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1 Introduction

The goal of this paper is to use a semiparametric reduced form model to estimate the effects of
various tuition subsidies. This approach expands on the tuition subsidy example in Ichimura
and Taber (2000) in a number of dimensions.

It has become common practice in the empirical literature to refer to any nonstructural
empirical analysis as “reduced form.” This is not the traditional sense of the phrase. A
classic reduced form analysis (see e.g. Marschak, 1953) first specifies a structural model
and then derives the reduced form parameters in terms of the structural parameters. While
many recent studies have asserted to taking a reduced form approach, the structural model
which the reduced form model should correspond is rarely specified. We explicitly specify
a structural model and use the implied reduced form structure to estimate the effect of
tuition subsidy policies. Specifying the underlying model has the advantage of being explicit
about the assumptions that justify the analysis. This avoids Rosenzweig and Wolpin’s (2000)
criticism of work on natural ‘natural experiments’ that often leaves these conditions implicit.
Our structural model is based on the model studied by Keane and Wolpin (1999). It is
highly nonlinear and allows for more unobserved heterogeneity than the typical simultaneous
equations framework that most previous work has used in reduced form estimation. Using
the specified structural model, we examine the assumptions discussed in Ichimura and Taber

(2000) to justify reduced form estimation of the policy effects.

2 Model

The model we pose is strongly based on Keane and Wolpin (1999). Hereafter we denote
that paper by KW. The decision problem in the model begins at age 14 when students have
completed eighth grade. We let each period represent one year so that ¢ = 0 when the
individual is 14. During that year the student chooses whether to attend college or not and
how much to work. Let s; be an indicator of whether individual ¢ attends school in year
t, £;; the number of weeks worked in a year, and h;; the number of hours worked per week.
Individuals have preference for consumption, work, and schooling so that the utility function
is wi(Cit, Sity Sit, Lit, hie, Z%), where S;; is cumulative years of school (i.e. Sy = 2% si)
and Z}; is an exogenous vector. For example KW let marriage and parental co-residence be

elements of Z}.



We assume that hourly wages take a standard Mincer form so that
log(wit) = By + Z” By + BoLit + B3 L2, + i (Sit) + vit, (1)

where Z}/ is a set of observable non time varying variables that influence wages, v;; is an
unobservable variable, and L; is accumulated weeks of experience as of the beginning of the
year. That is Ly = S5 4 4.

A key feature of this model is that we allow the schooling effect function «; (+) to arbi-
trarily vary across individuals in the model.

Accumulation of assets (K;;) by students is complicated by two features of the model.
First students are borrowing constrained in two different sense. There is a limitation to the
amount of debt that they can accumulate which may be individual specific. Let this amount
be —K;. They also borrow at rate R? but lend at rate R{. Second they may receive transfers
from their parents. These transfers are individual specific and potentially depend on their
schooling choices, college costs, their asset levels, and their wage rate. Denote this function
as Py (sit, Sits Tic, Kit, wi). We assume that the student takes this transfer function as given.

This yields the budget constraint

Ky = Ki [RM(Ky <0)+ RL(Ky > 0)] = ca (2)
+lichawie + Pit (Sit, Sits Tiey Kity Wir) — (Tic — i) sl (4 < Sy < 8) (3)

Ky > —K; (4)

where 7;. is the monetary cost of attending college and 7;is the value of a tuition subsidy
offered to individual 7 if they attend college. Note that the tuition subsidies we consider
operate by changing this variable only. That is we do not allow for general equilibrium
effects of the type described by Heckman, Lochner, and Taber (1998). This is valid if the
simulations we consider relate to small programs that would only affect a small fraction of
the labor market. We assume that there are no other monetary costs of college attendance.
The state variables in this model are assets, schooling, and experience (K, Sit, Lit). The
control variables are consumption, school enrollment, weeks of labor, and hours of labor
(Cit, Sit, Lit, hit). Let Ey (+) represent the expectation of agent ¢ with respect to information

he has at age t. Thus one can write this model using Bellman’s equation as

Vit (Kz't; Sit, Lit) = . ‘ED%X}L' {Uit(citu Sit, Sits Lit hit) +O0Ey (Vit+‘ (Kz't+1, Sz't+1: Lit+1))}(5)
subject to (2), and (4). (6)



Individuals vary in the population because of heterogeneity in preferences (u;), informa-
tion (E;), wages (w;), parental transfers (FP;;), and borrowing rates and asset level (R?, K,-t)
and tuition level (7).

