2.11). We only show the case ‖0Iβx · ‖L2(D) since the other
case follows analogously. The proof relies on a duality argument and (2.9).
By (2.8) and (2.7), we have

‖φ‖H−β(D) = sup
v∈Hβ

0 (D)

〈φ, v〉
‖v‖

Hβ
0 (D)

= sup
v∈Hβ

0 (D)

〈0Iβxφ, RxD
β
1 v〉

‖v‖
Hβ

0 (D)

≤ ‖0Iβxφ‖L2(D) sup
v∈Hβ

0 (D)

‖RxD
β
1 v‖L2(D)

‖v‖
Hβ

0 (D)

≤ c‖0Iβxφ‖L2(D).
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For the converse, we first note for 0 < β < 1/2 and any ψ ∈ L2(D),

v = xI
β
1 ψ ∈ H̃β

R(D) = Hβ
0 (D) [16]. Hence, by the definition of the dual

norm, (2.9) and (2.7), we deduce

‖0Iβxφ‖L2(D) = sup
ψ∈L2(D)

〈0Iβxφ, ψ〉
‖ψ‖L2(D)

= sup
v∈Hβ

0 (D)

〈0Iβxφ, RxD
β
1 v〉

‖RxD
β
1 v‖L2(D)

= sup
v∈Hβ

0 (D)

〈φ, v〉
‖RxD

β
1 v‖L2(D)

≤ c‖φ‖H−β(D).

This show the norm equivalence between ‖0Iβx · ‖L2(D) and ‖ · ‖H−β(D).

(b) proof of (2.12) For φ ∈ C∞0 (R), by Plancherel’s theorem, we have

(φ, 0I
2β
x φ)L2(D) = (φ̄,−∞I

2β
x φ̄)L2(R) = (̂̄φ, ̂

−∞I
2β
x φ̄)L2(R).

Since the Fourier transform of −∞I
2β
x φ =

x2β−1
+

Γ(2β) ∗ φ is given by (see, e.g.,

[9])
̂
−∞I

2β
x φ(ξ) = e−sgn(ξ)iπβ|ξ|−2βφ̂,

we have

(̂̄φ, ̂
−∞I

2β
x φ̄)L2(R) =

∫ ∞
−∞

e−sgn(ξ)iθ|ξ|−2β|̂̄φ(ξ)|2 dξ,

where by a similar argument in part (a), we obtain∫ ∞
−∞

e−sgn(ξ)iθ|ξ|−2β|̂̄φ(ξ)|2 dξ = cos(πβ)‖|ξ|−β ̂̄φ‖2L2(R).

By the inequality |ξ|−s ≥ (1 + |ξ|2)−s/2 for s ≥ 0 and (2.13), we have

(φ, 0I
2β
x φ)L2(D) ≥ cos(βπ)‖φ̄‖H−β(R) ≥ c cos(βπ)‖φ‖H−β(D).

Meanwhile, by (2.5), (2.6), and (2.11), we deduce

(φ, 0I
2β
x φ)L2(D) = (0I

β
xφ, xI

β
1 φ)L2(D) ≤ ‖0Iβxφ‖L2(D)‖xI

β
1 φ‖L2(D)

≤ c‖φ‖2H−β(D).

Similarly we can show the equivalence for (φ, xI
2β
1 φ)L2(D). 2

Remark 2.1. By a density argument, the norm equivalence (2.9)

(respectively (2.10)) is valid for φ ∈ Hβ
0 (D) (respectively φ ∈ H2β

0 (D)), and
(2.11) and (2.12) hold for φ ∈ L2(D). It is well known that for 0 < β < 1/2,

the spaces Hβ
0 (D) and Hβ(D) are equal [24]. This together with (2.9)

indicates that the induced norms are equivalent on Hβ(D) for 0 < β < 1/2,
and (2.7) holds for u, v ∈ Hβ(D).
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3. Legendre tau method

In this part, we describe a Legendre tau method for problems (1.1) and
(1.2), and derive an error estimate.

3.1. Legendre-tau method. First, we describe a Legendre tau method
[4, 15, 5] for approximating the operator A = − C

0D
α
x + q, i.e.,

Au = − 1

Γ(2− α)

∫ x

0
(x− s)1−αu′′(s)ds+ qu.

