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Abstract

There are numerous benefits of analysing and understanding extreme events. More

specifically, quantifying the uncertainty of rare environmental extremes has been of

great concern for a variety of stakeholders such as insurance companies and gov-

ernments. What is more, the practical implications of extreme weather events like

hurricanes and floods pose a need for engineers to design structures that can be

exposed to these conditions and withstand them for many years in the future. It is

not surprising therefore that statistical modelling of extremes, in its own right, has

been playing an important role in the design process.

This thesis aims to contribute to the extreme value analysis literature primarily in

the area concerned with threshold-based extreme value modelling. The major focus

is on developing methods for selecting an appropriate threshold and on accounting

for the uncertainty in this selection. For much of the thesis, Bayesian methods of in-

ference are used and although the thesis concentrates on environmental applications,

the methodology proposed can be applied in a more general context.

We introduce univariate extreme value theory and in particular the statistical meth-

ods employed to make inferences using extreme value models. In addition, we ex-

amine the intricacies of Bayesian inference and through a simulation study compare

different prior distributions based on predictive inferences for future extreme val-

ues. For the standard independent and identically distributed (i.i.d.) observations

we propose a Bayesian cross-validation method for selecting the threshold and use

Bayesian model averaging to combine inferences from different thresholds. We ex-

tend this approach to the case where independence is considered as an unrealistic

assumption and explore threshold specification in extreme value regression mod-

elling.
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1 Extreme Value Modelling 19

1 Extreme Value Modelling

Extreme value theory uses asymptotic arguments to suggest models for extreme

data. A common practical application of this theory deals with data coming from

environmental sources such as rainfall totals, sea wave heights, temperatures etc,

when it is of interest to investigate and model the extreme values, in this case the

largest values, that these physical phenomena can take.

Thus, the main goal of extreme value modelling is to enable extrapolation, i.e. to

infer the stochastic behaviour of a quantity at levels beyond those already observed.

A specific example of the practical use of extreme value modelling can be found in

marine engineering. The design of marine structures, such as oil platforms, requires

information about the most extreme sea conditions likely to be encountered over

some future long time period, for example 100, 1000 or even 10,000 years. A common

variable used for this purpose is the significant wave height. One can use extreme

value theory to suggest models for large significant wave heights, such as the largest

value observed over a period of one year or the amounts by which a high threshold

is exceeded.

In this chapter we introduce the models involved in extreme value theory. More

specifically in section 1.1 we consider the simplest case: univariate independent and

identically distributed (i.i.d.) sequences and introduce the two main models, namely,

the Generalised Extreme Value (GEV) model (for block maxima) and the Gener-

alised Pareto (GP) model (for threshold excesses). Later in section 1.6 we consider

the case for univariate dependent sequences and introduce the K-gaps exponential

mixture model (for threshold inter-exceedance times). The theory outlined in this

chapter is a summary of fundamental results that are central to this research. We

also provide a number of relevant references where the reader can find more details

about these results and demonstrate the methodology through simple examples and

graphical illustrations. Finally, we conclude this chapter with an outline of the thesis

and the topics covered in the remaining chapters.

1.1 Extreme Value Theory for univariate independent se-

quences

Let us assume that we have a sequence of independent random variables X1, . . . , Xm

with an identical but unknown distribution function F . Often {Xi} is a discrete-

time process observed on regular time intervals, such as days. The starting point of

extreme value theory is to consider the statistical behaviour of the block maximum
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Mn = max {X1, . . . , Xn}, for a block size n 6 m, as n→∞.

Under the assumed independence of the Xis the distribution function of Mn is

derived as

P (Mn 6 x) = P (X1 6 x, . . . , Xn 6 x)

= P (X1 6 x)× · · · × P (Xn 6 x)

= {F (x)}n .

Since the distribution function F is unknown, we investigate the behaviour of

{F (x)}n as the block size n increases. The main concern is the fact that the asymp-

totic distribution of Mn degenerates to a point mass as Mn converges to the upper

endpoint, xF = sup {x : F (x) < 1}, of F , that is, for any value of x

lim
n→∞

{F (x)}n =


1 if F (x) = 1,

0 if F (x) < 1.

The standard approach to steer clear from this problem is to seek a linear normal-

ization

M∗
n =

Mn − bn
an

of Mn, where an > 0 and bn are sequences of constants, so that as n → ∞ a

non-degenerate limiting distribution results for M∗
n.

The question of importance is “what kinds of limiting distribution for M∗
n are pos-

sible”?

1.1.1 Extremal Types Theorem (ETT)

Fisher and Tippett (1928) were the first to describe the asymptotic properties of

the normalised block maximum from an unknown distribution function F . The

work by Gnedenko (1943) completed in generality this important result, known as

the Extremal Types Theorem. A detailed proof of this theorem can be found in

Leadbetter et al. (1983).

Theorem 1. Extremal Types Theorem (ETT).

If there exist sequences of constants an > 0 and bn such that

P

(
Mn − bn
an

6 x

)
→ G (x) , as n→∞,
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where G is a non-degenerate distribution function, then G will belong to one of the

following distribution families:

Gumbel: G(x) =

{
exp

{
− exp

[
−
(
x− b
a

)]}
, −∞ < x <∞;

Fréchet: G(x) =


0, x 6 b,

exp

{
−
(
x− b
a

)−k}
, x > b, k > 0;

Weibull: G(x) =


exp

{
−

[
−
(
x− b
a

)k]}
, x < b, k > 0,

1, x > b,

for some location parameter b, scale parameter a > 0 and shape parameter k.

Fisher and Tippett (1928) showed that in fact these three distribution families are

the only possible limit distributions for the block maximum irrespective of the un-

known distribution F of the population. If, for a given F , the Gumbel limit is

obtained, we say that F is in the domain of attraction of the Gumbel extreme value

family, and similarly for the Fréchet and Weibull families.

Historically, when extreme value theory was used to analyse a dataset, a subjective

decision was taken a priori as to which of the three families applied. This was a

necessary part of the process that was followed by an estimation of the parame-

ters of the distribution that was chosen. However, since each family describes the

tail behaviour of the distribution differently there were clear drawbacks with this

method:

• it introduced the argument of how the distribution choice should be made;

• it did not allow for uncertainty about the correct distributional choice.

These problems are overcome by combining the three limiting forms into a single

family.

1.2 Generalised Extreme Value (GEV) distribution

The Generalised Extreme Value (GEV) distribution was derived by Jenkinson (1955)

and von Mises (1964), which uses a parameterisation to integrate the three different

distribution families into one. Therefore we can restate theorem 1 as theorem 2.
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Theorem 2. Unified Extremal Types Theorem (UETT).

If there exist sequences of constants an > 0 and bn such that

P

(
Mn − bn
an

6 x

)
→ G (x) , as n→∞,

where G is a non-degenerate distribution function, then G is a GEV distribution

function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
, (1.1)

for parameters −∞ < µ <∞, σ > 0 and −∞ < ξ <∞, where a+ = max(a, 0).

Thus, the GEV(µ, σ, ξ) distribution (with location parameter µ, scale parameter

σ and shape parameter ξ) is defined on {x : 1 + ξ(x− µ)/σ > 0}. The Gumbel

distribution is obtained in the limit as ξ → 0.

1.2.1 Max Stability

An informal proof of theorem 2 centres on the concept of max-stability. Firstly we

note that two distributions are of the same type if they differ only in their location

and/or scale parameters. A distribution G is said to be max-stable if there are

constants an > 0 and bn such that for every k = 2, 3 . . .,

Gk(anx+ bn) = G(x),

that is, taking block maxima from a distribution function G results in a distribution

of the same type of the original distribution G.

It makes sense that if a limiting distribution function G for linearly normalised

maxima exists then G must be max-stable: if M∗
n has approximate distribution

function G, then M∗
nk, k > 1, should have a distribution function of the same type,

otherwise convergence has not yet been achieved. In fact, Leadbetter et al. (1983)

show that the only distribution that is max-stable is the GEV.

1.2.2 Tail behaviour

In practice we assume tentatively that (a) the F from which the data are produced

is in the domain of attraction of the GEV family and (b) the value of n is large

enough that a GEV distribution is good approximation to the distribution of Mn.
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This motivates the use of a GEV distribution as a model to the maxima of large

numbers of i.i.d. random variables. In practice F is unknown, so the normalising

constants an and bn are also unknown. However, this is not a problem because an

and bn appear in the location and scale of the distribution of Mn and are to be

estimated anyway. We discuss statistical inference for extreme value models later in

section 1.5.

The important benefit of using the GEV model for extreme data analysis, as com-

pared to the historical approach that was described earlier is the fact that it does

not need a prior subjective choice of an extreme value family to which the data

belong.

The following table summarises informally the tail behaviour of the distribution

according to the value of ξ. The value of ξ determines which of the historical

extreme value family applies and whether the upper endpoint xF is finite (ξ < 0) or

infinite (ξ > 0).

ξ Tail behaviour Distribution Family

ξ = 0 Exponential upper tail Gumbel

ξ > 0 Heavy upper tail Fréchet

ξ < 0 Finite upper limit Weibull

Table 1: Tail behaviour for the distribution function F .

1.2.3 Domains of attractions

It is of theoretical interest to consider what properties F must have to be in the

domain of attraction of a particular extreme value distribution. Leadbetter et al.

(1983) state in section 1.6 the necessary and sufficient conditions for this. They

show proves for the sufficiency and provide references for the proves of the neces-

sity. However, for simplicity, here we follow Smith (1987) and restrict attention to

absolutely continuous distribution functions F .

We begin with the hazard function h(x) which can be thought of loosely as the

instantaneous probability that X = x given that X > x. We define the reciprocal

hazard function η(x) = 1/h(x) by

η(x) =
1− F (x)

f(x)
, xF < x < xF ,

where xF is the lower endpoint of the distribution, xF is the upper endpoint of the
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distribution and f(x) is the probability density function.

Studying the behaviour of the (reciprocal) hazard function for large x indicates how

heavy is the upper tail of F . For example, if F is the distribution function of an

exponential random variable, then η(x) is constant for all x. In contrast, heavy

(light) upper tails produce η(x) that increase (decrease) as x → xF . Therefore the

derivative η′(x) = dη(x)/dx of η(x) is key.

If η′(x) tends to a finite limit ξ as x → xF (the von Mises’ condition) then F is

in the domain of attraction of a GEV distribution with shape parameter ξ. Thus

the limiting distribution of Mn is determined by the upper tail of F . Also, suitable

normalising constants are given by bn = F−1(1−1/n) and an = η(bn). These results

are not of practical use unless we have some knowledge about the tail behaviour of

F .

1.3 Generalised Pareto (GP) distribution

The results in section 1.2 relate to block maxima, i.e. the largest of n values. One can

argue that since other values in each block are not utilised this method is somewhat

wasteful and potentially important information might be lost. A better approach is

to use an alternative definition of an extreme value, namely, that an observation is

extreme if it exceeds some high threshold u.

Let us assume again that we have a sequence of independent, identically distributed

random variables X1, . . . , Xm with a distribution function F which is unknown.

We introduce a threshold denoted by u. We describe in more detail the various

approaches of how an appropriate value of u can be chosen in chapter 3.

Threshold modelling of extremes is based on two aspects: (i) the probability pu that

the threshold u is exceeded, and (ii) the amount by which the threshold is exceeded

when it is exceeded. We use the terminology exceedance to refer to an X that exceeds

u and define the corresponding threshold excess by Z = (X − u) | X > u. Theorem

3 motivates the use of a particular distribution to model the threshold excess Z.

Theorem 3. Limiting distribution of threshold excesses.

If theorem 2 holds then as u → ∞, the distribution function of (X − u) | X > u is

approximately

H(z) = 1−
[
1 +

ξz

σu

]−1/ξ

+

, z > 0, (1.2)

where σu = σ + ξ(u− µ).
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This is the distribution function of a Generalised Pareto (GP) distribution (Pickands,

1975) defined on 0 < z < −σu/ξ if ξ < 0 and z > 0 if ξ > 0 and characterised by

a scale parameter σu satisfying σu > 0 and a shape parameter ξ satisfying −∞ <

ξ < ∞. An exponential distribution with rate parameter 1/σu is obtained in the

limit as ξ → 0. This result motivates the use of the GP(σu, ξ) distribution to model

excesses of a high threshold u. In common with the GEV distribution, the shape

parameter value determines whether or not xF is finite as in table 1. Coles (2001,

pages 76-77) gives an informal justification of theorem 3 with a more formal proof

provided by Leadbetter et al. (1983).

1.3.1 Binomial-Generalised Pareto (Bin-GP) model

This theory motivates the Binomial-Generalised Pareto (Bin-GP) model with pa-

rameters (pu, σu, ξ). Under the assumed independence of X1, . . . , Xm the number of

exceedances of the threshold u (denoted by nu) has a Bin(m, pu) distribution.

The Bin-GP model’s parameters are related to the GEV parameters (µ, σ, ξ) via

σu = σ + ξ(u− µ) and pu = 1− F (u) ≈ 1

n

[
1 + ξ

(
u− µ
σ

)]−1/ξ

,

where m is the complete length of the data set, n is the block size that is used to

define Mn and the approximate expression for pu follows from Coles (2001, pages

76-77).

1.4 Gulf of Mexico data

In this section we briefly describe a motivating example of how extreme value anal-

ysis can be applied in a practical situation using the GEV and GP distributions.

Firstly we introduce the dataset that is used for these analyses.

The data come from Oceanweather’s metocean study for the Gulf of Mexico called

GOMOS (Oceanweather Inc., 2005). They are hindcasts of a conventional measure

of sea surface roughness, significant wave height (Hs), defined as the mean of the

highest one third of wave heights. The hindcasts are produced by a physical model,

calibrated to observed hurricane data, resulting in Hs values on a spatial grid ev-

ery 30 minutes between September 1900 to September 2005. The motivation for

analysing these data comes from marine engineering and more specifically the at-

tempt to develop some design criteria for marine structures, such as oil platforms,

where it is of great value to understand better the stochastic behaviour of extreme
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weather events, such as the hurricanes that occur in the Gulf of Mexico.

Hurricanes are clearly-defined events, so it is straightforward to isolate from raw

time series the largest Hs value, the storm peak significant wave height Hsp
s , for

each hurricane event. This eliminates within-event temporal dependence so that

Hsp
s values from different events can be treated as being independent. The full

dataset, which has been analysed by Jonathan and Ewans (2007, 2011), Northrop

and Jonathan (2011), consists of hindcast Hsp
s values for a 6 × 12 grid of 72 sites in

an unnamed location in the Gulf of Mexico. Here we consider a single site (site 31)

at the centre of the grid. The data are displayed in figure 1.
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Figure 1: Time series plot of Gulf of Mexico storm peak significant wave heights.

1.4.1 GEV - Block Maxima approach

The first method of extreme value analysis that we describe here is known as the

block maxima approach. This involves dividing the data into blocks of equal length

and then fitting a GEV distribution to the block maxima. A typical choice in

environmental applications is a block size equating to one year of observations,

which produces annual maxima. It is important to note that the decision about the

block size leads to a trade-off between bias and variance. On one hand, deciding

on a small block size might violate the asymptotic arguments for the limiting GEV



1.4 Gulf of Mexico data 27

distribution leading to bias. On the other hand, a large block size will provide few

points (block maxima) to use for statistical inference and this can result in parameter

estimators with high variances. Figure 2 illustrates the blocking procedure using the

Gulf of Mexico data.
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Figure 2: Identification of block maxima.

As this plot is merely illustrative, 15 blocks of 7 years were chosen for convenience.

We then treat the block maxima as a random sample from a GEV(µ, σ, ξ) distribu-

tion.

1.4.2 GP - Threshold exceedances approach

As an alternative to the block maxima approach, let us assume that a high threshold

u is chosen for this dataset. If an observation is higher then u, then this is an

exceedance of u and the amount by which the observation exceeds u is the threshold

excess. Appealing to theorem 3 suggests the GP distribution as a model for the

threshold excesses. This is illustrated in figure 3 below.
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Figure 3: Threshold exceedances and excesses of u.

Here, we have applied a threshold of 7.0798m which corresponds to the 95th quan-

tile of the data. We treat these excesses as a random sample from a GP(σu, ξ)

distribution.
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Figure 4: Comparison of block maxima and threshold exceedances.

Figure 4 above illustrates the ‘extreme’ points through both of the described ap-

proaches and shows some important features: (i) that some of the block maxima

(shown in blue) are not included in the threshold modelling approach of extreme

value analysis, (ii) some second (and third and fourth) largest values in a block are

included in the threshold approach and (iii) there are very few exceedances above

the threshold from which the inferences about the GP(σu, ξ) distribution will be

made.

The third point could be addressed by choosing a lower threshold, which will result

in more threshold exceedances. However, the solution is not that straightforward

because, similarly to the block maxima approach, a bias-variance trade-off is also

present in the threshold modelling approach. Choosing too low a threshold leads

to bias due to the GP model being inappropriate and too high a threshold results

in a small number of exceedances and unnecessarily low estimation precision. We

develop new methods for addressing this bias-variance trade-off for a independent

and identically distributed stationary process in chapter 3 and for a dependent and

identically distributed stationary process in chapter 4.
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1.5 Statistical modelling and parameter estimation

One of the tasks that a statistician needs to tackle when having a dataset is to analyse

the data and make inferences about the parameters of the supposed random process

that generated this data. More specifically, if we are interested in analysing extreme

values from a data source, we need to be able to say something about an assumed

model and its parameters. By doing so, we can better understand and describe the

process and more importantly make inferences on the stochastic behaviour of more

extreme observations.

In this section we outline methods of inferences used commonly in extreme value

modelling. We concentrate on likelihood-based methods as they can, in principle,

be used in a wider variety of modelling situations than competing methods. In

particular, they apply more generally than in the simple i.i.d. case we consider

initially.

Likelihood and log-likelihood functions

Let us assume that we have a sequence of independent and identically distributed

random variables X1, . . . , Xm with probability density function f(xi;θ), where the

stochastic process of the observed data is characterized by the vector θ, a k-dimensional

set of parameters. The joint density of the random variables is defined as the likeli-

hood function

L(θ;x1, . . . , xm) =
m∏
i=1

f(xi;θ) for i = 1, . . . ,m, (1.3)

which is a function defined by the set of unknown parameter vector θ.

Using the fact that the natural logarithm function is monotonic, it is more convenient

to work with the log-likelihood function

`(θ;x1, . . . , xm) = logL(θ;x1, . . . , xm) =
m∑
i=1

log f(xi;θ). (1.4)

Score Function and Fisher Information

The score function is defined as the vector (of length k) of the first partial derivatives

of the log-likelihood function

S(θ;X1, . . . , Xm) =
∂

∂θ
`(θ;X1, . . . , Xm).
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The score function is itself a vector of random variables and has the following sta-

tistical properties. The mean of the score, evaluated at the true set of parameters θ

is found to be zero and its variance is a symmetric k× k variance-covariance matrix

which is called the (expected) Fisher Information matrix (FI) and is defined as

I(θ) = E

[(
∂

∂θ
`(θ;X1, . . . , Xm)

)2
]
.

Due to the assumed independence and under some regularity conditions the FI

matrix can also be written as

FI = I(θ) = −E
[

∂2

∂θ∂θT
`(θ;X1, . . . , Xm)

]
.

We usually estimate I(θ) by the observed Fisher information

J (θ) = − ∂2

∂θ∂θ
`(θ;x1, . . . , xm). If the stochastic process of the observed data is

characterized by the vector θ of length k, then matrix FI as defined above will be

a k × k positive semi-definite symmetric matrix.

1.5.1 Maximum Likelihood Estimation

A widely used and flexible approach for parameter estimation is maximum likelihood.

The aim of this approach is to obtain the set of parameter estimates for which the

joint probability density of the observed data is maximised. In practice, the log-

likelihood (1.4) is maximised with respect to θ to obtain the maximum likelihood

estimate (MLE) θ̂.

On the condition that the log-likelihood is concave, setting the score function

S(θ;X1, . . . , Xm) to zero and solving for θ will result to the vector of maximum

likelihood estimators, θ̂. Furthermore, in regular estimation problems, for a large

sample size m it can be shown that, approximately

θ̂ ∼ N(θ, I(θ)−1). (1.5)

Expressions for the log-likelihood and the Fisher information based on a random

sample from a GEV distribution are given in A.1. A.2 gives these expressions for

the GP case.

Regularity conditions

Azzalini (1996, page 71) and Davison (2003, page 118) describe the conditions that
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an estimation problem needs to satisfy in order for maximum likelihood estimation to

be regular. One regularity condition is that the support of the distribution does not

depend on the parameter values. This however, is not the case for either the GEV

or GP distribution, so estimating the parameters of these models using maximum

likelihood is not automatically a regular estimation problem.

Smith (1985) carried out a theoretical analysis to examine the regularity conditions

that are necessary for the estimation to be regular. In cases like the GEV and

GP distributions Smith (1985) shows that if ξ > −1/2 then maximum likelihood

estimation is regular and the resulting maximum likelihood estimator has the usual

properties such as (1.5). The reason that this estimation problem is irregular for

ξ 6 −1/2 is that the variance of the score function, var[S(θ;X1, . . . , Xm)], does not

exist unless ξ > −1/2. Smith (1994) extends this result to the regression situation

to show that a covariate dependent shape parameter would still need to be greater

than −1/2 for all values of the covariates.

1.5.2 Bayesian Inference

Let us assume that we have a vector of data x = (x1, . . . , xm) from a sequence

of i.i.d. random variables. For example x could represent hindcast storm peak

significant wave heights, Hsp
s as introduced in 1.4. In maximum likelihood estimation

(a frequentist method of inference), the parameter vector θ is viewed as a unknown,

but fixed, value to be estimated. In Bayesian inference θ is viewed as a random

variable. A prior distribution π(θ), representing uncertainty about θ external to

the data x, is specified. Prior information about θ, contained in π(θ), is combined

with information from the data, contained in the likelihood L(x;θ), using Bayes’

theorem. This results in a posterior distribution π(θ | x) that is proportional to

L(x;θ)π(θ) as

π(θ | x) ∝ π(θ)× L(x;θ), (1.6)

where the normalising constant is 1/
∫

Θ
π(θ)L(x;θ) dθ. Subject to the assumptions

made, the posterior distribution gives the distribution of the model parameters

conditional on the data observed.

The advantages of a Bayesian analysis (over maximum likelihood estimation) in an

extreme value context are:

(a) the ξ > −1/2 regularity condition is not required;

(b) information external to the data can be incorporated;
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(c) predictive inference, in which predictions of future extreme events account ap-

propriately for model parameter uncertainty, is handled naturally.

Points (b) and (c) are particularly relevant because, by their nature, samples of suit-

ably extreme data can be small. This often results in large uncertainty about model

parameters and consequently about extrapolation in the future. Use of prior infor-

mation can alleviate this problem. Moreover, sample sizes are often small enough

that maximum likelihood estimators are far from normally distributed. This means

that a frequentist approximation to predictive inference based on normality can be

misleading.

In chapters 3 and 4 it is important that we can perform predictive inference reliably,

so we take a Bayesian approach. This requires a prior distribution to be specified. In

the absence of genuine prior information, the question arises: “Which prior should

we use?”. We consider this question in chapter 2.

1.5.3 Other methods of inference

There are many methods of inference that have been used in extreme value modelling

(see for example Beirlant et al. (2004, Chapter 5), Kotz and Nadarajah (2000),

Coles (2001)). Here we briefly describe another popular inference method, namely,

the Probability Weighted Moments (PWM), that is often used as an alternative to

MLE. This method has been historically used to estimate the parameters of the

GEV (Hosking et al., 1985) and the GP (Hosking and Wallis, 1987) distributions

and is particularly popular in hydrology and climatology.

Greenwood et al. (1979) introduce the general PWM method which is as follows. For

a sequence of i.i.d. random variables X1, . . . , Xm with distribution function F (x),

the PWM can be found by evaluating

E [Xp(F (X))r(1− F (X))s] , (1.7)

where p, r and s are real numbers.

In the case of extreme value modelling, the PWM method for obtaining model

parameter estimators is limited, similarly to the MLE, to parameter space of the

shape parameter. More specifically Hosking et al. (1985) showed that the asymptotic

properties of the PWM estimators exist only when ξ < 0.5.

Many authors have compared MLE and PWM, including Landwehr et al. (1979),

Hosking et al. (1985), Hosking and Wallis (1987), Coles and Dixon (1999), Martins
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and Stedinger (2000) to name a few. In particular it was found that PWM can

perform better for small sample sizes, with the PWM estimators having smaller

variance. However, Coles and Dixon (1999) note that the smaller variance of the

PWM estimators is partly achieved in place of higher bias as compared to the MLE

method due to the parameter space restriction in PWM. Furthermore, it is worth

pointing out that the PWM method does not extend easily beyond the i.i.d. case.

1.6 Extreme Value Theory for univariate dependent sequences

So far we have introduced the relevant background theory involving observations

from univariate sequences of i.i.d. random variables. In this section we relax the

independence property and briefly describe the theory behind non-independent and

identically distributed (n.i.d.) random variables, i.e. a stationary sequence of ran-

dom variables whose joint distribution does not change over time.

It is reasonable to accept, especially in environmental data, that an extreme event

can be followed closely by another extreme event and that the assumption of inde-

pendence is questionable. In fact, it is very common for extreme observations to

occur in clusters. The properties of dependent extremes are analysed in detail in

Leadbetter et al. (1983, Chapter 3). Chavez-Demoulin and Davison (2012) provide

a review of the modelling of the extremes of dependent sequences. We first look at

the theory behind block maxima and later concentrate on threshold-based models.

It is not possible to develop a theory for the extremes of dependent sequences that is

akin to the UETT of theorem 2, unless some constraint is placed on the form of tem-

poral dependence in the sequence. For example, in the extreme case of perfect depen-

dence, i.e. Xt = X1, for t = 1, 2, . . ., the distribution function of max(X1, . . . , Xn)

is identical to that of X1 (F say) for all n. Therefore, the limiting distribution

function of Mn is F , which could be anything. However, to make progress it is only

necessary to place a constraint on the strength of long-range dependence at extreme

levels: that occurrences of extreme events are approximately independent provided

that these events are sufficiently separated in time. More specifically, a sufficient

constraint is the following D(un) condition (Leadbetter et al., 1983, section 3.2).

Condition D(un)

Let X1, X2, . . . be a stationary sequence of random variables. The sequence satisfies

the D(un) condition, if for all i1 < · · · < ip < j1 < · · · < jq with j1 − ip > l,

|P (A,B)− P (A)P (B)| 6 α(n, l),
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where A is the event that Xi1 6 un, . . . , Xip 6 un, B is the event that Xj1 6

un . . . , Xjq 6 un, there exists a sequence ln such that ln/n→ 0 as n→∞ for which

α(n, ln)→ 0 as n→∞.

This is a weak condition (the form of short-term dependence is not restricted) and is

plausible for many physical processes. The UETT extends to stationary sequences

that satisfy this condition, but the strength of short-term dependence in the extremes

of the sequence has an effect on the location, and perhaps the scale, of the limiting

GEV distribution, in a way that the following theorem, found in Leadbetter et al.

(1983, section 3.3), makes precise.

Theorem 4. Extremes of dependent sequences.

Let X1, X2, . . . be a sequence of independent random variables with marginal dis-

tribution function F and let X̃1, X̃2 . . . be a stationary sequence of dependent ran-

dom variables satisfying D(un) condition, with the same marginal distribution func-

tion. Let Mn = max {X1, . . . , Xn} and M̃n = max
{
X̃1, . . . , X̃n

}
. If, as n → ∞,

P ({(Mn − bn)/an 6 x} → G(x), for normalising sequences an > 0 and bn, then

P
{

(M̃n − bn)/an 6 x
}
→ Gθ(x) (1.8)

for some 0 < θ 6 1.

The max-stability of G means that Gθ is a GEV distribution function. Therefore,

this theory suggests the GEV distribution as a model for block maxima, as in the

independent case.

1.6.1 Extremal index

The quantity θ is known as the extremal index. It is the most common measure

of the strength of short-term (local) temporal dependence in extremal behaviour.

The closer θ is to zero the stronger is the local dependence at extreme levels. For a

sequence with θ = 1 there is no local dependence asymptotically but there may be

dependence at levels of practical interest.

The extremal index is involved in several characterisations of local extremal depen-

dence based on the extent to which exceedances of a suitably high threshold occur

in clusters. Asymptotically (in a sense that we make more precise in section 1.7)

the mean number of exceedances in a cluster is given by 1/θ and suitably rescaled

times between the last exceedance of one cluster and the first exceedance of the next

cluster are exponentially distributed with mean 1/θ.
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The extremal index is important because it affects extremal inferences. Theorem

4 implies that for large n, P (M̃n 6 x) ≈ Gθ(x) = F (x)nθ. If we wish to infer

from an estimate of F the distribution of the largest value to be observed over

some future long time interval then the value of θ matters. Ignoring clustering

would lead to overestimation of quantiles of Mn. The extremal index also affects

interpretation of extremal inferences because it determines the way in which extreme

events (exceedances of some high threshold) occur. Consider two cases, each with

the same F . If θ = 1 then threshold exceedances occur singly at some rate λ, say,

in time. If θ = 1/10 then threshold exceedances occur in clusters of mean size 10

at a smaller rate λ/10, i.e. exceedances tend to occur together but there is a larger

probability of seeing no such cluster in a given period of time. The difference in

behaviour may be important practically.

The presence of local dependence also complicates statistical inference and the se-

lection of an appropriate threshold. Reliable estimation of θ is crucial and many

methods have been proposed for achieving this. Of the threshold-based methods

we concentrate on those proposed by Ferro and Segers (2003), Süveges (2007) and

Süveges and Davison (2010). In section 1.7 we describe the theory underlying these

methods and in chapter 4 we use the model proposed by Süveges and Davison (2010)

to perform threshold selection. In the next section we outline different general ap-

proaches to threshold modelling of serially-dependent extremes.

1.6.2 Threshold-based statistical inference

The presence of local extremal dependence makes threshold-based inferences more

difficult than in the independent case. If θ < 1 then there will be some clustering of

exceedances at all levels and one cannot eliminate the potential problem of within-

cluster dependence between exceedances by setting a high threshold. Although

asymptotic theory suggests a GP distribution as a marginal model for (all) threshold

excesses it is not appropriate to treat these excesses as independent.

One way round this problem is to extract from the data a set of threshold excesses

that can be treated as approximately independent. This is achieved by specify-

ing a rule to identify clusters of exceedances, a procedure known as declustering.

Exceedances greater than a certain number of observations (the run length) apart

are deemed to be in different clusters, otherwise they are put in the same cluster.

Ferro and Segers (2003) automate this process by basing the run length on an es-

timate of θ. From each cluster the largest excess is extracted, producing a sample

of cluster maxima. Then a GP distribution is fitted to these cluster maxima, the

peaks-over-threshold (POT) approach.
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However, Fawcett and Walshaw (2007) demonstrate that, in addition to the loss of

statistical precision that results from using only cluster maxima, the declustering

process leads to serious bias. They show that it is better to base inferences on all

threshold excesses: point estimates are based on a likelihood in which the excesses

are assumed to be independent, but estimates of parameter uncertainty are adjusted

to account for the dependence between these excesses. Fawcett and Walshaw (2012)

update this work to incorporate uncertainty about θ in extreme value extrapolations.

An alternative approach is to model within-cluster dependence explicitly (Smith

et al., 1997, Fawcett and Walshaw, 2006). This is essential in applications where

it is important to gain insight about the nature of this dependence. A common

approach is to specify a first-order Markov chain for threshold excesses, based on

a particular bivariate extreme value model. However, this raises the issue of which

member of the wide class of such models to use. Otherwise, i.e. if it is only necessary

to adjust inferences for the strength of local dependence as summarised by θ, then

the approach of Fawcett and Walshaw (2012) may be preferable.

It is common to ignore local dependence in extremes at the threshold selection stage,

although such dependence can be expected to have an impact. An informal way to

include the impact of threshold in terms of local dependence is to choose a threshold

above which estimates of the extremal index θ are judged to be insensitive to the

threshold. However, in practice estimates of θ often do not stabilise in a clear way as

the threshold increases, making this judgement difficult. A more formal model-based

approach is developed by Süveges and Davison (2010). In chapter 4 we propose an

alternative approach based on the same underlying model, which we describe in the

next section.

1.7 K-Gaps exponential mixture model

Let us assume that we have a stationary process X̃1, X̃2, . . . , with unknown marginal

distribution function F . The following theorem is given by Süveges and Davison

(2010, page 206). For a sequence of thresholds un, introduce the random variable

T (un) = min{k > 1 : X̃k+1 > un | X̃1 > un},

for the inter-exceedance times in the sequence {X̃i} and the corresponding K-gaps

random variable by

S(K)(un) = max{T (un)−K, 0}, K = 0, 1, . . . .
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Let Fi,j(un) denote the σ-field (Billingsley, 1995, pages 20-21) generated by the

events X̃r 6 un, r = i, . . . , j. In simple terms, Fi,j(un) defines the possible combi-

nations of the events X̃r 6 un, r = i, . . . , j that can be assigned probabilities. For

any A ∈ F1,k(un) with P (A) > 0, B ∈ Fk+l,n(un) and k, l are integers such that

k = 1, . . . , n− l, define

α∗(n, l) = max
k

sup
A,B
|P (B | A)− P (B)|,

F (un) = 1− F (un) and M̃rn = max
{
X̃1, . . . , X̃rn

}
.

Theorem 5. (Süveges and Davison, 2010)

Suppose there exist sequences of integers {rn} and of thresholds {un} such that as

n → ∞, we have rn → ∞, rnF (un) → τ and P (M̃rn 6 un) → e−θτ for some

τ ∈ (0,∞) and θ ∈ (0, 1]. Moreover, assume that there exists a sequence ln = o(n)

for which α∗(crn, ln)→ 0 as n→∞ for all c > 0. Then as n→∞,

P (F (un)S(K)(un) > t)→ θ exp(−θt), t > 0, (1.9)

where the extremal index θ lies in the interval (0, 1].

The condition based on α∗(n, l) in theorem 5 is similar to the D(un) condition in

that it restricts long range dependence at extreme levels. However, it is stronger

than the D(un) condition because now we are concerned with all combinations of

events of the type X̃i 6 un, rather than just max
i
X̃i 6 un. This result motivates an

exponential mixture model for the times between exceedances of a high threshold u.

