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Abstract. This paper derives suffi cient conditions for nonparametric transformation mod-

els to be identified and develops estimators of the identified components. Our nonparametric

identification result is global, and allows for endogenous regressors. In particular, we show

that a completeness assumption combined with conditional independence with respect to

one of the regressors suffi ces for the model to be nonparametrically identified. The iden-

tification result is also constructive in the sense that it yields explicit expressions of the

functions of interest. We show how natural estimators can be developed from these expres-

sions, and analyze their theoretical properties. Importantly, it is demonstrated that different

normalizations of the model lead to different asymptotic properties of the estimators with

one normalization in particular resulting in an estimator for the unknown transformation

function that converges at a parametric rate. A test for whether a candidate regressor

satisfies the conditional independence assumption required for identification is developed.

A Monte Carlo experiment illustrates the performance of our method in the context of a

duration model with endogenous regressors.
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1. Introduction

A variety of structural econometric models comes in form of a transformation model, in

which a scalar dependent variable Y is related to a vector of regressors X and a scalar

unobservable ε through

(1) Y = T (g(X) + ε) .

The model is characterized by a strictly monotonic transformation T , a regression function

g, and a cumulative distribution function (cdf) Fε|X of ε given X, all of which are unknown.

An important economic application of the model (1) is to the study of duration data (see,

e.g., Van den Berg, 2001, for a survey). In this context, dependence between ε and some

components of X is often a concern, which can arise for a variety of reasons. For instance,

if the duration outcome depends on another duration variable with both durations affected

by the same unobserved heterogeneity term (Abbring and van den Berg, 2003); or because

duration data is only observed for those individuals that comply with some treatment and

compliance is not random but selective (Bijwaard and Ridder, 2005); or else in a strategic

environment in which durations of two or more players interact with each other (Honore and

de Paula, 2010); or because of reverse causality as when duration represents time-to-default

and defaults affect regressors such as prices (Palmer, 2014). More generally, omission of

relevant regressors or presence of measurement errors might give rise to endogeneity.

We develop novel nonparametric identification results for
(
T, g, Fε|X

)
when some of the

regressors X are correlated with ε. Our identification strategy is constructive in the sense

that we obtain explicit expressions of the components in terms of the cdf of Y given X, FY |X .

This in turn allows us to develop simple nonparametric estimators of
(
T, g, Fε|X

)
which we

analyze. An important feature is that the convergence rate of the estimator of T critically

depends on the normalization conditions we impose: The “smoother”the normalization, the

faster the estimator converges. To the best of our knowledge, our paper is the first to show

that normalization conditions are not innocuous, with different normalization choices leading

to nonparametric estimators with radically different properties.1 When the normalization

1At least in the context of nonparametric “plug-in”kernel estimators, which are the ones we propose here.

Whether or not the same results obtain for other classes of estimators is an interesting question that we

leave for future research.
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used for identification of T does not involve derivatives of T , our estimator attains parametric

rate. This in turn implies that for inference regarding g and Fε|X we can treat T as known.

The identification argument proceeds in two steps: We first show thatΘ ≡ T−1 is identified

under the assumption that X can be decomposed into X = (XI , X−I) where the subset of

regressors XI is conditionally exogenous, ε ⊥ XI | X−I . As such XI play a role similar to the

“special regressor”of Lewbel (1998); however, in contrast to his study, we do not require XI

to satisfy any “large-support”conditions. Once Θ has been identified, we can identify g and

Fε|X using existing results on nonparametric instrumental variables (IV); see, e.g. Darolles,

Fan, Florens, and Renault (2011), and references therein.

The estimation strategy builds upon our identification result where we demonstrate that

Θ can be expressed as a functional of FY |X . A pointwise estimator of Θ is then obtained

by replacing FY |X with a nonparametric estimator. Once Θ has been estimated, g can

be estimated using, for example, nonparametric IVs with Θ̂ (Y ) replacing the unknown

dependent variable Θ (Y ). Given the parametric convergence rate of Θ̂, our nonparametric

IV estimator of g is asymptotically equivalent to the oracle estimator with Θ known. Having

recovered Θ and g, we can compute residuals and use these to estimate Fε|X .

The identification and estimation schemes critically rely on the availability of at least one

regressor being conditionally exogeneous. If, for a given choice of XI , this assumption is

violated the proposed estimators are inconsistent. It is therefore important to be able to

check the validity of a candidate regressor. As part of the identification argument, we derive

a set of over-identifying restrictions implied by the conditional independence assumption,

which in turn is used to develop a statistical test for it.

We investigate the finite-sample performance of our estimators in a Monte Carlo simulation

study designed around a popular duration model. We find that the estimators perform well

with moderate biases and variances. Moreover, they appear to be quite robust to the choice

of the various smoothing parameters used in their implementation.

Our identification results are close in spirit to those obtained by Ridder (1990) and Eke-

land, Heckman, and Nesheim (2004) who focus on exogenous regressors. Fève and Florens

(2010) allow for endogenous regressors when g is linear or partially linear using a so-called

measurable separability assumption in placeof our conditional exogeneity condition. More
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in line with our identification strategy, Vanhems and Van Keilegom (2013) allow for endo-

geneity in a semiparametric version of the model with a finitely parameterized transforma-

tion. Finally, Chernozhukov, Imbens, and Newey (2007) and Chen, Chernozhukov, Lee, and

Newey (2011) provide identification conditions that allow for endogeneity in a general class

of models, including ours. These are, however, only local identification results and rely on

high-level assumptions. We complement these papers by providing primitive conditions for

global nonparametric identification.

Nonparametric estimators of Θ under exogeneity have been developed in, e.g., Horowitz

(1996), Chen (2002) and Jochmans (2011). These require as input an initial parametric

estimator of g and are thus diffi cult to extend to the fully nonparametric case. Matzkin

(1991) and Jacho-Chávez, Lewbel, and Linton (2010) develop fully nonparametric estimators.

However, the asymptotic properties of the former are still not fully understood, and the

latter only achieves nonparametric convergence rate. None of the above papers allow for

endogenous regressors. Finally, the sieve estimators developed in Chernozhukov, Imbens,

and Newey (2007) and Chen and Pouzo (2012) should in principle be applicable to our

model.

The remainder of the paper is organized as follows. Section 2 contains the identification

result, while estimators are proposed and analyzed in Section 3. The test for conditional

independence is developed and analyzed in Section 4. Section 5 illustrates the performance

of the proposed estimators and test through a Monte Carlo experiment. The last section

concludes. Additional technical assumptions and proofs are relegated to an Appendix.

2. Identification

2.1. Model and Assumptions. We consider the model in (1) where Y has support Y ⊆ R,
X = (X1, . . . , Xdx) has support X ⊆ Rdx , and ε belongs to E ⊆ R. The variables Y and

X are observed, while ε remains latent. We decompose the regressors into X = (XI , X−I)

where the subvector XI ∈ R|I| is assumed to be exogeneous while X−I ∈ Rdx−|I| contains the
potentially endogenous components. The supports of XI and X−I are denoted by XI and
X−I , respectively.
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Assumption A1. For a.e. x ∈ X , the conditional distribution Fε|X(·|x) of ε given X = x

is absolutely continuous (with respect to the Lebesgue measure on R) with a density fε|X(·|x)

that is continuous on its support Ex ⊆ R.

Assumption A2. (i) ε ⊥ XI | X−I ; (ii) XI is continuously distributed on XI ⊆ R.

Assumption A1 together with the assumption of T being monotonic implies that FY |X is

absolutely continuous, which is important for our identification argument. Assumption A2(i)

formally states that at least one of the regressors is conditionally exogenous. As such, XI

plays a role similar to the “special regressor”of Lewbel (1998). However, no large support

conditions are imposed on XI ; this is unlike in Lewbel (1998) who requires the support to be

either the entire real line, or else large enough if the supports of X−I and ε are bounded. If an

exogenous variable is discrete, it can be moved fromXI toX−I since Assumption A2 imposes

no restrictions on X−I . Moreover, the assumption of XI being continuously distributed can

be weakened: We know from Ridder (1990), for example, that, in absence of endogeneity,

nonparametric identification is possible even if the regressors are discrete. In Appendix D we

show that Assumption A2(ii) can be dropped provided, however, additional restrictions are

put on the regression function g. This alternative identification strategy is not constructive

though, in a sense that it does not lead to a natural nonparametric estimator for Θ. We

thus choose not to pursue this approach further.

Next, we put restrictions on the support of Y and the behavior of the transformation T :

Assumption A3. The support Y of Y is a connected subset of R (i.e. an interval) that

contains zero.

Assumption A4. T is invertible with inverse Θ ≡ T−1 that is increasing and continuously

differentiable on Y.

Since our identification argument will be based on integrating certain partial differential

equations w.r.t. y, we need the domain of integration to be an interval in R. This is ensured

by Assumption A3. That zero belongs to this interval will be used in our normalization

conditions to follow. If needed, zero can be replaced with any other value y0 ∈ Y. Assumption
A4 requires T to be invertible with a continuously differentiable inverse Θ = T−1 that is

increasing on Y so Θ(t) ≤ Θ(v) whenever t ≤ v.
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Assumptions A1-A4 have strong implications which we now derive. First, observe that

equation (1) can be rewritten as

(2) Θ (Y ) = g(X) + ε.

Since Θ′ (y) ≥ 0, the conditional cdf of Y given X, which we denote by Φ (y|x) ≡ FY |X (y|x),

satisfies:

(3) Φ (y|x) = Fε|X (Θ (y)− g(x)|x) = Fε|X−I (Θ (y)− g(x)|x−I) ,

for all y ∈ Y and x = (xI , x−I) ∈ X , where the second equality follows from the conditional

independence of ε and XI given X−I . Moreover, Φ(y|x) is absolutely continuous with a

continuous density.

The identification argument will rely on the ability to generate variation in Y through XI

while keeping ε fixed. Importantly, under our Assumption A2(i), any variation in XI will

only affect Φ through the regression function g. Identification is then achieved through the

derivatives of Φ (y|x) w.r.t. y and xI . For these to be well-defined, we impose the following

additional smoothness restriction on g:

Assumption A5. g(x) is continuously differentiable w.r.t. xI on X .

Similar to A2(ii), Assumption A5 only restricts the smoothness of g (x) with respect to

xI . Nothing is being said about the behavior of g with respect to the remaining components

x−I . When we analyze the nonparametric estimators of Θ and g, we will however impose

additional smoothness conditions on g as a function of x−I .

The identification of Θ will then rely on the following two sets of equations,

Φy(y|x) = Θ′(y)fε|X−I (Θ(y)− g(x)|x−I),(4)

Φi(y|x) = −∂g(x)

∂xi
fε|X−I (Θ(y)− g(x)|x−I), i ∈ I,(5)

where Φy(y|x) ≡ ∂Φ(y|x)/∂y, Φi(y|x) ≡ ∂Φ(y|x)/∂xi, and Θ′ (y) is the derivative of Θ. In

particular, dividing equation (4) by (5) and rearranging,

(6) Θ′(y) = − 1

∂g(x)/∂xi
si(y, x), where si(y, x) ≡ Φy(y|x)

Φi(y|x)
,

for any i ∈ I whenever Φi(y|x) 6= 0. This expression is key to the identification of Θ with

the conditional independence assumption A2(i) guaranteeing that si(y,x)
∂g(x)/∂xi

is constant with
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respect to x. Equation (6) only holds for pairs (y, x) for which Φi(y|x) 6= 0. We therefore

impose the following assumption:

Assumption A6. The set Ai ≡ {x ∈ X : Φi(y, x) 6= 0 for every y ∈ Y} is nonempty for

some i ∈ I.

The requirement that Ai is nonempty can be thought of as a generalized rank condition
saying that a given exogenous regressor Xi (i ∈ I) has a causal impact on Y . Equation (5)
shows that A6 has two parts: First, we need that for some i ∈ I there exist an x ∈ X such

that ∂g(x)/∂xi 6= 0. This requirement excludes the situation in which g is a constant function

of all the exogenous regressors. The requirement is rather weak compared with the specific

structure on g imposed in Lewbel (1998). Second, we need that for the same value x, {t ∈ R :

t = Θ(y) − g(x), y ∈ Y} ⊆ Ex; this assumption ensures that fε|X (Θ (y)− g(x), x−I) > 0 for

every y ∈ Y, and is akin to Assumption 5a in Horowitz (1996). A simple primitive condition
for the second requirement is that Ex = R, for example.

It is worth pointing out that the larger the set of exogenous regressors, the easier it is to

satisfy A6. The intuition is that we only need one exogenous regressor to generate variability

in the regression function g: if XI has several components it is suffi cient that g be a non-

constant function of one of them. This highlights the role of having multiple exogenous

regressors available.

2.2. Normalizations and Identification. It is clear from Equation (2) that some nor-

malization of the model is needed; indeed, for any λ > 0 and (µ, ν) ∈ R2, the structure

(Θ, g, Fε|X) in (2) is observationally equivalent to the structure (Θ̃, g̃, F̃ε̃|X) given by

(7) Θ̃ ≡ µ+ λΘ, g̃ ≡ ν + λg, ε̃ ≡ µ− ν + λε.

In particular, a location and a scale normalization of Θ is needed to pin down the constants

µ and λ. Conditions that ensure ν = 0 shall be imposed later on, when we discuss the

identification of (g, Fε|X).

