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Abstract 

This thesis concerns the development of a new and facile sol-gel synthesis route for 

production of phosphate-based glasses for biomedical applications including; tissue 

engineering, imaging contrast agents and drug delivery systems. The structure of 

the prepared samples was probed by XRD, 31P MAS-NMR, EDX and FTIR 

spectroscopy that confirmed successful synthesis and production of phosphate-

based glasses via the sol-gel method. In this study, for the first time, quaternary 

phosphate-based sol-gel derived glasses in the P2O5–CaO–Na2O–TiO2 system with 

a high TiO2 content of up to 30 mol% were synthesised. While incorporating a high 

percentage of titanium into the phosphate network is non-trivial via traditional melt-

quench methods. Investigation of quaternary glasses with the general formula of 

(P2O5)55–(CaO)25–(Na2O)(20-x)–(TiO2)x, where X = 0, 5, 10 or 15 revealed, 

substituting titanium in place of sodium significantly improves the stability and 

prolongs the degradation of these glasses, which opens up a number of potential 

biomedical applications. Cell studies on titanium-stabilised glasses suggested 

glasses containing 5 or 10 mol% TiO2  have optimal potential for bone tissue 

engineering applications. Electrospraying was used to prepare (P2O5)55–(CaO)30–

(Na2O)15 glass nanospheres with a diameter size range of 200-500 nm. These glass 

nanospheres were used as a transient contrast agent for ultrasound imaging to 

label mesenchymal stem cells and it was determined in vitro and in vivo that these 

nanospheres had a detection limit of 5 and 9 µg.mL-1, respectively. Cell counts 

down to 4000 could be measured with ultrasound imaging with no cytotoxicity at 

doses required for imaging. Glass nanospheres were also used as a carrier for drug 

delivery applications with a linear release of tetracycline hydrochloride molecules 

within the first 4 hours of the study period. Importantly, ion release studies 

confirmed these glass nanospheres biodegrade into an aqueous medium with 

degradation products that can be easily metabolised in the body. To the knowledge 
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of the author, this is the first report of sol-gel synthesis and electrospraying to 

prepare glass nanospheres at low processing temperature and the first use of such 

a system for both diagnostic and therapeutic purposes. 
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(P2O5)55-(CaO)25-(Na2O)10-(TiO2)10 glass on (A) aluminium 

foil and (B) titanium disc. C) SEM image of coated titanium 

disc after heat-treatment at 250 °C. 
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Abbreviations 

HA Hydroxyapatite 

SBF Simulated Body Fluid 

PLLA Poly-L-Lactic Acid 

PGA Polyglycolic Acid 

PLA Polylactic Acid 

HCA carbonated hydroxyapatite 

PCA Poly Cyanoacrylate 

PCL Poly (ε-Caprolactone) 

XRD X-Ray Diffraction 

FTIR Fourier Transform Infrared 

EDX Energy Dispersive X-Ray 
31P MAS-NMR 31P Magic Angle Spinning Nuclear Magnetic Resonance 

n-DMF n-Dimethyl Formamide 

SEM Scanning Electron Microscopy 

CLSM Confocal Laser Scanning Microscopy 

IC Ion Chromatography 

ICP-MS Inductively Coupled Plasma Mass Spectroscopy 

PGN Phosphate-based Glass Nanospheres 

UPLC Ultra Performance Liquid Chromatography 

DCFDA 2’,7’ –Dichlorofluorescin Diacetate 

MSC Human mesenchymal stem cell 

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

(4-sulfophenyl)-2H-tetrazolium 

DMSO Dimethyl Sulfoxide 

HBSS Hanks Buffered Saline Solution 

SB Signal-to-Background 

TCH Tetracycline Hydrochloride 

POS Positive Control 

NEG Negative Control 

ROS Reactive Oxygen Species 
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1.1. Biomaterials

Over the past 50 years, medical care has been developed and human life

expectancy has increased dramatically. Since the mean age of the population of

developed countries is continuously increasing, there is a significant and growing

need for materials to replace diseased or damaged human tissues. These materials

are required to be compatible with the body, that is related to the behaviour of the

material in various contexts. They must have the ability to perform with an

appropriate host response in a specific situation which considered to be one of the

most specific properties of biomaterials and is called biocompatibility. A

biocompatible material must elicit minimal immune response and should not disturb

the blood flow (Cook et al., 2003).

Ceramics have shown great potential as biomaterials, due to their physicochemical

properties. Almost any ceramic material that is not toxic can be potentially used as

a biomaterial and can be defined as substances that augment the function of soft

and hard tissues such as repair and reconstruction of bone defects and diseased or

damaged musculoskeletal system (Ben-Nissan, 2004). Bioceramic materials are

inorganic and usually contain both metallic and non-metallic elements where the

atomic bonding is almost entirely ionic and can be subclassified as amorphous and

crystalline. Amorphous bioceramics show order only on a very short length scale

and are called glasses, but crystalline bioceramics show regular atomic arrays over

large distances.

Bioceramics have a long history but only since the 1960s with the improvement of

surgical techniques, the replacement of body parts has become more

commonplace (Hench and Wilson, 1991, Peppas and Langer, 1994). Undoubtedly,

bioceramics have had a great impact on the practice of contemporary medicine and

patient care in both saving, and improving the quality of the lives of humans and
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animals. Some of their major clinical applications are in dentistry, orthopaedics,

maxillofacial surgery, and more recently drug delivery and imaging contrast agents

(Jones and Hench, 2003, Vallet-Regi and Ruiz-Hernandez, 2011, Jokerst et al.,

2013, Foroutan et al., 2015).

1.2. Biomaterial classifications

Biomaterials can be derived either from natural or synthetic components and can be

classified into two main categories: biological with a natural origin or biomedical

with an artificial origin. The main problems with the biological materials are their

limitation of the amount that can be collected and increasing the risk of viral and

bacterial infections (Chai et al., 2011) as well as control of sample to sample and

batch to batch variability. While artificial materials can be supplied from a variety of

materials (polymers, ceramics, and metals) and can be sterilised to reduce the risk

of bacterial infections.

One of the main material groups being developed are bioceramics, since they show

very good interaction with their surrounded tissues. According to their biological

response, bioceramics can be classified as (Hulbert et al., 1982); 1) bioinert

(alumina and zirconia), 2) bioactive or surface reactive (sintered HA and bioglass),

and 3) bioresorbable (phosphate-based glasses).

1.2.1. Bioinert materials

Up to a few decades ago, bioceramics were expected to have appropriate physical

properties to suit the function of the replaced tissue with minimal cytotoxicity

(Hench, 1980). Bioinert materials belong to the first generation of bioceramics and

are characterised to be accepted by the body with minimal or low interaction with
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the physiological environment. These materials do not elicit a significant response

from the body and a mechano-chemical bond is formed with the bone and tissue.

They are typically based on dense or porous ceramics such as alumina or zirconia.

Alumina ceramics have proven their bioinertness with high hardness and abrasion

resistance mainly for dental and orthopaedic applications. According the American

Society for Testing and Materials (ASTM), alumina implants should contain 99.5 %

pure alumina and other alkali oxides with less than 0.1 % of SiO2 (Park, 2003).

Zirconia ceramics are in clinical use in total hip replacement because of their

inertness, high mechanical strength and fracture toughness (Hentrich et al., 1969).

1.2.2. Bioactive materials

The second generation of bioceramics is defined as bioactive with a surface that

has a spontaneous capability to interact with physiological fluids in the human body

and form a bone-like layer which is very similar to the mineral phase of the bone.

The bone-like layer made of hydroxyapatite (HA) and can exhibit fast reaction

kinetics that results in the formation of a good chemical bond between the material

and the tissue at the interface (Kokubo et al., 2003). This property makes these

materials ideal for various biomedical applications such as orthopaedics and dental

prosthetics to induce regeneration of the damaged bone and tissue. As research

developed from bioinert toward bioactive ceramics, scientists focused on their

different structures (crystalline, glass, and glass-ceramic). They found that the

compositions that mimicked the inorganic component of bone, could form a good

interaction with hard and soft tissues (Urist et al., 1994). One of the most widely

used crystalline bioactive ceramic is dense HA (hydroxyapatite). However, it shows

poor mechanical properties which limit its application to space filling or use as a
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coating for other biomaterials with good mechanical properties. Meanwhile, among

amorphous bioactive ceramics, silicate-based glasses have been more popular,

with good interaction with the bone and surrounding tissues (Hench and Wilson,

1991, Hench, 1998).

1.2.2.1. Bioactive glasses

Generally, the term glass includes every solid that possesses a non-crystalline

structure and exhibits a glass transition when heated towards the liquid state.

Bioactive glasses have been defined as materials that induce a specific biological

activity and show specific surface reaction when implanted into the body (Rahaman

et al., 2011). Indeed, one of the most attractive features of glasses is their non-

stoichiometry and thus compositional flexibility, which allows researchers to tailor

the properties to the end application. These glasses also have the potential to

initiate a range of biological responses by releasing ions into the local environment

(Hench and Wilson, 1984). The most applicable bioactive glasses are silicate-based

glasses that have been used extensively in non-load bearing applications and there

is a possibility to design these glasses with specific clinical properties, mainly for

tissue regeneration applications (Hench and Wilson, 1991). The first silicate-based

bioactive glass was discovered by Hench et al. (Hench and Wilson, 1991, Hench,

1998) as a second generation of biomaterials with a reactive surface which could

exhibit reaction kinetics to bond with the bone at the interface (Hench and Polak,

2002). The base components of these bioactive glasses are usually SiO2 (silicate is

the main component), Na2O, CaO, and P2O5. These glasses are stable to

hydrolysis because of their high silica content, but they can promote direct

osteoblast cell attachment and proliferation. Studies have shown that the content of

Si cations in the human body varies, around 100 ppm in bone and ligaments to
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around 200-600 ppm in cartilage and other connective tissues. Release of Si4+ ions

in an aqueous medium has been demonstrated to promote osteoblast proliferation,

differentiation and collagen production (Carlisle, 1970, Pietak et al., 2007).

However, glasses with a significantly lower molar ratio of Ca and P do not generate

direct bonding with the bone.

The most studied silica-based glass composition is 45S5 bioglass®, which contains

45% SiO2, 24.5% Na2O, 24.5% CaO and 6% P2O5 in weight. The bioactivity and

bone bonding of the 45S5 bioglass® is attributed to the formation of a carbonate-

substituted hydroxyapatite-like (HCA) layer on the glass surface in contact with the

body fluid. This layer is similar to the mineral constituent of the bone and bonds

firmly with the living bone and tissue (Hench, 1998). In vitro studies on the

bioactivity of these glasses is typically performed in simulated body fluid (SBF),

which is an aqueous solution whose composition of inorganic ions is almost equal

to blood plasma. This method is an easy way to evaluate the surface reactivity of a

material and if a layer of HCA is formed on the material surface, then the material is

considered as bioactive and can bond with the living tissue on implantation (Kokubo

and Takadama, 2006). The presence of silanol groups and the textural properties,

such as porosity and pore volume, seem to play a significant role in the formation of

the apatite layer on their surfaces (Cho et al., 1998, Pereira et al., 1995).

Presumably, the adsorption of PO4
3- by hydrogen bonding and Ca2+ ions on the

silica surface induce the precipitation of the apatite-like layer (Li et al., 1992,

Andersson and Karlsson, 1991). These bioglasses have been used to repair jaw

defects caused by periodontal disease or hard tissue replacement such as the

small bone in the middle ear (Rust et al., 1996). The main advantage of these

glasses is rapid connection to the tissue, however, there are some questions raised

regarding their slow degradation, the long term effects of silica in the body, and the
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poor mechanical properties that may limit the application of these glasses for bone

replacement purposes.

1.2.3. Bioresorbable materials

Different terms (e.g. degradable, resorbable, absorbable) are used to indicate that a

given material will gradually disappear after being introduced into a living organ and

is defined as a third generation of biomaterials. These materials react and dissolve

in the physiological fluid and can be replaced by bone and tissue cells over a

specific period of time (Vallet-Regi, 2001). Bioresorbable materials offer a potential

solution to complications such as tissue irritation and inflammation that may require

secondary surgery to remove the implant. The degradation rate of these materials

should not exceed the rate of tissue formation and to ensure a gradual stress

transfer from implant to tissue, the rate at which the implant weakens should be

matched with the increase in tissue strength. The newly replaced tissue is

completely biological and should have very similar properties to the surrounding

tissue.

A good bioresorbable material should have the following properties:

I. Dissolution rate matches with the regeneration rate of the damaged tissue

II. The interface between tissue and implant remains stable during the

regeneration

III. The break-down components are easily metabolised in the body

The use of polymers as bioresorbale materials has been extensively studied. One

of the earliest studies on bioresorbable materials was done by Kulkarni et al.

(Kulkarni et al., 1966) who studied the application of poly-L-lactic acid (PLLA) with
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the slow degradation rate in animals and no serious tissue reactions. Later, the use

of various bioresorbable materials such as polyglycolic acid (PGA) and polylactic

acid (PLA) led to materials with better biodegradation (Rokkanen et al., 2000).

However, the degradation of these polymer-based systems could result in polymer

fragments with heterogeneous chain-lengths that may lead to toxicity (Suuronen et

al., 2004).

Calcium phosphate ceramics are generally bioactive and have been widely used in

medicine as bone substitutes, maxillofacial reconstruction, dental implant coatings,

and orthopaedic prostheses. These ceramics show excellent biocompatibility

because of their chemical and structural similarities to the inorganic phase of

human bone, but only some of them are bioresorbable. Bioresorbability of these

ceramics depends on the composition, porosity, particle size, and preparation

condition. For example, pure hydroxyapatite sintered at high temperature is

minimally resorbabale, whereas, it is resorbable if sintered at lower temperatures

(900 C) (LeGeros, 2008). Tricalcium phosphate ceramics are also known as

bioresorbable materials with a greater dissolution rate in comparison to the

hydroxyapatite and are usually resorbed within one month of implantation (Suzuki

et al., 1997). These bioresorbable ceramics have been used clinically as a bone

filler to repair periodontal defects, augmentation, and have been formed into a

number of different geometries, to be used as a drug delivery system (Park, 2003,

Damien and Parsons, 1991). Phosphate-based glasses may also offer a great

potential for soft and hard tissue regeneration since they are bioresorbable with a

controllable solubility by altering their compositions (Franks et al., 2000, Knowles,

2003).
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1.2.3.1. Bioresorbable glasses

Phosphate-based glasses seem to be an attractive material for biomedical

applications since they are highly biocompatible with controllable degradation rate

and break-down components that can easily be metabolised in the body (Knowles,

2003, Kiani et al., 2012). Studies confirmed that these glasses show a controllable

degradation rate in aqueous medium (from a few days to several months) and can

be used when the implant is needed for a certain length of time (mostly short term

and non-load bearing applications) to promote healing or growth surrounding

damaged tissue or to enhance and promote tissue regeneration through the

delivery of cells and bone growth factors (Knowles, 2003, Navarro et al., 2003b).

The addition of metal oxides such as TiO2 and Fe2O3 to these glasses can increase

their durability to make them more applicable to be used as a third generation of

biomaterials in the field of tissue engineering (Knowles, 2003, Pickup et al., 2008b,

Ahmed et al., 2004a, Lakhkar et al., 2012).

1.3. Phosphate-based glasses

1.3.1. Structure

Phosphate-based glasses are inorganic polymers based upon the tetrahedral

phosphate anion, which is linked to form a three-dimensional network (Brow, 2000).

These glasses are formed of sp3 hybrid orbitals by the phosphorus outer electrons

(3s23p3). The fifth electron is promoted to the 3d orbital where strong molecular

bonding orbitals are obtained with oxygen 2p electrons, which is charge balanced

by polymerisation or the presence of metallic ions (Cruickshank, 1961). The

tetrahedra are classified using the Qi terminology originally devised for silicate-

based glasses, but has been applied to phosphates where (i) represents the
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number of bridging oxygen atoms per tetrahedron (Lippmaa et al., 1980, Abou Neel

et al., 2009).

The prevalence of any particular Qi species depends on the cation content of the

glass composition. If phosphorus pentoxide is heated without adding any cation

then the PO4 tetrahedra can be attached to a maximum of three neighbouring

tetrahedra forming a three-dimensional network (Q3 species) that is named

ultraphosphate (Navarro et al., 2003a, Jager et al., 2000). The Q3 species will be

the only phosphate group within highly cross-linked phosphate network. Adding

metal cations such as Li+, Na+, and K+ change the Q3 to Q2 species (Brow, 2000).

The positive charge for every phosphate anion, with theoretically infinite phosphate

chain lengths, and when the concentration of cations is equal to anions, only Q2

species are present and is named a meta-phosphate composition (Engelhar.G,

1972, Vanwazer and Holst, 1950, Martin, 1991). The addition of further cations will

form terminating Q1 species that decrease the possible chain length and when the

concentration of cations is twice the anions, only Q1 species dominate. As this

anion can only form on oxygen bridges, it is termed a chain terminator, producing

only phosphate dimers, or pyrophosphate, when it is the only species present and

increasing the amount of cations up to three times higher the number of anions

changes the Q1 to Q0 species and is denoted orthophosphate (Engelhar.G, 1972,

Vanwazer and Holst, 1950, Martin, 1991). Contamination with water can also cause

compositional anomalies when making phosphate glasses. Water has a similar role

to alkali oxides, which reduces the polymerisation by the formation of hydroxyl

groups (Brow et al., 1990). Figure 1.1 shows the schematic phosphate structure as

a function of composition.
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Figure 1.1. Schematic phosphate structure as a function of composition (Vanwazer

and Griffith, 1955).

1.3.2. Synthesis methods

1.3.2.1. Melt-quench

In the melt-quench method a mixture of oxide precursors is melted in a furnace at

temperatures of usually over 1000 ˚C (the exact melting temperature depends on 

the glass composition) and amorphous solid can be obtained by rapid quenching of

the melt obtained by the fusion of one or more precursors (Lakhkar et al., 2011,

Abou Neel et al., 2009). When the cooling rate is sufficiently high to suppress

nucleation and crystal growth, the melt’s disordered state is maintained in the solid

state. To achieve a high cooling rate the melt is usually spread on a solid surface of

a high thermally conductive material like steel. Alternatively, the molten glass can

be poured into a preheated mould to form different shapes such as plates or rods.

In this case, the mould with the molten glass is placed in an annealing furnace and
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the glass is cooled down gradually to the room temperature to remove any residual

stress.

Since the main component in the phosphate-based glasses (phosphorus pentoxide)

is highly hygroscopic, the presence of small amounts of water can promote

crystallisation (Brow et al., 1990). To overcome this problem some proportion of

phosphorus can be added in the form of a stable oxides such as CaHPO4 or

NaH2PO4 and then adding any remaining minimal amount as pure P2O5 or melting

the glass in ampoules or covered crucibles. For instance, to synthesise ternary

P2O5-CaO-Na2O glass systems; P2O5, NaH2PO4, and CaCO3 powders can be used

as the sources of phosphorus, sodium and calcium. The solid mixture is melted for

0.5-2 hour in a Pt/Rh crucible in a range of 800-1550 ˚C depending on the 

composition. The melt is then poured into a metal or graphite mould and annealed

to the room temperature from 350-500 ˚C with a cooling rate of 5-10 ˚C.min-1 to

remove any residual stresses (Franks et al., 2001, Abou Neel et al., 2009).

1.3.2.2. Sol-gel

The sol-gel method serves as a useful alternative (depending on the end

application) to the conventional melt-quench method and refers to a low-

temperature synthesis method by using chemical precursors in liquid form to

produce ceramics and glasses with high purity and homogeneity. The interest in

producing glasses via sol-gel routes has been increasing very rapidly since the

processing temperature is usually below the crystallisation temperature of the oxide

elements that allows for the production of novel glass compositions (Carta et al.,

2005). Another advantage of sol-gel synthesis over the other methods is the

tunable structure that allows control over the morphology, porosity, size, and the
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ability to modify the surface that is not achievable via the melt-quench route. Such

examples include spraying methods and spin casting as processing methods which

allow structures such as ultra-thin and uniform coatings to be achieved.

The main advantages of the sol-gel synthesis are;

I. High purity

II. Homogeneity

III. Low processing temperature that allows to incorporate different kinds of

inorganic, organic, and biomolecules during the formation of a gel matrix

IV. Low energy required in comparison with the melt-quench method

V. A variety of shapes and morphologies can be obtained

The sol-gel process occurs where one or many elements are used to form a sol

from which is obtained a homogeneous and amorphous gel solid by the transition

from a liquid sol to a solid gel (Gupta and Kumar, 2008). In this process, choosing

the right precursors, temperature of the precursor solutions, and appropriate ageing

time have been found to be critical processing factors (Hench and West, 1990). At a

very early stage of the development of sol-gel technology, the need for precursor

compounds that have high solubility in an organic solvent that can easily transform

into chemically reactive forms are essential. Studies have shown phosphoric acid

(H3PO4) cannot be used as a phosphorus precursor because it is too reactive and

leads to precipitation rather than gelation and more convenient precursors could be

obtained by dissolving P2O5 into alcohol solutions (Livage et al., 1992, Christensen

et al., 1990).

The interest in phosphate-based sol-gel materials has been increased by the

availability of PO(OH)3-x(OR)x (R=alkyl group) as a better phosphate precursor

choice (Noda et al., 1997). Tang et al. (Tang et al., 2005) successfully synthesised
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transparent titanophophate sol-gel derived glasses with high refractive index for

optical applications by using triethyl phosphate as a phosphorus precursor. In

another study by Carta et al. (Carta et al., 2005), quaternary phosphate-based

glasses in the P2O5-CaO-Na2O-SiO2 system with low silica content were

successfully prepared by using P2O5 dissolved in anhydrous ethanol. Following that

silicate free sol-gel glasses in the P2O5-CaO-Na2O system were successfully

synthesised for biomedical application purposes (Carta et al., 2007a, Lee et al.,

2013). The process of reacting from the liquid may allow these sol-gel derived

glasses to be drawn into fibres, micro/nano-sized glass spheres, or as a thin film on

a substrate. Low processing temperatures also have direct and positive implications

for biomedical applications, specifically in drug delivery systems that offer molecular

control over the incorporation of active biological ingredients such as antibiotics and

chemotherapeutic molecules into the glass structure (Pickup et al., 2012). A

comparison between sol-gel and melt-derived glasses with similar compositions

also appear to have similar structure and atomic correlations (Carta et al., 2007b).

1.3.2.2.1. Preparation of the sol

The first step involves the mix of components in the solution and consists of a

series of successive reactions. Generally, a sol is a colloidal suspension of solid

particles in a liquid and since the particles do not adhere to adjacent particles, each

particle remains completely dispersed (Zelinski and Uhlmann, 1984, Kendall and

Stainton, 2001). Sols are the simplest colloid dispersion and can be formed with

different kinds of structure depending on the suspension.
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1.3.2.2.2. Colloid formation

When the particles of the sol grow through further aggregation a colloid is formed.

Colloids are solid particles with a diameter size range of 1-100 nm that can mimic

the behaviour of atoms in the dispersed liquid with an amorphous or crystalline

structure (Hench and West, 1990). Colloids can be classified into four main types:

coacervates, tactoids, crystalloids, and flocks (Figure 1.2) (Heller, 1980).

