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ABSTRACT: Compared with proteins, the relationship between
structure, dynamics, and function of RNA enzymes (known as
ribozymes) is far less well understood, despite the fact that ribozymes
are found in many organisms and are often conceived as “molecular
fossils” of the first self-replicating molecules to have arisen on Earth. To
investigate how ribozymal function is governed by structure and
dynamics, we study the full hammerhead ribozyme in bulk water and
in an aqueous clay mineral environment by computer simulation using
replica-exchange molecular dynamics. Through extensive sampling of the
major conformational states of the hammerhead ribozyme, we are able to
show that the hammerhead manifests a free-energy landscape
reminiscent of that which is well known in proteins, exhibiting a
“funnel” topology that guides the ribozyme into its globally most stable
conformation. The active-site geometry is found to be closely correlated
to the tertiary structure of the ribozyme, thereby reconciling conflicts between previously proposed mechanisms for the self-
scission of the hammerhead. The conformational analysis also accounts for the differences reported experimentally in the catalytic
activity of the hammerhead ribozyme, which is reduced when interacting with clay minerals as compared with bulk water.

■ INTRODUCTION
Ribonucleic acid (RNA) was first suggested to be capable of
exhibiting enzymatic activity by Woese, Crick, and Orgel in
1967 after the discovery that RNA could fold to form secondary
structures in an analogous way to protein enzymes.1−3 It was
not until the 1980s that Cech and Altman independently
discovered the first ribozymes, for which they were awarded the
1989 Nobel Prize in Chemistry.4 It is possible that ribozymes
played a key role in the origin of life on Earth had the critical
event been the emergence of RNA molecules capable of
replicating a primordial RNA “genome”. A world based entirely
on RNA would have required the presence of an environmental
chaperone in which RNA could polymerize and become
biologically active. 'Indeed, the synthesis of precursors of
nucleotides in the presence of clay minerals5 and their
polymerization into oligonucleotides up to the length of a
small ribozyme, such as the hammerhead ribozyme, have been
observed.6 RNA monomers and polymers adsorbed and
tethered on clay mineral surfaces are able to persist in the
presence of degrading agents and extreme temperature and
pressure conditions to interact with surrounding molecules
enabling the copying of genetic information.7

Simple ribozymes can help us understand concepts in
modern biology; for example, the ribosome translates RNA into
proteins in the cell via a conserved catalytic center composed
entirely of RNA. The hammerhead ribozyme is a small self-

cleaving RNA that consists of a core of invariant residues. For
optimal activity it requires the presence of the full tertiary
structure, as shown by the reduced activity of the minimal
hammerhead ribozyme.8 Because of its size and the amount of
experimental effort dedicated to it, the hammerhead ribozyme
thus makes an excellent prototype for understanding the role of
structure and dynamics as a function of the wider class of
ribozymes, of which we know very little compared with the
analogous protein structure−dynamics−function relation-
ship.9,10

The hammerhead crystal structure, determined by Martick et
al. and shown in Figure 1, was derived under nonphysiological
conditions but provides a structural basis that lends itself well to
further theoretical modeling of the structure and mechanism.11

The hammerhead ribozyme catalyzes an RNA self-cleavage
phosphodiester isomerization reaction that involves nucleo-
philic attack of a cytosine 2′ oxygen upon the adjacent scissile
phosphate, yielding two RNA product strands.
Here we use fully atomistic replica-exchange molecular

dynamics (REMD) computer simulation to exhibit the delicate
relationship between tertiary structure and catalytic activity in
ribozyme molecules. REMD is well-suited for the study of
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complex biomolecules, like RNA and proteins, because of the
greatly enhanced sampling of conformational space it delivers
over single trajectory molecular dynamics (MD). As we show
here, REMD allows the identification of the major conforma-
tional states of the hammerhead ribozyme and the native state
(and near-native folding intermediates). We use the atomic
resolution gained through simulation to resolve conflicting
theories about how metal cations participate in the active site
conformation. We study the hammerhead both in bulk water
and at an aqueous clay mineral surface. The latter is known to
perturb the rate of catalytic activity of the hammerhead,12

which allows us to answer questions about how the local
environment and ribozyme conformation alter its function. The
clay-mineral-bound ribozyme is also implicated in various
origins of life scenarios according to which clay minerals are
thought to have concentrated and protected the first catalytic
RNA molecules at the inception of the “RNA world”.13,14