To identify Θ, we will impose either of the following two different normalizations:

Θ(0) = 0 and Θ′(0) = 1,(N1)

Θ(0) = 0 and Θ(1) = 1.(N2)
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The values 0 and 1 at which the normalizations are imposed are without loss of generality; if

needed, they can be replaced by any (y0, y1) ∈ Y with y0 6= y1. While both normalizations pin

down the location through Θ(0) = 0, they differ in the way they fix the scale. Normalization

(N1) fixes the derivative ofΘ at a particular point, while (N2) instead constrains the level ofΘ

at some additional point different from zero. Thus, the two normalizations have increasing

degrees of smoothness. The following theorem shows that these different normalizations

imply different expressions for the function Θ:

Theorem 1. Let Assumptions A1-A5 hold. Then, with Si (y, x) ≡
∫ y

0
si (u, x) du, the fol-

lowing identification results hold for any regressor i ∈ I that satisfies Assumption A6:

(i) under (N1), Θ is globally identified as

(8) Θ(y) = ϑi (y, x) , ϑi (y, x) ≡ Si (y, x)

si (0, x)
,

and the right-hand side of (8) does not depend on i nor x.

(ii) under (N2), Θ is globally identified as

(9) Θ(y) = θi (y, x) , θi (y, x) ≡ Si (y, x)

Si (1, x)
,

and the right-hand side of (9) does not depend on i nor x.

The theorem is constructive in the sense that ϑi (y, x) and θi (y, x), and thereby Θ (y),

are functionals of Φ (y|x) with the latter being estimable given data of (Y,X). As we shall

see, the two estimators for Θ corresponding to the two different normalizations will have

radically different asymptotic properties: while the one based on (N1) will converge at a

nonparametric rate, parametric rate is achieved by the estimator based on (N2).2 This

to the best of our knowledge is the first time in the literature that a formal study of the

effect of normalizations is undertaken which shows that different normalizations can lead

to estimators with radically different asymptotic properties. This result warns against the

popular belief that a “normalization is innocuous.”

The above theorem also highlights the role played by multiple exogenous regressors. As

already pointed out, the larger |I|, the more likely is Assumption A6 to be satisfied. Put
2In Appendix E we consider a yet different “integral” normalization: Θ(0) = 0 and

∫
Y Θ(y)f0 (y) = 1

for some known function f0. As we would expect from the smoothness of the latter, the corresponding

nonparametric estimator retains the parametric convergence rate.
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in words, this assumption requires some variation in the conditional distribution of Y given

X when the exogenous regressor Xi varies. The more exogenous regressors, the easier it

is to obtain the required variation. Given that the identified expression for Θ does not

depend on which exogenous regressor is chosen, the presence of multiple Xi’s gives rise to

over-identifying restrictions which can in principle be used to test correct specification of the

transformation model.

OnceΘ is identified, we can treatΘ (Y ) as observed and so the remaining task is to identify

g and Fε|X from the model (2) given observations of Θ (Y ) and X. This is a standard addi-

tive nonparametric regression model, and we can therefore import existing results from the

literature on nonparametric identification of regression models with endogenous regressors.

Popular identification restrictions put forth in the literature include the existence of a set of

instruments combined with either a mean restriction, as in Newey and Powell (2003), or a

median restriction P (ε ≤ 0|Z) = 1/2, as in Horowitz and Lee (2007). One can alternatively

take a control function approach, as pursued by Newey, Powell, and Vella (1999). Any of

these three approaches will lead to the identification of g and Fε|X . We here follow the lit-

erature on nonparametric IV and assume the existence of a set of instruments Z ∈ Z ⊆ Rdz

that satisfy standard conditions of this literature.

Assumption A7. There exists a set of instruments Z such that: (i) E [ε|Z] = 0 almost

surely (a.s.); (ii) the conditional distribution of X−I given Z is complete: for every function

m : X−I → R such that E[m(X−I)] exists, E[m(X−I)|Z] = 0 a.s. implies m(X−I) = 0 a.s.

In the special case where all the regressors are exogenous, i.e. |I| = dx, we can choose

Z = X and Assumption A7(i) collapses to E [ε] = 0, which is a normalization condition that

pins down the location ν of g and ε in equation (7). If one is willing to assume E [ε|X−I ] = 0,

which still allows for some dependence between ε and X−I , then Assumption A7 holds with

Z = X−I . As for the exogenous regressors, note that Assumption A7(i) implies that E [ε] = 0

which together with the conditional independence restriction A2 yields E [ε|XI ] = 0. Thus,

the required mean independence restrictions between ε and the regressors X are as we would

expect from the nonparametric IV literature. If one is willing to impose the additional

restriction that g is bounded, the completeness condition A7(ii) can be replaced by the

weaker assumption of bounded completeness; see Blundell, Chen, and Kristensen (2007).
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Corollary 1. Let all the assumptions of Theorem 1 and Assumption A7(i) hold. Then g

and Fε|X are identified if and only if Assumption A7(ii) holds.

It is worth pointing out that the completeness condition in A7(ii) is both necessary and

suffi cient for identification of the regression function g and the conditional distribution of

the latent term Fε|X . In this sense, the restrictions in A7 can be seen as minimal.

3. Estimation

We use the identification results of the previous section to derive explicit estimators of

(T, g, Fε|X). We will for notational simplicity assume that X−I has a continuous distribution

which we then estimate using kernel smoothing techniques. If some of the regressors in X−I

have a discrete distribution, the corresponding kernel function used in the nonparametric

smoothing should be replaced by an indicator function.

3.1. Estimation of Θ. Suppose we have a random sample (Yi, Xi, Zi) (i = 1, . . . , n) drawn

from the model in Equation (1). Depending on whether we impose the normalization (N1)

or (N2), we then build an estimator of Θ(y) based on Equation (8) or (9), respectively.

Consider first the case where (N2) is imposed. For a given exogeneous regressor i ∈ {1, ..., |I|}
satisfying Assumption A6, for some weighting function w (x) satisfying

∫
X w (x) dx = 1

with support Xw ⊆ Ai, and a given bowlshaped loss function L, Theorem 1 implies that

Θ (y) ≡ arg minq∈R
∫
X w (x)L (θi (y, x)− q) dx. An estimator of Θ (y) is now easily obtained:

Given some nonparametric “plug-in”estimator of θ (y, x), θ̂i (y, x), we compute

(10) Θ̂ (y) ≡ arg min
q∈R

∫
X
w (x)L

(
θ̂i (y, x)− q

)
dx.

The estimator of Θ (y) for the case where (N1) is imposed is implemented in the same way,

except that we replace θ̂i (y, x) by ϑ̂i (y, x), which again is obtained from a first-step estimator

of Φ.

The weighting function w serves three purposes: First, it is used to control for the usual

denominator problem present in many semiparametric estimators that involves division by a

first-step nonparametric density estimator. Specifically, we will require that the support of

w, Xw, has been chosen so that infx∈Xw f (x) > 0, where f (x) is the density of X. Second,

the support Xw should only include those values of x that can be used to identify Θ from the

variation in the regressor Xi, in the sense that inf(y,x)∈Y×Xw |Φi(y, x)| > 0. Third, w could

be used to improve the effi ciency of the estimator by reweighing θ̂ (y, x) as a function of x.
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Two obvious choices of the loss function L are: the least-squares (LS) loss, L (q) = q2,

and the least-absolute deviation (LAD) loss, L (q) = |q|. When the normalization (N2) is
imposed, these losses lead to the following estimators:

Θ̂LS (y) ≡
∫
X
w (x) θ̂i (y, x) dx,(11)

Θ̂LAD (y) ≡ arg min
q∈R

∫
X
w (x)

∣∣θ̂i (y, x)− q
∣∣dx.

The LS estimator in (11) is similar to the one of Horowitz (1996) in that it involves inte-

grals over derivatives of the conditional cdf Φ. However, Horowitz’s estimator takes as input

an estimator of g (x) = β′x, and is therefore based on a very different identification argu-

ment. Moreover, since the regression function is assumed to be linear and known, Horowitz’s

estimator is of a simpler form than ours.

Through simulations, we found that Θ̂LS (y) did not always perform well; similar results

are found for Horowitz’s estimator (see Chen, 2002, for simulation results). More specifically,

we find that for x taking values in the tails of the empirical distribution of X, θ̂i (y, x) proved

to be a poor estimate of θi (y, x). One could in principle handle this issue by choosing the

weights w (x) so as to trim away the “extreme”values of x. It proves, however, simpler to

instead use the LAD version of the estimator, which is well-known to be less sensitive to

“outliers”in θ̂i (y, x) as we vary x. This is confirmed in the simulation study where Θ̂LAD (y)

performs significantly better than Θ̂LS (y). To simplify the theoretical analysis, we follow

Horowitz (1998) and introduce a smoothed version of the above LAD estimator,

(12) Θ̂LAD
b (y) ≡ arg min

q∈R
Qb(q|θ̂i (y, ·)),

where

Qb(q|θ (y, ·)) ≡
∫
X
w (x) {θ (y, x)− q} {2Fb (θi (y, x)− q)− 1} dx,

with Fb (·) ≡ F (·/b) for some cdf F with median at zero and some bandwidth b > 0. It is

easily seen that Θ̂LAD
b (y)→ Θ̂LAD (y) as b→ 0 for a given sample size. However, as we shall

see, Θ̂LAD
b (y) is in fact consistent for any fixed value of b > 0. This is due to the fact that

in large-samples θ̂i (y, x) is constant w.r.t. x and so the smoothing over x does not affect it

asymptotically. Moreover, Θ̂LAD
b (y) proves to be first-order equivalent to Θ̂LS (y) so there is

no asymptotic effi ciency loss from the improved finite-sample performance of Θ̂LAD
b (y).

Finally, if Assumption A6 holds for multiple exogenous regressors, say, for a subset I0 ⊆ I,

we can compute an estimator for each regressor i ∈ I0 yielding {Θ̂i (y) : i ∈ I0}. These can be
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combined to obtain a final estimator Θ̂(y) =
∑

i∈I0 w̃i (y) Θ̂i (y) using another set of weighting

functions {w̃i (y)}i∈I0 satisfying
∑

i∈I0 w̃i (y) = 1. As with GMM-type estimators, given the

(asymptotic) covariance structure of the estimators, {Θ̂i (y)}i∈I0 , the weights {w̃i (y)}i∈I0
can be chosen to obtain (pointwise) effi ciency. This highlights another advantage of having

multiple exogenous regressors: These can be used to improve effi ciency of the estimator of

Θ (y).

We now derive the large-sample properties of the LS and smoothed LAD estimators de-

fined in Equations (11) and (12), respectively. We first analyze the version based on the

normalization (N2) and then discuss the one based on (N1). For notational convenience, we

hereafter assume that Assumption A6 holds with i = 1 so that we can drop the subindex

i ∈ I that keeps track of which exogenous regressor is being employed in the estimation. In
particular, we set S (y, x) = S1 (y, x), θ (y, x) = θ1 (y, x), and so forth.

The specific estimator of θ (y, x) will be based on a kernel estimator of Φ (y|x). In principle,

any nonparametric estimator could be employed, but kernel estimators are computationally

very easy to implement and so we focus on this class of estimators in the following. To

define the estimator, first observe that the conditional cdf of Y given X can be written as

Φ (y|x) = p (y, x) /f (x) where

p (y, x) ≡
∫ y

−∞
fY,X (u, x) du, f (x) ≡

∫
Y
fY,X (u, x) du,

and fY,X (y, x) is the joint pdf of (Y,X). Thus, a natural kernel-based estimator of Φ (y, x)

is

(13) Φ̂ (y, x) =
p̂ (y, x)

f̂ (x)
,

p̂ (y, x) =
1

n

n∑
i=1

Khy (Yi − y)Khx (Xi − x) , f̂ (x) =
1

n

n∑
i=1

Khx (Xi − x) ,

with Khy (y) = K (y/hy), Khx (x) = K (x/hx) /h
dx
x , and where hx, hy > 0 are two univariate

bandwidths. The functions K (y) and K (x) are given as K (y) =
∫ y
−∞K (u) du and K (x) =∏dx

i=1 K (xi) with K : R → R being a univariate kernel. Note that we could allow for

individual bandwidths for each variable in Xi but to keep the notation simple we here use

a common bandwidth across all regressors. Note that we use Khy (Yi − y) instead of the

indicator function I {Yi 6 y} in the estimation since we will need Φ̂ to be differentiable w.r.t.
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y. The estimator Φ̂ can then be used to estimate θ (y, x) by

θ̂ (y, x) =
Ŝ (y, x)

Ŝ (1, x)
, where Ŝ (y, x) =

∫ y

0

Φ̂y(u, x)

Φ̂1(u, x)
du.

For the analysis of the estimators of Θ(y), we introduce additional assumptions on the

model, the kernel function K and the weighting function w:

Assumption A8. The univariate kernel K is differentiable, and there exists constants

C, η > 0 such that
∣∣K(i) (z)

∣∣ ≤ C |z|−η,
∣∣K(i) (z)−K(i) (z′)

∣∣ ≤ C |z − z′|, for i = 0, 1,

where K(i) (z) denotes the ith derivative. Furthermore,
∫
RK (z) dz = 1,

∫
R z

jK (z) dz = 0,

1 ≤ j ≤ m− 1, and
∫
R |z|

mK (z) dz <∞.

Assumption A9. The weighting function w (x) is continuously differentiable with compact

support Xw ⊆ A1 which has non-empty interior.

Assumption A10. The joint density fY,X (y, x) is bounded and m times differentiable with

bounded derivatives; its mth order partial derivatives are uniformly continuous. Furthermore,

infx∈Xw f (x) > 0.

Assumption A11.
√
nhmx → 0,

√
nhmy → 0,

√
nhdx+2

x / log n → ∞, and
√
nhyh

dx+1
x / log n→∞.