We denote the operator A with q ≡ 0 by A0. We begin with the concept
of tau extension. Let Lk(x) = Pk(2x − 1) be a shifted Legendre polyno-
mial defined on the interval D = [0, 1], with Pk being the kth Legendre
polynomial on the interval [−1, 1]. Let PN−2 denote the L2(D) orthogonal
projection onto the subspace

SN−2 = span({Lk}N−2
k=0 )

and denote uN−2 = PN−2u. By the orthogonality of shifted Legendre
polynomials, the coefficients {uk}N−2

k=0 of uN−2 for a given function u ∈
L2(D) are determined by

uk = 1
2k+1(u, Lk)L2(D), k = 0, . . . , N − 2.

The tau extension is defined as follows. Given uN−2 =
∑N−2

k=0 ukLk ∈ SN−2,
we consider the polynomial

ũN (x) = uN−2(x) + uN−1LN−1(x) + uNLN (x),

where the coefficients uN−1 and uN are determined so that the Dirichlet
boundary condition ũN (0) = ũN (1) = 0 is satisfied. Since Lk(0) = (−1)k

and Lk(1) = 1 (cf. Lemma 3.1 below), uN−1 and uN are given by

uN = −
∑

k: even

uk and uN−1 = −
∑
k: odd

uk if N is even, (3.14)

and

uN = −
∑
k: odd

uk and uN−1 = −
∑

k: even

uk if N is odd. (3.15)

The polynomial ũN so defined for uN−2 ∈ SN−2 is called a tau extension of
uN−2. The tau extension for u ∈ L2(D) is defined to be the tau extension
of the projection PN−2u ∈ SN−2, also denoted by ũN and the map from
u ∈ X to the extension ũN is denoted by τN (u) := ũN .

The Legendre-tau approximation AN : SN−2 → SN−2 of the operator
A is defined by

ANuN−2 = PN−2AũN = −PN−2
0I

2−α
x PN−2(ũN )′′ + PN−2(qũN ).



8 K. Ito, B. Jin, T. Takeuchi

The Legendre-tau approximation of A0 is denoted by AN0 .
The coefficient ofANuN−2 with respect to the basis Lj for j = 0, 1, . . . , N−

2 is given by

(ANuN−2)j =
1

1 + 2j

∫ 1

0
Lj(x)

(
−
∫ x

0

(x− s)1−α

Γ(2− α)
(ũN )′′ds+ q(x)ũN (x)

)
dx.

Remark 3.1. Similarly we can derive the Legendre tau approximation
to the adjoint operator A∗. First we derive the adjoint of A0: For φN−2 ∈
SN−2, we consider the expansion

PN−2

(∫ 1

s

(x− s)1−α

Γ(2− α)
φN−2(x)dx

)
=

N−2∑
k=0

βkLk(s).

and choose βN−1 and βN by the tau extension. In view of (2.6) and the
fact (ũN )′′ ∈ SN−2, then with TN (s) ≡ βN−1LN−1(s) + βNLN (s)

(AN0 uN−2, φN−2) =

∫ 1

0
φN−2(x)

(
−
∫ x

0

(x− s)1−α

Γ(2− α)
(ũN )′′ds

)
dx

= −
∫ 1

0
(ũN (s))′′PN−2

∫ 1

s

(x− s)1−α

Γ(2− α)
φN−2(x)dxds

= −
∫ 1

0
(ũN (s))′′

(
PN−2

∫ 1

s

(x− s)1−α

Γ(2− α)
φN−2(x)dx+ TN (s)

)
ds

= −
∫ 1

0
uN−2(s)

d2

ds2

(
PN−2

∫ 1

s

(x− s)1−α

Γ(2− α)
φN−2(x)dx+ TN (s)

)
ds.

Hence, (A∗)N ∈ L(SN−2, SN−2) is given by

(A∗)NφN−2 = − d2

ds2

(
PN−2

∫ 1

s

(x− s)1−α

Γ(2− α)
φN (x)dx+ TN (s)

)
+ PN−2(q(s)φN−2).