■ MATERIALS AND METHODS
The starting structure of the hammerhead ribozyme was modified
from the 2.2 Å resolution crystal structure of the full-length
catalytically active hammerhead ribozyme (PDB 2GOZ) by adding
hydrogen atoms and replacing Mn2+ sites with Mg2+; see Figure 1. The
full-length hammerhead ribozyme consists of single-stranded RNA
sequences 43 and 20 nucleotides in length. The chains form three
base-paired helix-like stems. 20 Å of SPC/E water and 50 charge-
balancing Na+ ions were placed around the ribozyme using the solvate
function in AmberTools. This is the same procedure that we used in
ref 15. There we showed that the nature of the bulk counterions can
play a very important role in determining aspects of the interaction

between RNA and clay surface; in particular, there is a substantial
difference depending on whether the bulk cation is monovalent (as
here) or divalent. Crystal water molecules were retained along with the
divalent metal ion sites that were populated with 5 Mg2+ ions. The
complete model consisted of 54 10 atoms with unit cell dimensions of
83.6 × 73.8 × 95.4 Å3.

The clay mineral used in this study was derived from the chemical
formula Na3[Al14Mg2][Si31Al]O80OH16, consistent with naturally
occurring Wyoming montmorillonite. Partial substitutions were
created in both tetrahedral and octahedral sheets. Montmorillonite
was chosen because it is widely used in experimental work.6,7,12

The bonding interactions and partial charges for the RNA ribozyme
molecule were described using the Amber ff99 force-field parameters.
The Barcelona bsc0 refinement was used to furnish an improved
description of the alpha\gamma concerted rotations within the RNA
molecule.16 The ClayFF force field was used to provide parameters for
atoms belonging to the inorganic montmorillonite clay.17 ClayFF
produces very good agreement with experiment in terms of lattice
parameters, water diffusion coefficients, far-infrared spectra, and elastic
properties. Indeed, we have used this parametrization successfully to
describe clay−nucleic acid systems at higher temperatures and
pressures in the past,14 so we have not needed to constrain the clay
surface in any way. We have previously demonstrated that the
combined organic-clay force field, which contains cross-terms
determined using Lorentz−Berthelot rules, provides an accurate
description of clay−nucleic acid systems.18 The SHAKE algorithm
was employed to constrain bonds and angles within hydroxyl groups
and water.19 This allowed the use of a 2 fs time step within the MD
algorithm.

All simulations reported here were run using the large atomistic/
molecular massively parallel simulator (LAMMPS) code developed by
Plimpton.20 The code exhibits a near-linear scaling relationship
between the number of cores used and the speed-up in wall-clock
time. In our case, we used 768 cores per replica and a total of 100
replicas.

Prior to commencing production simulations, the starting structure
was energy-minimized using the steepest descent method, then
thermalized with MD from 0 K, 0 atm to 300 K, 1 atm. MD was used
to perform time integration on Nose−́Hoover-style non-Hamiltonian
equations of motion, designed to generate positions and velocities
sampled from the isothermal−isobaric ensemble.

The high level of conformational sampling in this study was
achieved using the REMD algorithm.21 The REMD method has been
widely used in the computational study of protein folding22 and also
the analogous process of RNA folding.23−26 REMD consists of M
noninteracting copies (or, replicas) of the original system in the
canonical ensemble at M different temperatures Tm (m = 0, ..., M − 1).
The replicas are arranged so that there is always one replica at each
temperature. The trajectory of each independent replica is computed
using MD. Adjacent replicas (replicas i and i + 1) exchange
temperatures according to a Boltzmann probability distribution.
REMD essentially runs N copies of the system, randomly initialized,
at different temperatures. Then, on the basis of the Metropolis
criterion, configurations are exchanged at different temperatures.21

The idea of this method is to make configurations at higher
temperatures available to the simulations at lower temperatures and
vice versa. This results in a very robust ensemble that is able to sample
both low- and high-energy configurations. REMD produces enhanced
sampling over single trajectory MD because fixed-temperature
conformations are much more easily trapped in local energy minima.