1.7.1 Inter-exceedance times

Let us now suppose that we have N observations from X̃1, . . . , X̃m that exceed

a high threshold u. The inter-exceedance times are defined as the times between

successive threshold exceedances. Therefore, let
{
ji : X̃ji > u

}
denote the location

of an exceedance. Then for i = 1, . . . , N − 1 the inter-exceedance times Ti are found

by

Ti = ji+1 − ji. (1.10)

Let S
(K)
i = max(Ti − K, 0) denote the ith K-gap. A pair of exceedances with an

inter-exceedance time that is less than the run parameter K is deemed to be in the

same cluster, and in separate clusters otherwise.
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The limiting model (1.9) corresponds to the mixture model

F (u)S(K) =


0, with probability 1− θ,

W with probability θ
(1.11)

where W has an exponential distribution with mean 1/θ. This generalises the work

of Ferro and Segers (2003) who had K = 0. The value of K that is appropriate will

depend on the dependence structure of the process involved.

It is worth noting here the dual role played by the extremal index θ.

1. The extremal index represents the proportion of non-zero inter-exceedance

times and

2. it is the reciprocal of the mean of the distribution of non-zero inter-exceedance

times, in other words, it is the rate parameter of an exponential distribution.

Süveges and Davison (2010) use a test to detect misspecification of model (1.11)

to inform an appropriate choice of threshold u and run parameter K. In chapter 4

we consider an alternative approach in which, for an appropriate value of K, u is

chosen based on the predictive ability of model (1.11) at extreme levels.

1.8 Newlyn data

In this section we briefly describe a motivating example of how extreme value anal-

ysis can be applied in a practical situation using the K-gaps exponential mixture

model. Firstly we introduce the dataset that is used for this example.

The Newlyn dataset consists of a series of 2894 measurements of sea-surge heights

in meters that were taken over the period 1971 - 1976 at a location just off the coast

at Newlyn, Cornwall, UK. The data represent the maximum hourly surge heights

over periods of 15 hours (see Coles (1991)). Fawcett and Walshaw (2012) used

this dataset to estimate the extremal index of the underlying process using several

estimators and to make inferences about the extremes of the process. We proceed

by first showing the Newlyn data in figure 5 below.
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Figure 5: Time series plot of Newlyn sea-surge heights.

In figure 6 we illustrate the procedure of analysing the data using the K-gaps ex-

ponential mixture model. For clarity and illustration purposes a small section of 60

observations (around the beginning of 1971) is shown and an 80% sample quantile

was selected as threshold.
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Figure 6: Time series plot of a segment of the Newlyn data illustrating threshold
exceedances (red dots), exceedance locations (j), inter-exceedance times (T ) and
K-gaps (S) for K = 2.

1.9 Thesis outline

The aim of this chapter was to introduce univariate extreme value theory and the

statistical methods employed to make inferences using extreme value models. Fol-

lowing the question we raised at the end of 1.5.2, chapter 2 considers the use of refer-

ence priors in univariate extreme value modelling and present results concerning the

propriety of posterior distributions. Furthermore, we consider different methods of

performing Bayesian computation, i.e. sampling from the posterior distribution of

model parameters and use a simulation study to compare different priors based on

predictive inferences for future extreme values. Chapter 3 concerns threshold selec-

tion for datasets of independent and identically distributed observations. Bayesian

cross-validation is used to compare single thresholds based on predictive ability at

extreme levels and we proceed by using Bayesian model averaging to combine infer-

ences from different thresholds. In chapter 4 we extend the approach developed in

chapter 3 to the situation where independence is an unrealistic assumption and, in

particular, extreme values tend to occur in clusters. Chapter 5 concerns threshold

specification in extreme value regression modelling. In the context of a particular
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model, a theoretical result concerning the optimality of quantile regression is de-

rived. Chapter 6 summarises the main conclusion of this thesis and discusses some

possible directions for future research.
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2 Bayesian Univariate Extreme Value modelling

We introduced in chapter 1 the background theory related to the analysis of ex-

tremes. This involved the various models and approaches to inference in order to

estimate the underlying model parameters. From a practical point of view, for ex-

ample in marine structure design, extreme value analysis is required to provide the

design engineers with values that quantify the behaviour of future extremes, of vari-

ables such as storm peak significant wave height, over a specified time horizon. One

way to view this task is as the prediction of a future extreme observation, such as

the largest value MN to be observed in the next N years, for some large value of N .

Under an estimative (or plug-in or nave) approach, prediction of MN is based on

a model-based distribution into which point estimates of the model parameters are

substituted. This is common when using frequentist inference, e.g. when using

MLE or PWM. A drawback is that once the model parameters are estimated they

are then treated as known, i.e. uncertainty in the values of the model parameters

is not incorporated. In contrast, under a predictive approach uncertainty in model

parameters is incorporated explicitly. In frequentist inference it is possible to try to

adjust for parameter uncertainty, e.g. by averaging predictions over the asymptotic

(normal) sampling distribution of the parameter estimators, but this distribution

may be inappropriate unless the sample size is large, i.e. it may be far from normal.

Also, for extreme value models, regularity conditions (on ξ) are required for such

asymptotic results to apply (see section 1.5). As we will see in section 2.5 predictive

inference is handled naturally under a Bayesian approach, and conditions on the

value of ξ are also avoided. For a discussion of the relative merits of estimative

and predictive approaches see for example Geisser (1982), Smith (1999), Young and

Smith (2005).

The first aim of this chapter is to examine the propriety of the posterior distribution

of the model parameter vector θ. This is done by considering a certain type of

prior distributions which we discuss in more detail in 2.2 and demonstrate in 2.3

the necessary conditions to yield a proper posterior for each case. In addition we

describe two methods of sampling from the posterior distribution in 2.4. We return

to the issue of predicting extreme observations in section 2.5 and investigate the

choice of prior distribution for this purpose using simulation in 2.6.
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2.1 Posterior predictive density

An important part of extreme value analysis is to be able to say something about the

probability of future extreme events. Through the Bayesian inference approach we

can use the posterior predictive distribution to find the probabilities of future extreme

observations. Let x† be a future realisation from the underlying process having

probability density function f(x† | θ). Using the posterior distribution π(θ | x), the

posterior predictive density (Aitchison and Dunsmore, 1975) of x† given x can be

found as follows

f(x† | x) =

∫
Θ

f(x† | θ)π(θ | x) dθ. (2.1)

However, the prior distribution needs to be specified. In the following sections we

direct our attention to the prior distribution π(θ), discuss the possible choices avail-

able and ultimately investigate the propriety of the resulting posterior distribution.

2.2 Prior distribution

A distinction can be made between subjective analyses, in which the prior distribu-

tion supplies information from a source such as an expert (Coles and Powell, 1996,

Coles and Tawn, 1996, Behrens et al., 2004), from relevant external data (Walshaw,

2000), or from more general experience of the quantity under study (Martins and

Stedinger, 2000, 2001), and so-called objective analyses (Berger, 2006). In the latter,

a prior is constructed using a formal rule, for use when no subjective information

is to be incorporated into the analysis. There is disagreement about appropriate

terminology for such priors: we follow Kass and Wasserman (1996) in using the

term reference prior.

2.2.1 Informative priors

The prior, π(θ), is a function that describes the distributional behaviour of the

model parameter vector θ. A prior which is classified as informative expresses

specifically this distributional behaviour. Discussion on the rationale for this choice

of prior is present in various research work involving Bayesian inference methodology.

More specifically in extreme values analysis Coles and Tawn (1996) use an elicitation

scheme for determining the prior distribution by consulting an expert hydrologist. In

their analysis of rainfall data they conclude that the use of this type of prior improved

their estimates of extremal behaviour. Other examples where prior elicitation has



2.2 Prior distribution 45

been used within a Bayesian extreme value analysis context are Coles and Powell

(1996) and Behrens et al. (2004). In their work Smith and Naylor (1987) used both

a seemingly informative and non-informative prior. In fact, this raises an interesting

point, that there is a notional middle ground between the two types of priors where

some amount of knowledge about the model parameters is known a priori (say from

physical characteristics or an expert), but not to the extent where a fully defined

prior is constructed. For example de Zea Bermudez and Amaral Turkman (2003)

use a weakly informative prior or vague prior for their GP parameter estimation.

In general, proponents of Bayesian inference argue that the fact that an informa-

tive prior can be chosen for inference is a huge advantage as this allows for expert

knowledge or previous results to be embedded into the inference from the start.

This point is reinforced in the context of extremes where extreme data are scarce

and prior elicitation allows us to carry out inference using priors that ensure the

model is not unrealistic and dismiss any unreasonable or absurd model parameter

behaviour.

Whilst we appreciate the benefits of prior elicitation and the valuable inputs that

experts can provide prior to the data analysis, one needs to keep in mind that

• the choice of an informative prior is subjective, and

• in most cases where prior elicitation has taken place, it is problem-specific.

It is therefore desirable to propose a Bayesian inference methodology that is not

bound to specific problems and allows for a more general extreme value analysis.

Therefore, we proceed by discussing the use of non-informative priors.

2.2.2 Non-Informative priors

Contrary to the informative prior, a prior is classified as non-informative when π(θ)

describes very vaguely and generally the distributional behaviour of the model pa-

rameters. In fact, as Kass and Wasserman (1996) argue, the term “non-informative”

is somewhat questionable and hard to define since one has to choose the prior and

that choice in itself provides some information.

A concern amongst those advocating against the use of informative priors (or Bayesian

inference for that matter) is that an informative prior might have the undesired ef-

fect of dominating the data resulting in misleading inference about the underlying

model. In order to ease this concern the use of non-informative priors typically

provides results that are not very different from those obtained through frequentist
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inference. This is because the likelihood function dominates such a prior in providing

information from the data.

The main drawback of these priors is the fact that they are often improper, which

in other words, means that they are not proper distributions and fail to integrate

to one. However, this might not always cause a problem as the resulting posterior

distribution often yields a proper distribution. We examine this aspect of propriety

in more detail for the GP and GEV distributions in sections 2.3.1 and 2.3.3 respec-

tively through the use of a specific type of non-informative priors based on formal

rules (Kass and Wasserman (1996) provide a comprehensive review of the formal

rules that have been proposed) which we call reference priors.

2.2.3 Reference priors

Bernardo (1979) introduced reference analysis and was further developed by nu-

merous authors (see for example Bernardo (2005), Berger et al. (2009) and their

references) and is one of the most commonly used methods in obtaining objective

priors. In this chapter we consider three reference priors that have been used in

extreme value analyses:

1. Jeffreys priors (Eugenia Castellanos and Cabras, 2007, Beirlant et al., 2004),

2. maximal data information (MDI) priors (Beirlant et al., 2004), and

3. uniform priors (Pickands, 1994), i.e., independent flat priors on individual

parameters.

These priors are improper, that is, they do not integrate to a finite number and

therefore do not correspond to a proper probability distribution. An improper prior

can lead to an improper posterior, which is clearly undesirable. There is no general

theory providing simple conditions under which an improper prior yields a proper

posterior for a particular model, so this must be investigated case-by-case. Euge-

nia Castellanos and Cabras (2007) establish that Jeffreys prior for the GP distribu-

tion always yields a proper posterior, but no such results exist for the other improper

priors we consider. It is important that posterior propriety is established because

impropriety may not create obvious numerical problems, for example, Markov Chain

Monte Carlo (MCMC) output may appear perfectly reasonable (Hobert and Casella,

1996).

One way to ensure posterior propriety is to use a diffuse proper prior, such as a

normal prior with a large variance (Coles and Tawn, 2005, Smith, 2005, Fawcett and
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Walshaw, 2006) or by truncating an improper prior (Smith and Goodman, 2000). For

example, Coles (2001, chapter 9) uses a GEV(µ, σ, ξ) model for annual maximum sea-

levels, placing independent normal priors on µ, log σ and ξ with respective variances

104, 104 and 100. However, one needs to check that the posterior is not sensitive

to the choice of proper prior and, as Bayarri and Berger (2004) note “. . . these

posteriors will essentially be meaningless if the limiting improper objective prior

would have resulted in an improper posterior distribution.” In such cases inferences

may be sensitive to the diffuseness of the prior, because in the limit as the diffuse

prior becomes improper the posterior becomes improper. Therefore, independent

uniform priors on separate model parameters are of interest in their own right and

represent the limiting case of independent diffuse normal priors.

Let us assume that we have a vector of data x = (x1, . . . , xm) from a sequence of

independent and identically distributed random variables X1, . . . , Xm with density

function f(x;θ), for some parameter vector θ. Furthermore, let us denote the ex-

pected Fisher information matrix by I(θ). We consider the following three reference

priors.

Jeffreys priors. Jeffreys “general rule” (Jeffreys, 1961) is

πJ(θ) ∝ det(I(θ))1/2. (2.2)

An attractive property of this rule is that it produces a prior that is invariant to

reparameterisation. Jeffreys suggested a modification of this rule for use in location-

scale problems. We will follow this modification, which is summarised on page 1345

of Kass and Wasserman (1996). If there is no location parameter then (2.2) is used.

If there is a location parameter µ, say, then θ = (µ, φ) and

πJ(µ, φ) ∝ det(I(φ))1/2, (2.3)

where I(φ) is calculated holding µ fixed. In the current context the GP distribution

does not have a location parameter whereas the GEV distribution does.

Maximal Data Information (MDI) priors. The MDI priors (Zellner, 1971) are de-

fined as

πM(θ) ∝ exp {E[log f(X;θ)]} . (2.4)

These are the priors for which the increase in average information, provided by the

data via the likelihood function, is maximised. For further information see Zellner

(1998).
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Uniform priors. Priors that are flat, i.e. equal to a positive constant, say c,

πU(θ) ∝ c. (2.5)

Flat priors suffer from the problem that they are not automatically invariant to

reparameterisation. For example, if we give log σ a uniform distribution then σ is

not uniform. Thus, it matters which particular parameterisation is used to define

the prior.

2.3 Propriety of posteriors

We continue by looking at the parameterisation of the three reference priors in terms

of the GP and GEV distributions and investigate the propriety of the posterior dis-

tribution of the relevant model parameters. Proofs of results for the GP distribution

can be found in appendices B.2 to B.4 and for the GEV distribution in appendices

B.5 to B.8 (Northrop and Attalides, 2015).

2.3.1 GP distribution

Without loss of generality we assume that a certain high threshold is set producing

nu threshold excesses that are ordered: z1 < · · · < znu . Furthermore, for simplicity

in our notation we denote the GP scale parameter by σ rather than σu. We consider

a class of priors of the form π(σ, ξ) ∝ π(ξ)/σ, σ > 0, ξ ∈ R. In effect we assume a

priori that σ and ξ are independent and that log σ has an improper uniform prior

over the real line.

The posterior distribution for σ and ξ is given by

πGP (σ, ξ | z) = C−1
nu π(ξ)σ−(nu+1)

nu∏
i=1

[
1 +

ξzi
σ

]−(1+1/ξ)

+

, σ > 0, ξ > −σ/znu ,

where

Cnu =

∫ ∞
−∞

∫ ∞
max(0,−ξznu )

π(ξ)σ−(nu+1)

nu∏
i=1

[
1 +

ξzi
σ

]−(1+1/ξ)

+

dσ dξ

and the inequality ξ > −σ/znu comes from the constraints 1 + ξzi/σ > 0 for i =

1, . . . , nu in the likelihood.
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Prior distributions

Using (2.2) with θ = (σ, ξ) gives the Jeffreys prior

πJ,GP (σ, ξ) ∝ 1

σ(1 + ξ)(1 + 2ξ)1/2
, σ > 0, ξ > −1/2. (2.6)

Eugenia Castellanos and Cabras (2007) show that a proper posterior density results

for nu > 1.

Using (2.4) gives the MDI prior

πM,GP (σ, ξ) ∝ 1

σ
e−(ξ+1) σ > 0, ξ ∈ R. (2.7)

Beirlant et al. (2004, page 447) use this prior but they do not investigate the pro-

priety of the posterior.

Placing independent uniform priors on log σ and ξ, as proposed by Pickands (1994),

gives the prior

πU,GP (σ, ξ) ∝ 1

σ
, σ > 0, ξ ∈ R. (2.8)

Figure 7 below shows the Jeffreys, MDI and Uniform priors for the GP parameters

as functions of ξ (for σ = 1). The MDI prior increases without limit as ξ → −∞
and the Jeffreys prior increases without limit as ξ ↓ −1/2.
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Figure 7: (a) Jeffreys (b) MDI (c) Uniform priors for the GP distribution parameters
as a function of ξ, with σ = 1.

2.3.2 Results for the GP distribution

Theorem 6. A sufficient condition for the prior π(σ, ξ) ∝ π(ξ)/σ, σ > 0, ξ ∈ R to

yield a proper posterior density function is that π(ξ) is (proportional to) a proper

density function.

The MDI prior (2.7) does not satisfy the condition in theorem 6 because exp{−(ξ+

1)} is not a proper density function on ξ ∈ R.

Theorem 7. There is no sample size for which the MDI prior (2.7) yields a proper

posterior density function.

The problem with the MDI prior is due to its behaviour for negative ξ so a simple

solution is to place a lower bound on ξ a priori. This approach is common in extreme

value analyses, for example, Martins and Stedinger (2001) constrain ξ to (−1/2, 1/2)

a priori. We suggest

π′M,GP (σ, ξ) =
1

σ
e−(ξ+1), ξ > −1, (2.9)
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that is, a (proper) unit exponential prior on ξ + 1. Any finite lower bound on

ξ ensures propriety of the posterior but ξ = −1, for which the GP distribution

reduces to a uniform distribution on (0, σ), seems less arbitrary than other choices

as it corresponds to a change in the behaviour of the GP density. For ξ > −1, the

GP density fGP (z) decreases in z, which is what one anticipates when conducting

an extreme value analysis to make inferences about future large, rare values. For

ξ < −1, fGP (z) increases without limit as it approaches its mode at the upper end

point −σ/ξ, behaviour that is not expected in such analyses.

Corollary to theorem 6. The truncated MDI prior (2.9) yields a proper posterior

density function for nu > 1.

Theorem 8. A sufficient condition for the Uniform prior (2.8) to yield a proper

posterior density function is that nu > 3.

2.3.3 GEV distribution

Without loss of generality we take the b block maxima to be ordered: y1 < · · · < yb

(where m = b × n, i.e. the total raw data sample size m is a product of the

number of blocks b and the block size n). We consider a class of priors of the form

π(µ, σ, ξ) ∝ π(ξ)/σ, σ > 0, µ, ξ ∈ R that is, a priori µ, σ and ξ are independent in

addition to µ and log σ having improper uniform priors over the real line.

Based on a random sample y1, . . . , yb the posterior distribution for µ, σ and ξ is is

given by

πGEV (µ, σ, ξ | y)∝σ−(b+1)π(ξ) exp

{
−

b∑
i=1

[
1 + ξ

(
yi − µ
σ

)]−1/ξ

+

}
b∏
i=1

[
1 + ξ

(
yi − µ
σ

)]−(1+1/ξ)

+

.(2.10)

If ξ > 0 then µ− σ/ξ < y1 and if ξ < 0 then µ− σ/ξ > yb.

Prior distributions

Kotz and Nadarajah (2000, page 63) give the Fisher information matrix for the GEV

distribution (1.1). Using (2.3) with µ and φ = (σ, ξ) gives the Jeffreys prior

πJ,GEV (µ, σ, ξ) =
1

σξ2

{
[1− 2Γ(2 + ξ) + p]

[
π2

6
+

(
1− γ +

1

ξ

)2

− 2q

ξ
+

p

ξ2

]

−
[
1− γ +

1

ξ
− 1

ξ
Γ(2 + ξ)− q +

p

ξ

]2
}1/2

, µ ∈ R, σ > 0, ξ > −1/2, (2.11)
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where p = (1+ξ)2 Γ(1+2ξ), q = Γ(2+ξ) {ψ(1 + ξ) + (1 + ξ)/ξ}, ψ(r) = ∂ log Γ(r)/∂r

and γ ≈ 0.57722 is Euler’s constant. van Noortwijk et al. (2004) give an alternative

form for the Jeffreys prior, based on (2.2).

Beirlant et al. (2004, page 435) give the form of the MDI prior:

πM,GEV (µ, σ, ξ) =
1

σ
e−γ(ξ+1+1/γ) ∝ 1

σ
e−γ(1+ξ), σ > 0, µ, ξ ∈ R. (2.12)

Placing independent Uniform priors on µ, log σ and ξ gives the prior

πU,GEV (µ, σ, ξ) ∝ 1

σ
, σ > 0, µ, ξ ∈ R. (2.13)

Figure 8 below shows the Jeffreys, MDI and Uniform priors for GEV parameters as

functions of ξ. The MDI prior increases without limit as ξ → −∞ and the Jeffreys

prior increases without limit as ξ →∞ and as ξ ↓ −1/2.
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Figure 8: (a) Jeffreys (b) MDI (c) Uniform priors for the GEV distribution param-
eters as a function of ξ, with σ = 1.

2.3.4 Results for the GEV distribution

Theorem 9. For the prior π(µ, σ, ξ) ∝ π(ξ)/σ, σ > 0, µ, ξ ∈ R to yield a proper

posterior density function it is necessary that b > 2 and, in that event, it is sufficient
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that π(ξ) is (proportional to) a proper density function.

Theorem 10. There is no sample size for which the Jeffreys prior (2.11) yields a

proper posterior density function.

Truncation of the independence Jeffreys prior to ξ 6 ξ+ would yield a proper poste-

rior density function if b > 2. In this event theorem 9 requires only that
∫ ξ+
−1/2

π(ξ) dξ

is finite. From the proof of theorem 10 we have π(ξ) < 2 [π2/6 + (1− γ)2]
1/2

(1 +

2ξ)−1/2 for ξ ∈ (−1/2,−1/2 + ε), where ε > 0. Therefore,∫ −1/2+ε

−1/2

π(ξ) dξ < 2
[
π2/6 + (1− γ)2

]1/2 ∫ −1/2+ε

−1/2

(1 + 2ξ)−1/2 dξ,

= 23/2
[
π2/6 + (1− γ)2

]1/2
ε1/2.

The integral over (−1/2 + ε, ξ+) is also finite. However, the choice of an a priori

upper limit for ξ may be less obvious than the choice of a lower limit.

Theorem 11. There is no sample size for which the MDI prior (2.12) yields a

proper posterior density function.

As in the GP case, truncating the MDI prior to ξ > −1, that is,

π′M,GEV (µ, σ, ξ) ∝ 1

σ
e−γ(1+ξ) µ ∈ R, σ > 0, ξ > −1, (2.14)

is one way to yield a proper posterior distribution.

Corollary to theorem 9. The truncated MDI prior (2.14) yields a proper posterior

density function for b > 2.

Theorem 12. A sufficient condition for the Uniform prior (2.13) to yield a proper

posterior density function is that b > 4.

2.4 Sampling from the posterior distribution

Having established the conditions to obtain a proper posterior distribution for the

GP and GEV model parameters we turn to the Bayesian inference step involving

the method of sampling from the posterior. The benefit of sampling variates of the

model parameters from the posterior distribution is the fact that we can directly

account for the underlying uncertainty of the parameters. This benefit transfers to

the later stage of the analysis when predicting future extreme events that account

for this uncertainty.
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In this section we describe two classical Monte Carlo methods for universal sampling

that are well known. The first method involves the popular Markov Chain Monte

Carlo (MCMC) and more specifically, we use one possible MCMC method known as

the Metropolis-Hastings (MH) algorithm to sample from the posterior. In MCMC a

Markov chain is set up such that its equilibrium distribution is the desired posterior

distribution. A realisation from the Markov chain is simulated, from some starting

value. After a sufficiently large number of time steps (the burn-in period) the states

of the chain are treated as a dependent values sampled from a distribution that ap-

proximates the posterior. The second method is exact and produces values that are

sampled independently from the posterior. It is a form of rejection sampling called

the generalised Ratio of Uniforms (RoU) method. We continue by first describing

the MH algorithm (Metropolis and Ulam, 1949, Metropolis et al., 1953, Hastings,

1970, Liu, 2004) and introduce two special cases of this technique.

2.4.1 Metropolis-Hastings (MH)

Firstly, we need to have a starting value of the Markov chain. Care needs to be taken

when choosing this point as it has to ensure that the distributional constraints are

not violated. Secondly, we need a proposal distribution, which is used to propose

candidate values for the chain. A limitation of this method is the fact that the

correlation among the generated samples can be high. This means that a smaller

number of posterior samples can be accepted, whilst facing the risk of causing the

Markov chain to get trapped in local modes resulting to very slow convergence.

Additionally, when carrying out this method, one needs to allow a reasonable burn-

in period and essentially establish that the Markov chain has converged, a task that

can be difficult.

Let us assume that we have a vector of data x = (x1, . . . , xm) and the vector θ

represents the model parameters. Furthermore, let the current state of the Markov

chain be θi, the starting point of the chain is θ0 and the candidate values θ∗. The

algorithm proceeds by calculating the probability of acceptance of θ∗ as follows

pα,MH(θ∗,θi;x) = min

{
π(θ∗ | x)q(θi | θ∗)
π(θi | x)q(θ∗ | θi)

, 1

}
, (2.15)

where, π(· | x) is (up to proportionality) the posterior density given the data and

q(θ2 | θ1) is the conditional proposal density for θ2 given that the current state is

θ1. If the candidate values are accepted, then the chain moves to that point (which

becomes the current state) and new candidate values are provided. If θ∗ is rejected,

then the chain remains at the current point and new candidate values are provided.
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This is repeated for a number of iterations.

Algorithm

The steps to carry out the MH algorithm are as follows:

1. Choose an arbitrary starting point for the Markov chain θ0.

2. Use the proposal distribution q(θ∗ | θi) to provide a candidate point θ∗, given

θi.

3. Calculate the probability of acceptance as in (2.15).

4. Decision rule: Accept θ∗ if pα,MH > u, where u is a random value from a

Uniform[0,1] distribution, otherwise reject θ∗ and repeat process from step 2.

The proposal distribution is a key component of the algorithm and therefore it

matters how this distribution is defined. For that reason we continue by looking at

two special cases of this Monte Carlo technique.

Random Walk

For the random walk MH algorithm, the proposal distribution depends on the cur-

rent state of the chain. In other words, θ∗ is a stochastic jump from the current

state θi. A common proposal distribution for this method is a multivariate Normal

distribution centred on the current state θi and with a suitable covariance matrix

such as the (scaled) inverse observed information matrix for θ, evaluated at θi. Scal-

ing the covariance matrix appropriately can be important to produce a chain that

moves rapidly around the posterior distribution, see Bennett et al. (1996, chapter

19) for details. As this particular proposal density is symmetric about θi we have

q(θ∗ | θi) = q(θi | θ∗), so that (2.15) simplifies.

Independence Sampler

The second type is the independence sampler MH algorithm (Tierney, 1994). Con-

trary to random walk, the proposal distribution is independent of the current state

of the chain and the probability of acceptance is defined as

pindα,MH(θ∗,θi;x) = min

{
π(θ∗ | x)q(θi)

π(θi | x)q(θ∗)
, 1

}
. (2.16)
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A common proposal distribution for the independence sampler is a multivariate

Normal, centred on the empirical maximum likelihood estimate θ̂ and with the

(scaled) inverse observed information matrix for θ, evaluated at θ̂, as its covariance

matrix.

2.4.2 Ratio of uniforms (RoU)

The ratio-of-uniforms (RoU) method is a sampling technique proposed by Kinder-

man and Monahan (1977) and offers itself as an alternative method for generating

variates from a density function (see for example Ripley (1987)). Benefits of this

method, in comparison to MCMC, are the fact that the generated samples are inde-

pendent and sampled from the exact posterior. This is particularly useful for sim-

ulation studies involving analyses of many simulated datasets and comes in handy

later on in section 2.6 where, for the GP case we need to sample from a bivariate

posterior distribution and wish to do this efficiently. Therefore, we use the following

extension of the conventional RoU method.

Multivariate generalised RoU with relocation

Wakefield et al. (1991) adapt the conventional (univariate) RoU method in three

ways: a tuning parameter r (see theorem 13) and a relocation parameter µ are

introduced and the method is generalised to an arbitrary number of dimensions.

The former adaptations enable fine tuning of the method to increase its efficiency.

The RoU algorithm is justified by the following result which we give for the bivariate

case, where we have in mind the posterior distribution for GP parameters θ = (σ, ξ)

based on modelling a random sample z = (z1, . . . , znu) of threshold excesses.

Theorem 13. Let h be a positive integrable function over a subset X of R2. Suppose

that the variables (U, Vσ, Vξ) are uniformly distributed over the region

Ah(r,µ) =

{
(u, vσ, vξ) : 0 6 u 6

[
h
(vσ
ur

+ µσ,
vξ
ur

+ µξ

)] 1
2r+1

}
, (2.17)

where r > 0 and µ = (µσ, µξ). Then (Vσ/U
r + µσ, Vξ/U

r + µξ) has density h/
∫
h.

In practice it is usually not possible directly to sample uniformly over Ah(r,µ).

Therefore, a rejection method is employed in which Ah(r,µ) is enclosed within a

bounding region, over which it is easy to simulate uniformly. Simulated points that

lie in Ah(r,µ) are accepted; otherwise they are rejected. Provided that over X ,

h, x2r+1
1 [h(x1 + µσ, x2)]r and x2r+1

2 [h(x1, x2 + µξ)]
r are bounded, a simple bounding
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cuboid can be used. In the current context this is

0 6 u 6 u+(r,µ), v−σ (r,µ) 6 vσ 6 v+
σ (r,µ), v−ξ (r,µ) 6 vξ 6 v+

ξ (r,µ),

where,

u+(r,µ) = u+(r) = sup
σ,ξ

[h(σ, ξ)]
1

2r+1 ,

v−σ (r,µ) = inf
σ60

σ [h(σ + µσ, ξ + µξ)]
r

2r+1 ,

v+
σ (r,µ) = sup

σ>0
σ [h(σ + µσ, ξ + µξ)]

r
2r+1 ,

v−ξ (r,µ) = inf
ξ60

ξ [h(σ + µσ, ξ + µξ)]
r

2r+1 ,

v+
ξ (r,µ) = sup

ξ>0
ξ [h(σ + µσ, ξ + µξ)]

r
2r+1 .

Now suppose that h(σ, ξ) = L(σ, ξ; z) π(σ, ξ), so that h(σ, ξ) ∝ π(σ, ξ | z). Theorem

13 justifies the following algorithm for sampling from π(σ, ξ | z).

1. Generate values of u, vσ and vξ independently from

(a) U ∼ U
(
0, u+(r)

)
,

(b) Vσ ∼ U
(
v−σ (r,µ), v+

σ (r,µ)
)
,

(c) Vξ ∼ U
(
v−ξ (r,µ), v+

ξ (r,µ)
)
.

2. If u 6
[
h
(
vσ
ur

+ µσ,
vξ
ur

+ µξ
)] 1

2r+1 then accept the candidate θ∗ = (vσ/u
r, vξ/u

r).

Otherwise, reject θ∗ and repeat step 1.

An arbitrary candidate is accepted with probability

pα,RoU(r,µ) =
1

2r + 1

∫ ∫
h(σ, ξ) dσ dξ

u+(r)
[
v+
σ (r,µ)− v−σ (r,µ)

] [
v+
ξ (r,µ)− v−ξ (r,µ)

] .(2.18)

Wakefield et al. (1991) recommend the general strategy of mode relocation, i.e.

moving the mode of h to zero by setting µ to be equal to the mode of h (here the

maximum a posteriori estimate of θ), and r = 1/2. This is supported by some exact

theoretical results for certain special cases (e.g. normal densities and symmetric

unimodal densities) and practical experience sampling from various posterior distri-

butions. We expect π(σ, ξ | z) to be unimodal but it will tend to be asymmetric

for small numbers of threshold excesses. However, we have found that this strategy

is sufficiently efficient for our purposes, even when carrying out simulation studies

involving datasets with sample sizes as small as 25. A problem can be encountered

if the Jeffreys prior (2.6) is used, because, particularly for small sample sizes, it is
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possible for the posterior to be unbounded as ξ ↓ −1/2. This means that the region

Ah(r,µ) in (2.17) cannot be bounded as described above. However, this is of no real

concern as we will see in section 2.6 that other priors are preferable to the Jeffreys

prior in the GP case.

2.5 Prediction of extreme observations

In an extreme value analysis the main focus is often the estimation of extreme

quantiles called return levels. Let us assume that we have a vector of data x =

(x1, . . . , xm) from a sequence of independent and identically distributed random

variables X1, . . . , Xm. Let m = N × ny, where now N is the time horizon in years

and ny is the mean number of observations per year.

LetMN denote the largest value observed over a time horizon ofN years. We proceed

by first defining a quantity of interest that has been commonly used throughout

extreme value analysis (see for example Coles (2001)), based on the random variable

M1 (the annual maximum). The N-year return level xN is defined as the value

exceeded by M1 with probability 1/N , or equivalently

P (M1 6 xN) = 1− 1/N, (2.19)

For a high threshold u and under a Bin-GP model (introduced in section 1.3.1) with

parameter vector θ = (pu, σ, ξ) we have that for x > u, the distribution function of

M1 is

P (M1 6 x) = FM1(x;θ) = F (x;θ)ny =

{
1− pu

[
1 + ξ

(
x− u
σ

)]−1/ξ
}ny

, (2.20)

where F (x;θ) is the distribution function of the random variable X. Deciding on

the value for N and solving (2.19) using (2.20) for xN will provide the desired return

level. Typical values of N such as 100, 1000, 10,000 come from a variety of fields,

for example, off-shore engineering design criteria for marine structures.

A related approach defines the quantity of interest as the random variable MN ,

rather than particular quantiles ofM1. Similarly to (2.20), for x > u, the distribution

function for MN is

P (MN 6 x) = FMN
(x;θ) = F (x;θ)Nny =

{
1− pu

[
1 + ξ

(
x− u
σ

)]−1/ξ
}Nny

.(2.21)

For large N (N = 100 is sufficient), xN is approximately equal to the 37% quantile
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of the distribution of MN (Cox et al., 2002). In an estimative approach, based on a

point estimate of θ, the value of xN is below the median of MN . What is more, a

common interpretation of xN is the level exceeded on average once every N years.

However, for large N (again N = 100 is sufficient) and under an assumption of

independence at extreme levels, xN is exceeded 0, 1, 2, 3, 4 times with respective

approximate probabilities of 37%, 37%, 18%, 6% and 1.5%. It may be more instruc-

tive to examine directly the distribution of MN , rather than very extreme quantiles

of the annual maximum M1.

The relationship between these two approaches is less clear under a predictive ap-

proach, in which uncertainty about θ is incorporated into the calculations. Here we

consider the case where this is achieved using a Bayesian posterior distribution for

θ. The N -year (posterior) predictive return level xNP is the solution of

P (M1 6 xNP | x) =

∫
FM1(x

N
P ;θ) π(θ | x) dθ = 1− 1/N.