Coacervates are particles that attach to one another, but are not bond together by

surface charges or van der Waals attraction. Tactoids are particles that are

regularly arranged, but not bonded with one another, and if slowly dried or a

repulsive barrier is gradually reduced, the particles will be irreversibly bond in an

ordered arrangement known as a crystalloid. However, if particles rapidly

aggregate, they form disordered clusters termed flocks.

Figure 1.2. Four types of aggregated colloids that are coacervates, tactoid,

crystalloids, and flocks (Heller, 1980).

1.3.2.2.3. Gel formation

A gel is a colloidal or polymeric solid containing a fluid component which has an

internal network to make a three dimensional network (Hench and West, 1990). The

sol and gel are distinguished by the degree of adhesion, as particles of a gel adhere

Coacervates Tactoid Crystalloids Flocks
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strongly, whereas sol particles disperse discretely (Kendall and Stainton, 2001).

The high coordination number (the number of adhesive points with gel particles) of

a gel determines the gel structure and if it is strong enough, it does not crack when

the liquid is removed, but the gel may collapse when it is less well connected. The

strength of a gel depends on whether the bonding between the solid phase is

permanent or reversible, which depends on the mechanism of gelation. During

gelation, aggregated particles grow into clusters and then these clusters link

together to produce a gel. The gel point is identified as the moment when the last

bond is formed in the cluster that causes a sharp increase in the viscosity.

1.3.2.2.4. Ageing and drying

Ageing is essential to increase the strength of the gel against cracking. This can

occur during the drying stage (Hench and West, 1990). At this stage, more bond

formation occurs and polymer or particles continue to attach themselves and this

increases the interparticle necks and decreases the porosity. Shrinkage of the gel

occurs while the liquid is removed from the pores that can affect the strength of the

network and also plays an important role in the gel structure.

Drying can be divided into three main stages (Hench and West, 1990): In the first

stage, the reduction of gel volume is equal to the volume of evaporated liquid and

generally changes of structure such as volume, weight, and density occurs. The

second stage starts when the critical point is reached with highest capillary

pressure and the gel resists further shrinkage. Consequently, cracking is likely to

occur at this stage and because of the decreased rate of evaporation, it is called the

first falling rate period. In the third stage, the liquid ceases to flow to the surface and
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is removed only by diffusion of its vapour and is named the second falling rate

period.

1.3.2.2.5. Preparation of bulk sol-gel derived glasses

In the final heat treatment stage, the remaining solvent evaporates and a bulk glass

can be obtained. A bulk glass is defined here as a glass piece, the smallest

dimention of which is in the order of several millimeters or larger. The preparation of

bulk glasses from bulk gels dated back to several decades ago. Dislich (Dislich,

1971) prepared small pieces of transparent borosilicate glass via the sol-gel

method. Later, Yamane et al. (Yamane et al., 1979) reported the preparation of

large-size pieces of silica glasses. However, the preparation of large pieces of bulk

glasses is not an easy task and according to the author’s knowledge, there has

been no study on the preparation of bulk phosphate-based glasses via the sol-gel

method. Cracks and fracture are often generated when wet gels consisting of pores

filled with solvent, start drying. The reason for cracking during the drying stage is

related to the generation of a capillary pressure gradient in the liquid phase of the

gel. The difference in pressure leads to differential shrinkage of the gel network,

since the exterior of the gel usually contracts faster than the interior and this causes

cracking (Hench and West, 1990). The capillary force is expressed in Equation 1.1.

by Zarzycki et al. (Zarzycki et al., 1982):

∆ܲ =
ସఊ�ୡ୭ୱఏ


(1.1)
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Where ∆ܲ is the capillary force, ߛ is the surface tension of the solvent, ߠ is the

contact angle between the capillary wall and the solvent and ܦ is the diameter of

the capillaries. To suppress capillary pressure, solvents with low surface tension

can be chosen in order to obtain bulk sol-gel derived glasses (Sakka et al., 1993).

Table 1.1 shows the surface tension and boiling points of various solvents (Sakka

et al., 1993).

Table 1.1. Surface tension and boiling points of various solvents.

Solvent Surface tension at 25 °C

(dyne. cm-1)

Boiling point

(°C)

Diethylether 17.1 334.6

Acetone 23.7 56.2

Dimethylformamide 36.8 153

2-methoxy ethnaol 42.8 125.5

Ethylene glycol 46.5 244.3

Water 72.8 100

1.3.3. Solubility and degradation rate of phosphate-

based glasses

As mentioned previously, phosphate-based glasses have the potential to dissolve

completely in an aqueous medium and offer real advantages for various biomedical

applications. A significant amount of work has been focused on ternary phosphate-

based glasses in the P2O5-CaO-Na2O system and it was found that the solubility of

these glasses is very sensitive to the glass composition (Bunker et al., 1984, Franks

et al., 2000, Ahmed et al., 2004c). The results confirmed that increasing CaO

content decreases the solubility, meanwhile, increasing Na2O content increases the
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solubility. Franks et al. (Franks et al., 2002) investigated the solubility of quaternary

glasses in the P2O5-CaO-MgO-Na2O system. In these quaternary glasses,

substituting MgO for CaO, reduced the solubility and even pH changes at longer

periods of time because of the smaller ionic radius of magnesium. Knowles et al.

(Knowles et al., 2001) developed quaternary phosphate-based glasses in the P2O5-

CaO-K2O-Na2O system and K2O was used as Na2O substitutes with the

concentration of 0 to 25 mol%. Solubility results showed an increase in solubility

with increasing K2O content because of the larger ionic radius of potassium in

comparison to sodium that causes a larger disrupting effect on the structure and

weakens the network. Navarro et al. (Navarro et al., 2003a, Navarro et al., 2003b)

investigated quaternary glasses in the P2O5-CaO-Na2O-TiO2 system. Results

showed the solubility was greatly decreased as the titanium content increased,

even with the incorporation of only 3 mol% TiO2. Environmental scanning electron

microscopy (ESEM) experiments also revealed much higher surface degradation

occurred for the glasses with 0 mol% TiO2. In other studies, sodium oxide was

partially replaced by Fe2O3 that resulted in lower dissolution rates (Ahmed et al.,

2004a, Lin et al., 1994). The decrease in solubility was attributed to the strong

cross-linking effects of the titanium and iron ions and replacement of P-O-P bonds

in the glass by Ti-O-P and Fe-O-P bonds.

It should be noted that all the above solubility and degradation studies were done

on phosphate-based glasses obtained by the traditional melt-quench technique and

to date, there has been no study performed on the degradation of phosphate-based

glasses obtained by the sol-gel technique. The reasons can be related to the limited

research regarding synthesis and also the limitation in preparing bulk phosphate-

based glasses.
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1.4. Biomaterial applications

1.4.1. Orthopaedics

Biomaterials can be a good alternative for tissue replacement and nowadays almost

every part of the body can be assisted by synthetic implants. It has been calculated

that around 20 million people have an implanted medical device which costs more

than 8% of the total health care budget worldwide (Lysaght and O'Loughlin, 2000).

To take the case of bone, approximately 2.2 million bone graft procedures are

performed worldwide at a cost of around $2.5 billion each year (Giannoudis et al.,

2005). Implantable biomaterials were the main focus of attention in orthopaedics

that includes the anatomical replacement of parts of the body. For example the

diseased hip joint has been replaced with a simple ball and socket device (usually

metal-on-plastic) designed to reduce wear and inflammatory responses (Charnley,

1982 1976). The main attention for orthopaedic devices has been focused on

various calcium-phosphate bioceramics, such as hydroxyapatite and tricalcium

phosphate ceramics, because they show a degree of chemical similarity to the

apatite phase of bone itself. However, they have poor mechanical properties that

severely restrict their applications in orthopaedics. Meanwhile, these bioceramics

can be excellent candidates for coating medical implants, usually metallic

prosthesis, that result in a combination of both bioactivity of the bioceramics and

good mechanical properties of the metals. These bioceramics are osteoconductive

and bond directly to the bone. Also, they have been used to fill small bone defects,

guide the bone growth and bond firmly to the bone.
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1.4.2. Tissue engineering

The demand of patients who need to replace damaged hard or soft tissues is

continuously increasing and we know that natural tissue does not behave like, or

even look like a combination of ceramic, metal, and polymer. Although autograft (a

tissue graft transferred from one part of the patient’s body to another part) is

preferable, supply is limited and lacks mechanical integrity. Alternative sources of

tissue can be obtained from other humans (allograft) or animals (xenograft). These

resolve the difficulties of supply, however, there is an increased risk of

immunological rejection and disease transmission.

Development of a new and more efficient biomaterial to regenerate new tissue is a

human challenge as it can have a great effect on everyday life of people worldwide.

An effective approach can be growing specific cells from a patient on a three-

dimensional scaffold under controlled culture conditions (Langer and Vacanti,

1993). As an example, bone has a considerable ability to regenerate following injury

and highly porous-three dimensional scaffolds are needed to accommodate cells

and guide them to regenerate the bone that may be indistinguishable from the

normal healthy bone. A desirable strategy to repair bone tissue, is to induce

osteogenesis in situ. Stem cells can be utilised to differentiate to form bone tissue,

and seed those cells into an injectable scaffold, resulting in bone tissue formation

(Dvir et al., 2011). Alternatively the implant can be implanted in direct contact with

the cells with the purpose to stimulate and to direct tissue formation (Suchanek and

Yoshimura, 1998). The ideal scaffold should have appropriate mechanical

properties, controllable degradation, high bioactivity, and the ability to deliver cells

for tissue regeneration (Hench and Polak, 2002, Jones and Boccaccini, 2005). It

should also be conductive to supply oxygen, nutrient, and biomolecules to the

growing cells to regenerate new tissues (Williams, 2004). Figure 1.3 shows the



CHAPTER 1

43

general tissue engineering concept of using biodegradable scaffolds to promote the

reorganisation of the cells to form a functional tissue (Dvir et al., 2011).

Figure 1.3. Tissue engineering concept includes; (a) isolating patients’ cells, (b) in

vitro cultivation of cells on a two-dimensional surface, (c) seeding cells on a porous

scaffold and adding growth factors, small molecules and etc., (d) further cell

cultivation in bioreactor, and (e) transplantation of the engineered tissue (Dvir et al.,

2011).
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Bioceramics are one of the most promising scaffold materials in bone tissue

engineering. Hydroxyapatite (HA) exhibits excellent biocompatibility due to its close

chemical and crystal resemblance to the mineral phase of bone. However, the lack

of biodegradation of HA in the body is generally undesirable and limits its potential

tissue engineering applications (Marcacci et al., 2007).

Bioactive silicate-based glasses can be a good choice with a long history of

applications as biomedical implants (Hench, 1998). However, they should be

synthesised in a way to be resorbable, with high interconnected porous structure in

three-dimensions. It has been also found that 45S5 Bioglass® can partially

crystallise when heated up to high temperature (around 950 °C) during scaffold

fabrication which increases the mechanical property of the glass and the crystalline

phase can transform to a biodegradable, amorphous calcium phosphate in a

biological environment (Boccaccini et al., 2007, Chen et al., 2006). However, the

long term effect of silica in the body is still unknown and the degradation rate of

these bioglasses is very slow in comparison to biological tissues and often takes 1–

2 years to fully dissolve (Lenza et al., 2002, Tadjoedin et al., 2002, Hamadouche et

al., 2001). This may limit their potential application as scaffolds for tissue

regeneration, which benefit from having a similar degradation rate to the host

tissue.

Phosphate-based glasses seem to be an attractive choice with a more controllable

degradation rate for tissue engineering applications, in which the presence of a

scaffold is only required to support cells/tissue in the short term (Knowles, 2003,

Ahmed et al., 2004a). The degradation rate of phosphate glasses which is typically

relatively rapid, can be easily altered via addition of various modifier oxides, such

as calcium oxide (CaO) and sodium oxide (Na2O). This enables the design of

materials that release ions such as Ca2+and Na+, which can stimulate cellular
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behaviours such as cell proliferation and bone formation (Knowles, 2003, Navarro

et al., 2003b, Franks et al., 2000). The degradation rate of phosphate-based

glasses can also be prolonged by the addition of other oxide elements such as

titanium dioxide (TiO2), which forms stable Ti-O based cross-links in the phosphate

network (Kiani et al., 2012).

1.4.3. Drug delivery

Conventional drug delivery modes such as injection of a dose or taking a pill, exhibit

some drawbacks such as, when it is taken, the drug concentration in blood rises

dramatically up to a peak, which is generally at a toxic level and then rapidly

declines to below the minimum effective drug level. Also, specialised drugs to treat

specific diseases, can injure other tissues (Xue and Shi, 2004). Drug delivery is a

technique of designing a system to release a drug over a specific period of time in a

controlled manner. Controlled drug delivery has several advantages in comparison

with conventional dosage methods which includes; improving efficiency, continuous

action, targeting specific diseased cells, and reduce patient toxicity (Vallet-Regi et

al., 2007, Pickup et al., 2012). Designing a carrier system for drug delivery

applications is quite challenging in terms of targeting the drug to a specific site and

continuous release over a specific period of time. Several studies have been

focused on drug delivery systems to provide enhanced efficacy, higher stability,

solubility, and administer at much lower dosage of drugs (E-Sherbiny and Smyth,

2010, Xue and Shi, 2004).

Drug delivery carriers have the potential to deliver low-molecular-weight drugs, as

well as large bio macromolecules such as genes and proteins, either in a localised

or a targeted manner. Many newly designed drugs based on biomolecules such as

proteins, peptides, and DNA are chemically very unstable or sensitive and therefore
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encapsulating these biomolecules seems to be essential to deliver them to the

diseased tissue. The drug delivery carriers should be non-toxic, non-immunogenic,

and preferably biodegradable to deliver the therapeutic agent to the proper site of

action.

In recent years, several drug delivery systems such as micelles, dendrimers,

liposomes, emulsions, and porous materials have been developed to improve the

efficiency of drugs and minimize their toxic side effects (Benita and Lambert, 2004,

Manzano and Vallet-Regi, 2010, Torchilin, 2005). The size of the carrier is also an

important variable that determines how it can be applied to the body and

development of novel processing to prepare size-controllable carriers with high

encapsulation efficiency, is a major challenge in drug delivery systems (Vallet-Regi

and Ruiz-Hernandez, 2011).

1.4.3.1. Therapeutic nanoparticles

Nanotechnology has provided new avenues for engineering biomaterials that can

revolutionise health care in therapeutic technologies. Significant evidence exists

that highlights the promise nanotechnology has for biological applications,

particularly in drug delivery systems. Nanotechnology has accelerated the

development of novel drug delivery systems for strict control over the temporal

release of a drug (LaVan et al., 2002). It may also provide an ideal solution and

promote a new concept of chemotherapy; that may include sustained, controlled,

and targeted chemotherapy. The drug can be either physically dispersed in

nanoparticle matrices or surrounded by a vesicle like membrane.

The size of nanoparticles has an important effect on its interaction with its

environment. Nanoparticles can accumulate in the tumour tissue with the upper limit
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of approximately 400 nm to allow diffusion through the tumour (Alexis et al., 2008,

Yuan et al., 1995). They must also be larger than 10 nm in diameter to avoid

clearance by first renal filtration pass (Davis et al., 2008). Also, targeting is

especially relevant in the context of cancer therapies, since most of the commonly

used anticancer drugs have several side-effects due to nonspecific action on

healthy cells (Qian et al., 2012). Nanoparticles can be taken up by cells that mean

the potential for cell targeting is widely applicable.

Various types of nanocarriers for cancer chemotherapy to deliver concentrated drug

payloads to the diseased tissue have been developed and have the potential to

drastically improve the way cancer is treated (Strebhardt and Ullrich, 2008, Peer et

al., 2007). Commonly used nanocarriers include but are not limited to; polymeric

nanoparticles, carbon nanotubes, lipid-based nanocarriers, gold nanoparticles, and

silica-based nanoparticles. The primary goals in designing these nanoparticles are

to control the particle size, surface property, and release of drug at the

therapeutically optimal rate and dose regimen. Polymeric nanoparticles have been

used for drug delivery research to increase the therapeutic benefits, while

minimizing side effects. Polymeric nanoparticles such as poly lactic-acid (PLA) and

poly lactide co-glycolides have been used as drug delivery carriers, because of their

good biodegradability and low toxicity (Reddy, 2005). Solvent evaporation is a

common technique used to prepare biodegradable nanoparticles from poly lactic

acid (PLA), poly (D,L-glycolide) (PLG), and poly cyanoacrylate (PCA). The

electrospraying technique has been considered as promising technique for

nanoparticle synthesis because it is a simple and cost effective method to prepare

particles in a controlled way, with a specific size and narrow distribution and has

been used to encapsulate drug molecules into biodegradable polymers such as

poly (ε-caprolactone) PCL for controlled drug delivery devices (Ding et al., 2005). 
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Bioceramics have been the subject of intense interest for drug delivery applications.

Kortesuo et al. (Kortesuo et al., 2000) reported a sustained release of toremifene

citrate from implanted silica glass discs with no tissue irritation at the site of the

implantation over 42 days. Grun et al. (Grun et al., 1997) developed mono-

dispersed mesoporous silica microspheres based on the Stöber reaction for drug

delivery applications. Following that mesoporous silica nanospheres (MSNs) with

narrow size distribution were successfully synthesised by fine-tuning the reaction

conditions and using surfactants (Unger et al., 2000, Kosuge and Singh, 2001).

MSNs have the ability to encapsulate different kinds of therapeutic agent within

their pore channels and protect them from enzymatic degradation. The drug

molecules are usually incorporated through adsorption and the uptake capacities of

MSNs are correlated to the specific surface area and the pore size of the material

(Andersson et al., 2004). In order to minimize premature release and control the

drug delivery at the targeted site, the pores can be mechanically blocked with

polymers and nanocrystals or chemical bonds directly over the opening pores (Mal

et al., 2003, Fu et al., 2003, Vivero-Escoto et al., 2010). Cancer cells could also be

targeted by surface functionalisation of MSNs with specific ligands (Wang et al.,

2010). However, it was confirmed that intravenous or intraperitoneal injection into

mice at high doses appear to be lethal and toxic that can be related to deformation

of the red blood cells and eventually hemolysis (Zhao et al., 2011). Another study

on intravenous injection of MSNs with different particle sizes into mice at lower

doses confirmed that the MSNs were mainly located in the liver and spleen and

could degrade gradually up to after 1 month of injection (He et al., 2011).

Phosphate-based glasses can be a useful alternative, since studies on these

glasses showed a linear dissolution rate in an aqueous medium with the

degradation products that can be easily metabolised in the body (Bitar et al., 2004,

Knowles, 2003). A few studies show these glasses can be synthesised at low
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temperature and have significant potential as a carrier in a drug delivery system

(Pickup et al., 2012, Lee et al., 2013). However, the slow synthesis reactions and

the difficulty to tailor the shape of these glasses may limit their potential drug

delivery applications.

1.4.4. Diagnostic contrast agents

Detection of a disease at an early stage is a critical issue in medicine and the

earlier it is diagnosed, the better is the chance for a successful treatment. Many

diagnostic imaging techniques are currently available such as X-ray, ultrasound

imaging, positron emission tomography, and magnetic resonance imaging.

Molecular imaging techniques have also proven to be of great value for cancer,

cardiovascular diseases, and neurological disorders (Weissleder and Mahmood,

2001). The resolution can be enhanced by using specific contrast agents for

different imaging techniques. However, to diagnose a disease successfully, a

combination of these techniques may be applied together and development of

multimodal probes that can be detected by different imaging techniques has been

considered to improve imaging instruments for diagnosis applications (Lim et al.,

2010).

1.4.4.1. Diagnostic nanoparticles

The current progress of nanotechnology has the potential to improve detection in

diagnostic imaging and targeting specific disease areas compared to conventional

contrast agents. Nano-size particles can carry more than two imaging agents to

provide more detailed information on the target site (Jennings and Long, 2009).
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Silica-based nanoparticles are the most commonly used materials for multimodal

imaging. For example, optical imaging probes like dye doped silica nanoparticles

can be coupled with MRI contrast agents that are ferromagnetic nanoparticles

(Malvindi et al., 2011, Jokerst et al., 2013). Silica nanoparticles also have good

accustic backscatter properties and can be used as a contrast agent for ultrasound

molecular imaging (Jokerst et al., 2013, Liberman et al., 2013).

In medical diagnostics, there is a great potential to monitor biological molecules of

interest, while, delivering therapeutic agents with nanoscale materials. These

nanomaterials called “theranostic” and have the potential to serve dual roles as

diagnostic and therapeutic agents (Janib et al., 2010). This concept moves us

closer to personalised medicine where therapies are directed towards an individual

patient and detected by the physician by an integrated imaging agent. Silica-based

nanoparticles can be promising candidates for theranostic applications. Studies on

MSNs showed the ability to encapsulate magnetic nanoparticles and drug

molecules within the silica matrices for imaging and targeting drug delivery

applications (Ruiz-Hernandez et al., 2007). Moreover, they have the potential to be

used as a contrast agent for molecular imaging and luminescent molecules such as

organic dyes can be encapsulated for biological assays (Sharma et al., 2006).

Recently, Lu et al. (Lu et al., 2010) synthesised MSN-based theranostic particles

containing luminescent molecules and an anticancer therapeutic agent that can

suppress tumour growth in mice. Phosphate-based glasses can also be a good

choice with a controllable degradation rate, however, according to the author’s

knowledge, there has been no study on the potential diagnostic applications of

these glasses, which might be related to the difficulty of tailoring their structure.
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1.5. Potential biomedical applications of phosphate-

based glass systems

1.5.1. Binary P2O5-TiO2 glasses

The addition of TiO2 to phosphate glasses can stabilise the phosphate network,

since Ti4+ ion has a small ionic radius and a large electrical charge that can

penetrate into the phosphate network (Kiani et al., 2012). Thus, the bonding

between different chains can become stronger and the vitreous network will be

fortified. When titanium with its high charge/diameter ratio (6.1) is incorporated into

the phosphate network, it can easily attract oxygen from the PO4 tetrahedron and

create Ti-O-P bonds (Brauer et al., 2010). Other studies confirmed that TiO2

improves the glass forming ability, chemical durability, modulus of elasticity and

raises the glass viscosity, which was shown by an increase in the glass transition

temperature (Tg), and consequently strengthens the glass network (Navarro et al.,

2003a, Lee and Hsu, 1999). In addition, the Ti4+ cation has been investigated

extensively for killing or growth inhibition of bacteria when it is combined with UV

light (Jacoby et al., 1998, Linkous et al., 2000, Sunada et al., 2003).

Binary P2O5-TiO2 (PT) glasses were produced by the conventional melt-quench

method at a relatively high melting temperature (range of 1300-1500 °C) and were

usually coloured deep purple because of the remaining Ti3+ ions in the glass

network (Hashimoto et al., 2012). Synthesis of binary P2O5-TiO2 glass systems via

a sol-gel route allowed the preparation of glassy thin films for a variety of

applications such as humidity sensors and proton conducting materials (Makita et

al., 1997b, Makita et al., 1997a). However, according to the previous studies on the

sol-gel preparation of these glasses, high heat treatment temperatures were applied
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in order to remove solvents and other organic molecules that may limit their

potential biomedical application (Pickup et al., 2008b).