We have selected a temperature spacing so that Pex (the probability
of exchange) is ∼20−30% for all replicas.27 (See Figure S1 in the
Supporting Information for a plot of the energy overlap.) REMD
enhances the sampling of configurational space and thus provides an
effective way of obtaining equilibrium and dynamical properties of a
system described by a complicated energy landscape.21

We analyzed replicas of the hammerhead ribozyme system from
temperature replicas under ambient conditions: 300.00, 301.96,
303.93, 305.91, and 307.90 K. Each replica was simulated for 50 ns,
which equates to 5 μs of fully atomistic MD simulation for the entire

Figure 1. (a) Schematic representation of the secondary structure of
the full-length hammerhead ribozyme and (b) the 3D representation
taken from the crystal structure. Annotations in panel (a) follow the
scheme developed by Yang et al.42 Canonical base pairing is shown as
colored lines and hydrogen base pairing is shown as black lines. Open
circle next to open square, Watson−Crick/Hoogsteen; open square
next to open triangle, Hoogsteen/sugar edge; dashed line, H bond;
green line, nonadjacent base stacking. The thick black line shows the
direction and continuity of the backbone. The color scheme depicts
Stem I in yellow and purple, Stem II in blue, Stem III in red, and the
scissile phosphate group in green.29
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ensemble of replicas following the equilibration and convergence of
the model systems. The equations of motion were integrated with a
time step of 2 fs, and periodic boundaries were imposed in all three
spatial directions. Electrostatic interactions were computed using the
particle−particle/particle−mesh (P3M) method. Convergence was
monitored by computing block averages in the change of free energy
and is shown in Figure S2 in Supporting Information as well as
monitoring the round-trip times of replicas, that is, the average time it
takes for a replica to sample the highest temperature and return to the
original temperature. A clustering process was applied to the
accumulated REMD trajectory data to group mutual similarity and
reduce the complexity of the data and to identify a set of
conformationally distinct clusters in terms of which the REMD
sampling can be understood (Figure 2). We employed k-means
clustering based on the Cartesian coordinate root-mean-squared
deviation (RMSD) between structures simulated from 300.00 to
307.90 K with a fixed radius of 4 Å. (See the section entitled
“Structural Clustering Algorithm” in the Supporting Information for
further details on the clustering process.)

■ RESULTS

Global Structural Differences Observed in Aqueous
and Clay Environments. Through REMD we are able to
sample the major conformational states of the hammerhead
ribozyme both in bulk water and while interacting with clay
mineral surfaces. Figure 2 depicts the two most dominant
modes of motion of the hammerhead ribozyme in both clay
mineral and aqueous systems, contributing 60% of the total
dynamics of the molecule determined from matrix eigenvalues.
In both bulk water and clay mineral systems the first principal
component of motion corresponds to a helical junction bend
and the second corresponds to a spring-type helical
compression.28 Although the principal motions of the hammer-
head ribozyme are the same in both bulk water and in a
confined mineral environment, the conformational landscape
and thus the populations of occupied conformational states are
significantly perturbed in the latter. The differences between
the two systems (bulk water versus clay mineral) in terms of
nucleic acid structural metrics can be seen by comparing Tables

Figure 2. Principal component analysis showing the clustering of conformations as a function of the two most dominant modes of motion for the
hammerhead ribozyme in bulk water (a) and while interacting with a mineral surface (b). The first dominant motion (PC1) corresponds to a helical
junction bend while the second (PC2) corresponds to a spring-type helical compression. Representative structures for each cluster island can be
viewed in Figures S4 and S6 of the Supporting Information for the ribozyme in bulk water and for the clay bound ribozyme, respectively.