Hence the Legendre-tau method also provides an approximation of A∗.

Now we can formulate the Legendre tau approximation of problems
(1.1) and (1.2). For problem (1.1), it is to find uN−2 ∈ SN−2 such that

ANuN−2 = PN−2f. (3.16)

Similarly, for (1.2) it is to find uN−2 ∈ SN−2 and λN ∈ C such that

ANuN−2 = λNuN−2. (3.17)
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The efficient implementation of (3.16) and (3.17) are well documented in
the literature [21], and hence it is omitted. A preliminary convergence of
the scheme (3.16) for the case q ≡ 0 is presented next.

3.2. Convergence rate analysis. In this part we present an analysis of
the Legendre tau method for the source problem (1.1) with a zero potential
q ≡ 0. The authors are aware of only a few mathematical studies [4, 28]
on the Legendre tau method. Due to the nonlocal nature of the Caputo
derivative, the convergence rate analysis in these interesting works does not
apply to our scheme directly. We begin with some elementary estimates.

Lemma 3.1. For k ≥ 0, there holds

‖Lk‖2L2(D) = 1
2k+1 , ‖L′k‖2L2(D) = 2k(k + 1),

‖L′′k‖2L2(D) = 2
3(k2 + k + 3)(k − 1)k(k + 1)(k + 2).

P r o o f. The first identity is well known. Using the Rodrigues formula
for shifted Legendre polynomials

Lk(x) =
1

k!

dk

dxk
xk(x− 1)k,

we deduce directly (−1)kLk(0) = Lk(1) = 1, L′k(1) = (−1)k−1L′k(0) =

k(k + 1), (−1)kL′′k(0) = L′′k(1) = 1
2(k − 1)k(k + 1)(k + 2), (−1)k−1L′′′k (0) =

L′′′k (1) = 1
6(k − 2)(k − 1)k(k + 1)(k + 2)(k + 3). Then by integration by

parts and noting the fact that L′′k is a polynomial of degree max(k − 2, 0)
and it is orthogonal to Lk, we deduce

‖L′k‖2L2(D) =

∫ 1

0
L′kL

′
kdx = −

∫ 1

0
L′′kLkdx+ LkL

′
k|10 = 2k(k + 1).

Likewise, we deduce the second identity. 2

The next result recalls the approximation properties of the projection
operators PN and τN . The estimate on the tau extension τN requires fairly
restrictive regularity assumption u ∈ Hs(D), s ≥ 5.

Lemma 3.2. Let s ≥ r ≥ 0. Then for the operators PN and τN , there
hold for small ε ∈ (0, 1/2)

‖PNu− u‖Hr(D) ≤

{
cN2r−s−1/2‖u‖Hs(D), r ≥ 1,

cN3r/2−s‖u‖Hs(D), 0 ≤ r ≤ 1,

‖τNu− u‖Hr(D) ≤ cN2r+1/2+3ε/2−s‖u‖Hs(D), 1 ≤ r ≤ 2, ∀u ∈ Hs(D) ∩H1
0 (D), s ≥ 5.



10 K. Ito, B. Jin, T. Takeuchi

P r o o f. The first estimate is well known [2, p. 261]. This estimate
and Sobolev embedding theorem yield for ε ∈ (0, 1/6), the approximation
uN−2 = PN−2u satisfies

|uN−2(0)− u(0)|+ |uN−2(1)− u(1)| ≤ c‖PN−2u− u‖H1/2+ε(D)

≤ c(N − 2)3/2+3ε/2−s‖u‖Hs(D).

By the defining relations of the tau approximation, i.e., (3.14) and (3.15),
we have

|uN−1|+ |uN | ≤ |uN−2(0)|+ |uN−2(1)|,
and consequently

|uN−1|+ |uN | ≤ c(N − 2)3/2+3ε/2−s‖u‖Hs(D).

By Lemma 3.1, we deduce for r = 1, 2

‖τNu− u‖Hr(D) ≤ ‖PN−2u− u‖Hr(D) + |uN−1|‖LN−1‖Hr(D)

+ |uN |‖LN‖Hr(D)

≤ c(N − 2)2r−s−1/2‖u‖Hs(D) + c(N − 2)3/2+3ε/2−sN2r−1‖u‖Hs(D)

≤ cN2r+1/2+3ε/2−s‖u‖Hs(D).