1.5.2. Ternary P2O5-CaO-TiO2 glasses

The addition of CaO to binary P2O5-TiO2 glasses can make these glasses more

suitable for various biomedical applications with the release of Ca2+ ions that can

stimulate cell proliferation (Navarro et al., 2003b). Ternary glasses in the P2O5-

CaO-TiO2 (PCT) system are bioresorbable and can host human bone derived cells

and enzyme delivery devices. Titanium reduces the dissolution rate of these

glasses and can also cause significant gene up regulation (Abou Neel et al., 2007,

Knabe et al., 2004, Ribeiro et al., 2004). These glasses are defined as materials

that can react and dissolve over time in physiological fluid and can be replaced by

regeneration of hard or soft tissues. The replaced tissue may have a similar

properties to the original surrounding tissues.

Ternary PCT glasses have been prepared via melt-quench methods previously,

however, preparation of these glasses via the sol-gel method have some significant

advantages in comparison with the melt-quench method. The low-temperature

nature of the sol-gel method can offer the potential to use these glasses as a carrier

in drug delivery systems and also biocompatible glassy films can be prepared for

coating biomedical implants. Recently, Pickup et al. (Pickup et al., 2008a)

successfully synthesised sol-gel derived (P2O5)0.50-(TiO2)0.25-(CaO)0.25 glass

composition. However, according to the author’s knowledge, there are no other

studies on sol-gel preparation of glasses with related compositions to those

described above.
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1.5.3. Ternary P2O5-CaO-Na2O glasses

Ternary P2O5-CaO-Na2O (PCN) glasses have a near linear dissolution rate in

aqueous media and the degradation rate can be finely tuned through subtle

variations in composition (Franks et al., 2000, Knowles, 2003). These glasses have

a high degradation rate and can be used for biomedical applications such as

imaging contrast agents and drug delivery systems. Their biocompatibility may also

offer numerous advantages over the current polymer-based systems where their

degradation can result in polymer fragments with heterogeneous chain-lengths that

could lead to toxicity (Vemula et al., 2009). However, these ternary glasses are too

soluble for cell attachment and proliferation in tissue engineering applications

(Ahmed et al., 2004b).

For several years, these glasses have been used for the controlled release of ions

(Driver and Telfer, 1988), however, few studies have been carried out on the

synthesis of these glasses via the sol-gel route and even fewer on the potential

drug delivery applications of these glasses. The reasons can be related to the high

synthesis temperature and complicated morphological trait (Carta et al., 2009).

Recently, Pickup et al. (Pickup et al., 2012) showed these materials can be

synthesised at lower temperatures with the sustained release of the drug within a

week. The results suggested the potential drug delivery applications of these

materials and a focus on these materials would be of interest.

1.5.4. Quaternary P2O5-CaO-Na2O-TiO2 glasses

Quaternary phosphate-based glasses of the general formula P2O5-CaO-Na2O-TiO2

(PCNT) synthesised via the melt-quench route, have shown a variety of interesting

properties which make them suitable for various biomedical applications (Navarro et
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al., 2003b, Navarro et al., 2002, Ribeiro et al., 2004). Studies on these glasses

confirmed that the addition of titania to the P2O5-CaO-Na2O glass systems can

improve glass-forming ability and chemical durability of these glasses (Navarro et

al., 2003a, Kishioka et al., 1974). Moreover, it was shown that the incorporation of

TiO2 into phosphate-based glasses not only decreases the solubility of these

glasses, but also decreases the crystallisation tendency by the formation of cross

links between TiO4 and TiO6 structural groups and phosphate tetrahedra (Brauer et

al., 2007). In another study, quaternary phosphate-based glasses in the P2O5-CaO-

Na2O-TiO2 system with up to 15 mol% TiO2 were successfully produced via the

melt-quench route and have shown that TiO2 can increase the bulk density of the

glass (Abou Neel et al., 2008). The degradation rate of these quaternary glasses

can be increased by substituting Na2O for TiO2 (Navarro et al., 2005, Navarro et al.,

2003b, Kiani et al., 2012). Because of the controllable degradation rate of these

glasses, they have the potential to be used as a scaffold for tissue regeneration, or

as a host matrix for embedding pharmaceutical molecules that could be useful in

clinical practice (Kiani et al., 2012, Vallet-Regi et al., 2007). Recently, Lakhkar et al.

(Lakhkar et al., 2012) reported the application of the melt-derived titanium-stabilised

phosphate-based glass microspheres with the ability to provide a stable surface for

cell attachment, growth, and proliferation as a scaffold for tissue engineering.

However, high synthesis temperatures, low surface area, and very small porosity of

these glasses may limit their potential applications as a scaffold in tissue

engineering.

Sol-gel synthesis of these PCNT glasses can be a good alternative due to the low

synthesis temperature in comparison with the melt-quench method. The low

processing temperature of the sol-gel synthesis leads to the opportunity to

incorporate bioactive molecules for drug delivery application, along with the ease of
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releasing homogeneous mixing of the reactants that gives high quality amorphous

glassy-like materials (Makita et al., 1997a, Pickup et al., 2008b). For their potential

tissue regeneration applications high specific surface area and more porosity would

be expected for the synthesised glasses via the sol-gel method, that could lead to

increase their bioactivity compare to those obtained by the melt-quench method

with the same composition (Perez-Pariente et al., 2000, Vallet-Regi et al., 2000). In

addition, since the sol-gel process starts with the liquid form of precursors, there is

a possibility to produce nano/micrometer sized particles. However, there has been

no study on the sol-gel synthesis of the PCNT glasses for potential biomedical

applications.
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CHAPTER 2 
Sol-Gel Synthesis and Characterisation of 

Phosphate-Based Glasses Using Triethyl Phosphate 
as a Phosphorus Precursor 
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2.1. Introduction 

As previously mentioned, sol-gel synthesis of phosphate-based glasses is a non-

trivial task as P2O5 is a poor gel former and choosing a suitable phosphorus 

precursor is essential. In this chapter, triethyl phosphate was used as a phosphorus 

precursor to synthesise various phosphate-based glass systems with a new and 

simplified sol-gel method at relatively low processing temperatures for potential use 

in biomedical applications such as tissue engineering, drug delivery, and imaging 

contrast agents. 

To become familiar with the sol-gel reaction and to avoid complications of ternary 

and quaternary systems, the synthesis process was commenced with a simple 

binary titano-phosphate glasses with the general formula of (P2O5)(100-X)-(TiO2)(X), 

where X=30, 35, 40, 45 or 50 mol%. This experiment also served as a pilot study to 

explore the compositional limitations of such system.  

The second investigated system was based on ternary phosphate-based glasses in 

the P2O5-CaO-TiO2 system. The phosphorus pentoxide content was kept fixed at 55 

mol% (ultraphosphate region) and titanium dioxide was substituted in place of 

calcium oxide to prepare ternary phosphate-based sol-gel derived glasses with the 

general formula of (P2O5)(55)-(CaO)(45-X)-(TiO2)(X), where X=20, 25, or 30 mol%. 

The third system was based on ternary phosphate-based glasses in the P2O5-CaO-

Na2O system. Similar to the previously investigated system, P2O5 content was kept 

fixed at 55 mol% and sodium oxide was substituted in place of calcium oxide to 

prepare ternary sol-gel derived glasses with the general formula of (P2O5)(55)-

(CaO)(45-X)-(Na2O)(X), where X=10,15, or 20 mol%.  

The final system investigated was a quaternary phosphate-based glass system with 

the general formula of (P2O5)(40)-(CaO)(25)-(Na2O)(35-X)-(TiO2)(X) and (P2O5)(55)-

(CaO)(25)-(Na2O)(20-Y)-(TiO2)(Y), where X=20, 25, or 30 mol% and Y=5, 10, or 15 
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mol%, with fixed phosphorus pentoxide at 40 or 55 mol%, calcium oxide content of 

25 mol%, and substitution of titanium dioxide in place of sodium oxide. According to 

the knowledge of the author, there is no study reported on the sol-gel synthesis of 

these quaternary phosphate-based glasses. 

Table 2.1 shows the compositions of starting solutions for binary, ternary, and 

quaternary sol-gel derived glass systems. The structure of the prepared samples 

was probed using X-ray diffraction (XRD), solid-state 31P magic angle spinning 

nuclear magnetic resonance (31P MAS-NMR), and Fourier transform infrared (FTIR) 

spectroscopy. The elemental proportions were also measured by energy dispersive 

X-ray spectroscopy (EDX). Together, these methods provide detailed information 

on sample structural variations from the phase level to the atomic level.  
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Table 2.1. Theoretical compositions of sol-gel synthesised phosphate-based 

glasses using triethyl phosphate as a phosphorus precursor. 

Sample 

Code 

Theoretical composition Concentration (mol%) 

P2O5 TiO2 CaO Na2O 

EP70T30 (P2O5)70-(TiO2)30 70.0 30.0 0.0 0.0 

EP65T35 (P2O5)65-(TiO2)35 65.0 35.0 0.0 0.0 

EP60T40 (P2O5)60-(TiO2)40 60.0 40.0 0.0 0.0 

EP55T45 (P2O5)55-(TiO2)45 55.0 45.0 0.0 0.0 

EP50T50 (P2O5)50-(TiO2)50 50.0 50.0 0.0 0.0 

EP55CT20 (P2O5)55-(CaO)25-(TiO2)20 55.0 20.0 25.0 0.0 

EP55CT25 (P2O5)55-(CaO)20-(TiO2)25 55.0 25.0 20.0 0.0 

EP55CT30 (P2O5)55-(CaO)15-(TiO2)30 55.0 30.0 15.0 0.0 

EP55CN10 (P2O5)55-(CaO)35-(Na2O)10 55.0 0.0 35.0 10.0 

EP55CN15 (P2O5)55-(CaO)30-(Na2O)15 55.0 0.0 30.0 15.0 

EP55CN20 (P2O5)55-(CaO)25-(Na2O)20 55.0 0.0 25.0 20.0 

EP40CNT20 (P2O5)40-(CaO)25-(Na2O)15-(TiO2)20 40.0 20.0 25.0 15.0 

EP40CNT25 (P2O5)40-(CaO)25-(Na2O)10-(TiO2)25 40.0 25.0 25.0 10.0 

EP40CNT30 (P2O5)40-(CaO)25-(Na2O)5-(TiO2)30 40.0 30.0 25.0 5.0 

EP55CNT5 (P2O5)55-(CaO)25-(Na2O)15-(TiO2)5 55.0 5.0 25.0 15.0 

EP55CNT10 (P2O5)55-(CaO)25-(Na2O)10-(TiO2)10 55.0 10.0 25.0 10.0 

EP55CNT15 (P2O5)55-(CaO)25-(Na2O)5-(TiO2)15 55.0 15.0 25.0 5.0 
 

 

2.2. Materials and methods 

2.2.1. Materials 

The following precursors were used without further purification to prepare 

phosphate-based sol-gel derived glasses; triethyl phosphate (C6H15O4P, 99%, 

Sigma-Aldrich, Gillingham, UK), titanium (IV) isopropoxide (97%, Sigma-Aldrich, 

Gillingham, UK), calcium methoxyethoxide (20% in methoxyethanol, ABCR GmbH, 
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Karlsruhe, Germany), 2-methoxyethanol (99.8%, Sigma-Aldrich, Gillingham, UK), 

sodium methoxide solution (30 wt% in methanol, Sigma-Aldrich, Gillingham, UK), 

and n-dimethyl formamide (n-DMF, ≥99.8%, Alfa Aesar, Heysham, UK). Figure 2.1 

shows the structural formula of the used precursors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Structure of; (a) triethyl phosphate, (b) titanium isopropoxide,  (c) 2-

methoxyethanol, (d) n-dimethyl formamide, (e) calcium methoxyethoxide, and (f) 
sodium methoxide. 
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2.2.2.  Sol-gel synthesis methods 

2.2.2.1. Binary P2O5-TiO2 glasses 

The reaction was initiated by diluting triethyl phosphate in 2-methoxyethanol at a 

molar ratio of 1:3 and magnetically stirred for about 10 minutes (the whole reaction 

was carried out in a dried vessel). The reaction vessel was then cooled in an ice 

bath before titanium isopropoxide was added dropwise into the vessel and mixed by 

stirring for 1 hour. In the final stage, n-DMF (with a molar ratio of 0.25) was added 

to the solution and a homogeneous solution was obtained after stirring for about 10 

minutes. A schematic of the sol-gel synthesis of binary P2O5-TiO2 glasses is shown 

in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic of the sol-gel synthesis of binary P2O5-TiO2 glasses using 

triethyl phosphate as a phosphorus precursor. 
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2.2.2.2. Ternary P2O5-CaO-TiO2 glasses 

A similar sol-gel preparation method that was described for binary P2O5-TiO2 

glasses, was used to prepare ternary P2O5-CaO-TiO2 glasses. The only difference 

between these two methods was in the final stage where before adding n-DMF, 

calcium methoxyethoxide was added dropwise into the vessel and allowed to react 

for about 1 hour. Finally, a homogeneous solution was obtained after 10 minutes of 

stirring. The sol-gel preparation of ternary P2O5-CaO-TiO2 glasses is outlined 

schematically in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Flow diagram of the sol-gel synthesis of ternary P2O5-TiO2-CaO glasses 

using triethyl phosphate as a phosphorus precursor. 
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2.2.2.3. Ternary P2O5-CaO-Na2O glasses 

The reaction was started by diluting triethyl phosphate in 2-methoxyethanol (at a 

molar ratio of 1:3) and stirred for about 10 minutes. Similar to section 2.2.2.1, the 

reaction vessel was cooled in an ice bath and then calcium methoxyethoxide was 

added dropwise into the vessel and stirred for 1 hour before sodium methoxide was 

added gradually to the mixture. Finally, after an additional 1 hour of stirring of the 

mixture, n-DMF was added and a homogeneous solution was obtained after about 

10 minutes stirring of the mixture (Figure 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic of the sol-gel synthesis of ternary P2O5-CaO-Na2O glasses 

using triethyl phosphate as a phosphorus precursor. 
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2.2.2.4. Quaternary P2O5-CaO-Na2O-TiO2 glasses 

The reaction was initiated by diluting triethyl phosphate in 2-methoxyethanol (at a 

molar ratio of 1:3). Using a magnetic stirrer, the components were mixed thoroughly 

for 10 minutes. After 10 min of stirring the reaction vessel was cooled in an ice bath 

before adding titanium isopropoxide dropwise into the mixture and stirring for 1 

hour. Then calcium methoxyethoxide was poured slowly into the mixture and after 1 

hour of stirring, sodium methoxide was added and the mixture stirred for another 1 

hour. Finally, n-DMF (with a molar ratio of 0.25) was added to the mixture and a 

homogeneous solution was obtained after 10 minutes of stirring. A schematic of the 

sol-gel synthesis of quaternary P2O5-CaO-Na2O-TiO2  glasses is shown in Figure 

2.5.	  

	  

	  

	  

	  

	  

	  

	  

	  

 

Figure 2.5. Schematic of the sol-gel synthesis of quaternary P2O5-CaO-Na2O-TiO2 

glasses using triethyl phosphate as a phosphorus precursor. 
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2.2.3. Drying procedure 

The obtained homogeneous solutions of all four glass systems were aged at room 

temperature for three days in sealed glass containers before drying in an oven 

(EV014-Townson & Mercer, Cheshire, UK). The temperature was then increased 

gradually (5 °C.h-1) to 60 ˚C and kept for a week. Following this, samples were 

placed in contact with the air and the heating was continued at 120 ˚C for an 

additional four days. Then the temperature was increased to    180 ˚C and kept for 

two days before the heating cycle was finalised by heating the samples at 200 ˚C 

for 2 hours to remove any remaining solvent and aiming to obtain bulk, glassy-like 

samples. After the final heating stage the oven was turned off and samples left 

overnight in the oven to cool down slowly. Figure 2.6 shows the heat-treatment 

diagram for the sol-gel synthesised phosphate-based glasses. 

  

  

 

 

 

 

 

Figure 2.6. Heat treatment diagram for the sol-gel synthesised phosphate-based 

glasses. 
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2.2.4.  Structural characterisation 

2.2.4.1.  X-ray diffraction 

X-ray diffraction (XRD) has developed into one of the most powerful techniques for 

determining the atomic structure of solids during the past 100 years. If the atoms of 

a structure are arranged in a random way, such a structure is called amorphous. 

Otherwise, the three dimensional structure of non-amorphous materials is defined 

by regular, repeating planes of atoms that form a crystalline lattice. When a focused 

X-ray beam interacts with such atomic planes, part of the beam is transmitted or 

absorbed, but part of it would be scattered and diffracted back from the sample. 

Based on the diffracted beam orientation, the distance between the planes of atoms 

can be measured by applying Bragg’s Law (Equation 2.1) (Warren, 1969). 

(2.1)     Bragg’s Law Equation:            𝑛𝜆 = 2𝑑  𝑠𝑖𝑛𝜃 

Where 𝑛 is the order of the diffracted beam, 𝜆 is the wavelength of the incident X-

ray beam,  𝑑 is the distance between the adjacent atomic planes, and the 𝜃  is the 

angle of incidence of the X-ray beam. The characteristic set of 𝑑-spacings and their 

intensity provide a unique fingerprint for the phases that are present in the sample. 

Amorphous materials may be more desirable as a biodegradable material and 

because they are isotropic, they do not produce crystalline fragments during the 

degradation. The fragmented pieces can cause inflammation of the surrounding 

tissues that may limit the potential biomedical applications (Bostman and 

Pihlajamaki, 2000a, Bostman and Pihlajamaki, 2000b). In our work, XRD was 

performed mainly to ensure that samples were amorphous and in some cases, 

where crystallisation had occurred, to identify the crystalline phases. 
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2.2.4.1.1. XRD analysis method 

XRD patterns were obtained on a Bruker-D8 Advance Diffractometer (Coventry, 

UK) from powder samples in a flat plate geometry using Ni-filtered Cu Kα radiation. 

The obtained sol-gel derived samples were ground at 10 Hz to form a powder 

(MM301 milling machine, Retsch GmbH, Hope, UK). Data were collected using a 

Lynx Eye detector over an angular range of 2θ between 10 and 100° with a step 

size of 0.02° and a count time of 12 second per step. Crystalline phases (if present) 

were identified using the Crystallographica Search-Match software (Oxford 

Cryosystems, Oxford, UK). 

 

2.2.4.2. Energy dispersive X-ray  

Energy dispersive X-ray spectroscopy (EDX) is an analytical technique used for the 

elemental analysis or chemical characterisation. Each element has a unique atomic 

structure which would be translated into a specific set of peaks on its X-ray 

spectrum. EDX can determine the elemental composition of samples by identifying 

specific X-ray peaks for each element. The number and energy of the X-rays 

emitted from a specimen can be measured by an energy-dispersive spectrometer. 

As the emitted X-rays energy is a function of energy difference between the two 

electron shells and the atomic structure of the element, the elemental composition 

of the specimen can be measured (Goldstein, 2003). There is debate over the 

reproducibility of elemental data from EDX compared to methods such as X-ray 

fluorescence, but if performed carefully, with flat samples, a large number of data 

points or scan area and calibrated detector the obtained data can be reliable. 
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2.2.4.2.1. EDX analysis method 

EDX-Inca 300 (Oxford instrument, Abingdon, UK) was used to determine the exact 

compositions of the prepared samples. Scanning electron microscopy XL30 

(Philips, Eindhoven, Netherland) was operated at 20 kV, spot size 5 and a working 

distance of 10 mm to identify the particular elements and their relative proportions 

with EDX from the scanned area. The obtained data were converted to mol% of 

oxides of the elements to allow a comparison to be made with the theoretical 

compositions of the prepared samples. 

 

2.2.4.3. Nuclear magnetic resonance  

Solid-state nuclear magnetic resonance (NMR) offers significant opportunities to 

probe structure and has been widely developed and used as both spectroscopic 

and imaging techniques. Many atomic nuclei possess an intrinsic angular 

momentum or spin and when the nuclei are placed in a strong magnetic field, the 

nuclei align with the magnetic field. Quantum mechanics indicates that if a particle 

is moving with periodic motion, it can absorb electromagnetic radiation if the 

frequency of that motion exactly matches the frequency of the radiation. Such 

nuclear magnetic resonances can be recorded by the NMR spectrometer as a peak 

in the spectrum. 

31P NMR is one of the more routine and relatively easily obtained and processed 

type of NMR spectra due to the high sensitivity of the 31P isotope (which has 100% 

natural abundance) and possesses a large magnetic moment and consequently a 

high receptivity (Mackenzie and Smith, 2002). 31P is a spin 1/2 nucleus and can be 

strongly influenced by the chemical shielding interaction. Chemical shielding 

interaction is a result of the electron cloud density around the nucleus which 

modifies the experienced magnetic field by the nucleus. This leads to a change in 
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the resonance frequency of the nucleus and is termed as a chemical shift. The 

common approach is to use magic angle spinning (MAS) at 54.7° between the axis 

of rotation of the powder sample (many kHz) and the main static magnetic field 

direction that removes the anisotropy and greatly improves the resolution. In such 

spectra, the Qn species can be identified based on their differing isotropic chemical 

shifts that is usually expressed in units of ppm to remove the magnetic field 

dependence. The static line shapes break up into the isotropic line and a series of 

spinning side bands that are separated from the isotropic line by multiples of the 

spinning rate. The intensity contribution from the spinning side bands must be taken 

into account in determining the relative abundance of each site. 

With 31P MAS-NMR analysis, there is a possibility to measure the relative quantities 

of the various Qn species that comprise the glass structure. The PO4
3-  tetrahedron is 

the base component of the phosphate-based glasses. Phosphate tetrahedra are 

classified according to the number of oxygen atoms that they share with other 

phosphate tetrahedra. An oxygen atom which is shared in such a way would be 

referred to as bridging oxygen (BO) thereafter. According to Abou Neel et. al (Abou 

Neel et al., 2009), the different type of phosphate tetrahedra are labelled according 

to the number of BOs and they range from Q0 (an isolated PO4
3- tetrahedra) to Q3 

(share three covalently bonded BOs with neighbouring PO4
3-) (Fig. 2.7). 
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Figure 2.7. Representations of PO4 tetrahedra with various polymerisation (Abou 

Neel et al., 2009).  

 

2.2.4.3.1. 31P MAS-NMR analysis method 

31P MAS-NMR spectra were acquired on a Varian VNMRS-400 Spectrometer 

(Crawley, UK) and all spectra were referenced to the resonance of the secondary 

reference ammonium dihyrogen phosphate (NH4H2PO4) at 0.9 ppm (relative to 85% 

H3PO4 solution at 0 ppm). The spectra were recorded at 161.87 MHz for which 

ground sample powders were loaded into a 4 mm (rotor o.d.) magic angle spinning 

probe. The spectra were obtained using direct excitation with a 90° pulse, a 60 

second recycle delay at ambient probe temperature (~ 25 °C), and at a sample spin 

rate of 10 KHz and between 20 and 88 repetitions. In order to obtain the relative 

abundances of each of the Qn species, the intensities of these peaks were fitted by 

the DM-fit software (Massiot et al., 2002). 