Figure 3. First two principal components for the hammerhead ribozyme are used to show the distinct cluster islands plotted against an RMSD
surface relative to the crystal structure in (a) bulk water and (b) the clay mineral environment. The surface shows one distinct global minimum of
which the structure with the lowest RMSD from the crystal structure is positioned 1.33 Å from the center of cluster FL03. It can be deduced from
this that cluster FL03 is representative of the crystal structure.

Langmuir Article

DOI: 10.1021/la503685t
Langmuir 2015, 31, 2493−2501

2495

D
ow

nl
oa

de
d 

by
 U

N
IV

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
Se

pt
em

be
r 

7,
 2

01
5 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
16

, 2
01

5 
| d

oi
: 1

0.
10

21
/la

50
36

85
t

http://dx.doi.org/10.1021/la503685t


S1 and S2 in the Supporting Information. The differences
observed in the major conformational states of the hammer-
head in the two different environments provide us with an
initial indication as to why the catalytic activity of the ribozyme
is reduced when adsorbed on the clay surface compared with
that in bulk water.
The application of the k-means clustering algorithm

successfully identified structurally and conformationally distinct
clusters within the principal component space. Figure 2 displays
only those cluster islands that have a population over a given
threshold (of 500 structures). A histogram of population
clusters and the imposed cutoff is shown in the Supporting
Information in Figure S3. A visualization of each cluster “best
member” can be seen in Figures S4 and S6 of the Supporting
Information. It is positioned in principal component space at a
location corresponding to a significant bend, indicating a
propensity for the ribozyme to adopt a more compact active
site structure in the confined clay mineral environment
compared with when in bulk aqueous solution. The most
populated cluster in each system, given by the label FL01 in
Figure 2, corresponds to the conformational state with the
lowest free energy that is, by definition, the native fold. The free
energy is related to the state population (cluster size) through
the equation

Δ = −G RT P Pln( / )n 0

where Pn is the fraction of native structures, P0 the fraction of
populated state, R is the gas constant, and T is the temperature.
In bulk water, the structure with the most “crystal-structure-
like” conformation with a RMSD from it of 5.8 Å belongs to
cluster FL03 at the bottom of the free-energy “funnel” in Figure
3. The native conformational state for the clay-adsorbed
ribozyme has an RMSD of 11.3 Å from the crystal structure,
indicating that the folding pathways funnel to a native state
unlike the crystal structure.
Biondi et al. assessed the ability of the hammerhead ribozyme

to catalyze reactions in a clay mineral environment by
investigating its self-cleavage reaction.12 Their experimental
results indicate that the hammerhead ribozyme is still active
when adsorbed on a clay surface, even though its efficiency is

reduced to ∼20% of that in solution. Here we describe the
differences in the structure, dynamics, and function of the
hammerhead ribozyme in the two environments: in bulk water
and at a clay surface.

Analysis of Catalytic Competency. The precise role, if
any, that Mg2+ ions and solvent components play in the
catalytic phosphodiester bond cleavage reaction mechanism of
the hammerhead ribozyme has hitherto remained unknown.
The first reported crystal structure of the full-length hammer-
head ribozyme29 showed that the scissile phosphate is
positioned 4.3 Å from the A9 phosphate. This led Martick
and Scott to suggest that there is a likely electrostatic
requirement for cation occupation to screen the repulsion
between these phosphates even prior to the formation of the
transition state.29 Although no actual bound Mg2+ ions were
observed in the original full-length crystal structure, this
structure was observed under nonphysiological high mono-
valent salt (1 M NH4