Loosely following Keane and Wolpin (1999) we assume that

g
Wit (Cit, Sity Sits lits hig) = G + Nisy Sit L (Sie < 4) + Nisysil (4 < Sip < 8) 4 Nisgsit1 (8 < Siy)
7

% Y
— it — Ap—2
a p

Py (Sity SityTie) = v+ ViaTieSul (4 < Sy < 8).

Given this setup, we can solve for the optimal profile of schooling, consumption, savings,
and leisure.
There are a number of sources of heterogeneity in the model. We model them in the

following manner,

Ny = Z7v° 4607 + vj}
Niss, = Z]Y + 07 + o
Nisy = L HOP 0y

e = Z{v+0;+ vy

Nin = ZMy+ 07 + ol

vin = ZPAP 4+ 600+

Tie = Z'y"+06] +v),

a; (Si) = 03+ 07Su+ 0551 (4 < Sy)+ 05511 (8 < Sy)

where we assume that the error terms (terms with 6 or v) are all independent with the observ-

able variables (terms with 7). Let Z; comprise all of the components of (2%, Z¢, Z¢, Z! Z¥ | ZT).

3 Differences from the KW model

The main difference between our model and theirs is that our model does not require spec-
ifying the distribution of unobserved variables (i.e. the v; and 6; terms) and the agent’s
precess of learning about the value of these unobservables. KW estimates the model by
maximum likelihood which calls for specifying the joint distribution. Consistency of the

estimator depends on the correct specification of this distribution.



Taber (2000) considers semiparametric identification of a similar class of dynamic pro-
gramming schooling models and shows that the conditions are very strong and can not be
met with the data at hand.

Instead we will exploit the variation in tuition variable and the assumption that (1)
the variable is independent from the unobserved variable conditional on observed exogenous
variables of the model, Z; and (2) the variable is excluded from the outcome variables to
estimate the impact of tuition subsidy policy.

If we could consistently estimate all the structural parameters, then we would be able to
evaluate any policy that can be addressed within the model. We are not able to carry out this
more general exercise. However, under the maintained assumptions (1) and (2) we will be
able to consistently estimate the tuition subsidy policy effect without making distributional

assumptions about the error terms.

4 Estimation

Note that in order to evaluate the tuition subsidy policy, we will not need to estimate the
full structural parameters. We will estimate a semiparametric reduced form version of this
model.

This is essentially a 6 index model. That is conditional on Z; and age (A;), for any

potential outcome Y;; we can write
E(Y;t’Zia Aita 7Ti) - FY (ZlefyT — Ty, Zielfye: Zzhlfyha Zflfypa Zz'S/fySa Z;U/ﬁla Ait) .

We will examine the following five outcome variables: college attendance , years of schooling,
weeks worked per year, hours worked per week, and log-wage. The data is generated in the
absence of a tuition subsidy (m; = 0). Our goal is to simulate the effect of a tuition subsidy
which can be summarized by 7, which may vary across individuals. Our goal is thus to
estimate E(Y;|Z;, Ay, ).

We define the net tuition index Z7'y™ — m; to be

tuitionm + ’YTanyCOIIH — T

where tuition;;7 is the average tuition paid at 2 year colleges in the state in which individual
1 lives at age 17 and anycol;7;is a dummy variable indicating whether there was a college in
the county in which the individual lived when he/she was 17. We follow Cameron and Taber

(2001) by assuming that this represents a financial cost of college as one can live at home
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and attend a college if it is close. The structural model imposes two important restriction
of that are being used here. The first is that these two variables in the cost of college index
do not appear in any other indices. The second is that the tuition subsidy enters the index
as specified above.

As formally discussed in the appendix, with an additional regularity condition, one can
identify 4" and other indices when we normalize the unknown functions’ first partial deriva-
tives suitably. We do not need to impose any other exclusion restriction as it is not needed.

Thus all variables in different indices except for the tuition index are the same:
7P =17, =2 =7 = 7} = X,

For clarity we will write variables in the tuition index by 7;. Thus Z] = T;.

One strategy would be to estimate Fy and the indices of the model up to normalizations
as discussed in the appendix. This involves high dimensional nonlinear optimization. We
found another strategy which reduces the dimensionality of the nonlinear optimization to
one in our application. We discuss the precise relationship between the two approaches in
the appendix.

Notice that for any outcome Y we can write the model even more flexibly as
E(Kt’ZZa Aita 7Ti) = GY (711/77— — T4, Xi: Ait) .