The predictive distribution function of MN is given by

P (MN 6 x | x) = FMN
(x;θ) π(θ | x) dθ. (2.22)

As noted by Smith (2003, section 1.3), accounting for parameter uncertainty tends

to lead to larger estimated probabilities of extreme events, that is, xNP tends to

be greater than an estimate x̂N based on, for example, the MLE. The strong non-

linearity of FM1(x;θ) for large x, and the fact that it is bounded above by 1, mean

that averages of FM1(x;θ) over areas of the parameter space relating to the extreme

upper tail of M1 tend to be smaller than point values near the centre of such areas.

This phenomenon is less critical when working with the distribution of MN because

now central quantiles of MN also have relevance, not just particular extreme tail

probabilities.

For a given value of N , we estimate P (MN 6 x | x) using a sample θj, j = 1, . . . , nθ

from the posterior density π(θ | x) to give

P̂ (MN 6 x | x) =
1

nθ

nθ∑
j=1

F (x;θj)
nyN . (2.23)

The solution x̂NP of P̂ (M1 6 x̂NP | x) = 1− 1/N provides an estimate of xNP .
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2.6 Simulation study: priors for GP parameters

A Bayesian approach to predictive inference requires a prior distribution to be spec-

ified. In the absence of genuine prior information we may wish, in the first instance,

to use a reference prior, but which one should we use? In section 2.6 we carry

out a simulation study to compare the performance of GP priors described in sec-

tion 2.2.3 in the context of predicting MN using a Bin-GP model. We also illustrate

the undesirable consequences of ignoring parameter uncertainty under an estimative

approach.

We use the Jeffreys prior pu ∼ Beta(1/2, 1/2) for the Binomial parameter pu. This

leads to a Beta(nu+1/2,m−nu+1/2) posterior for pu, where m is the total sample

size and nu is the number of threshold excesses. For the GP parameters we initially

consider three prior distributions:

1. Jeffreys prior, πJ,GP (σ, ξ) as shown in (2.6).

2. Truncated MDI prior, π′M,GP (σ, ξ) as shown in (2.9).

3. Uniform (or flat) prior, πU,GP (σ, ξ) as shown in (2.8).

Motivated by findings presented later in this section we generalise the truncated

MDI prior to MDI(a):

π′M,GP (σ, ξ; a) ∝ 1

σ
a e−a(ξ+1) σ > 0, ξ > −1, a > 0 (2.24)

and also include this prior to our comparison. Figure 9 below shows the Jeffreys,

truncated MDI, generalised truncated MDI (for a = 0.6) and Uniform priors for the

GP parameters as functions of ξ (for σ = 1).
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Figure 9: (a) Jeffreys (b) truncated MDI (c) generalised truncated MDI(0.6) (d)
Uniform priors for the GP distribution parameters as a function of ξ, with σ = 1.

The Jeffreys prior (2.6) is unbounded as ξ ↓ −1/2. If there are small numbers

of threshold excesses this can result, particularly if ξ < 0, in a bimodal posterior

distribution, with one mode at the boundary ξ = −1/2. This seems undesirable and

makes sampling from the posterior more difficult. In the simulation study we also

find that, notwithstanding these issues, the Jeffreys prior results in poorer predictive

performance than the truncated MDI (2.9) and Uniform (2.8) priors.

Let x† be a future N -year maximum, sampled from a distribution with distribution

function F (x;θ)nyN (i.e. the distribution function of MN). If the posterior predic-

tive distribution function (2.22) is the same as that of x† then P (MN 6 x† | x) has

a Uniform distribution on (0, 1). In practice this can only hold approximately. The

closeness of the approximation under repeated sampling provides a basis for com-

paring different prior distributions. Performance of an estimative approach based

on the MLE θ̂ can be assessed using F (x†; θ̂)nyN .

Simulation scheme

For a given prior distribution and given values of N and ny the simulation scheme

is as follows:
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1. Simulate a dataset xsim of nx independent observations from a Bin-GP(pu, σ, ξ)

distribution.

2. Sample θj, j = 1, . . . , nθ from the posterior distribution π(θ | xsim).

3. Simulate an observation x† from the distribution of MN as follows:

(a) Simulate nu, where nu ∼ Bin(Nny, pu).

(b) Simulate x† from the distribution of max(X1, . . . , Xnu), where Xi
iid∼

GP(σ, ξ), i = 1, . . . , nu.

4. Use (2.23) to evaluate P̂ (MN 6 x† | xsim).

Steps 1. to 4. are repeated 10,000 times, providing a putative sample of size 10,000

from a U(0, 1) distribution. In the frequentist approach step 4 is F (x†; θ̂)nyN . For

this simulation study we produce samples of size nθ = 1, 000 from the posterior

distribution π(θ | xsim) using the generalised ratio-of-uniforms method of Wakefield

et al. (1991), following their suggested strategy of relocating the mode of π(θ | xsim)

to the origin and using r = 1/2.

We assess the closeness of the U(0,1) approximation graphically (Geweke and Amisano,

2010), by comparing the proportion of simulated values in each U(0,1) decile to

the null value of 0.1. To aid the assessment of departures from this value we

superimpose approximate pointwise 95% tolerance intervals based on the num-

ber of points within each decile having a Bin(10000, 0.1) distribution, i.e. 0.1 ±
1.96 (0.1× 0.9/10000)1/2 = 0.1 ± 0.006. We use pu ∈ {0.1, 0.5}, σ = 1 and ξ ∈
{0.1,−0.2}. These values for ξ are chosen based on estimates from real storm peak

significant wave heights data, such as the Gulf of Mexico data (introduced in section

1.4), to reflect the kind of tail behaviours of immediate interest to us.

The plots in figures 10 to and 13 are based on simulated datasets of length nx = 500

and ny = 10, i.e. 50 years of data with a mean of 10 observations per year, for

future time horizons of lengths N = 100, 1, 000, 10, 000 and 100, 000 years. In all

figures it is evident that the estimative approach based on the MLE produces too

few values in deciles 2 to 9 and too many in deciles 1 and 10. Failing to take account

of parameter uncertainty produces distributions that tend to be too concentrated,

resulting in underprediction of large values of x† (the percentage of x† for which

P̂ (MN 6 x† | xsim) is in the top decile is much greater than 10%) and overprediction

of small values of x† (the percentage of x† for which P̂ (MN 6 x† | xsim) is in the

bottom decile is much greater than 10%). These departures increase with N , i.e.

with the degree of extrapolation. The Bayesian predictive approaches perform much
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better, with much smaller departures from the desired performance (shown in the

“control” plots in figures 11 to 13).

1

1

1

1 1

1

1

1
1 1

decile

pr
op

or
tio

n

2

2

2

2
2 2

2

2

2
2

3
3

3

3 3
3

3

3 3

3

4 4

4 4 4

4

4

4

4

4

1
2
3
4

N=100
N=1,000
N=10,000
N=100,000

flat

0.
09

0.
1

0.
11

0.
12

2 4 6 8 10

1

1

1

1 1

1 1
1

1

1

decile

pr
op

or
tio

n

2

2

2

2

2 2 2 2 2

2

3

3

3 3 3

3

3

3 3

3

4 4

4

4

4
4

4

4
4 4

1
2
3
4

N=100
N=1,000
N=10,000
N=100,000

MDI

0.
09

0.
1

0.
11

0.
12

2 4 6 8 10

1

1

1
1 1 1

1

1
1

1

decile

pr
op

or
tio

n

2 2

2 2
2

2 2

2
2

2

3

3

3 3 3

3 3

3
3

3

4

4

4

4

4

4

4

4
4

4

1
2
3
4

N=100
N=1,000
N=10,000
N=100,000

Jeffreys

0.
09

0.
1

0.
11

0.
12

2 4 6 8 10

1

1 1 1 1 1 1 1
1

1

2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

decile

pr
op

or
tio

n
2

2 2 2 2 2 2 2
2

2
3

3 3 3 3 3 3 3
3

3

4

4 4 4 4 4 4 4 4

41
2
3
4

N=100
N=1,000
N=10,000
N=100,000

MLE

Figure 10: Proportions of simulated values of P̂ (MN 6 x† | xsim) falling in U(0,1)
deciles for ξ = 0.1 and pu = 0.5 and for N = 100, 1, 000, 10, 000 and 100, 000. 95%
tolerance limits are superimposed.
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Figure 11: Proportions of simulated values of P̂ (MN 6 x† | xsim) falling in U(0,1)
deciles for ξ = 0.1 and pu = 0.1 and for N = 100, 1, 000, 10, 000 and 100, 000. 95%
tolerance limits are superimposed. The control plot is based on random U(0,1)
samples.

When the flat prior is used there is a general tendency to overpredict large values

and small values. This is perhaps to be expected because the prior weight is constant

for all ξ and a large sample of excesses may be required to downweight sufficiently

the posterior density of very large values of ξ. The departures from the desired

behaviour are more pronounced for ξ = 0.1 than ξ = −0.2 and for smaller pu, i.e.

a smaller expected number of threshold excesses. The MDI prior performs better,

but shows a tendency towards the opposite departures, i.e. underprediction of large

values and small values, in some cases. The underprediction of large values is evident

for pu = 0.1 (figures 11 and 13), but otherwise the MDI prior performs well. Results

for the Jeffreys prior are shown only for ξ = 0.1 and pu = 0.5 (figure 10). This is

because, for ξ = −0.2 and/or pu = 0.1, some of the simulated datasets result in a

posterior that is unbounded as ξ ↓ −1/2, preventing the use of the ratio-of-uniforms

method (see section 2.4.2). In figure 10 the Jeffreys prior exhibits similar general

behaviour to the MDI prior (i.e. underprediction of large values) but the departures

are greater. This is to be expected from the shapes of these priors (see figure 9):

for ξ > −1/2 the Jeffreys prior places greater weight on smaller values of ξ than the

MDI prior.
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Figure 12: Proportions of simulated values of P̂ (MN 6 x† | xsim) falling in U(0,1)
deciles for ξ = −0.2 and pu = 0.5 and for N = 100, 1, 000, 10, 000 and 100, 000.
95% tolerance limits are superimposed. The control plot is based on random U(0,1)
samples.
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Figure 13: Proportions of simulated values of P̂ (MN 6 x† | xsim) falling in U(0,1)
deciles for ξ = −0.2 and pu = 0.1 and for N = 100, 1, 000, 10, 000 and 100, 000.
95% tolerance limits are superimposed. The control plot is based on random U(0,1)
samples.
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These results suggest that, in terms of predicting MN for large N , the truncated

MDI prior performs better than the flat (Uniform) prior and the Jeffreys prior.

However, a prior for ξ that is in some sense intermediate between the flat prior and

the truncated MDI prior could possess better properties. To explore this further

we consider the generalised truncated MDI(a) prior (2.24) for 0 < a 6 1. Letting

a → 0 produces a flat prior for ξ on the interval [−1,∞). In order to explore a

range of values for a quickly, we reuse the posterior samples based on the priors

πU(σ, ξ) and π′M(σ, ξ). We use an importance sampling ratio estimator to estimate

P (MN 6 x† | xsim) twice, once using πU(σ, ξ | xsim) as the importance sampling

density q(θ) and once using π′M(σ, ξ | xsim). We calculate an overall estimate of

P (MN 6 x† | xsim) using a weighted mean of the two estimates, with weights equal

to the reciprocal of the estimated variances of the estimators (Davison, 2003, page

603).

Figure 14 shows plots based on the truncated MDI(0.6) prior. This value of a has

been selected based on plots for a ∈ {0.1, 0.2, . . . , 0.9}. We make no claim that

this is optimal, just that it is a reasonable compromise between the flat and the

truncated MDI priors, providing relatively good predictive properties for the cases

we have considered.
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Figure 14: Proportions of simulated values of P̂ (MN 6 x† | xsim) falling in U(0,1)
deciles for different combinations of ξ and pu under the truncated MDI(0.6) prior.
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limits are superimposed.



2.6 Simulation study: priors for GP parameters 67

With our main research focus being the topic of threshold selection in extreme value

modelling the results and conclusions presented in this chapter are of particular

use for our work in chapter 3. Within a Bayesian framework, we employ a cross-

validation methodology and use predictive inference to develop two novel threshold

selection strategies. The important link between the two chapters lies on the fact

that model parameter uncertainty is incorporated in the threshold selection by using

a reference prior with good predictive performance, namely the generalised truncated

MID(0.6) prior.
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3 Threshold selection in the IID case

In this chapter we direct our focus solely on threshold based extreme value mod-

elling, introduced in section 1.3. More precisely we investigate the important task of

selecting a threshold on which subsequent inference is based through the GP distri-

bution. We believe that this is an important step and that there is scope to improve

upon existing threshold selection methods. We propose a novel method of selecting

the threshold using cross-validation. We have considered an estimative approach

using the MLE, but concentrate on a Bayesian predictive approach. The motivation

behind our method is to address directly the issue of bias-variance trade-off (see

sections 1.4.2 and the introduction of section 3.3). In section 3.4 we return to the

Gulf of Mexico data that was introduced in section 1.4 to demonstrate the results of

our method. Furthermore, in section 3.5 we use Bayesian model averaging approach

to extend the idea of selecting a single “best” threshold to one that accounts for

uncertainty in the choice.

As we are proposing a new graphical diagnostic tool for selecting the threshold, it

is useful to briefly describe the classical graphical diagnostics tools that have been

commonly used for extreme value threshold modelling. Our method aims to improve

on these existing tools by removing as much as possible the arbitrariness that this

choice involves and at the same time, account directly for the bias-variance trade-off

underlying this choice. We work within the context of the GP distribution to model

threshold excesses and the parameters of interest are the scale, σ and shape, ξ.

3.1 Classical methods

Scarrott and MacDonald (2012) offer an extensive review of threshold selection meth-

ods and argue that an advantage of the classical graphical diagnostic methods is the

fact that they enable the practitioners to study the data prior to selecting the thresh-

old. However, a serious concern when using these graphical methods is that once

the threshold level is chosen, it is fixed and treated as known. In other words,

uncertainty about the threshold is completely ignored in the subsequent inference.

Alternatively, goodness-of-fit tests can be a crude method of making this decision

which relies on statistical properties of estimators, however one needs to make an

arbitrary choice of the significance level which in turn affects the power of these

tests.
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3.1.1 Mean residual life plot

The mean residual life plot was introduced by Davison and Smith (1990). For

thresholds that are sufficiently high for the GP model for threshold excesses to apply,

the mean threshold excess is linear in the threshold. The aim of a mean residual life

plot is to aid the identification of a threshold u above which the graph appears to be

linear, taking into account sampling variability summarised by confidence intervals.

We use the Gulf of Mexico dataset to illustrate this graphical diagnostic tool in

figure 15.
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Figure 15: Mean residual life plot for Gulf of Mexico storm peak significant wave
height. Dashed lines are the 95% confidence intervals.

In this example, we might judge that the solid line is approximately linear from

a threshold of 4m upwards. However, this is a somewhat subjective choice and

different viewers of the plot may choose quite different thresholds. This is typical.

Also, this method does not generalise easily to more general modelling situations.

More examples of the use of the mean residual life plot can be found in Coles (2001),

Beirlant et al. (2004) among others.
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3.1.2 Parameter stability plot

A more popular graphical method for determining the threshold is the parameter

stability plot. This is done by fitting the GP distribution for a set of increasing

thresholds with the objective of identifying the threshold at which the parameter

estimates appear to stabilise. One can allow for sampling variability by superim-

posing confidence intervals for the estimates. The GP scale parameter is modified

(to σ∗ = σ− ξu) so that both σ∗ and ξ are constant, for thresholds over which a GP

model applies. Figure 16 shows a parameter stability plot for the Gulf of Mexico

dataset.
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Figure 16: Parameter stability plots for Gulf of Mexico storm peak significant wave
height. Vertical lines are the 95% confidence intervals.

Again, we might judge that the parameter estimates stabilise for thresholds close

to 4m. This graphical method is generally preferred over the mean residual life

plot as it demonstrates more clearly the parameter sensitivity with respect to the

threshold. In addition, parameter uncertainty is directly illustrated in the plots and

the method can generalise more easily than the mean residual life plot. However, this

diagnostic tool shares the same drawback as the previous plot, that is the difficulty

in agreeing the threshold level, since stability could be interpreted differently from

one practitioner to another.
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These two diagnostics plots are a quick and easy way of studying the data prior to

any extreme value analysis and in some cases point to the direction of an appropriate

threshold level. However, as Scarrott and MacDonald (2012) explain, it is very

common when using these diagnostics that statisticians do not agree on a single value

of the threshold, but that a number of thresholds can be identified as appropriate.

This is the case, for example, in the analysis of river flow rates from the river Nidd

in Davison and Smith (1990). A variety of threshold levels could be used which

ultimately lead to very different inferences on future extreme events.

Adding to the issue of contradicting conclusions, another drawback of these graph-

ical diagnostic tools is the fact that the subsequent extreme value analysis does not

account for the fact that the threshold was subjectively chosen, i.e. threshold uncer-

tainty is completely ignored. The importance of getting the “right” choice for the

level of the threshold relates to the issue of a trade-off between bias and variance.

Effectively a threshold that is set too low might violate the asymptotic arguments

for the GP(σ, ξ) model (see theorem 3) and lead to bias, whereas a threshold that

is set too high will provide a small number of excesses leading to high variance in

the estimators of σ and ξ. This is something that we aim to address directly using

our proposed method described in 3.2.

3.1.3 Other threshold selection methods

Scarrott and MacDonald (2012) provides a thorough review of the various threshold

selection methods. As we have seen, one category of method assesses stability of

model parameter estimates (particularly the GP shape parameter ξ) with threshold.

Estimators of ξ based on functions of order statistics can be used, see for example,

Drees et al. (2000). More recently motivated by subasymptotic (or penultimate)

extreme value theory Wadsworth and Tawn (2012) formalise the parameter stability

plot method and use a likelihood-based test to assess whether the shape parameter

remains constant above a certain threshold. Northrop and Coleman (2014) develop

this approach further providing a test with improved computational performance as

compared to Wadsworth and Tawn (2012). Other categories of method are goodness-

of-fit tests (Davison and Smith, 1990, Dupuis, 1998); approaches that minimize the

asymptotic mean-squared error of estimators of ξ or of extreme quantiles, under

particular assumptions about the form of the upper tail of H (Hall and Welsh, 1985,

Hall, 1990, Ferreira et al., 2003, Beirlant et al., 2004); specifying a model below

the threshold (Wong and Li, 2010, MacDonald et al., 2011, Wadsworth and Tawn,

2012). In the latter category, the threshold above which the GP model is assumed

to hold is treated as a model parameter and threshold uncertainty is incorporated by
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averaging inferences over a posterior distribution of model parameters. In contrast,

our earlier discussions have been on a single threshold approach in which threshold

level is viewed as a tuning parameter, whose value is selected prior to the main

analysis and is treated as fixed and known when subsequent inferences are made.

In the first instance our aim is to develop a likelihood-based method for selecting a

single threshold that addresses the bias-variance trade-off based on the main purpose

of the modelling, i.e. prediction of extremal behaviour. We make use of a data-

driven method commonly used for the assessment of predictive performance: cross-

validation. Later, in section 3.5, we consider how this method could be adapted to

take into account uncertainty in the choice of a single threshold.

3.2 Cross-validation (CV)

In the early 1930’s researchers noticed (Larson, 1931) that when evaluating the

statistical performance of an algorithm using the same dataset that was initially

used for training it returned overoptimistic results. In order to deal with this issue,

the procedure of cross-validation came about from the works of Mosteller and Tukey

(1968), Stone (1974), Geisser (1975). We continue this section by introducing the

methodology behind the classical approaches in applying cross-validation as it forms

a key role in our proposed method for selecting the threshold. Arlot and Celisse

(2010) is a useful source for a more in-depth analysis on cross-validation procedures.

Methodology

Suppose that we have a vector of raw (unthresholded) data x = (x1, . . . , xm) as-

sumed to have been sampled randomly from a common distribution. The first step

involves splitting the dataset into two sub-samples

1. the training sample xt, of size nt and

2. the validation sample xv of size nv,

where m = nt + nv.

The next step uses the training sample to train a prediction algorithm. Then pre-

dictive ability of this algorithm is evaluated based on the errors that it makes when

predicting the validation sample. In the context of evaluating the performance of a

statistical model, the validation sample is considered as “new” data from the under-

lying model and validation process takes place by assessing the model’s prediction
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error. Repeating this process for several data splits and averaging the prediction

error over the number of splits results in the technique known as cross-validation.

3.2.1 Leave-one-out (LOO)

The leave-one-out cross-validation approach deals with validation samples consisting

of a single observation. In other words, nv = 1 and therefore the training sample

is of size nt = m − 1. LOO cross-validation is carried out by subsequently leaving

out each observation from the dataset. Thus, for a sample of size m this process is

repeated m times and the prediction error can be found by

L̂LOO =
1

m

m∑
i=1

Ei i = 1, . . . ,m, (3.1)

where Ei represents the prediction error when observation i is treated as the val-

idation sample. Figure 17 shows the leave-one-out cross validation approach for

the Gulf of Mexico dataset where observation x45 (shaded in blue) was set as the

validation sample.
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Figure 17: Leave-one-out cross-validation for Gulf of Mexico storm peak significant
wave height. • validation sample ; ◦ training sample.
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Once observation x45 is removed from the dataset, the GP distribution is fitted to

excesses of a threshold u in the training sample and the model parameter estimates

for σ and ξ can be calculated using, for example, MLE. This process is shown below

in figure 18.
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Figure 18: Leave-one-out cross-validation for Gulf of Mexico storm peak significant
wave height. • validation sample ; ◦ training sample ; − threshold excesses.

3.2.2 K-fold (KF)

A common extension to the LOO cross-validation is the approach known as K-fold

cross-validation. This method was first introduced by Geisser (1975) and involves

the splitting of the dataset into K approximately equal and mutually exclusive sub-

samples or folds. Typical choices of K are 5 or 10 and it is clear that when K = m,

the method is equivalent to leave-one-out cross-validation. For this approach, the

validation sample consists of one of the sub-samples of size nv = m/K and the

remaining dataset forms the training sample. K-fold cross validation takes place

by repeating the validation process K times. Just as in LOO cross-validation, the

performance of a statistical model is assessed by measuring it’s prediction error and
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is found by

L̂KF =
1

K

K∑
i=1

Ei, i = 1, . . . , K, (3.2)

where Ei represents the prediction error when fold i is treated as the validation

sample. Figure 19 shows the K-fold cross validation approach for the Gulf of Mexico

dataset for K = 10 and where the first fold [x1, x31] was set as the validation sample,

although, in the current context where x1, . . . , xm are i.i.d. there is no requirement

for the validation data to consist of contiguous observations.
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Figure 19: K-fold cross-validation for Gulf of Mexico storm peak significant wave
height. Blue shaded area forms the validation sample ; Unshaded area forms the
training sample.

Just as in the LOO cross-validation method, once the first fold is removed from the

dataset, the GP distribution is fitted to threshold excesses in the training sample

and the model parameter estimates for σ and ξ can be calculated using for example

MLE.
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3.2.3 Repeated random sub-sampling (RRSS)

The repeated random sub-sampling cross-validation approach (Picard and Cook,

1984) is somewhat similar to that of K-fold cross-validation. The limitation of the

K-fold method is the fact that the prediction error is measured only K times due

to the uniquely defined folds. This however, can be resolved by the RRSS approach

which allows for the prediction error to be measured more than K times. This is

because we can choose any random sample of size nt to be the training sample (if

nt = m−1 then we have LOO, if nt = m−m/K then we have KF). For a validation

sample of size nv = m/K, this method allows us to repeat the validation process up

to
(
m
nv

)
times. Let KRRSS be the number of times we repeat the RRSS procedure,

then the statistical model’s prediction error can be found by

L̂RRSS =
1

KRRSS

KRRSS∑
i=1

Ei, i = 1, . . . , KRRSS, (3.3)

where Ei represents the prediction error when the sub-sample i is treated as the

validation sample. Figure 20 shows one example of an RRSS split of the data for

the Gulf of Mexico dataset for a validation sample of size nv = 31.
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Figure 20: Repeated random sub-sampling cross-validation for Gulf of Mexico storm
peak significant wave height. • validation sample ; ◦ training sample.
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Once the random sub-sample is removed from the dataset, the GP distribution is

fitted to the threshold excesses in the training sample and the model parameter

estimates for σ and ξ can be calculated using for example MLE.

3.2.4 Choice of CV method

There is no general theory to indicate which form of CV is best: this will depend

on the specific application (Arlot and Celisse, 2010). Here we use LOO CV. This

method is exhaustive, i.e. all possible training sets of size m − 1 are used and has

the property that each observation is used as a validation observation exactly once.

LOO CV is often avoided because it can be more computationally-intensive than

other methods. In section 3.3.2 we reduce the computational intensity using an

approximation.

For our purposes LOO CV is attractive because it will (a) provide, for each candidate

threshold, an estimate of a quantity by which the discrepancy between model and

(extreme) data can be measured (see section 3.3.3); and (b) prove useful in dealing

with threshold uncertainty by providing weights for a weighted average of inferences

from different thresholds (see section 3.5).

3.3 Threshold selection using cross-validation

In this section we direct our focus to threshold based extreme value modelling for the

Bin-GP model and utilise the LOO cross-validation technique in order to address

the issue of selecting an appropriate threshold. Our aim is to construct a somewhat

automatic threshold selection procedure, which improves the classical methods de-

scribed earlier by lessening the obscurity of where exactly a suitable threshold should

be selected.

Bias-Variance trade-off

A well known issue within the threshold based extreme value modelling analysis

is that of a bias-variance trade-off. On one hand, a threshold that is set too low

might violate the asymptotic arguments of the GP model leading to bias. On the

other hand, a threshold that is set too high will provide a small number of threshold

excesses leading to high variance in the estimators of the model parameters.

We explained earlier that the classical threshold selection methods do not directly

address this issue. For example, using the parameter stability plots (see figure 16),
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one aims to choose the lowest threshold for which the parameter estimates appear

to have stabilised and goodness-of-fit approaches seek the lowest threshold for which

the GP model is not rejected by an hypothesis test. Both approaches could be char-

acterised as seeking a threshold that minimises the variance part of the trade-off

subject to some subjective and inexplicit constraint on the suitability of the GP

model. However, one is unaware whether a lower threshold would be more appro-

priate since it could be possible that the benefit of reducing imprecision outweighs

the increase in bias. Faced with this reality, we are proposing to incorporate a cross-

validation step in the threshold selection process. This allows us to directly address

the issue of bias-variance trade-off by comparing the predictive performance of a

range of thresholds.

3.3.1 Cross-validation predictive performance

Suppose that we have a vector of raw (unthresholded) data x = (x1, . . . , xm) from

a sequence of independent and identically distributed random variables X1, . . . , Xm

with parametric density function F = f(xi;θ) having parameter vector θ. Further-

more, without loss of generality we assume that x1 < · · · < xm. A Bin-GP(pu, σu, ξ)

model is used at threshold u, where pu = P (X > u) and (σu, ξ) are the parameters

of the GP(σu, ξ) distribution that models excesses of u. It is clear that this model

is defined by the choice of the threshold and we reiterate the fact that it is of great

importance to choose an appropriate threshold for this analysis.

Our aim is to quantify the ability of Bin-GP inferences based on threshold u to

predict (out-of-sample) at extreme levels. Let us define u as the training threshold

and introduce a validation threshold, v, for v > u, where high values of v are of

greatest interest. At threshold u we have a Bin-GP(pu, σu, ξ) model and if 1 + ξ(v−
u)/σu > 0 then a Bin-GP(pv, σv, ξ) model is implied at threshold v, where

(a) σv = σu + ξ(v − u) and

(b) pv = P (X > v) = (1 + ξ(v − u)/σu)
−1/ξ pu.

Otherwise, i.e. if 1 + ξ(v − u)/σu 6 0, then pv = 0. For a particular value of v we

wish to compare the predictive ability of the implied Bin-GP(pv, σv, ξ) model (which

depends on the choice of u) across a range of values of u.

We employ a leave-one-out cross-validation scheme in which x(r) = {xi, i 6= r} forms

the training sample and xr the validation sample. We use, as a measure of predictive
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performance at validation threshold v when using training threshold u,

T̂v(u) =
m∑
r=1

log f̂v(xr | x(r), u) (3.4)

where f̂v(xr | x(r), u) is an estimate of the density of xr at validation threshold

v based on a training threshold u and on training data x(r). Suppose that the

parameters θ = (pu, σu, ξ) are known, and the {xi} are conditionally independent

given θ. If pv > 0 then

fv(xr | x(r), u) = (1− pv)I(xr6v) {pvg(xr − v;σv, ξ)}I(xr>v) , r = 1, . . . ,m, (3.5)

where g(·) is the density of a GP distribution, i.e.

g(xr − v;σv, ξ) =
1

σv

[
1 + ξ

(xr − v)

σv

]−(1+1/ξ)

+

. (3.6)

Otherwise, i.e. if pv = 0 then

fv(xr | x(r), u) = (1− pv)I(xr6v)pI(xr>v)
v , (3.7)

where I(·) is the indicator function such that I(x) = 1 if x is true and I(x) = 0

otherwise.

3.3.2 Estimation of cross-validation densities

One way to estimate fv(xr | x(r), u) is using the cross-validation estimative density

fv(xr | θ̂, u), where θ̂ = (p̂u, σ̂u, ξ̂) is an estimate, perhaps the MLE, of θ based

on x(r) and σ̂v = σ̂u + ξ̂(v − u) and p̂v = (1 + ξ̂(v − u)/σ̂u)
−1/ξ̂p̂u. However, this

takes no account of the uncertainty associated with estimating θ using x(r). This

is undesirable, because the size of this uncertainty will vary greatly across different

thresholds: uncertainty in GP parameters will tend to increase as the threshold is

raised. An additional concern is that a point estimate of GP model parameters can

correspond to a zero likelihood for a validation observation. This happens when a

point estimate of ξ is negative and the validation observation is greater than the

estimated upper endpoint u − σ̂u/ξ̂. In this circumstance T̂v(u) suggests that u is

‘infinitely bad’ and the estimative approach would effectively rule out the threshold

u. Accounting for parameter uncertainty alleviates this problem by giving weight

to parameter values other than a particular point estimate. One could approxi-

mate the effects of parameter uncertainty using large sample estimation theory or

bootstrapping (Young and Smith, 2005, chapter 10). However, large sample results
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may provide poor approximations for high thresholds (small numbers of excesses)

and the GP observed information is known to have poor finite-sample properties

(Süveges and Davison, 2010). Bootstrapping, of ML or PWM estimates, increases

computation time further and is subject to the regularity conditions mentioned in

chapter 1.

For these reasons we prefer a predictive approach, implemented in a Bayesian set-

ting, to incorporate parameter uncertainty. Inferences are averaged over a posterior

distribution π(θ | x(r)) of parameters, to reflect differing parameter uncertainties

across thresholds. Specifically, the cross-validation predictive densities at validation

threshold v, based on a training threshold u, are given by

fv(xr | x(r), u) =

∫
fv(xr | θ,x(r)) πu(θ | x(r)) dθ, r = 1, . . . ,m, (3.8)

where, assuming that the {xi} are conditionally independent given θ,

fv(xr | θ,x(r)) = fv(xr | θ) = (1− pv)I(xr6v) {pvg(xr − v; [σv]+, ξ)}I(xr>v) . (3.9)

A prior distribution π(θ) is required for θ. We will use a prior for the GP parameters

based on the results of the simulation study in section 2.6.

Let the parameter vector be denoted as θ = (pu, σu, ξ) and π(θ) a prior density for θ.

Let xs denote a subset of x. The posterior density is πu(θ | xs) ∝ L(θ;xs, u)π(θ),

where

L(θ;xs, u) =
∏

i:xi∈xs
fu(xi | θ), (3.10)

and where

fu(xi | θ) = (1− pu)I(xi6u) {pug(xi − u;σu, ξ)}I(xi>u) , (3.11)

and g(xi − u;σu, ξ) is defined in (3.6).

Suppose that we have a sample θ
(r)
j , j = 1, . . . , nθ from the posterior πu(θ | x(r)).

Then a Monte Carlo estimator of fv(xr | x(r), u) based on (3.8) is given by

f̃v(xr | x(r), u) =
1

nθ

nθ∑
j=1

fv(xr | θ(r)
j ,x(r)). (3.12)

Evaluation of estimator (3.12), for r = 1, . . . ,m, is computationally intensive be-

cause it involves generating samples from m different posterior distributions. To

make this approach practical we consider an importance sampling estimator (Gelfand,
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1996, Gelfand and Dey, 1994) that enables estimation of fv(xr | x(r), u), for r =

1, . . . ,m− 1, using a single posterior sample only. We rewrite (3.8) as

fv(xr | x(r), u) =

∫
fv(xr | θ,x(r)) qr(θ)h(θ) dθ, r = 1, . . . ,m, (3.13)

where qr(θ) = πu(θ | x(r))/h(θ) and h(θ) is an importance sampling density whose

support must include that of πu(θ | x(r)). In the current context a common choice

is πu(θ | x) (Gelfand and Dey, 1994, page 511), i.e. the posterior given the entire

dataset. However, the support of πu(θ | x): ξ > −σu/(xm − u), does not contain

that of πu(θ | x(m)), i.e. ξ > −σu/(xm−1 − u). Therefore we use h(θ) = πu(θ | x)

for r 6= m, and (3.12) for r = m, requiring only two posterior samples.

Suppose that we have a sample θj, j = 1, . . . , nθ from the posterior πu(θ | x). For

r = 1, . . . ,m− 1 we use the importance sampling ratio estimator

f̂v(xr | x(r), u) =

∑nθ

j=1 fv(xr | θj) qr(θj)∑nθ

j=1 qr(θj)
=

∑nθ

j=1 fv(xr | θj)/fu(xr | θj)∑nθ

j=1 1/fu(xr | θj)
, (3.14)

where qr(θ) = πu(θ | x(r))/πu(θ | x) ∝ 1/fu(xr | θ).

If we also have a sample θ
(m)
j , j = 1, . . . , nθ from the posterior πu(θ | x(m)) then

f̂v(xm | x(m), u) =
1

nθ

nθ∑
j=1

fv(xm | θ(m)
j ). (3.15)

We can now use (3.14) and (3.15) in (3.4) to measure the predictive performance at

validation threshold v when using a training threshold u.