 

2.2.4.4. Fourier transform infrared spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is a technique to obtain an infrared 

spectrum of transmission or absorption of a solid, liquid or gas. The absorption of 

Q0	  tetrahedron	  Q1	  tetrahedron	  Q2	  tetrahedron	  Q3	  tetrahedron	  
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infrared radiation is related to the vibration of pairs or groups of atoms. The 

frequency of the incident radiation is varied and the transmission or the absorption 

of the radiation is measured and to be IR active a molecule must vary its electric 

dipole moment. The importance of the IR technique in the study of the glass is due 

to its ability to provide information on dynamic properties and changes in the rigidity 

of the network against an external infrared excitation (Moustafa and El-Egili, 1998). 

Peaks at various wavenumbers in an FTIR spectrum can be assigned to different 

chemical groups since each bond or group of atoms has different vibrational 

energies.  

The FTIR spectroscopy is a commonly used technique for investigating the various 

structural units that are present in phosphate-based glasses. The FTIR spectra of 

phosphate-based glasses are generally obtained in a range between 600-1500 cm-1 

(Le Saout et al., 2002, Carta et al., 2007). Peak intensities of the FTIR spectra are 

also in agreement with the corresponding various Qn species observed in NMR 

studies, thereby implying if the phosphate chains have undergone polymerisation or 

depolymerisation. 

 

2.2.4.4.1. FTIR analysis method 

FTIR spectra were collected using a Perkin Elmer spectrometer 2000 (Perkin 

Elmer, Seer Green, UK) with an attenuated total reflectance accessory (Golden 

Gate, Specac, Orpington, UK). Powder samples were scanned at room temperature 

in an absorbance mode in the range of 600-1500 cm-1 at a 4 cm-1 resolution and the 

obtained data were analysed by the software supplied by Perkin Elmer Co. 
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2.3. Results 

2.3.1.  Sample preparation 

Table 2.2 shows the effect of the drying procedure on the sol-gel synthesised 

phosphate-based glasses. Samples in the binary P2O5-TiO2 system with high 

titanium dioxide contents (TiO2 ≥ 40 mol%) turned to gel after storage for about 5 

minutes at room temperature. However, for the samples with 30 and 35 mol% TiO2, 

the gelation was not observed even after storage for up to 3 days at room 

temperature. For these samples, the gelation occurred after overnight storage at 60 

˚C. Bulk, transparent and glassy-like specimens were obtained after the final heat 

treatment for samples with high TiO2 content (TiO2 > 40 mol%) (Figs. 2.8A, B). For 

the other compositions, however, dark brown and opaque powders were obtained. 

All samples in the ternary P2O5-CaO-TiO2 system turned to gel after about two days 

storage at room temperature and transparent specimens were obtained after the 

final heat treatment. A bulk and glassy-like specimen with few cracks was obtained 

for a sample with TiO2 content of 30 mol% (Fig. 2.8C). 

For samples in the ternary P2O5-CaO-Na2O system, gelation was not observed 

even after storage for up to 3 days at room temperature. They turned into a gel after 

overnight storage at 60 ˚C, however, the prepared samples cracked into small 

fragments after the final heat treatment. The same behaviour was observed, in 

terms of gel formation, for samples in the quaternary P2O5-CaO-NaO-TiO2 system. 

A bulk and transparent specimen with a few cracks was obtained for a sample 

contain 15 mol% TiO2 with phosphorus pentoxide at 55 mol% (Fig. 2.8D). For 40 

mol% P2O5 quaternary glasses, however, it was not possible to make bulk samples. 
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Figure 2.8. Photographs of heat treated; (A) EP55T45, (B) EP50T50, (C) EP55CT30, 

and (D) EP55CNT15 sol-gel derived glasses using triethyl phosphate as a 

phosphorus precursor. 
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Table 2.2. Effect of heat treatment on phosphate-based sol-gel derived glasses 

using triethyl phosphate as a phosphorus precursor. 
Sample 

code 

Gelation at room 

temperature 

Transparency Bulk and 

crack-free sample 

EP70T30 Χ Χ Χ 

EP65T35 Χ Χ Χ 

EP60T40 ! ! Heavily cracked 

EP55T45 ! ! Few cracks 

EP50T50 ! ! ! 

EP55CT20 ! ! Heavily cracked 

EP55CT25 ! ! Heavily cracked 

EP55CT30 ! ! Few cracks  

EP55CN10 Χ ! Heavily cracked 

EP55CN15 Χ ! Heavily cracked 

EP55CN20 Χ ! Heavily cracked 

EP40CNT20 Χ ! Heavily cracked 

EP40CNT25 Χ ! Heavily cracked 

EP40CNT30 Χ ! Heavily cracked 

EP55CNT5 Χ ! Heavily cracked 

EP55CNT10 Χ ! Heavily cracked 

EP55CNT15 Χ ! Few cracks 

 

	  

2.3.2. XRD 

2.3.2.1. Binary P2O5-TiO2 glasses 

Figure 2.9 shows the XRD patterns of binary sol-gel derived samples in the P2O5-

TiO2 system. For samples containing TiO2 ≥ 40 mol%, a broad peak at 2θ values of 

between 20 and 40° was observed and was free from any detectable crystalline 

peaks which confirmed the amorphous and glassy nature of these samples. Also, 
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as the TiO2 content was increased, the intensity of these peaks increased. For the 

samples containing 30 and 35 mol% TiO2, however, crystalline patterns were 

observed with three main sharp peaks at 22, 25, and 28°. Crystalline phases were 

identified using the Crystallographica Search-Match software which corresponded 

to titanium pyrophosphate (TiP2O7) (ICDD no. 38-1468) (Fig. 2.10a, b) (Wang et al., 

2007b). Since the aim of this study was to synthesise samples with an amorphous 

structure for potential biomedical applications, these samples were excluded from 

the rest of structural characterisation studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. XRD patterns of binary sol-gel derived samples in the P2O5-TiO2 system 

using triethyl phosphate as a phosphorus precursor. 
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Figure 2.10. XRD patterns of; (a) EP65T35 and  (b) EP70T30 sol-gel derived samples. 

Crystalline phases were identified using the Crystallographica Search-Match 

software which corresponded to TiP2O7 crystalline structure. 

2.3.2.2. Ternary P2O5-CaO-TiO2 and P2O5-CaO-Na2O glasses 

XRD patterns for phosphate-based glasses in the P2O5-CaO-TiO2 and P2O5-CaO-

Na2O systems are shown in Figures 2.11 and 2.12. For both systems the XRD 

patterns were free from any detectable crystalline phase with a broad peak at 2θ 

values of between 20 and 45°. These results confirmed the amorphous nature of 

the prepared samples in both systems. 
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Figure 2.11. XRD patterns of ternary sol-gel derived glasses in the P2O5-CaO-TiO2 

system using triethyl phosphate as a phosphorus precursor. All patterns are free 

from any detectable crystalline phases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. XRD patterns of ternary sol-gel derived glasses in the P2O5-CaO-Na2O 

system using triethyl phosphate as a phosphorus precursor which showed no 

evidence of any detectable crystalline phases. 

 

2.3.2.3. Quaternary P2O5-CaO-TiO2-Na2O glasses 

Figure 2.13 shows the XRD patterns of quaternary sol-gel derived glasses in the 

P2O5-CaO-Na2O-TiO2 system. For all samples, a broad peak at 2θ values of 
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between 20 and 40° was observed and was free from any detectable crystalline 

phase, confirming the amorphous and glassy nature of the prepared samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. XRD patterns of the quaternary sol-gel derived glasses in the P2O5-

CaO-Na2O-TiO2 system using triethyl phosphate as a phosphorus precursor that 

are free from any detectable crystalline phases. 
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2.3.3. EDX 

EDX results are reported in Table 2.3 that shows the highest deviation from the 

theoretical values for P2O5 content occurred in P2O5-CaO-Na2O sol-gel derived 

glasses which was 9.9-11.3 mol% lower than the theoretical values. This reduction 

was accompanied by a concomitant increase in the percentage content of the other 

oxides to compensate. While, glasses with a general formula of; P2O5-TiO2, P2O5-

CaO-TiO2, and P2O5-CaO-Na2O-TiO2 show 7.1-9.2, 7.4-8.7, and 7.7-9.7 mol% P2O5 

reduction, respectively, from the theoretical values.  

  

 

Table 2.3. Intended compositions and measured values of sol-gel derived glasses 

using triethyl phosphate as a phosphorus precursor determined by EDX (in 

parentheses). 

Sample  
code 

Concentration (mol%) 

P2O5 TiO2 CaO Na2O 
EP60T40 60.0 (50.8±1.6) 40.0 (49.2±1.4) 0.0 0.0 

EP55T45 55.0 (46.5±1.4) 45.0 (53.5±1.5) 0.0 0.0 

EP50T50 50.0 (42.9±1.5) 50.0 (57.1±1.7) 0.0 0.0 

EP55CT20 55.0 (46.3±1.9) 20.0 (24.9±1.8) 25.0 (28.8±1.3) 0.0 

EP55CT25 55.0 (47.1±1.5) 25.0 (29.7±1.6) 20.0 (23.2±1.2) 0.0 

EP55CT30 55.0 (47.6±1.4) 30.0 (34.4±1.5) 15.0 (18.0±1.3) 0.0 

EP55CN10 55.0 (45.1±1.4) 0.0 35.0 (41.5±1.0) 10.0 (13.4±1.0) 

EP55CN15 55.0 (44.6±1.0) 0.0 30.0 (36.8±0.9) 15.0 (18.6±0.8) 

EP55CN20 55.0 (43.7±1.1) 0.0 25.0 (32.0±1.0) 20.0 (24.3±0.7) 

EP40CNT20 40.0 (32.3±1.9) 20.0 (22.0±0.9) 25.0 (28.5±1.0) 15.0 (17.2±0.8) 

EP40CNT25 40.0 (32.5±2.1) 25.0 (26.8±0.8) 25.0 (27.8±1.1) 10.0 (12.9±0.9) 

EP40CNT30 40.0 (32.7±1.8) 30.0 (32.1±1.1) 25.0 (27.6±0.9) 5.0 (7.6±0.7) 

EP55CNT5 55.0 (45.3±1.8) 5.0 (7.9±0.8) 25.0 (29.0±1.2) 15.0 (17.8±1.0) 

EP55CNT10 55.0 (46.1±1.7) 10.0 (12.7±0.9) 25.0 (28.9±1.0) 10.0 (12.3±0.9) 

EP55CNT15 55.0 (46.7±2.0) 15.0 (17.6±1.1) 25.0 (28.4±1.3) 5.0 (7.3±0.9) 

 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  2	  
	  
	  

94	  
	  

2.3.4. 31P MAS-NMR 

2.3.4.1. Binary P2O5-TiO2 and ternary P2O5-CaO-TiO2 and P2O5-

CaO-Na2O glasses 
31P MAS-NMR spectra of binary and ternary phosphate-based glasses are 

presented in Figures 2.15 and 2.16 and peak parameters of each spectrum are 

listed in Table 2.4. Peaks in the range of 0.8 to 1.7 ppm and -7.9 to -9.4 ppm are 

attributed to Q0 and Q1 phosphate units, respectively (Lee et al., 2013, Brow, 2000). 

Peaks in the range of -21.8 to -25.4 ppm are attributed to Q2 phosphate units (Lee 

et al., 2013, Kirkpatrick and Brow, 1995). For titanium-containing glasses, additional 

peaks in the range between -14.3 and -15.7 ppm correspond to Q1(Ti-O-P) 

phosphate units (Abrahams et al., 2004, Brauer et al., 2010, Foroutan et al., 2015).  

 

 

 

 

 

 

 

Figure 2.14. 31P MAS-NMR spectra of binary P2O5-TiO2 sol-gel derived glasses 

using triethyl phosphate as a phosphorus precursor. The peaks correspond to 

mainly Q1 and Q2 phosphate units. The asterisks denote spinning sidebands. 
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Figure 2.15. 31P MAS-NMR spectra of ternary sol-gel derived glasses using triethyl 

phosphate as a phosphorus precursor in; (a) P2O5-CaO-TiO2 and (b) P2O5-CaO-

Na2O systems. The peaks correspond to mainly Q1 and Q2 phosphate units. The 

asterisks denote spinning sidebands.	   
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Table 2.4. 31P MAS-NMR peak parameters of binary and ternary phosphate-
based sol-gel derived glasses using triethyl phosphate as a phosphorus 
precursor. 

Sample 
code 

Position 
(ppm, ±0.2)           

Qi 
species 

Line width 
(ppm, ±0.2) 

Abundance 
(%, ±1.0) 

EP60T40 1.3 0 3.9 8.4 

-8.8 1 6.4 24.3 

-15.2 1 9.7 46.5 

-24.3 2 12.3 20.8 

EP55T45 1.2 0 4.2 6.7 

-9.3 1 6.7 20.1 

-15.4 1 10.1 50.2 

-25.1 2 12.5 23.0 

EP50T50 0.9 0 4.6 5.8 

-9.4 1 6.8 17.4 

-15.7 1 10.4 52.7 

-25.4 2 12.6 24.1 

EP55CT20 

 

-8.2 1 5.8 46.4 

-14.3 1 9.4 26.1 

-22.3 2 11.7 27.5 

EP55CT25 

 

-8.3 1 6.4 39.1 

-14.5 1 9.5 29.8 

-22.8 2 12.1 32.0 

EP55CT30 

 

-8.3 1 6.5 35.7 

-14.6 1 9.7 32.3 

-23.0 2 12.1 32.0 

EP55CN10 0.8 0 3.9 0.4 

-9.3 1 9.8 58.5 

-22.3 2 11.6 41.1 

EP55CN15 1.2 0 4.9 0.9 

-8.5 1 10.2 55.4 

-22.1 2 11.8 43.7 

EP55CN20 1.7 0 5.3 3.1 

-7.9 1 10.3 52.6 

-21.8 2 12.3 44.3 
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2.3.4.2. Quaternary P2O5-CaO-Na2O-TiO2 glasses 

Figure	  2.16 shows 31P MAS-NMR spectra of quaternary P2O5-CaO-Na2O-TiO2 sol-

gel derived glasses and peak parameters are given in Table 2.5. Peaks in the 

range of -0.4 to -1.1 ppm and -8.4 to -10.6 ppm are associated with Q0 and Q1 

phosphate units, respectively. While, peaks in the range of -22.2 to -24.4 ppm are 

attributed to the Q2 species (Lee et al., 2013, Montagne et al., 2003). Similarly,  

additional peaks in the range between -13.8 and -14.4 ppm can be related to the 

Q1(Ti-O-P) phosphate units (Abrahams et al., 2004, Foroutan et al., 2015). 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. 31P MAS-NMR spectra of quaternary P2O5-CaO-Na2O-TiO2 sol-gel 

derived glasses using triethyl phosphate as a phosphorus precursor. The peaks 

correspond to mainly Q1 and Q2 phosphate units. The asterisks denote spinning 

sidebands.  
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2.3.5. FTIR spectroscopy 

Figures 2.17, 2.18, and 2.19 present FTIR data for P2O5-TiO2, P2O5-CaO-TiO2, 

P2O5-CaO-Na2O, P2O5-CaO-Na2O-TiO2 sol-gel derived glass systems. Each 

spectrum was the result of summing 10 scans. Peaks assignments were acquired 

Table 2.5. 31P MAS-NMR peak parameters of quaternary P2O5-CaO-Na2O-TiO2 

sol-gel derived glasses using triethyl phosphate as a phosphorus precursor. 

Sample 

code 

Position 

(ppm, ±0.2)           

Qi 

species 

Line width  

(ppm, ±0.2) 

Abundance  

(%, ±1.0) 

P40CNT20 -0.4 0 5.3 4.6 

-8.4 1 6.2 54.5 

-13.9 1 9.1 29.2 

-22.3 2 10.5 11.7 

P40CNT25 -0.7 0 6.2 3.8 

-8.6 1 6.1 50.2 

-14.1 1 9.3 32.6 

-22.4 2 11.1 13.4 

P40CNT30 -1.1 0 6.7 3.6 

-8.9 1 5.9 46.2 

-14.4 1 9.4 33.9 

-22.7 2 11.4 16.3 

P55CNT5 -9.2 1 5.8 41.4 

-13.8 1 10.6 7.1 

-22.2 2 12.1 51.5 

P55CNT10 -10.4 1 6.2 37.1 

-14.0 1 10.7 9.5 

-23.7 2 12.5 53.4 

P55CNT15 -10.6 1 6.5 31.6 

-14.1 1 11.0 12.3 

-24.4 2 12.7 56.1 
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according to the previous FTIR spectroscopy studies on phosphate-based glasses 

(Baia et al., 2007, Byun et al., 1995, Ilieva et al., 2001, Moustafa and El-Egili, 1998, 

Sene et al., 2004, Pickup et al., 2007). Peaks in the range of 730 to 740 cm-1 can 

be assigned to symmetrical stretching ʋs (P-O-P) mode, while peaks between 890 

and 920 cm-1 can be assigned to asymmetrical stretching ʋas (P-O-P) mode that can 

be related to Q2 phosphate species. Peaks between 1000 and 1120 cm-1 are 

associated with symmetrical stretching mode of ʋs (PO3)2-  (Q1 phosphate units). 

Peaks in the range of 1100 to 1120 cm-1 and 1235 to 1250 cm-1 are assigned to 

asymmetrical ʋas (PO3)2- and ʋas (PO2) - modes which can be related to Q1 and Q2 

phosphate units, respectively. For titanium-containing glasses, a small shift in the 

P-O-P band to higher wave numbers with an increase of TiO2 content can be 

related to either smaller metallic cation size or shorter phosphate chain length 

(Shih, 2003). Infrared band assignment for phosphate-based sol-gel derived 

glasses are summarised in Table 2.6.  

 

 

 

 

 

 

 

 

Figure 2.17. FTIR spectra of binary P2O5-TiO2 sol-gel derived glasses using triethyl 

phosphate as a phosphorus precursor. 
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Figure 2.18. FTIR spectra of ternary sol-gel derived glasses using triethyl 

phosphate as a phosphorus precursor in; (a) P2O5-CaO-TiO2 and (b) P2O5-CaO-

Na2O systems.	   
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Figure 2.19. FTIR spectra of quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived 

glasses using triethyl phosphate as a phosphorus precursor. 

 

Table 2.6. Infrared band assignment of phosphate-based sol-gel derived 

glasses using triethyl phosphate as a phosphorus precursor (ʋ, stretching; 

s, symmetric; as, asymmetric). 

Wavenumber 

(cm-1) 

Assignments Associated Qn 

730-740 ʋs (P-O-P) N/A 

890-920 ʋas (P-O-P) Q2 

985-1000 ʋs (PO3)2- Q1 

1100-1120 ʋas (PO3)2- Q1 

1235-1250 ʋas (PO2)- Q2 
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2.4. Discussion 

The main objective of this chapter was to demonstrate the successful production of 

sol-gel derived phosphate-based glasses in the P2O5-TiO2, P2O5-TiO2-CaO, P2O5-

CaO-Na2O, and P2O5-CaO-Na2O-TiO2 systems. The sol-gel synthesis of 

phosphate-based glasses has been proven to be a challenging task since choosing 

the right precursors and also solvents with the capability of dissolving precursors 

and subsequent removal after the final heat treatment are essential. In this chapter, 

and in line with the previous study by Tang et al. (Tang et al., 2005) who reported 

successful sol-gel synthesis of bulk titano-phosphate glasses, we used triethyl 

phosphate as a phosphorus precursor to sol-gel synthesise binary, ternary and 

quaternary phosphate-based glasses with a wide range of compositions. The 

maximum heat treatment temperature was set at 200 °C in order to not limit the 

potential use of these glasses for biomedical applications such as drug delivery 

systems. The chosen temperature was higher than the boiling point of the solvents 

used and it was selected to make sure there is no or minimal residual solvents (that 

can be very toxic for biomedical application purposes) exist in prepared samples 

after the final heat treatment. 

Sample preparation results confirmed that the upper limit for the gel formation at 

room temperature for binary P2O5-TiO2 glasses is 60 mol% P2O5. Bulk, transparent, 

and glassy-like specimens were successfully synthesised for samples contain 50 

and 55 mol% P2O5 and XRD patterns for these samples were free from any 

detectable crystalline phase confirming the amorphous and glassy nature of these 

samples. For samples with P2O5 > 60 mol%, however, crystalline patterns were 

observed which corresponded to TiP2O7 structure. It should be noted that TiP2O7 

ceramics have a great potential to be used in a variety of applications such as 

rechargeable batteries to replace with the current generation of rechargeable 
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lithium-ion-batteries (Rai et al., 2012, Wang et al., 2007a) and the sol-gel technique 

mentioned herein, may be a new, simplified and low temperature synthesis method 

to prepare these ceramics. However, this area was not in the scope of this study 

and were excluded from further investigation.  

Ternary phosphate-based glasses in P2O5-CaO-Na2O and P2O5-CaO-TiO2 systems 

with fixed P2O5 content of 55 mol% were successfully synthesised via the sol-gel 

method. Bulk and transparent specimen was obtained for ternary titanium-

containing glasses with high titanium dioxide content of 30 mol%. The same 

behaviour was observed for quaternary P2O5-CaO-Na2O-TiO2 glasses at P2O5 

content of 55 mol% when high titanium dioxide (15 mol% TiO2) incorporated at the 

expense of sodium oxide that clearly indicates, incorporation of titanium into the 

phosphate-based glasses can make the phosphate network more interconnected 

due to the cross-linking effect of titanium (Abrahams et al., 2004, Brauer et al., 

2010). However, it was not possible to make bulk glasses for quaternary P2O5-CaO-

Na2O-TiO2 sol-gel derived glasses at P2O5 content of 40 mol%, which might be 

related to the insufficient levels of P2O5 for these glasses to form a network. The 

XRD patterns for ternary and quaternary sol-gel derived glasses also confirmed the 

amorphous and glassy nature of these samples. 

EDX results revealed a reduction of between 7 to 11 mol% P2O5 from the theoretical 

values with a concomitant increase in the percentage content of other oxides to 

compensate. This reduction was expected to be due to the slow reaction of triethyl 

phosphate and thus not all the P2O5 was incorporated into the glass network and 

could be lost by evaporation during the heat treatment cycle of the sol-gel process.  

To confirm this, the evaporated gas from ternary EP55CN20 sol-gel derived sample 

that was heat treated up to 100 °C was analysed via FTIR spectroscopy during the 

heat treatment. This composition was chosen because of the high phosphorus loss 

of around 11 mol%, which was previously confirmed by EDX. For the heat 
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treatment cycle, differential thermal analysis (DTA) (Labsys, Setaram, Caluire, 

France) was used. Pure N2 gas was used for the DTA inlet and the outlet connected 

to the FTIR spectroscopy chamber (2000, Perkin Elmer, Seer Green, UK) via PTFE 

tube to analyse the evaporated gas from the sample during the heat treatment cycle 

(Figure 2.20). The study was carried out on 50 mg of the powder sample and the 

heat treatment cycle was set at a heating rate of 20 °C.min-1 from 100 to 220 °C, 

while the FTIR spectroscopy chamber was scanned in an absorbance mode in the 

range of 700-1500 cm-1 at various time-points with the Timebase software	  supplied 

by Perkin Elmer Co. Each spectrum was baseline corrected prior to data analysis. 