This representation of the model is a classic semiparametric reduced form of the original
structural model. The goal of this paper is to estimate the effect of tuition subsidy. We can

identify /estimate the effect of the tuition subsidy on outcome Y in the following manner:
1. Using any particular outcome identify/estimate v” and Gy for that outcome.
2. Identify/Estimate Gy corresponding to all the rest of outcomes.
3. Simulate E(Yy|Z;, Ait, 7)) = Gy (T!y" — 7}, Xi, Ait).

The basic procedure for the first stage estimation of the index is similar to semiparametric
least squares (Ichimura, 1993). Let Gy represent fit of a type of nonparametric regression
of Y onto (T"77, X, A). Note that the 4" parameter is over identified as there are multiple
outcomes. Simple models suggest that an easy way to estimate the effects of tuition on
outcomes without sacrificing efficiency too much may be to use college attendance (D).

Thus we estimate?
N ~ 2
AT = arg min Z (Dl- — Gp (tuition;; + vy anycol;7;, Xi)) )
i=1



Age is dropped as D; is constructed for individuals over 25 and under our assumption indi-
vidual do not attend college after this.

In estimation we use a second order polynomial (including all interactions) as our flexible
functional form for Gp. There are of course other possibilities. Note that given 47, use of
quadratic function for Gp implies that the rest of the parameters can be explicitly computed.

Stage 2 of the estimation is also performed using second order polynomial approximations.

One complication arises in interpretation of results. Wages at a given age depend on
schooling both through its effect on experience and its direct effect. It is standard in the em-
pirical literature to summarize the effect of schooling on wages holding experience constant.
If we do not condition on experience, the effect of tuition subsidy on wages will depend on
the level of experience and thus the age. However, given the structure above, this is not the
case if we condition on experience. Since experience is endogenous (from the perspective of
the model) conditioning on it is not trivial. However, given the form of the wage equation
(1) above, there is a simple solution. Note that schooling only enters the model through
a;(S;), which is fixed once individuals have entered the labor market. Thus one can deal
with the endogeneity of S; using a fixed effects strategy. There is another potential problem
that labor supply and thus L;; will be correlated with v;. We thus estimate (3, and (35 using
fixed effects and instrumental variables with age and age squared as instruments for actual
experience and experience squared. We can then report the effect of tuition subsidies on
wages holding experience constant by using log(w;;) — 32Lit = @Lft as our outcome variable.
We then proceed with this outcome variable in exactly the same way that we do with the

other outcomes.

5 Data

We use white, black, and Hispanic males from the 1979-1994 waves of the NLSY (National
Longitudinal Survey of Youth). We exclude from the analysis the military subsample and
the non-Black non-Hispanic disadvantaged sample. We use only male samples because their
schooling decisions and labor supply are less complicated by fertility and labor market par-
ticipation considerations.

Schooling observations begin at age 15 and extend at least through age 29 for all individ-
uals included in our sample. Because information before 1978 is retrospective and limited,
we confine our extract to males between ages 13 and 17 in January of 1978 in order to have

reliable information on county of residence which is used to construct tuition and college



proximity.

The key variable in our analysis is tuition. A panel of annual records on tuition, en-
rollment, and location of all public two-and four-year colleges (including Universities) in
the Unites States were constructed from the Department of Education’s annual HEGIS and
IPEDS” Institutional Characteristics” surveys. By matching location with a person’s county
of residence, we were able to determine the presence of a two-year college, four-year college,
or either in the county of residence. A number of specialty colleges, generally with small
enrollments less than 100, were excluded. Federal institutions, such as the Naval Academy,
were also excluded. This variables can be measured at any age. For our analysis, however,
they are measured at age 17 to avoid the obvious problem that people who attend college
generally reside in the same county the college is located.

The other variables we control for in the models are minority status (i.e. black and
Hispanic which are combined), family income, local income in the county in which the
individual lived at age 17, AFQT score, fathers eduction, mothers education, and number
of siblings. We use the same data as in Cameron and Taber (2001). It is discussed more

extensively there.

6 Empirical Results

We present the results using the methodology and data described above. We consider three
different types of tuition subsidies. The first is a straight $1000 tuition subsidy. That is,
every individual would receive a subsidy of $1000 if he attends college. These results are
presented in the first column of the table. The second is means tested and targeted towards
low income families. Students whose parents income are less than $20000 only are eligible
for the $1000 subsidy. These results are presented in column 2 and only averages for the
eligible population (i.e. students from families who earn less than $20000) are presented.
The third subsidy is more complicated. Students from families who earn less than $20000
are eligible for a $2000 subsidy. The subsidy then phases out at a rate of $100 per $1000 of
family income until it disappears at family income level $40000. We present these results in
column 3 for students from families that earn less than $40000 only.