The remaining assertion for 1 < r < 2 follows by interpolation [33]. 2

Our first result shows the unique solvability and stability of the Le-
gendre tau approximation for A0.

Theorem 3.1. Let f ∈ H(2−α)/2
0 (D).

(a) There exists a unique Legendre tau solution of AN0 uN−2 = PN−2f .
(b) The tau extension ũN of the Legendre tau solution uN−2 satisfies

‖(ũN )′′‖H−(2−α)/2(D) ≤ c‖f‖H(2−α)/2(D). (3.18)

P r o o f. Since the map AN0 is between finite dimensional spaces, it
suffices to show its injectivity, i.e, if AN0 uN−2 = 0 for uN−2 ∈ SN−2, then
uN−2 = 0 in SN−2. Now assume PN−2

0I
2−α
x (ũN )′′ = 0. Then multiplying

both sides by (ũN )′′ ∈ SN−2 and integrating over the domain D yields

(0I
2−α
x (ũN )′′, (ũN )′′)L2(D) = (0, (ũN )′′)L2(D) = 0.

Now the positivity of the form (·, 0I
2−α
x ·)L2(D), cf. Theorem 2.1, implies that

(ũN )′′ = 0. This however together with the boundary condition ũN (0) =
ũN (1) = 0 yields ũN = 0 and uN−2 = 0. This shows assertion (a).

To show the assertion (b), we note that vN−2 := (ũN )′′ satisfies

PN−2
0I

2−α
x PN−2vN−2 = PN−2f.
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By multiplying both sides by vN−2 ∈ SN−2, we deduce

(vN−2, J2−αvN−2)L2(D) = (vN−2, f)L2(D)

≤ ‖vN−2‖H−(2−α)/2(D)‖f‖H(2−α)/2(D).

Here the last inequality follows by

‖vN−2‖H−(2−α)/2(D) = sup
g

(vN−2, g)L2(D)

‖g‖
H

(2−α)/2
0 (D)

≥
(vN−2, f)L2(D)

‖f‖
H

(2−α)/2
0 (D)

.

This and Theorem 2.1 imply ‖vN−2‖H−(2−α)/2(D) ≤ c‖f‖H(2−α)/2(D), and

thus the desired assertion follows. 2

The next lemma gives a continuity estimate of 0I
2β
x : L2(D)→ Hβ(D).

Lemma 3.3. Let g ∈ L2(D) and β ∈ (0, 1/2). Then there holds

‖0I2β
x g‖Hβ(D) ≤ c‖g‖L2(D).

P r o o f. By Theorem 2.1, we deduce

‖0I2β
x g‖Hβ(D) ≤ c‖R0Dβ

x 0I
2β
x g‖L2(D) = c‖0Iβx g‖L2(D),

where the last line follows from (2.5) and (2.8). Now the assertion follows

by the boundedness of 0I
2β
x on L2(D) [20, p. 72, Lemma 2.1]. 2

The next lemma gives the crucial estimate for the convergence result.

Lemma 3.4. Let u and uN−2 ∈ SN−2 be the solution to problem (1.1)
with q = 0 and problem (3.16), respectively. Then there holds

‖uN−2 − u‖L2(D) ≤ c‖(τNu− u)′′‖L2(D) + ‖PN−2u− u‖L2(D).

P r o o f. It follows from the relation PN−2AN0 PN−2 = AN0 PN−2 that
(AN0 )−1PN−2AN0 PN−2g = PN−2g for g ∈ L2(D). Hence, we have

uN−2 − u = (AN0 )−1PN−2f − u
= (AN0 )−1PN−2(A0 −AN0 PN−2)u+ (PN−2 − I)u.

(3.19)

It remains to bound the first term. Let wN−2 = (AN0 )−1PN−2(A0 −
AN0 PN−2)u ∈ SN−2. By the definitions of AN0 and A0, we deduce

PN−2(A0 −AN0 PN−2)u = PN−2
0I

2−α
x (τNu− u)′′.