Figure 2.21 shows the FTIR spectroscopy data of the ternary EP55CN20 sol-gel 

derived sample that was confirmed an appearance of a broad peak at 1040 cm-1 

during the heat treatment cycle from 140 to 200 °C that can be attributed to the 

evaporation of unreacted phosphorus (PO4
3-) (Mobasherpour et al., 2007). 

 

 

 

 

 

 

 

 

Figure 2.20. Schematic setup to analyse the evaporated gas from ternary EP55CN20 

sol-gel derived sample via FTIR spectroscopy during the heat treatment cycle. 
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Figure 2.21. FTIR spectra of ternary EP55CN20 sol-gel derived sample during the 

heat treatment cycle from 100 to 220 °C. 

 

Interestingly, substitution of titanium for calcium or sodium, reduced the phosphorus 

loss. This can be related to the cross-linking effect of titanium that makes the 

phosphate network more interconnected. 31P MAS-NMR results confirmed, the 

structure of the prepared phosphate-based glasses consists of mainly Q1 and Q2 

phosphate units, indicating the structure has undergone polymerisation. In addition, 

substituting titanium for calcium or sodium improves the polymerisation of the 

phosphate network with a higher formation of Q2 species. The FTIR measurements 

on the titanium-containing glasses were also in correlation with 31P MAS-NMR 

results that showed an increase in the intensity of the peaks in the range between 

890 and 920 cm-1 as titanium substituted in place of calcium or sodium. 

These results suggested that titanium was acting as an ionic cross-linker and may 

increase the rigidity and durability of the phosphate network (Foroutan et al., 2015). 

Likewise, calcium can provide cross-links between the phosphate chains (but not as 
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strong as titanium, which has been shown to be), whereas, sodium can link to just 

one chain and therefore leads to depolymerisation of the phosphate network (Lee et 

al., 2013). The FTIR spectra of ternary glasses in the P2O5-CaO-Na2O system (Fig. 

2.17b) were also in good correlation with the 31P MAS-NMR data that revealed an 

increase in the intensity of the peaks at 900 and 1240 cm-1 as calcium substituted in 

place of sodium which is attributed to the Q2 phosphate units. 

In summary, to date, there have been no reports on sol-gel preparation of TiO2-

P2O5, P2O5-CaO-TiO2, and P2O5-CaO-Na2O glasses with a wide range of 

compositions at relatively low processing temperatures as investigated here. We 

successfully synthesised these glass systems via a new and simplified sol-gel 

method. In this study for the first time, according to the knowledge of the author, the 

sol-gel preparation of quaternary P2O5-CaO-Na2O-TiO2 glasses with high titanium 

dioxide content of up to 30 mol% was reported. While, incorporating a high amount 

of titanium into the phosphate network via melt-quench method is non-trivial and 

according to the literature the maximum percentage in quaternary phosphate-based 

glasses may only reach as high as 15 mol% TiO2 since incorporation of higher 

amount of titanium either is not melt into the glass due to its sedimenting out or can 

causing immediate crystallisation of the glass upon removal from the furnace (Kiani 

et al., 2012). However, in this study, a relatively high amount of phosphorus was 

lost which might be related to the slow reaction of the phosphorus precursor used. 

In the next chapter, we investigated the use of a more reactive phosphorus 

precursor to increase the reaction rate and also reduce the amount of phosphorus 

lost during the sol-gel synthesis of these glasses. 
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CHAPTER 3 
Sol-Gel Synthesis and Characterisation of 

Phosphate-Based Glasses Using n-butyl Phosphate 
as a Phosphorus Precursor 
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3.1. Introduction 

In the previous chapter, EDX results revealed a relatively high phosphorus 

reduction from the theoretical values (~7-11 mol%) that was due to the evaporation 

of unreacted phosphorus during the heat treatment cycle of sol-gel process. A 

range of more reactive phosphorus precursors have been investigated to increase 

the reaction rate and also reduce the amount of phosphorus loss during the sol-gel 

process such as phosphoric acid (H3PO4), phosphoryl chloride (POCl3), and alkyl 

phosphates like n-butyl phosphate (Livage et al., 1992). The results showed that 

H3PO4 is too reactive and usually leads to precipitation, while POCl3 and n-butyl 

phosphate seem to be better alternatives for the sol-gel synthesis of phosphate-

based glasses (Pickup et al., 2007, Clayden et al., 2001). It was also confirmed that 

the phosphorus loss from POCl3 during the sol-gel reaction is relatively higher than 

n-butyl phosphate (Carta et al., 2005, Lee et al., 1996).  

In this chapter, n-butyl phosphate was used as a phosphorus precursor to 

synthesise ternary P2O5-CaO-Na2O and quaternary P2O5-CaO-NaO-TiO2 glass 

systems via the sol-gel method. A similar preparation method that was explained in 

chapter 2, was used to make these glass systems with a wide range of 

compositions. The structure of the prepared samples was characterised using XRD, 

31P MAS-NMR, FTIR spectroscopy, and the elemental proportions were measured 

by EDX. The compositions of the starting solutions are shown in Table 3.1. 
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Table 3.1. Compositions of starting solutions for ternary P2O5-CaO-Na2O and 

quaternary P2O5-CaO-NaO-TiO2 sol-gel derived samples using n-butyl phosphate 

as a phosphorus precursor. 

Sample  

code 

Theoretical composition 

 

Concentration (mol%) 

P2O5 CaO Na2O TiO2 
BP55CN10 (P2O5)55-(CaO)35-(Na2O)10 55.0 35.0 10.0 0.0 

BP55CN15 (P2O5)55-(CaO)30-(Na2O)15 55.0 30.0 15.0 0.0 

BP55CN20 (P2O5)55-(CaO)25-(Na2O)20 55.0 25.0 20.0 0.0 

BP40CNT20 (P2O5)40-(CaO)25-(Na2O)15-(TiO2)20 40.0 25.0 15.0 20.0 

BP40CNT25 (P2O5)40-(CaO)25-(Na2O)10-(TiO2)25 40.0 25.0 10.0 25.0 

BP40CNT30 (P2O5)40-(CaO)25-(Na2O)5-(TiO2)30 40.0 25.0 5.0 30.0 

BP55CNT5 (P2O5)55-(CaO)25-(Na2O)15-(TiO2)5 55.0 25.0 15.0 5.0 

BP55CNT10 (P2O5)55-(CaO)25-(Na2O)10-(TiO2)10 55.0 25.0 10.0 10.0 

BP55CNT15 (P2O5)55-(CaO)25-(Na2O)5-(TiO2)15 55.0 25.0 5.0 15.0 

 

3.2. Materials and methods 

3.2.1. Materials 

The precursors used have been reported in section 2.2.1. However, instead of 

triethyl phosphate, n-butyl phosphate (1:1 molar ratio of mono and di-n-butyl 

phosphate, 98%, Alfa Aesar, Heysham, UK) was used without further purification to 

prepare ternary P2O5-CaO-Na2O and quaternary P2O5-CaO-Na2O-TiO2 glass 

systems. Figure 3.1 shows the structural formula of n-butyl phosphate.  
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Figure 3.1. Structural formula of n-butyl phosphate; a mixture of (a) mono butyl 

phosphate (C4H11O4P) and (b) di-butyl phosphate (C8H19O4P). 

 

3.2.2. Sol-gel synthesis methods 

Similar sol-gel synthesis methods that were described previously in sections 2.2.2.3 

and 2.2.2.4, were used to prepare ternary and quaternary phosphate-based 

glasses. The sol-gel preparation of ternary P2O5-CaO-Na2O and quaternary P2O5-

CaO-Na2O-TiO2 glass systems is outlined schematically in Figure 3.2.  
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Figure 3.2. Schematic sol-gel synthesis of; (A) ternary P2O5-CaO-Na2O and (B) 

quaternary P2O5-CaO-Na2O-TiO2 samples using n-butyl phosphate as a 

phosphorus precursor. 

 

 

3.2.3. Drying procedure 

The obtained homogeneous solutions were transferred into glass containers and 

heat treated similar to the previously explained method in section 2.2.3. 
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3.2.4. Structural characterisation methods 

3.2.4.1. XRD and EDX 

XRD and EDX characterisation methods were carried out on glass powders as 

previously reported in sections 2.2.4.1.1 and 2.2.4.2.1. 

 

3.2.4.2. 31P MAS-NMR and FTIR spectroscopy 

31P MAS-NMR and FTIR spectroscopy characterisation methods were carried out 

on glass powders as explained in sections 2.2.4.3.1 and 2.2.4.4.1   

 

3.3.  Results 

3.3.1.  Sample preparation 

All samples in both ternary and quaternary systems turned to gel within the first 5 

minutes at room temperature. Bulk, transparent and glassy-like specimens with few 

cracks were obtained for glasses with TiO2 content of 15 mol% for glasses with 55 

mol% P2O5, and 25 or 30 mol% TiO2 for glasses with P2O5 content at 40 mol% (Fig. 

3.3). However, for ternary sol-gel synthesised glasses in the P2O5-CaO-Na2O 

system, it was not possible to make bulk specimens. A summary of the effect of the 

drying procedure in ternary and quaternary glasses is shown in Table 3.2.  
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Figure 3.3. Photographs of; A) BP40CNT25, B) BP40CNT30, and C) BP55CNT15 sol-

gel derived samples. The scale bar for A, B, and C is 1 cm. 

 

Table 3.2. The effect of drying procedure in ternary P2O5-CaO-Na2O and 

quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived samples using n-butyl phosphate 

as a phosphorus precursor. 

Sample  

code 

Gelation at room 

temperature 

Transparency Bulk and 

crack-free sample 

BP55CN10 ! ! Heavily cracked 

BP55CN15 ! ! Heavily cracked 

BP55CN20 ! ! Heavily cracked 

BP40CNT20 ! ! Heavily cracked  

BP40CNT25 ! ! Few cracks 

BP40CNT30 ! ! Few cracks 

BP55CNT5 ! ! Heavily cracked  

BP55CNT10 ! ! Heavily cracked 

BP55CNT15 ! ! Few cracks 

A 

C 

B 
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3.3.2. XRD 

Figures 3.4 and 3.5 show the XRD patterns of ternary P2O5-CaO-Na2O and 

quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived samples, respectively. For both 

systems the XRD patterns were free from any detectable crystalline phases with a 

broad peak at 2θ values of between 20 and 40° that confirmed the amorphous and 

glassy nature of the prepared samples. 

 

	  

	  

	  

	  

	  

	  

	  

	  

	  

Figure 3.4. XRD patterns of ternary P2O5-CaO-Na2O sol-gel derived samples using 

n-butyl phosphate as a phosphorus precursor which are free from any detectable 

crystalline phases. 
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Figure 3.5. XRD patterns of quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived 

samples using n-butyl phosphate as a phosphorus precursor which showed no 

evidence of any detectable crystalline phases. 

	  

3.3.3. EDX	  

The EDX results were converted to mol% of oxides of the elements to allow a 

comparison to be made with the theoretical compositions and were reported in 

Table 3.3. A reduction of 5.7-8.0 mol% P2O5 from the theoretical values was 

observed for ternary glasses in the P2O5-CaO-Na2O system, with a concomitant 

increase in the percentage content of the other oxides to compensate. While, for 

quaternary glasses in the P2O5-CaO-Na2O-TiO2 system, as titanium was substituted 
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in place of sodium, the amount of P2O5 loss decreased to 3.8-5.4 mol% from the 

theoretical values. 

 

 

Table 3.3.  Intended compositions and measured values of sol-gel derived glasses 

using n-butyl phosphate as a phosphorus precursor determined by EDX (in 

parentheses). 

Sample 

code 

P2O5 

(mol%) 

CaO 

(mol%) 

Na2O 

(mol%) 

TiO2 

(mol%) 

BP55CN10 55.0 (49.3±1.1) 35.0 (38.6±1.2) 10.0 (12.1±0.7) 0.0 

BP55CN15 55.0 (48.1±1.3) 30.0 (34.6±1.4) 15.0 (17.3±0.8) 0.0 

BP55CN20 55.0 (47.0±1.0) 25.0 (30.8±0.9) 20.0 (22.2±0.6) 0.0 

BP40CNT20 40.0 (35.6±1.2) 25.0 (26.9±0.8) 15.0 (16.4±0.8) 20.0 (21.1±0.7) 

BP40CNT25 40.0 (35.9±1.3) 25.0 (26.9±1.0) 10.0 (11.2±0.9) 25.0 (26.0±0.8) 

BP40CNT30 40.0 (36.2±1.1) 25.0 (26.7±0.9) 5.0 (5.9±0.7) 30.0 (31.2±0.8) 

BP55CNT5 55.0 (49.6±1.0) 25.0 (27.2±0.7) 15.0 (16.7±0.8) 5.0 (6.5±0.9) 

BP55CNT10 55.0 (50.2±1.2) 25.0 (27.0±0.8) 10.0 (11.5±0.7) 10.0 (11.3±0.7) 

BP55CNT15 55.0 (50.9±1.1) 25.0 (26.5±0.6) 5.0 (6.1±0.6) 15.0 (16.5±1.0) 

	  

	  

3.3.4. 31P MAS-NMR  
31P MAS-NMR spectra of ternary P2O5-CaO-Na2O and quaternary P2O5-CaO-Na2O-

TiO2 sol-gel derived glasses are shown in Figure 3.6 and peak parameters are 

summarised in Table 3.4. Peaks in the range of -9.9 to -10.8 ppm are attributed to 

Q1 phosphate units, while peaks in the range of -21.9 to    -23.9 ppm correspond to 

Q2 species (Lee et al., 2013, Foroutan et al., 2015). Additional peaks in quaternary 

glasses in the range of -0.2 to -1.2 ppm and -13.6 to -14.8 ppm are attributed to Q0 

and Q1(Ti-O-P) phosphate units, respectively (Foroutan et al., 2015). 
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Figure 3.6. 31P MAS-NMR spectra of; (a) ternary P2O5-CaO-Na2O and (b) 

quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived glasses using n-butyl phosphate 

as a phosphorus precursor. The peaks correspond to mainly Q1 and Q2 phosphate 

units. The asterisks denote spinning sidebands.	   
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Table 3.4. 31P MAS-NMR peak parameters of ternary P2O5-CaO-Na2O and 

quaternary P2O5-CaO-Na2O-TiO2 sol-gel derived glasses using n-butyl 

phosphate as a phosphorus precursor. 

Sample 

code 

Position 

(ppm, ±0.2)           

Qi  

species 

Line width 

(ppm, ±0.2) 

Abundance 

(%, ±1.0) 

BP55CN10 -10.2 1 8.0 32.9 

-22.8 2 9.2 67.1 

BP55CN15 -10.1 1 8.1 32.1 

-22.5 2 9.4 67.9 

BP55CN20 -9.9 1 8.3 30.4 

-22.3 2 9.4 69.6 

BP40CNT20 -0.2 0 6.8 4.1 

-10.0 1 9.5 41.3 

-14.1 1 9.6 33.2 

-21.9 2 11.2 21.4 

BP40CNT25 -0.8 0 7.4 3.4 

-10.1 1 9.7 37.4 

-14.4 1 9.9 35.7 

-22.5 2 11.7 23.5 

BP40CNT30 -1.2 0 7.7 2.0 

-10.3 1 9.8 29.1 

-14.8 1 9.9 40.8 

-22.8 2 11.8 28.1 

BP55CNT5 -9.9 1 8.5 21.3 

-13.6 1 8.3 4.3 

-23.2 2 12.4 74.4 

BP55CNT10 -10.1 1 8.9 12.5 

-14.0 1 8.4 7.9 

-23.2 2 13.1 79.6 

BP55CNT15 -10.3 1 9.4 6.1 

-14.1 1 9.6 9.7 

-23.8 2 13.6 84.2 
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3.3.5. FTIR spectroscopy 

FTIR spectra of ternary P2O5-CaO-Na2O and quaternary P2O5-CaO-Na2O-TiO2 sol-

gel derived glasses are shown in Figure 3.7. Peak assignments were acquired and 

listed in Table 3.5 according to the previous FTIR spectroscopy studies on 

phosphate-based glasses (Baia et al., 2007, Byun et al., 1995, Ilieva et al., 2001, 

Moustafa and El-Egili, 1998, Sene et al., 2004, Pickup et al., 2007). Peaks in the 

range between 720 and 730 cm-1 are assigned to symmetrical stretching ʋs (P-O-P) 

mode, while, peaks between 890 and 900 cm-1 are assigned to asymmetrical 

stretching ʋas (P-O-P) mode (Q2 phosphate units). Peaks in the range between 980 

to 990 cm-1 are assigned to symmetrical stretching ʋs (PO3)2- mode (Q1 phosphate 

units). In addition, peaks in the range of 1090 to 1100 and 1230 to 1240 cm-1 are 

assigned to asymmetrical ʋas (PO3) 2- and ʋas (PO2)- modes that can be related to Q1 

and Q2 phosphate units, respectively. 

 

 

 

 

Table 3.5. Infrared band assignment of phosphate-based sol-gel derived 

glasses using n-butyl phosphate as a phosphorus precursor.  

Wavenumber 

 (cm-1) 

Assignments Associated  

Qi 

720-730 ʋs (P-O-P) N/A 

890-900 ʋas (P-O-P) Q2 

980-990 ʋs (PO3)2- Q1 

1090-1100 ʋas (PO3)2- Q1 

1230-1240 ʋas (PO2)- Q2 
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Figure 3.7. FTIR spectra of; a) ternary P2O5-CaO-Na2O and b) quaternary P2O5-

CaO-Na2O-TiO2 sol-gel derived glasses using n-butyl phosphate as a phosphorus 

precursor.  
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3.4. Discussion	  

In this chapter, phosphate-based sol-gel derived glasses in the P2O5-CaO-Na2O and 

P2O5-CaO-Na2O-TiO2 systems were successfully synthesised by using n-butyl 

phosphate as a phosphorus precursor. The gelation time in the sol-gel reaction was 

much reduced compared to the sol-gel synthesised glasses with similar 

compositions in chapter 2. The high reactivity of n-butyl phosphate can be related to 

the –OH group which provided enough water for the sol-gel reaction. The XRD 

patterns for both systems were free from any detectable crystalline phase, which 

confirmed the amorphous and glassy nature of the prepared samples. This finding 

indicates a successful glass production by using n-butyl phosphate as a phosphorus 

precursor. 

EDX results revealed a relatively lower phosphorus loss during the sol-gel synthesis 

compared to the previously synthesised glasses in chapter 2 with  similar 

compositions. This can be related to the higher molecular weight and reactivity of n-

butyl phosphate in comparison with triethyl phosphate as a phosphorus precursor. 

Substituting titanium in place of sodium also reduced the amount of phosphorus 

reduction that was due to the cross-linking effect of titanium in the phosphate 

network. The 31P MAS-NMR study confirmed that the sol-gel synthesised glasses 

consist of mainly Q1 and Q2 phosphate units and as sodium was replaced with 

titanium, the glass network became more interconnected with higher levels of Q2 

species. Data for the chemical shifts also showed a change to more negative values 

as the Ti content increased. This is due to the formation of several cross-links 

between Ti4+ and oxygen sites, unlike Na+ ions. As more cross-links are formed, the 

charge on the oxygen is displaced away from P_O bonds that leading to more 

shielded nuclei and producing a change in chemical shift. Analysis of the Q2 species 

line width revealed an increase as titanium substituted in place of sodium indicating 
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a move to a more disordered structure that can be explained by the presence of a 

wider range of P environments in glasses containing cations with greater ionic 

potentials (Brow et al., 1991). FTIR spectroscopy data also in correlation with the 

31P MAS-NMR results that showed an increase in the peak intensity at about 900 

and 1235 cm-1 indicating the level of Q2 species increased as titanium substituted in 

place of sodium. Taken together, these results suggested titanium may act as a 

conditional network former in phosphate-based sol-gel derived glasses as 

presented here. 

Previous in vitro and in vivo studies on titanium-containing phosphate-based 

glasses prepared via melt-quench method have shown significant potential for the 

use of these glasses in bone tissue engineering applications (Lakhkar et al., 2012, 

Kiani et al., 2012). In the next chapter, for the first time, we investigated the use of 

titanium-containing sol-gel derived glasses as a scaffold for bone tissue engineering 

applications. Low synthesis temperature and possibly a controllable degradation 

rate of these glasses may make them more favourable from the view point of cell 

attachment, growth, proliferation and differentiation. The sol-gel method also make it 

possible to fabricate phosphate-based glasses with different shapes, structure and 

diameter for various biomedical applications such as coating medical implants. 
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CHAPTER 4

Titanium-Stabilised Sol-Gel Derived Glasses for Bone

Tissue Engineering Applications
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4.1. Introduction

Providing cells with an environment that they can continue their normal functionality

is one of the most important issues in tissue regeneration. Bioactive and

biodegradable materials are favourable due to their ability to break down and

stimulate formation of novel extracellular matrix, and eventually tissue (Langer and

Vacanti, 1993, Hench and Polak, 2002). Phosphate-based glasses, as explained

previously, are bioresorbable materials with a controllable degradation rate that

makes them an excellent choice for various biomedical applications (Knowles,

2003). These glasses offer an advantageous alternative to silica-based sol-gel

derived glasses, with a more controllable degradation rate and easily metabolised

dissolution products (Navarro et al., 2003, Hamadouche et al., 2001).

The biocompatibility and degradation rate of phosphate-based melt-derived glasses

with the general formula of P2O5–CaO–Na2O and P2O5–CaO–Na2O–TiO2 have

been extensively studied for a variety of biomedical applications (Navarro et al.,

2002, Kiani et al., 2012, Franks et al., 2000). These studies confirmed that the

addition of TiO2 can significantly reduce the dissolution rate because of the

formation of (Ti-O-P) bonds and the release of titanium may also enhance the

biological response and make them a good choice in tissue engineering

applications from the viewpoint of cell attachment, growth, proliferation and

differentiation (Kiani et al., 2012, Lakhkar et al., 2012). The release of other ions

such as Ca2+ can also stimulate cellular behaviour such as proliferation and bone

formation (Knowles, 2003, Navarro et al., 2003, Franks et al., 2000). However, few

studies exist concerning the preparation of titanium stabilised sol-gel derived

phosphate glasses (Pickup et al., 2008b, Foroutan et al., 2015).

The sol-gel method allows more control over glass morphology in comparison with

the melt-derived glasses, which is of fundamental importance in tissue regeneration
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(Hench, 1997). In addition, the low processing temperature (200 °C) of the sol-gel

synthesis enables incorporation of bioactive molecules for drug delivery

applications, which is not possible with phosphate-based glasses formed by the

melt-quench technique, as this requires higher processing temperatures (~1,000

°C) and therefore results in degradation of the organic components (Pickup et al.,

2012, Lee et al., 2013, Kiani et al., 2012). However, to date, no studies have been

published regarding the potential use of phosphate-based sol-gel derived glasses in

tissue regeneration applications.