3.3.3 Comparing training thresholds

Suppose that we consider k training thresholds u1 < · · · < uk, resulting in a set of

estimates T̂v(u1), . . . , T̂v(uk) of predictive performance, and that we wish to select

one of these thresholds. The obvious choice is u∗ = arg max
u

T̂v(u). Up to an additive

constant, T̂v(u) provides an estimate of the negated Kullback-Leibler divergence

between the Bin-GP model at validation threshold v and the true density (see, for

example, Silverman (1986, page 53)). Therefore, u∗ has the property that, of the

thresholds considered, it has the smallest estimated Kullback-Leibler divergence.

Implementation of this approach requires some subjective inputs: the choice of

training thresholds (u1, . . . , uk), validation threshold v and priors for the Binomial-

GP parameters; and therefore cannot be fully automated. However, as we discuss
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below, the extent of this subjectivity can be reduced.

Choice of training thresholds

Choosing u1, . . . , uk is the starting point for many threshold selection methods.

These thresholds should span the range of thresholds that are entertained as plau-

sible and uk should not be so high that it provides little information from which to

make inferences about the GP parameters. For example, in a parameter stability

plot using a threshold that is too high can cause numerical problems in calculating

estimates of parameters and their standard errors. We return to this issue below

when discussing choice of prior distributions. No definitive rule exists for limiting

uk but Jonathan and Ewans (2013) suggest that there should be no fewer than 50

threshold excesses. An initial graphical diagnostic such as a parameter stability

plot can be useful and can give an indication of a range of thresholds over which

bias-variance trade-off is occurring.

Choice of validation threshold

If we are to compare the performances of training thresholds u1, . . . , uk, we need

v > uk. The larger v is the fewer excesses of v there are and the smaller the amount

of information available from data thresholded at v. This is a heuristic argument

for taking v = uk, which is strengthened by the following argument.

Consider two validation thresholds, v1 = uk and v2 > uk. If we validate the inferences

from u1, . . . , uk at v1 = uk, then, for each training threshold, all the exceedances

of v1 enter into the GP part of the validation log-likelihood (3.9), and the sizes of

the threshold exceedances are used. If we validate at v2, which is greater than uk,

then this is no longer true. It is only exceedances of v2 for which the size of the

exceedance enters the GP part of (3.9), and information from observations between

uk and v2 enter the validation log-likelihood only in the form that “these observations

were between uk and v2”. Therefore, in moving from v1 to v2 we have lost validation

information. Moreover, the contributions to (3.9) from observations that lie above v2

is the same whether we validate at v1 or v2. The prediction of an observation x > v2 is

unaffected by whether v1 or v2 is used and pv1 g(x−v1;σv1 ; ξ) = pv2 g(x−v2;σv2 ; ξ) in

(3.9). Therefore, in moving from v1 to v2 we have reduced the validation information

from observations that lie between v1 and v2 and gained nothing in return, i.e.

choosing v = uk provides the greatest amount of validation information and nothing

is gained by choosing v > uk.
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If we choose a set of training thresholds u1, . . . , uk as being plausible a priori then

we should validate using validation threshold v = uk. If we want to examine sen-

sitivity to validation threshold we could also validate at, say, uk−1, although we

should appreciate that this is effectively changing our set of training thresholds to

u1, . . . , uk−1.

Choice of prior distributions

In chapter 2 we compared the predictive performance of three reference priors (Jef-

freys, MDI and Uniform) for GP parameters. We found that a generalisation,

MDI(0.6), of the MDI prior, given by (2.24) with a = 0.6, provided good pre-

dictive properties for the cases we considered. Such priors are intended for use in

situations where substantial prior information is not available and it is expected that

information provided by the data will dominate the posterior distribution (O’Hagan,

2006). If a very high threshold, with few threshold excesses, is chosen then the data

may not dominate resulting in such large posterior uncertainty about model parame-

ters, especially the GP shape parameter ξ, that non-negligible posterior probability

is placed on unrealistically large values of ξ. This may mean that extreme value

extrapolations are unrealistic. We use the MDI(0.6) prior for the GP parameters,

bearing in mind the potential problems we have just discussed. We also use the

Jeffreys Beta(1/2, 1/2) prior for pu, as detailed in section 2.6.

We continue this chapter by applying the Bayesian cross-validation threshold se-

lection approach to the Gulf of Mexico dataset with an aim of choosing the single

threshold that attains the best (out-of-sample) predictive performance. We sam-

ple from posterior distributions for GP parameters using the generalised ratio-of-

uniforms method with mode relocation and r = 1/2 (section 2.4.2). For analyses

involving a single (real) dataset we simulate posterior samples of size 10,000. For the

simulation studies, where many datasets are analysed, we simulate posterior samples

of size 1,000. Equivalent results were obtained using a random walk Metropolis-

Hastings sampler (section 2.4.1), but we prefer to use the ratio-of-uniforms method

as it produces independent samples and convergence monitoring is not required.

3.4 Significant wave height data: single threshold

We apply our Bayesian cross-validation scheme to the Gulf of Mexico storm peak

significant wave height dataset, to inform the selection of a single threshold. We use

training thresholds {u1, . . . , u20} set at the 0% (sample minimum), 5%, . . . , 95%

sample quantiles and validation threshold equal to u20. To examine sensitivity to
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the choice of the highest threshold we also use validation thresholds set at the 80%,

85% and 90% sample quantiles. With a total sample size of 315 observations, there

are only approximately 16 excesses of the 95% threshold: using so few observations

to train, and to validate, the GP model is optimistic. The 90%/85%/80% thresholds

have approximately 32/48/63 excesses so only the 80% threshold obeys the rule-of-

thumb that there should be at least 50 excesses.

To facilitate comparison of the training threshold performance for different valida-

tion thresholds we define the estimated threshold weight associated with training

threshold ui, assessed at validation threshold v, by

wv(ui) = exp{T̂v(ui)}/
k∑
j=1

exp{T̂v(uj)}, (3.16)

where T̂v(u) is defined in (3.4). The ratio wv(u2)/wv(u1), an estimate of a pseudo-

Bayes factor (Geisser and Eddy, 1979), is a measure of the relative performance

of threshold u2 compared to threshold u1. In section 3.5 these weights are used to

combine inferences from different training thresholds.

Figure 21 shows the plot of the estimated threshold weights against training thresh-

old based on different validation thresholds. The 80%, 85% and 90% validation

thresholds are in reasonable agreement, suggesting training thresholds, in the region

of the 55-70% sample quantiles (for which the MLE of ξ ≈ 0.1). The 95% validation

threshold suggests a slightly higher training threshold.
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Figure 21: Analysis of Gulf of Mexico significant wave height dataset using an
MDI(0.6) prior for the GP parameters. Estimated threshold weights for validation
threshold v, by training threshold u. The upper axis gives the significant wave height
scale in metres.

The profile of threshold weight with training threshold tends to be flatter for high

validation thresholds than for lower validation thresholds, because high validation

thresholds contain fewer threshold excesses, with which to compare training thresh-

olds, than low validation thresholds. This is particularly evident if 97.5% and 99%

validation thresholds are used (not shown). The Gulf of Mexico dataset contains 315

observations, so the 97.5% and 99% validation thresholds are exceeded by only 8 and

3 observations respectively, too few excesses on which to base an assessment. This

conclusion ties in with the rule of thumb suggested earlier that around 50 threshold

excesses would be sufficient to carry out meaningful inference. The 80% and 85%

validation thresholds provide us with 63 and 48 threshold excesses respectively and

it is reassuring to note that both validation thresholds agree on the sample quantile

region to select the threshold.

If v = uk is set at the 80% sample quantile, then the ‘best’ threshold among those

considered is the 60% sample quantile. If instead v is set at the 85% sample quantile,

then the ‘best’ threshold among those considered is the 65% sample quantile.
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Prediction of extreme observations

From a practical point of view the aim is to provide guidance to design engineers

on the likely values of future extreme events. This was introduced in section 2.5

where we discussed two approaches, based on (i) the 100(1− 1/N)% quantile of the

distribution of an annual maximum (the N -year return level), and (ii) (summaries

of) the distribution of an N -year maximum MN . Here we explore how the threshold

chosen affects predictive inferences about these quantities for the Gulf of Mexico

significant wave height dataset to establish two measures of future extreme events.

In section 2.5 we noted that a predictive approach tends to inflate predictive N -year

return levels relative to the corresponding median of the predictive distribution of

MN .

Figure 22 shows that the N -year predictive return levels and the medians of the

predictive distribution of N -year maxima MN are close for N = 100, where little

or no extrapolation is required, but for N = 1, 000 and N = 10, 000 the former is

greater than the latter. From the 55% training threshold upwards, which includes

thresholds that have high estimated training weights, estimates of the median of

M1000 and M10000 from the Gulf of Mexico data are implausibly large, e.g. 31.6m

and 56.7m for the 75% threshold. The corresponding estimates of the predictive

return levels are even less credible. The problem is that high posterior probability

of large positive values of ξ, caused by high posterior uncertainty about ξ, translates

into large predictive estimates of extreme quantiles.
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Figure 22: Analysis of Gulf of Mexico significant wave height dataset using an
MDI(0.6) prior, for the GP parameters. N -year predictive return levels and medians
of the predictive distribution of MN for N = 100, 1, 000 and 10, 000 by training
threshold u. The upper axis gives the significant wave height scale in metres.

Figure 23 gives two examples of the posterior samples of σu and ξ underlying the

plots in figures 21 and 22. The marginal posterior distributions of ξ are positively

skewed, because for fixed σu, ξ is bounded below by σu/(xm − u). The higher the

threshold the larger the posterior uncertainty and the greater the skewness towards

values of ξ that correspond to a heavy-tailed distribution. For the Gulf of Mexico

data at the 95% threshold P̂ (ξ > 1/2) ≈ 0.20 and P̂ (ξ > 1) ≈ 0.05. This issue is

not peculiar to a Bayesian analysis: frequentist confidence intervals for ξ and for

extreme quantiles are also unrealistically wide.
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Figure 23: Samples from the posterior distribution π(σu, ξ | x) using an MDI(0.6)
prior, with superimposed (unnormalised) contours of the posterior density. The
dashed lines show the support of the posterior distribution, that is, ξ > σu/(xm−u).
A cross shows the posterior mode. Left: ‘best’ training threshold (based on the 85%
and 90% validation thresholds) at 65% sample quantile. Right: 95% sample quantile
training threshold.

Physical considerations suggest that there is a finite upper limit to storm peak sig-

nificant wave height Hsp
s (Jonathan and Ewans, 2013). However, if there is positive

posterior probability on ξ > 0 then the implied distribution of Hs is unbounded

above and on extrapolation to a sufficiently long time horizon, Nl say, unrealisti-

cally large values will be implied. This may not be a problem if Nl is greater than

the time horizon of practical interest, that is, the information in the data is sufficient

to allow extrapolation over this time horizon. If this is not the case then one should

incorporate supplementary data (perhaps by pooling data over space as in Northrop

and Jonathan (2011)) or prior information. Jonathan and Ewans (2013) advocate

this if there are fewer than 50 threshold excesses. Some practitioners assume that

ξ < 0 a priori, in order to ensure a finite upper limit, but such a strategy may

sacrifice performance at time horizons of importance. It is important to appreciate

that the extent to which one can hope to extrapolate with realism is limited by the

information available and the level at which one can set the threshold.

We now consider another dataset for which these issues are far less of a problem

than for the Gulf of Mexico dataset.



3.4 Significant wave height data: single threshold 89

3.4.1 North sea significant wave height data

This dataset, from an unnamed location in the North Sea, contains 628 hindcast

storm peak significant wave heights from October 1964 to March 1995, restricted to

the period October to March within each year. Figure 24 shows a times series plot

of the storm peaks and a parameter stability plot for the GP shape parameter ξ.
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Figure 24: North Sea significant wave height dataset. Left: times series plot. Right:
parameter stability plot for the GP shape parameter ξ. The upper axis gives the
significant wave height scale in metres.

The main differences between the North Sea and Gulf of Mexico datasets are that

(i) the North Sea dataset has approximately double the number of observations,

(ii) across all thresholds the MLE of the GP shape parameter ξ is negative for

the North Sea dataset, whereas, for higher thresholds, it is positive for the Gulf

of Mexico dataset, and (iii) perhaps the MLE of ξ stabilizes at a lower quantile

of threshold for the North Sea dataset than for the Gulf of Mexico dataset. The

effects of these differences can be seen in figure 25. The Bayesian cross-validation

scheme (left hand plot) gives thresholds in the region of the 35% sample quantile

the greatest weight, and there is close agreement between the different validation

thresholds (effectively different choice of the highest training threshold). In the

right hand plot, the estimated medians of the predictive distribution of MN for

N = 100, 1, 000 and 10, 000 are realistic for all the training thresholds considered. It

is only as we approach the very highest thresholds (for example, the 97.5% sample

quantile, which has approximately 16 excesses) that the estimated 1, 000-year and

10, 000 year predictive return levels increase rapidly, as the posterior distribution of

ξ (see figure 26) becomes very diffuse.
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Figure 25: Analysis of North Sea significant wave height dataset using an MDI(0.6)
prior for the GP parameters. Left: estimated threshold weights for validation thresh-
old v, by training threshold u. Right: estimated N -year predictive return levels and
medians of the predictive distribution of MN for N = 100, 1, 000 and 10, 000 by
training threshold u. The upper axes gives the significant wave height scale in
metres.
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Figure 26: Samples from the posterior distribution π(σu, ξ | x) using an MDI(0.6)
prior, with superimposed (unnormalised) contours of the posterior density. The
dashed lines show the support of the posterior distribution, that is, ξ > σu/(xm−u).
A cross shows the posterior mode. Left: ‘best’ training threshold (based on the 85%,
90% and 95% validation thresholds) at 35% sample quantile. Right: 95% sample
quantile training threshold.

In the following section we investigate how uncertainty about the threshold choice

can be accounted for in our cross-validation method for threshold selection.
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3.5 Accounting for uncertainty in threshold selection

Traditional statistical analysis within the context of model selection often ignores the

uncertainty that is present in the selection process. A technique that is designed to

account for this uncertainty is called Bayesian Model Averaging (BMA). It has been

successfully applied in a variety of model selection scenarios such as linear regression

and generalised linear models with the aim of improving predictive performance.

Accounting for uncertainty in the choice of model is achieved by averaging over a

number of competing models.

Historically, BMA was first mentioned in the 1960s outside the scope of statistical

analysis and gained ground in the 1970s in the economics literature which involved

combining predictions from forecasting models. From a statistical point of view,

the work of Roberts (1965) involved model averaging in the form of combining

opinions from two experts. This was followed by Leamer (1978) who presented

the basic concepts for BMA, however as Hoeting et al. (1999) notes this received

little attention and “little progress was made until new theoretical developments

and computational power enabled researchers to overcome the difficulties related to

implementing BMA”.

In this section we use BMA (Hoeting et al., 1999, Gelfand and Dey, 1994) to

combine inferences based on different thresholds. Consider a set of k training

thresholds u1, . . . , uk and a particular validation threshold v. We view the k Bin-

GP models associated with these thresholds as competing models. There is evi-

dence that one tends to get better predictive performance by interpolating smoothly

between all models entertained as plausible a priori, than by choosing a single

model (Hoeting et al., 1999, section 7). Suppose that we specify prior probabil-

ities P (ui), i = 1, . . . , k for these models. In the absence of more specific prior

information, and in common with Wadsworth and Tawn (2012), we use a discrete

Uniform prior P (ui) = 1/k, i = 1, . . . , k. We suppose that the thresholds occur at

quantiles that are equally spaced on the probability scale. We prefer this to equal

spacing on the data scale because it seems more natural and retains its property of

equal spacing under data transformation.

Let θi = (pi, σi, ξi) be the Bin-GP parameter vector under model ui, under which

the prior is π(θi | ui). By Bayes’ theorem, the posterior threshold weights are given

by

Pv(ui | x) =
fv(x | ui)P (ui)∑k
i=1 fv(x | ui)P (ui)

,
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where

fv(x | ui) =

∫
fv(x | θi, ui)π(θi | ui) dθi

is the predictive density of x based on validation threshold v under model (training

threshold) ui. However, fv(x | ui) is difficult to estimate and is improper if π(θi | ui)
is improper. Following Geisser and Eddy (1979) we use

∏m
r=1 fv(xr | x(r), ui) =

exp{T̂v(ui)} as a surrogate for fv(x | ui) to give

P̂v(ui | x) =
exp{T̂v(ui)}P (ui)∑k
j=1 exp{T̂v(uj)}P (uj)

. (3.17)

Let θij, j = 1, . . . , nθ be a sample from π(θi | x), the posterior distribution of the

GP parameters based on threshold ui. We calculate a model-averaged estimate of

the predictive distribution function of MN using

P̂v(MN 6 x | x) =
k∑
i=1

P̂ (MN 6 x | x, ui)P̂v(ui | x), (3.18)

where, by analogy with (2.23),

P̂ (MN 6 x | x, ui) =
1

nθ

nθ∑
j=1

F (z;θij)
nyN .

The solution x̂NP of

P̂v(M1 6 x̂NP | x) = 1− 1/N (3.19)

provides a model-averaged estimate of the N -year predictive return level, based on

validation threshold v.

3.6 Simulation study: single and multiple thresholds

We compare inferences based on a single threshold to those obtained by averaging

over many thresholds. The comparisons are based on random samples simulated

from three distributions: a unit exponential, a standard normal and a uniform-

GP hybrid; chosen to represent qualitatively different extremal behaviour. With

knowledge of the simulation model one would be able to choose a suitable threshold,

at least approximately. In practice this would not be the case and so it is interesting

to see how well the strategies of choosing the ‘best’ threshold u∗ (section 3.3.3), and

of averaging inferences over different thresholds (section 3.5), compare to this choice
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and how the estimated weights P̂v(ui | x) in (3.16) vary over ui, and with v.

The unit exponential distribution has the property that a GP(1,0) model holds

above any threshold. Therefore, choosing the lowest threshold possible is optimal.

For the normal distribution the GP model does not hold for any finite threshold,

the approximation of a GP model to the truth improving slowly as the threshold

increases. The limiting case is the exponential distribution (ξ = 0), but at sub-

asymptotic levels the effective shape parameter is negative (Wadsworth and Tawn,

2012) and one expects a relatively high threshold to be indicated. The uniform-GP

hybrid has a constant density up to its 75% quantile and a GP density with shape

parameter 0.1 for excesses of the 75% quantile. Thus, a GP distribution holds only

above the 75% threshold.

In each case we simulate 1000 samples each of size 500, representing 50 years of

data with an average of 10 observations per year. We set training thresholds at the

50%, 55%, . . . , 95% sample quantiles and validation thresholds at the 95% sample

quantile (equal to the largest training threshold). For each sample, and for values

of N between 100 and 10, 000, we solve P̂v(MN 6 z | x) = 1/2 for z (see (2.23))

to give estimates of the median of MN . We show results for three single thresholds:

the threshold one might choose based on knowledge of the simulation model; the

‘best’ threshold u∗, that maximizes the measure T̂v(u) of predictive performance

(section 3.3.3); and another (clearly sub-optimal) threshold chosen to facilitate fur-

ther comparisons. We compare these estimates, and a model-averaged estimate

based on (3.18) to the true median of MN , F−1
true((1/2)10N), where Ftrue is the true

distribution function of the (unthresholded) observations.

The results for the exponential distribution are summarized in figure 27. As ex-

pected, all strategies have negligible bias. The model-averaged estimates match

closely the behaviour of the optimal strategy (the 50% threshold, as it is the lowest

training threshold considered here). The best single threshold results in slightly

greater variability, offering less protection than model-averaging against estimates

that are far from the truth.
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Figure 27: Predictive medians of MN compared with the true median (solid black
lines), for datasets simulated from a unit exponential distribution. The set of train-
ing thresholds is the 50%, 55%, . . . , 95% sample quantiles. Grey lines: individual
lines for each dataset. Dashed black lines: pointwise 5%, 25%, 50%, 75% and
95% sample quantiles. Threshold strategies: sample median (top left); 95% sample
quantile (bottom left); model-averaged estimate (top right); best single threshold
(bottom right).

In the normal case (figure 28) the expected underestimation is evident for large N :

this is substantial for a 50% threshold but small for a 95% threshold. The CV-based

strategies have greater bias than those based on a 95% threshold, because inferences

from lower thresholds contribute, but have much smaller variability.
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Figure 28: Predictive medians of MN compared with the true median (solid black
lines), for datasets simulated from a standard normal distribution. The set of train-
ing thresholds is the 50%, 55%, . . . , 95% sample quantiles. Grey lines: individual
lines for each dataset. Dashed black lines: pointwise 5%, 25%, 50%, 75% and 95%
sample quantiles. Threshold strategies: 95% sample quantile (top left); sample
median (bottom left); model-averaged estimate (top right); best single threshold
(bottom right).

Similar findings are evident in figure 29 for the uniform-GP hybrid distribution:

contributions from thresholds lower than the 75% quantile produce negative bias

but model-averaging achieves lower variability than the optimal 75% threshold.

In all these examples the CV-based strategies seem preferable to a poor choice of

a single threshold, and, in a simple visual comparison of bias and variability, are

not dominated clearly by a (practically unobtainable) optimal threshold. A more

definitive comparison would depend on the problem-dependent losses associated

with over- and under-estimation. Using model-averaging to account for threshold

uncertainty is conceptually attractive but, compared to the ‘best’ threshold strategy,

it’s reduction in variability is at the expense of greater bias. Again the loss function

of the problem is relevant to this comparison.
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Figure 29: Predictive medians of MN compared with the true median (solid black
lines), for datasets simulated from a hybrid uniform-GP distribution. The set of
training thresholds is the 50%, 55%, . . . , 95% sample quantiles. Grey lines: indi-
vidual lines for each dataset. Dashed black lines: pointwise 5%, 25%, 50%, 75%
and 95% sample quantiles. Threshold strategies: 75% sample quantile (top left);
95% sample quantile (bottom left); model-averaged estimate (top right); best single
threshold (bottom right).

Figure 30 summarises how the posterior threshold weights vary with training thresh-

old, again based on the 95% validation threshold. There are a few datasets for which

the 95% training threshold receives very high weight. These result from samples

where the most extreme observations are very large relative to the other observa-

tions. The potential for the largest observations to have very strong influence is a

well-known feature of extreme value analyses (Davison and Smith, 1990). For the

exponential and hybrid examples the mean and median posterior threshold weights

behave roughly as one would expect: decreasing in training threshold for the expo-

nential example, and peaking at approximately the 70% quantile (i.e. lower than

the 75% quantile) for the uniform-GP example. In the exponential example the

best available threshold (the 50% quantile) receives the highest posterior weight

with relatively high probability and in the hybrid example this is true of the 70%

quantile. It is less clear what to expect for the normal example and the message

from the simulation study is less clear. The mean and median posterior weights



3.6 Simulation study: single and multiple thresholds 97

peak at approximately the 70%–80% quantile. The graph of relative frequency with

which each threshold receives the highest posterior weight is relatively flat, with

lower thresholds being the ‘best’ slightly more often than higher thresholds. Given

that the GP limit is only attained in the limit as the threshold tends to infinity

it may be that much higher thresholds should be explored, requiring much larger

simulated sample sizes, such as those used by Wadsworth and Tawn (2012).
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Figure 30: Summaries of CV weights by training threshold where v = 95%. Top:
the grey lines give individual lines for each simulated dataset with threshold-specific
sample means (solid black line) and sample (5, 25, 50, 75, 95)% quantiles (dashed
black lines). Bottom: relative frequency with which each threshold has the largest
CV weight. Left: exponential distribution. Middle: normal distribution. Right:
uniform-GP hybrid distribution.

In these examples the use of the 95% sample quantile as the largest training thresh-

old, and hence the validation threshold, results in only 25 excesses of the validation

threshold. If we lower the largest training threshold, say to the 90% (50 excesses)

or 85% (75 excesses) sample quantile then, for the exponential and hybrid example,

the locations of peaks in the plots are clearer. Figure 31 summarises the posterior

thresholds weights for the 85% quantile case.
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Figure 31: Summaries of CV weights by training threshold where v = 85%. Top:
the grey lines give individual lines for each simulated dataset with threshold-specific
sample means (solid black line) and sample (5, 25, 50, 75, 95)% quantiles (dashed
black lines). Bottom: relative frequency with which each threshold has the largest
CV weight. Left: exponential distribution. Middle: normal distribution. Right:
uniform-GP hybrid distribution.

3.7 Significant wave height data: threshold uncertainty

We return to the Gulf of Mexico and North Sea significant wave height datasets,

using the methodology of section 3.5 to average extreme value inferences obtained

from different thresholds. Figure 32 shows plots of estimated predictive N -year

return levels and selected (to facilitate comparison with N -year predictive return

levels) quantiles of MN against N , for different validation threshold levels. The

set up is the same as in section 3.4, i.e. in the first instance based on training

thresholds {u1, . . . , u20} set at the 0% (sample minimum), 5%, . . . , 95% sample

quantiles. We use three different validation thresholds, set so that the numbers

of excesses are approximately 32, 48 and 64 respectively for each dataset. In cases

where a validation threshold is below a training threshold the effect is that inferences

from this training threshold get zero weight in the model averaging.

There is lower sensitivity to validation threshold for the North Sea data than the
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Gulf of Mexico data. This is partly because the bulk of the posterior probability is

on negative values of ξ (which imply a finite upper end point) for the former and

on positive values of ξ (which imply an unbounded distribution) for the latter. On

extrapolation into the upper tail the uncertainty is generally much smaller in the

former case.

Figure 32 shows that the approximate link between predictive N -year return levels

and quantiles of the predictive distribution of MN depends on N : the larger N is the

higher is the quantile of MN to which the N -year predictive return level corresponds

approximately.

return period / years

pr
ed

ic
tiv

e 
re

tu
rn

 le
ve

l /
 m

100 1000 10000

20
30

40
50

60
70

quantile of v

80%
85%
90%

N / years

qu
an

til
es

 o
f N

−
ye

ar
 m

ax
im

um
 / 

m

100 1000 10000

20
30

40
50

60
70

quantile of v

80%
85%
90%

return period / years

pr
ed

ic
tiv

e 
re

tu
rn

 le
ve

l /
 m

100 1000 10000

12
13

14
15

16 quantile of v

85%
90%
95%

N / years

qu
an

til
es

 o
f N

−
ye

ar
 m

ax
im

um
 / 

m

100 1000 10000

12
13

14
15

16 quantile of v

85%
90%
95%

Figure 32: Model-averaged N -year predictive return levels and selected quantiles of
the predictive distribution of N -year maximum MN , based on different validation
thresholds. Top: Gulf of Mexico data (50% and 85% quantiles of MN). Bottom:
North sea data (50%, 75% and 95% quantiles of MN).

For the Gulf of Mexico data the medians of the predictive distribution of MN are

not unrealistic: averaging inferences over thresholds has provided some protection

against the very large estimates obtained for some of the individual thresholds (see

figures 21 and 25). However, between N = 1, 000 and N = 10, 000 the 85% quantiles

of MN and the N -year predictive return levels become unrealistically large.
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4 Threshold selection for the NID case

In chapter 3 we directed our focus on extreme value threshold selection process for

the i.i.d. case, proposing a new graphical diagnostic tool for selecting the thresh-

old based on a Bin-GP model for threshold exceedances. The methodology uses

Bayesian computation to perform predictive inferences. In the absence of genuine

prior information about extreme value parameters, we appealed to the results in

chapter 2 to suggest a working prior distribution for the parameters of the GP

distribution.

In this chapter we extend the cross-validation approach introduced in chapter 3 to

the case where the independence assumption of the underlying random variables is

assumed to be unrealistic, that is, we investigate the threshold selection process for

the n.i.d. case. Following Süveges and Davison (2010) we base threshold selection on

a limiting model (the K-gaps model, see section 1.7) for the distribution of threshold

inter-exceedance times. This model is parameterised in terms of a scalar parame-

ter θ, the extremal index, which measures the strength of temporal dependence at

extreme levels. Otherwise, the general idea is the same as in chapter 3: differ-

ent training thresholds are compared based on the ability to predict out-of-sample

inter-exceedance times at a validation threshold v.

Using the K-gaps model, rather than a model for threshold exceedance times and

threshold excesses, has some advantages. If maximum likelihood estimation is used

then the regularity condition (0 < θ < 1) for the K-gaps model is less restrictive than

that for the GP model (Süveges and Davison, 2010, page 18). Even in the Bayesian

setup considered here the relative simplicity of dealing with a scalar parameter

is attractive. While it is necessary that a threshold is judged as suitable in the

context of the K-gaps model for threshold inter-exceedance times, its suitability

in the context of a model for threshold excesses also matters. However, modelling

threshold excesses in the n.i.d. case is more difficult than in the i.i.d. case: see

Fawcett and Walshaw (2012) and references therein. We return to this issue in the

discussion in chapter 6.

In section 1.7 we introduced the K-gaps exponential mixture model following the

work of Süveges and Davison (2010). Recall that, a K-gap is defined as S =

max(T −K, 0), where T is the time between two successive exceedances of a thresh-

old u, and F (u) denotes the probability of threshold exceedance. Under the K-gaps

limiting mixture model (1.11), a scaled K-gap F (u)S is zero with probability 1− θ
(corresponding to T 6 K), and otherwise it is an exponential variable with rate

parameter θ.
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For a process sampled at regular time intervals T is an integer and so the scaled K-

gaps are discrete: equal to integer multiples of F (u) which, in practice, is estimated

by the proportion q of observations that exceed u. Thus, there is no finite threshold

for which the exponential part of the K-gaps model is true, and therefore the K-gaps

model is always misspecified. However, it is still worthwhile to consider for which

values of (u,K) the misspecification is sufficiently small for the K-gaps model to be

useful. This situation is subtly different from that in chapter 3, where examples do

exist (for example, the exponential and hybrid examples in section 3.6) where the

Bin-GP is well-specified.

The issues associated with the selection of u are the same as in chapter 3, trading off

bias resulting from model misspecification if u is too low with a lack of precision of

estimation if u is too high. Süveges (2008, page 55) discusses the effects of making a

poor choice of K. If K is too low then the model is misspecified because it wrongly

supposes that (non-zero) K-gaps are independent and exponentially distributed,

resulting from between-cluster inter-exceedance times, when in fact they result from

dependent within-cluster exceedances. If K is too high then too many between-

cluster inter-exceedance times are truncated to zero leading to a loss of information

and to bias from these times contributing to the point mass at zero part of the

mixture model.

Therefore, it is important to choose the pair (u,K) appropriately. In this chapter

we seek to inform the choice of u under the assumption that K has been set at

an appropriate value. For some processes the value of K is known (see section 4.7

for two such examples). For others, and of course for real datasets, K needs to be

chosen empirically. In section 4.6 we use a simple graphical diagnostic tool to make

this choice. In future work we will seek to extend the methodology to inform the

choice of (u,K), rather than the value of u given an appropriate choice of K.

4.1 Information matrix test (IMT)

Süveges and Davison (2010) describe a maximum likelihood estimator for the ex-

tremal index θ and use a model misspecification test known as information matrix

test (IMT) to reject pairs (u,K) for which the limiting model is judged as invalid.

They also assess their ideas through a simulation study and conclude that the IMT

is useful in selecting the threshold and run parameter and that it supplements the

classical threshold selection approaches.

The null hypothesis for this test (developed by White (1982)) is that the model is

well-specified, according to a measure of the distance between the Fisher expected
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information and the variance of the score vector. Under the null the test statistic

follows (asymptotically) a χ2
1 distribution. Therefore, the rejection of a potential

threshold-run pair (u,K) can be carried out through classical hypothesis testing.

Using this method, Fukutome et al. (2014) propose an automatic threshold-run

pair selection. They test a large grid of (u, K) plausible pairs and retain those

that result in a very low IMT value (less than 0.05). Pairs with a value of u that

produces fewer than 80 threshold exceedances are discarded because simulations

in Süveges and Davison (2010) reveal that such datasets tend to have low power

to detect departure from the null. Then, for each pair, they decluster the data to

identify a set of approximately independent cluster maxima, and select the pair with

the largest number of cluster maxima. Fukutome et al. (2014) demonstrate their

method using a dataset of hourly precipitation in Switzerland.

Goodness-of-fit tests are not uncommon in extreme value analysis (Davison and

Smith, 1990, Dupuis, 1998, Wadsworth and Tawn, 2012) and benefit from the fact

that the assessment of one threshold is not affected directly by tests made at other

thresholds. However, this method of threshold selection has a number of drawbacks.

Firstly, a subjective choice of a test level needs to be chosen beforehand. Note also

that it may be necessary to make some adjustment for the fact that multiple tests are

performed on strongly related datasets. Secondly, as the threshold level u increases

the power to detect departures from the null hypothesis H0 decreases. Thirdly, the

issue of the bias-variance trade-off does not seem to be accounted for in a clearly

defined way. What is more, a complication with this method is the possibility of

having two (or more) different thresholds that do not reject the null hypothesis and

then it is not clear what is the procedure of choosing a single threshold, hence the

need for an automation rule like that proposed by Fukutome et al. (2014).

In section 4.5 we use cross-validation to compare training thresholds based on an

extension of the Süveges and Davison (2010) K-gaps likelihood to incorporate infor-

mation from censored inter-exceedance times, which we describe in the next section.

4.2 Censored inter-exceedance times

Let us now concentrate on the first and last exceedance of the stationary process

and in particular the two ‘edges’ of the time series, as depicted by the blue shaded

regions in figure 33 using a segment from the Newlyn data. The starting edge

contains observations before the first exceedance is observed, and the ending edge

contains observations after the last exceedance is observed.
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Figure 33: Time series plot of a segment of the Newlyn data illustrating the ‘edges’
(blue shaded area) at the two ends of the observation period.

Observations before the left hand blue region are not available so the the inter-

exceedance time that ends with the first observed exceedance is right-censored: its

value is not known but it is bounded below. For example, for the data in figure

33 this inter-exceedance time is no smaller than 6 time units. Similarly, the inter-

exceedance time that starts with the last observed exceedance is right-censored.

Moreover, depending on the positioning of the largest threshold exceedances, raising

the threshold will tend to result in larger edges. Information from censored inter-

exceedance times (and hence K-gaps) is not incorporated into the K-gaps likelihood

used by Süveges and Davison (2010) for estimating θ and for performing the IMT.

In the remainder of this section we consider how to adapt this likelihood to include

information from censored K-gaps.