+) conditions. Under physiological
conditions, a divalent metal ion may be needed to bind and
bridge closely approaching phosphates in the active site area. It
is also possible that the divalent ion is not bound but rather
opportunistically resides in the active site. The most recent
crystal structure of the full-length hammerhead ribozyme, at 2.2
Å resolution, was reported by Martick et al.11 using crystals
prepared in the presence of 10 mM Mn2+. Martick et al.’s work
indicated that a divalent ion participates indirectly, or not at all,
in the catalytic mechanism within the active site. The divalent
ion most likely withdraws some of the accumulating negative
charge of the scissile phosphate and may introduce order to the
solvent molecules near the cleavage site. Martick et al.’s
argument for this mechanism is that it does not require the
repositioning of any ions or atoms in the crystal structure.
Anderson et al. resolved the structure of the hammerhead
ribozyme to 1.55 Å under conditions that permit observation of
Na+ positions.30 The geometry led them to suggest that Na+

directly substitutes for divalent cations in the active site.
The native structure for the hammerhead ribozyme in bulk

water reveals an active site catalytic structure that coordinates
around a single Mg2+ ion. (See Figure S5 in the Supporting
Information.) This structure supports the direct single metal

Figure 4. Clustering of the active-site conformations as a function of principal components 1 and 2 of the full hammerhead ribozyme structure (a) in
bulk water and (b) with a clay mineral surface. Each structure is colored according to the clustering of the active site (not the full tertiary structure).
The plot shows an excellent correlation between the principal motions of the full tertiary structure and the local conformation of the hammerhead
ribozyme active site that is composed of six residues (compare with Figure 2). This suggests that the active site structure and therefore the ribozyme
mechanism is dependent on the full tertiary structure.
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catalytic reaction mechanism proposed as an alternative to
Scott’s indirect/no metal ion mechanism. In the direct metal
ion mechanism observed in our simulations, an Mg2+ ion
migrates from the crystallographic site to bridge the A9 and
scissile phosphate to screen the negative electrostatic charge
that accumulates as the transition state is formed. This
mechanism was previously suggested by Wang et al.31 in their
experimental studies of the hammerhead using Cd2+ ions. Wang
et al. proposed that the hammerhead undergoes a substantial
conformational rearrangement in aqueous solution to attain its
catalytic conformation. Such rearrangements appear to be
general features of small functional RNAs.32 The single-
trajectory MD simulations performed on the hammerhead
ribozyme crystal structure by Martick and Scott29 employed a
harmonic B-factor restraint on the RNA and bound metal ions;
it is therefore hardly surprising that they do not observe a
deviation from the crystal structure including the migration of
divalent metal ions. By contrast, our REMD simulations start
from the crystal structure and bound ion positions but do not
restrain any heavy atoms, so we are able to observe transitions
in metal ion sites.
Figure 3 shows the first two principal components plotted

against the RMSD relative to the crystal structure for the
ribozyme in bulk water and in a clay mineral environment. The
surfaces both exhibit single distinct minima of which the
structure with the lowest RMSD from the crystal structure is
located. It can be deduced from this that cluster FL03 in bulk
water and FL01 in the clay mineral case are representative of

the crystal structure. Both of the surfaces show a funnelling-
type landscape that ends at the native structure, a feature often
described in protein folding9,10 but rarely reported in the
analogous RNA folding schemes.
From the clustering of the active site structure, we were able

to identify a one-to-one mapping between the global tertiary
structure and the six residue active site structure. (See Figure
4.) Through our sampling of the conformational landscape of
the ribozyme molecule, we were able to identify the native
structure, which is the conformation with the lowest free
energy. Figure 4 displays principal components 1 and 2 of the
full hammerhead ribozyme structure but where each structure is
colored according to the clustering of the six residues that
compose the active site (not the full tertiary structure).
Comparison of this plot and Figure 2 shows an excellent
correlation between the principal motions of the full tertiary
structure and the local conformation of the hammerhead
ribozyme active site, as the principal components are taken
from the full structure while cluster analysis was performed on
the six residues belonging to the active site. This suggests that
the active-site structure, and therefore ribozyme mechanism, is
dependent on the full tertiary structure for both the bulk water
and clay-mineral-bound ribozyme.
A snapshot from the simulation of the hammerhead

ribozyme at an aqueous clay mineral surface is shown in Figure
5. The influence of this montmorillonite surface and resulting
perturbation on the conformational landscape has a significant
effect on the overall ribozyme structure and the active-site

Figure 5. Simulation snapshot of the hammerhead ribozyme from 50 ns of replica exchange molecular dynamics (a) while interacting with a clay
surface and (b) in bulk water. The surface-bound ribozyme shows a significantly altered conformation compared with the ribozyme in bulk water.
The ribozyme is tethered to the mineral surface via a terminal planar base.