The class of kernels in Assumption A8 is fairly general and accommodates kernels with both

bounded and unbounded support. We do, however, require the kernel K to be differentiable

which rules out uniform and Epanechnikov kernels. This is needed to ensure that Φ̂1 is well-

defined. We allow for both standard second-order kernels (m = 2) such as the Gaussian one,

and higher-order kernels (m > 2). Assumption A9 puts restrictions on the weighting function

w(x) in terms of its support Xw. In particular, it ensures that inf(y,x)∈Y×Xw |Φ1(y, x)| > 0.

The use of higher-order kernels in conjunction with smoothness conditions on the densities

stated in Assumption A10 allows us to control smoothing biases. In general, the kernel has to

be of higher order in order for Θ̂ (y) to be
√
n-consistent. Note that the number of derivatives

in A10, m ≥ 2, is assumed to match up with the order of the kernel K. The lower bound

imposed on f (x) allows us to avoid any denominator problems in the proofs, and allows us

to establish uniform convergence of Ŝ (y, x) over Y × Xw.
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Finally, assumption A11 restricts the set of feasible bandwidths to ensure that the squared

estimation error of the kernel estimators p̂ (y, x) and f̂ (x) and their relevant derivatives all

are of order oP (1/
√
n) uniformly over (y, x). As is standard for kernel estimators, there is a

curse-of-dimensionality which appears in the last two restrictions on hx: When dx = dim (X)

is large we in general need to use higher-order kernels in order for all four conditions to hold

simultaneously. For example, if hx ∝ n−rx and hy ∝ n−ry then Assumption A11 holds

whenever m > (dx + 2) /2 and 1/ (4m) < rx, ry < 1/ [2(dx + 2)].

The analysis of the estimator proceeds along the same lines as for two-step semiparametric

estimators. We first linearize the LS estimator w.r.t. the first-step estimator Ŝ (y, x) to obtain

Θ̂LS(y)−Θ (y) =

∫
X

w (x)

S (0, x)

[
Ŝ (y, x)− S (y, x)

]
dx(14)

−
∫
X

w (x)S (y, x)

S2 (0, x)

[
Ŝ (0, x)− S (0, x)

]
dx+ oP

(
n−1/2

)
.

While Ŝ (y, x) does not converge with
√
n-rate, the integration over x speeds up the con-

vergence rate and we show that each of the two integrals converges with
√
n-rate towards

Normal distributions. This yields the following result:

Theorem 2. Let Assumptions A1 through A11 and the normalization condition (N2) hold.

Then, for any b > 0, the following functional weak convergence results hold over any compact

set Y0 ⊆ Y:

√
n(Θ̂LS (y)−Θ (y))⇒W (y) ,

√
n(Θ̂LAD

b (y)−Θ (y))⇒W (y) ,

where y 7→ W (y) is a zero-mean Gaussian process with covariance kernel Ω (y1, y2) =

E [δwi (y1) δwi (y2)], and δwi (y) is as defined in Equation (34) in Appendix B.

The large-sample variance of the estimators is determined by δwi (y). Though somewhat

complicated, δwi (y) is a known functional of the weighing function w(x) and the conditional

cdf Φ(y|x) of Y given X. Thus, replacing Φ with Φ̂ in the definition of δi (w) leads to a

consistent estimator δ̂i (y) of δi (y),3 which in turn allows us to consistently estimate the

3In principle, effi ciency of the estimator can be obtained by minimizing the asymptotic variance E[δwi (y)
2
]

as a functional of w. Given the complex expression of the influence function δwi (y), this is a complicated

problem outside the scope of this paper.
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asymptotic covariance kernel using

Ω̂ (y1, y2) ≡ 1

n

n∑
i=1

δ̂i(y2)δ̂i(y2).

An interesting feature of the smoothed LAD estimator is that its first-order asymptotic

properties are invariant to the choice of bandwidth b which can be kept fixed as the sample

size grows. This is different from the analysis in Horowitz (1998) who has to restrict b to

shrink at a suitable rate to eliminate smoothing biases. The reason for this discrepancy

is that in the limit θ̂ (y, x) is constant with respect to x and so the effect of smoothing is

asymptotically negligible. In practice, the LAD estimator will be affected by the bandwidth

choice but the impact should be small.

Next, consider the estimator of Θ (y) based on the alternative normalization (N1). Fol-

lowing the same proof strategy as for the previous estimator we obtain that

Θ̂LS(y)−Θ (y) =

∫
X

w (x)

s (0, x)

[
Ŝ (y, x)− S (y, x)

]
dx

−
∫
X

w (x)S (y, x)

s2 (0, x)
[ŝ (0, x)− s (0, x)] dx+ oP

(
n−1/2

)
.

Compare this to Equation (14), and note that the first term still involves Ŝ (y, x) and so by

the same arguments as before the first integral converges with
√
n-rate. However, the second

term now involves ŝ (0, x) = ∂Ŝ (y, x) / (∂y)
∣∣∣
y=0

instead of Ŝ (0, x), which is due to the fact

that the second normalization in (N1), Θ′ (0) = 1, involves the derivative of Θ (y) instead of

its level. As is well-known, derivatives are harder to estimate nonparametrically and so the

second integral in the last expression only converges with rate
√
nhy. Thus, the estimator

based on the normalization (N1) does not attain the parametric rate.

3.2. Estimation of g. Once Θ̂ (y) has been computed, the regression function and the con-

ditional cdf of the error term can be estimated using nonparametric IV techniques: First,

suppose that Θ is known. Then, Θ(Y ) = g(X) + ε where Θ(Y ) and X are observed and

E (ε | X1, Z) = 0; thus, estimation of g is a standard nonparametric IV regression problem.

In this case, we can now in principle employ any existing nonparametric IV estimator pro-

posed in literature such as the kernel estimator of Hall and Horowitz (2005) or the sieve

estimator of Blundell, Chen, and Kristensen (2007). We here focus on sieve estimators since

these are computationally very simple to implement as explained in Blundell, Chen, and
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Kristensen (2007); we expect the following theoretical results derived for the sieve estima-

tors to carry over to alternative estimators. The oracle sieve estimator, assuming Θ is known,

takes the form

(15) g̃ ≡ arg min
gn∈Gn

n∑
i=1

{h̃ (X1,i, Zi)− M̂ (X1,i, Zi|gn)}2,

where h̃ (x1, z) and M̂ (x1, z|gn) are first-step nonparametric estimators (such as a kernel

regression or a series estimators) of

(16)
h (x1, z) ≡ E [Θ (Y ) |X1 = x1, Z = z]

M (x1, z|gn) ≡ E [gn (X) |X1 = x1, Z = z] ,

and Gn is a sieve space. We have here left out the weighting function used in Blundell, Chen,
and Kristensen (2007) for simplicity. Since Θ is unknown, we replace Θ by the first-step

estimator:

(17) ĝ ≡ arg min
gn∈Gn

n∑
i=1

{ĥ (X1,i, Zi)− M̂ (X1,i, Zi|gn)}2,

where ĥ (x1, z) is a first-step nonparametric estimator of E[Θ̂ (Y ) |X1 = x1, Z = z].

Finally, given Θ̂ (y) and ĝ (x), we can compute the corresponding residuals, ε̂i = Θ̂ (Yi)−
ĝ (Xi), i = 1, . . . , n. Standard nonparametric estimators of conditional cdf’s, such as the

kernel one presented above, can now be employed with the residuals replacing the actual

unobserved errors,

F̂ε|X−I (t, x−I) ≡
∑n

i=1Khε (ε̂i − t)Khx (X−I,i − x−I)∑n
i=1Khx (X−I,i − x−I)

.

As a first step in the analysis of ĝ, we first extend the conditions of Blundell, Chen,

and Kristensen (2007) to a multivariate setting to ensure that the infeasible estimator g̃

in Equation (15) is consistent; these are straightforward but rather technical extensions

which we relegate to the Appendix. We note that the most substantive of these additional

assumptions is the requirement of compact support of (XI , Z). In addition, we also impose

the restriction that Y is bounded so that we can choose the set Y0, over which we showed

uniform convergence of Θ̂ (y), equal to Y in the following:

Assumption A12. The support of Y is bounded so that Y = (yl, yu) where −∞ < yl <

yu < +∞. Moreover, limy→yl fY |X (y|x) = limy→yu fY |X (y|x) = 0 for all x ∈ Xw.
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The second part of the last assumption is a technical one which ensures that the kernel

estimators of the conditional density does not suffer from boundary biases. This could be

removed, but we would then need to employ boundary kernels in the first-step estimation of

Φ. Theorem 2 now yields that Θ̂LS (y) and Θ̂LAD
b (y) both converge uniformly over Y with rate

OP (1/
√
n). This in turn enables us to show that the feasible estimator ĝ is asymptotically

equivalent to g̃, thereby yielding the following result:

Theorem 3. Let Assumptions A1 through A12 and the normalization condition (N2) hold.

Assume in addition that Assumptions A14 through A18 in Appendix A hold. Then, the

feasible sieve IV estimator ĝ satisfies

‖ĝ − g‖X =

√∫
X

[ĝ (x)− g (x)]2 fX (x) dx = Op

(
k−r/dxn + τn

√
kn/n

)
,

where dx = dim (X), kn = dim (Gn), r ≥ 1 is the degree of smoothness of g, and τn is the

sieve measure of ill-posedness:

(18) τn ≡ sup
gn∈Gn:gn 6=0

√
E{gn(X)}2√

E{E[gn(X)|XI , Z]}2
.

The convergence rate depends on the sieve-measure of ill-posedness τn which in turn

depends on the decay rate of the singular values {µk} of the conditional mean operator
g 7→ M (xI , z|g) defined in Equation (16); see Section 4 in Blundell, Chen, and Kristensen

(2007) for further discussion. If for example, the singular values satisfy µk � k−s/dx , for some

s > 0 then τn ≤ const× ks/dxn and we obtain ‖ĝ − g‖X = Op

(
n−r/[2(r+s)+dx]

)
.

The convergence rate stated in Theorem 3 is identical to the one for the oracle estimator

g̃ that assumes knowledge of Θ; thus, there is no (asymptotic) loss from not knowing Θ

in the estimation of g. This is due to the fact that Θ̂ converges with faster rate than g̃,

and so it does not influence the feasible estimator ĝ. The above result only gives the rate

of convergence of the estimator. We conjecture that the general results of Belloni, Chen,

Chernozhukov, and Liao (2010) could be applied to our problem to develop distributional

results. As shown there, the rate of convergence towards an asymptotic distribution is slower

than
√
n, and so the asymptotic distribution is unaffected by the first-step estimation of Θ.

We conjecture that Theorem 3 remains true without restricting Y to be bounded. By
inspection of the proof of Theorem 3, it is easily checked that the theorem holds as long as

||Θ̂−Θ||Y = oP
(
n−r/[2(r+s)+1]

)
, where ‖·‖Y denotes the L2-norm, ‖Θ‖2

Y =
∫
Y Θ2 (y) fY (y) dy.
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We expect this to hold in great generality, but in order to establish this result we would need

to introduce trimming of Θ̂ to control for denominator issues that usually arise when deriving

convergence results over unbounded sets. In addition, our current set of assumptions and

proofs will become more complicated since we need to control the tail behavior of Θ.

Finally, we note that with ĝ and Θ̂ converging uniformly, the estimator F̂ε|X (t, x−1) is

clearly also consistent. A full analysis of the asymptotic properties of F̂ε|X (t, x−1) is outside

of the scope of this paper. We expect that the techniques developed in Mammen, Rothe,

and Schienle (2012) could be adapted to our setting and thereby allow for a more complete

analysis of F̂ε|X (t, x−1). This is left for future research.

4. Testing Exogeneity

The identification and estimation results developed in the two previous sections rest on

two fundamental assumptions regarding the chosen “special”regressor Xi: First, Xi needs

to be relevant in a sense that ∂g(x)/∂xi 6= 0; and second it needs to be exogenous in a sense

that:

H0 : ε ⊥ Xi | X−i.

If either of these two restrictions is violated, the proposed estimator will in general be

inconsistent. It is therefore of interest to develop tools to examine whether a candidate

regressor indeed satisfies these assumptions. Regarding the first hypothesis, note that

∂g(x)/∂xi = 0 if and only if Φi(y|x) = 0 for all y ∈ Y. Given our nonparametric esti-
mator of Φi(y|x), this restriction can be formally tested using standard tools. We therefore

in the following focus on the exogeneity condition H0.

Taking as maintained hypothesis that the transformation model in (1) is correct, the

following testable implications of the exogeneity assumption H0 obtain:

Theorem 4. Let Assumptions A1, A2(ii), A3, A4, and A5 hold. Then, for any index i ∈ I

that satisfies Assumption A6 and any x ∈ Ai, the following testable implications hold:

(i) under (N1), ϑi(y, x) = Θ(y) for every y ∈ Y if and only if H0 holds;

(ii) under (N2), θi(y, x) = Θ(y) for every y ∈ Y if and only if H0 holds.

In general, testing exogeneity of a regressor requires the availability of an instrument to

generate overidentifying restrictions; this is, for example, the case in the Hausmann test. In
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our case, since we require conditional strict independence instead of just conditional mean

independence, the maintained model assumption generates overidentifying restrictions that

allow us to test H0 without the use of additional instruments.

The above theorem suggests a natural test for exogeneity by comparing estimators of

ϑi(y, x) and Θ(y) as obtained under the null. As in the section on estimation, we focus for

notational simplicity on testing for exogeneity of X1 in the following and drop the regressor

index i = 1, and so will, for example, write θ̂ (y, x) for θ̂1 (y, x). Moreover, we only consider

the case where we the normalization (N2) has been imposed; the testing procedure is easily

adapted to the case of (N1), and we expect that the theoretical results derived under (N2)

carry over to (N1) with only minor adjustments.