The results are presented in the Table. We examine several different outcomes. There
are a couple aspects of the results to note. First notice that the direct effect of tuition
subsidies on college attendance is smaller than what one often finds in straight regression (see

Leslie and Brinkman, 1988, for literature review). This smaller effect results from combining



tuition with college attendance in the index, from the interactions with different variables,
and from the extensive set of control variables. Interestingly the effects on hours per week
is consistently negative. To give some manner of judging the magnitude of the wage effect
we present the “implicit return to schooling effect” in the last row. This is simply the wage
effect (controlling for experience) divided by the increase in years of schooling. This has the
interpretation as the average return to a year of schooling averaged over the additional years
of schooling that result from the subsidy. These are well within the range of the literature.
Interestingly the effect on college enrollment is larger for the targeted subsidy than for the
straight subsidy, but the return to schooling is very close. There are of course many other

outcomes and cuts of the data one could construct using this methodology.

7 Conclusions

In this paper we perform semiparametric reduced form analysis to simulate the effects of
several tuition subsidy programs on a variety of outcomes. This is classic reduced form
estimation in that we present a full structural model but only estimate a reduced form of
the model. Presentation of the full model is necessary to justify the use of the reduced
form for policy simulation. This is an example of the type of direct estimation of policy
effects described more generally in Ichimura and Taber (2000). The basic idea is to specify
the minimal level of conditions necessary for identification of the policy effect and then use
those conditions to simulate the effect. When one has the limited objective of simulating
a particular policy this will often have the advantage over estimation of the full structural
model that it requires weaker conditions. It may also be computationally easier to estimate
the reduced form model than the full structural model. That is certainly the case in this
example.

Using this approach we simulate several different tuition subsidies. As in other studies
we find that tuition subsidies have a substantial effect on college attendance. This effect is
likely to be larger when the subsidy is geared toward students from low income families. The

effects of the subsidies on labor supply and wages is also documented.
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Appendix

Notice that the scale of coefficients are not identified and furthermore unless some exclusion
restrictions are satisfied among indices there are further identification problems as discussed
by Ichimura and Lee (1991). For our purpose, the crucial index is Z]'y™ and we assume
that tuition variables affect decision only through this index. Under this assumption, the
coefficients of this index is identified and thus the tuition policy effect is identified.
Let the model be
EY|X,T)= f(XB,T0)

where Y is a r x 1 vector, X is a 1 x k; regressor vector, B is a k; x r matrix (k1 > r),
T is a 1 x ky regressor vector, and 6 is a ko x 1 vector (ky > 1), f = (f',...,f") and f/
(j=1,...,r) is a continuously differentiable function from R™*! into R. We assume that
there is no common regressor among X and 7' and there is no a priori zero restriction in B
matrix. We denote the partial derivative of f7 with respect to the pth argument by f7.

In our application, 7747 is 70, the remaining 5 indices correspond to X B, and r = 5.
Five outcomes are, whether one goes to college or not, and years of education, weeks worked,
hours worked and log-wage.

We show the following: Let 6;, =1 if j = p and §;, = 0 otherwise and denote the matrix
with the j-pth element being f7 (0) by A.

Theorem 1 Let (X, T) be continuously distributed with its support being R¥ 2. For any
B, 0, and f, with 0, (the first element of 6) not zero, there exists a unique B*, 0 with
07 =1, and f such that for j=1,...,r andp=1,...,r

b ,Z (0) = 6]'10
and f (XB,T0) = f(XB*,T0") almost everywhere if matriz A is nonsingular and B has

full column rank.

This normalization is chosen so that it can be imposed easily when we use polynomial
expansion to approximate the unknown function f.
In estimation we use second order polynomial for the unknown functions. This would

suggest using

D; = 60+ 61-(T{7") + X[4* + squared and cross terms of 6 indices + ep;

Si = oo+ o1-(Tiy") + X;v° + squared and cross terms of 6 indices + eg;
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i = Mo+ M- (TIY7)+ Ao Ay
—l—Xhe + squared and cross terms of 6 indices and A; + ey

hie = mo+my- (") + 0y Au
—i—Xhh + squared and cross terms of 6 indices and A; + ep;

logwy; = wo+wy- (T]Y7) +ws - Ay

+X|v" + squared and cross terms of 6 indices and Ay + €.