Figure 6. Reaction structure and mechanism schematics of the catalytically active center of the hammerhead ribozyme in bulk water (a) and when
the ribozyme is adsorbed at the clay mineral surface (b) based on the lowest free energy “native” structures taken from the REMD simulations
reported here.
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structure and as such the catalytic rate of bond cleavage. (See
Figure S8 of the Supporting Information.) Biondi et al.’s studies
showed that the hammerhead ribozyme was still active when
adsorbed on the clay surface, even though its efficiency was
reduced to ∼20% of that in bulk aqueous solution. The native
structure observed in our clay-surface−ribozyme simulations
manifests a more compact structure than that in bulk water; as a
result, the active site undergoes a significant structural
rearrangement, whereby the central coordinating Mg2+ ion
vacates the active site pocket, as shown in Figure 6. The highly
ionic atmosphere associated with the charged mineral surface
effectively screens the electrostatic repulsion arising from the
A9 and scissile phosphate groups of the ribozyme, yielding a
more compact active-site structure indicative of the “no metal
ion participation” mechanism described by Martick and Scott.29

Modeling Long-Time Scale Kinetics. To describe the
kinetic and mechanistic aspects of conversion between
conformational states, we employ Markov state modeling
(MSM). MSM works by identifying a set of kinetically
metastable states from generalized ensemble simulations as
well as other simulation datasets and efficiently sampling
transitions between these states. This allows modeling of long-
time-scale kinetics from simulations of much shorter
duration.33−37

The REMD hammerhead conformational data is clustered
based on an all-atom RMSD metric that employs hybrid k-
centers and k-medoids. K-centers clustering is applied
iteratively until the intercluster distance reaches 4 Å. At that
point, 100 iterations of hybrid k-medoids are performed to
refine those clusters. We calculated the relaxation time scales

for a sequence of lagtimes, which indicated that relaxation time
scales begin to flatten out at ∼300 ps. (See Figure S2 in
Supporting Information.) Thus, a Markov state model was
created using a lagtime of 300 ps. Spectral clustering methods
such as robust Perron cluster analysis (PCCA+) can be used to
construct metastable models with a minimal number of states.
First, we construct a microstate model with a short lagtime. The
short lagtime is necessary because PCCA+ tries to create
macrostates that are long-lived, termed metastable. At long
lagtimes, states become less and less metastable. Detailed
examination of the relaxation time scales indicated that there
were 12 kinetic processes, so we chose to build a model with 12
macroscopic-states.
To compute transition pathways, we selected macrostates

identified during the MSM building method as subsets of state
space. The pathways with the highest flux were calculated using
transition path theory (TPT) and are visualized in Figure 7.38

The major states that we sampled using REMD span a large
domain within conformational space, and as such there are
many transitions between the vast number of conformations. In
an analogous way to complex protein folding schemes, we find
that the hammerhead ribozyme exhibits so-called “downhill”
folding, or “funneling”.9

The increased rate of folding we see between conformational
states of the hammerhead ribozyme when it is in the clay
mineral environment is analogous to that we found previously
for smaller RNA strands (of 25 nucleotides).15 The ionic
atmosphere associated with the charged clay surface screens the
electrostatic repulsion felt between phosphate groups and
encourages a hydrophobic collapse where base groups become

Figure 7. Superposition of the largest folding fluxes between Markov states for the aqueous-based ribozyme (a) and the clay-based ribozyme (b).
Each state is scaled in terms of its relative free energy, and each arrow is scaled proportional to the interstate flux. These fluxes account for 40% of the
total flux. The macrostates chosen for the coarse grained Markov state model were selected to correspond to the structural cluster islands given in
Figure 2. Cluster labels are given next to each macrostate. For a fine-grained interpretation of the corresponding structures, see Figures S4 and S6 in
the Supporting Information for “best member” structures taken from the two systems.