To allow for added flexibility in the testing procedure, we will use two different sets of

bandwidths, (hx, hy) and (h0,x, h0,y), for the estimation of Θ (y) and θ (y, x), respectively.

We will then restrict (hx, hy) so that Θ̂ (y) converges with
√
n-speed. This in turn ensures

that the asymptotic distribution of our test statistic will be determined by the nonpara-

metric estimator of θ (y, x) alone. To emphasize that different bandwidths are used, we use

θ̂0 (y, x) to denote the estimator based on (h0,x, h0,y). We then propose to compare the two

nonparametric estimators through the following L2-statistic,

(19) Q ≡
∫
Y

∫
X
W (y, x) [θ̂0 (y, x)− Θ̂ (x)]2dydx,

whereW (y, x) is a weighting function with compact support satisfying
∫
Y
∫
X W (y, x) dydx =

1. We will reject H0 if Q is “large.”

The test based on Q is related to standard nonparametric misspecification tests where

a “parametric” estimator, Θ̂ (x), is compared with a nonparametric one, θ̂0 (y, x); see e.g.

Härdle and Mammen (1993) and Kristensen (2011). However, in comparison to these papers,

the asymptotic analysis of Q is complicated by the fact that the nonparametric estimator

θ̂0 (y, x) is more complicated compared to the kernel regression and density estimators con-

sidered in these two papers. The test is also similar to the specification test proposed in

Lewbel, Lu, and Liangjun (2013). However, Lewbel, Lu, and Liangjun (2013) maintain the

assumption of exogenous regressors and then wish to test for the functional form restrictions

implied by a transformation model. In our case, we maintain the functional form and wish

to test for exogeneity of X1.
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For the asymptotic analysis, we restrict the set of feasible bandwidths used in the compu-

tation of θ̂0 (y, x) to satisfy:

Assumption A13. nhdx+2
0,x → ∞, nhdx/2+2+m

0,x → 0, nhdx/2+2+4m
0,x → 0, nh

dx/2+2
0,x h4m

0,y → 0,

nh
3/2dx
0,x / (log (n))2 →∞, nh2

0,yh
3/2dx−2
0,x / (log (n))2 →∞.

The asymptotic distribution of the test statistic in (19) is then as follows:

Theorem 5. Assumptions A1, A2(ii), A3, A4, and A5 hold, and the bandwidths for Θ̂ (y)

and θ̂0 (y, x) satisfy A11 and A13 respectively. Then, under H0,

nh
dx/2+2
0,x

Q−mQ

vQ
→d N (0, 1) ,

where, with K1 (x) = ∂K (x) / (∂x1), σ2
k (y, x) ≡ Var

(
D̄k (y, Yi, Xi) |Xi = x

)
, and

D̄k (y, Yi, Xi) (k = 1, 2) defined in Equation (39) in Appendix B,

mQ =
1

nhdx0,x

∫
K2 (x) dx×

∫ ∫
σ2

1 (y, z)W (y, x) f (x) dydx

+
1

nhdx+2
0,x

∫
K2

1 (x) dx×
∫ ∫

σ2
2 (y, z)W (y, x) f (x) dydx,

vQ = 2

∫
[K1 ∗K1]2 (x) dx×

∫ ∫
σ4

2 (y, x)W 2 (y, x) f 2 (x) dydx.

If H0 does not hold, then nh
dx/2+2
0,x

∣∣∣Q−mQvQ

∣∣∣→ +∞.

The above result is similar to the ones in Härdle and Mammen (1993) and Kristensen

(2011) except that the expressions of the location and scale parameters, m and v2, are

somewhat more involved. We propose to use subsampling in order to implement the test

as also advocated in Lewbel, Lu, and Liangjun (2013) who provide Monte Carlo evidence

of that this procedure leads to good size and power properties for their test; we expect the

same to hold true for our related test.

5. Monte Carlo Application to Duration Models

We here illustrate how the proposed identification and estimation strategy can be used in

the study of duration models, and provide Monte Carlo results for estimators and tests in

this context.
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5.1. Identification of Duration Models under Endogeneity. First, we recall some

basic facts about duration models. Let τ ∈ (0,+∞) denote the duration, X ∈ X be a

vector of observed covariates, U ∈ (0,+∞) an unobserved individual heterogeneity term,

and H(t, x, u) denote the conditional hazard function:

H(t, x, u) ≡ lim
dt→0

P (t 6 τ < t+ dt|X = x, U = u)

dt

We assume that both X and U are time-invariant, in which case the integrated conditional

hazard is distributed as a unit exponential random variable, i.e. for a.e. (x, u) ∈ X×(0,+∞)

we have ξ ≡
∫ τ

0
H(t, x, u)dt ∼ Exp(1). In the mixed proportional hazard model, H(t, x, u) =

H0(t) exp[−φ(x)]u where H0(t) > 0 is the baseline hazard. The corresponding log-integrated

conditional hazard transform, λ(t) ≡ ln
∫ t

0
θ0(s)ds, can be expressed as

(20) λ(τ) = φ(X) + ln ξ − lnU.

Note that λ satisfies λ′(t) > 0 and limt→0 λ(t) = −∞ and limt→+∞ λ(t) = +∞. The model
can be written on the form (1) by defining Y ≡ τ − 1, Θ (y) ≡ λ (y + 1) /σ, g (x) ≡ φ (x) /σ

and ε ≡ (ln ξ − lnU) /σ where σ 6= 0 is a scale parameter. The normalization Θ (0) = 0

then amounts to setting λ(1) = 0 (which normalizes the baseline hazard to
∫ 1

0
H0(s)ds = 1),

and E[lnU ] = e where e ≈ 0.577 denotes Euler’s constant. The scale parameter is chosen as

σ = λ′ (1) if we impose (N1), while if (N2) is imposed then σ = λ (2). Thus, up to the scale

parameter σ, we can nonparametrically estimate the hazard rate model using the techniques

developed in the previous section. The estimators of the normalized hazard rate function

and regression function, Θ (τ) and g (x), are entirely new and not yet seen in the literature.

Once Θ, g and Fε have been estimated, we can estimate σ along the same

lines as in Horowitz (1999): If X is exogenous, we can follow Horowitz (1999)

and obtain that σ = limt→0 σ (t) , σ (t) = −
∫
Gv (t|v) p2 (v) dv

/∫
G (t|v) p2 (v) dv ,

where G (t|v) = P (τ ≤ t|V = v) and p (v) is the density of V ≡ g (X). If

X−1 is endogenous, the above identification result is no longer valid. Instead, we

can use that Φ (t, x) = 1 −
∫

exp
[
−Λ (t) e−σg(x)−u] dFlnU |X−1 (u|x−1) and Φ1 (t, x) =

−σΛ (t) g1 (x)
∫

exp
[
−Λ (t) e−σg(x)−u] dFlnU |X−1 (u|x−1). In particular, we can then express

the scale as σ = limt→0 σ (t), where σ (t) = −
∫

Φ1 (t, x) /g1 (x) f 2 (x) dx
/∫

Φ (t, x) f 2 (x) dx .

This appears to be a new identification result which should be of independent interest.
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5.2. Monte Carlo Results. For the Monte Carlo study, we generate data from (20) with

X = (X1, X2) being bivariate and generated as X1 = ν1, X2 = α1Z + α2Z
2 + ν2 + ρε, where

(ν1, ν2, ε, Z) are mutually independent standard normal random variables. Thus, X1 ⊥ ε

is exogenous while X2 remains endogenous whenever ρ 6= 0. We consider both the case

of exogenous regressors (ρ = 0) and endogenous ones (ρ = 0.5). Finally, the regression

function is specified as φ(X) = β1Φ (X1) + β2X1 + β3X
2
2 , with (β1, β2, β3) = (2.0, 0.1,−0.1),

while λ (t) is chosen as λ(t) = log (t) corresponding to a proportional hazard duration model

with a Weibull baseline hazard. In the estimation, we impose the following normalization:

Θ (0) = 0 and
∫
Y Θ (y) f0 (y) dy = 1 for some known density f0 (y). By following the same

arguments as used in the proof of Theorem 1, we obtain Θ (y) = θ (y, x) for all x, where

θ (y, x) := S (y, x) /
∫
Y S (y, x) f0 (y) dy.

For the implementation of the estimators, we have to choose the bandwidths used to

estimate Φ (y, x) and its derivatives together with a weighting function w. In addition,

for the computation of Θ̂ (y), we have to numerically evaluate the integrals that enter the

expression of our estimator. The bandwidths are chosen by first implementing Silverman’s

Rule-of-thumb and then scaling these down since our theoretical results state that we should

undersmooth in order to obtain
√
n-consistency. To be more specific, our bandwidths for

the two estimators are chosen as follows:

(21) Φ̂y (y, x) : hy = (4/3)1/5 σ̂Y n
−(1+δ)/5, hxk = σ̂kn

−(1+δ)/6, k = 1, 2.

where σ̂2
Y and σ̂

2
xk
are the sample variances of Y and Xk (k = 1, 2), and δ controls the degree

of undersmoothing; we set δ = 1. Next, the support of the weighting function was chosen as

the uniform density with support Xw chosen in data-driven way to avoid the aforementioned
denominator issues,

Xw =
{

(x1, x2) : Φ̂x

(
Ȳ , x

)
> c, q̂Xk (2.5) ≤ xk ≤ q̂Xk (97.5) k = 1, 2

}
,

where Ȳ is sample mean of Y and q̂Xk (·) the sample quantile function of Xk, k = 1, 2.

The estimators were then implemented as follows: First, simulate N ≥ 1 uniform

bivariate draws on X0, say x∗i =
(
x∗i,1, x

∗
i,2

)
for i = 1, . . . , N and compute θ̂

∗
i (y) =

Ŝ (y, x∗i ) /
∫
Y Ŝ (y, x∗i ) f0 (y) dy for each draw. Given these S alternative estimators evalu-

ated at randomly chosen values of x across X0, we then computed the “empirical”mean,

Θ̂LS (y) =
∑N

i=1 θ̂
∗
i (y) /N , and the smoothed empirical median, Θ̂LAD

b (y); for the latter, we

chose a bandwidth of b = 0.01.
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Figure 1: Median-estimator of Θ (y) with exogenous regressors.

The performance of Θ̂LAD
b (y) for the exogenous and endogenous case are reported in

Figures 1 and 2 respectively. We see that the estimator performs very well, with little bias

and variance for the most part of the domain of Y , despite the fact that the estimator is based

on only n = 250 observations. As such, the attractive properties asymptotic properties of

the estimator appear to also hold in finite samples. Moreover, there is only small differences

in the performance of the estimator when comparing the exogenous and endogenous case.

Finally, Figure 3 shows the performance of the least-squares version of our estimator,

Θ̂LS (y), for the case of endogenous regressors. The performance of Θ̂LS (y) is clearly inferior

to Θ̂LAD
b (y) as shown in Figure 3. The poor performance is due to the fact that θ̂

∗
s (y),

s = 1, . . . , S, contain a relatively large number of “outliers” which here are given equal

weight. In contrast, the LAD estimator discards these outliers and so is not affected.

Next, we analyze the sensitivity of the estimators to bandwidth choice. To this end, we

kept the same design as before, and then re-computed the LAD estimator of Θ (y) with

bandwidth chosen as (i) huy = 1.2 × hy and huxk = 1.2 × hxk , and (ii) h
l
y = 0.8 × hy and

hlxk = 0.8 × hxk , where hy and hxk are given in Equation (21). Thus, we first increrase the
bandwidths by 20% ("oversmoothing") and then decrease them by 20% ("undersmoothing")

relative to the benchmark reported above. In Table 1, we report the integrated bias, variance

and mean-square-error (MSE) of Θ̂LAD
b (y) for the bandwidth choice in Equation (21) and
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Figure 2: Median estimator of Θ (y) with endogenous regressors.
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Figure 3: Mean-estimator of Θ (y) with endogenous regressors.

the "oversmoothed" and "undersmoothed" versions. Here, the integration is done over the

interval ranging from the 2.5% quantile of Y to its 97.5% quantile. From the results in the

table, we observe that the estimator is somewhat sensitive to the bandwidth choice. However,

one should here keep in mind that the reported variation in bias, variance and MSE is taking
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place over a quite wide range of bandwidths. Moreover, while there is some variation in the

performance of the estimator across different bandwidths, the overall integratedMSE remains

quite small.

Int. Squared Bias Int. Variance Int. MSE

Benchmark in Eq. (21) 0.0072 0.0010 0.0082

“Undersmoothing" by 20% 0.0170 0.0032 0.0201

“Oversmoothing" by 20% 0.0084 0.0023 0.0107

Table 1: Sensitivity of Θ̂LAD (y) towards bandwidth choice

Finally, we investigate how the two-stage NPIV sieve estimator of g (x) performs in the

above design in the case of n = 1000 observations. As a benchmark we also computed the

one-step oracle estimator of g (x) that assumes knowledge of Θ (y). The results are reported

in Table 2 for the same three bandwidth choices as examined in Table 1. We see that

the feasible two-step estimators suffer from quite substantial biases compared to the oracle

estimator with the bias increasing by a factor 4. We suspect that this is due to imprecise

estimation of Θ (y) in the tails of the empirical support of Y , and conjecture that parts of

these biases can be removed through trimming, something we have not explored here. On the

other hand, while the variances of the two-step estimators also go up relative to the oracle

estimator this increase is more moderate. Finally, we note that the bandwidth selection has

some effect on the estimation of g as well, but less so compared to when Θ (y) is the target.

Over all, the performance of the two-step estimators is satisfactory.