We begin by re-introducing the K-gaps exponential mixture model and stating the

likelihood based on a random sample of uncensored K-gaps. Let us assume that

we have a stationary process X1, X2, . . . , Xn with unknown marginal distribution

function F . Let N be the number of exceedances above a (training) threshold u and

the exceedance index ji : Xji > u, where i = 1, . . . , N − 1. The ith inter-exceedance

time Ti is given by Ti = ji+1 − ji, and for a run parameter K, the ith K-gap is

S
(K)
i = max(Ti − K, 0). For notational convenience, from this point forwards we
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do not make explicit the dependence on K of the K-gaps or any other related

quantities. We will only make explicit, when it is necessary, the dependence of K-

gaps on the threshold applied to the data. Throughout, we plug-in the estimate

q = (1/n)
∑n

i=1 I(Xi > u) for F (u) and assume that K is sufficiently large that

K-gaps can be treated as being mutually independent. Following equation (1.11)

the likelihood is given by

LK(θ;S1, . . . , SN−1) = (1− θ)N0θ2N1 exp

{
−θq

N−1∑
i=1

Si

}
, (4.1)

where N1 =
∑N−1

i=1 I(Si > 0) is the number of non-zero K-gaps, N0 =
∑N−1

i=1 I(Si =

0) = N − 1−N1 is the number of zero K-gaps.

We now extend Süveges and Davison (2010) by taking into account information

contained in the data about the inter-exceedance times T u0 and T uN that would have

been observed if the observation period was extended to include the last exceedance

before the observation period started and the next exceedance after the observation

period finished. As T u0 and T uN are unknown, we consider their respective censored

times, T0 = j1−1 and TN = n−jN . In other words, T u0 > T0 and T uN > TN . Thus, for

i ∈ {0, N}, the K-gap Sui = max(T ui −K, 0) satisfies Sui > qmax(Ti −K, 0) = qSi.

Under the limiting K-gaps model,

P (Sui > s) = {θ exp(−θqs)}I(s>0) , s > 0. (4.2)

Thus, on incorporating information from the censored K-gaps S0 and SN , the like-

lihood becomes

LK(θ;S0, . . . , SN) = (1− θ)N0θ2N1+I0+IN exp

{
−θq

{
N∑
i=0

Si

}}
, (4.3)

where I0 = I(S0 > 0) and IN = I(SN > 0).

4.3 The K-gaps maximum likelihood estimation of θ

If K is chosen so that the K-gaps model is well-specified then maximum likelihood

estimators of θ can be based on likelihood (4.1) or likelihood (4.3). This approach

combines elements of two existing methods of estimating θ: the runs estimator (see,

for example, Smith and Weissman (1994)) and the likelihood-based estimator in

Ferro and Segers (2003). The former is computed as the reciprocal of the mean

cluster size after performing runs declustering (see section 1.6.2) with a certain run
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length. In the current setup this run length is K. Threshold exceedances separated

by an inter-exceedance time that is greater than K are judged to be in different

clusters; otherwise they are judged to be in the same cluster. The latter is based

on a K-gaps likelihood with K = 0, for which all K-gaps are positive and therefore

enter into the exponential part of the model. As Ferro and Segers (2003) point out,

this likelihood is misspecified - in the likelihood the probability that two successive

exceedances are in the same cluster is 1−θ but for K = 0 this event is never observed

in the data. Therefore, it is necessary to modify the likelihood using a positive K.

Let S = (S0, . . . , SN). The log-likelihood based on (4.3) is

lK(θ;S) = N0 log(1− θ) + [2N1 + I0 + IN ] log θ − θq

{
N∑
i=0

Si

}
. (4.4)

Maximizing (4.4) with respect to θ gives the maximum likelihood estimator

θ̂ = − b

2a
− 1

2a

(
b2 − 4ac

)1/2
, (4.5)

where a = q
∑N

i=0 Si, b = −(N0 + 2N1 + I0 + IN + a) and c = 2N1 + I0 + IN .

If N0 = 0, that is, all K-gaps are positive, then θ̂ = 1 as lK(θ;S) is increasing over

[0, 1]. If N1 = I0 = IN = 0, that is, all K-gaps (or censored K-gaps) are zero then

θ̂ = 0 as lK(θ;S) is decreasing over [0, 1]. This corresponds to a degenerate case

in which all exceedances are in a single cluster that covers the entire observation

period. This could occur in practice if u is very low (so that a high proportion of

the observations are exceedances) and/or K is high (so that quite well-separated

exceedances are placed in the same cluster). Consider another scenario: that u is so

high that all exceedances are in a single cluster surrounded by at least one non-zero

censored K-gap. Incorporation of information from censored K-gaps means that

the estimator based on (4.3) will give a value in (0, 1], and probably close to 1.

However, the estimator based on (4.1) will give an estimate of 0, because seemingly

the single cluster covers the entire observation period. Although such extreme cases

will probably be avoided in practice it is reassuring to have an estimator that be-

haves sensibly even in unusual cases. We should avoid using a very high threshold,

because with very few exceedances an estimate of θ that is close to 1 will probably

result. For such thresholds small distant clusters are likely to occur leading to a

misleading estimate of an extremal index close to 1. In the extreme case with only

one exceedance we have θ̂ = 1 by definition.

So there is a simple closed-form expression for the extremal index estimator θ̂ and for

inference using the estimative approach through maximum likelihood this is all that
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is required. However, similarly to the arguments put forward in previous chapters,

the main drawback of the estimative approach is that once the model parameter (in

this case θ) is estimated it is then treated as known, i.e. uncertainty in the value

of the model parameter is not incorporated in the analysis. In contrast, under a

predictive approach uncertainty in θ is incorporated explicitly in the analysis. We

implement this using Bayesian inference.

4.4 Bayesian inference for the K-gaps mixture model

Suppose that a prior distribution π(θ) is specified for θ. Later, in the absence of a

compelling reason to pick a different prior we follow Fawcett and Walshaw (2008) in

supposing that a priori θ ∼ U(0, 1). Therefore, based on K-gaps S = (S0, . . . , SN)

the posterior distribution of the extremal index is given by

π(θ | S) =
(1− θ)N0θ2N1+I0+IN e−θV π(θ)∫ 1

0
(1− θ)N0θ2N1+I0+IN e−θV π(θ) dθ

, (4.6)

where V = q
∑N

i=0 Si.

Sampling from posterior (4.6) is easier than sampling from the GP posterior in

section 2.4 because it is a 1-dimensional distribution with a simple support: [0, 1].

Furthermore, under a U(0,1) prior for θ, π(θ | S) is log-concave, that is, the sec-

ond derivative of log π(θ | S) is negative for all θ (see appendix C.1). Therefore,

we are able to use adaptive rejection sampling (ARS) (Gilks and Wild, 1992), an

efficient method of sampling from a univariate distribution with a log-concave den-

sity function. ARS involves constructing an envelope function for the log density

of the target distribution. This function is then used to carry out the conventional

rejection sampling (see for example Ripley (1987)). However once a candidate point

is rejected the function is updated to move closer to the log density of the target

distribution. Consequently each update of the envelope function increases the prob-

ability of acceptance of the following candidate point. We implement ARS using R

package “ars” (Rodriguez, 2014).

Having established our posterior sampling scheme, we move on to cross-validation

which is the key element of our suggested methodology in analysing dependent

extremes and more specifically tackling the task of selecting a threshold.
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4.5 Threshold selection using cross-validation

The cross-validation methodology that we propose here is very similar to the one

introduced in chapter 3. In the current chapter we are using a model for threshold

inter-exceedance times, so the main modification is that the data used in carrying out

cross-validation are the K-gaps instead of the indicators of threshold exceedances

and sizes of threshold excesses. The effect of this is that when performing leave-one-

out cross-validation the validation sample corresponds to the data associated with

a single K-gap, rather than a single observation from the raw data series.

Suppose that we fix the values of a training threshold u and a run parameter K. The

threshold u is applied to a sequence X1, . . . , Xn of non-independent and identically

distributed random variables, producing Nu exceedances and a vector of Nu + 1

K-gaps Su = (Su0 , S
u
1 , . . . , S

u
Nu−1, S

u
Nu

). Recall that Su0 and SuN are the values at

which the first and last K-gaps are right-censored. As in chapter 3 u is the training

threshold, using which inferences from the K-gaps model are made and v > u is a

validation threshold, at which these inferences are validated. Let Sv be the vector of

Nv + 1 K-gaps based on the Nv threshold exceedances of v. In the interest of clarity

we first describe the cross-validation procedure for the special case where v = u, as

this is somewhat simpler than when v > u.

4.5.1 The case v = u

Although v = u in this section, we preserve in our notation the distinction between

the roles of v and u with a view to the v > u case considered in the next section: u

relates to training data and v relates to validation data. In the case when v = u we

have Sv = Su and Nv = Nu. We employ a leave-one-out cross-validation scheme in

which, for r = 0, . . . , N , Su(r) = {Sui , i 6= r} forms the training sample and Svr the

validation sample. We use the same illustrative plot of a segment from the Newlyn

dataset that was used in section 1.8 to show, in figure 34, two examples of validation

sample. The blue shaded areas identify Sv1 (in the top plot) and Sv7 (in the bottom

plot). Once a validation K-gap has been removed the remainder of the K-gaps

constitute the training sample.
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Figure 34: Time series plot of a segment of the Newlyn data illustrating two examples
of validation samples denoted by the blue shaded area (using v = u = 0.172m and K
= 2). Top: Validation sample is the 1st K-gap Sv1 with value 0. Bottom: Validation
sample is the 7th K-gap Sv7 with value 11.

Let πu(θ | Su(r)) denote the posterior density of θ based on training K-gaps Su(r).

The cross-validation predictive densities at validation threshold v(= u), based on a

training threshold u, are given by

fv(S
v
r | Su(r), u) =

∫
f(Svr | θ,Su(r)) πu(θ | Su(r)) dθ, r = 0, . . . , Nv. (4.7)

If the {Sui } are conditionally independent given θ then the conditional density of Svr

given θ,Su(r) satisfies f(Svr | θ,Su(r)) = f(Svr | θ), where

f(Svr | θ) =


(1− θ)I(Svr=0)

{
θ2e−θqS

v
r
}I(Svr>0)

, for r = 1, . . . , Nv − 1,{
θe−θqS

v
r
}I(Svr>0)

, for r ∈ {0, Nv}.

Suppose that we have a sample θ
(r)
j , j = 1, . . . , nθ from the posterior πu(θ | Su(r)).
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Then a Monte Carlo estimator of fv(S
v
r | Su(r), u) based on (4.7) is given by

f̃v(S
v
r | Su(r), u) =

1

nθ

nθ∑
j=1

f(Svr | θ
(r)
j ,Su(r)). (4.8)

As in section 3.3.2 we seek to reduce computation time using importance sampling,

with the full posterior πu(θ | Su) as the importance sampling density h(θ). For a

sample θj, j = 1, . . . , nθ from πu(θ | Su) this gives the estimator

f̂v(S
v
r | Su(r), u) =

∑nθ
j=1 f(Svr | θj)qr(θj)∑nθ

j=1 qr(θj)
, (4.9)

where qr(θ) = πu(θ | Su(r))/πu(θ | Su) ∝ 1/f(Sur | θ).

Similarly to equation (3.4) we use

T̂v(u) =
Nv∑
r=0

log f̂v(S
v
r | Su(r), u), (4.10)

as a measure of predictive performance at validation threshold v when using training

threshold u.

4.5.2 The case v > u

We exclude the event that v and u are so close that their exceedances coincide

exactly. Therefore, we have fewer exceedances of v than u, that is, Nv 6 Nu, with

the consequence that Sv 6= Su. The general setup of the cross-validation scheme is

the same as in the v = u case. However, since different training thresholds are to be

compared based on their performance at a validation threshold v, it is the Nv + 1

K-gaps Sv(r) = {Svi , i 6= r} produced by applying the threshold v that define the

leave-one-out validation K-gaps.

Let T v = {T vi , i = 0, . . . , Nv} and T u = {T ui , i = 0, . . . , Nu} denote the inter-

exceedance times based on thresholds v and u respectively. Each component of

T v is equal to either a member of T u or the sum of two or more members of T u.

Therefore, a given K-gap Svr corresponds to a set {Si, i ∈ r∗} of contiguous K-gaps

from Su, where r∗ is a subset of {0, . . . , Nu}. If Svr is taken as a leave-one-out

validation sample and the model is trained at threshold u < v then the K-gaps

{Si, i ∈ r∗} should be removed from the full sample of K-gaps. Let Su(r∗) denote the

subset of Su that remains once {Si, i ∈ r∗} are removed from the training sample.

We illustrate this in figure 35 where the blue shaded area indicates the validation
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sample: a single K-gap Sv6 , and the red shaded area indicates the three K-gaps

Su11, S
u
12 and Su13 that are removed to produce the training sample, so that r∗ =

(11, 12, 13).
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Figure 35: Time series plot of a segment of the Newlyn data illustrating an example
of validation sample when v > u denoted by the blue shaded gap. The red shaded
area denotes the gaps removed from the training sample.

The equations in section 4.5.1 carry over with only small modification: (r) is replaced

with (r∗) throughout and now qr(θ) = πu(θ | Su(r∗))/πu(θ | Su) ∝ 1/
∏

i∈r∗ f(Sui | θ).
We find that the results based on the importance sampling estimator (4.9) differ

from those based on the ‘brute-force’ estimator (4.8) by negligible amounts so we

use the former estimator throughout.

4.5.3 Comparing training thresholds

Suppose that for a fixed value of the run parameter K, we consider k training

thresholds u1 < · · · < uk, resulting in a set of estimates T̂v(u1), . . . , T̂v(uk), and that

we wish to select one of these thresholds. We follow the arguments in section 3.3.3

to choose u∗ = arg max
u

T̂v(u). In common with chapter 3 we aim to set (u1, . . . , uk)

to cover a range of thresholds over which the bias-variance trade-off seems to be

occurring, and to avoid thresholds with small numbers of exceedances. We also
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standardize the CV measure via (3.16) to produce threshold weights. Following

Süveges and Davison (2010) and Fukutome et al. (2014) a rule-of-thumb could be

to have no fewer than 80 exceedances of uk, although this value is chosen based

specifically on the their model misspecification test.

In common with chapter 3 we set v = uk. However, the argument for doing this

in the context of chapter 3 does not carry over. Firstly, changing the value of

v changes the validation data Sv in a way that is more complicated than a simple

change of threshold applied to each validation observation. Also, changing v changes

the training data Su(r∗): the higher v is the more K-gaps are removed from Su. Here,

we set v = uk on the grounds that increasing v beyond uk results in a reduction in

validation information.

In the next section we implement our method for dependent extremes using the

Newlyn dataset described in section 1.8. The aim is to identify the level of threshold

with the ‘best’ out of sample predictive performance.

4.6 Newlyn

We begin our analysis of the Newlyn dataset with a preliminary graphical investi-

gation of the behaviour of the MLE θ̂ (equation (4.5)) as we (a) keep the threshold

u fixed and vary K, and (b) keep K fixed and vary u. Fawcett and Walshaw (2012)

used a mean residual life plot to select a threshold of 0.3m (approximately the 94%

sample quantile) to use for modelling threshold excesses with a GP distribution.

This threshold was selected with reference to a different aspect of the data than

is our focus in this chapter, that is, in reference to a GP distribution for excesses

rather than the K-gaps model for extremal dependence. However, it is interesting

to see how well a threshold of 0.3m is supported by the data in terms of the latter

aspect.

As we are focusing on selection of u for fixed K, the first stage of our analysis

involves deciding on the value of K. The parameter stability plots for θ in figures 36

and 37 help us in this decision by illustrating the behaviour of the extremal index

estimate as the value of K changes. We have done this for eight different thresholds,

more specifically, for the 60% - 95% sample quantiles in steps of 5%. The idea is

the same as the parameter stability plots for ξ considered in chapter 3: for a given

value of u we look for the smallest value of K above which the estimates of θ are

approximately stable. These plots suggest that K = 6 is a reasonable choice across

all the thresholds considered as all plots seems to show a somewhat stable parameter

estimate beyond that point. Since this precise choice is somewhat arbitrary later in
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this section we investigate informally sensitivity to it by performing analyses with

K = 5 and K = 7.
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Figure 36: Parameter stability plots for Newlyn sea-surge heights for a range of run
parameter K and using the 60%, 65%, 70% and 75% sample quantile for thresholds.
The solid lines give the MLEs of θ and the dashed lines give 95% likelihood-based
confidence intervals.
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Figure 37: Parameter stability plots for Newlyn sea-surge heights for a range of run
parameter K and using the 80%, 85%, 90% and 95% sample quantile for thresholds.
The solid lines give the MLEs of θ and the dashed lines give 95% likelihood-based
confidence intervals.

We now fix the value of K = 6 according to our conclusion based on the figures

above and illustrate in figure 38 the parameter stability plot for θ̂ as we vary the

threshold. This is not done to decide on the level of threshold but it can be very

helpful in determining the plausible range of training thresholds that we need to use

for our proposed cross-validation approach. Note that for very low thresholds close

to the sample minimum, estimates of θ close to, or equal to, zero are obtained by

definition, because all, or almost all, the sample K-gaps are zero (see section 4.3).
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Figure 38: Parameter stability plot for Newlyn sea-surge heights for a range of
thresholds. The solid lines give the MLEs of θ and the dashed lines give 95%
likelihood-based confidence intervals.

The conclusion from figure 38 is that a range of training thresholds at the 50% -

95% sample quantiles is plausible for our analysis, although we anticipate from the

general increase in θ̂ over this range that thresholds at the lower end of this scale

will perform less well than higher thresholds. Note that the 95% sample quantile

produces 144 threshold exceedances which is well above the Süveges and Davison

(2010) rule-of-thumb of 80 exceedances. Extending the range to an even higher

threshold of say the 99% sample quantile results in only 29 exceedances and the

misleading behaviour anticipated in section 4.3, that is, estimates of θ that increase

sharply towards 1.

We proceed with our analysis, as outlined in section 4.5, of the Newlyn dataset

using K = 6 for k training thresholds u1, . . . , uk such that u1 and uk are the 50%

and 95% sample quantile respectively and therefore a validation threshold set at

uk. Furthermore, we employ the IMT statistic (see section 4.1) on this range of

thresholds for comparison, using, in the first instance, a significance level of 5%. In

figure 39 we show the results from this analysis. It is interesting that for this dataset

the two approaches essentially give two different answers. On one hand the IMT

statistic of Süveges and Davison (2010) would suggest setting a threshold around
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the 60% sample quantile as this is the point where the misspecification test results

in non-rejection. However, our proposed cross-validation method suggests that the

lower thresholds perform relatively poorly in terms of out-of-sample predictions and

instead suggests selecting u at a much higher level where the ‘best’ training threshold

is identified at the 93% sample quantile. If the significance level of the IMT were

increased to say 10%, with critical value 2.71, then the IMT statistic would suggest

both the lower threshold already identified and a higher threshold (at 94% sample

quantile) as locations where the misspecification test turns to non-rejection.
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Figure 39: Threshold selection methods for Newlyn sea-surge heights for a range of
thresholds between the 50%-95% sample quantiles. Top panel: IMT statistic (the
red line represents the 5% significance level critical value of 3.84). Bottom panel:
threshold weight for validation threshold at 95% sample quantile.

We should not be surprised that there is not a close correspondence between these

two approaches. Firstly, their results are each influenced by somewhat arbitrary

choices: the IMT significance level and the value of the highest threshold uk. Sec-

ondly, they are setup for different purposes. The IMT is designed to identify thresh-

olds for which the K-gaps model is not misspecified. It is possible that the null

hypothesis that the K-gaps model is well-specified is not rejected over a given range

of thresholds, but the estimated strength of extremal dependence is changing no-

ticeably, as seems to be the case in figure 38. Our cross-validatory assessment is



4.6 Newlyn 116

not concerned with whether the K-gaps model is well-specified, but with identifying

the thresholds for which out-of-sample prediction of K-gaps is better than other

thresholds.

In figure 40 we illustrate how the estimated threshold weights vary with the choice

of the highest training threshold. There is little sensitivity to this choice until we

get to the 97% sample quantile, for which the highest thresholds have much larger

estimated threshold weights than the lower thresholds. There are 87 exceedances of

this threshold and, as figure 38 shows, the MLE of θ exhibits a sharp rise towards

1 at approximately this threshold. These observations suggest that the 97% sample

quantile is perhaps too high to be used as a validation threshold. Additionally, we

repeated our cross-validation approach using K = 5 and K = 7 and produced very

similar results (plots not shown).

85 90 95 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6
93%
94%
95%
96%
97%

quantile of u

th
re

sh
ol

d 
w

ei
gh

t

0.2 0.25 0.32 0.82

Figure 40: Threshold selection methods for Newlyn sea-surge heights for a range of
thresholds between the 85%-97% sample quantiles. Threshold weights for validation
thresholds at 93%, 94%, 95%, 96% and 97% sample quantiles.

In the following section we study the behaviour of our proposed threshold selection

method, the IMT statistic and the MLE of θ on repeated samples from some example

stationary processes.
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4.7 Simulation study

This study is based on simulated realisations from the stationary processes used by

Süveges and Davison (2010) to illustrate the use of the IMT to choose a threshold

and run parameter pair (u,K) for which the K-gaps model is not rejected. The

three processes are:

1. an AR(1): Yi = φYi−1 +Zi, with φ = 0.7 and Zi standard Cauchy and θ = 0.3.

2. an AR(2): Yi = φ1Yi−1 + φ2Yi−2 + Zi, with φ1 = 0.95, φ2 = −0.89 and Zi

Pareto, with tail index 2 and θ = 0.25.

3. a Markov chain: with Gumbel margins, a symmetric logistic bivariate distribu-

tion for consecutive variables and dependence parameter r = 2 (Smith, 1992),

with θ ≈ 0.33.

Süveges (2008) considered the structure of these processes at extreme levels and

determined the appropriate run parameter values to be K = 1 for the AR(1) process

and K = 6 for the AR(2) process. This was not possible for the Markov chain so the

value of K = 5 was suggested from the misspecification tests. Süveges and Davison

(2010) use the same values in their work and therefore for each of these processes

we generate simulation runs of a sequence of n = 8, 000 observations and set the

above-mentioned values for the run parameter K.

For each process we investigate how the MLE of the extremal index, the IMT statis-

tic and the CV estimated threshold weights behave across a range of thresholds. As

before the validation threshold is set at the highest (95%) threshold. The sample

size of 8,000 is quite large - with a threshold set at the 95% sample quantile there

are 400 exceedances - but we will see that even for relatively low thresholds there is

appreciable variability between different simulated datasets. To study how greatly

the results vary across different simulated realisations we replicated the simulation

at first 5 times (for illustration purposes) and later 100 times to give a fuller ap-

preciation of the effects of sampling variability. In the former case we use training

thresholds from 50% to the 95% sample quantiles in steps of 2.5%.

AR(1) process

We can see in the top panel of figure 41 that on average the MLEs of the extremal

index are very close to the true value of 0.3 for thresholds around the 90% sample

quantile. There is greater variability in the MLEs of θ at the highest thresholds, for



4.7 Simulation study 118

which there are smaller numbers of exceedances. The middle panel of figure 41 is a

plot of the IMT statistic against threshold. In general the lines behave as expected:

the IMT statistics tend to reduce as the threshold is increased. However, variability

between the replications results in substantial variability in the point where the test

statistics cross the critical values, and two of them cross at in more than one place.

The bottom panel of figure 41 is a plot of the threshold weights against threshold.

Again, there is appreciable variability in the shape of the plotted curves and the

location of the largest threshold weight. For three of the five simulated datasets

high weight is given to thresholds near the 90% sample quantile. The light blue

curve gives greatest weight near the 80% threshold and the red curve gives greatest

weight to much lower thresholds.
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Figure 41: Threshold selection for AR(1) process with fixed K = 1. Top panel:
MLE against threshold quantile, with horizontal line at the true value of θ. Middle
panel: IMT statistic against threshold quantile, with horizontal line at the critical
value for a test with significance level of 5%. Bottom panel: threshold weight against
threshold quantile. Each coloured line represents a replication of the simulation.

The general behaviour of the threshold weights can be explained by comparing the

top and bottom panels of figure 41. Firstly, consider the dark blue curve in the

top panel, for which the MLE of θ continues to increase with threshold once it has

passed through the true value of 0.3. So, at the validation threshold the K-gaps data

produce a point estimate of θ that is greater than at any lower threshold. There-
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fore, it is not surprising that relatively high thresholds achieve the greater threshold

weights than lower thresholds. Interestingly, the 92.5% training threshold achieves

the greatest threshold weight, the result of trading increased bias for reduced vari-

ance. For this simulation run the IMT first dips below the critical value at the 77.5%

threshold and then crosses the critical value again at the 90% threshold.

Now consider the red curve in the top panel. After passing through the true value

of θ the MLE decreases as the threshold increases. Now, at the validation threshold

the K-gaps data produce a point estimate of θ that is similar to the point estimate

near the 55% training threshold. Consequently, thresholds near the 55% threshold

achieve high threshold weights. For this simulation run the IMT crosses the critical

value at the 65% threshold and remains below it from there on.

In common with any simulation study we are in the artificial position of knowing

the true value of the parameter: θ = 0.3. Using a significance level of 5% and

choosing a threshold where the IMT crosses the critical values tends to result in

underestimation of θ in four of the five cases (the light blue curve is the exception).

Using a higher significance level would reduce the underestimation but we wouldn’t

know this in practice when θ is unknown. Apart from the red curve, which results

in underestimation of θ, the high threshold weights tend to correspond to point

estimates of θ that are perhaps closer to the true value of θ, although we shouldn’t

read too much into this.

The results for the AR(2) process and the Markov chain exhibit some features that

are similar to the results for the AR(1) process, so in the following we comment only

on aspects that are different.

AR(2) process

Firstly, we note that in the first plot of figure 42 (top panel) when the threshold

is set at the sample median the MLEs of the extremal index are very close to zero

suggesting very strong dependence. The IMT statistic shown in the middle panel

of figure 42 displays an interesting, and potentially misleading, feature. It would

seem that for all replications a low threshold near the sample median would result in

non-rejection of the misspecification test. This could mislead someone in selecting a

threshold at that level which would greatly underestimate θ̂ as well as suggest that

there is very strong dependence in the underlying process.

The reason for this feature is that with a low threshold and K = 6 most of the

K-gaps are zero, that is, clusters tend to contain large numbers of exceedances.

This means that the sample K-gaps are predominantly from the point mass at zero
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part of the K-gap mixture model with few sample K-gaps from the exponential

part of the model. The IMT statistic is formulated to test the K-gaps model by

assessing departure from the random split between zero and non-zero K-gaps and

the exponential distribution for non-zero K-gaps, both of which are controlled by

the same parameter: θ. With very few non-zero K-gaps we would expect this test

to have low power to detect departure and this seems to be the case. Consider the

extreme case where all K-gaps are zero. Inspection of the expression for the IMT

statistic in the appendix of Süveges and Davison (2010) shows that in this event the

IMT statistic is identically zero.
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Figure 42: Threshold selection for AR(2) process with fixed K = 6. Top panel:
MLE against threshold quantile, with horizontal line at the true value of θ. Middle
panel: IMT statistic against threshold quantile, with horizontal line at the critical
value for a test with significance level of 5%. Bottom panel: threshold weight against
threshold quantile. Each coloured line represents a replication of the simulation.

As the threshold increases, a different story is told. The IMT is rejected until a

threshold near the 85% sample quantile. If one were to dismiss the suggested low

thresholds near the sample median (or not consider them in the first place) and select

a threshold near the 85% quantile this would still tend to result in underestimation

of the extremal index, albeit less serious underestimation.

In the bottom panel of figure 42 we see that the estimated threshold weights suggest
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thresholds that are somewhat higher than those suggested by the IMT and that

thresholds below the 85% quantile achieve virtually no weight. The thresholds with

high weight correspond to estimates of θ that are closer to the true value of θ than the

thresholds suggested by the IMT. By this judgement the cross-validatory threshold

selection seems to perform better than the IMT. However, increasing the significance

level used for the IMT would improve its performance in this respect.

Markov chain (MC)

The results here are similar to those for the AR(2). The main difference is that the

IMT behaves as one would hope: it decreases as the threshold increases. Otherwise,

the IMT tends to suggest a slightly lower threshold than in the AR(2), approxi-

mately the 80% quantile rather than the 85% quantile, and the profiles of estimated

threshold weights also seem to shift down by 5 percentage points in the level of the

quantile.
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Figure 43: Threshold selection for Markov chain with fixed K = 5. Top panel: MLE
against threshold quantile, with horizontal line at the true value of θ. Middle panel:
IMT statistic against threshold quantile, with horizontal line at the critical value
for a test with significance level of 5%. Bottom panel: threshold weight against
threshold quantile. Each coloured line represents a replication of the simulation.
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We now continue by repeating our analysis using 100 replications. With a larger

number of replications we can gain a clearer picture of the properties of the threshold

selection methods using cross-validation and using the IMT and of the MLE of θ.

We truncate the range of thresholds for the AR(2) and Markov chain examples to

the 75% to 95% sample quantiles because of the negligible threshold weight achieved

by thresholds lower than the 75% quantile.

Figure 44 shows the results for the cross-validation method. There is a lot of vari-

ability between the replications (shown in grey lines), however the summary statis-

tic lines make it easier to draw general conclusions. For the AR(1) the 85% sample

quantile has the highest average threshold weight and is selected as the ‘best’ thresh-

old most frequently. For the AR(2) process, the 92.5% and 95% sample quantiles

perform well, as do the 90%, 92.5% and 95% quantiles for the Markov chain. The

thresholds achieving high weight are somewhat higher than the thresholds at which

the average value of the IMT crosses the 5% significance level critical value (see

figure 45).

Figure 46 allows us to investigate what values for θ̂ would be obtained for each repli-

cation for a range of training thresholds. It is interesting that for the AR(1) process,

on average, θ is underestimated for all training thresholds considered. However, the

threshold suggested by our CV approach would result to smaller underestimation

error compared to the one produced by the lower threshold suggested from the

IMT approach. It is reassuring to note that for the AR(2) process, on average our

method suggests the threshold that estimates the model parameter very close to

the true value, whereas the IMT approach would tend to underestimate it. Finally

for the Markov chain, again the range of thresholds considered would tend to un-

derestimate, on average, the extremal index. However, the underestimation error is

minimised for the highest thresholds which is what our CV approach is suggesting.

This compares positively against the IMT approach that would produce a much

larger underestimation error.
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Figure 44: Summaries of threshold weights by training threshold. Top: the grey
lines give individual lines for each simulated dataset with threshold-specific sample
means (solid black line) and sample (5, 25, 50, 75, 95)% quantiles (dashed black
lines). Bottom: relative frequency with which each threshold has the largest CV
weight. Left: AR(1) process. Middle: AR(2) process. Right: MC process.
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Figure 45: Summaries of IMT statistics by training threshold. The grey lines give
individual lines for each simulated dataset with threshold-specific sample means
(solid black line) and sample (5, 25, 50, 75, 95)% quantiles (dashed black lines).
The horizontal red line is at the critical value for a test with significance level of 5%.
Left: AR(1) process. Middle: AR(2) process. Right: MC process.
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Figure 46: Summaries of MLEs by training threshold. The grey lines give individual
lines for each simulated dataset with threshold-specific sample means (solid black
line) and sample (5, 25, 50, 75, 95)% quantiles (dashed black lines). Left: AR(1)
process. Middle: AR(2) process. Right: MC process.

It is natural when dealing with real datasets, such as the Newlyn sea-surge heights,

that there will be some degree of uncertainty regarding threshold selection and in

making inferences about the extremal index. In this section we have compared the

performances of the IMT and the CV approach in terms of the resulting MLE of

θ. In this regard the CV approach performed better than the IMT for the three

processes we have considered. However, this is based on arbitrary choices of the

significance level used for the IMT and the highest threshold considered in the CV

approach. The fact that the methods rely on different choices means that we should

not read too much in to this result.

These methods also have different goals: the IMT examines model misspecification

and the CV approach assesses out-of-sample prediction. It is our contention that the

CV approach tackles more directly the bias-variance trade-off involved in threshold

selection. We know that the K-gaps model is at best an approximation to the

truth. Therefore, we prefer the idea of basing threshold selection on out-of-sample

predictive ability rather than a test of whether a model that is known to be wrong

fails to reject that model. The main challenge in implementing the CV approach is
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the choice of the highest training threshold (at which the validation threshold is set).

Although there is no definitive way to decide this, the same general considerations

from chapter 3 apply: this threshold should be high enough to observe the bias-

variance trade-off in action, but low enough that the adverse consequences of having

too few threshold exceedances is avoided.

We continue in the next chapter by returning to the independent case for observa-

tions but this time we relax the ‘identically distributed’ assumption by introducing

covariate effects in the location parameter.
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5 Thresholds for non-stationary extremes

We have introduced earlier in chapter 1 the GEV and GP models that are commonly

used in extreme value modelling. This chapter describes an approach in which the

extremes of a sequence of independent random variables are represented by a point

process. The resulting non-homogeneous point process model (which we refer to as

the NHPP model) is a combination of the GP and GEV modelling approaches in

the sense that (a) the number and extent of threshold excesses are modelled, and

(b) the model is parameterised in terms of the GEV parameters µ, σ and ξ. Thus,

in contrast with the GP model, the parameters of the NHPP model do not depend

on the threshold. This has the advantage that non-stationary models with covariate

effects can be included more naturally in the NHPP model than in the GP model,

a point we return to in section 5.2.

We begin by briefly introducing the concept of a point process and the two-dimensional

non-homogeneous Poisson process model. We then relax the assumption that the

data are realised values of identically distributed random variables, by introducing

a covariate effect only in the location parameter of the model, in other words, we

investigate a sequence of extremes with a linear trend. Furthermore, we discuss

current methods that deal with the topic of non-stationary extremes, focusing on

threshold modelling, and point out their strengths and weaknesses. We later suggest

the type of thresholds to use for non-stationary extremes where our aim is to use

regression modelling to identify (a method for selecting) the optimal threshold. We

conclude this chapter by discussing the limitations of our approach and outlining

possible extensions.

5.1 Point processes and the NHPP model

A point process model can be used, for example, to describe the process by which

point events, such as earthquakes, occur in time. The books by Resnick (1987) and

Snyder and Miller (1991) offer themselves as good reference points for a more detail

study on this topic.

The simplest point process is the one-dimensional homogeneous Poisson process, in

which points occur randomly in, say, time. This process has the property that the

number of points that occur in a time interval has a Poisson distribution, with a mean

that is proportional to the length of the time interval. Let N(s1, s2) be the number

of points that occur in the time interval (s1, s2]. Then, for any s1 < s2, N(s1, s2)

has a Poisson distribution with mean λ(s2 − s1), where λ is the rate or intensity
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of the Poisson process. In addition, the number of points in disjoint time intervals

are independent, that is, for any disjoint intervals (s1, t1) and (s2, t2), N(s1, t1) and

N(s2, t2) are independent. A process satisfying these two properties is a Poisson

process and the homogeneity results from λ being constant.