Table 1. Six Most Prevalent Hydrogen Bonds for the Hammerhead Ribozyme in Bulk Watera

donor acceptor H acceptor % occupied distance (Å) angle (deg) lifetime (ps)

C3:N3 G19:H1 A9:N1 97.47 2.874(0.09) 15.97(8.84) 69.8(160.2)
G19:06 C3:H41 C3:N4 97.25 2.856(0.14) 16.96(10.22) 60.4(107.0)
C3:02 G19:H21 A9:N2 97.21 2.799(0.12) 16.80(9.56) 61.0(106.8)
G2.1:06 C1.1:H41 C1.1:N4 95.31 2.876(0.16) 17.97(10.78) 29.9(40.7)
Cl.l:02 G2.1:H21 G2.1:N2 91.62 2.805(0.13) 15.62(9.04) 18.9(44.6)
C1.1:N3 G2.1:H1 G2.1:N1 91.29 2.888(0.10) 17.06(10.05) 18.1(39.3)

aEach hydrogen bond is given in terms of the donor and acceptor atoms, percentage of the trajectory that the bond is occupied for, distance, angle,
and average lifetime of the hydrogen bond in picoseconds. Criteria for hydrogen bonding is a distance of 3.5 Å between donor and acceptor and an
angle of 120° between the donor and acceptor hydrogen and heavy atom.

Langmuir Article

DOI: 10.1021/la503685t
Langmuir 2015, 31, 2493−2501

2498

D
ow

nl
oa

de
d 

by
 U

N
IV

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
Se

pt
em

be
r 

7,
 2

01
5 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
16

, 2
01

5 
| d

oi
: 1

0.
10

21
/la

50
36

85
t

http://dx.doi.org/10.1021/la503685t


buried within hydrophobic pockets. Figure 7 displays scaled
arrows that correspond to the relative fluxes between the
conformational states. It follows that many of the pathways
between native and non-native states pass through a small
number of intermediate folds. (Both plots show that state FL11
is an intermediate along the folding pathway to the native
conformation.)
Attachment of RNA at the Clay Surface. Our previous

results showed that RNA adsorbs to cationic clay mineral
surfaces through nucleic acid base groups that bind face down,
parallel to the surface for which we reproduce some snapshots
in Figure S7 in the Supporting Information.15,39 The
simulations reported here show that this interaction is similarly
present for larger RNA molecules. The hammerhead ribozyme
binds to the clay mineral surface through a planar terminal base
group, leaving the catalytic center intact and exposed to the
aqueous region (Figure 5). The ribozyme was found to bind
only through base groups that belong to the chain that is
cleaved into two daughter strands during the self-cleavage
reaction.
The folding pathways of the clay-adsorbed ribozyme funnel

to a native state unlike the crystal structure. There is a severe
disruption of the hydrogen-bonding network when the
hammerhead ribozyme is adsorbed on the clay surface, shown
in Tables 1 and 2. Although the folding landscape has
undergone a significant change, the robust hammerhead
ribozyme still retains active site contacts that facilitate
phosphodiester bond cleavage, as has been shown exper-
imentally.12

■ DISCUSSION

The simulations reported here are of unprecedented scale, in
terms of both size and duration as well as being novel in their
application in understanding ribozyme function in inorganic
settings. Because of the large-scale tightly coupled nature of
REMD, it was only possible to run these simulations on peta-
scale computing resources. REMD exchanges temperatures that
allow us to traverse otherwise inaccessible areas of the
conformational landscape, unlike regular uncoupled MD
ensembles, such as Folding@Home,40 that use many smaller
single core resources but cannot exchange temperature
information between replicas. For the simulations reported
here, we used the JUGENE machine at Forschungszentrum,
Jülich (Germany) and the Kraken machine at the National
Institute for Computational Sciences in Tennessee (USA).
Exploration of the relationship between structure, dynamics,
and function of ribozyme molecules is well-suited to computa-
tionally expensive sampling techniques such as REMD because
of its enhanced ability to identify complex free-energy
landscapes such as those arising in the folding of RNAs and
proteins. The way in which the structure and dynamics of the
hammerhead permit the ribozyme to fold so as to function as a
self-cleaving ribozyme, as well as if and how ions and water