Hence wN−2 ∈ SN−2 satisfies

AN0 wN−2 = PN−2
0I

2−α
x (τNu− u)′′.
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Next we estimate the term on the right hand side. By letting β := (2−α)/2
and using Lemma 3.3

‖0I2−α
x (τNu− u)′′‖Hβ(D) ≤ c‖(τNu− u)′′‖L2(D).

Upon invoking Theorem 3.1, the tau approximation w̃N of wN−2 satisfies

‖(w̃N )′′‖H−β(D) ≤ c‖(τNu− u)′′‖L2(D). (3.20)

Using the boundary condition w̃N (0) = w̃N (1) = 0 and the boundedness of

0I
γ
x on L2(D), we deduce

‖(w̃N )′‖2L2(D) = ((w̃N )′, (w̃N )′)L2(D) = (−(w̃N )′′, w̃N )L2(D)

≤ ‖(w̃N )′′‖H−β(D)‖w̃N‖Hβ(D)

≤ c‖(w̃N )′′‖H−β(D)‖(w̃N )′‖L2(D).

Consequently,

‖(w̃N )′‖L2(D) ≤ c‖(w̃N )′′‖H−β(D). (3.21)

This together with Poincaré’s inequality and (3.20) yields

‖w̃N‖L2(D) ≤ c‖(τNu− u)′′‖L2(D).

Further, the L2(D) orthogonality of shifted Legendre polynomials implies

‖w̃N‖2L2(D) = ‖wN−2‖2L2(D) + |wN−1|2‖LN−1‖2L2(D)

+ |wN |2‖LN‖2L2(D) ≥ ‖w
N−2‖2L2(D).

Hence ‖wN−2‖L2(D) ≤ ‖w̃N‖L2(D), and we arrive at the following estimate

‖wN−2‖L2(D) ≤ c‖(τNu− u)′′‖L2(D)

The desired estimate now follows by the triangle inequality. 2

We have the following estimate on the tau-extension ũN of uN−2.

Corollary 3.1. Let u and uN−2 ∈ SN−2 be the solution to the source
problem A0u = f and its Legendre tau approximation, respectively. Then
for the tau extension ũN of uN−2 there holds

‖ũN − u‖L2(D) ≤ c‖(τNu− u)′′‖L2(D) + ‖τNu− u‖L2(D).

P r o o f. By the argument in the proof of Lemma 3.4, we have

ũN − u = τN (AN0 )−1PN−2(A0 −AN0 PN−2)u+ (τNPN−2 − I)u

= w̃N + (τN − I)u.

Now the estimate follows from the triangle inequality and (3.21). 2
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Now we state our main theoretical result: convergence rate of the Le-
gendre tau approximation, which is direct from Lemmas 3.2 and 3.4.

Theorem 3.2. Let f ∈ H(2−α)/2
0 (D) and q ≡ 0, and u and uN−2 ∈

SN−2 be the solutions to (1.1) and (3.16), respectively. Then for u ∈
Hs(D) ∩H1

0 (D), s ≥ 5, and ε ∈ (0, 1/2), there holds

‖u− uN−2‖L2(D) ≤ cN9/2+ε−s.

Remark 3.2. The error estimate in Theorem 3.2 is suboptimal, in
view of the estimate for the L2(D) projection. By Corollary 3.1, it holds
also for the tau extension ũN of the approximation uN−2.

4. Numerical experiments and discussions

Now we present numerical results to illustrate the efficiency and ac-
curacy of the Legendre tau method in Section 3 for problems (1.1) and
(1.2). All the computations are performed on a desktop with 2.0 GHz
CPU and 6.00GB RAM using MATLAB (R2009a). We consider the follow-
ing three potentials: (i) q1(x) ≡ 0, (ii) q2(x) = 20x3(1 − x)e−x, and (iii)
q3(x) = χ[0,1/2)−χ[1/2,1], where χS denotes the characteristic function of the
set S. The numerical experiments focus on nonsmooth problem data, since
the case of smooth solutions has been extensively studied. We compute the
reference solution using a higher-order Legendre tau approximation.

4.1. Numerical results for source problem. First, we illustrate the
method on the source problem (1.1), with a smooth solution.