Allowing the intensity λ to be a function of time t, i.e. λ(t), results in a one-

dimensional non-homogeneous Poisson process. This can be extended to higher

dimensions, i.e. having points occurring in d-dimensional space. Let X ⊂ Rd,

A ⊂ X and let N(A) be the number of points in A. A d-dimensional process is a

non-homogeneous Poisson process P on X with non-negative intensity measure Λ

if:

• N(A) ∼ Poisson(Λ(A)) for all A ⊂ X ;

• if A and B are disjoint sets then N(A) and N(B) are independent.

Thus the expected number of points in A is given by the intensity measure Λ(A),

which is related to the intensity (density) function λ(v) by

Λ(A) =

∫
A

λ(v) dv. (5.1)

From this point onwards we focus on a specific Poisson process and therefore we are

only interested in the two-dimensional non-homogeneous Poisson process defined as

P .

Recall that in chapters 2 and 3 we assumed that X1, . . . , Xn is a sequence of i.i.d.

random variables with unknown distribution function F . We define a sequence of

two-dimensional point process on A = [0, 1]× R by

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

where an > 0 and bn are sequences of constants for a sample size n. The scaling

i/(n + 1) maps observation number, which we think of as time, to (0,1) and the

scaling (Xi− bn)/an is the one introduced in section 1.2 to produce a GEV limit for

Mn = max(X1, . . . , Xn).

The following theorem motivates the use of a two-dimensional non-homogeneous

Poisson process as a model for the locations of the points (i/(n + 1), Xi) for which

Xi exceeds a high threshold.
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Theorem 14. (Pickands, 1971)

If there exist sequences of constants an > 0 and bn such that

P

(
Mn − bn
an

6 x

)
→ G(x) as n→∞,

for a non-degenerate distribution function G with lower and upper endpoints w0 and

w1 respectively, then Pn → P, where P is a non-homogeneous Poisson process on

[0, 1]× (w0, w1), with intensity measure

Λ(Ax) = −(b− a) logG(x)

on Ax = (a, b)× (x,w1), where 0 6 a < b 6 1 and w0 < x < w1.

Note that the limiting non-homogeneous Poisson process applies on a region where

the scaled Xs are greater than the lower endpoint w0. Thus, for finite n we hope

that this limiting process applies approximately above some high threshold u that

can be applied to the data, since w0 < u < w1.

Graphical illustration of NHPP model

Here we have simulated four samples of random exp(1) variables with increasing

sample size. In addition we use an = 1 and bn = log(n) and introduce a threshold

u which is greater than the lower endpoint w0 of the limiting distribution. Figure

47 helps to demonstrate the point process graphically and illustrate the asymptotic

theory for the two-dimensional NHPP model. The pattern of points above the

(arbitrary) threshold at −2 converges to a two-dimensional Poisson process with

intensity measure Λ(Au).
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Figure 47: Point process representation with varying sample size and with a high
threshold: top left (n = 10), top right (n = 100), bottom left (n = 1000), bottom
right (n = 10000).

Later we clarify the connection between the NHPP model and the GEV and GP dis-

tributions, where the reader can refer to the plots in figure 48 for the two-dimensional

regions that are relevant for the Poisson intensity measure of each model. Figure

48 demonstrates graphically the two-dimensional non-homogeneous Poisson process

for:

• the case for exceedances above a high threshold u (see plot A) and

• the case for block maxima (see plot B).
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Figure 48: Point process representation (n = 10000) for different two-dimensional
areas. Plot A: point process according to exceedances above a threshold. Plot B:
point process according to block maxima.

The implication of theorem 14 is that, for a sufficiently high threshold u, an approx-

imate model for the process Pn of threshold exceedances on Au = (a, b) × (u,w1)

is provided by a two-dimensional non-homogeneous Poisson process with intensity

measure

Λ(Au) = (b− a)

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

. (5.2)

Plot A of figure 48 illustrates this graphically. Note that here the parameters (µ, σ, ξ)

relate to an implied GEV distribution for the maximum value over the time period

for which the process is observed. We will adjust this parameterisation later.

Informal justification

An informal justification of theorem 14 uses the fact that by construction the Xi

are mutually independent and considers an approximation to the Bin-GP model

introduced previously in section 1.3.1. We take a = 0 and b = 1. Under the Bin-

GP model, the number of points, Pn(Au), that occur in Au = [0, 1] × (u,∞) has a
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Binomial distribution:

Pn(Au) ∼ Binomial(n, pu),

where the probability pu that a randomly chosen point of Pn falls in Au is given by

pu = P

(
Xi − bn
an

> u

)
≈ 1

n

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

.

As n → ∞ the distribution of Pn(Au) converges to a Poisson limit with intensity

measure npu. Therefore we are moving from a discrete to a continuous process with

the properties that

Pn(Au) ∼ Poisson(npu),

where

npu = Λ(Au) =

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

, (5.3)

and, for non-overlapping Au and Av, Pn(Au) and Pn(Av) are independent by as-

sumption. Thus the intensity measure Λ(Ax) = − logG(x) where (following (1.1))

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
.

GEV and GP models from the NHPP model

We briefly show the connection of the NHPP model with the GEV and GP distri-

butions that were introduced in chapter 1. Under the NHPP model, and letting

Mn = max {X1, . . . , Xn}, we have

P

(
Mn − bn
an

6 y

)
= P (Pn(Ay) = 0)

= exp {−Λ(Ay)} = exp

{
−
[
1 + ξ

(
y − µ
σ

)]
+

}
,

where the first equality leads from the fact that under the block maxima approach

no points are observed in the region Ay (see plot B in figure 48, noting that in the

argument above a = 0 and b = 1). For the case of threshold excesses, the NHPP
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model also gives the GP distribution. For suitably high threshold u,

P

{(
Xi − bn
an

> x

) ∣∣∣∣ (Xi − bn
an

> u

)}
=

Λ(Ax)

Λ(Au)

=

[
1 +

ξz

σu

]−1/ξ

+

,

where z = x− u and σu = σ + ξ(u− µ).

Threshold invariant parameters

The model parameters of the Bin-GP model (introduced in 1.3.1) are pu, σu and

ξ. It is important to notice here that two of these parameters, namely pu and σu,

depend on the chosen threshold u. If the underlying process does not involve any

covariate effects then inference on extremes using the above-mentioned distribution

is quite simple and estimation can easily be done. However, if covariate effects are to

be modelled then having a threshold-dependent parameterisation is a disadvantage,

because the functional relationship between σu and the covariates will, in general,

depend of the threshold. Eastoe and Tawn (2009) discuss this issue in detail.

The biggest advantage in using the NHPP representation to model threshold ex-

cesses is the fact that the parameters µ, σ and ξ are threshold-invariant. This

makes it easier to work with a covariate-dependent threshold rather than a constant

threshold. We return to this in section 5.2.2.

Likelihood for the NHPP model

Suppose that we observe ny years of data with n observations per year, giving a total

of m = nyn observations, x1, . . . , xm observed at (scaled) times ti = i/(m+ 1). It is

common to parameterise the NHPP in terms of the parameters, hereafter denoted

θ = (µ, σ, ξ), of the implied GEV distribution of annual maxima. This is achieved

by redefining the intensity measure (5.2) as

Λ(Au) = ny(b− a)

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

,



5.2 Regression modelling 133

for some high threshold u. Taking a = 0 and b = 1, so that Au = [0, 1] × (u,∞)

leads (see, for example, Coles (2001, page 134)) to the likelihood function

L(θ;x) = exp {−Λ(Au;θ)}
∏
i:xi>u

λ(ti, xi;θ),

∝ exp

{
−ny

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

} ∏
i:xi>u

σ−1

[
1+ξ

(
xi−µ
σ

)]−(1+1/ξ)

+

(5.4)

where the intensity function

λ(t, x;θ) = ny σ
−1

[
1 + ξ

(
x− µ
σ

)]−(1+1/ξ)

+

(5.5)

satisfies (5.1), i.e. it is such that
∫ 1

0

∫∞
u
λ(t, x;θ) dx dt = Λ(Au).

The first term in (5.4) is the rate of threshold exceedance. The second part is

the contribution from the exceedances, since the observed xi values are above the

threshold u. Maximum likelihood inference for the NHPP model is subject to the

same regularity conditions discussed in chapter 1.

NHPP model assumptions

So far in this chapter we have assumed that X1, . . . , Xm are independent and identi-

cally distributed. We investigated the topic of dependence in extremes previously in

chapter 4. In the remainder of the current chapter the assumption of independence

is retained, but we relax the second assumption, by allowing the parameters of the

NHPP model to depend on the values of covariates via a regression model. This may

be necessary to reflect a temporal trend or seasonal effect. We argue that in this

case it is natural to allow the threshold to depend on the covariates. What is more,

we focus on the case where covariate effects are present in the location parameter µ

and consider how we could set a covariate-dependent threshold in this case.

5.2 Regression modelling

Notation change

We change our notation to conform with the traditional notation used in a regres-

sion setting: Y1, . . . , Ym denote the values of a response variable and x1, . . . , xm the

corresponding values of a (for the moment, scalar) covariate. A standard approach

in this situation is to model the effect of covariate x on the extremal behaviour
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of Y by allowing the parameters of an extreme value model for Y to depend on

x. For example, in the NHPP model we could specify a functional form µ(x) for

the GEV location parameter. In effect we appeal to standard extreme value argu-

ments conditional on the value of the covariate. Furthermore, we assume throughout

that conditional on their respective covariate values, the responses Y1, . . . , Ym are

independent.

Again we suppose that we observe ny years of data with n observations per year,

giving a total of m = nyn paired observations, (Y1, x1), . . . , (Ym, xm), observed at

(scaled) times ti = i/(m+ 1), i = 1, . . . ,m. The NHPP intensity function (5.5) can

be extended by allowing any of its parameters to be covariate-dependent. Here we

do this only for the location parameter, considering the simple case where µ(x) =

µ0 + µ1x, so that

λ(t, y;θ) = ny σ
−1

[
1 + ξ

(
y − µt
σ

)]−(1+1/ξ)

+

, (5.6)

where µt = µ(xt) and θ = (µ1, µ0, σ, ξ). We have ordered the parameters to separate

the regression parameter µ1 from the marginal parameters (µ0, σ, ξ). We also allow

the threshold u(x) to be covariate-dependent, with threshold ui applying at time ti

with associated covariate value xi. Under this setup the likelihood is

L(θ;y) = exp

{
−
∫ 1

0

∫ ∞
ut

λ(t, y;θ) dy dt

} ∏
i:yi>ui

λ(ti, yi;θ), (5.7)

where µti = µi = µ(xi) and ut = u(xt). In practice, and noting that ny/m = 1/n,

the integral in (5.7) is approximated by

1

m

m∑
i=1

∫ ∞
ui

λ(ti, y) dy =
1

n

m∑
i=1

[
1 + ξ

(
ui − µi
σ

)]−1/ξ

+

. (5.8)

In sections 5.2.1 and 5.2.2 we discuss some key issues for threshold-based extreme

value regression modelling, namely the choice of model, the functional form of the

threshold and setting a threshold that is appropriate for all observations. We con-

sider only parametric regression effects, but non-parametric approaches are possible

(Chavez-Demoulin and Davison, 2005, Butler et al., 2007).

5.2.1 Threshold-based extreme value regression modelling

Threshold-based extreme value regression modelling dates back to Davison and

Smith (1990), who include covariates in the parameters pu and σu of the Bin-GP
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model, and Smith (1989), who includes covariates in the parameters µ, σ and ξ

of the NHPP model. Despite the presence of non-stationarity Davison and Smith

(1990) use a constant threshold. Many authors have adopted their approach to the

extent that Eastoe and Tawn (2009) described the use of a Bin-GP model with a

constant threshold as the “standard”.

It is increasingly accepted (Chavez-Demoulin et al., 2011) that it is usually preferable

to use the NHPP rather than the Bin-GP in a regression situation. The dependence

of the GP parameter σu on the threshold u means that the functional relationship

between σu and the covariates depends on the value of u. In contrast the parameters

of the NHPP are threshold invariant, so if a particular parametric form is used for

µ(x) then this form applies for any threshold.

In a regression situation there are strong arguments (which we discuss in section

5.2.2) against using a constant threshold, and some authors have used non-constant

thresholds. Smith (1989) uses a seasonal threshold by applying a different threshold

within each month of the year. Similarly, Coles (2001) sets a smooth seasonal

threshold by trial-and-error with the aim of achieving an approximately constant

rate of threshold exceedance. Eastoe and Tawn (2009) seek to remove regression

effects, using a Box-Cox regression model of all the data, so that a constant threshold

can reasonably be applied in an extreme value analysis of the residuals from this

model. Northrop and Jonathan (2011) set a covariate-dependent threshold by fitting

a quantile regression model to estimate a given high conditional quantile of the

response as a function of covariates.

5.2.2 Covariate-dependent thresholds

In common with the stationary case considered in previous chapters, setting a thresh-

old involves a bias-variance trade-off (see section 1.4.2 and the introduction of section

3.3). The difference is that now the distribution of the response Y may depend on

the value of a covariate x. Therefore, a threshold that is appropriate for one value

of x may be inappropriate (too high or too low) for another value of x. This is illus-

trated in the left hand side of figure 49, where data have been simulated such that

x has a linear effect on the location of Y . Using the constant threshold depicted,

which is exceeded by 10% of the observations, might be appropriate for the larger

values of x but it is too high for small values of x, as it lies above all the observations

for which x < 0.4. Using a lower (constant) threshold could avoid this problem but

it may result in a threshold being applied for large x that is too low for the NHPP

model to be applicable.
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Figure 49: Non-stationary data (x has a linear effect on the location of Y ) with a
constant threshold (left) and a covariate-dependent threshold (right).

In the right hand side of figure 49 a covariate-dependent threshold is shown, which

mimics the linear effect of x on Y . This has been achieved using quantile regression

(QR) (Koenker and Bassett, 1978) (see D.1) to estimate the 90% conditional quantile

of Y as a function of x, which in the current example is linear in x. Thus, the

threshold is of the form u(x) = u0 + u1x. The aim is to set a threshold for which

(conditional on x) the probability p(x) of threshold exceedance is approximately 0.1

for all values of x. The strategy of seeking a threshold for which p(x) is constant

avoids the problems resulting from the use of a constant threshold. It is a logical

approach in the current context, where x affects the location of Y only, and seems

to be at least a good starting point more generally.

Once a suitable threshold is specified we would model the data in figure 49 using an

NHPP model in which µ(x) = µ0+µ1x and σ and ξ are constant. Setting a threshold

using QR is an attempt to set u1 to be close to µ1. A further desirable consequence

of using the covariate-dependent threshold is that excesses occur over a wider range

of values of x than the constant threshold. We would expect to achieve greater

precision in estimating µ1 than with the constant threshold, for which exceedances

cover a narrower range of values of x. We might also expect that a threshold with

the ‘correct’ gradient, i.e. with u1 = µ1, would be better than one for which u1 6= µ1.
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In section 5.3 we study this particular aspect in detail.

5.3 Theoretical study

We consider setting a threshold of the form u(x) = u0 + u1x for an NHPP model

in which it is assumed that µ(x) = µ0 + µ1x and σ and ξ are constant. We focus

specifically on the effect of the value of the gradient u1 on the precision of estimation

of µ1, under the assumption that the NHPP model holds for all the thresholds that

are compared. We do this because we are interested in exploring whether setting

u1 = µ1 is an optimal strategy when the thresholds compared are sufficiently high

such that bias from misspecification of the NHPP model is negligible. However,

such biases are important practically and would need to be taken into account if we

wished to develop a threshold selection method like those in chapters 3 and 4.

Consider the following data-generating process,

Yi | Xi = xi ∼ GEV(µd(xi), σ
d, ξ), for i = 1, . . . ,m, (5.9)

where µd(xi) = µd0 +µ1xi and the superscript d denotes daily parameters. The GEV

distribution is chosen because the NHPP model will hold approximately provided

that the thresholds we investigate are high. Without loss of generality, we assume

that the covariate values have been mean-centred, i.e. that
∑m

i=1 xi = 0.

Consider a fixed covariate value x and let Z = max(Y1(x), . . . , Yn(x)), that is,

the maximum in a year in which the covariate X is equal to x, throughout. If

Y1(x), . . . , Yn(x) are independent then P (Z 6 y | X = x) = P (Y 6 y | X = x)n,

and setting

µd0 = µ0 + σ
(
n−ξ − 1

)
/ξ and σd = σn−ξ. (5.10)

means that Z | X = x ∼ GEV (µ0 + µ1x, σ, ξ). Thus we have related the daily pa-

rameters to the annual parameters θ = (µ1, µ0, σ, ξ) of the NHPP. For later purposes

we state the p.d.f. of daily values parameterised in terms of the annual parameters:

fY |X=x(y;θ) =
1

σ

1

n

[
1+ξ

(
y−µ(x)

σ

)]−(1+1/ξ)

+

exp

{
− 1

n

[
1+ξ

(
y−µ(x)

σ

)]−1/ξ

+

}
,(5.11)

where µ(x) = µ0 + µ1x.
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Fisher information matrix

We derive the (expected) Fisher information matrix based on the approximate

NHPP likelihood defined by (5.7) and (5.8) under the data-generating process (5.9).

We require that ξ > −1/2 for the Fisher information to exist. Up to an additive

constant, the negated log-likelihood is

−`(θ;y) =
1

n

m∑
i=1

g(θ) +
m∑
i=1

δ(yi > u(xi))h(θ; yi),

where δ(x) = 1 if x is true and is 0 otherwise,

g(θ) =

[
1+ξ

(
u(xi)−µ(xi)

σ

)]−1/ξ

+

(5.12)

is a function of θ and x1, . . . , xm but does not involve the responses Y1, . . . , Ym, and

h(θ;Yi) = log σ +

(
1 +

1

ξ

)
log

[
1+ξ

(
yi−µ(xi)

σ

)]
+

(5.13)

is a function of θ, x1, . . . , xm and Y1, . . . , Ym.

The Fisher information matrix I for θ = (µ1, µ0, σ, ξ) = (θ1, θ2, θ3, θ4) contains the

elements Ijk = −E(∂2l/∂θj∂θk), for j, k ∈ {1, 2, 3, 4}. These elements are derived in

appendix D.4, by extending the Fisher information for the stationary case, which is

derived in appendix D.3. We partition I as

I =

 I11 IT1

I1 IM

 , (5.14)

where I1 = (I21, I31, I41)T and IM is the Fisher information matrix for the marginal

parameters (µ0, σ, ξ).

5.3.1 Comparing thresholds

We wish to compare thresholds of the form u(x) = u0 + u1x, with different values

of u1, in terms of the efficiency of the MLE of the regression parameter µ1. A

major contributor to the efficiency of parameter estimation is the overall level of the

threshold, which is determined by both u0 and u1. Lower thresholds will tend to

result in greater efficiency than higher thresholds. To make the comparison between

different values of u1 fair, we set u0 in order to keep constant a measure of the overall
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level of threshold.

The particular measure we use is the determinant of IM , det IM . In earlier work

we used an alternative measure, the expected proportion of threshold exceedances,

obtaining qualitatively similar numerical results. However, we concentrate on det IM

because it is a standard measure of total information in multi-parameter problems:

it quantifies the information about the marginal parameters (µ0, σ, ξ) that the data

are expected to contain. It also turned out to be easier to work with algebraically.

In the theory of experimental design, a design that maximises the determinant

of a Fisher information matrix is D-optimal (Atkinson et al., 2007, Chapter 10).

Similarly, det I quantifies the expected information about (µ1, µ0, σ, ξ). Suppose

that det IM is held constant across all thresholds of the form u(x) = u0 + u1x. The

value of det I will depend on u1. We call the threshold that maximises det I a

D-optimal threshold.

In the current context, a D-optimal threshold minimises the asymptotic variance

var(µ̂1) of the MLE of µ1. Using the block inversion result from appendix D.5 gives

the asymptotic variance of µ̂1 as

var(µ̂1) =
(
I−1
)

11
= (I11 − IT1 I−1

M I1)−1, (5.15)

and therefore the precision of µ̂1 is given by

prec(µ̂1) = I11 − IT1 I−1
M I1. (5.16)

Schur’s determinant identity (D.5) shows that

det I = det IM det
(
I11 − IT1 I−1

M I1

)
= det IM prec(µ̂1). (5.17)

As det IM is kept constant, maximising det I and minimising var(µ̂1) are equivalent.

To carry out this study we need to explore how the elements of I behave as u1 varies

and det IM is kept constant. An interesting aspect of this study is that the covariate

values x = (x1, . . . , xm) have an impact. In section 5.3.2 we consider the special

case where x are symmetric (about 0). This occurs, for example, if the covariate is

time and it is sampled regularly. In section 5.3.3 we consider the case where x are

not symmetric.
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5.3.2 Symmetric covariate values

We start with the case u1 = µ1, for which the thresholds u(xi) = u0 + u1xi, i =

1, . . . ,m all lie at the same level, 100q% say, of conditional quantile of Yi | X =

xi. We set u0 to achieve a particular value of q and calculate d0 = det IM in

this instance. We then vary u1, each time altering u0 so that det IM = d0, and

calculate the full Fisher information I. Without loss of generality we have used

(µ1, µ0, σ, ξ) = (1, 0, 1,−0.2), m = n = 365 and q = 0.95 to produce the following

results: the findings apply to all cases. The covariate values x1, . . . , xm are equally-

spaced on the interval [−1/2, 1/2].

In figures 50 and 51 we plot the elements of the Fisher information I against u1.

The diagonal elements of IM (left hand side of figure 50) all have the properties

that (a) they are maximised when u1 = µ1 = 1, and (b) the plots are symmetric

about u1 = µ1. The off-diagonal elements (right hand side of figure 50) exhibit

similar behaviour except that (owing to the fact that these elements can be negative)

property (a) becomes that the absolute value of each element is maximised when

u1 = µ1.

The plot on the top left of figure 51 shows that I11 behaves in the same way as I22,

i.e. its value is symmetric about the location of its maximum at u1 = µ1. This

element of I is of primary interest because it summarises the expected information

about µ1. The other plots show that the elements I21, I31, I41 are monotonic (but

on close inspection not quite linear) in u1 and that they are equal to zero only when

u1 = µ1.
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Figure 51: I11 and individual elements of I1 against u1 using symmetric covariate
values.
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Figure 52: Asymptotic standard error of µ̂1 against u1 using symmetric covariate
values.
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Figure 52 shows that the asymptotic standard error of µ̂1 (based on (5.15)) is min-

imised when u1 = µ1. This is a general result. The proof relies on showing that the

behaviour exhibited in figures 50 and 51 by the elements of I is general.

Properties of elements of I

We prove that under the setup described in section 5.3.1 the Fisher information

matrix I has the following properties.

• Property 1: If u1 = µ1 then I1 = (I21, I31, I41)T = (0, 0, 0)T

• Property 2: The absolute values of the elements of IM are maximised when

u1 = µ1.

• Property 3: If x1, . . . , xm are symmetric about 0 then I11 is maximised when

u1 = µ1.

Proof of property 1. From appendix D.4 we have that for k ∈ {2, 3, 4}

Ik1 =
m∑
i=1

xifk(xi), (5.18)

for some fk(xi) that depends on xi only through u(xi) − µ(xi). If u1 = µ1 then

u(xi)−µ(xi) = u0−µ0, which does not depend on xi. Therefore, Ik1 is proportional

to
∑m

i=1 xi, which is equal to 0.

Proof of property 2. See appendix D.6.

Proof of property 3. From appendix D.4 we have

I22 =
m∑
i=1

f2(xi) and I11 =
m∑
i=1

x2
i f2(xi).

If there are any covariate values of zero then these do not contribute to I11. The

other values occur in np pairs with paired covariate values (−cj, cj), j = 1, . . . , np,

say. Therefore,

I11 =

np∑
j=1

c2
j {f2(−cj) + f2(cj)} =

np∑
j=1

c2
j tj.

Each tj is the contribution to I11 in a case where m = 2. The proof of property 2

holds when m = 2. Therefore, each of tj, j = 1, . . . , np are maximised when u1 = µ1.
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Therefore I11 is maximised when u1 = µ1. Also, when u1 = µ1, f2(xi) does not

depend on xi so the maximised values of I11 and I22 satisfy I11 = I22 (1/m)
∑m

i=1 x
2
i .

Proof of optimality of u(x) = u0 + µ1x for symmetric covariate values

Provided that the regularity condition ξ > −1/2 holds, and that the covariate values

x1, . . . , xm are not all identical, then IM is positive definite and I−1
M is also positive

definite (see D.5). Therefore,

prec(µ̂1) = I11 − IT1 I−1
M I1 6 I11 (5.19)

with equality only when I1 = (0, 0, 0)T , which occurs when u1 = µ1 (Property 1).

Property 3 shows that, in the special case where x1, . . . , xm are symmetric about 0,

I11 is maximised when u1 = µ1 and so prec(µ̂1) is maximized when u1 = µ1.

5.3.3 Asymmetric covariate values

We consider the effect of asymmetry in the covariates on the optimal value of u1.

The proofs of properties 1 and 2 in section 5.3.2 do not require that the covariate

values are symmetric and therefore continue to hold. However, property 3 does not

necessarily hold when the covariate values are asymmetric. Therefore, u1 = µ1 may

not be optimal.

We illustrate the effect of skewness in the covariate values with an example. Again

we use (µ1, µ0, σ, ξ) = (1, 0, 1,−0.2), m = n = 365 and q = 0.95, but now x1, . . . , xm

are positively skewed, with a sample skewness coefficient of 0.64. Figure 53 shows

that now the asymptotic standard error of µ̂1 is minimised for a value of u1 that is

less than µ1.
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Figure 53: Asymptotic standard error of µ̂1 against u1 using asymmetric covariate
values.

In this example the optimal threshold has a lower gradient than the gradient µ1 in

the data-generating process. When the covariate values are positively skewed there

are many small covariate values and fewer large values. If u1 = µ1 the probability

of threshold exceedance is the same for all responses. However, due to the covariate

skewness when u1 = µ1 we expect fewer threshold exceedances associated with large

covariate values and more threshold exceedances associated with small covariate

values. To compensate for the expected relative lack of threshold exceedances for

large covariate values, a ‘locally’ lower threshold (than would be the case for u1 = µ1)

is suggested for large xi values and a ‘locally’ high threshold for small xi values. The

resulting optimal threshold has a lower gradient than µ1. This argument suggests

that for negatively skewed covariate values we should find that the optimal value of

u1 is greater than µ1 and indeed this is what we observe (plots not shown).

The result in section 5.3.2 supports the use of quantile regression to set an extreme

value regression threshold in the current example. We have ignored the effects of

model misspecification bias. If u1 = µ1 this bias is constant across different covariate

values. This is not the case when u1 6= µ1. The numerical work summarised in

section 5.3.3 shows that, in terms of precision of estimation of µ1, aiming to set

u1 = µ1 may not be optimal. However, if changes in bias that result from deviating

from u1 = µ1 are taken into account we expect that the optimal value of u1 would
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change.

5.3.4 Extension to multiple covariates

We extend the model so that the location parameter is linear in p covariates. For

each set of covariate values xi = (x1i, . . . , xpi), i = 1, . . . ,m the location µ(x) of the

GEV distribution for annual maxima is given by

µ(xi) = µ0 + µ1 x1i + · · ·+ µp xpi.

We write the Fisher expected information matrix for (µ1, . . . , µp, µ0, σ, ξ) as

M =

 M11 MT
12

M12 M22

 ,

where

• M11 is the p×p sub-matrix ofM relating to the regression parameters µ1, . . . , µp;

• M22 is the 3× 3 sub-matrix relating to the marginal parameters (µ0, σ, ξ);

• M12 is a 3× p matrix, with jth column, for j = 1, . . . , p, being the vector(
−E

[
m∑
i=1

xji
∂2`(θ; yi)

∂µ0∂µj

]
,−E

[
m∑
i=1

xji
∂2`(θ; yi)

∂µj∂σ

]
,−E

[
m∑
i=1

xji
∂2`(θ; yi)

∂µj∂ξ

])
.

Here M22 is analogous to IM in (5.14), M11 to I11 and M12 to I1.

Let µ = (µ1, . . . , µp). The asymptotic variance matrix of the maximum likelihood

estimator of µ is given by the p× p upper left submatrix M11 of M−1. This is given

by

M11 = (M/M22)−1 =
(
M11 −MT

12M
−1
22 M12

)−1
,

where M/M22 is the Schur complement of M22 in M (see D.5).

While keeping detM22 constant, we seek to minimize det(M11), or equivalently to

maximize det(M/M22), which is given by

det(M/M22) = det
(
M11 −M12M

−1
22 M

T
12

)
=

detM

detM22

,
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(see D.5). This is analogous to the definition ofDS-optimality in experimental design

(Atkinson et al., 2007), with the marginal parameters (µ0, σ, ξ) viewed as nuisance

parameters and µ1, . . . , µp as the parameters of interest. As detM22 is kept constant

our approach is equivalent to maximizing detM , the criterion for D-optimality.

Suppose that for the set of covariate values xi the threshold is of the following form

u(xi) = u0 + u1 x1i + · · ·+ up xpi.

Without loss of generality suppose that all the covariates are mean-centred at zero,

that is,
∑m

i=1 xji = 0, for j = 1, . . . , p.

We show that a property like Property 1 of section 5.3.2 holds. By analogy with

(5.18), for r = 1, 2, 3 and j = 1, . . . , p, the (r, j) element of M12 can be written as

(M12)rj =
m∑
i=1

xjifr(xi),

where fr(xi) depends only on xi only through u(xi) − µ(xi). If ui = µi, for i =

1, . . . , p, then u(xi)− µ(xi) = u0− µ0, which does not depend on xi. Therefore, for

each r and j, (M12)rj is proportional to
∑m

i=1 xji, which is equal to 0, and M has

the following property.

Property 1?. If ui = µi, for i = 1, . . . , p then M12 is a zero matrix.

Similarly, for j = 1, . . . , p and k = 1, . . . , p, the (j, k) element of M11 can be written

as

(M11)jk =
m∑
i=1

xjixki fjk(xi),

where fjk(xi) depends only on xi only through u(xi) − µ(xi). In the case j = k,

property 3 of section 5.3.2 applies to (M11)jj, for j = 1, . . . , p: if xj1, . . . , xjm are

symmetric about 0 then (M11)jj is maximized when uj = µj, j = 1, . . . , p.

Suppose, further, that
∑m

i=1 xjixki = 0, for all j and k, that is, the covariates are

mutually orthogonal. Now, if uj = µj, j = 1, . . . , p then M11 is diagonal, with

diagonal elements that are as large as they could be. Inequality (D.7) in appendix

D.5 shows that, for given diagonal elements, the determinant of M11 (given by the

product of these elements) is maximised when M11 is diagonal. Therefore, detM11

is maximised when uj = µj, j = 1, . . . , p, leading to the following property.

Property 3?: If xj1, . . . , xjm are symmetric about 0 for all j and
∑m

i=1 xjixki = 0,

for all j and k, then detM11 is maximised when uj = µj, j = 1, . . . , p.
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The matrix determinant inequality (D.9) in appendix D.5 shows that

det(M/M22) = det(M11 −M12M
−1
22 M

T
12) 6 detM11, (5.20)

with equality if and only if M12 is a zero matrix, which occurs when uj = µj, j =

1, . . . , p (Property 1?). This is an extension of (5.19) to the multi-dimensional case.

Property 3? shows that if the covariates are orthogonal and each is symmetric about

zero then det(M/M22) is maximized when uj = µj, j = 1, . . . , p.

Orthogonality of the covariates is not necessary for this result to hold. Suppose

that the covariates x1, . . . , xp are orthogonalised using principle components analysis

(Jolliffe, 2002). We replace the original covariates x = (x1, . . . ,xp) with principal

components (PCs) z = (z1, . . . ,zp). Let S be the sample covariance matrix of x.

The jth PC is given by zj = αTj x,where αj is an eigenvector of S corresponding to

its jth eigenvalue. The PCs are linear combinations of the original covariates that

are orthogonal. If we use p PCs z1, . . . ,zp as covariates we have not changed the

model, but re-expressed it in terms of covariates that are orthogonal. If each of the

original covariates are symmetric about 0 then linear combinations of them are also

symmetric about zero. For det(M/M22) to be maximised when uj = µj, j = 1, . . . , p

it is sufficient that each of the covariates is symmetric about zero.

We have investigated the scenario where covariates are present only in the location

parameter. It is of interest to extend the theory to the case where there are co-

variates in the scale and/or shape parameter, but this is a non-trivial exercise. For

example, consider the case where there are covariate effects in the scale σ(x) and

ξ is constant. In this case, setting a threshold u(x) for which the probability of

exceedance is constant equates to [u(x)−µ(x]/σ(x) being constant with respect to

x. For such a threshold, the information matrices K1, . . . , Km associated with indi-

vidual observations are not proportional. This is because the individual elements of

Ki contain multiplicative factors in which σ(x) enters in different ways. Therefore,

Minkowski’s determinant inequality ((D.10) in appendix D.5), which was used to

prove Property 2, cannot be used.
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6 Conclusions

The primary aim of this thesis is to contribute to areas of extreme value analysis that

involve selecting a high threshold, that is, threshold-based extreme value modelling.

In chapter 1 we introduced models involved in extreme value theory for univariate

i.i.d. sequences and univariate dependent sequences. In the former case this the-

ory suggests a Bin-GP model for the occurrence of threshold exceedances and the

magnitude of threshold excesses. In the latter case threshold exceedances occur in

clusters with a mixture model (the K-gaps exponential mixture model) governing

whether two successive exceedances are in the same cluster or from different clusters.

In chapter 2 we studied Bayesian inference for the GP distribution, comparing refer-

ence priors for the GP parameters. Having established conditions sufficient for these

improper priors to result in proper posterior distributions, we identified, through a

simulation study, priors that result in reliable predictive inference of quantities of

interest in an extreme value analysis.

One of these priors is used in chapter 3 where we proposed a new approach for

selecting an extreme value threshold for i.i.d. sequences. This method employs

a cross-validation technique through a Bayesian predictive approach. The main

motivation behind our method is that, in contrast with many existing methods,

it seeks to address directly the bias-variance trade-off associated with selecting a

threshold. The outcome is a graphical diagnostic tool that allows the user to identify

the ‘best’ threshold by choosing the one that provides the best cross-validatory

performance. In addition, we used a Bayesian model averaging approach to extend

the idea of selecting a single ‘best’ threshold to one that accounts for uncertainty in

the choice. We illustrated our method using storm peak significant wave height data

from the Gulf of Mexico and from the North Sea. Through a simulation study we

assessed the performance of the method and concluded that using model averaging

to account for threshold uncertainty produces less variability compared to the single

‘best’ threshold strategy, at the expense of greater bias.