Int. Squared Bias Int. Variance Int. MSE

Oracle one-step estimator 4.1823 8.2334 12.4156

2-step estimator using Eq. (21) 64.3620 14.1174 78.4794

2-step estimator w/ “undersmoothing" by 20% 74.9138 14.1620 89.0758

2-step estimator w/ “oversmoothing" by 20% 50.7798 13.7758 64.5556

Table 2: Performance of NPIV sieve estimator ĝ (x)
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6. Discussion and Conclusion

We conclude by discussing possible extensions and applications of our results. First, note

that additional instrumental variables are easily incorporated in our setup. Specifically,

instead of assuming conditional independence between ε and XI given X−I , we could assume

that some instrument W was available such that ε and XI were conditionally independent

given (X−I ,W ), i.e. ε ⊥ XI | (X−I ,W ). This would amount to considering the conditional

distribution FY |X,W of Y given (X,W ) which now satisfies:

FY |X,W (y|x,w) ≡ Φ(y|x,w) = Fε|X−I ,W (Θ(y)− g(x), x−I , w) .

Redefining X to be (X,W ), the above expression falls exactly in the framework obtained in

(3), with an additional restriction on the function g which now no longer depends on the

components of X corresponding to W . When the conditional distribution of the redefined

vector X−I given Z is complete, we know that g is identifiable. This identification result

holds even without restricting the way that g depends on W ; a fortiori, the identification

result remains valid in this case.

Finally, we illustrate a way in which our results may be useful in economic applications.

Say one is interested in counterfactual analysis of the situation in which the value of one

of the regressors X is changed. For example, if in Equation (1), Y is the demand for some

product, one may be interested in evaluating the effect of a change in the price of this product

(one of the endogenous X’s), while keeping all the other variables fixed. Then, the quantity

of interest is the marginal effect:

E

[
∂Y

∂Xj

∣∣∣∣X = x

]
= E

[
T ′ (g(x) + ε)

∂g(x)

∂xj

∣∣∣∣X = x

]
=

∫
Ex
T ′ (g(x) + ε)

∂g(x)

∂xj
fε|X(ε|x)dε,

where we have let Xj denote the (endogenous) price, and X−j denotes all the remaining

regressors. Since all the terms on the right-hand side of the above equality are identified,

so is the counterfactual on the left-hand side. Moreover, the marginal effect is consistently

estimable using ∫
R
T̂ ′ (ĝ(x) + ε)

∂ĝ(x)

∂xj
f̂ε|X(ε|x)dε,

with (T̂ , ĝ, F̂ε|X) as defined in the previous sections. As pointed out by Horowitz (1996),

however, though the effects such as E[∂Y/ (∂Xj)|X = x] are consistently estimable, their
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rate of convergence is less than
√
n. This is because though T is estimable at the parametric

rate, only nonparametric rates obtain for (ĝ, F̂ε|X).

In certain situations, one may be able to work around this by looking at the conditional

quantiles rather than expectations. For example, say that one is interested in predicting Y

conditional on X = x. The most familiar predictor is a consistent estimator of E [Y |X = x],∫
R
T̂ (ĝ(x) + ε) f̂ε|X(ε|x)dε.

As pointed out before, the above estimator is not
√
n consistent. An alternative is to then

use a conditional α-quantile (0 < α < 1) of the distribution of Y given X = x. In the

context of the transformation model, the latter is given by

T (g(x) + qα(x)), where qα(x) = F−1
ε|X(α|x),

is the conditional α-quantile of the conditional distribution of ε given X = x. Note that

though the above quantity bypasses the need to consistently estimate (at
√
n rate) the

entire distribution Fε|X , one still needs to do so for g(x). Thus, if g(x) is only estimable

at nonparametric rates, so will be the conditional quantiles of Y given X = x. This is

unlike in Horowitz (1996), where it is assumed that g is parametric, g(x) = β′x, and that a
√
n-consistent estimator for β is already available.
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Chernozhukov, V., G. W. Imbens, and W. K. Newey (2007): “Instrumental Variable

Estimation of Nonseparable Models,”Journal of Econometrics, 139, 4—14.

Darolles, S., Y. Fan, J. Florens, and E. Renault (2011): “Nonparametric Instru-

mental Regression,”Econometrica, 79, 1541—1565, Centre de Recherche et Développement

Économique, 05-2002.

Ekeland, I., J. J. Heckman, and L. Nesheim (2004): “Identification and Estimation of

Hedonic Models,”The Journal of Political Economy, 112, S60—S109.

Fève, F., and J.-P. Florens (2010): “The practice of non-parametric estimation by solv-

ing inverse problems: the example of transformation models,”The Econometrics Journal,

13, S1—S27.

Hall, P., and J. L. Horowitz (2005): “Nonparametric Methods for Inference in the

Presence of Instrumental Variables,”The Annals of Statistics, 33, 2904—2929.

Hansen, B. E. (2008): “Uniform Convergence Rates for Kernel Estimation with Dependent

Data,”Econometric Theory, 24, 726—748.

Härdle, W., and E. Mammen (1993): “Comparing Nonparametric versus Parametric

Regression Fits,”Annals of Statistics, 21, 1926—1947.

Honore, B., and A. de Paula (2010): “Interdependent Durations,”The Review of Eco-

nomic Studies, 77, 1138—1163.

Horowitz, J. L. (1996): “Semiparametric Estimation of a Regression Model with an Un-

known Transformation of the Dependent Variable,”Econometrica, 64, 103—137.

(1998): “Bootstrap Methods for Median Regression Models,” Econometrica, 66,

1327—1351.

(1999): “Semiparametric Estimation of a Proportional Hazard Model with Unob-

served Heterogeneity,”Econometrica, 67, 1001—1028.

Horowitz, J. L., and S. Lee (2007): “Nonparametric Instrumental Variables Estimation

of a Quantile Regression Model,”Econometrica, 75, 1191—1208.

Jacho-Chávez, D., A. Lewbel, and O. Linton (2010): “Identification and Nonparamet-

ric Estimation of a Transformed Additively Separable Model,”Journal of Econometrics,

156, 392—407.



NONPARAMETRIC TRANSFORMATION MODELS 29

Jochmans, K. (2011): “Pairwise-comparison Estimation with Nonparametric Controls,”

manuscript, Sciences Po Département d’économie.

Kristensen, D. (2011): “Semi-Nonparametric Estimation and Misspecification Testing of

Diffusion Models,”Journal of Econometrics, 164, 382—403.

Lewbel, A. (1998): “Semiparametric Latent Variable Model Estimation with Endogenous

or Mismeasured Regressors,”Econometrica, 66, 105—121.

Lewbel, A., X. Lu, and S. Liangjun (2013): “Specification Testing for Transformation

Models with Applications to Generalized Accelerated Failure-Time Models,”manuscript,

Boston College.

Mammen, E., C. Rothe, and M. Schienle (2012): “Nonparametric Regression with

Nonparametrically Generated Covariates,”Annals of Statistics, 40, 1132—1170.

Matzkin, R. L. (1991): “A Nonparametric Maximum Rank Correlation Estimator,”

in Nonparametric and Semiparametric Methods in Econometrics and Statistics, ed. by

W. Barnett, J. Powell, and G. Tauchen, chap. 11. Cambridge University Press.

Newey, W. K., and J. L. Powell (2003): “Instrumental Variable Estimation of Non-

parametric Models,”Econometrica, 71, 1565—1578.

Newey, W. K., J. L. Powell, and F. Vella (1999): “Nonparametric Estimation of

Triangular Simultaneous Equations Models,”Econometrica, 67, 565—603.

Palmer, C. (2014): “Why Did So Many Subprime Borrowers Default During the Crisis:

Loose Credit or Plummeting Prices?,”manuscript, MIT.

Ridder, G. (1990): “The Non-Parametric Identification of Generalized Accelerated Failure-

Time Models,”The Review of Economic Studies, 57, 167—181.

Van den Berg, G. J. (2001): “Duration Models: Specification, Identification and Multiple

Durations,” in Handbook of Econometrics, Vol. 5, ed. by J. J. Heckman, and E. Leamer,

pp. 3381—3460. Elsevier.

van der Vaart, A., and J. Wellner (1996): Weak Convergence and Empirical Processes.

Springer-Verlag.

Vanhems, A., and I. Van Keilegom (2013): “Semiparametric transformation model

with endogeneity: a control function approach,”manuscript, Université de Toulouse and

Université catholique de Louvain.



NONPARAMETRIC TRANSFORMATION MODELS 30

Appendix A. Sieve IV Assumptions

We here state the additional regularity conditions used to establish Theorem 3. First,

we need some additional notation: The first-step conditional mean estimators: h̃ (xI , z) and

M̂ (xI , z|gn) are assumed to take the form

h̃ (xI , z) = pJn(xI , z)
′(P ′P )−

n∑
i=1

pJn(XI,i, Zi)Θ (Yi) ,

M̂ (xI , z|gn) = pJn(xI , z)
′(P ′P )−

n∑
i=1

pJn(XI,i, Zi)gn (Xi) ,

where pJn(xI , z) = (p1(xI , z), . . . , pJn(xI , z))
′ is a sieve basis of dimension Jn ≥ 1, and P =

(pJn(XI,1, Z1), . . . , pJn(XI,n, Zn))′. Also let Λr
c(X ) ≡ {g ∈ Λr(X ) : ||g||Λr ≤ c} be a Hölder

ball (of radius c) of functions with smoothness r as introduced in Blundell, Chen, and

Kristensen (2007). We are now ready to state the regularity conditions.

Assumption A14. (i) g ∈ G ≡ Λr
c(X ) for some r > 1/2; (ii) E[||X||2a] < ∞ for some

a > r.

Assumption A15. The functions h (xI , z) ≡ E[Θ (Y ) |XI = xI , Z = z] and M (xI , z|gn) ≡

E[gn (X) |XI = xI , Z = z] belong to H ≡ Λrm
c (XI ×Z), rm > 1/2, for any gn ∈ Gn.

Assumption A16. (i) The smallest eigenvalue and the largest eigenvalue of

E[pJn(XI , Z)pJn(XI , Z)′] are bounded and bounded away from zero for each J2n; (ii) pJn(x1, z)

is either a cosine series or a B-spline basis of order γb, with γb > rm > 1/2; (iii) the density

of (X1, Z) is continuous, bounded and bounded away from zero over its support XI×Z, which

is a compact set with non-empty interior.

Assumption A17. There is a gn ∈ Gn such that τ 2
n × E[E[g(X) − gn (X) |XI , Z]2] ≤

const× ||g − gn||2X .

Assumption A18. (i) kn →∞, Jn/n→ 0; (ii) nJ−2rm/(1+dz)−1
n → 0 and limn→∞ (Jn/kn) =

c0 > 1;

Appendix B. Proofs

Proof of Theorem 1. Consider a structure (Θ, g, Fε|X) that satisfies assumptions A1-A5, and

generates Φ (y, x) in the sense of equation (3) in the main text. To establish the results
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of Theorem 1 we proceed in two steps. The first step establishes the identification of Θ

under the normalization (N1). The second step shows that Θ is also identified under the

normalization N2.

Step 1: Identification of Θ under (N1). Under assumptions A1, A4, and A5, the

partial derivatives Φy(y, x) and Φi(y, x) (i ∈ I) exist so that eqs. (4) by (5) hold. Under

Assumption A6, one of the sets Ai (1 ≤ i ≤ |I|) is nonempty. Pick an i for which this is

true and take any point x̄ ∈ Ai . Then for every y ∈ Y, Θ′(y) = −si(y, x̄)∂g(x̄)/∂xi, where

si is defined in eq. (6). Under Assumption A3 Y is a connected subset of R (i.e. an interval)

that contains 0 so we can integrate on both sides from 0 to any y ∈ Y to get:

(22) Θ(y) = −∂g(x̄)

∂xi
Si(y, x̄) where Si(y, x̄) ≡

∫ y

0

si(t, x̄)dt,

where we have used the normalization Θ(0) = 0. Now to get rid of the partial of g, observe

that 1 = Θ′(0) = −si(0, x̄)∂g(x̄)/∂xi. Since x̄ ∈ Ai, ∂g(x̄)/∂xi 6= 0 and is finite; hence,

si(0, x̄) 6= 0 and is finite as well, and we can write:

(23)
∂g(x̄)

∂xi
= − 1

si(0, x̄)
.

Combining (23) and (22) then yields

(24) Θ(y) =
Si(y, x̄)

si(0, x̄)
,

so Θ is identified under (N1). It remains to be shown that the right-hand side of (24) does

not depend on x̄ nor i. For this, assume that there is an index j (1 ≤ j ≤ |I|) also satisfying

assumption A6 such that x̃ ∈ Aj, where (j, x̃) 6= (i, x̄). Then notice that for all y ∈ Y,

(25)
si(y, x̄)

si(0, x̄)
=
sj(y, x̃)

sj(0, x̃)
.

Since from (24), we can write Θ(y) =
∫ y

0
si(t,x̄)
si(0,x̄)

dt, the result follows by combining the above

expression with the equality established in (25). This completes the proof of part (i) of

Theorem 1.
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Step 2: Identification of Θ under (N2). Use the same reasoning up to equation (22).

To get rid of the g term we now use a different approach. Evaluating (22) at y = 1 we get:

1 = Θ(1) = −∂g(x̄)

∂xi
Si(1, x̄),

where we have used the fact that under normalization N2 Θ(1) = 1. Since x̄ ∈ Ai,

∂g(x̄)/∂xi 6= 0 and is finite; hence, Si(1, x̄) 6= 0 and is finite as well, so we can write:

(26)
∂g(x̄)

∂xi
= − 1

Si(1, x̄)
.