participate in the mechanism, gives us insight into to how the
wider class of ribozyme molecules functions in nature. We have
elucidated two very different active site conformations of the
hammerhead ribozyme that have the potential to exhibit
catalytic activity. This demonstrates the ability of ribozymes to
retain catalytic capacity under differing environments and
prevailing geochemistry. Our simulations show that direct
participation of a magnesium ion in coordinating phosphate
groups within the active site of the hammerhead ribozyme
provides a mechanistic explanation for the enhanced catalytic
activity of the ribozyme in bulk water over that in a confined
clay mineral environment. The magnesium ion migrates from
the crystallographically observed position to bridge the A9 and
scissile phosphate, as shown in Figure 6a. This also allows the
G8 base to act as a general acid in the reaction scheme.
The reduction in catalytic activity we see in the hammerhead

ribozyme when adsorbed to the clay mineral surface can be
attributed to the propensity of the ribozyme to then adopt a
more compact conformation, concomitantly “closing” the
catalytic pocket and thereby removing any participating cations.
Despite the compact nature of the tertiary structure, the active-
site geometry (shown in Figure 6b and Figure S9 in the SI) still
supports the proposed reaction mechanism.
Like many ribozymes found in nature, the hammerhead

ribozyme consists of a number of conserved residues that make
up the active site. It follows that the ribozyme would have likely
evolved through the addition of residues around the active site
conferring an advantage over competing ribozymes by
increasing the rate of catalysis. The minimal hammerhead is
an example of an ancestral hammerhead ribozyme that has a
reduced catalytic rate and is approximately half the size of the
full-length hammerhead ribozyme studied here.41 The clay
mineral environment significantly disrupts the hydrogen-
bonding network that scaffolds the full tertiary structure,
leaving a minimal construct and reducing the catalytic
advantage gained from the tertiary contacts.
Our analysis of folding rates between conformational states

supports our previous findings that a clay mineral environment
accelerates the rate of folding of RNA sequences over the same
sequences in bulk water. The cationic atmosphere around the
clay mineral surface that counters the net negative charge of the
montmorillonite clay screens repulsive electrostatic charges
between adjacent and nonadjacent phosphate groups along the
backbone of RNA, reducing the energetic barrier between
conformational folded states. Our original study showed that
small (25 base) RNA sequences enjoy enhanced folding when
interacting with a clay mineral surface.15 The findings we report
here show that larger, biologically functional RNAs also
undergo enhanced folding in these environments along well-
defined pathways to a native conformation.
The simulations reported here for the hammerhead ribozyme

elucidate many facets of the relationship between the structure,
dynamics, and function of naturally occurring ribozymes in

Table 2. Six Most Prevalent Hydrogen Bonds Taken from the Hammerhead Ribozyme at an Aqueous Montmorillonite Surface

donor acceptor H acceptor % occupied distance (Å) angle (deg) lifetime (ps)

AI3:05′ AI4:H0′2 AI4:0′2 68.23 2.932(0.20) 38.16(13.44) 3.7(3.6)
AI2:05′ CI1:H0′2 Cll:0′2 61.23 2.871(0.19) 31.30(14.08) 3.7(3.7)
G46:02P C39:H61 C39:H6 52.60 2.858(0.18) 18.25(11.23) 3.3(3.5)
U50:O2 A6:H21 A6:N2 49.93 2.850(0.18) 26.13(13.60) 3.2(3.3)
C17:02P C1.1:H42 C1.1:N4 48.28 2.788(0.15) 15.17(8.52) 3.2(3.2)
C17:05′ U16.1:H0′2 U16.1:02′ 43.10 2.879(0.21) 30.56(14.91) 2.5(2.4)
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biologically and geochemically relevant settings. Our findings
also resolve current conflicts regarding the mechanism of action
of the hammerhead ribozyme and should thus serve to
encourage structure-dynamics-function studies of the broader
class of ribozymes found in nature.
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