Moving away from the i.i.d. case, in chapter 4 we relaxed the assumption of indepen-

dence to consider threshold selection for stationary dependent sequences, based on

the K-gaps exponential mixture model for inter-exceedance times. We employed the

same general strategy as chapter 3, adapting the cross-validation scheme to operate

with K-gaps rather than raw observations. We augmented the K-gaps likelihood

to account for censored inter-exceedance times occurring at the start and end of

the observation period, to use all available information and to avoid the unreal-

istic behaviour that can occur for very high thresholds. We applied the method
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to sea-surge heights from Newlyn obtaining results that are in agreement with the

threshold choice made by Fawcett and Walshaw (2012) using the same data. In a

simulation study our method was at least competitive with, and perhaps outper-

formed, the model misspecification testing approach of Süveges and Davison (2010),

although a definitive comparison is hampered by the fact that the K-gaps model is

not true at any threshold.

In chapter 5 we relaxed the i.d. part of i.i.d. to consider the case where the distribu-

tion of the extremes of a response variable are related to covariates. We introduced

the NHPP regression model and compared theoretically different (linear in the co-

variates) thresholds for the case when linear covariate effects are present in the

location of the distribution. In particular, we were interested in the performance

of thresholds with the same regression coefficients as the covariate effects, as this

relates to the use of quantile regression to set a threshold. The utility of the results

in this chapter are limited somewhat by the fact that we considered only the pre-

cision of estimation of model parameters, ignoring the issue of bias. However, an

interesting finding is that quantile regression is optimal if the covariate values are

symmetric, but not necessarily so otherwise.

Our proposed CV method for selecting the threshold is a useful addition to the

existing threshold selection methods and graphical diagnostic tools. It can be used

both to choose a single threshold (which is then treated as fixed and known) or to

account for uncertainty in this choice by averaging extreme value inferences over

several thresholds, weighting thresholds with better predictive performance more

heavily than those with poorer performance. In contrast with other methods that

perform the latter function, our general approach uses standard unmodified extreme

value models. This makes it more amenable to extension to other settings, as we

explain below.

Informative priors

One way that our work in chapters 2 and 3 can be extended is by considering infor-

mative or weakly-informative priors for the GP model parameters. We have used a

particular reference prior, chosen because it results in better predictive performance

than other reference priors. Of course, the basis on which this prior was chosen takes

no account of the practicalities of real extreme value problems, about which at least

some prior information is likely to exist. As pointed out in section 2.2.1, there are

arguments in favour of using an informative prior in an extreme value analysis. The

main aim of extreme value modelling is to enable extrapolation beyond the range of
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observed data. In practice, the extent to which realistic extrapolation can be made

is limited by the amount of information provided by data and by the prior and in

section 3.4 we observed and discussed the unrealistic extrapolations (see figure 22)

that can result if too little information is available. This issue is not specific to

our methodology - it is pertinent to any extreme value analysis, Bayesian or not -

and our approach can trivially accommodate either a fully-informative prior or a

weakly-informative prior, guided by an expert. The latter type of prior is intended

merely to prevent unrealistic inferences, downweighting a priori parameter values

corresponding to unrealistically large events, while allowing information from the

data to be influential if it conflicts with this. One possibility is to place a prior on

the GP shape parameter ξ that downweights large (e.g. ξ > 1) values. Gelman

(2006) argues that a half-Cauchy prior provides a suitable weakly-informative prior

for a standard deviation. By extension, perhaps a Cauchy prior for ξ with location

zero merits some investigation.

Modelling threshold excesses in the dependence case

The work in chapter 4 considers selecting the threshold for the case of dependent

and identically distributed sequences. Here we describe ways in which this work can

be extended.

We have used the K-gaps model, parameterised by the extremal index, to select a

threshold u. First we fixed K at a value judged to be appropriate and then we com-

pared the performance of different thresholds. As, in practice, there is no definitive

choice of K it would be better to be able to compare different (u,K) pairs. Within

the context of our CV approach this implies defining a range of plausible training

values for K, say K1 < · · ·Kh to combine with training thresholds (u1, . . . , uk) to

form a grid of (ui, Kj), i = 1, . . . , k, j = 1, . . . , h pairs. The performance of each pair

is judged on its ability to predict leave-one-out validation K-gaps, produced using

a validation threshold v = uk and a validation value Kv = Kh of K. It is necessary

that the validation is based on fixed values of v and Kv that are no smaller than the

largest training threshold u and the largest training K, respectively. Once the grid

of (u,K) values has been chosen, performing the cross-validation to search for the

‘best’ combination of of threshold and K is straightforward and mirrors the model

misspecification testing approach of Süveges and Davison (2010). Once more, a key

issue is the setting of appropriate values of uk and Kh.

In chapter 4 we did not investigate the uncertainty involving the choice of u, that is,

we did not average inferences about extreme quantiles over u like we did in chapter 3.
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The reason for this is that it is less trivial to perform such inferences. As explained

in section 1.6.2, even once a threshold has been selected, there is more than one way

to proceed.

One possibility is to use the chosen run parameter K to decluster the data to form

a set of cluster maxima (Ferro and Segers, 2003, Süveges, 2008), which are treated

as independent and modelled using the methods in chapter 3 based on a Bin-GP

model. We could use the threshold chosen using the K-gaps model but there is

no guarantee that this threshold performs well in the context of the Bin-GP model.

This could be checked by performing the threshold selection methodology of chapter

3 on the cluster maxima, but then what would we do if this analysis suggested a

rather different threshold than the K-gaps analysis? Perhaps the best declustering-

based option is to perform threshold selection using the K-gaps model and the

Bin-GP model for cluster maxima simultaneously. For fixed (u,K) inferences about

inter-exceedance times and the marginal distribution of cluster maxima can proceed

separately and an overall measure of cross-validatory performance equal to the sum

of (3.4) and (4.10) can be used.

However, Fawcett and Walshaw (2007, 2012) demonstrate that it is preferable to

model a GP distribution using all threshold excesses in the raw data, rather than only

cluster maxima of declustered data. Using cluster maxima throws away information

about the marginal distribution of extremes and the process of declustering can

introduce non-negligible bias into inferences. However, opting to use all the excesses

raises the question: “what is the likelihood in this case?”. As our CV approach uses

a Bayesian analysis, having a likelihood is crucial. It is clear that the ‘independence’

likelihood used in chapter 3 is wrong, but one could adjust it for the presence of

local extremal dependence using the method of Chandler and Bate (2007). Fawcett

and Walshaw (2012) use an equivalent approach to adjust estimates of uncertainty

about model parameters and extreme quantiles. Thus, a CV approach using this

adjusted likelihood for the raw data could replace the independence likelihood for

cluster maxima discussed in the previous paragraph. Even though declustering is

no longer performed the K-gaps modelling is still useful to inform the choice of

threshold and necessary because inferences about the extremal index θ are required

in order to make inferences about future extreme values.

Another alternative is to use a model that incorporates explicit parametric assump-

tions for the nature of the temporal extremal dependence, in addition to those

already made about the marginal distribution of extremes. This is necessary if

the form of the dependence influences a quantity of interest, for example, if we

want to make inferences about the duration of an extreme event. One possibil-
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ity is a Markov chain model based on a bivariate threshold excess model (Smith

et al., 1997, Fawcett and Walshaw, 2006). However, there are many such models

and many other approaches are possible. Nevertheless, whichever model is used

there is scope for the cross-validatory threshold selection methodology developed

in this thesis to be used provided that one can estimate the predictive density of

the validation data. To alleviate the problem of extreme value model uncertainty

one could consider averaging inferences over both thresholds and a set of candidate

models, weighting threshold-model combinations according to their cross-validatory

predictive performance.

Regression effects

An interesting extension of the work in chapter 3 is to use CV to perform threshold

selection in the setting of chapter 5, that is, for an extreme value regression model

with responses assumed to be conditionally independent given their respective co-

variate values. The same general principles can be applied, comparing training

thresholds u1(x), . . . , uk(x) based on predictive ability at some validation thresh-

old, say v(x) = uk(x), but implementation is less straightforward: models, and

covariate-dependent thresholds, are more complicated and have more parameters

and there is the potential to compare thresholds in terms of their form, in addition

to their overall level. The latter issue can be simplified by using quantile regression

to set thresholds at estimates of the 100τ% conditional quantile, so that threshold

selection reduces to a choice of τ . We need to ensure that no ui(x) exceeds v(x)

in the range of the data, for example, by using a constrained version of quantile re-

gression that avoids crossing of fitted quantile curves for different τ (Bondell et al.,

2010).

Simple parametric regression effects on extreme value parameters, like those consid-

ered in chapter 5, could be used. However, in some applications such models may not

be sufficiently flexible to represent these effects and non-parametric regression may

be preferable. One possibility is to use a flexible family of functions, for example

cubic splines (Chavez-Demoulin and Davison, 2005, Jonathan et al., 2014), avoid-

ing over-fitting by penalising roughness in the fitted regression curves. A, perhaps

more simple, alternative is local-likelihood regression (Ramesh and Davison, 2002,

Butler et al., 2007), where simple parametric effects (perhaps constant or linear in

covariate) are estimated at each covariate value x0 of interest and a kernel func-

tion weights more heavily contributions from observations the closer their covariate

value is to x0. Consider the case where there is a single scalar covariate. Then the

kernel function will involve a bandwidth h that controls how the weights decay with
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distance from x0: the smaller h the more local to x0 an observation needs to be to

influence the fit at x0. The choice of a suitable value of h is crucial and involves

a bias-variance trade-off: a small value of h would produce estimators with high

variance but low bias and the opposite is true for high values of h. Like thresholds,

different values of h could be compared based on cross-validatory performance. In

the locally-constant case training thresholds could be set at local estimates of the

100(τ1, . . . , τk)% quantiles, for some set of non-exceedance probabilities (τ1, . . . , τk).

For the locally-linear case quantile regression could be used to set thresholds at local

estimates of conditional quantiles of the response given the covariate.

Multivariate extremes

So far, we have considered only cases where the extremes of a single variable are of

interest. In some applications it is important to model the joint behaviour of the

extremes of different variables, in addition to their marginal extremal behaviours.

This is achieved using multivariate extreme value models.

A threshold-based example is a bivariate threshold excess model (see, for example,

Coles (2001, chapter 8)), where for pairs of random variables (X, Y ) the aim is to

model the joint distribution of (X, Y ) on regions where both X and Y exceed a

threshold ux and uy respectively. However, even in the bivariate case, multivariate

extreme value theory generates a very wide class of extreme value models, meaning

that many different bivariate extreme value models can be specified. A key issue

is the distinction between the cases of asymptotic dependence, where there is a

positive probability that the very largest values of X and Y occur at the same time

and asymptotic independence, where this probability is zero. Some dependence will

typically be observed in data. Then the crucial issue is to infer how the dependence

changes as the levels of interest increases, that is, as we move into the upper tails of

the distributions of X and Y , and, in particular, whether the variables are dependent

or independent asymptotically. An area of current research is to develop modelling

frameworks that are sufficiently flexible to be able to capture different forms of

dependence and, beyond the bivariate case, to allow different types of dependence

between different pairs of variables. Perhaps the most useful current threshold-

based approach (Heffernan and Tawn, 2004, Keef et al., 2013) is one based on the

conditional distribution of a vector given that one of its components exceeds some

threshold.

For a given multivariate extreme value model the general principles of our CV ap-

proach could be applied to inform threshold selection. Of course, in more than one
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dimension the implementation is more challenging: more complicated models with

more parameters and a threshold to set for each variable. As in the explicit mod-

elling of temporal dependence of threshold excesses, we could also average inferences

over different multivariate extreme value models. Indeed Bayesian Model Averaging

has been used recently by Sabourin et al. (2013) to combine inferences from different

trivariate extreme value models for block maxima.
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A CHAPTER 1

A.1 Likelihood-based results

The probability density function of a GEV(µ, σ, ξ) random variable is

fGEV (y;θ) =


1

σ
exp

{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ

+

}[
1 + ξ

(
y − µ
σ

)]−1−1/ξ

+

, ξ 6= 0,

1

σ
exp

{
−
(
y − µ
σ

)
− exp

[
−
(
y − µ
σ

)]}
, ξ = 0,

(A.1)

where θ = (µ, σ, ξ).

The log-likelihood for a random sample Y = Y1, . . . , Yb from a GEV(µ, σ, ξ) distri-

bution is given by

`GEV (θ;y) =
b∑
i=1

log fGEV (yi;θ)

=


−blogσ−

(
1 +

1

ξ

) b∑
i=1

log

[
1 + ξ

(
yi − µ
σ

)]
+

−
b∑
i=1

[
1 + ξ

(
yi − µ
σ

)]−1/ξ

+

, ξ 6= 0,

−blogσ−
b∑
i=1

(
yi − µ
σ

)
−

b∑
i=1

exp

{
−
(
yi − µ
σ

)}
, ξ = 0.

(A.2)

The expected Fisher Information matrix for θ based on a single observation is given

by

FIGEV =



−E
[
∂2`(θ;Y )

∂µ2

]
−E

[
∂2`(θ;Y )

∂µ∂σ

]
−E

[
∂2`(θ;Y )

∂µ∂ξ

]
−E

[
∂2`(θ;Y )

∂µ∂σ

]
−E

[
∂2`(θ;Y )

∂σ2

]
−E

[
∂2`(θ;Y )

∂σ∂ξ

]
−E

[
∂2`(θ;Y )

∂µ∂ξ

]
−E

[
∂2`(θ;Y )

∂σ∂ξ

]
−E

[
∂2`(θ;Y )

∂ξ2

]


. (A.3)

For ξ 6= 0 the FIGEV components can be expressed in terms of the gamma function
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Γ(t) =
∫∞

0
xt−1 exp(−x) dx and the digamma function ψ(t) = d log Γ(t)/dt as

−E
[
∂2`(θ;Y )

∂µ2

]
=

p

σ2

−E
[
∂2`(θ;Y )

∂σ2

]
=
{1− 2Γ(2 + ξ) + p}

σ2ξ2

−E
[
∂2`(θ;Y )

∂ξ2

]
=
{π2/6 + (1− γ + 1/ξ)2 − 2q/ξ + p/ξ2}

ξ2

−E
[
∂2`(θ;Y )

∂µ∂σ

]
= −{p− Γ(2 + ξ)}

σ2ξ

−E
[
∂2`(θ;Y )

∂µ∂ξ

]
=
{q − p/ξ}

σξ

−E
[
∂2`(θ;Y )

∂σ∂ξ

]
=

[1− γ + {1− Γ(2 + ξ)}/ξ − q + p/ξ]

σξ2

where,

p = (1 + ξ)2Γ(1 + 2ξ),

q = Γ(2 + ξ){ψ(1 + ξ) + (1 + ξ)/ξ}

and γ = −ψ(1) ≈ 0.5772157 is Euler’s constant. Prescott and Walden (1980) give

the expected information matrix for a parameterisation of the GEV distribution in

which the shape parameter k = −ξ. For ξ = 0 the expressions given above become

−E
[
∂2`(θ;Y )

∂µ2

]
=

1

σ2

−E
[
∂2`(θ;Y )

∂σ2

]
=
π2/6 + (1− γ)2

σ2

−E
[
∂2`(θ;Y )

∂ξ2

]
= π2/6− π2γ/2 + γ2 − γ3 − 2ζ(3) + 2γζ(3) + π2γ2/4 + γ4/4 + 3π4/80,

−E
[
∂2`(θ;Y )

∂µ∂σ

]
=
γ − 1

σ2

−E
[
∂2`(θ;Y )

∂µ∂ξ

]
=
π2/6 + γ2 − 2γ

2σ

−E
[
∂2`(θ;Y )

∂σ∂ξ

]
=

4γ + 4ζ(3) + π2γ + 2γ3 − π2 − 6γ2

4γ

where ζ(x) =
∑∞

i=1 1/ix is the Riemann Zeta function and ζ(3) ≈ 1.2020569.
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A.2 Summary of results for GP distribution

We use the results from section 1.3 to show that the random variable Z has the

following distribution function

FGP (z) =


1−

[
1 +

ξz

σu

]−1/ξ

+

, ξ 6= 0,

1− exp

(
− z

σu

)
, ξ = 0,

(A.4)

where σu > 0 and ξ ∈ R.

A.3 Likelihood-based results

The probability density function of a GP(σu, ξ) random variable is

fGP (z;θ) =


1

σu

[
1 +

ξz

σu

]−1−1/ξ

+

, ξ 6= 0,

1

σu
exp

(
− z

σu

)
, ξ = 0,

(A.5)

where now θ = (σu, ξ).

The log-likelihood for a random sample Z = (Z1, . . . , Znu) from a GP(σu, ξ) distri-

bution is given by

`GP (θ; z) =
nu∑
i=1

log fGP (zi;θ)

=


−nu log σu − (1 + 1/ξ)

nu∑
i=1

log

[
1 + ξ

(
zi
σu

)]
+

, ξ 6= 0,

−nu log σu − σ−1
u

nu∑
i=1

zi, ξ = 0.

(A.6)
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The expected Fisher Information matrix for θ based on Z is given by

FIGP =


−E

[
∂2`(θ;Z)

∂σ2
u

]
−E

[
∂2`(θ;Z)

∂σu∂ξ

]
−E

[
∂2`(θ;Z)

∂σu∂ξ

]
−E

[
∂2`(θ;Z)

∂ξ2

]


=
nu

σ2
u(1 + ξ)(1 + 2ξ)

 1 + ξ σu

σu 2σ2
u

 . (A.7)

A.4 Summary of results for the K-gaps mixture model

For a sequence of dependent random variables X̃1, X̃2, . . . , X̃n and a suitably high

threshold u we consider the behaviour of the scaled K-gap Z = F (u)S(K). We have

used that F (u) = P
(
X̃ > u

)
, which is estimated by q = (1/n)

∑n
i=1 I(X̃i > u)

and S(K) = max(T −K, 0), where T is the inter-exceedance time and K is a tuning

parameter. Furthermore, without loss of generality, we let N−1 be the total number

of K-gaps and define N1 =
∑N−1

i=1 I(Si > 0) to be the number of non-zero K-gaps

and N0 =
∑N−1

i=1 I(Si = 0) = N − 1−N1 the number of zero K-gaps.

The probability density function of Z is

fZ(z) = (1− θ)I(z=0)(θ2e−θz)I(z>0) for z > 0, (A.8)

where I is the indicator function and the condition z > 0 is essentially dependent

on s > 0 since F (u) > 0 is always positive for an exceedance.

For the model parameter θ and Z = (Z1, . . . , ZN−1), assuming independence of Z,

the log-likelihood function for the K-gaps exponential mixture model is

lK(θ;Z) = N0 log(1− θ) + 2N1 log θ − θq

{
N−1∑
i=1

Zi

}
. (A.9)

The expected Fisher Information for the K-gaps exponential mixture model is

FIK = −E
[
∂2`(θ;Z)

∂θ2

]
= E

[
N−1∑
i=1

{
I(Zi = 0)

(1− θ)2
+

2I(Zi > 0)

θ2

}]
(A.10)

= (N − 1)

[
1

1− θ
+

2

θ

]
. (A.11)
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B CHAPTER 2

B.1 Moments of a GP distribution

We give some moments of the GP distribution for later use. Suppose that Z ∼
GP (σ, ξ), where ξ < 1/r. Then (Giles et al., 2011)

E(Zr) =
r!σr

r∏
i=1

(1− iξ)
, r = 1, 2, . . . . (B.1)

Now suppose that ξ < 0. Then, for a constant a > ξ, and using the substitution

x = −ξv/σ, we have

E(Z−a/ξ) =

∫ −σ/ξ
0

v−a/ξ
1

σ

(
1 +

ξv

σ

)−(1+1/ξ)

dv,

= (−ξ)a/ξ−1σ−a/ξ
∫ 1

0

x−a/ξ(1− x)−(1+1/ξ) dx,

= (−ξ)a/ξ−1σ−a/ξ
Γ(1− a/ξ)Γ(−1/ξ)

Γ(1− (a+ 1)/ξ)
, (B.2)

where we have used integral number 1 in section 3.251 on page 324 of Gradshteyn

and Ryzhik (2007), namely∫ 1

0

xµ−1(1− xλ)ν−1 dx =
1

λ
Beta

(µ
λ
, ν
)

=
Γ(µ/λ)Γ(ν)

Γ(µ/λ+ ν)
λ > 0, ν > 0, µ > 0,

with λ = 1, µ = 1− a/ξ and v = −1/ξ.

In the following proofs we use the generic notation π(ξ) for the component of the

prior relating to ξ: the form of π(ξ) varies depending on the prior being considered.

B.2 Proof of theorem 6 and its corollary

This trivial extension of the proof of theorem 1 in Eugenia Castellanos and Cabras

(2007). Suppose nu = 1, with an observation z. The normalizing constant C of the

posterior distribution is given by

C1 =

∫ 0

−∞
π(ξ)

∫ ∞
−ξz
σ−2(1 + ξz/σ)−(1+1/ξ) dσdξ +

∫ ∞
0

π(ξ)

∫ ∞
0

σ−2(1 + ξz/σ)−(1+1/ξ) dσdξ,

=
1

z

∫ ∞
−∞

π(ξ) dξ.
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If the latter integral is finite, that is, π(ξ) is proportional to a proper density function,

then the posterior distribution is proper for nu = 1 and therefore, by successive

iterations of Bayes’ theorem, it is proper for nu > 1.

The corollary follows directly.

B.3 Proof of theorem 7

Let A(ξ) = e−ξ and B(σ, ξ) = σ−(nu+1)
∏nu

i=1 (1 + ξzi/σ)−(1+1/ξ). Then, from (2.6)

we have

CN =

∫ ∞
−∞

A(ξ)

∫ ∞
max(0,−ξznu )

B(σ, ξ) dσdξ,

=

∫ −1

−∞
A(ξ)

∫ ∞
−ξznu

B(σ, ξ) dσdξ +

∫ 0

−1

A(ξ)

∫ ∞
−ξznu

B(σ, ξ) dσdξ +

∫ ∞
0

A(ξ)

∫ ∞
0

B(σ, ξ) dσdξ.

The latter two integrals converge for nu > 1. However, the first integral diverges

for all samples sizes. For ξ < −1, (1 + ξz/σ)−(1+1/ξ) > 1 when z is in the support

(0,−σ/ξ) of the GP(σ, ξ) density. Therefore B(σ, ξ) > σ−(nu+1). Thus, the first

integral above satisfies∫ −1

−∞
A(ξ)

∫ ∞
−ξznu

B(σ, ξ) dσ dξ >

∫ −1

−∞
A(ξ)

∫ ∞
−ξznu

σ−(nu+1) dσ dξ,

=

∫ −1

−∞
A(ξ)

[
− 1

nu
σ−nu

]∞
−ξznu

dξ,

=

∫ −1

−∞
A(ξ)

1

nu
[−ξznu ]−nu dξ,

=
1

nuznunu

∫ ∞
1

v−nuev dv,

where v = −ξ. This integral is divergent for all nu > 1, so there is no sample size

for which the posterior is proper.

B.4 Proof of theorem 8

We need to show that C3 is finite. We split the range of integration over ξ so that

C3 = I1 + I2 + I3, where

I1 =

∫ −1

−∞

∫ ∞
−ξz3

B(σ, ξ) dσ dξ, I2 =

∫ 0

−1

∫ ∞
−ξz3

B(σ, ξ) dσ dξ, I3 =

∫ ∞
0

∫ ∞
0

B(σ, ξ) dσ dξ

and B(σ, ξ) = σ−4
∏3

i=1 (1 + ξzi/σ)−(1+1/ξ). For convenience we let ρ = ξ/σ.
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B.4.1 Proof that I1 is finite

We have ξ < −1 and so −(1 + 1/ξ) < 0, ρ < 0 and 0 < 1 + ρzi < 1 for i = 1, 2, 3.

Noting that −ρz3 < 1 gives

(1 + ρz1)(1 + ρz2)(1 + ρz3) > (−ρz3 + ρz1)(−ρz3 + ρz2)(1 + ρz3),

= (−ρ)2(z3 − z1)(z3 − z2)(1 + ρz3),

= (−ξ)2σ−2(z3 − z1)(z3 − z2)(1 + ρz3). (B.3)

Therefore,

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

< (−ξ)−2(1+1/ξ)σ2(1+1/ξ)

[
(z3 − z2)(z3 − z1)

(
1 +

ξz3

σ

)]−(1+1/ξ)

.

Thus,

I1 6
∫ −1

−∞
(−ξ)−2(1+1/ξ) [(z3 − z2)(z3 − z1)]−(1+1/ξ) I1σ dξ,

where

I1σ =

∫ ∞
−ξz3

σ−4σ2(1+1/ξ)

(
1 +

ξz3

σ

)−(1+1/ξ)

dσ,

= z−1
3

∫ −1/ξz3

0

v−2/ξ 1

z−1
3

(
1 +

ξv

z−1
3

)−(1+1/ξ)

dv,

= (−ξ)2/ξ−1z
−(1−2/ξ)
3

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
,

where v = 1/σ and the last line follows from (B.2) with a = 2 and σ = z−1
3 .

Therefore,

I1 6
∫ −1

−∞
(−ξ)−3 [(z3 − z2)(z3 − z1)]−(1+1/ξ) z

−(1−2/ξ)
3

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= [z3(z3 − z2)(z3 − z1)]−1

∫ −1

−∞
(−ξ)−3

(
1− z2

z3

)−1/ξ (
1− z1

z3

)−1/ξ
Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= [z3(z3 − z2)(z3 − z1)]−1

∫ 1

0

x

(
1− z2

z3

)x(
1− z1

z3

)x
Γ(1 + 2x)Γ(x)

Γ(1 + 3x)
dx,

= [z3(z3 − z2)(z3 − z1)]−1

∫ 1

0

(
1− z2

z3

)x(
1− z1

z3

)x
Γ(1 + 2x)Γ(1 + x)

Γ(1 + 3x)
dx, (B.4)

where x = −1/ξ and we have used the relation Γ(1 + x) = xΓ(x). The integrand in

(B.4) is finite over the range of integration so this integral is finite and therefore I1

is finite.
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B.4.2 Proof that I2 is finite

We have −1 < ξ < 0, so −(1 + 1/ξ) > 0 and (1 + ξz/σ)−(1+1/ξ) < 1 and decreases

in z over (0,−σ/ξ). Therefore,

I2 =

∫ 0

−1

∫ ∞
−ξz3

σ−4

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

dσ dξ,

6
∫ 0

−1

∫ ∞
−ξz3

σ−4

(
1 +

ξz3

σ

)−(1+1/ξ)

dσ dξ,

=

∫ 0

−1

z−1
3

∫ −1/ξz3

0

v2 1

z−1
3

(
1 +

ξv

z−1
3

)−(1+1/ξ)

dv dξ,

= z−1
3

∫ 0

−1

2z−2
3

(1− ξ)(1− 2ξ)
dξ,

= 2z−3
3

∫ 0

−1

{(
1

2
− ξ
)−1

− (1− ξ)−1

}
dξ,

= 2z−3
3 ln(3/2),

where the integral over v follows from (B.1) with r = 2 and σ = z−1
3 .

B.4.3 Proof that I3 is finite

We have ξ > 0 so −(1 + 1/ξ) < 0. Let gn = (
∏n

i=1 zi)
1/n. Mitrinović (1964, page

130):

n∏
k=1

(1 + ak) > (1 + b)n, ak > 0;
n∏
k=1

ak = bn, (B.5)

with ak = ξzk/σ and b = ξg3/σ gives

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

6

(
1 +

ξg3

σ

)−3(1+1/ξ)

,

and therefore

I3 =

∫ ∞
0

∫ ∞
0

σ−4

3∏
i=1

(
1 +

ξzi
σ

)−(1+1/ξ)

dσ dξ,

6
∫ ∞

0

∫ ∞
0

σ−4

(
1 +

ξg3

σ

)−3(1+1/ξ)

dσ dξ,

=

∫ ∞
0

β

∫ ∞
0

v2 1

β

(
1 +

αv

β

)−(1+1/α)

dv dξ,
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where v = 1/σ, α = 1/(2 + 3/ξ) and β = α/ξg3 = 1/(3 + 2ξ)g3. For ξ > 0, α < 1/2

so using (B.1) with r = 2, σ = β and ξ = α gives

I3 6
∫ ∞

0

β
2β2

(1− α)(1− 2α)
dξ,

=
2

3
g−3

3

∫ ∞
0

1

(ξ + 3)(2ξ + 3)
dξ,

=
2

9
g−3

3

∫ ∞
0

(
1

ξ + 3/2
− 1

ξ + 3

)
dξ,

=
2

9
g−3

3 ln 2.

The normalizing constant C3 is finite, so πU,GP (σ, ξ) yields a proper posterior density

for nu = 3 and therefore does so for nu > 3.

B.5 Proof of theorem 9 and its corollary

Throughout the following proofs we define δi = yi − y1, i = 2, . . . , b.

We make the parameter transformation φ = µ − σ/ξ. Then the posterior density

for (φ, σ, ξ) is given by

π(φ, σ, ξ) = K−1
b π(ξ)|ξ|−b(1+1/ξ)Gb(φ, σ),

where

Gb(φ, σ) = σb/ξ−1

{
b∏
i=1

|yi − φ|−(1+1/ξ)

}
exp

{
−|ξ|−1/ξ σ1/ξ

b∑
i=1

|yi − φ|−1/ξ

}

and, if ξ > 0 then φ < y1 and if ξ < 0 then φ > yb.

We let w = |ξ|−1/ξ
∑b

i=1 |yi − φ|−1/ξ and v = σ1/ξ. The normalizing constant Kb is
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given by

Kb =

∫ ∞
−∞

∫ ∫ ∞
0

π(ξ)|ξ|−b(1+1/ξ)Gb(φ, σ) dσ dφ dξ,

=

∫ ∞
−∞

π(ξ)|ξ|−b(1+1/ξ)

∫ { b∏
i=1

|yi − φ|−(1+1/ξ)

}∫ ∞
0

σb/ξ−1 exp
{
−wσ1/ξ

}
dσ dφ dξ,

=

∫ ∞
−∞

π(ξ)|ξ|−b(1+1/ξ)

∫ { b∏
i=1

|yi − φ|−(1+1/ξ)

}∫ ∞
0

vb−1 exp{−wv} |ξ| dv dφ dξ,

=

∫ ∞
−∞

π(ξ)|ξ|−b(1+1/ξ)

∫ { b∏
i=1

|yi − φ|−(1+1/ξ)

}
Γ(b)w−b |ξ| dφ dξ,

=

∫ ∞
−∞

π(ξ)|ξ|−b(1+1/ξ)

∫ { b∏
i=1

|yi − φ|−(1+1/ξ)

}
(b− 1)!|ξ|b/ξ+1

{
b∑
i=1

|yi − φ|−1/ξ

}−b
dφ dξ,

= (b− 1)!

∫ ∞
−∞

π(ξ)|ξ|1−b
∫ { b∏

i=1

|yi − φ|−(1+1/ξ)

}{
b∑
i=1

|yi − φ|−1/ξ

}−b
dφ dξ, (B.6)

For b = 1 the integral
∫
φ:ξ(y1−φ)>0

|y1 − φ|−1 dφ is divergent so if b = 1 the posterior

is not proper for any prior in this class.

Now we take b = 2 and for clarity consider the cases ξ > 0 and ξ < 0 separately,

with respective contributions K+
2 and K−2 to K2. For ξ > 0, using the substitution

u = (y1 − φ)−1 in (B.6) gives

K+
2 =

∫ ∞
0

π(ξ) ξ−1

∫ y1

−∞

(y1 − φ)−(1+1/ξ)(y2 − φ)−(1+1/ξ)

{(y1 − φ)−1/ξ + (y2 − φ)−1/ξ}2 dφ dξ,

=

∫ ∞
0

π(ξ) ξ−1

∫ ∞
0

(1 + δ2u)−(1+1/ξ)

{1 + (1 + δ2u)−1/ξ}2 du dξ,

=
1

2
δ−1

2

∫ ∞
0

π(ξ) dξ,

the final step following because the u-integrand is a multiple (ξδ−1
2 ) of a shifted log-

logistic density function with location, scale and shape parameters of 0, ξδ−1
2 and ξ

respectively, and the location of this distribution equals the median. For ξ < 0 an

analogous calculation using the substitution v = (yb − φ)−1 in (B.6) gives

K−2 =
1

2
δ−1

2

∫ 0

−∞
π(ξ) dξ.

Therefore,

K2 = K+
2 +K−2 =

1

2
δ−1

2

∫ ∞
−∞

π(ξ) dξ.
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Thus, K2 is finite if
∫∞
−∞ π(ξ) dξ is finite, and the result follows.

The corollary follows directly.

B.6 Proof of theorem 10

The crucial aspects are the rates at which π(ξ) →∞ as ξ ↓ −1/2 and as ξ →∞.

The component π(ξ) of (2.11) involving ξ can be expressed as

π2(ξ) =
1

ξ4
(T1 + T2), (B.7)

where

T1 =

[
π2

6
+ (1− γ)2

]
(1 + ξ)2 Γ(1 + 2ξ), (B.8)

T2 =
π2

6
+

[
2(1− γ)(γ + ψ(1 + ξ))− π2

3

]
Γ(2 + ξ)−[1 + ψ(1 + ξ)]2 [Γ(2 + ξ)]2 .(B.9)

Firstly, we derive a lower bound for π(ξ) that holds for ξ > 3. Using the duplication

formula (Abramowitz and Stegun, 1972, page 256; 6.1.18)

Γ(2z) = (2π)−1/2 2 2z−1/2 Γ(z) Γ(z + 1/2),

with z = 1/2 + ξ in (B.8) we have

T1 =

[
π2

6
+ (1− γ)2

]
(1 + ξ)2 π−1/222ξ Γ(1/2 + ξ) Γ(1 + ξ).