Example 4.1. In this example, we consider problem (1.1) with a

source term f = Γ(128/17)
Γ(128/17−α)x

111/17−α + (x− x111/17)q, and the potential q

being either q2 or q3. The exact solution u is given by u = x− x111/17.

The numerical results are shown in Fig. 1. The method converges
quickly, irrespective of α and q, since the true solution u is very smooth.
Twenty terms in the Legendre tau approximation can almost reach the
machine accuracy. This shows clearly the efficiency and accuracy of the
method for problem (1.1) with a smooth solution.

Usually for fractional elliptic problems, the solution u cannot be arbi-

trarily smooth, even if the source term f is very smooth [16]: for f ∈ H̃β
L

and q ∈ Cβ(D̄) ∩ H̃β
L(D), the solution u belongs to H̃α+β

L (D) ∩Hα/2
0 (D),
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Figure 1. Numerical results for example 4.1 with (a) q2

and (b) q3.

and often this is the best regularity. Hence, it is important to test the
method with a general problem setup. We illustrate it with one example.

Example 4.2. We consider problem (1.1) with f = xµ sinx, for the
following three cases:

(a) µ = 0, α = 5/4, and different q.
(b) µ = 0, q2 or q3, and different α values.
(c) α = 3/2, q = q2 or q3, and different µ values.

In example 4.2(a), even for a smooth potential q, the solution u is not
very smooth: it contains a leading term cαx

1+α for x close to the origin.
The errors for q1 and q2 are almost identical since q2 is smoother than
f , and for q3, the method converges much slower due to limited solution
regularity, cf. Table 1. Nonetheless, for all three potentials, a steady al-
gebraic convergence is observed. Example 4.2(b) examines the influence of
the fractional order α: The solution u becomes more smooth as the order
α increases. This is numerically confirmed: as α increases from α = 5/4
to α = 7/4, the convergence rate improves accordingly, cf. Fig. 2. The
pickup in the convergence rate agrees with the increase of α. In example

4.2(c), the exponent µ determines the smoothness of f in the space H̃β
L(D):

the larger is µ, the smoother is the solution u in the space H̃β
L(D), for a

smooth q. Since q2 belongs to H̃3+ε
L (D), whereas q3 belongs to only H̃ε

L(D),
ε ∈ (0, 1/2), the regularity of u is determined by f and q for q2 and q3, re-
spectively. For q2, the convergence improves as µ increases, whereas for
q3, the convergence is identical for all three different µ values, cf. Fig. 3.
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Hence, the Legendre tau method can converge reasonably well for problem
(1.1) with nonsmooth problem data.

Table 1. The L2-error for problem (1.1), with f = sinx
and α = 5/4.

N 10 20 30 40 50 60 70 80
q1 5.72e-6 3.22e-7 6.13e-8 1.90e-8 7.72e-9 3.69e-9 1.98e-9 1.15e-9
q2 5.85e-6 3.21e-7 6.13e-8 1.90e-8 7.71e-9 3.69e-9 1.98e-9 1.15e-9
q3 4.18e-4 1.19e-4 5.82e-5 3.50e-5 2.36e-5 1.71e-5 1.29e-5 1.01e-5
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Figure 2. Numerical methods for example 4.2(b).
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Figure 3. Numerical methods for example 4.2(c) with f = xµ sinx.
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4.2. Numerical results for eigenvalue problem. For the Sturm-Liouville
problem, first we consider the case of a zero potential q1 = 0, and the nu-
merical results are shown in Fig. 4. Here the error e(λk) is measured by
e(λk) = |λk−λk(N)|, where λk(N) denotes the kth eigenvalue approximate
by the Legendre tau method of order N . The error e for a fixed eigenvalue
decreases with the increase of the polynomial order N . It shows a fast
convergence and gives a very good approximation even with a fairly small
N . In Fig. 4(b), we plot the number of eigenvalues that are correct to
the third decimal place, i.e., |λk − λk(N)| < 10−3, denoted by M , for each
Legendre polynomial order N . About one half of them are reliable to this
accuracy, showing the accuracy and efficiency of the method. Further, we
show the errors of the eigenvalues computed with N = 100 and 150 in Fig.
4(c). The smaller is the eigenvalue, the smaller is the error; and for a wide
range of eigenvalues, their errors are comparable to each other.