That there is only one linear term related with X; and that the coefficient is set to 1 is the
normalization the identification theorem suggests.

Note that the squared and cross terms of 6 indices which appear in each equation consists
of cross terms and squared terms of the arguments in X; and the cross terms of the arguments
in X; with (T/47) for D; and S; equations and analogous terms including age variable for
the rest of the equations.

In principle, this model can be estimated by nonlinear least squares as we discussed in
text. But implementing it will involve high dimensional nonlinear optimization problem.
Hence we take an alternative approach.

Note that the nonlinearity mainly arises because we impose the model restriction that
the coefficients in the ‘squared and cross terms’ are related to the linear terms. If we relax
this restriction, the dimension of nonlinearity reduces to one.

The implication of this identification result is that the coefficients on the linear terms of
X, can be interpreted as the relevant index coefficients under the normalization specified in
the theorem.

This observation can be used to (1) construct specification of the index restriction. Also,
the estimation result can be used as the first step to impose the restriction implied by the
index model.

Proof:

Let s be an 1 x r vector ¢ be a scalar and F' be a nonsingular r x r matrix. Define function
f on R into R" by

fs,t)=f <8F_1,t . 01) .

Let

= (Fl, F) .
Then
f(s,t) =f (sFl, oy SETt - 91)

11



and it is easy to see that, denoting the pth (p = 1,...,7) element of F’ vector to be Fg for

each j =1,...,r,

we have

AF1=1.

So F' = A uniquely solves the equation. This shows that the restrictions on the partial
derivatives can be imposed without a loss of generality and that within the class of function
f of the form denoted by f (sF~',t-6;), f is uniquely determined.

Suppose f (XB,T0) = g (XB*,T0") holds almost surely and where g satisfies the partial
derivative restrictions. Clearly B* must be full rank since B is so from now on, we assume
B* has full column rank without a loss in generality.

By applying the single index identification argument conditional on X, " must be pro-
portional to € so that there is a nonzero ¢ such that 6" = c- 6. Since 0] =1, c =1/6;.

We will show that g (s,t) = f (sF~1,t-6;) = f(s,t) almost surely for some nonsingular
F'. This, together with the earlier result shows the uniqueness.

Let
s=XBandt=1T89.

Since B has full column rank, there is some matrix that augments matrix B in such a way
that the augmented matrix is nonsingular. Let (B , E) be such an augmented nonsingular

matrix. Then X (B,E) = (S,XB) so that
XB' = (s,XB) (B.B) B".
Then we have, denoting u = X B,
N
£(s.t) =g ((s,0) (B.B) " B7,1/0,)
almost surely. Taking derivative with respect to u and evaluating at the origin we have,
0= AC'

1
or C' = 0 where C' is the bottom k; — 7 rows of (B, B) B*. This implies that B* is a linear
combinations of columns of B so that there is a matrix F' such that B* = BF. When B* is

nonsingular, F' must be nonsingular so that we can write
f (XB*F—l, To* - 91) = ¢ (XB*, T¢")

or g (s,t) = f(sF~' t-0;) holds almost surely.
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Simulated Effects of Tuition Subsidy
On Various Outcomes
Estimated from NLSY

Men Only

$1000  Means Tests Phased Out
Outcome Subsidy!  Subsidy?  Tuition Subsidy?
College Attendance 0.0091 0.0323 0.0118
Years of Schooling 0.0254 0.0901 0.0326
Weeks Worked per Year 0.0175 0.0910 0.0545
Hours per Week -0.0836 -0.4011 -0.2179
Log Wages (unconditional)  0.0021 0.0080 0.0029
Log Wages (cond. Exp.)* 0.0025 0.0081 0.0017
Implicit Ret. to Schooling®  0.0993 0.0904 0.0512
Fraction Eligible 100% 31% 69%

1A $1000 tuition subsidy is given to anyone attending college.
2A $1000 tuition subsidy is given to individuals attending college whose
family income is less than $20000. The number reported is for the eligible
population (family income <$20000).

3The tuition is $2000 for students whose family earns less than $20000.
The subsidy fades linearly to zero at $40000. The numbers reported

are for the eligible population (family income <$20000).

4This number reports the effect of the policy on wages holding experience
constant.

5The implicit return to schooling is simply the effect on log wages (conditional
on experience divided by the effect on years of schooling.
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