We note that

Γ(1/2 + ξ) =
Γ(3/2 + ξ)

1/2 + ξ
>

Γ(1 + ξ)

1/2 + ξ
=

2Γ(1 + ξ)

1 + 2ξ
>

Γ(1 + ξ)

1 + ξ
,

where for the first inequality to hold it is sufficient that ξ > 1/2; and that, for ξ > 3,

22ξ > (1 + ξ)3. Therefore,

T1 >

[
π2

6
+ (1− γ)2

]
π−1/2 (1 + ξ)4 [Γ(1 + ξ)]2. (B.10)

Completing the square in (B.9) gives

T2 = −{[1 + ψ(1 + ξ)] Γ(2 + ξ) + f(ξ)}2 + [f(ξ)]2 + π2/6,
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where

f(ξ) =
π2/6− (1− γ)(γ + ψ(1 + ξ))

1 + ψ(1 + ξ)
=
π2/6 + (1− γ)2

1 + ψ(1 + ξ)
− (1− γ)

and [f(ξ)]2 + π2/6 > 0.

For ξ > 0, ψ(1 + ξ) increases with ξ and so f(ξ) decreases with ξ. Therefore, for

ξ > 3, f(ξ) < f(3) ≈ 0.39 and

T2 > −{[1 + ψ(1 + ξ)] Γ(2 + ξ) + f(3)}2 .

For ξ > 0, we have ψ(1 + ξ) < ln(1 + ξ) − (1 + ξ)−1/2 (Qiu and Vuorinen, 2004,

theorem C) and ln(1 + ξ) 6 ξ (Abramowitz and Stegun, 1972, page 68; 4.1.33).

Therefore, noting that Γ(2 + ξ) = (1 + ξ) Γ(1 + ξ) we have

T2 > −
{

(1 + ξ)2 Γ(1 + ξ)− 1

2
Γ(1 + ξ) + f(3)

}2

.

For ξ > 3, f(3)− Γ(1 + ξ)/2 < 0 so

T2 > −(1 + ξ)4 [Γ(1 + ξ)]2. (B.11)

Substituting (B.10) and (B.11) in (B.7) gives, for ξ > 3,

π2(ξ) >
(1 + ξ)4

ξ4

{[
π2

6
+ (1− γ)2

]
π−1/2 − 1

}
[Γ(1 + ξ)]2,

> c[Γ(1 + ξ)]2,

> c(1 + ξ)2(λξ−γ)

where c = (4/3)4{[π2/6 + (1 − γ)2]π−1/2 − 1} ≈ 0.0913 and the final step uses the

inequality Γ(x) > xλ(x−1)−γ, for x > 0 (Alzer, 1999), where λ = (π2/6−γ)/2 ≈ 0.534.

Thus, a lower bound for the ξ component of the Jeffreys prior (2.11) is given by

π(ξ) > c1/2(1 + ξ)λξ−γ, for ξ > 3. (B.12)

[In fact, numerical work shows that this lower bound holds for ξ > −1/2.]

Let K+
b denote the contribution to Kb for ξ > 3. Using the substitution u =
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(y1 − φ)−1 in (B.6) gives

K+
b = (b−1)!

∫ ∞
3

π(ξ) ξ1−b
∫ ∞

0

ub−2

b∏
i=1

(1 + δiu)−(1+1/ξ)

{
1 +

b∑
i=2

(1 + δiu)−1/ξ

}b
dudξ. (B.13)

For ξ > 0 we have 1 +
b∑
i=2

(1 + δiu)−1/ξ 6 b and
b∏
i=1

(1 + δiu)−(1+1/ξ) > (1 +

δbu)−(b−1)(1+1/ξ). Applying these inequalities to (B.13) gives

K+
b > b−b(b− 1)!

∫ ∞
3

π(ξ) ξ1−b
∫ ∞

0

ub−2(1 + δbu)−(b−1)(1+1/ξ) du dξ,

= b−b(b−1)!

∫ ∞
3

π(ξ) ξ1−bβ

∫ ∞
0

ub−2 1

β

(
1 +

αu

β

)−(1+1/α)

du dξ, (B.14)

where β = α/δb and α = [b−2+(b−1)/ξ]−1 and 0 < α < (b−2)−1. The u-integrand

is the density function of a GP(β, α) distribution and so, using (B.1) with r = b−2,

the integral over u is given by

(b− 2)! βb−2

b−2∏
i=1

1

1− iα
= (b− 2)! ξb−2δ2−b

b

b−2∏
i=1

1

(b− 2− i)ξ + b− 1
. (B.15)

Substituting (B.15) into (B.14) gives

K+
b > b−b(b− 1)!(b− 2)! δ1−b

b

∫ ∞
3

1

(b− 2)ξ + b− 1

b−2∏
i=1

1

(b− 2− i)ξ + b− 1
π(ξ) dξ,

= b−b(b− 1)!(b− 2)! δ1−b
b

∫ ∞
3

b−2∏
i=0

1

(b− 2− i)ξ + b− 1
π(ξ) dξ,

= b−b(b− 1)!(b− 2)! δ1−b
b (b− 1)1−b

∫ ∞
3

b−2∏
i=0

1

1 + i
b−1

ξ
π(ξ) dξ,

> C(b)

∫ ∞
3

1

(1 + ξ)b−2
π(ξ) dξ,

where C(b) = b−b(b− 1)!(b− 2)! δ1−b
b (b− 1)1−b. Applying (B.12) gives

K+
b > C(b) c1/2

∫ ∞
3

(1 + ξ)2−b+λξ−γ dξ.

For any sample size b the integrand→∞ as ξ →∞. Therefore, the integral diverges

and the result follows.
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Now we derive an upper bound for π(ξ) that applies for ξ close to −1/2. We note

that for −1/2 < ξ < 0 we have Γ(1 + 2ξ) = Γ(2 + 2ξ)/(1 + 2ξ) < (1 + 2ξ)−1. From

(B.7) we have

π2(ξ) =

[
π2

6
+ (1− γ)2

](
1 + ξ

ξ2

)2

Γ(1 + 2ξ) +
T2

ξ4
,

where T2 → −3.039 as ξ ↓ −1/2. Noting that (1 + ξ)2/ξ4 → 4 as ξ ↓ −1/2 shows

that π(ξ) < 2 [π2/6 + (1− γ)2]
1/2

(1 + 2ξ)−1/2 for ξ ∈ (−1/2,−1/2 + ε), for some

ε > 0.

[In fact numerical work shows that ε ≈ 1.29.]

B.7 Proof of theorem 11

We show that the integral K−b , giving the contribution to the normalising constant

from ξ < −1, diverges. From the proof of theorem 9 we have

K−b = (b− 1)!

∫ −1

−∞
e−γ(1+ξ) (−ξ)1−b

∫ ∞
yb

{
b∏
i=1

|yi − φ|−(1+1/ξ)

}{
b∑
i=1

|yi − φ|−1/ξ

}−b
dφ dξ.

For ξ < −1 we have −(1 + 1/ξ) < 0 and −1/ξ > 0. Therefore, for i = 2, . . . , b,

(φ − yi)
−(1+1/ξ) > (φ − y1)−(1+1/ξ) and (φ − yi)

−1/ξ < (φ − y1)−1/ξ, and thus the

φ-integrand is greater than b−b(φ− y1)−b. Therefore,

K−b > (b− 1)!

∫ −1

−∞
e−γ(1+ξ) (−ξ)1−b

∫ ∞
yb

b−b(φ− y1)−b dφ dξ,

= (b− 1)! b−b(b− 1)−1(yb − y1)1−b
∫ −1

−∞
e−γ(1+ξ) (−ξ)1−b dξ,

= (b− 2)! b−b(yb − y1)1−be−γ
∫ ∞

1

x1−b eγx dx,

where x = −ξ. For all samples sizes b this integral diverges so the result follows.

B.8 Proof of theorem 12

We need to show that K4 is finite. We split the range of integration over ξ in (B.6)

so that K4 = J1 + J2 + J3, with respective contributions from ξ < −1, −1 6 ξ 6 0

and ξ > 0.
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B.8.1 Proof that J1 is finite

We use the substitution u = (φ− y1)−1 in (B.6) to give

J1 = 3!

∫ −1

−∞
(−ξ)−3

∫ ∞
y4

{
4∏
i=1

(φ− yi)−(1+1/ξ)

}{
4∑
i=1

(φ− yi)−1/ξ

}−b
dφ dξ,

= 3!

∫ −1

−∞
(−ξ)−3

∫ 1/δ4

0

u2

4∏
i=2

(1− δiu)−(1+1/ξ)

{
1 +

4∑
i=2

(1− δiu)−1/ξ

}−4

du dξ.

A similar calculation to (B.3) gives

4∏
i=2

(1− δiu)−(1+1/ξ) 6 u−2(1+1/ξ)

{
3∏
i=2

(δ4 − δi)

}−(1+1/ξ)

(1− δ4u)−(1+1/ξ).

Noting also that 1 +
∑4

i=2(1− δiu)−1/ξ > 1 we have

J1 6 3!

∫ −1

−∞
(−ξ)−3

{
3∏
i=2

(δ4 − δi)

}−(1+1/ξ) ∫ 1/δ4

0

u−2/ξ(1− δ4u)−(1+1/ξ) du dξ,

= 3!

∫ −1

−∞
(−ξ)−3

{
3∏
i=2

(δ4 − δi)

}−(1+1/ξ)

β

∫ 1/δ4

0

u−2/ξ 1

β

(
1 +

ξu

β

)−(1+1/ξ)

du dξ,

= 3!

∫ −1

−∞
(−ξ)−3

{
3∏
i=2

(δ4 − δi)

}−(1+1/ξ)

δ
2/ξ−1
b

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

where β = −ξ/δ4 and the last line follows from (B.2) with a = 2 and σ = β.

Therefore,

J1 6 3!

∫ −1

−∞
(−ξ)−3(y4 − y1)2/ξ−1

3∏
i=2

(y4 − yi)−(1+1/ξ) Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= 3!
3∏
i=1

(y4 − yi)−1

∫ −1

−∞
(−ξ)−3

(
3∏
i=2

y4 − yi
y4 − y1

)−1/ξ

Γ(1− 2/ξ)Γ(−1/ξ)

Γ(1− 3/ξ)
dξ,

= 3!
3∏
i=1

(y4 − yi)−1

∫ 1

0

x

(
3∏
i=2

y4 − yi
y4 − y1

)x
Γ(1 + 2x)Γ(x)

Γ(1 + 3x)
dx,

= 3!
3∏
i=1

(y4 − yi)−1

∫ 1

0

(
3∏
i=2

y4 − yi
y4 − y1

)x
Γ(1 + 2x)Γ(1 + x)

Γ(1 + 3x)
dx, (B.16)

where x = −1/ξ and we have used the relation Γ(1 + x) = xΓ(x). The integrand in

(B.16) is finite over the range of integration so this integral is finite and therefore

J1 is finite.
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B.8.2 Proof that J2 is finite

Using the substitution u = (φ− y1)−1 in (B.6) gives

J2 = 3!

∫ 0

−1

(−ξ)−3

∫ 1/δ4

0

u2

4∏
i=2

(1− δiu)−(1+1/ξ)

{
1 +

4∑
i=2

(1− δiu)−1/ξ

}−4

du dξ.

For −1 6 ξ 6 0 we have −(1 + 1/ξ) > 0. Noting that 0 < 1− δiu < 1 gives

4∏
i=2

(1− δiu)−(1+1/ξ) 6 (1− δ4u)−(1+1/ξ).

Noting also that 1 +
∑4

i=2(1− δiu)−1/ξ > 1 we have

J2 6 3!

∫ 0

−1

(−ξ)−3

∫ 1/δ4

0

u2(1− δ4u)−(1+1/ξ) du dξ,

= 3!

∫ 0

−1

(−ξ)−3β

∫ 1/δ4

0

u2 1

β

(
1 +

ξu

β

)−(1+1/ξ)

du dξ,

= 3!δ−3
4

∫ 0

−1

2

(1− ξ)(1− 2ξ)
dξ,

= 12(y4 − y1)−3 ln(3/2)

where β = −ξ/δ4 and the penultimate line follows from (B.2) with r = 2 and σ = β.

B.8.3 Proof that J3 is finite

Using the substitution u = (y1 − φ)−1 in (B.6) gives

J3 = 3!

∫ ∞
0

ξ−3

∫ y1

−∞

{
4∏
i=1

(yi − φ)−(1+1/ξ)

}{
4∑
i=1

(yi − φ)−1/ξ

}−4

dφ dξ,

= 3!

∫ ∞
0

ξ−3

∫ ∞
0

u2

4∏
i=2

(1 + δiu)−(1+1/ξ)

{
1 +

4∑
i=2

(1 + δiu)−1/ξ

}−4

du dξ.

Noting that for ξ > 0 we have −(1 + 1/ξ) < 0, using (B.5) with ak = δku gives

4∏
i=2

(1 + δiu)−(1+1/ξ) 6 (1 + gu)−3(1+1/ξ),
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where g = (δ2δ3δ4)1/3. Noting also that 1 +
∑4

i=2(1 + δiu)−1/ξ > 1 we have

J3 6 3!

∫ ∞
0

ξ−3

∫ ∞
0

u2(1 + gu)−3(1+1/ξ) du dξ,

6 3!

∫ ∞
0

ξ−3β

∫ ∞
0

u2 1

β

(
1 +

αu

β

)−(1+1/α)

du dξ,

where α = ξ/(2ξ + 3) and β = α/g. Therefore, (B.1) with r = 2, σ = β and ξ = α

gives

J3 6 3!

∫ ∞
0

ξ−3β
2β2

(1− α)(1− 2α)
dξ,

= 4g−3

∫ ∞
0

1

(ξ + 3)(2ξ + 3)
dξ,

=
4

3
g−3

∫ ∞
0

(
1

ξ + 3/2
− 1

ξ + 3

)
dξ,

=
4

3
g−3 ln 2.

The normalizing constant K4 is finite, so πU,GEV (µ, σ, ξ) yields a proper posterior

density for b = 4 and therefore does so for b > 4.

C CHAPTER 4

C.1 Log-concavity of posterior distribution of the extremal

index

In order to use the ARS method to sample from the posterior density of the extremal

index, π(θ | S) needs to satisfy the condition that it is log-concave for all possible

values of θ. In other words, we need to show that

∂2 log π(θ | S)

∂θ2
< 0 for 0 6 θ 6 1.

The posterior density follows from (4.6)

π(θ | S) ∝ (1− θ)N0θ2N1+I0+IN e−θV ,

where V = q
∑N

i=0 Si.
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Taking the log and differentiating with respect to θ twice it can be shown that

∂2 log π(θ | S)

∂θ2
= − N0

(1− θ)2
− 2N1 + I0 + IN

θ2
< 0 for 0 6 θ 6 1,

since it is not possible for bothN0 and 2N1+I0+IN to be non-positive. Therefore, the

ARS method could be used to sample from π(θ | S). In the case where N0 = 0, we

can sample directly from the gamma density with shape parameter 2N1 +I0 +IN +1

and rate parameter V .

D CHAPTER 5

D.1 Quantile regression

Quantile regression is attributed to Koenker and Bassett (1978), who extend quan-

tile estimation to the situation where covariates are present. Quantiles of the con-

ditional distribution of a response variable are estimated, expressed as a function of

covariates.

Let us assume that we have a random sample {y1, y2, . . . , ym} of size m from a

random variable Y that has a cumulative distribution function FY (y) = P (Y 6 y).

The 100τ% quantile of FY is defined as

Q(τ) = F−1
y (τ) = inf {y : FY (y) > τ} , where 0 < τ < 1.

In classical linear regression, solving the problem of minimizing a sum of squared

residuals results to the sample mean. Similarly, solving the problem of minimizing

a sum of absolute residuals results to the median, which intuitively makes sense due

to symmetry. Therefore, for the symmetrical case of minimizing the sum of absolute

residuals (τ = 0.5), the median solves for the scalar κ in

Q(0.5) = argminκ

m∑
i=1

|yi − κ|.

However, for other quantiles, the 100τ% quantile of FY is found by solving the

asymmetric problem

Q(τ) = argminκ

m∑
i=1

ρτ (yi − κ) ,
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where

ρτ (z) = z(τ − 1{z<0}).

and 1{z<0} is 1 if z < 0 and is 0 otherwise. Now let yτ denote the conditional 100τ%

quantile of FY such that it has the following linear form

yτ = x
′

iβτ + ei, i = 1, . . . ,m,

where the 100τ% quantile of ei = 0. By replacing the scalar κ with the parametric

function yτ we can obtain estimates for the conditional quantiles. Therefore the

regression parameter is estimated by solving

β̂τ = argminβτ

m∑
i=1

ρτ

(
yi − x

′

iβτ

)
or equivalently by minimizing

min
βτ

(1− τ)
∑
yi<yτi

(yτi − yi) + τ
∑
yi>yτi

(yi − yτi )

 ,

with respect to βτ . The method for solving this minimization problem is by linear

programming. The R package quantreg (Koenker, 2011) can easily be used in order

to estimate the quantile regression parameter.

D.2 Observed information for the stationary NHPP model

Up to an additive constant, the negated log-likelihood for θ = (µ, σ, ξ) based on

observations Y = (Y1, . . . , Ym) is

−`(θ;Y ) =
1

n

m∑
i=1

g(θ) +
m∑
i=1

δ(Yi > u)h(θ;Yi)

where δ(x) = 1 if x is true and is 0 otherwise,

g(θ) =

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

and h(θ;Yi) = log σ +

(
1 +

1

ξ

)
log

[
1 + ξ

(
Yi − µ
σ

)]
+

.
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The observed information matrix is

J(θ) = −



∂2`(θ;Y )

∂µ2

∂2`(θ;Y )

∂µ∂σ

∂2`(θ;Y )

∂µ∂ξ

∂2`(θ;Y )

∂µ∂σ

∂2`(θ;Y )

∂σ2

∂2`(θ;Y )

∂σ∂ξ

∂2`(θ;Y )

∂µ∂ξ

∂2`(θ;Y )

∂σ∂ξ

∂2`(θ;Y )

∂ξ2


.

Second-order partial derivatives

For convenience we drop the i subscripts from Yi and consequently h(θ;Yi) and

define:

gj = [1 + ξw]−(j+1/ξ)
+ and hj = [1 + ξV ]−j+ , for j = 1, 2.

where w = (u− µ)/σ and V = (Y − µ)/σ.

Derivatives of g(θ)

∂2g(θ)

∂µ2
=

1

σ2
(ξ + 1)

[
1+ξ

(
u−µ
σ

)]−(2+ 1
ξ

)
+

=
1

σ2
(ξ + 1)g2.

∂2g(θ)

∂σ2
=

1

σ2

(
u− µ
σ

)2

(ξ + 1)

[
1+ξ

(
u−µ
σ

)]−(2+ 1
ξ

)
+

− 2

σ2

(
u− µ
σ

)[
1+ξ

(
u−µ
σ

)]−(1+ 1
ξ

)
+

=
1

σ2
w2(ξ + 1)g2 −

2

σ2
wg1.

∂g(θ)

∂ξ
=

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

{
1

ξ2
log

[
1+ξ

(
u−µ
σ

)]
+

− 1

ξ

(
u−µ
σ

)[
1+ξ

(
u−µ
σ

)]−1

+

}

= g(θ) k(θ), where k(θ) =

{
1

ξ2
log [1 + ξw]− 1

ξ
w [1 + ξw]−1

}
.

Therefore

∂2g(θ)

∂ξ2
=
∂g(θ)

∂ξ
k(θ) + g(θ)

∂k(θ)

∂ξ
,



D.2 Observed information for the stationary NHPP model 176

where

∂k(θ)

∂ξ
= − 2

ξ3
log

[
1+ξ

(
u−µ
σ

)]
+

+
2

ξ2

(
u−µ
σ

)[
1+ξ

(
u−µ
σ

)]−1

+

+
1

ξ

(
u−µ
σ

)2 [
1+ξ

(
u−µ
σ

)]−2

+

= − 2

ξ3
log [1 + ξw] +

2

ξ2
w [1 + ξw]−1 +

1

ξ
w2 [1 + ξw]−2 .

∂2g(θ)

∂µ∂σ
=

1

σ2
(ξ + 1)

(
u−µ
σ

)[
1+ξ

(
u−µ
σ

)]−1/ξ−2

+

− 1

σ2

[
1+ξ

(
u−µ
σ

)]−1/ξ−1

+

=
1

σ2
(ξ + 1)wg2 −

1

σ2
g1.

Using
∂g(θ)

∂ξ
= g(θ)k(θ) and differentiating g(θ) again with respect to µ,

∂2g(θ)

∂µ∂ξ
=
∂g(θ)

∂µ
k(θ) + g(θ)

∂k(θ)

∂µ
,

where

∂g(θ)

∂µ
=

1

σ

[
1+ξ

(
u−µ
σ

)]−(1+ 1
ξ

)
+

=
1

σ
g1

and

∂k(θ)

∂µ
= − 1

σ

(
u−µ
σ

)[
1+ξ

(
u−µ
σ

)]−2

+

= − 1

σ
w [1 + ξw]−2 .

Therefore

∂2g(θ)

∂µ∂ξ
=

1

σ

[
1+ξ

(
u−µ
σ

)]−(1+ 1
ξ

)
+

{
1

ξ2
log

[
1+ξ

(
u−µ
σ

)]
+

−
(

1 +
1

ξ

)(
u−µ
σ

)[
1+ξ

(
u−µ
σ

)]−1

+

}

=
1

σ
g1

{
1

ξ2
log [1 + ξw]−

(
1 +

1

ξ

)
w [1 + ξw]−1

}
.

∂2g(θ)

∂σ∂ξ
=

(
u−µ
σ

)
∂2g(θ)

∂µ∂ξ
, since

∂g(θ)

∂σ
=

(
u−µ
σ

)
∂g(θ)

∂µ

= w
∂2g(θ)

∂µ∂ξ
.
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Derivatives of h(θ;Y )

∂2h(θ;Y )

∂µ2
= − ξ

σ2
(ξ + 1)

[
1 + ξ

(
Y − µ
σ

)]−2

+

= − ξ

σ2
(ξ + 1)h2.

∂2h(θ;Y )

∂σ2
=− 1

σ2
+

1

σ2
(ξ + 1)

(
Y − µ
σ

)[
1 + ξ

(
Y − µ
σ

)]−1

+

+
1

σ2
(ξ + 1)

(
Y − µ
σ

)[
1 + ξ

(
Y − µ
σ

)]−2

+

= − 1

σ2
+

1

σ2
(ξ + 1)V h1 +

1

σ2
(ξ + 1)V h2.

∂2h(θ;Y )

∂ξ2
=

2

ξ3
log

[
1 + ξ

(
Y − µ
σ

)]
+

− 2

ξ2

(
Y − µ
σ

)[
1 + ξ

(
Y − µ
σ

)]−1

+

−
(

1

ξ
+ 1

)(
Y − µ
σ

)2 [
1 + ξ

(
Y − µ
σ

)]−2

+

=
2

ξ3
log[1 + ξV ]− 2

ξ2
V h1 −

(
1

ξ
+ 1

)
V 2h2.

∂2h(θ;Y )

∂µ∂σ
= − ξ

σ2
(ξ + 1)

(
Y − µ
σ

)[
1 + ξ

(
Y − µ
σ

)]−2

+

+
1

σ2
(ξ + 1)

[
1 + ξ

(
Y − µ
σ

)]−1

+

= − ξ

σ2
(ξ + 1)V h2 +

1

σ2
(ξ + 1)h1 =

1

σ2
(ξ + 1)h2.

∂2h(θ;Y )

∂µ∂ξ
= − 1

σ

{[
1 + ξ

(
Y − µ
σ

)]−1

+

− (ξ + 1)

(
Y − µ
σ

)[
1 + ξ

(
Y − µ
σ

)]−2

+

}
= − 1

σ
{h1 − (ξ + 1)V h2} .

∂2h(θ;Y )

∂σ∂ξ
=

(
Y − µ
σ

)
∂2h(θ;Y )

∂µ∂ξ
, since

∂h(θ;Y )

∂σ
=

1

σ
+

(
Y − µ
σ

)
∂h(θ;Y )

∂µ

= V
∂2h(θ;Y )

∂µ∂ξ
.

D.3 Expected information for the stationary NHPP model

The expected information matrix for the stationary NHPP model is given by IM =

IM(θ) = E[J(θ)]. Note that g(θ) does not involve the response data. Therefore
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element (j, k) of IM is given by

−E
[
∂2`(θ;Y )

∂θj∂θk

]
=

1

n

m∑
i=1

∂2g(θ)

∂θj∂θk
+

m∑
i=1

E

[
δ(Yi > u)

∂2h(θ;Yi)

∂θj∂θk

]
,

=
m

n

∂2g(θ)

∂θj∂θk
+mE

[
δ(Yi > u)

∂2h(θ;Y )

∂θj∂θk

]
.

We need to evaluate E [δ(Y > u) ∂2h(θ;Y )/∂θj∂θk], for j, k ∈ {1, 2, 3}, where, using

a stationary version of (5.11) by setting µ1 = 0 and letting µ = µ0, Y has p.d.f.

fY (y) =
1

σ

1

n

[
1 + ξ

(
y − µ
σ

)]−(1+1/ξ)

+

exp

{
− 1

n

[
1 + ξ

(
y − µ
σ

)]−1/ξ

+

}
.

Let

Eab = E {δ(Y > u)V a hb} =

∫
y>u

(
y − µ
σ

)a [
1 + ξ

(
y − µ
σ

)]−b
fY (y) dy.

We make the transformation r = (1/n)[1 + ξ(y − µ)/σ]
−1/ξ
+ , leading to

Eab = ξ−a
∫ β

0

[
(rn)−ξ − 1

]a
(rn)bξ exp {−r} dr, (D.1)

where

β =
1

n

[
1+ξ

(
u−µ
σ

)]−1/ξ

+

. (D.2)

We will need

E00 = γ(1, β) = 1− exp(−β),

E01 = nξ γ(1 + ξ, β),

E02 = n2ξ γ(1 + 2ξ, β),

E11 = ξ−1
{
γ(1, β)− nξγ(1 + ξ, β)

}
, (D.3)

E12 = ξ−1
{
nξγ(1 + ξ, β)− n2ξγ(1 + 2ξ, β)

}
,

E22 = ξ−2
{
γ(1, β)− 2nξγ(1 + ξ, β) + n2ξγ(1 + 2ξ, β)

}
,

where

γ(s, β) =

∫ β

0

ts−1 exp(−t) dt.
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is the lower incomplete gamma function. Similarly,

φ = E

{
δ(Y > u) log

[
1 + ξ

(
Y − µ
σ

)]}
= −ξ γ(1, β) log n− ξ γ′(1, β),

where γ′(s, β) = ∂γ(s, β)/∂s =
∫ β

0
ts−1e−t log s dt. Therefore,

E

[
I (Y > u)

∂2h(θ;Y )

∂µ2

]
= −σ−2ξ(1 + ξ)E02,

E

[
I (Y > u)

∂2h(θ;Y )

∂σ2

]
= −σ−2 {E00 − (1 + ξ)E11 − (1 + ξ)E12} ,

E

[
I (Y > u)

∂2h(θ;Y )

∂ξ2

]
= 2ξ−3φ− 2ξ−2E11 − ξ−1(1 + ξ)E22,

E

[
I (Y > u)

∂2h(θ;Y )

∂µ∂σ

]
= σ−2(1 + ξ)E02, (D.4)

E

[
I (Y > u)

∂2h(θ;Y )

∂µ∂ξ

]
= −σ−1 {E01 − (1 + ξ)E12} ,

E

[
I (Y > u)

∂2h(θ;Y )

∂σ∂ξ

]
= −σ−1 {E11 − (1 + ξ)E22} .

D.4 Expected information for the non-stationary NHPP model

First, we consider the case where µ(x) = µ0 +µ1x and u(x) = u0 +u1x. Recall from

(5.14) that the Fisher information for θ = (µ1, µ0, σ, ξ) is given by

I =

 I11 IT1

I1 IM

 .

The Fisher information IM for the marginal parametersψ = (µ0, σ, ξ) can be inferred

from section D.3, noting that, for observation i, µ has been replaced by µ(xi) =

µ0 + µ1xi. Since ∂µ(xi)/∂µ0 = 1, quantities involving derivatives of µ0 can be

inferred from the corresponding quantities involving derivatives of µ given in section

D.3. Element (k, l) of IM is given by

1

n

m∑
i=1

∂2g(θ)

∂ψk∂ψl
+

m∑
i=1

E

[
δ(Yi > u)

∂2h(θ;Yi)

∂ψk∂ψl

]
, (D.5)

where now g(θ) = [1 + ξwi]
−1/ξ
+ , where wi = [u(xi)−µ(xi)]/σ, depends on i, although

this is not explicit in the notation. The second derivatives of g(θ) are given by

replacing w by wi and gj by [1 + ξwi]
−(j+1/ξ)
+ in the expressions in (D.3) and (D.4)

in section D.2. The expectations in the second term of (D.5) are given by the
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expressions given at the end of section D.3, but with β replaced by

βi =
1

n

[
1+ξ

(
u(xi)−µ(xi)

σ

)]−1/ξ

+

. (D.6)

in Eab and φ.

To derive the elements of I that involve derivatives with respect to µ1, we note that

∂µ(xi)/∂µ1 = xi. Let `i be the contribution to the log-likelihood corresponding to

observation Yi. The relevant second derivatives of `i are given by

∂2`i
∂µ1∂ψk

= xi
∂2li

∂µ(xi)∂ψk
, k = 1, 2, 3,

∂2`i
∂µ2

1

= x2
i

∂2li
∂µ(xi)2

.

Let I(i) denote the contribution to I from Yi and Ikl(i) the (k, l) element of this

matrix. Then,

Ik1 =
m∑
i=1

xi Ik1(i), k = 2, 3, 4,

and

I11 =
m∑
i=1

x2
i I22(i).

All the elements of I(i) depend on xi only through u(xi)− µ(xi).

Let IM(i) denote the contribution to IM from Yi. Then I is given by

I =
m∑
i=1

Ti IM(i)T Ti

where

Ti =



1 0 0

xi 0 0

0 1 0

0 0 1


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To extend to the model in which there are p covariates in location, i.e.

µ(xi) = µ0 + µ1x1i + µ2x2i + . . .+ µpxpi,

we use

Ti =



1 0 0

x1i 0 0

...
...

...

xpi 0 0

0 1 0

0 0 1


.

D.5 Matrix theory

We summarise some standard results related to matrices, for use in chapter 5.

Positive definiteness

A symmetric n × n real matrix M is said to be positive definite if zTMz > 0, for

all non-zero real 1× n vectors z. A positive definite matrix M is invertible and this

inverse is also positive definite (Horn and Johnson, 1990).

In the following M is a (p + k) × (p + k) Fisher information matrix and is thus

symmetric and positive definite.

Schur complements

Suppose that M is partitioned as

M =

 M11 MT
12

M12 M22

 ,

where M22 is a k× k nonsingular matrix with 1 6 k < n. The Schur complement of

M22 in M is given by

M/M22 = M11 −MT
21M

−1
22 M21,
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and Schur’s determinant identity (Yan, 2009) is

detM = detM22 detM/M22.

The information submatrices M11 and M22 are positive definite as is M−1
22 .

Block inversion

The block inversion technique (see Yan (2009) or Boyd and Vandenberghe (2004,

page 650)) allows us to invert M using

M−1 =

 (M11 −MT
21M

−1
22 M21)−1 −M−1

11 M
T
21(M22 −M21M

−1
11 M

T
21)−1

−(M22 −M21M
−1
11 M

T
21)−1M21M

−1
11 (M22 −M21M

−1
11 M

T
21)−1

 .

Hadamard’s determinant inequality (Mirsky, 1955, page 417)

If A = {aij} is an n× n symmetric positive definite matrix then

detA 6 a11a22 · · · ann, (D.7)

with equality if and only if A is diagonal.

Matrix determinant inequality (Yan, 2009, Lemma 1.4)

Let A and B be two symmetric positive semi-definite matrices of the same size.

Then

det(A+B) > det(A) + det(B). (D.8)

Another matrix determinant inequality

det(M11 −MT
21M

−1
22 M21) 6 det(M11), (D.9)

with equality if and only if M21 is a r × p zero matrix.

Proof: Let y be a non-zero 1× p vector. Thus x = yMT
21 is a 1× r vector and

yMT
21M

−1
22 M21y

T = xM−1
22 x

T > 0,

with equality if and only if x is a zero vector, that is, if M21 is a zero matrix.
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Therefore, if M21 is non-zero, MT
21M

−1
22 M21 is positive definite.

Substituting A = M11 −MT
21M

−1
22 M21 and B = MT

21M
−1
22 M21 in (D.8) gives

det(A+B) = det(M11)

> det(M11 −MT
21M

−1
22 M21) + det(MT

21M
−1
22 M21)

> det(M11 −MT
21M

−1
22 M21),

with equality if and only if M21 is a zero matrix. �

D.6 Proof of property 2

We consider how, for fixed det IM , the elements of the Fisher expected information

IM vary as the form of the threshold is varied. Without loss of generality we consider

the case µ1 = 0. Suppose that a constant threshold v is set at a given high quantile

of the marginal distribution of Y , resulting in det IM = (md)3, say. We will need

the following result.

A generalized Minkowski Determinant Inequality. Let K1, . . . , Km be d× d
real (symmetric) positive definite matrices. Then

[det(K1 + · · ·+Km)]1/d > [detK1]1/d + · · ·+ [detKm]1/d, (D.10)

with equality if and only if Ki = ciK1, i = 2, . . . ,m for some constants ci > 0,

that is, the matrices K1, . . . , Km are proportional. This follows directly by apply-

ing repeatedly the original (m = 2) Minkowski Determinant Inequality (Horn and

Johnson, 1990, page 482).

For m > 2, let

IM = K1 + · · ·+Km,

where Ki is the contribution to IM from observation i. If the threshold is constant

then

K1 = · · · = Km = K

and we have equality in (D.10), with detK = d3, producing det IM = det(mK) =

(md)3.

Suppose that one threshold, say v1 is increased, while v2, . . . , vm are decreased (at

a common rate) such that det IM remains equal to (md)3. The pairwise ratios of
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the elements of IM are not constant with respect to threshold, that is, changing the

threshold does not result in a simple scaling of IM . This means that K2 is no longer

proportional to K1 and we have strict inequality in (D.10), giving

[detK1]1/3 + [det((m− 1)K2)]1/3 < [det(mK)]1/3.

Therefore, as we deviate from a constant threshold, detK1 decreases more quickly

from detK than (m− 1) det(K2) increases from detK. The absolute values of the

elements of each Ki are strictly decreasing in u. Thus, the elements of K1 decrease

in absolute value more quickly than the elements of (m− 1)K2 increase and so the

elements of IM decrease in absolute value as v1 increases. Repeating this process,

that is, increasing vj while decreasing vi, i > j at a common rate will always result

in a decrease in the absolute values of the elements of IM . Therefore, for a given

value of det IM , the absolute values of the elements of IM are maximized when a

constant threshold is used.
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