Combining (22) and (26) then gives for every y ∈ Y:

(27) Θ(y) =
Si(y, x̄)

Si(1, x̄)
,

so Θ is identified under (N2). To show that the right-hand side of (27) does not depend on

i nor x̄ use the same reasoning as in Step 1 to establish that for all y ∈ Y,

si(y, x̄)

Si(1, x̄)
=
sj(y, x̃)

Sj(1, x̃)
,

where j and x̃ are as in Step 1. Combining the above with the expression for Θ in (27) then

yields the result. This completes the proof of Theorem 1. �

Proof of Corollary 1. Under the assumptions of Theorem 1, Θ is identified. We now proceed

to establish the identification of g and Fε|X .

First, we consider the identification of g with respect to the exogenous regressors XI . We

start with i = 1. Take any x ∈ X : then either Φ1(y, x) = 0 for all y ∈ Y, or Φ1(y, x) 6= 0 for

some y ∈ Y. The first is true if and only if ∂g(x)/∂x1 = 0. If the latter is true, take yx such

that Φ1(yx, x) 6= 0. Note that this yx can be chosen so that Θ′(yx) 6= 0, i.e. Φy(yx, x) 6= 0

(this follows by the absolute continuity of Fε|X in A1 and the fact that Θ′ can be zero only

at isolated points). Taking ratios in (4)-(5) with i = 1, it then follows that

∂g(x)/∂x1 = − Θ′(yx)

s1(yx, x)
where s1(yx, x) =

Φy(yx, x)

Φ1(yx, x)
,

and with Θ as identified in Theorem 1. Now let Γ1 : X → R be defined as:

Γ1(x) ≡

 0, if Φ1(y, x) = 0 for all y ∈ Y ,

− Θ′(yx)
s1(yx,x)

, otherwise.
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Note that the function Γ1 is known, i.e. observable, and we have that ∂g(x)/∂x1 = Γ1(x)

for every x ∈ X . A particular solution ḡ1 : X → R to this partial differential equation is

(28) ḡ1 (x1, x2, . . . , xdx) =

∫ x1

c

Γ1(u, x2, . . . , xdx)du

for some c1 ∈ X1. Obviously, any solution to ∂g(x)/∂x1 = Γ1(x) must have the same partial

derivative with respect to x1 as ḡ1 in (28) and so

g(x) = ḡ1(x) + β1(x2, . . . , xdx)

for some unknown function β1 : X−1 → R. If |I| = 1 we can stop here. If on the other

hand |I| ≥ 2, we can repeat the same reasoning as above with any value x ∈ X such that

∂g(x)/∂x2 6= 0. This will give us a known function Γ2 such that ∂g(x)/∂x2 = Γ2(x) for every

x ∈ X . Differentiating (28) with respect to x2 then gives us

∂β1(x2, . . . , xdx)

∂x2

= Γ2(x)− ∂ḡ1(x)

∂x2

,

i.e.

(29) β1(x2, . . . , xdx) = ḡ2(x2, . . . , xdx) + β2(x3, . . . , xdx),

where ḡ2 is a known function

ḡ2(x2, . . . , xdx) ≡
∫ x2

c2

[
Γ2(x1, u, x3, . . . , xdx)−

∂ḡ1(x1, u, x3, . . . , xdx)

∂x2

]
du,

with some c2 ∈ X2. Combining (28) and (29) then gives, for all x ∈ X :

g(x) = ḡ1(x) + ḡ2(x) + β2(x3, . . . , xdx),

where both functions ḡ1 and ḡ2 are known. If |I| = 2 we stop here; otherwise, repeating the

same reasoning until we have exhausted the exogenous regressors will lead to

(30) g(x) = ḡ(x) + β(x−I), for all x ∈ X where ḡ is known.

Thus, g is identified up to an additive unknown function of x−I . Now let g be an arbitrary

solution, and consider E(ε|Z) where ε = Θ(Y ) − g(X) with Θ as identified in Theorem 1
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and g as in (30). Letting FY |Z and FX|Z denote the conditional distributions of Y and X

given Z, respectively, we have:

E [ε|Z = z] =

∫
Y

Θ(y)dFY |Z(y, z)−
∫
X
g(x)dFX|Z(x, z)

=

∫
Y

Θ(y)dFY |Z(y, z)−
∫
X

[ḡ(x) + β(x−1)]dFX|Z(x, z)(31)

Now, consider a structure (Θ, g̃, F̃ε̃|X) that is observationally equivalent to (Θ, g, Fε|X) and

has the same properties as (Θ, g, Fε|X). It follows from (31) that for a.e. z ∈ Z:

E [ε|Z = z] = 0 = E [̃ε|Z = z]⇒ E
[
β(X−1)− β̃(X−1)|Z = z

]
= 0,

where ε̃ = Θ̃(Y ) − g̃(X). Then, the completeness assumption A7 implies β(x−1) = β̃(x−1)

for a.e. x−1 ∈ X−1. Combined with Equation (30), this implies that g(x) = g̃(x) for a.e.

x ∈ X . Thus g is identified.

Since Θ and g are identified, ε = Θ(Y ) − g(X) is identified and so is its conditional

distribution Fε|X .

To complete the proof we need to establish that Assumption A7(ii) is also necessary

to identify g and Fε|X . To see this, assume that A7(ii) does not hold, i.e. there exists

some nonzero function h(x−I) such that E[h(X−I)|Z] = 0 a.s. It then suffi ces to consider

g̃(x) ≡ g(x) + h(x−I) and ε̃ ≡ ε − h(X−I) to show that the two structures (Θ, g̃, F̃ε̃|X) and

(Θ, g, Fε|X) are different yet observationally equivalent. Thus, (g, Fε|X) is not identified. �

Proof of Theorem 2. We first linearize θ̂ (y, x) with respect to Ŝ (y, x) and Ŝ (1, x),

θ̂ (y, x)−Θ (y) =
1

S (1, x)
{Ŝ (y, x)− S (y, x)} − S (y, x)

S2 (1, x)
{Ŝ (1, x)− S (1, x)}(32)

+O(||Ŝ − S||2∞),
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where ‖·‖∞ here and in the following denotes the supremum norm over the set Y0×Xw; that

is, ‖S‖∞ = sup(y,x)∈Y0×Xw ‖S (y, x)‖. Applying in turn Lemmas 1 and 2 we obtain:∫
Xw

w (x)

S (1, x)
{Ŝ (y, x)− S (y, x)}dx

=

∫
Xw

w (x)

S (1, x)
{5pS (y, x) [p̂− p] +5fS (y, x) [f̂ − f ]}dx+ oP

(
1/
√
n
)

=
1

n

n∑
i=1

δw̄1i (1, y) + oP
(
1/
√
n
)
,

where w̄1 (y0, x) = w (x) /S (y0, x), and we have let:

δw̄i (y0, y) ≡ w̄ (y0, Xi)

{∫ y

max{0,Yi}
Dp,0 (u,Xi) du+

∫ y

0

Df,0 (u,Xi) du

}
+

∫ y

0

∂ [w̄ (y0, Xi)Df,1 (u,Xi)]

∂x1

du

+I {0 ≤ Yi ≤ y}
{
w̄ (y0, Xi)Dp,y (Yi, Xi)−

∂ [w̄ (y0, Xi)Dp,1 (Yi, Xi)]

∂x1

}
,(33)

with Dp,k (y, x) and Df,k (y, x), k ∈ {0, 1, y}, being as defined in Equation (42). Moreover,∫
Xw

w (x)S (y, x)

S2 (1, x)
{Ŝ (1, x)− S (1, x)}dx =

1

n

n∑
i=1

δw̄2i (y, 1) + oP
(
1/
√
n
)
,

where w̄2 (y0, x) = w (x)S (y0, x) /S2 (1, x). Finally, by Lemmas 1 and 3, ||Ŝ − S||2∞ =

oP (1/
√
n). Collecting the above results,

√
n{Θ̂LS (y)−Θ (y)} =

1√
n

n∑
i=1

δwi (y) + oP (1) ,

uniformly over Y0, where δ
w
i (y) is the random function defined as

(34) δwi (y) ≡ δw̄1i (1, y)− δw̄2i (y, 1) .

It is easily checked that E[δwi (y)] = 0, while we show below that E[δwi (y)2] < ∞. Thus,

pointwise weak convergence follows by the CLT. This extends to weak functional convergence

over the compact set Y0 if we can show stochastic equicontinuity. However, this follows from,

for example, van der Vaart and Wellner (1996) since (y0, y) 7→ δwi (y0, y) is continuous almost

surely and has an L2-envelope, |δwi (y0, y)| ≤ δ̄
w
i , y ∈ Y0, with E[

(
δ̄
w
i

)2
] < ∞: It is easily
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checked that for an appropriate constant c (depending on the size of the support of w, it

holds for both w̄ = w̄1 and w̄ = w̄2 as defined above,

δw̄i (y0, y)2 ≤ c sup
(y,y0,x)∈Y20×Xw

w̄2 (y0, x)
{
D2
p,0 (y, x) +D2

p,y (y, x) +D2
f,0 (y, x)

}
+c sup

(y,y0,x)∈Y20×Xw

{∣∣∣∣∂ [w̄ (y0, x)Dp,1 (y, x)]

∂x1

∣∣∣∣2 +

∣∣∣∣∂ [w̄ (y0, x)Df,1 (u, x)]

∂x1

∣∣∣∣
}
.

Since all the functions on the right-hand side are continuous and Y2
0 × Xw is compact, the

bound is finite.

Next, consider the LAD version. First, it is easily checked that, for any fixed b, Θ (y) =

arg minθ Qb(θ|Θ (y)) is the unique minimum. Since ||θ̂ (y, x) − Θ (y) ||∞ = oP (1), it follows

by standard arguments that ||Θ̂LAD
b −Θ||∞ = oP (1). Next, by the mean-value theorem,

0 =
∂Qb(Θ (y) |θ̂ (y, ·))

∂θ
+
∂2Qb(Θ̄ (y) |θ̂ (y, ·))

∂θ2 {Θ̂b (y)−Θ (y)},

for some Θ̄ (y) ∈ [Θ (y) , Θ̂b (y)] where, by a functional Taylor expansion w.r.t. θ̂ (y, ·),

∂Qb(Θ (y) |θ̂ (y, ·))
∂θ

= Γ[θ̂ (y, ·)−Θ (y)] +O(||θ̂ (y, ·)−Θ (y) ||2∞)

where we have used that ∂Qb(Θ (y) |Θ (y))/ (∂θ) = 0 and

Γ[dΘ] := −4fb (0)

∫
w (x) dΘ (y, x) dx,

where fb (θ) = f (θ/b) /b and f (θ) = F ′ (θ). Moreover,

∂2Qb(Θ (y) |θ (y, ·))
∂θ2 = 4

∫
w (x) fb (θ (y, x)− θ) dx+2

∫
w (x) {θ (y, x)−θ}f ′b (θ (y, x)− θ) dx,

and, again using the uniform convergence result for θ̂ (y, x),

∂2Qb(Θ̄ (y) |θ̂ (y, ·))
∂θ2 =

∂2Qb(Θ (y) |θ̂ (y, ·))
∂θ2 + oP (1)

= 4fb (0) + oP (1) ,

uniformly over y. Collecting the above results, Θ̂LAD
b (y) = Θ̂LS (y) + oP

(
n−1/2

)
, and it

now follows from Theorem 2 that
√
n(Θ̂LAD

b (y) − Θ (y)) ⇒ W (y) for any fixed bandwidth

b > 0. �
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Proof of Theorem 3. We first extend Theorem 2 of Blundell, Chen, and Kristensen (2007)

to allow for multiple regressors and IVs. To this end, we establish multivariate versions of

Claims 1-2 as stated in the proof of Theorem 2 in Blundell, Chen, and Kristensen (2007).

We do this without proof since these are standard results for sieve estimators:

Claim 1: For any g ∈ G, there is a gn ∈ Gn satisfying ‖g − gn‖X ≤ const. × k
−r/dx
n .

Similarly, for any h ∈ H, there is a hn ∈ Hn such that‖h− hn‖X1,Z ≤ const.× J−rm/(1+dz)
n .

Claim 2: ||h̃ − h||X1,Z = Op

(
J
−rm/(1+dz)
n +

√
Jn/n

)
and supgn∈Gn ||M̂(·|gn) −

M(·|gn)||X1,Z = Op

(
J
−rm/(1+dz)
n +

√
Jn/n

)
.

By inspection of the remaining arguments used in the proof of Theorem 2 in Blundell, Chen,

and Kristensen (2007), we see that these remain correct without further modifications with

multiple regressors and IVs. Thus, combining the above Claims 1-2 with the remaining

arguments of Theorem 2 in Blundell, Chen, and Kristensen (2007), we conclude that the

infeasible estimator g̃ (assuming Θ known) satisfies

||g̃ − g||X ≤ ||g − gn||X + τn ×Op

(
J−rm/(1+dz)
n +

√
Jn/n+ ||M(·|g − gn)||X1,Z

)
.

Using Assumptions A17 and A18 together with the fact that ||g − gn||X ≤ const. × k−r/dxn ,

we obtain

||g̃ − g||X = OP

(
k−r/dxn

)
+ τn ×Op

(
J−rm/(1+dz)
n +

√
Jn/n

)
= OP

(
k−r/dxn

)
+ τn ×Op

(√
kn/n

)
.