Phosphate-based sol-gel derived glasses with the general formula (P2O5)55–

(CaO)25–(Na2O)(20-x)–(TiO2)x, where X = 0, 5, 10 or 15 were synthesised and the

XRD, EDX, 31P MAS-NMR, and FTIR spectroscopy results were reported in

Chapter 3. Here, the pH change and ion release were quantified during the storage

of samples in deionised water at 37 °C. Cytocompatibility was also assessed and

cellular interaction with the surface of the glass particles was imaged using

scanning electron microscopy (SEM) and confocal laser scanning microscopy

(CLSM).

4.2. Aims

In this chapter, we investigated the potential use of titanium containing phosphate-

based glasses for tissue regeneration applications. Since incorporation of titanium

into the phosphate-based sol-gel derived glasses serves to stabilise the phosphate-

network due to the cross-linking effect of titanium, greater control over the

dissolution rate of these glasses would be expected, which could match with the

bone tissue regeneration. In addition, the sol-gel method allows more control over

glass morphology, which is of fundamental importance in tissue regeneration.
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4.3. Materials and methods

4.3.1. Sol-gel synthesis

A total of four glass compositions (Table 4.1) were successfully synthesised as

previously described in section 3.2. The obtained sol-gel derived glasses were

ground to form microparticles (MM301 milling machine, Retsch GmbH, Hope, UK).

Microparticles in the size range of 106–150 µm were obtained using test sieves

(Endecotts Ltd, London, UK) and a sieve shaker (Spartan, Fritsch GmbH, Brackley,

UK).

Table 4.1. The theoretical compositions of phosphate-based sol-gel derived

glasses using n-butyl phosphate as a phosphorus precursor.

Sample

code

Theoretical composition Concentration (mol%)

P2O5 CaO Na2O TiO2

Ti0 (P2O5)55-(CaO)25-(Na2O)20 55.0 25.0 20.0 0.0

Ti5 (P2O5)55-(CaO)25-(Na2O)15-(TiO2)5 55.0 25.0 15.0 5.0

Ti10 (P2O5)55-(CaO)25-(Na2O)10-(TiO2)10 55.0 25.0 10.0 10.0

Ti15 (P2O5)55-(CaO)25-(Na2O)5-(TiO2)15 55.0 25.0 5.0 15.0

4.3.2. pH change measurement

Specimens of each glass composition (25 mg, n = 3) were immersed in 5.5 mL

deionised water (the pH adjusted to 7.0 ± 0.1 using NH4OH or HCl) and stored at 37

°C (Compact Incubator, LEEC, Nottingham, UK) for up to 7 days. The pH of the

solution was measured after 0, 1, 3 and 7 days (Orion pH Meter, Thermo scientific-

Orion star, UK) fitted with a pH glass electrode. The pH meter was calibrated using

standard solutions of pH 4, 7, and 10 before use. At each time-point, the particles

were centrifuged at 4,000 rpm for 10 minutes, in order to separate them from the
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solution. The supernatant was aspirated and the particles dried in an oven (IP100-

LTE Scientific, Oldham, UK) at 60 °C for 3 hours, before they were resuspended in

fresh deionised water.

4.3.3. Ion release measurement

Specimens of each glass composition (50 mg, n = 3) were immersed in 11 mL

deionised water (pH 7.0 ± 0.1) and stored at 37 °C (Compact Incubator, LEEC,

Nottingham, UK) for up to 7 days. At each time-point, glass suspensions were

centrifuged at 4,000 rpm for 20 minutes, in order to separate them from the

solution. The supernatant was collected and the particles dried in an oven (IP100-

LTE Scientific, Oldham, UK) at 60 °C for 3 hours, before replenishment with fresh

deionised water.

4.3.3.1. Cation release

The release of cations (Na+ and Ca2+) from glass microparticles was quantified after

0, 1, 3 and 7 days using an ICS-1000 ion chromatography system (Dionex, Surrey,

UK) equipped with a 4 x 250 mm Ion Pac® CS12A column operating under

suppressed conductivity, with 20 mM methanesulfonic acid (Fluka, Dorset, UK)

eluent to separate cations based on their affinity to the ion exchanging resin. The

sample solutions were passed through a Dionex OnGuard IIA filter (Dionex, Thermo

Scientific, Hemel Hempstead, UK) prior injection through the column to eliminate

anions that bind to the cation column. Also, before performing the analysis, the

system was calibrated against a four-point calibration curve with a predefined

calibration program from standard solutions provided by the manufacturer (Dionex,
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Surrey, UK). Data analyses were performed in relation to standard solutions using

the Chromeleon® software package (Dionex Surrey, UK).

4.3.3.2. Anion release

The release of anions (PO4
3-, P2O7

4-, P3O9
3-, and P3O10

5-) from glass microparticles

was quantified after 0, 1, 3 and 7 days using an ICS-2500 system (Dionex, Surrey,

UK) equipped with a 4 x 250 mm Ion Pac® AS16 column which separating them

based on their interaction with anion exchange resin. Isocratic separation was

applied with a linear potassium hydroxide (KOH) gradient of between 30–50 mM

over a 35 minute period provided by an EG50 eluent generator. Similar to the cation

release measurement, the system was calibrated against a four-point calibration

curve before carrying out the sample run for each time points from standard

solutions. Standard solutions were prepared using sodium phosphate, trisodium

trimetaphosphate, pentasodium tripolyphosphate (Sigma-Aldrich, Dorset, UK) and

tetrasodium pyrophosphate (BDH, Poole, UK) as the reagents. Similar to the cation

release measurements, the Chromeleon® software package was used for data

analysis.

4.3.4. Cell studies

4.3.4.1. Cell culture

Human osteoblast-like osteosarcoma cell line (MG-63, European Collection of Cell

Cultures, Porton Down, UK) was cultured under standard conditions (37 °C, 95 %

air, 5 % CO2, 95 % relative humidity) in Dulbecco’s modified Eagle medium that

contains 4 mM L-glutamine, 4500 mg/L glucose, 1 mM sodium pyruvate, and 1500

mg/L sodium bicarbonate (DMEM, Gibco, Life Technologies, Paisley, UK)
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supplemented with 10 % foetal bovine serum (Gibco Life Technologies, Paisley,

UK). The growth process was carried out until the cells reached at 80-90 %

confluency.

4.3.4.2. Cytocompatibility assay

In order to assess the effect of TiO2 content of the sol-gel derived glasses on

cytocompatibility, MG-63 cells were cultured on the microparticles. The materials

were sterilised using dry heat at a temperature of 180 °C for 2 hours in a sealed

glass vial with aluminium foil and left to cool overnight. The sol-gel glass particles (5

mg per specimen) were evenly distributed across permeable cell culture supports in

48 well plates (Transwell, Corning B.V. Lifesciences, Amsterdam, Netherlands), in

order to enable facile processing of the specimens for SEM and confocal

microscopy after the final time-point. Cells were seeded on the particles at a density

of 30,000 cells/cm2 (10,000 cells/well) and cell culture medium was added to the

cell culture support and the bulk of the well (1.1 mL total). Controls consisted of

cells seeded directly on cell culture supports. Each sample type was analysed in

triplicate. Cytocompatibility was assessed after 1, 3 and 7 days. At each time-point,

cells were seeded at various densities, 2 hours prior to the assay, for the

preparation of standard curves. The medium was then aspirated from the samples

and standards and replaced with 1 mL medium containing 10 vol% water soluble

tetrazolium salt-8 (WST-8, Cell Counting Kit-8, Sigma Aldrich, Gillingham, UK).

WST-8 is a pink substrate, which is metabolised in the mitochondria to form an

orange formazan product. After 80 min incubation at 37 °C, absorbance at 460 nm

(with a reference wavelength of 650 nm) was measured (Infinite M200, Tecan,

Männedorf, Switzerland). The apparent cell density of the samples was

extrapolated from the standard curves. The WST-8 containing medium was then



CHAPTER 4

135

aspirated and replaced with fresh cell culture medium until the next time-point.

Following the final time-point, cells residing on the microparticles were imaged by

SLCM and SEM.

4.3.4.3. Cell and particle imaging

Specimens consisting of MG-63 cells cultured on the glass microparticles for 7 days

were fixed by replacing the medium with a 3% glutaraldehyde (Sigma-Aldrich, UK)

in 0.14 M sodium cacodylate buffer solution (pH 7.3, Sigma-Aldrich, UK) and kept at

4 °C overnight before dehydration through a graded series of ethanol solutions

according to the following regimen: 50% ethanol for 10 minutes, 70% ethanol for 10

minutes, 90% ethanol for 10 minutes and 100% ethanol for 10 minutes (2 times).

The final drying was done by hexamethyldisilazane (Sigma-Aldrich, UK) for 1-2

minutes and then the plate was left to dry overnight in a desiccator. It should be

noted that all of the above mentioned steps were performed very carefully to

minimise the detachment of cells from the glass micoparticles. The membranes

were carefully excised using a scalpel and mounted onto carbon adhesive discs

attached to aluminium stubs. The specimens were then sputter-coated with gold-

palladium alloy by a Polaron E5100 coating device (Polaron CVT, Milton Keynes,

UK) and imaged using a scanning electron microscope (Philips-XL30 instrument,

Netherland) with an accelerating voltage of 5 kV and working distance of 10 mm at

various magnifications.

Cells residing on the glass microparticles were imaged using confocal laser

scanning microscopy (CLSM) after 7 days culture. The cytoskeleton (actin

filaments) and nuclei of the cells were fluorescently stained using Alexa Fluor 488

phalloidin (Invitrogen, UK) and propidium iodide (BD Biosciences, UK), respectively.



CHAPTER 4

136

Specimens were prepared by fixation in 4% paraformaldehyde, followed by two

washes using Dulbecco’s phosphate buffered saline (D-PBS, Lonza, Slough, UK).

Cells were then permeabilised using a 0.1 vol% solution of Triton X-100 (Sigma-

Aldrich) in D-PBS for 5–10 minutes at room temperature. A 2.5 vol% solution of

phalloidin methanolic stock solution in D-PBS was then added to each specimen

and incubated for 20 minutes at room temperature in a dark environment, in order

to minimise evaporation and photo-bleaching. After a further two washes with D-

PBS, specimens were counter-stained using 1 µg.mL-1 propidium iodide (BD

Biosciences, Oxford, UK) for 10 minutes, before visualisation by CLSM (Biorad,

Hemel Hempstead, UK).

4.4. Results

4.4.1. pH change measurement

The pH of the dissolution products of all glass compositions reduced significantly

over the first 24 hours, as shown in Figure 4.1. A more gradual decrease in pH

progressed during the remainder of the immersion period. Increasing TiO2 content

reduced the extent and rate of pH decrease, although there was little difference

between Ti5, Ti10 and Ti15.
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Figure 4.1. pH measurement after 0, 1, 3 and 7 days immersion of sol-gel derived

glass microparticles in deionised water that shows significant decrease in pH after

24 hours. Error bars represent the standard deviation of three samples.

4.4.2. Ion release measurement

Figure 4.2 illustrates the release of cations (Ca2+ and Na+) and anions (P2O7
4-,

P3O10
5-, P3O9

3- and PO4
3-) from the sol-gel derived glass microparticles. As

expected, higher concentrations of Ca2+ were detected in samples collected from

Ti0 glass microparticles. There was a significant decrease in the Ca2+ release rate

with an increase in the TiO2 content from 0 to 15 mol%. Likewise, Na+ release

showed a clear distinction between each glass composition. Glasses with lower Na+

content released less Na+ into solution. The release of Ti4+ was also investigated

but was below the detectable range. Similarly, the release of P2O7
4- and P3O10

5-

anions correlated directly with TiO2 content, with increasing Ti resulting in

decreasing release. P3O9
3- and PO4

3- release, however, followed trends that were

distinct from a direct relationship with Ti content. Ti5 and Ti10 demonstrated higher

P3O9
3- release than Ti0 and Ti15. Conversely, the release of PO4

3- from Ti0 and Ti5

was markedly lower than from Ti10 and Ti15.
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Figure 4.2. Cumulative release of (a) Ca2+and (b) Na+ cations and (c) P2O7
4-, (d)

P3O10
5-, (e) P3O9

3- and (f) PO4
3- anions from sol-gel derived glass microparticles

after 1, 3 and 7 days storage in deionised water. Error bars represent the standard

deviation of three samples.
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4.4.3. Cytocompatibility

The cytocompatibility of the sol-gel derived glasses is presented in Figure 4.3. The

control (MG-63 on cell culture supports) approximately doubled in apparent cell

density at each time-point, reaching 217,000 cells/cm2 by day 7. The apparent

density of cells cultured on glass particles remained low after 1 and 3 days. Ti0

caused cells to approximately halve in number within the first day, with little

subsequent recovery. Cells cultured on Ti5 and Ti10 had a low apparent cell

density after 1 and 3 days, but this recovered to 135,000 and 212,000 cells/cm2 by

day 7, respectively. Ti15, however, had poor cytocompatibility, with cells failing to

recover even after 7 days.

Figure 4.3. Cytocompatibility of glass microparticles containing 0, 5, 10 or 15 mol%

Ti with MG-63 cells at 1, 3 and 7 days. Dotted line represents an initial seeding

density. Error bars represent the standard deviation of three samples.
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4.4.4. Cell and particle imaging

The morphology and size of the glass microparticles were identified by SEM

(Figure 4.4) after 7 days in cell culture. All compositions had a similar morphology,

with particles assuming a jagged but generally spherical form with diameters in the

range of ~0.5–2 µm and a rough surface topography. The control (A, B) shows a

monolayer of cells spread on the cell culture support (dark circular features are

pores). After 7 days in culture, Ti0 particles (C, D) had almost fully degraded and

therefore cells could not be visualised on the remaining small particles. Some cells

were visible on the surface of Ti5 particles (E, F), though this was much more

apparent on the surface of Ti10 (G–I). At high magnification, it was confirmed that

cells were proliferating and forming a very flattened morphology on the surface of a

Ti10 glass microparticles (I). Ti10 and Ti15 glass microparticles remained large,

having degraded little, though no cells were visible on Ti15 (J, K). Figure 4.5 shows

cells attached to Ti5 and Ti10 microparticles. Cells were not observed on Ti0 or

Ti15.
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Figure 4.4. Scanning electron micrographs showing glass particles morphology and

cell attachment. (A, B) Control (cells on cell culture support), (C, D) Ti0, (E, F) Ti5,

(G-I) Ti10, and (J, K) Ti15.
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Figure 4.5. Confocal micrographs showing cells attached to glass microparticles

containing (A, B) 5 or (C, D) 10 mol% TiO2. The green fluorescent stain (phalloidin)

shows filamentous actin and red (propidium iodide) shows nuclei.
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4.5. Discussion

In this chapter, we reported the potential use of sol-gel synthesised glasses with the

general formula (P2O5)55–(CaO)25–(Na2O)(20-x)–(TiO2)x where X = 0, 5, 10 or 15 for

bone tissue regeneration applications. Degradation studies revealed that immersion

of glass microparticles in deionised water for 0, 1, 3 and 7 days resulted in a

significant decrease in pH after 24 hours for all compositions, followed by a more

gradual decrease at subsequent time-points. This suggested that increasing TiO2

content reduced the rate of pH reduction, since titanium has a high charge/diameter

ratio and can make the network more interconnected. As expected, the higher

calcium release was associated with lower titanium content. Likewise, the release

of sodium followed a similar pattern, which can be explained on the basis of

substitution between sodium and titanium within the present glass compositions. A

similar trend was observed for P2O7
4- and P3O10

5-.

The detected levels of P3O9
3- and PO4

3- follow more complex trends. As P3O9
3-

release reached a maximum for Ti0, which was below that of the other

compositions, this may reflect that the entire P3O9
3- content of the glass had been

released into solution. P3O9
3- is a cyclic molecule composed of three phosphate

units. In order to form, it can be reasoned that phosphate alkoxides would need to

be in close proximity to each other at the point of synthesis without other network

forming units. With the higher valency of Ti increasing network connectivity in

comparison to Na, the amount of phosphate bonds that form with other phosphate

units is expected to be reduced by increasing Ti (Pickup et al., 2008a). Hence, a

lower degree of P3O9
3- would be present within the Ti0 glass. PO4

3- may also be

released as a result of smaller phosphate units within the glass network. It should

also be noted, however, that linear molecules lack the stability of cyclic structures.

Taking this into consideration, variable trends in PO4
3- release are to be reasonably
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expected, as the PO4
3- detected in solution thus represents the accumulation of

PO4
3- released directly from the glass and PO4

3- formed by degradation of longer

chain polyphosphates in solution. These results are also corroborated by the initial

pH data collected. For example, highly acidic species such as P2O7
4- and P3O10

5-

were released in the greatest amount from the Ti0 glass and this particular

composition also induced the greatest pH reduction in solution (Montchamp, 2015).

Likewise, less acidic PO4
3- and P3O9

3- species were released in proportionally

greater amounts from those glasses which reduced the pH of the solution to a

lesser extent (Fluck, 1978).

The apparent cell density of MG-63 cells cultured on a layer of glass microparticles

was reduced in comparison to the cell culture support control after 1 and 3 days in

the case of all compositions. This was likely caused by the rapid decrease in pH

that occurred upon glass degradation. Although the pH change would have been

partially buffered by the cell culture medium, the more extreme drop in pH in Ti0

explains why the cells failed to recover and reach an initial seeding density. As Ti

content was increased from 0 to 5 or 10 mol%, the density of surviving cells

increased in parallel, due to the decrease in glass degradation and lower drop in

pH. The apparent density of cells residing on Ti5 after 7 days in culture had

recovered to ~60% that of the control, whereas cells cultured on Ti10 had

recovered to the same level as the control. Cells cultured on Ti15, however, failed

to recover. No cells were visible in the SEM or CLSM images and only low cell

densities were detected by WST-8.

Furthermore, of the anions investigated, only PO4
3- contributes to apatite formation,

whereas longer chain polyphosphates are known to inhibit crystal growth

(Driessens, 1982). As apatite formation is believed to promote cellular attachment

(Hu et al., 2013), the deposition of a mineral layer at the interface of the glass and it
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environment is a plausible explanation of the high cytocompatibility of Ti10. The

reduced survival of cells cultured on Ti15, however, requires further explanation.

Titanium has been shown to inhibit hydroxyapatite mineralization (Blumenthal and

Cosma, 1989). Higher release of Ti4+ from the Ti15 glass may have therefore

exceeded the biocompatibility threshold, preventing the formation of a

hydroxyapatite surface layer amenable to cellular growth. Alternatively, oxolation

and subsequent olation of Ti4+ could serve to induce microtemporal pH shifts in the

immediate vicinity of the glass surface. Again, higher release of Ti4+ from the Ti15

glass would exacerbate this effect. The other possibility can be related to the

greater retention of toxic residual solvents by the more highly cross-linked

composition. This possible explanation is beyond the scope of this study and would

require further investigation.

It is also worth noting that water-soluble cell proliferation assays such as WST-8

measure mitochondrial metabolic activity and only give an indication of cell density.

It is possible that the lower readings after 1 and 3 days may have been due to lower

metabolic activity as the cells attached to the unfamiliar particles and spread across

their surface. This would explain the large difference in apparent cell densities

between days 3 and 7. It is also possible that the layer of glass microparticles on

the cell culture support somewhat inhibited diffusion of nutrients across the

membrane, compared to the control.

These results were also supported by SEM and CLSM images, which showed cells

residing on Ti5 and Ti10 but not Ti0 or Ti15. Furthermore, scanning electron

micrographs showed significant mineral formation on the surface of Ti5 and Ti10.

Since bone cells strongly favour rough surface topographies for adhesion and

proliferation (Walters and Gentleman, 2015), the mineral content and morphology of

these compositions are likely to be the causes of their improved cytocompatibility.
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CHAPTER 5 
Sol-Gel Synthesis and Electrospraying of Ternary     

(P2O5)0.55-(CaO)0.30-(Na2O)0.15 Glass Nanospheres for 
Diagnostic and Therapeutic Applications 
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5.1. Introduction 

Ultrasound imaging is a real time, non-ionising, effective, and low cost imaging tool. 

Yet it remains primarily an anatomic imaging tool versus positron emission 

tomography or bioluminescence. Ultrasound contrast agents can increase the 

signal specificity for molecular imaging by increasing backscattered echoes from 

the target site, however, the current generation of microbubbles is too large to be 

used outside of the vasculature or inside specific cells of interest (Goldberg and Liu, 

1997, Benchimol et al., 2013, Nakatsuka et al., 2011, Willmann et al., 2008). The 

use of microbubbles as a contrast agent were first introduced in 1968 by injecting 

agitated saline into the ascending aorta and cardiac chambers during 

echocardiographic examination (Gramiak R and Shah PM, 1968). Strong echoes 

were produced within the heart due to the acoustic mismatch between free air 

microbubbles in the saline and the surrounding blood. However, microbubbles 

produced by agitation were both large and unstable and diffused into solution in a 

short period of time.  

To overcome these limitations encapsulated gas bubbles were developed, 

however, these microbubbles were unstable in circulation even with polyethylene 

glycol surface treatment (Klibanov, 1999, Schutt et al., 2003, Kono et al., 2008). 

Furthermore, microbubbles require a careful choice of ultrasound frequency 

because they burst at low frequencies that can result in local microvasculature 

rupture and haemolysis (Klibanov, 2005). While nanotechnology and production of 

nanobubbles have made important improvements in this area, however, a complete 

solution has remained elusive (Xing et al., 2010, Shapiro et al., 2014, Krupka et al., 

2010).  

One alternative is the use of solid nanoparticles as backscatter contrast agents for 

ultrasound molecular imaging (Casciaro et al., 2010, Jokerst et al., 2013, Liberman 
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et al., 2013). These solid particles have been used to image cell surface proteins in 

cancer cells, visualising stem cells in cardiac regenerative medicine, and also for 

encapsulating drug molecules to transport them to specific cells (Jokerst et al., 

2013, Casciaro et al., 2010). These particles are particularly attractive for cancer 

treatment due to their small size and potential for functionalising their surface which 

provide immense opportunity in drug delivery and cell imaging. 

However, in order to be effective, the material properties of these agents are very 

critical. They must have acoustic impedance, be capable of strongly and stably 

backscattering incident acoustic energy, possess the ability to encapsulate drug 

molecules, and be able to be metabolised and removed safely from the body shortly 

after administration. In addition the particles must be small enough to extravasate 

through tumour vasculature due to the enhanced permeation and retention (EPR) 

effect or be phagocytosed by cells when growing in culture. While silica-based 

nanoparticles have shown some promises (Ta et al., 2012, Martinez et al., 2010, 

Malvindi et al., 2011),  their degradation rate is very slow which may limit their 

applications (He et al., 2011a, Hudson et al., 2008).  

Phosphate-based glasses are an attractive alternative since they offer a 

controllable degradation rate by varying their chemical compositions which gives 

rise to easily metabolised degradation components in the body (Knowles, 2003, 

Hench and Polak, 2002, Franks et al., 2001). In addition, phosphate-based glasses 

can be a good choice to encapsulate drug molecules as they could be a way to 

reduce the drug dose needed and the side effects associated with particular drugs 

(Pickup et al., 2012). 