Next we compare the new method with a piecewise linear FEM [16].
The results are presented in Table 2. The FEM solution is obtained using
a mesh with 5120 elements. With only N = 50, the 19th and 20th ap-
proximate eigenvalues are correct to the fourth decimal place. The FEM
approximations are correct only to the third decimal place, despite the very
refined mesh. Due to the low-order convergence of the FEM, there are less
than 50 eigenvalues correct to the first decimal place, out of 5119 approxi-
mate eigenvalues. The Legendre tau method with N = 150 yields accurate
estimate for the first 80 eigenvalues. The FEM with 5120 elements takes 35
seconds, but the Legendre tau method with N = 150 takes only 5 seconds,
which shows clearly its efficiency for computing eigenvalue approximations.
Although not presented, we note that the observations remain valid for a
smooth potential, e.g. q2.

Table 2. The first twenty eigenvalues for problem (1.2)
with the potential q1 ≡ 0, α = 7/4.

N 50 200 FEM (5120)

1 9.59774287e0 9.59774287e0 9.59774275e0

2 2.59580498e1 2.59580498e1 2.59580498e1
3 5.94945502e1 5.94945503e1 5.94945476e1

4 8.29981244e1 8.29981242e1 8.29981300e1

5,6 1.52686548e2±1.40992295e1i 1.52686547e2±1.40992314e1i 1.52686561e2±1.40991929e1i
7,8 2.57672556e2±4.27793096e1i 2.57672553e2±4.27793143e1i 2.57672610e2±4.27792461e1i

9,10 3.84066744e2±7.88247425e1i 3.84066734e2±7.88247539e1i 3.84066889e2±7.88246203e1i
11,12 5.30749764e2±1.23398271e2i 5.30749741e2±1.23398295e2i 5.30750080e2±1.23398061e2i
13,14 6.96846590e2±1.76231751e2i 6.96846541e2±1.76231796e2i 6.96847191e2±1.76231418e2i

15,16 8.81612150e2±2.36996717e2i 8.81612059e2±2.36996794e2i 8.81613193e2±2.36996225e2i
17,18 1.08441846e3±3.05412459e2i 1.08441830e3±3.05412583e2i 1.08442015e3±3.05411765e2i

19,20 1.30473055e3±3.81240768e2i 1.30473028e3±3.81240959e2i 1.30473313e3±3.81239828e2i
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Figure 4. Numerical results for problem (1.2) with q1 ≡ 0,
from top to bottom α = 5/4, 3/2 and 7/4. (a): the error e
v.s. polynomial order N ; (b): the number M of eigenvalues
correct to the third decimal place v.s. N , and (c) the errors
for the first 100 eigenvalues with N = 100 and 150.

Last we present the results for the discontinuous potential q3(x) in Fig.
5. Then the eigenfunctions have limited Sobolev regularity, and thus a fast
convergence is not expected. Surprisingly, a fast convergence of eigenvalue
approximations is still observed, and it is only slightly slower than that for
a smooth potential, albeit less steady: it suffers from slight oscillations as
N increases. The approximations are reasonable for a small N , and the
accuracy improves steadily with the increase of the polynomial order N .
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Figure 5. Numerical results for problem (1.2) with q3.

5. Concluding remarks

We have revisited a Legendre tau method for a boundary value problem
with a Caputo fractional derivative in the leading term. A convergence rate
result is provided for the source problem with a smooth solution. It shows a
good convergence for both smooth and nonsmooth solutions, which awaits
further theoretical justifications. The method was applied to the eigenvalue
problem. It can yield exceedingly accurate eigenvalue approximations for
both smooth and discontinuous potentials. Hence, the method is promising
for fractional boundary value problems.

There are many problems deserving further study. First, the analysis
of the scheme remains challenging, especially for the case of a nonzero
potential, and the optimal L2 convergence rate is still missing. Second, the
convergence of eigenvalue approximations is always very fast, irrespective
of the smoothness of the potential, which awaits theoretical justification.
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