Next, by inspection of the above proof for the convergence rate of the infeasible estimator,

observe that Θ (Y ) only enters the arguments in Claim 2(i) through h̃ (z). In particular, the

above arguments remain correct with h̃ (z) replaced by any other estimator which satisfies

Claim 2(i). By definition of h̃ and ĥ and Theorem 2, ||ĥ− h̃||X1,Z ≤ supy∈Y |Θ̂ (y)−Θ (y) | =

OP (1/
√
n), and so Claim 2(i) remains intact when replacing h̃ by ĥ. And this yields exactly

the feasible estimator, ĝ. �
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Proof of Theorem 4. With no loss of generality consider i = 1. Without X1 being exogenous,

we have:

Φy(y, x) = Θ′(y)fε|X(Θ(y)− g(x), x)

Φ1(y, x) = −g1(x)fε|X(Θ(y)− g(x), x) +
∂Fε|X(t, x)

∂x1

∣∣∣∣
t=Θ(y)−g(x)

Then taking ratios for every (y, x) ∈ Y ×A1, we have

(35) s1(y, x) ≡ Φy(y, x)

Φ1(y, x)
=
δ1(y, x)−Θ′(y)

g1(x)
,

where we have let g1(x) ≡ ∂g(x)/∂x1, and

(36) π1(y, x) ≡ Θ′(y)
∂Fε|X(t, x)/∂x1

∣∣
t=Θ(y)−g(x)

g1(x)fε|X(Θ(y)− g(x), x) + ∂Fε|X(t, x)/∂x1

∣∣
t=Θ(y)−g(x)

.

Proceeding as in the proof of Theorem 1, integrating (35) between 0 and any y ∈ Y, and

using Θ(0) = 0, then gives

(37) Θ(y) = −g1(x)S1(y, x) + Π1(y, x),

with S1(y, x) =
∫ y

0
s1(u, x)du as before, and

Π1(y, x) ≡
∫ y

0

π1(u, x)du.

We now proceed in two steps, one for each normalization.

Step 1: Under normalization N1 Plugging Θ′(0) = 1 back into (35) yields

g1(x) =
π1(0, x)− 1

s1(0, x)
=

1

s1(0, x)
,

where the second equality follows from the expression of π1(y, x) in (36). Combining the

above with (37) then gives

Θ(y) =
S1(y, x)

s1(0, x)
+ Π1(y, x) = ϑ1(y, x) + Π1(y, x).

It follows directly from Theorem 1 that H0 implies Π1(y, x) = 0 for all y ∈ Y. It now

remains to show the converse, i.e. that Π1(y, x) = 0 for all y ∈ Y implies H0 (this in turn

is equivalent to: Ha implies Π1(y, x) 6= 0 for some y ∈ Y). It follows directly from the

expression of Π1(y, x) that Π1(y, x) = 0 for all y ∈ Y only if the integrand is everywhere
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zero, i.e. only if π1(y, x) = 0 for all y ∈ Y. Since the set of points y ∈ Y where Θ′(y) = 0 is

isolated, it follows from (36) that π1(y, x) = 0 for all y ∈ Y only if

∂Fε|X(t, x)

∂x1

∣∣∣∣
t=Θ(y)−g(x)

= 0, for all y ∈ Y ,

i.e. ∂Fε|X(t, x)/ (∂x1) = 0 for all t ∈ Ex. The latter in turn is equivalent to ε ⊥ X1 | X−1.

Step 2: Under Normalization N2. Plugging Θ(1) = 1 into (37) gives

g1(x) =
Π1(1, x)− 1

S1(1, x)
,

which together with (37) again gives

(38) Θ(y) =
S1(y, x)

S1(1, x)
+ Π1(y, x)− Π1(1, x)

S1(y, x)

S1(1, x)
= θ1(y, x) (1− Π1(1, x)) + Π1(y, x).

Similar to before, H0 implies Π1(y, x) = 0 for all y ∈ Y, and so Θ(y) = θ1(y, x). It

remains to show the converse: Suppose θ1(y, x) = Θ(y) for all y. Then (38) can only hold if

Π1(1, x)S1(y, x) = Π1(y, x)S1(1, x), which by definition of Π1(y, x) and (35) implies∫ y

0

π1(u, x)du

∫ 1

0

π1(u, x)−Θ′(u)

g1(x)
du =

∫ 1

0

π1(u, x)du

∫ y

0

π1(u, x)−Θ′(u)

g1(x)
du,

so since Θ(1) = 1, necessarily

Θ(y)

∫ 1

0

π1(u, x)du = 0, for all y ∈ Y .

This is only possible if Π1(1, x) =
∫ 1

0
π1(u, x)du = 0. Plugging back into (38), we then get

that Θ(y) = θ1(y, x) only if Π1(y, x) = 0 for all y ∈ Y, which following the same reasoning

as at the end of Step 1 implies ε ⊥ X1 | X−1. �

Proof of Theorem 5. First note that since supy∈Y |Θ̂ (y)−Θ (y) | = OP (1/
√
n) we can treat

Θ (y) as known in the analysis of Q. Next, combining Equation (32) with Lemma 1

θ̂0 (y, x)−Θ (y) =
1

S (1, x)

{
5pS (y, x) [p̂− p] +5fS (y, x) [f̂ − f ]

}
− S (y, x)

S2 (1, x)

{
5pS (1, x) [p̂− p] +5fS (1, x) [f̂ − f ]

}
+R,
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where R satisfies Equation (43). In particular, nhdx/2+2
0,x R2 = oP (1) under Assumption A13.

From the proof of Lemma 1,

θ̂0 (y, x)−Θ (y) ' 1

n

n∑
i=1

Kh0,x (Xi − x) D̄1,i (y, x) +Kh0,x,1 (Xi − x) D̄2,i (y, x) +OP

(
hmy
)
,

where

(39) D̄k (y, Yi, x) =
1

S (1, x)
D̃k (y, Yi, x)− S (y, x)

S2 (1, x)
D̃k (1, Yi, x) , k = 1, 2,

D̃1 (y, Yi, x) =

∫ y

max{0,Yi}
Dp,0 (u, x) du+ I {0 ≤ Yi ≤ y}Dp,y (Yi, x) +

∫ y

0

Df,0 (u, x) du,

D̃2 (y, Yi, x) = I {0 ≤ Yi ≤ y}Dp,y (Yi, x) +

∫ y

0

Df,1 (u, x) du,

and Kh0,x,1 (Xi − x) = ∂Kh0,x (Xi − x) / (∂x1). Substituting the resulting linearized version

into Q,

Q '
∫
Y

∫
X
W̄ (y, x)

[
1

n

n∑
i=1

{
Kh0,x (Xi − x) D̄1 (y, Yi, x) +K1,h0,x (Xi − x) D̄2 (y, Yi, x)

}]2

dydx

'
∫
Y

∫
X
W̄ (y, x)

[
1

n

n∑
i=1

Kh0,x (Xi − x) D̄1 (y, Yi, x)− f (x)E
[
D̄1 (y, Yi, x)

]]2

dydx

+

∫
Y

∫
X
W̄ (y, x)

[
1

n

n∑
i=1

K1,h0,x (Xi − x) D̄2 (y, Yi, x)− f1 (x)E
[
D̄2 (y, Yi, x)

]]2

dydx

≡ Q1 +Q2.

For Q1, we proceed as in, for example, the proof of Proposition 1 in Härdle and Mammen

(1993) to obtain that, with ek,i (y, x) = D̄k (y, Yi, x)− E
[
D̄k (y, Yi, x)

]
, k = 0, 1,

Q1 '
∫
Y

∫
X
W̄ (y, x)

[
1

n

n∑
i=1

Kh0,x (Xi − x) e1,i (y, x)

]2

dydx

=
1

n2

n∑
i,j=1

∫
Y

∫
X
W̄ (y, x)Kh0,x (Xi − x)Kh0,x (Xj − x) e1,i (y, x) e1,j (y, x) dydx

=
1

n

n∑
i=1

∫
Y

∫
X
W̄ (y, x)K2

h0,x
(Xi − x) e2

1,i (y, x) dydx

+
1

n2

∑
i 6=j

∫
Y

∫
X
W̄ (y, x)Kh0,x (Xi − x)Kh0,x (Xj − x) e1,i (y, x) e1,j (y, x) dydx

≡ Q11 +Q12,
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where, as nhdx0,x → ∞ and nhdx/2+m
0,x → 0, Q11 = m1 + oP (1) and nhdx/20,x Q12 →d N (0, v1);

here,

m1 =
1

nhdx0,x

∫
K2 (x) dx×

∫ ∫
σ2

1 (y, x) W̄ (y, x) f (x) dydx,

v1 = 2

∫
[K ∗K]2 (x) dx×

∫ ∫
σ4

1 (y, x) W̄ 2 (y, x) f 2 (x) dydx.

In particular, nhdx/2+2
0,x Q12 = oP (1). Similar arguments can be applied to Q2, see, e.g., proof

of Theorem 7 in Kristensen (2011), to obtain that, as nhdx+2
0,x →∞ and nhdx/2+2+m

0,x → 0,

Q2 '
∫
Y

∫
X
W̄ (y, x)

[
1

n

n∑
i=1

Kh0,x,1 (Xi − x) e1,i (y, x)

]2

dydx

=
1

n

n∑
i=1

∫
Y

∫
X
W̄ (y, x)K2

h0,x,1
(Xi − x) e2

i (y, x) dydx

+
1

n2

∑
i 6=j

∫
Y

∫
X
W̄ (y, x)Kh0,x,1 (Xi − x)Kh0,x,1 (Xj − x) ei (y, x) ej (y, x) dydx

≡ Q21 +Q22,

where Q21 = m2 + oP (1) and nh2+dx/2
0,x Q22 →d N (0, vQ) with

m2 =
1

nhdx+2
0,x

∫
K2

1 (x) dx×
∫ ∫

σ2
2 (y, z)W (y, x) f (x) dydx,

vQ = 2

∫
[K1 ∗K1]2 (x) dx×

∫ ∫
σ4

2 (y, x)W 2 (y, x) f 2 (x) dydx.

The claimed result now follows. �

Appendix C. Lemmas

In the following, we let Φ (y, x), p (y, x) and f (x) denote the true, data-generating cdf,

joint density and marginal density respectively. We define the following functionals for any

functions dp (y, x) and df (x):

5pS (y, x) [dp] ≡
∫ y

0

Dp,0 (u, x) dp (u, x) du+

∫ y

0

Dp,y (u, x) dpy (u, x) du(40)

+

∫ y

0

Dp,1 (u, x) dp1 (u, x) du,

(41) 5fS (y, x) [df ] ≡
∫ y

0

Df,0 (u, x) du× df (x) +

∫ y

0

Df,1 (u, x) du× df1 (x) ,
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where dpy (y, x) = ∂dp (y, x) / (∂y) and so forth, and

Dp,0 (y, x) ≡ Φy (y|x) f1 (x)

Φ2
1 (y|x) f 2 (x)

, Dp,y (y, x) ≡ 1

f (x) Φ1 (y, x)
,

Df,0 (y, x) ≡ Φy (y|x)

Φ1 (y, x) f (x)

[
1− 2Φ (y, x) f1 (x)

f (x) Φ1 (y, x)
+ f (x) +

Φ (y, x) f1 (x)

Φ1 (y, x)

]
,(42)

Df,1 (y, x) ≡ Φy (y, x) Φ (y, x)

Φ2
1 (y, x) f (x)

, Dp,1 (y, x) ≡ − Φy (y, x)

f (x) Φ2
1 (y, x)

.

The first lemma then shows that these two functionals are the pathwise differentials of S (y, x)

with respect to g and f respectively:

Lemma 1. Under Assumptions A1-A11: With 5pS (y, x) [dp] and 5fS (y, x) [df ] defined in

Equations (40)-(41), the following expansion holds uniformly over (y, x) ∈ Y0 ×Xw:

Ŝ (y, x)− S (y, x) = 5pS (y, x) [p̂− p] +5fS (y, x) [f̂ − f ] + oP
(
1/
√
n
)
,

Proof of Lemma 1. Suppressing dependence on y and x, let Φ̂ = p̂/f̂ denote the kernel

estimator. We in the following use repeatedly the following identity:

â

b̂
− a

b
=

1

b
{â− a} − a

b2

{
b̂− b

}
+

{
b̂− b

}
bb̂

{
â− a− a(b̂− b)

b

}
.

First,

Φ̂y

Φ̂1

− Φy

Φ1

=
1

Φ1

{Φ̂y − Φy} −
Φy

Φ2
1

{Φ̂1 − Φ1}+
{Φ̂1 − Φ1}

Φ̂1Φ1

[
{Φ̂y − Φy} −

Φy{Φ̂1 − Φ1}
Φ1

]
,

where Φy = py/f and Φ1 = p1/f − pf1/f
2. Thus,

Φ̂y − Φy =
1

f
{p̂y − py}+

py
f 2
{f̂ − f}+

{f̂ − f}
f̂f

[
{p̂y − py} −

py{f̂ − f}
f

]
,

and

Φ̂1 − Φ1 = − f1

f 2
{p̂− p}+

1

f
{p̂1 − p1}+

[
2pf1

f 3
− p1

f 2

]
{f̂ − f} − p

f 2
{f̂1 − f1}

+O
(
|p̂− p|2

)
+O

(
|p̂1 − p1|2

)
+O

(
|f̂ − f |2

)
+O

(
|f̂1 − f1|2

)
.
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Combining the last three expressions and then rearranging,

Φ̂y

Φ̂1

− Φy

Φ1

=
1

Φ1

{
1

f
{p̂y − py}+

py
f 2
{f̂ − f}+

{f̂ − f}
f̂f

[
{p̂y − py} −

py{f̂ − f}
f

]}

−Φy

Φ2
1

{
− f1

f 2
{p̂− p}+

1

f
{p̂1 − p1}+

[
2pf1

f 3
− p1

f 2

]
{f̂ − f} − p

f 2
{f̂1 − f1}

}
=

Φy

Φ2
1

f1

f 2
{p̂− p}+

1

Φ1f
{p̂y − py} −

Φy

Φ2
1

1

f
{p̂1 − p1}

+

[
py

Φ1f 2
− Φy

Φ2
1

(
2pf1

f 3
− p1

f 2

)]
{f̂ − f}+

Φy

Φ2
1

p

f 2
{f̂1 − f1}+R

= Dp,0 {p̂− p}+Dp,y {p̂y − py}+Dp,1 {p̂1 − p1}

+Df,0{f̂ − f}+Df,1{f̂1 − f1}+R,

Φ̂y

Φ̂1

− Φy

Φ1

=
Φyf1

Φ2
1f

2
{p̂− p}+

1

fΦ1

{p̂y − py}+
p2
y

fΦ1

{f̂ − f} − Φy

fΦ2
1

{p̂1 − p1}

−Φy

Φ2
1

(
2p

f 3
f1 +

p2
1

f

)
{f̂ − f}+

Φyp

Φ2
1f

2
{f̂1 − f1}+R

= Dp,0 {p̂− p0}+Dp,y {p̂y − p0,y}+Dp,1 {p̂1 − p0,1}

+Df,0{f̂ − f0}+Df,1{f̂1 − f0,1}+R,

where R is the remainder term satisfying

(43) R = O
(
|p̂− p|2

)
+O

(
|p̂1 − p1|2

)
+O

(
|p̂y − py|2

)
+O

(
|f̂ − f |2

)
+O

(
|f̂1 − f1|2

)
,

and Dp,0, Dp,y, Dp,1, Df,0 and Df,1 are defined in Equation (42). Given the definitions of

5pS (y, x) [dp] and 5fS (y, x) [df ], this shows that

Ŝ (y, x)− S (y, x) = 5pS (y, x) [p̂− p] +5fS (y, x) [f̂ − f ] +R (y, x) .