In our previous approach to prepare ternary phosphate-based glasses via the sol-

gel method in the P2O5-CaO-Na2O system (section 2.2.2.3), we focused on 

preparing bulk glasses and for that reason, the drying procedure had to be done 

very carefully over three weeks (section 2.2.3). However, the long synthesis time 
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and the difficulty of preparing bulk glasses and tailoring their shape may limit their 

potential biomedical applications. Here, we used a similar sol-gel synthesis method 

to prepare a ternary (P2O5)0.55-(CaO)0.30-(Na2O)0.15 glass composition and 

subsequent electrospraying allowed us to prepare glass spheres in the nanometer 

size range at relatively low processing temperatures, with potential use as a 

contrast agent for ultrasound imaging or a carrier in drug delivery applications. The 

initial objectives of this chapter were to investigate the application of electrospraying 

to produce phosphate-based glass nanospheres (PGNs). To date, this is the first 

report of electrospraying phosphate-based sol-gel derived glasses to prepare PGNs 

and the first use of such system for diagnostic and therapeutic purposes. 

Synthesised PGNs were characterised by SEM, EDX, XRD, 31P MAS-NMR, and 

FTIR spectroscopy. Biodegradation was then monitored via inductively coupled 

plasma mass spectroscopy (ICP-MS) to measure phosphorus, sodium, and calcium 

ion release into an aqueous medium. Cell cytotoxicity analysis was also performed 

to determine the biocompatibility. We used PGNs as a diagnostic probe to label 

mesenchymal stem cells for both in vitro and in vivo ultrasound imaging. The 

potential drug delivery application of drug-loaded PGNs was also determined by 

ultra performance liquid chromatography (UPLC).	   It should be noted that in this 

chapter; cytotoxicity study, and in vitro and in vivo ultrasound imaging was done in 

collaboration with Dr. Jesse Jokerst at Stanford University. 

 

5.2. Aims 

In this chapter, the initial aim was to use the electrospraying technique to prepare 

phosphate-based glass nanospheres in the diameter size range of below 500 nm 

for theranostic applications, which was discussed in chapter 1. Following that the 

potential application of phosphate-based glass nanospheres in the P2O5-CaO-Na2O 



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

153	  
	  

system as a transient contrast agent for ultrasound imaging and as a carrier in drug 

delivery systems were investigated.  

 

5.3. Materials and methods 

5.3.1. Design of electorspraying 

The experimental setup of the electrospraying system is shown in Figure 5.1. It 

consists of high voltage source, syringe pump, stainless steel hypodermic needle, 

and a counter electrode. Silicone oil (Sigma-Aldrich, Gillingham, UK) was used as a 

substrate and the temperature of the substrate was controlled via a hot plate 

located underneath. An electric field was generated by applying the voltage 

between the needle and the counter electrode while the syringe pump provided a 

constant flow rate. Surface charges, which are proportional to the resulting electric 

field, were formed on the surface of the sol-gel solution droplet at the tip of the 

needle. These charges exert an outward electrostatic pressure which is in 

opposition to the pressure developed by surface tension resulting in the formation 

of a Taylor cone at the tip of the needle. Above a critical value of the electric field, 

the electrostatic forces overcome the surface tension of the solution resulting in the 

extraction of a liquid jet. The extruded sol-gel solution was separated into small 

droplets and propelled into the heated silicone oil. 
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Figure 5.1. Schematic of the electrospraying setup including; syringe pump, 

stainless steel needle, high voltage supply, collection substrate, and a hot plate. 

The high voltage between the needle and the ground creates nanospheres from the 

needle tip and these are propelled toward the heated silicone oil as a substrate to 

obtain dried gel nanospheres. 

 

 

5.3.2. Synthesis of the sol for subsequent electrospraying 

The sol-gel preparation method of ternary (P2O5)0.55-(CaO)0.30-(Na2O)0.15 glass 

composition has been described previously in Section 2.2.2.3. To evaluate the 

potential diagnostic and therapeutic applications of PGNs, during the final stage of 

the sol-gel process 1 wt% fluorescein dye (Sigma-Aldrich, Gillingham, UK) or 1 wt% 

tetracycline hydrochloride (Sigma-Aldrich, Gillingham, UK) was added to a subset 

of the mixture and homogeneous solutions were obtained after mixing for about 10 
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minutes. The mixtures were aged overnight at 60 °C before being electrosprayed 

over the heated silicone oil. 

A stainless steel hypodermic needle (18 gauge) with 10 cm distance from the 

substrate was used. The electrospraying setup was operated at room temperature 

and atmospheric pressure. The temperature of the substrate was controlled and 

kept at 150 °C using a hot plate. The flow rate of the syringe pump was set at 0.20 

mL.h-1 and a voltage of 20 kV was applied between the needle and the ground to 

provide a continuous and stable Taylor cone output. The sprayed particles were 

separated from silicone oil via centrifugation at 4600 rpm for 30 minutes and 

washed three times with acetone (99.5%, Alfa-Aesar, Heysham, UK) before drying 

at 180 °C for 2 hours in an oven (EV014-Townson & Mercer, Cheshire, UK) to 

evaporate the acetone and other remaining solvents. 

 

5.4. Structural characterisation methods 

5.4.1. SEM 

The shape and morphology of the obtained particles were probed using scanning 

electron microscopy (SEM). SEM images were acquired using a Philips-XL30 

instrument (Philips, Netherland) at a working distance of 10 mm and an 

accelerating voltage of 5 kV. The particles were mounted onto a stub using araldite 

and sputter-coated with gold/palladium alloy by a Polaron E5100 coating device 

(Polaron CVT, Milton Keynes, UK) and imaged at various magnifications. Particle 

size distribution was determined from the measurement of at least 100 particles 

using Image Pro Plus software (Medium Cybernetics, USA). 
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5.4.2. XRD and EDX 

XRD and EDX analysis were carried out on PGNs as previously described in 

sections 2.2.4.1.1 and 2.2.4.2.1. 

 

5.4.3. 31P MAS-NMR and FTIR spectroscopy 
31P MAS-NMR and FTIR spectroscopy characterisation methods have been 

previously reported in sections 2.2.4.3.1 and 2.2.4.4.1. 

 

5.4.4. Cell culture, labelling, and cytotoxicity  

Human mesenchymal stem cells (MSCs) and culture medium were purchased from 

Lonza (p/n 2501 and 3001, respectively). Cells were seeded at a cell seeding 

density of 5000 cells/cm2, and the medium was changed every 2-3 days. Cell 

labeling was carried out using MSCs plated at a cell seeding density of 5000 

cells/cm2 in a 225 cm2 flask after reaching 80% confluence. For labeling 

optimisation studies, 12 well plates at the same cell seeding density were used. In 

order to investigate the application of PGNs as a contrast agent, they were 

incubated in PBS at 25 mg.mL-1. To obtain an optimised concentration value for the 

labelling process using PGNs, the cells were exposed to a range of PGNs 

concentrations from 30 to 1000 µg.mL-1. The PGNs were then incubated with the 

cells for 2 hours and then washed three times with PBS. To study the effect of time, 

500 µg.mL-1 of PGNs from 1 – 360 minutes was used. For labelling experiments, we 

used fluorescently-tagged PGNs. Cell fluorescence was measured with a plate 

reader (Bio-TEK), and EVOS-FI fluorescence microscopy (Invitrogen). Leica 

confocal microscope (TCS-SP5) was used for confocal microscopy with a 20x APO 



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

157	  
	  

objective (p/n 506147) seated on a Virbraplane air table. For z-stacking 

experiments, 20 slices were collected over ~ 50 µm.  

For the cell counting experiments, we used the optimised protocol of 2 hours and 

250 µg.mL-1. After labelling, the cells were washed three times with saline. We 

monitored the washes with absorbance spectroscopy to confirm that the third wash 

contained no more nanoparticles. The cells were then removed from the flask with 

TrypLE Express (Invitrogen), washed with complete medium to deactivate the 

trypsin, centrifuged at 1000 rpm at 4 °C for 5 minutes and resuspended in saline. 

The cells were counted with an automated hemocytometer before being placed in a 

phantom and imaged. 

For cell viability, cells were plated in a 96 well plate and allowed to adhere 

overnight. The next day, cells were incubated in contact with a range of PGNs 

concentration for 4 hours. For a positive control, we added 10 µL of 1 mg.mL-1 cetyl 

trimethylammonium bromide (CTAB) in phosphate buffered saline. Cell viability was 

assessed using the tetrazolium-based metabolic reagent compound 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-(4-sulfophenyl)-2H-tetrazolium 

(MTS; Promega). The solution was used as received and 20 µL of MTS solution 

was added to each well in a 96 well plate containing cells and allowed to incubate 

for 3 hours. Absorbance at 490 nm was measured to estimate cell viability. Each 

condition was tested with at least four replicates. 

To determine whether the particles generated any reactive oxygen species, we 

utilized 2’,7’ –dichlorofluorescin diacetate (DCFDA; Biotium). We first made a   1 

mg.mL-1 stock solution of DCFDA in dimethyl sulfoxide (DMSO) and then 125 µL of 

the DMSO solution was diluted to 10 mL using Hanks Buffered Saline Solution 

(HBSS). Cells were washed with fresh HBSS and then 100 µL of the DCFDA 

solution in HBSS was added; the plate was incubated at 37 °C for 1 hour. Next, the 
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labelling solution was aspirated and the cells again washed with fresh HBSS. 

Increasing concentrations of PGNs in 100 µL HBSS were then added. Controls 

include 10 %H2O2 and wells with no cells. The fluorescence emission of each well 

was measured 1 hour later. 

 

5.4.5. Biodegradation monitoring 

Biodegradation was monitored via inductively coupled plasma mass spectroscopy 

(ICP-MS). The experiment used 0.1 mg.mL-1 PGNs in deionised water at 37 °C with 

three replicates at the following time points: 0, 0.2, 0.5, 1, 3, 6, 12, 24, and 48 

hours.  The tubes were secured to a tube rotation device set to 5 rotations per 

minute. This device was in a 37 °C incubator (Compact Incubator, LEEC, 

Nottingham, UK) under ambient humidity. After each time point, the resulting 

suspension was centrifuged at 4600 rpm for 30 minutes to separate the PGNs from 

the solution. The liquid phase was then extracted and the PGNs were dried at 60 °C 

in an oven (IP100-LTE Scientific, Oldham, UK) before replenishing with fresh 

deionised water. The release of phosphorus, calcium, and sodium in solution was 

measured by using a Spectro Mass 2000 Analytical System (Kleve, Germany) 

calibrated across the predicted concentrations range of 0 - 4000 ppb by dilution of 

100 ppm elemental standards. Calcium standard was obtained as part of a pre-

made standard solution (Fluka, Gillingham, UK) whereas phosphorus and sodium 

standards were prepared from analytical grade K2HPO4 (Sigma-Aldrich, Gillingham, 

UK) and NaNO3 (Sigma-Aldrich, Gillingham, UK) salts, respectively. Standards 

were first diluted in deionised water to the desired concentration range. Both 

samples and standards were diluted in 1:1 in 4% HNO3 (Fluka, Gillingham, UK) and 

analysed against a blank (2% HNO3) solution under standard operating conditions 



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

159	  
	  

(Power: 1350 W; Coolant Flow: 15 L.min-1: Auxiliary Flow: 1 L.min-1). Results were 

reported as a cumulative ion release over the full period of the degradation study. 

 

5.4.6. In vitro ultrasound imaging 

To measure the echogenicity of the nanoparticles, increasing concentrations of 

PGNs were placed in a 1% agarose phantom. Ultrasound backscatter mode (B-

mode) images were collected with a Visualsonics 2100 scanner with a MS-550 

transducer (Fuji, Ontario, Canada) for 40 MHz centre frequency imaging or a MS-

250 transducer for 16 MHz. Other imaging parameters included 100% power, 35 dB 

gain and a 60 dB dynamic range. At least three frames were collected for each 

sample and were quantified with ImageJ software using region of interest analysis 

and 8-bit depth as the dependant variable (0-255) (Schneider et al., 2012).  

 

5.4.7. In vivo ultrasound imaging 

All animal studies were approved by the Administrative Panel for Laboratory Animal 

Care (APLAC) at Stanford University. Nude mice aged 10-14 weeks were 

anaesthetized with 2% isofluorane in oxygen at 2 L.min-1. The PGNs were dissolved 

in 50:50 matrigel:PBS at 2.0, 0.25, and 0.1 mg.mL-1. The injection volume was 100 

µL that was subcutaneously implanted on the rear flank of the mice. The animals 

were imaged 10 minutes after implantation after the matrigel had solidified using 40 

MHz centre frequency, 100% power, 35 dB gain, and a 60 dB dynamic range. At 

least three frames were collected for each sample and images were quantified with 

ImageJ. For longitudinal imaging the injection site was marked and the animal 

returned to the same position the next day for identical imaging conditions.  
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5.4.8. Drug release measurement 

To measure the tetracycline hydrochloride (TCH) release from the drug-loaded 

PGNs, 1 mg.mL-1 sample suspended in deionised water at 37 °C (Compact 

Incubator, LEEC, Nottingham, UK) with three replicates at the following intervals: 0, 

0.2, 0.5, 1, 2, 4, 8, 16, and 24 hours. After each interval, the mixture was 

centrifuged at 4600 rpm for 30 minutes to separate the PGNs from the solution. The 

liquid phase was then extracted and the PGNs were dried at 60 °C in an oven 

(IP100-LTE Scientific, Oldham, UK) before they were resuspended in fresh 

deionised water. 6µL of the extracted solution diluted with 4 µL of methanol solution 

containing 0.1% formic acid and injected into the Hypersil Gold C18 column (Thermo 

Scientific, Leicestershire, UK) using the Acquity Capillary UPLC system (Waters, 

Manchester, UK) and was monitored at 345 nm. The mobile phases were: A) 0.1% 

formic acid in 100% water, and  B) 0.1% formic acid in 100% acetonitrile. The 

gradient program was started at 5% B and was gradually increased to 95% B over 

4 minutes. The mobile phase composition was maintained at 95% B for a further 

0.5 minutes before returning to 5% B in 6 seconds. The flow-rate was 600 µL.min-1 

and the column was then re-equilibrated for a further 24 seconds giving a total run 

time of 5 minutes. Before performing the analysis, the system was calibrated 

against a five point calibration curve from prepared TCH standard solutions. 

 

5.5. Results 

5.5.1. SEM and EDX 

Nanoparticles were successfully synthesised with the electrospraying technique 

and the shape and size of the particles were characterised using SEM analysis. 

Figure 5.2 shows nanospherical particles and measurement of the particle size for 
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more than 100 particles confirmed more than 80% of the particles had a diameter 

distribution of 200-500 nm with a mean diameter size of 320 nm. The EDX results 

are reported in Table 5.1. The P2O5 content was 12.5 mol% less than the 

theoretical value with a concomitant increase in the percentage content of the other 

oxides to compensate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. SEM images of (A, B) washed and heat-treated PGNs (the scale bars 

represent 5 and 2µm) and (C, D) dispersed PGNs in anhydrous ethanol solution 

after heat-treatment (the scale bars represent 2 µm). The PGNs have an 

approximate size distribution of 200 - 500 nm with mean diameter of 320 nm based 

on measurement of more than100 particles. 
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Table 5.1. Intended composition and measured values of sol-gel derived 

glasses, determined by EDX (in parentheses). 

Sample  

code 

Concentration (mol%) 

P2O5  CaO Na2O  

PGN 55.0 (42.5±1.0) 30.0 (37.9±0.9) 15.0 (19.6±0.8) 

 

5.5.2. XRD  

The XRD pattern of the PGNs showed no evidence of any detectable crystalline 

phase (Fig.5.3). Only two broad peaks at 2θ values between 20 and 50° were 

observed. This confirmed the amorphous and glassy nature of the PGNs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The XRD pattern of PGNs which is free from any detectable crystalline 

phase. 
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5.5.3. 31P MAS-NMR 

Figure 5.4 shows the 31P MAS-NMR spectrum from PGNs. The peak at 1.7 ppm 

corresponds to Q0 phosphate units, while the peaks with the chemical shifts at -8.3 

and -21.9 ppm are assigned to Q1 and Q2 units, respectively (Lee et al., 2013, Carta 

et al., 2007). The peak parameters of the PGNs spectrum are listed in Table 5.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. 31P MAS-NMR spectrum of PGNs that correspond to mainly Q1 and Q2 

phosphate units. The asterisks denote spinning sidebands. 

 

Table 5.2. 31P MAS-NMR peak parameters of phosphate-based glass 

nanospheres. 

Sample 

code 

Position 

(ppm, ±0.2)           

Qi 

species 

Line width 

(ppm, ±0.2) 

Abundance 

(%, ±1.0) 

 

PGN 

1.7 0 6.7 1.9 

-8.3 1 10.1 59.5 

-21.9 2 12.5 38.6 

 

*	  

*	  

*	  

*	  
*	  

*	   *	  

*	  

Q1 Q2 
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5.5.4. FTIR spectroscopy 

Figure 5.5 presents FTIR spectroscopy data for PGNs that allow assignment of 

peaks according to the previous FTIR spectroscopy studies on phosphate-based 

glasses (Baia et al., 2007, Byun et al., 1995, Ilieva et al., 2001, Moustafa and El-

Egili, 1998, Sene et al., 2004, Pickup et al., 2007). The peak at 730 cm-1 can be 

assigned to symmetrical stretching ʋs (P-O-P) mode, while the peak at 900 cm-1 can 

be assigned to asymmetrical stretching ʋas (P- O-P) mode (Q2 phosphate units). 

Peaks at 1100 and 1235 cm-1 are also assigned to asymmetrical ʋas (PO3)-2 and ʋas 

(PO2)- modes that can be related to Q1 and Q2 phosphate units, respectively. 

 

 

 

 

 

 

 

 

 

Figure 5.5. FTIR spectrum and band assignment for PGNs (ʋ, stretching; s, 

symmetric; as, asymmetric). 

 

 



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

165	  
	  

5.5.5. Ion release study 

The concentration of phosphorus, sodium, and calcium that released into solution at 

different time points are presented in Figure 5.6. It can be seen that the highest 

rate of ion release occurs within the first 4 hours over the entire length of the study 

for all the elements. It should be noted that there is a small difference between the 

obtained data from EDX and ICP that can be related to the dissolution behaviour of 

phosphorus that requires the hydrolysis of P-O-P bonds prior to release, whereas 

other elements may be released via diffusion (Bunker et al., 1984). 

 

 

 

 

 

 

 

 

 

Figure 5.6. Cumulative release of phosphorus, calcium, and sodium in deionised 

water as a function of time for the investigated PGNs. Error bars represent the 

standard deviation of three samples. 
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5.5.6. Cytotoxicity study  

MTS and DCFDA assays were used to measure the cell viability and to study 

whether reactive oxygen species (ROS) were generated (Fig. 5.7). MSCs were 

used for both applications because of the utility of ultrasound in cardiac stem cell 

therapy (Hare et al., 2012b, Jokerst et al., 2013). The cells were positive for CD105, 

CD166, CD29, CD44, CD14, CD34, and CD45 and were below passage number 5. 

The DCFDA assay was first validated with both positive and negative controls. The 

negative control was used well with no cells plated, and the positive control was a 

well with MSCs stimulated by 10% hydrogen peroxide. The negative control had a 

fluorescence value of 297 ± 76 which is attributed to auto-fluorescence from the 

plastic well plate. The MSCs in medium with neither PGNs nor H2O2 had a value of 

869 ± 118. The H2O2 positive control validated the assay and was 2.2-fold higher 

than the control cells. The experiments with PGNs added to the MSCs showed no 

increase in DCFDA signal except at 1000 µg.mL-1. Here, the signal increased 1.6-

fold to 1372 ± 41—a value that was significant at p<0.0001 versus the 0 µg.mL-1 

control. All other PGNs concentrations had p values greater than 0.05 indicating no 

generation of ROS (Fig. 5.7A). 

We also used the MTS assay to measure any effects on cell viability. Two fractions 

of PGNs were analysed; freshly dissolved PGNs in PBS (Fig. 5.7B, Fresh) and 

PGNs that had been in PBS overnight (Fig. 5.7B, Degraded). In both cases, cells 

were treated with increasing concentrations of PGNs. The positive control was the 

known cytotoxic agent CTAB. Cells without stimulation had an optical density at 490 

nm of 0.85 ± 0.06 for the fresh sample and 0.90 ± 0.05 for the degraded sample. No 

concentrations had a statistically significant change to baseline except the positive 

control, which suppressed the signal 4.3-fold and 4.1-fold for the fresh and 

degraded samples, respectively.  
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Figure 5.7. Increasing concentrations of PGNs were used to label MSCs for 4 

hours followed by treatment with different markers of cytotoxicity. All experiments 

were validated with a positive control (POS). A) Cells were plated, tagged with 

DCFDA, and then perturbed with PGNs. Any ROS generation resulted in 

fluorescence from the DCFDA probe. Only the 1000 µg.mL-1 sample significantly 

upregulated ROS. A hydrogen peroxide positive control validated the assay. The 

negative control was wells with no cells. B) The MTS reagent measures cell 

metabolism and showed no decrease at any concentration studied. Here, we used 

both freshly dissolved PGNs (fresh) and PGNs that had been in solution for 24 

hours (degraded). No concentration decreased metabolism. Error bars represent 

the standard deviation of 6 wells.	   

A 

B 
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5.5.7. In vitro ultrasound imaging 

The ability of the PGNs to backscatter acoustic energy was tested with phantoms. 

Inclusions contained increasing concentrations of PGNs were added to the agarose 

support and imaged at 40 MHz (Fig. 5.8). In Figure 5.8A, the echogenicity of a 0 

mg.mL-1 PGNs is seen. The outline of the well can be seen clearly due to the 

presence of air bubbles that became trapped on the side of the well (dashed lines). 

A much more intense signal is seen when a specific well was loaded with 1 mg.mL-1 

PGNs (Fig. 5.8B). The mean intensity of this image and at least three replicate 

images was measured to be 81.5 ± 1.3 a.u. This value and the value determined for 

the other concentrations of PGNs is plotted in Figure 5.8C. Using the best fit line 

(R2>0.99) and the background value of 5.3 ± 0.4, we estimated the limit of detection 

to be 5 µg.mL-1 at three standard deviations above the mean of the background.  

To understand how biodegradation affects the ultrasound signal was also measured 

using 0.25 mg.mL-1 PGNs after different periods of dissolution in standard PBS 

(Fig. 5.8D). It was found that the signal has a maximum near 10 minutes, but 

remains elevated at least 4 hours after wetting. Interestingly, the increase from 2 

minutes to 10 minutes was significant (p<0.05) and suggests that the wetting of the 

PGNs may induce hydration that increases backscatter. 
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Figure 5.8. Ultrasound images in the z-axis for inclusions with 0 mg.mL-1 PGNs (A) 

and 1 mg.mL-1 PGNs at 40 MHz (B). The increased backscatter results from the 

increasing number of particles that was further quantified for multiple fields of view 

in (C). PGNs (0.25 mg.mL-1) at various time points were imaged with ultrasound to 

understand how signal changes as a function of time (D). These data indicate that 

ultrasound signal decreases as the PGNs degrades because of decreased acoustic 

impedance. The imaging window is within the first four hours of dissolution. 
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The frequency of imaging is also an important parameter. Higher frequencies have 

better resolution, but lower depth of penetration and the echogenicity of the material 

may change as a function of frequency. To understand how the PGNs behave in 

both clinical and pre-clinical frequencies, we also imaged nanoparticles at 16 MHz 

(Fig. 5.9A). The signal of a 1 mg.mL-1 PGNs solution was measured as well as the 

background signal of agar. Both the signal and signal-to-background (S/B) are 

plotted and are shown in Figure 5.9B. While the signal was 36% higher at 40 MHz, 

the signal-to-background at 16 MHz was 4.6-fold higher than 40 MHz, because of a 

lower background signal. These data indicate that the PGNs are suitable for 

imaging at both clinical and pre-clinical frequencies. 

 

 

 

 

 

 

Figure 5.9. Panel A is an ultrasound image in the z-axis for 1 mg.mL-1 PGNs at 16 

MHz, and B is signal and signal-to-background for both 16 and 40 MHz. Here, the 

signal was defined as echogenicity of the sample and background was adjacent 

agar. While the signal was higher at 40 MHz, the signal-to-background at 16 MHz 

was 4.6-fold higher than 40 MHz because of a lower background signal. These data 

indicate that the PGNs are suitable for imaging in both clinical and pre-clinical 

frequencies. 
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5.5.8. In vivo ultrasound imaging 

To understand the capability of PGNs for in vivo imaging and biodegradation, 100 

µL boluses of increasing concentrations of PGNs were implanted into the rear flank 

of nude mice (Fig. 5.10A). These samples were in a 50% matrigel carrier and this 

vehicle served as the negative control (0 mg.mL-1 PGNs). Each implant was imaged 

at 40 MHz and the backscatter was quantified for various concentrations in Figure 

5.11A. The calculated limit of detection in vivo is 9 µg.mL-1 of PGNs with a value 

nearly 2-fold higher than in vitro analysis. This is because of the increased 

background signal in in vivo imaging.  

We also studied the capability for in vivo biodegradation. Mice implanted with 2 

mg.mL-1 PGNs were imaged immediately after implantation (Fig. 5.10A) and one 

day later (Fig. 5.10B). As expected, the matrigel and saline carriers were largely 

resorbed into circulation and extracellular matrix. Concurrently, the PGNs implanted 

began to degrade as we observed a 3.5-fold decrease in signal-to-background after 

one day (Fig. 5.11B). 
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Figure 5.10. Nude mice received 100 µL boluses of 2 mg.mL-1 PGNs in 1:1 

matrigel:PBS and imaged at 40 MHz immediately after implantation (A) and 1 day 

after (B). Red outlines in A and B indicate the region of implantation. 
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Figure 5.11. Decreasing concentrations of PGNs were also implanted to calculate 

the limit of detection and variance between animals (A). Error bars represent the 

standard error of measurement. Changes in ultrasound backscatter for PGNs 

indicates a 3.5-fold decrease in signal-to-background ratio (SBR) (B). Error bars 

represent the standard deviation.  

 

5.5.9.  Ultrasound cellular imaging 

A final imaging study was carried out on labelled MSCs with the PGNs. We first 

optimised the labelling protocol using the cell fluorescence to monitor labelling. 

There was a linear relationship (R2=0.98) between the starting concentration and 

the resulting cell fluorescence from 30 to 1000 µg.mL-1 of PGNs at 2 hours of 

incubation (Fig. 5.12A). When the incubation time was changed from 1 to 360 

minutes at 500 µg.mL-1, a marked plateau effect was noted after 1 hour of 

incubation (Fig. 5.12B). Further incubation with cells did not significantly increase 

the signal from the cells (p>0.05). Even 30 minutes of incubation gave a signal from 

the cells that was 70% of maximum. These conditions were used to label MSCs 

and then imaged them with ultrasound (Fig. 5.12C) and fluorescence microscopy 

(Fig. 5.13A).  
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Next microscopy was used to understand the interaction between the PGNs and 

the MSC’s. Epifluorescence microscopy indicated low non-specific binding of PGNs 

to the culture flasks. Less than 5% of the fluorescent pixels did not correspond to a 

cell in Figure 5.13B with many regions of increased signal seen throughout the 

MSC’s. 

Different numbers of cells were placed in a 100 µL inclusion in an agar phantom 

and imaged at 40 MHz. This cell volume was used because it is similar to the 

injection volume used in trials of non-human primates and would likely be used in 

human. A linear relationship was noted between the number of cells and the 

ultrasound backscatter (R2>0.99; Fig. 5.12C), which is important for studies in 

which unknown numbers of cells may need to be quantified. The calculated limit of 

detection for ultrasound imaging was 4000 MSCs at three standard deviations 

above the mean of the background.  

Finally, confocal microscopy was used to study the distribution of the PGNs. Our 

goal was to determine whether the nanoparticles were on the cells or inside the 

cells. This is important because nanoparticles that were only on the surface could 

become detached after implantation and incorrectly be considered as a cell. The 

confocal data in Figure 5.13F showed that the nanoparticles are located throughout 

the cell in the cytoplasm and are not simply on the cell surface. 
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Figure 5.12. The optimal labeling conditions were tested empirically including 

starting concentration of PGNs (A) and incubation time (B). We found a nearly 

linear relationship between starting concentration and cell fluorescence (A). These 

concentrations used 2 hours of labeling. In B, we studied the effect of time and 

found that incubation times beyond 2 hours offered no additional signal. (C) MSCs 

labelled with these conditions (500 µg.mL-1 and 2 hours) were imaged with 40 MHz 

ultrasound—the limit of detection is 4000 MSCs.  
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Figure 5.13. Phase contrast/fluorescence microscopy of naive MSCs (A) and 

MSCs labelled with PGNs shows that fluorescence only corresponds to the cells 

(low non-specific binding) (B). Panel C is ultrasound image of blank agarose 

phantom (no cells), panel D is the ultrasound backscatter from 225,000 MSCs, and 

panel E is the same number MSCs labeled with PGNs in an agar phantom. The 

PGNs increased the backscatter two-fold versus unlabeled cells. Panel F is a 

confocal image through the medial slice of adherent cells labelled with fluorescently 

tagged PGNs. The image shows that the nanoparticles are located throughout the 

cell and are localised in the cytoplasm and are not simply on the cell surface. 
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5.5.10. Drug release measurement 

Figure 5.14 shows the cumulative TCH release profile measured via UPLC from 

the drug-loaded PGNs. It can be seen that the highest TCH release occurs within 

the first 4 hours of study period (~ 55% TCH). These results matching with the data 

that was obtained from the ICP and ultrasound imaging analysis. The release 

reached to around 60% TCH theoretical total after 12 hours and appeared to have 

been saturated. This can be related to the existence of the TCH molecules on the 

surface of the PGNs that washed out during the preparation of PGNs. 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure 5.14. Cumulative release measurement of TCH from the drug-loaded PGNs 

determined via UPLC. Highest release occurred within the first 4 hours of the entire 

study. Error bars represent the standard deviation of three samples. 

 

 

 

	  



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

178	  
	  

5.6. Discussion 

In this chapter, the sol-gel preparation method and the subsequent application of 

electrospraying was utilised to prepare ternary phosphate-based glass 

nanospheres in the diameter size range of 200-500 nm at relatively low 

temperature. Previous approaches to prepare these glasses have been focused on 

preparing bulk sol-gel glasses. However, the difficulties in manufacturing bulk 

glasses have led to their limited biomedical applications. In this study, the 

electrospraying technique was used to tailor the shape of these sol-gel derived 

glasses in the range of nanometers. 

The amorphous and glassy nature of the PGNs was confirmed by XRD data 

analysis. The 31P NMR and FTIR spectroscopy results also showed the structure of 

these PGNs consists of mainly Q1 and Q2 phosphate units. The Q0 and Q1 

percentages for the PGNs are slightly higher than the previously synthesised glass 

with the same composition in section 2.2.2.3 that can be related to the shorter 

ageing time period and also evaporation of unreacted phosphorus precursors 

during the heating stage that was confirmed by EDX measurement which showed 

an approximately 12.5 mol% P2O5 loss, post processing. 

The PGNs have strong ultrasound backscattering capabilities both in vivo and in 

vitro. Phantom experiments indicated a limit of detection of 5 µg.mL-1 with linear 

behaviour below 1000 µg.mL-1 (Fig. 5.8A). The imaging window of this material is 

below 4 hours. The ICP data show the highest rate of dissolution within the first 4 

hours of immersion in distilled water (Fig. 5.6), and our time course study shows 

that by 4 hours the signal has decreased more than 2-fold with even further 

reduction the next day (Fig. 5.8D). This is particularly important because it bridges 

a gap between the minutes of stability of microbubbles and the months of stability of 

Stober silica particles (Hudson et al., 2008, He et al., 2011b).  



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  
	  

179	  
	  

One potential concern is that the high local ionic concentrations could perturb 

cellular function. For 0.1 mg.mL-1 of PGNs, over the 48 hours of dissolution study 

and assuming no diffusion, cells would be exposed to 41 ppm (PO4)3-, 32 ppm Ca2+, 

and 16 ppm Na+ (Fig. 5.6). These values are well within the standard physiological 

range of serum chemistries (Bishop, 2010). For example, the reference range of 

Ca2+ is 8.5 - 10 mg.dL-1 or 85 - 100 ppm. The additional calcium due to the contrast 

agents is within the reference range and should not unduly perturb cell metabolism. 

Furthermore, diffusion and normal circulation may contribute to equilibration of any 

locally disturbed ionic concentrations.  

To further confirm the cytocompatibility, we performed a series of cell toxicity 

assays. While we did find that very high doses (1000 µg.mL-1) increased ROS 

(hydroxyl, peroxyl, etc.) activity within the cell, this is much higher than the 

concentrations needed for imaging, which are usually 250 µg.mL-1 for MSC imaging 

and >9 µg.mL-1 for subcutaneous imaging (Fig. 5.7A). All materials—even water—

are toxic over certain concentration ranges, our goal here was to discover above 

which concentration PGNs began to dysregulate metabolism. After PGNs 

implantation into animals, we noticed no changes in posture, behaviour, gait, or 

feeding pattern according to observation up to two weeks.  

We also used the MTS assay to study cell metabolism and viability via 

mitochondrial reductase activity (Fig. 5.7).  MTS is a colorimetric, water-soluble 

tetrazolium dye that indicates the activity of oxidoreductase enzymes. One concern 

was that the degradation products may increase the sodium, calcium, and 

phosphorus concentration to levels inconsistent with cell survival. Thus, it was 

important to study both fresh and degraded PGNs in this assay. Fortunately, we 

noticed no cytotoxicity in either sample group at concentrations below 500 µg.mL-1 

(Fig. 5.7). 
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Although we did not investigate tumour imaging here, the PGNs implantation 

experiments (Fig. 5.11) indicated that concentrations as low as 9 µg.mL-1 could be 

imaged in vivo. This is important because nanoparticle contrast agents must 

overcome significant competition from the reticuloendothelial system to reach the 

target tissue. Values near 4 %ID.g-1 are common for nanoparticle contrast agents. 

Thus, a 1 g tumour would need at least 225 µg of material injected into the 2.5 mL 

murine blood pool to achieve 4 %ID.g-1 accumulation. Importantly, this 

concentration is well below the concentration that increases ROS generation.  

Our primary goal was cell imaging, which is critical to understand the location of 

implanted stem cells in regenerative medicine. We achieved cell counting below 

5000 cells in 100 µL volumes (Fig. 5.12). While we did not achieve the single cell 

counts which is possible with some MRI techniques (Shapiro et al., 2006), the cell 

counts described here is more than sufficient for clinical trials that will likely use 

millions of cells (Chong et al., 2014, Hare et al., 2012a, Makkar et al., 2012).  These 

low detection limits would be useful because it would allow analysis without 

requiring all cells in a given population be labelled. The 4 hour imaging window 

would be useful for imaging the immediate implantation events in cells. Long term 

imaging could utilize a reporter gene (Yaghoubi et al., 2006).  

The detection limits reported here are higher than that achieved with 

perfluorocarbon microbubbles. Indeed, these can be detected even at the single 

microbubble level (Klibanov et al., 2004). The PGNs could not be detected at the 

single particle level, but did have detection levels down to 50 µg.mL-1, which is on 

par with the 20 µg.mL-1 detection limits that have been reported previously with 

silica nanoparticles (Jokerst et al., 2013).  These materials also have lower overall 

signal intensity than perfluorocarbon microbubbles. However, perfluorocarbon 

microbubbles are approximately the same size as cells and their application for 

ultrasound cell imaging can be difficult. Importantly, the PGNs are approximately 
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10-fold smaller in diameter (and 1000-fold smaller in volume) and thus have a 

significant advantage for ultrasound cell imaging. Also, the time stability of the 

PGNs (~4 hours), is much longer than in vivo stability of perfluorocarbon 

microbubbles which is reported to be in the range of a few minutes. 

The low processing temperature allowed us to incorporate organic dye (fluorescein) 

or drug molecules (TCH) during PGNs processing which cannot be achieved for 

phosphate-based glasses synthesised via the melt-quench technique (Franks et al., 

2000). The UPLC results from the drug-loaded PGNs showed a linear release of 

drug molecules during the first 4 hours of the study period (Fig. 5.14). This shows 

the potential of these nanoparticles for applications as an efficient vehicle for the 

local delivery of antibiotics with lower active doses which can reduce systemic 

cytotoxicity and side effects.  
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In the presented study, the successful sol-gel synthesis of phosphate-based

glasses at a relatively low processing temperature using triethyl phosphate as a

phosphorus precursor in the P2O5-TiO2, P2O5-CaO-TiO2, P2O5-CaO-Na2O and

P2O5-CaO-Na2O-TiO2 systems was reported. The synthesised glasses, were

characterised in terms of structural properties including XRD, 31P MAS-NMR, EDX,

and FTIR spectroscopy that indicated the successful production of phosphate-

based glasses. However, there were some limitations such as synthesis

compositional ranges with an upper limit of about 60 mol% P2O5 for binary P2O5-

TiO2 glasses and also phosphorus loss of up to 11 mol% during the sol-gel reaction

was seen. To overcome the high phosphorus loss, triethyl phosphate was replaced

with n-butyl phosphate to sol-gel synthesise ternary P2O5-CaO-Na2O and

quaternary P2O5-CaO-Na2O-TiO2 glass systems. The EDX results of these glasses

revealed relatively lower phosphorus loss during the sol-gel synthesis of these

glasses. In addition, substituting titanium in place of sodium or calcium reduced the

amount of phosphorus loss during the sol-gel reaction and bulk, transparent and

glassy-like specimens were obtained for the glasses with high titanium contents.

These results indicated, incorporation of titanium into the phosphate-based glasses

serves to stabilise the phosphate-network due to the cross-linking effect of titanium.

This effect was confirmed by 31P MAS-NMR results that showed the formation of

Q1(Ti-O-P) species with a slight increase in the amount of Q2 phosphate units. FTIR

spectroscopy data also correlated with the NMR results that suggesting Ti may act

as a conditional network former in phosphate-based sol-gel derived glasses.

We used sol-gel derived glasses with the general formula of (P2O5)55–(CaO)25–

(Na2O)(20-x)–(TiO2)x, where X = 0, 5, 10 or 15 as a scaffold for bone tissue

engineering applications. The degradation studies revealed that the dissolution rate

of these glasses significantly reduced as titanium substituted in place of sodium
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because of the cross-linking effect of titanium and gave an indication of how the

solubility of phosphate-based glasses can be controlled for various biomedical

applications. Cell culture studies were carried out on these glasses that showed the

degradation rate has a significant effect on the activity of the cells. The substitution

of Na2O with 5 or 10 mol% TiO2 improved cytocompatibility that was also supported

by SEM and CLSM images that showed significant mineral formation and cells

residing on the glass microparticles surface. However, cells cultured on Ti15 failed

to recover and higher heat treatment temperature might be needed to evaporate the

remaining toxic solvents in the glass structure.

The electrospraying technique was applied, for the first time to these sol-gel derived

glasses, according to the author’s knowledge, and was designed and developed to

prepare ternary P2O5-CaO-Na2O glass nanospheres in the diameter size range of

200-500 nm. The amorphous and glassy nature of these nanosphere particles was

confirmed via XRD, 31P NMR, and FTIR analysis. This probe was used to label

mesenchymal stem cells with an in vitro and in vivo detection limit of 5 and 9 µg.mL-

1, respectively. Cell counts down to 4000 were measured by ultrasound imaging

with no cytotoxicity at doses needed for imaging. Also, due to the relatively low

synthesis temperature, these phosphate-based glass nanospheres (PGNs) offered

the potential to incorporate therapeutic molecules for drug delivery application. The

UPLC results from the drug-loaded PGNs in an aqueous medium revealed a

constant and linear release of TCH molecules within the first 4 hours of the study

period with easily metabolised degradation components in the body that make them

an attractive choice in drug delivery applications. Together, these results

suggested, PGNs are useful for both in vivo and in vitro ultrasound imaging and

have the utility for cell tracking and as a drug delivery system that can make them a
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promising candidate for theranostic applications (serve dual roles as diagnostic and

therapeutic agents) especially in cancer treatment.

From the synthesis point of view, further work could be focused on alternative

solvents and precursors to be able to synthesise phosphate-based glasses at even

lower temperatures. There is also a possibility to incorporate other metal oxides

such as iron, copper or silver into the phosphate-based glasses for various

biomedical applications. For example, iron-containing phosphate-based glasses

have been prepared via melt-quench method and showed high durability and

controllable degradation rate that can make them a good choice for tissue

engineering applications (Abou Neel et al., 2005). However, to date, no study has

been published regarding the possibility to synthesise these glasses via a sol-gel

method that might be related to the limitation in access to the right Fe precursor.

Our preliminary work on iron-containing sol-gel derived glasses confirmed iron (III)

isopropoxide (2.55% in isopropanol, Alfa Aesar, Heysham, UK) can be used as a

Fe precursor to synthesise quaternary glasses with the general formula of (P2O5)50–

(CaO)30–(Na2O)(15-x)–(Fe2O3)x, where X = 0, 2.5 or 5. Initial XRD results confirmed

the amorphous and glassy nature of the prepared samples. Further works could be

focused on evaluation of their structural property and potential biomedical

applications.

Cell culture studies on titanium-containing glasses offer several avenues for the

future research on biomedical applications of these glasses, such as a coating for

medical implants to provide a high degree of biocompatibility and promote the

healing response without side effects. Initial studies showed that there is a

possibility to deposit titanium-containing sol-gel derived glasses on metallic

implants via the electrospraying technique. Low processing temperatures of the sol-

gel synthesis also enables incorporation of bioactive molecules that can promote
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bone formation or antimicrobial compounds that can subsequently be released in a

localised and controlled manner to reduce the risk of bacterial infection of medical

implants.

The electrospraying technique has allowed us to prepare nano-size glass spheres

for both therapeutic and diagnostic applications. Future work may focus on reducing

the degradation rate of the glass nanospheres by introducing Ti into the glass

structure to increase the imaging window and therapeutic release of a drug

molecule for longer periods (Lakhkar et al., 2012, Kiani et al., 2012, Foroutan et al.,

2015). The surface of these glass nanospheres may also functionalised with

specific ligands for tasks beyond regenerative medicine, including targeted drug

delivery and tumour imaging after i.v injection that can make them an attractive

candidate for simultaneous diagnostic and therapeutic applications especially in

cancer treatment (Cheng et al., 2010).

The other limitation in drug delivery applications of the prepared glass nanospheres

is related to the heat treatment temperature that was applied during the sol-gel

synthesis and subsequent electrospraying. While the processing temperature is

significantly lower than the previous studies on the sol-gel preparation of

phosphate-based glasses (Carta et al., 2005, Pickup et al., 2007, Carta et al.,

2007), however, still just a few numbers of drug molecules show stability at the

chosen synthesis temperature (200 °C). The idea of spraying the sol over the liquid

nitrogen instead of heated silicone oil can be an alternative. Following that the

obtained particles are transferred into a freeze dryer to evaporate the solvents. Our

preliminary work showed the possibility of using this novel technique and future

work may be focused on the development of this technique to prepare a wide range

of drug-loaded nanoparticles for drug delivery purposes.
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Appendix I:  

A1. Indirect calculation of phosphate units  

Instead of using 31P MAS-NMR data, the amount of phosphate units can be 

obtained indirectly by assumption of exclusively network modifying roles for CaO 

and Na2O. For example, in chapter 5, (P2O5)55 - (CaO)30 - (Na2O)15 sol-gel derived 

glasses may be written as Na39.2Ca37.9P85O270 according to the EDX results. The O/P 

ratio is 3.18 that suggests the phosphate species will be predominantly Q1 and Q2. 

The average formula for Q1 and Q2 phosphate species are (PO3.5)2- and (PO3)- and 

in order to maintain electroneutrality the total cation charge of +115 must be 

balanced by a combination of these species: 

115 = 2Q1 + Q2 

And since there are a total of 85 phosphorus atoms per formula unit: 

85 = Q1 + Q2  

By using these two equations it can be found the Q1 and Q2 amount of 35 and 65 % 

respectively. These results show higher polymerisation in comparison with the 

obtained data from the 31P MAS-NMR spectrum. These results suggested that may 

be higher synthesis temperature is needed to evaporate the remaining solvents and 

to make the phosphate network more interconnected. However, it would limit the 

potential biomedical applications of the phosphate-based sol-gel derived glasses 

that was the main aim of this project. Future work may focus on the effect of various 

heat treatment temperature on the polymerisation rate of the phosphate-based 

glasses.   
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Figure A.1. Schematic of sol-gel synthesis of phosphate-based glasses to prepare 

thin film coating and glass nanospheres via electrospraying or to obtain bulk 

glasses via controlled heat-treatment of the gel over three weeks.  
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Figure A.2. Various electrospraying modes (A) and steps of nanospheres 

production via electrospraying (B) (Jaworek and Sobczyk, 2008). 
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Figure A.3. SEM images of sol-gel derived glasses (after heat-treatment) created 

by electrospraying at; A) voltage of 12 kV and flow rate of 1 mL.h-1, B) voltage of 15 

kV and flow rate of 0.5 mL.h-1, C) voltage of 18 kV and flow rate of 0.5 mL.h-1, D) 

voltage of 20 kV and flow rate of 0.4 mL.h-1, and voltage of 20 kV and flow rate of 

0.2 mL.h-1 (E and F). 
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Figure A.4. Photographs of; electrospray deposition of quaternary (P2O5)55-(CaO)25-

(Na2O)10-(TiO2)10 glass on (A) aluminium foil and (B) titanium disc. Panel C is SEM 

image of coated titanium disc after heat-treatment at 200 °C. Initial cell proliferation 

study (MG-63 cells) results on Ti coated discs (n=3) is shown in panel D. Error bars 

represent the standard deviation. 
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