What remains to be shown is that the remainder term satisfies sup(y,x)∈Y0×Xw R (y, x) =

oP (1/
√
n). By standard results for kernel density smoothers of i.i.d. data (see e.g. Hansen
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(2008), Proof of Theorem 6) the following rates hold under Assumptions A8 and A10:

||p̂− p||∞ = OP (max (hx, hy)
m) +OP

(√
log n

nhdxx

)
,

||p̂1 − p1||∞ = OP (max (hx, hy)
m) +OP

(√
log n

nhdx+1
x

)
,

||p̂y − py||∞ = OP (max (hx, hy)
m) +OP

(√
log n

nhyhdxx

)
,(44)

||f̂ − f ||∞ = OP (hmx ) +OP

(√
log n

nhdxx

)
,

||f̂1 − f1||∞ = OP (hmx ) +OP

(√
log n

nhdx+1
x

)
.

Now, under Assumption A11, we see that the squared uniform estimation error of the kernel

estimators p̂ and f̂ and their relevant derivatives all are of order oP (1/
√
n). Given the

definition of R (y, x), this completes the proof. �

Lemma 2. Under Assumptions A1-A11, the following holds uniformly over y, y0 ∈ Y0 for

any continuous function w̄ (y, x) with compact support contained in X0:

∫
X
w̄ (y0, x) {5pS (y, x) [p̂− p] +5fS (y, x) [f̂ − f ]}dx =

1

n

n∑
i=1

δw̄i (y0, y) + oP
(
1/
√
n
)
,

where δw̄i (y0, y) is defined in Equation (33).

Proof of Lemma 2. First note that 5pS (y, x) [p] +5fS (y, x) [f ] = 0. Next,

5pS (y, x) [p̂] =

∫ y

0

Dp,0 (u, x) p̂ (u, x) du+

∫ y

0

Dp,y (u, x) p̂y (u, x) du

+

∫ y

0

Dp,1 (u, x) p̂1 (u, x) du

≡ A1 (y, x) + A2 (y, x) + A3 (y, x) .
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Here, uniformly over y ∈ Y0, u ≤ y, u ≥ 0 and u ≥ Yi

A1 (y, x) =
1

n

n∑
i=1

Khx (Xi − x)

∫ y

0

Dp,0 (u, x)Khy {Yi − u} du

=
1

n

n∑
i=1

Khx (Xi − x)

[∫ y

0

Dp,0 (u, x) I {Yi ≤ u} du+OP

(
hmy
)]

=
1

n

n∑
i=1

Khx (Xi − x)

[∫ y

max{0,Yi}
Dp,0 (u, x) du+OP

(
hmy
)]
,

A2 (y, x) =
1

n

n∑
i=1

Khx (Xi − x)

∫ y

0

Dp,y (u, x)Khy {Yi − u} du

=
1

n

n∑
i=1

Khx (Xi − x)
[
I {0 ≤ Yi ≤ y}Dp,y (Yi, x) +OP

(
hmy
)]
,

and, with Khx,1 (Xi − x) = ∂Khx (Xi − x) / (∂x1),

A3 (y, x) =
1

n

n∑
i=1

Khx,1 (X−1,i − x−1)

∫ y

0

Dp,1 (u, x)Khy {Yi − u} du

=
1

n

n∑
i=1

Khx,1 (X−1,i − x−1)
[
I {0 ≤ Yi ≤ y}Dp,y (Yi, x) +OP

(
hmy
)]
.

Thus, ∫
X
w̄ (y0, x)A1 (y, x) dx

=
1

n

n∑
i=1

∫ y

max{0,Yi}

∫
X
w̄ (y0, x)Dp,0 (u, x)Khx (Xi − x) dxdu×

[
1 +OP

(
hmy
)]

=
1

n

n∑
i=1

w̄ (y0, Xi)

∫ y

max{0,Yi}
Dp,0 (u,Xi) du×

[
1 +OP

(
hmy
)

+OP (hmx )
]
,

∫
X
w̄ (y0, x)A2 (y, x) dx

=
1

n

n∑
i=1

I {0 ≤ Yi ≤ y}
∫
X
w̄ (y0, x)Khx (Xi − x)Dp,y (Yi, x) dx+OP

(
hmy
)

=
1

n

n∑
i=1

I {0 ≤ Yi ≤ y} w̄ (y0, Xi)Dp,y (Yi, Xi)
[
1 +OP

(
hmy
)

+OP (hmx )
]
,
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and ∫
X
w̄ (y0, x)A3 (y, x) dx

=
1

n

n∑
i=1

I {0 ≤ Yi ≤ y}
∫
X
Khx,1 (X−1,i − x−1) w̄ (y0, x)Dp,y (Yi, x) dx

×
[
1 +OP

(
hmy
)]

= − 1

n

n∑
i=1

I {0 ≤ Yi ≤ y}
∫
X
Khx (Xi − x)

∂

∂x1

[w̄ (y0, x)Dp,1 (Yi, x)] dx

×
[
1 +OP

(
hmy
)]

= − 1

n

n∑
i=1

I {0 ≤ Yi ≤ y} ∂ [w̄ (y0, Xi)Dp,1 (Yi, Xi)]

∂x1

[
1 +OP

(
hmy
)

+OP (hmx )
]
.

By similar arguments,∫
X
w̄ (y0, x)5f S (y, x) [f̂ ]dx

=
1

n

n∑
i=1

∫ y

0

{∫
X

[
w̄ (y0, x)Df,0 (u, x) +

∂ [w̄ (y0, x)Df,1 (u, x)]

∂x1

]
Khx (Xi − x) dx

}
du

=
1

n

n∑
i=1

w̄ (y0, Xi)

∫ y

0

Df,0 (u,Xi) du+
1

n

n∑
i=1

∫ y

0

∂ [w̄ (y0, Xi)Df,1 (u,Xi)]

∂x1

du+OP (hmx ) .

Since
√
n
[
hmx + hmy

]
= o (1), the claimed result now holds. �

Lemma 3. Under Assumptions A1-A11:

‖5pS [p̂− p]‖2
∞ = oP

(
1/
√
n
)
,

∥∥∥5fS[f̂ − f ]
∥∥∥2

∞
= oP

(
1/
√
n
)
.

Proof of Lemma 3. From the definition of 5pS (y, x) [p̂− p],

‖5pS [p̂− p]‖∞ ≤ ‖Dp,0‖∞ ‖p̂− p‖∞ + ‖Dp,y‖∞ ‖p̂y − py‖+ ‖Dp,1‖∞ ‖p̂1 − p1‖ ,

where ‖Dp,a‖∞ < ∞, a = 0, y, 1, given the smoothness and bound conditions imposed

in Assumption A10. Next, it follows from the convergence rate results in Equation (44)

together with the bandwidth requirement in Assumption A11 that ‖p̂− p‖∞ = oP
(
1/n1/4

)
and similarly for its partial derivatives with respect to y and x1. This proves the first claim.

The proof of the second claim follows along the same lines and so is left out. �
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Appendix D. Identification without continuity

In this section of the Appendix, we exhibit a proof of nonparametric identification of Θ

that does not rely on the continuity of the exogenous regressor. The proof strategy closely

follows that of Ridder (1990). We first strengthen our Assumptions A1 and A5.

Assumption A1’. For a.e. x ∈ X , the conditional distribution Fε|X(·|x) of ε given X = x

is absolutely continuous (with respect to the Lebesgue measure on R) with a density fε|X(·|x)

that is continuous and strictly positive on R.

Assumption A1’imposes that conditional on X = x, ε has full support on R. This is a

strengthening of our Assumption A1 which amounts to setting Ex = R. Next, we replace the

continuity Assumption A2(ii) with the following support condition.

Assumption A2’. (ii) The support of XI given X−I = x0,−I contains at least two distinct

points x0,I and x1,I .

The following assumption requires that g takes distinct values at points in Assumption

A2’, with the value at x0 = (x0,I , x0,−I) normalized to zero.

Assumption A5’. For x0 = (x0,I , x0,−I) and x1 = (x1,I , x0,−I), g(x0) = 0 6= g(x1).

The nonparametric identification result is then as follows:

Theorem 6. Let Assumptions A1’, A2(i), A2’(ii), A3, A4, and A5’hold. Then either of

the normalization conditions N1, N2 and N3 is suffi cient to nonparametrically identify Θ.

Proof. Consider two observationally equivalent structures (Θ, g, Fε|X) and (Θ̃, g̃, F̃ε̃|X). Eval-

uating Equation (3) at x0 = (x0,I , x0,−I) (x0 as in Assumption A5’) and x1 ≡ (x1,I , x0,−I) we

obtain:

Φ(y, x0) = Fε|X
(
Θ(y), x0,−I

)
= F̃ε̃|X

(
Θ̃(y), x0,−I

)
Φ(y, x1) = Fε|X

(
Θ(y)− g(x1), x0,−I

)
= F̃ε̃|X

(
Θ̃(y)− g̃(x1), x0,−I

)
Note that under conditional independence assumption A2 guarantees that the conditional

distributions above only do not depend on the values x0,I and x1,I of the exogenous regressors,
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which in turn are the only coordinates that vary from x0 to x1. Now consider the change of

variable t = Θ(y) in the first equation and t = Θ(y)− g(x1) in the second equation. Then,

Fε|X
(
t, x0,−I

)
= F̃ε̃|X

(
(Θ̃ ◦Θ−1)(t), x0,−I

)
Fε|X

(
t, x0,−I

)
= F̃ε̃|X

(
(Θ̃ ◦Θ−1)(t+ g(x1))− g̃(x1), x0,−I

)
and by virtue of Assumption A1’, the above needs to hold for every t ∈ R. Since F̃ε̃|X is

strictly increasing on R, the above implies

κ(t+ g(x1)) = κ(t) + g̃(x1) where κ ≡ θ̃ ◦Θ−1.

Using the same reasoning as in the proof of Theorem 1 in Ridder (1990) (equations (13)-(23)

on p.180) then shows that

Θ̃ = γ + δΘ, δ > 0, γ ∈ R,

that is Θ is nonparametrically identified up to a location and a scale. Any of the normaliza-

tions N1-N3 is then suffi cient to pin down γ and δ. �

Appendix E. Integral Normalization Θ(0) = 0 and E[Θ(Y )] = 1

In this section, we consider yet a third normalization:

(N3) Θ(0) = 0 and E[Θ(Y )] = 1.

Our nonparametric identification result is as follows:

Corollary 2. Let all the assumptions of Theorem 1 hold, and consider

EY [Si (Y, x)] =

∫
Y
Si (y, x) fY (y) dy.

Then, under normalization (N3), Θ is globally identified as:

Θ(y) = ψi (y, x), ψi (y, x) ≡ Si (y, x)

EY [Si (Y, x)]
,(45)

and the right-hand side of (45) does not depend on i nor x.
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Proof of Corollary 2. We use the same reasoning as in the proof of Theorem 1 up to equation

(22). To get rid of the g term we now use a different approach. Multiplying (22) by the pdf

fY (·) of Y and then integrating with respect to y, we get:

1 = E[Θ(Y )] = −∂g(x̄)

∂xi

∫
Y
Si(y, x̄)fY (y)dy = −∂g(x̄)

∂xi
EY [Si(Y, x̄)],

where we have used the fact that under normalization N3 E[Θ(Y )] = 1. Since x̄ ∈ Ai,

∂g(x̄)/∂xi 6= 0 and is finite; hence, EY [Si(Y, x̄)] 6= 0 and is finite as well, so we can write:

(46)
∂g(x̄)

∂xi
= − 1

EY [Si(Y, x̄)]
.

Thus, Θ (y) is identified under (N3) by

(47) Θ(y) =
Si(y, x̄)

EY [Si(Y, x̄)]
.

To show that the right-hand side of (47) does not depend on i nor x̄ use the same reasoning

as in Step 1 of the proof of Theorem 1 to establish that for all y ∈ Y,

si(y, x̄)

EY [Si(Y, x̄)]
=

sj(y, x̃)

EY [Sj(Y, x̃)]
,

where j and x̃ are as in Step 1 of the proof of Theorem 1. Combining the above with the

expression for Θ in (47) then yields the result. �


