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Abstract

The Standard Model (SM) of particle physics is known to suffer from several flaws,

and the upcoming generation of experiments may shed some light onto their solution.

Whether there is evidence of new physics or not, theories Beyond the SM (BSM)

must be able to accommodate and explain the coming data. The lack of signs of

BSM physics so far, calls for a exhaustive exploration beyond the minimal models,

in particular Grand Unified theories, for they are able to solve some of the issues

of the SM and can make testable predictions. Therefore, we attempt to develop

a framework to build Grand Unified models, capable of generating and analysing

general non-minimal models. In order to do so, first we create a computational tool

to handle the group theoretical component, calculating properties of Lie Groups and

their representations. Among them, those of interest to the model building process

are the calculation of breaking chains from a group to a subgroup, the decomposition

of representations of a group into those of a subgroup and the construction of group

invariants. Using some of the capabilities of the group tool, and starting with a

set of representations and a breaking chain, we generate all the conceivable models,

classifying them to satisfy conditions such as anomaly cancellation and symmetry

breaking. We then move on to study the unification of gauge couplings on the models

and its consequences on the scale of unification and the scale of supersymmetry

breaking, to later constrain them to match phenomenological observables, such as

proton decay or current collider searches. We conclude by focusing the analysis on

two specific models, a minimal supersymmetric SO(10) model, with some interesting

predictions for future colliders, and a flipped SU(5)⊗ U(1) model, which serves as

the triggering mechanism for the end of the inflationary epoch in the early universe.
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The history of science shows

that theories are perishable.

With every new truth that is

revealed we get a better

understanding of Nature

and our conceptions

and views are modified.

- Nikola Tesla
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1
Introduction

The Standard Model (SM) of particle physics, first proposed by Sheldon Glashow,

Steven Weinberg and Abdus Salam in the late 1960’s [1–3] is the most successful

description of natural phenomena, for almost all of its theoretical predictions have

been experimentally verified with an outstanding precision [4]. The last of the

SM predictions to be confirmed was the existence of the Higgs boson, which was

discovered in 2012 by the ATLAS and CMS collaborations at the LHC [5, 6], at a

mass of mH = 125.7± 0.4 GeV [4].

In spite of its success, there are several experimental and theoretical problems

that cannot be resolved in the SM. Such are, arguably among others, the electric

charge quantization observed in nature, the tiny but finite masses of the neutrinos,

the gauge hierarchy problem, the matter-antimatter asymmetry of the universe, or

the identity of dark matter and dark energy. These issues indicate that the SM is not

the ultimate theory of particle physics but rather an effective theory, very successful

at low scales but incomplete and insufficient beyond. Therefore, at energy scales

larger than the SM scale, MZ ∼ 100 GeV, one expects another theory to take control,

a Beyond the Standard Model (BSM) theory that contains the SM and breaks down

to it at a sufficiently low scale.

Grand Unified Theories (GUTs) are one such type of BSM theories, which

postulate that the fundamental interactions described in the SM are different facets

of a single force. In such a paradigm, the SM group of symmetries, SU(3)C ⊗
SU(2)L ⊗ U(1)Y is contained in a larger group G, and the three independent gauge

couplings of the SM, g3, g2 and g′, merge into a single coupling gGUT at some high

scale MGUT . This picture is motivated by the apparent convergence of the running

of the gauge couplings in the SM, as can be seen in figure 1.1, which, despite being

far from an accurate unification, hints to a larger organising structure.

21
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Figure 1.1: Running of the Standard Model gauge couplings α−1
a = 4π/g2

a at one loop.

Many of the issues of the SM can be solved within a grand unified framework.

For instance, charge quantization of the electric charges, or hypercharges in the SM,

can be easily explained by embedding the abelian group of hypercharge in a higher

dimensional group [7]. Neutrino masses can also have an explanation in GUTs, as

many of them include a right-handed neutrino within their particle spectrum, which

can lead to very small neutrino masses via some type of see-saw mechanism [8].

Additionally, unified theories make specific predictions of their own beyond those of

the SM, such as proton decay [9] and magnetic monopoles [10], which can be used

to phenomenologically test GUT models.

A very popular realisation of GUTs include the addition of spacetime super-

symmetry. The theory of supersymmetry (SUSY) [11] imposes a symmetric relation

between fermions and bosons, which predicts that every particle in the SM has a

supersymmetric partner, with a spin that differs from their SM counterpart by half a

unit. The most common realisation of supersymmetry, the minimal supersymmetric

extension of the SM (MSSM), assumes a mass for these supersymmetric particles of

a few TeV, which allows a sufficient cancellation of the large loop contributions to

the Higgs boson mass, thus solving the gauge hierarchy problem [12]. A major hint

for the addition of SUSY to unified theories is the unification of gauge couplings,

which is improved with respect to the approximated convergence of the SM in fig-

ure 1.1. The extended particle spectrum of the MSSM modifies the renormalisation

group equations (RGEs) in such a way that all three gauge couplings may unify at

a scale MGUT ∼ 1016 GeV [13], even at one loop, as can be seen in figure 1.2.

At the time of writing, however, no evidence of supersymmetry has been found
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Figure 1.2: Running of the MSSM gauge couplings α−1
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a, and unification at
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at the TeV scale, which puts some of the most minimal models under tension (see

for example [14, 15]). Non-minimal models may be challenged in the upcoming

experiments, and this could lead to the exclusion of low energy supersymmetry.

Supersymmetric or not, GUTs are very powerful and one of the most likely

candidates for BSM theories to be realised in nature. The main ingredients in the

building of a GUT model are the choice of the unified gauge group, for example

SU(5) or SO(10), the symmetry breaking chain from the GUT group to the SM

group SU(3)C ⊗ SU(2)L ⊗ U(1)Y and a set of exotic fields present at various scales

in the breaking chain. As a result, the range of possible unified models is enormous,

thus most of the research on the topic to date has focused on minimal models,

usually with a direct breaking of the unified group to the SM.

Given the fast rate at which experimental research in particle physics is ad-

vancing, minimal models might be proven insufficient shortly, for their predictions

could be disproven in the current or next generation of experiments. More general

GUT models thus need to be considered, which could have more degrees of freedom

to match the prospected measurements or avoid the exclusion bounds. Therefore,

it will be the subject of this thesis to develop a framework to consider and analyse

general non-minimal GUT models. The structure of unified theories depends heav-

ily on the mathematical properties of the unified group chosen, because the set of

fields of the theory have to be embedded in representations of the group and the

symmetry breaking chain goes through its collection of subgroups. Hence, starting

with the theoretical description of the unified group, we will attempt to obtain GUT
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models that can be constructed from such group, by scanning over all the possible

combinations of fields at the several steps of the breaking chain. We will impose

the unification of gauge couplings as a key assumption, while allowing the scale

of unification to be determined dynamically, as well as other intermediate scales,

including the scale of supersymmetry breaking. Lastly, we will classify the models

obtained according to constraints, both of theoretical (e.g. anomaly cancellation)

and phenomenological nature (e.g. proton decay).

In addition, two aspects of GUT theories are of particular interest recently,

namely the impact of SUSY searches on GUT models [14, 15] and the hints for an

inflationary scale of cosmology near the GUT scale [16, 17]. We will then provide

a rough overview of the meaning of these topics and propose models that satisfy

the latest limits on supersymmetric particle masses and cosmological observables,

respectively [18, 19]. As opposed to the broad scanning mentioned above, these

two aspects will be discussed within the framework of specific SUSY GUT models.

They are intended to illustrate the phenomenological consequences when extend-

ing minimal models (such as the constrained minimal supersymmetric SM) with

GUT ingredients. It will further elaborate our attempts to use currently important

observables in order to gain an understanding of physics at very high energies.

The outline of the thesis will be as follows: we first start by reviewing the state

of the art of gauge theories, in chapter 2, where we describe the SM, as the current

successful gauge theory of particle physics; we will also introduce the most popular

GUT theories studied to date, in a historical overview, and we will outline the main

features of the theory of supersymmetry, including the MSSM as its phenomenolog-

ical realisation. Chapter 3 is devoted to the mathematical description of Lie groups,

the algorithms used to calculate their properties and their implementation in a com-

putational tool. The physics application of the tool will be outlined in chapter 4,

where we specify how the model building is performed and which constraints are im-

posed on the models, analysing one particular class of models, based on an SO(10)

unified group with an intermediate SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L step in the

breaking chain. In chapter 5 we will focus on a more detailed and phenomenological

analysis of two specific models: namely a minimal supersymmetric SO(10) model,

with direct breaking to the SM group, and its predictions for the next run of the

LHC; and a flipped SU(5)⊗ U(1) model, which will be used to construct a hybrid

inflationary scenario that will be compared with current cosmological observations.

Lastly, in chapter 6, we will summarise the most interesting ideas of the thesis and

suggest possible lines for their future development.



2
Gauge Models in Particle Physics

Gauge theories have played a crucial role in the conception and development of par-

ticle physics, for they have proven to be the most successful theoretical description

of high energy phenomena [4]. They describe interactions among particles in the

context of quantum field theory (QFT), mediated by vector fields known as gauge

bosons, and they are built by imposing an internal and local group of symmetries,

gauge symmetries, acting on the Lagrangian of the quantum theory [20].

The first complete gauge theory was formulated in the 1920s by Paul Dirac [21],

known as Quantum Electrodynamics (QED). It was an abelian gauge theory, i.e. a

Quantum Field Theory with a U(1) symmetry. It describes free moving electrons and

their interactions with photons, as gauge bosons or mediators of the electromagnetic

force. The development of non-abelian gauge theories, by Chen Ning Yang and

Robert Mills in 1954 [22], opened up the spectrum of theories to larger groups of

symmetries, such as the unitary groups SU(n). Unfortunately, this type of theory

was dismissed shortly after their proposal, for they necessarily predict all of the

particle fields to be massless, in disagreement with the measurements of the time.

It was not until the 1960’s when the model that we nowadays know as the Standard

Model of particle physics was born [1–3], revamping the idea of non-abelian gauge

theories but circumventing the mass problem through the mechanism of spontaneous

symmetry breaking (SSB) [23–27].

As the first fully formulated gauge theory, QED is very useful as an example of

how gauge symmetries enter the formalism of quantum field theories. Let U be an

element of the U(1) group of transformations, which infinitesimally near the identity

can be expressed as U ≈ 1 + iα, with α a real continuous parameter. A fermionic

field ψ transforms under this internal symmetry as δψ = iαψ, and its conjugate as

δψ̄ = −iαψ̄. If the parameter α is constant, then the U(1) is a global symmetry

25
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and the Lagrangian density of a massive free fermion,

Lψ = iψ̄γµ∂µψ −mψ̄ψ, (2.0.1)

is invariant under the transformation. The Lagrangian is said to be globally U(1)

symmetric.

On the other hand, if α depends on the coordinates of spacetime, α = α(x),

U(1) is a local or gauge symmetry, and the Lagrangian in equation (2.0.1) is not

invariant under the symmetry, it transforms as δLψ = −ψ̄γµψ∂µα. In order to

restore invariance to the Lagrangian one must introduce a gauge field Aµ, whose

coupling to the fermion field and transformation under the symmetry are given by

LA = gψ̄γµψAµ, δAµ =
1

g
∂µα, (2.0.2)

with g being the gauge coupling. Defining a covariant derivative as Dµ = ∂µ− igAµ,

we can write Lψ + LA as

LQED = iψ̄γµDµψ −mψ̄ψ, (2.0.3)

which is the full gauge invariant Lagrangian of QED.

Since U(1) is a continuous symmetry and LQED is invariant under its action,

Noether’s theorem [28] states that there is a conserved current jµ and a conserved

charge Q, such that

jµ = gψ̄γµψ, ∂µj
µ = 0,

Q =
∫

d3xj0 = g
∫

d3xψ†ψ, dQ
dt

= 0,
(2.0.4)

corresponding to the electromagnetic current jµem and the total electric charge.

Throughout this section we will introduce more complicated gauge theories

and describe their relevance and significance in particle physics. In section 2.1 we

will describe the Standard Model (SM), the current successful theory of fundamen-

tal particle physics. Later, in section 2.2 we will discuss Grand Unified Theories

(GUTs), which extend the SM internal symmetries, and, finally, in the last section,

2.3, we will describe supersymmetry (SUSY), as another extension of the SM, in

this case with a larger group of spacetime symmetries.

2.1 The Standard Model

In the late 1960’s, independent works by Sheldon Glashow [1], Steven Weinberg [2]

and Abdus Salam [3], unified the existing theories for the electromagnetic inter-



27 2.1. The Standard Model

action, Quantum Electrodynamics [21], and the weak interaction, the Fermi the-

ory [29], into a theory with a single fundamental force, the electroweak theory.

Their proposal, together with the later developed model for the strong force, the

GIM model [30], form what is now known as the Standard Model of particle physics.

Therefore, the SM describes the unified electroweak force and the strong force into

a single formalism.

The Standard Model, as described by Glashow, Weinberg and Salam, proposes

the symmetry group for the quantum interactions to be the Lie group SU(3)C ⊗
SU(2)L⊗U(1)Y ; where the first factor accounts for the strong (coloured) interactions

and the remaining two for the electroweak interactions. Due to the measurement of

parity violation in the weak sector by C. Wu and collaborators [31], we know that

left-handed and right-handed components of fermions behave differently in processes

involving electroweak interactions, where the former couple to the electroweak gauge

bosons associated with both the SU(2)L and U(1)Y groups, whereas the latter only

couple to the U(1)Y gauge bosons. This is theoretically realised by explicitly em-

bedding left-handed and right-handed fermions in different representations of the

electroweak symmetry, left-handed fields belonging to the doublet representation of

SU(2)L and right-handed fields to the singlet representation. The fermionic content

is, therefore, split into several representations of SU(3)C ⊗ SU(2)L ⊗ U(1)Y , which

are, for each generation (i = 1, 2, 3)1,

{3,2, 1
6
} ↔

(
u1 u2 u3

d1 d2 d3

)i

≡ Qi, {1,2, -1
2
} ↔

(
νl

l

)i

≡ Li,

{3,1, -2
3
} ↔

(
uc1 uc2 uc3

)i
≡ (uc)i, {3,1, 1

3
} ↔

(
dc1 dc2 dc3

)i
≡ (dc)i,

{1,1, 1} ↔ (lc)i,

(2.1.1)

where the subindices 1, 2, 3 represent the colour charges of the quarks, 3, 3 and 1 are

the fundamental triplet, conjugate triplet and singlet representations for SU(3)C ;

2 and 1 are the fundamental doublet and singlet representations of SU(2)L, and

the third number is the weak hypercharge Y of the representation, which is chosen

so that the electric charge obeys Q = T3 + Y , with T3 the third component of the

isospin generator of SU(2)L.

The interactions among the Standard Model particles are mediated by vector

bosons, associated with the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . As was

described above, in order to make a quantum field theory invariant under a local

1The quarks: u1 = u, u2 = c, u3 = t; d1 = d, d2 = s, d3 = b; and leptons: l1 = e, l2 = µ, l3 = τ .
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(gauge) symmetry, one needs to introduce vector fields that transform non-trivially

under the symmetry. In the Standard Model these vector gauge bosons are: 8

gluons Ga
µ (a = 1, . . . , 8) associated with the SU(3)C group, 3 weak gauge bosons

W i
µ (i = 1, 2, 3) associated with the SU(2)L group, and one hypercharge gauge

boson Bµ, associated with U(1)Y . The transformations of these vector fields under

the gauge symmetries are

δGa
µ =

1

g3

∂µγ
a + ifabcγbGc

µ

δW i
µ =

1

g2

∂µω
i + iεijkωjW k

µ

δBµ =
1

g′
∂µβ (2.1.2)

where γa, ωi and β are SU(3)C , SU(2)L and U(1)Y transformations, respectively;

g3 and fabc are the gauge coupling and structure constants of the SU(3)C group,

g2 and εijk the gauge coupling and structure constants of SU(2)L and g′ the gauge

coupling of U(1)Y .

All these fields in the Standard Model have to be massless in order to pre-

serve the symmetry. A mass term for the fermions will be of the type ψ
i

LMijψ
j
R

will explicitly break the gauge symmetry since left and right-handed fermions have

different SU(2)L and U(1)Y charges2. Similarly, a mass term for the gauge bosons of

the type AaµMabA
µb (with Aµ = Gµ,Wµ, Bµ) will violate the gauge symmetry, given

the transformations in (2.1.2). This is inconsistent with experimental observations,

for we have measured the masses of all SM fermions and some of the gauge bosons

(W± and Z0) with outstanding accuracy [4].

Therefore, at low energies the symmetries of the model must be spontaneously

broken, through the so called Brout-Englert-Higgs (BEH) mechanism [25–27], to

the remaining symmetry group SU(3)C × U(1)em. Introducing a Higgs doublet, φ,

in the Lagrangian, transforming under the {1,2, 1
2
} representation of the SM gauge

group and the scalar potential

V (φ) = −1

2
µ2 φ†φ+

λ

4
(φ†φ)2, (2.1.3)

the ground state is not invariant under the SM symmetry, since φ acquires a non-zero

vacuum expectation value, 〈φ〉 = µ/
√
λ = v/

√
2 ' 174 GeV. Thus, the Standard

2In the notation used in the representations, ψ = ψL and ψc = Cψ
T

R, the mass term would be

ψTCMψc, with ψ = u, d, l, or νl and C the charge conjugation matrix.
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Model symmetry will be broken to a smaller symmetry, described by the group of

strong and electromagnetic interactions, SU(3)C ⊗ U(1)em,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)em. (2.1.4)

One can then expand the scalar field around that vacuum expectation value (v.e.v.)

as

φ =

(
φ+

1√
2
(v + h+ iσ)

)
, (2.1.5)

where h is the real Higgs field, and φ± and σ are the massless Nambu-Goldstone

bosons [23,24], which will become the longitudinal components of the gauge bosons

W± and Z. This can be seen as performing a SU(2) transformation on φ so as to

eliminate the degrees of freedom φ+ = σ = 0, which will reappear in the transfor-

mation of the gauge bosons. The Lagrangian of the Higgs sector before symmetry

breaking is

Lφ = (Dµφ)† (Dµφ) +
1

2
µ2 φ†φ− 1

4!
λ (φ†φ)2, (2.1.6)

where Dµφ is the covariant derivative in the representation of φ given by

Dµφ = ∂µφ− ig
τ i

2
W i
µφ− ig′Y Bµφ. (2.1.7)

Here g and g′ are the gauge couplings of SU(2)L and U(1)Y , respectively, τ i are the

generators of the SU(2)L group, proportional to the Pauli matrices, Y represents

the hypercharge of φ and W i
µ and Bµ are the vector bosons of SU(2)L and U(1)Y ,

respectively. After symmetry breaking one can find mass terms in equation (2.1.6),

of the form

L ⊃ v2 g
2

8
W 1
µW

1µ + v2 g
2

8
W 2
µW

2µ + v2 1

8
(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ).

Diagonalising these terms, the massive vector bosons obtained after symmetry break-

ing are

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ), (2.1.8)

with non-vanishing masses at tree level,

MW = g
v

2
, MZ =

√
g2 + g′2

v

2
. (2.1.9)

The remaining gauge boson is the orthogonal combination to Zµ,

Aµ =
1√

g2 + g′2
(g′W 3

µ + gBµ), (2.1.10)
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which corresponds to the photon, gauge boson of U(1)em, that will stay massless.

The colour group SU(3)C is unaffected by the symmetry breaking and thus the

gluons are also massless.

As previously mentioned, the SM symmetry does not allow fermionic mass

terms of the form ψLMψR. However, similarly to the case of the gauge bosons, mass

terms can be generated after electroweak symmetry breaking. The SM fermions may

couple to the Higgs field as

L ⊃ LYllRφ+QYddRφ+QYuuRφ
c + h.c., (2.1.11)

where φc = iτ2φ
† is the conjugate field of φ, with a hypercharge of Y = −1/2, and

Yi are the 3 × 3 Yukawa matrices in generation space. In the original formulation

of the Standard Model, neutrinos are massless by definition, as a way to explain the

absence of right handed neutrinos from the experiments.

After the Higgs fields acquires a non-vanishing vacuum expectation value v,

the Yukawa couplings of equation (2.1.11) give rise to mass terms,

L ⊃ v√
2
l̄LYllR +

v√
2
d̄LYddR +

v√
2
ūLYuuR + h.c., (2.1.12)

which yield that Ml,d,u = v√
2
Yl,d,u are the 3× 3 mass matrices of the fermions.

The quark mass matrices Md and Md are not diagonal in generation space.

Upon diagonalisation of the matrices, one obtains the mass eigenstates, which are the

known flavours of quarks u, d, c, s, b and t. As was first discovered by Nicola Cabibbo

[32] for two generations of quarks, and later extended by Makoto Kobayashi and

Toshihide Maskawa [33] to include all three generations, these quark mass eigenstates

q differ from the weak interaction eigenstates, q′, by a rotation

q′uL = VuL quL , q′dL = VdL qdL ,

q′uR = VuR quR , q′dR = VdR qdR , (2.1.13)

for up-type quL,R = (uL,R, cL,R, tL,R) and down-type qdL,R = (dL,R, sL,R, bL,R)

quarks, respectively. The CKM matrix VCKM , defined as VCKM = V †uLVdL appears

in the charged weak currents as

JµW = q̄′uLσ̄
µq′dL = q̄uLσ̄

µVCKM qdL . (2.1.14)

After eliminating five relative phases through a global U(1) transformation, the

CKM matrix has four free parameters left, three mixing angles and a CP -violating

complex phase, which is consistent with the observation of CP -violating processes [34].
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The SM is an incredibly successful theory, with some of its predictions being

confirmed by experiment with astonishing accuracy. Since its inception in the late

60’s and early 70’s, the SM has successfully predicted the existence of several fun-

damental particles before their discovery, starting with the charm quark in the J/ψ

resonance by both SLAC and BNL independently in 1974 [35,36], the gluon by the

PLUTO experiment at DESY in 1979 [37, 38], the W and Z bosons by the UA1

and UA2 experiments at CERN in 1983 [39–42], the top quark by CDF and D0

experiments at Tevatron in 1995 [43, 44] and most recently the Higgs boson by the

ATLAS and CMS experiments at CERN [5,6].

Despite the Standard Model’s roaring success as a quantum theory of fields

and particles, it has several shortcomings. Perhaps the most obvious of them is that

it does not take into account gravitational interactions. Gravity cannot be described

as a quantum field theory, the same way that the other interactions are, because it

leads to an inconsistent theory, and as such it cannot make any testable predictions.

Even disregarding gravity, there are still several issues with the Standard Model

that need to be addressed:

The SM group and field content is very specific, chosen to match the

experimental observations, but there is no hint to the origin of these structures.

Furthermore, the hypercharge assignments in the Standard Model seem completely

arbitrary, chosen to meet the observations3. A solution to this problem consists in

embedding the SM into a GUT, which is the main topic of this work and which will

be discussed extensively below, in sections 2.2, 4 and 5.

The SM seems to suffer from a fine-tuning problem. The so called hierarchy

problem of the Standard Model [12, 45, 46] refers to an energy gap between the

Standard Model scale (e.g. the measured Higgs mass, mH ∼ 125 GeV) and the

only other known energy scale, the Planck scale, MP = 1.22 × 1019 GeV. A more

quantifiable version of this problem refers the strong dependence of the SM Higgs

mass on the mass of any intermediate state appearing between the SM and the

Plank scale. Both versions of this problem can be avoided by introducing spacetime

supersymmetry, as explained in section 2.3.

There are a few problems related to recent experimental observations.

First and foremost is the discovery of neutrino oscillations [47–49], which require

the neutrinos to be massive, but very light (
∑
mν < 0.23 eV [50, 51]), contrary

3Though there is no theoretical motivation for the values of the hypercharges in the SM, some

of them are not entirely arbitrary since they need to be such that cancel the gauge anomaly. See

chapter 4 for a description of anomalies.
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to their role in the Standard Model. Other measurements, such as the anomalous

magnetic momentum, g−2, of the muon [52] or some flavour observables (e.g. B →
µ+µ−) [53], show slight or severe deviations from the Standard Model predictions.

An extension of the SM is then required to reconcile the theoretical prediction for

these observables with experiment, such as see-saw mechanisms to generate neutrino

masses or additional exotic states that have loop contributions towards some flavour

observables. Some of these topics are addressed within the context of GUTs or

supersymmetry in sections 2.2 and 2.3.

Finally, there are some problems with the SM that are of cosmological ori-

gin. One such problem is that there is nothing in the Standard Model particle

content that would take into account the observed presence of dark matter. Al-

though the current experiments looking for dark matter signals have advanced sig-

nificantly [54–59], at the time of writing no clear sign of its origin has been discov-

ered, allowing for a very broad spectrum of interpretations. Whether dark matter

is made of axions [60–63], sterile neutrinos [64], neutralinos [65,66], or another type

of exotic matter is still to be determined. Moreover, there are several other cosmo-

logical phenomena and measurements that are not explained by the SM, such as

the baryon-antibaryon asymmetry [67], the cosmological constant problem [68, 69]

and the horizon and flatness problem [70], the latter of which will be described in

section 5.2.

Due to these issues the Standard Model cannot be the ultimate theory of

particle physics. One needs to find extensions of the SM that address one or several

of the items listed above. It is not, however, a trivial endeavour, for the predictions

of the SM are surprisingly accurate, so any model or theory attempting to extend

it must make sure that it contains the Standard Model as a subset and that it does

not disturb its precise predictions.

2.2 Grand Unified Theories

The symmetries in the SM are realised by the Lie group GSM = SU(3)C⊗SU(2)L⊗
U(1)Y . The choice of group and representation content is done on the basis of

experimental observation, but there is no underlying principle for that. As was

mentioned before, these, seemingly arbitrary, choices may actually turn out to be not

so random at all and thus hint to a larger theory that might have been spontaneously

broken to the SM at some early stage of the evolution of the universe. This is the
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case for GUTs which are extensions of the gauge symmetries of the SM that involve

fewer, or no, arbitrary choices for groups and representations.

We therefore consider theories with a symmetry implemented by a Lie Group

G, that must contain the Standard Model group as a subgroup. GSM is a semisimple

Lie Group of rank 4 4, hence G must have the same or higher rank. Furthermore, G
should respect the chiral structure of the SM, where we have left-handed and right-

handed particles that are in different representations of the group. For instance,

left-handed up quarks and anti right-handed up quarks, that are both left-handed

particles, are in a representation of the group, whereas the right-handed up quarks

and the anti left-handed up quarks, that are both right-handed, are in the conjugate.

Hence we will only be interested in GUTs with Lie groups that can admit this

structure, i.e. that have complex representations.

The only rank 4 simple group that satisfies these conditions is the unitary

group SU(5). Other possible candidates are SO(8), SO(9), Sp(8) or F4, but none

of these have complex representations. The SU(5) unified group was introduced by

H. Georgi and S. Glashow [7], and it is the first recognized attempt to construct a

GUT. There are no other candidate groups of rank 4, simple or non-simple, since

the only semisimple groups that contain GSM and have complex representations are

SU(3) ⊗ SU(3), SU(3) ⊗ SU(2) ⊗ SU(2) and SU(4) ⊗ SU(2), but none of these

reproduce the correct hypercharges for the SM fields [71].

Moving on to rank 5, other potential candidates arise. Most of them are not

valid because they do not satisfy the condition of having complex representations,

such as SO(11) or Sp(10). Other groups such as SU(6) introduce exotic fields in

the same representations as the SM fermions, which are difficult to decouple. Hence

there is only one simple group candidate, SO(10), which, despite being an orthog-

onal group, happens to have complex representations. SO(10), first introduced by

H. Fritzsch and P. Minkowski [71] and independently by H. Georgi [72], is a very

appealing candidate because it unifies all SM fermions in the same representation

of the group, including right-handed neutrinos. Further, there are a few non-simple

candidates, SU(5) ⊗ U(1), as an extension of the SU(5) model or in its “flipped”

version [73–77], SU(4)⊗SU(2)⊗SU(2), known as the Pati-Salam group [78], which

embeds the leptons as a fourth colour, and SU(3)⊗ SU(2)⊗ SU(2)⊗ U(1), known

as the left-right symmetry group [79–82], which is actually a subgroup of the Pati-

Salam group, and where right-handed fields couple to right-handed gauge bosons in

a similar way that left-handed fields do in the SM. Interestingly, SO(10) includes

4See chapter 3 for definitions of Lie groups and properties.



2. Gauge Models in Particle Physics 34

both SU(5) ⊗ U(1) and SU(4)C ⊗ SU(2)L ⊗ SU(2)R as maximal subgroups, and

hence includes all the advantages of both cases.

Larger groups can also be considered as candidates for unification, though in

general they can be seen as extensions of the models described above. For example,

a rank 6 unified theory with E6 as the gauge group [83,84], which contains SO(10)⊗
U(1) as a maximal subgroup [85].

2.2.1 Georgi-Glashow Model: SU(5)

The unitary5 SU(5) unified group was first introduced in 1974 by H. Georgi and S.

Glashow [7], and it is the first recognized attempt for a GUT. In this model, the

left-handed fermions for each family are embedded into two representations of the

group, 5⊕ 10, in the following way6

5↔


dc1
dc2
dc3
e

−ν


L

, 10↔


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0


L

, (2.2.1)

where xc is the charge conjugate of x with the same chirality (if x is a left-handed

electron, xc will be the anti right-handed electron, i.e. left-handed positron). Simi-

larly, the right-handed sector is embedded in the conjugate representations, 5⊕ 10.

With this embedding, charge quantization is a straightforward consequence; keeping

SU(3)C gauge invariance, the traceless charge generator is in general given by

Q = diag(α, α, α, β,−3α− β). (2.2.2)

With Q acting on the representations of (2.2.1), we obtain

Q(dc) = −α, Q(e) = −β, Q(ν) = 3α + β,

Q(uc) = 2α, Q(u) = α + β, Q(d) = −(2α + β), Q(ec) = −3α, (2.2.3)

and the charge assignment of the SM particles can be reproduced with Q(ν) = 0

and Q(e) = −1.

5Unitary groups U(N) are defined as the set of N×N unitary matrices U , that satisfy U†U = 1,

and have dimension N2. Special unitary groups SU(N) also satisfy detU = 1 and have dimension

N2 − 1.
6The lepton doublet is actually embedded as 2∗, the conjugate of 2, which in terms of the fields

can be calculated as ψ∗ = iσ2ψ, as shown in equation (2.2.1).
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Anomaly7 cancellation [86,87] in this model follows from similar arguments as

the charge quantization [88]. Due to the particular SU(3)C embedding in SU(5),

the decomposition of the matter representations is

5̄→ {3̄,1, 1
3
} ⊕ {1,2∗, -1

2
},

10→ {3,2, 1
6
} ⊕ {3̄, 1, -2

3
} ⊕ {1,1, 1}. (2.2.4)

Since SU(2) is a safe algebra [89], the anomaly of each representation is driven by

the anomaly of the SU(3) subgroup:

A(5̄) = A(3̄),

A(10) = 2A(3) + A(3̄), (2.2.5)

which obviously makes the representation 5̄ ⊕ 10 anomaly free, since the anomaly

contribution of conjugate representations is opposite in sign.

The gauge bosons of the SU(5) model are in the adjoint 24 representation,

which decomposes into representations of SU(3)⊗ SU(2)⊗ U(1) as

24→ {8,1, 0} ⊕ {1,3, 0} ⊕ {1,1, 0} ⊕ {3,2, 1
6
} ⊕ {3̄,2, -1

6
}. (2.2.6)

It naturally includes the gauge bosons of SU(3), {8,1, 0}, those of SU(2), {1,3, 0}
and of U(1), {1,1, 0}, plus exotic coloured states.

The Higgs sector of the SU(5) model must include a scalar field Σ that breaks

SU(5) to GSM and another scalar (or two, in supersymmetric models) that triggers

electroweak symmetry breaking. The field Σ must be in the adjoint representation of

SU(5), which is the 24, since the breaking to the SM must preserve the rank8. The

SU(5) breaking Higgs Σ must acquire a vacuum expectation value in the direction

〈Σ〉 = v (2, 2, 2− 3,−3), (2.2.7)

7See chapter 4 for a description of anomalies.
8Higgs bosons living in the adjoint representation of a group do not reduce the rank of the

group when they get a vacuum expectation value. This is because the vacuum expectation value

(v.e.v.) still holds the symmetry induced by the Cartan subalgebra of the group. If TCartan are

the generators of the Cartan subalgebra, a Higgs in the adjoint representation will transform as

δH = T adCartanH = [TCartan, H]. The generators TCartan are diagonal by definition, and the v.e.v.

〈H〉 can be diagonalised by a transformation of the group, hence the commutator [TCartan, 〈H〉]
gives zero and we conclude that the vacuum conserves the Cartan subalgebra, i.e. the rank of

the group. The converse is not necessarily true, i.e. if a Higgs boson preserves the rank, it does

not need to be in the adjoint representation but the adjoint is always the one with the smallest

dimension.
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in order to break to SU(3)⊗SU(2)⊗U(1) (instead of the other maximal subgroup

SU(4)⊗ U(1)).

The second scalar field must contain the electroweak Higgs, which lies in the

{1,2, -1
2
} representation of GSM . The simplest choice would be the 5 representation,

so that it decomposes under GSM as

5→ {3,1, -1
3
} ⊕ {1,2, 1

2
}. (2.2.8)

In some cases two Higgs fields are needed for electroweak symmetry breaking (EWSB),

one of them will be on the 5 and the other on the 5̄, e.g. the MSSM9 or the 2 Higgs

Doublet Model (2HDM) [90].

The SU(5) model is very appealing and solves some of the problems and short-

comings of the SM, however it also produces a few of its own:

1. The SU(5) model requires precise gauge coupling unification, at some high

scale MGUT . Let g3 be the gauge coupling of the SU(3)C group, g2 of SU(2)L

and g1 of U(1)Y (c.f. g2 = g and g1 =
√

5
3
g′, in section 2.1), and αi = g2

i /4π,

then

αGUT = α3(MGUT ) = α2(MGUT ) = α1(MGUT ). (2.2.9)

Unfortunately, this unification does not happen exactly in the SM, where the

running of the couplings at one loop10 can be seen in figure 1.1. A common

solution to this involves adding exotic matter at some intermediate scale to

change the running, as happens, for example, in the supersymmetric version

of the SU(5) GUT [92], whose couplings can be seen to unify rather accurately

in figure 1.2.

2. Because of its Higgs structure, it requires a so-called doublet-triplet splitting,

which accounts for the fact that in order to get a light Higgs doublet (mH ∼
125 GeV) compared to the heavy triplet (mT ∼ MGUT in order to suppress

proton decay), one needs a fine tuning of one part in O(M2
GUT/M

2
Z) ∼ 1026, in

the simplest case. There are known solutions to this problem [93–97], which

usually involve adding extra fields to the model or extra symmetries.

3. Similarly to gauge coupling unification, the SU(5) model also requires Yukawa

coupling unification. From a top to bottom approach, this condition imposes

9See section 2.3.3.
10Unification in the SM does not happen at any loop order or including threshold corrections [91].
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a relation between the masses of the fermions at the GUT scale, mb(MGUT ) =

mτ (MGUT ), ms(MGUT ) = mµ(MGUT ) and md(MGUT ) = me(MGUT ). Though

the first relation can be realised in the MSSM with an uncertainty of 20−30%

[98], the last two conditions are off by almost one order of magnitude [99].

Known ways to solve this issue rely on adding other Higgs representations

and/or non-renormalisable operators to the model to expand the parameter

space allowing for more freedom to fit the fermion masses [100,101].

4. There are several ways to generate neutrino masses in the SU(5) model, both

in the supersymmetric and non-supersymmetric version. Most often one needs

to add extra representations to generate a see-saw mechanism, typically a 15

or a 24 representation [102,103]. Additionally, in supersymmetric models, one

could have R-parity and lepton number violating interactions that generate

neutrino masses [104].

5. Lastly, a general problem of GUTs, not just of SU(5), is that they usually

predict rapid proton decay. GUT models usually have either gauge or scalar

bosons charged under the strong and electroweak forces simultaneously, and

thus trigger the decay p → πe. The decay width of this process can be esti-

mated as

Γ(p→ πe) ∼
α2
GUT m

5
p

M4
X

, (2.2.10)

where X is the mediator boson of the decay. Current experiments set the

lower limit on the half life of the proton to 1.29 × 1034 years [105]. This

is quite constraining on GUTs, for this means that the GUT scale must be

generally higher than MGUT ∼ 1016 GeV.

For the SU(5) model all these issues mean that it is excluded in its non-

supersymmetric form, since there is not real unification and coloured states appear

at scales lower than the experimental limit [106–108], thus producing rapid pro-

ton decay. The supersymmetric SU(5) model, however, does not suffer from these

afflictions [109–114].

2.2.2 Flipped SU(5)⊗ U(1)

There are two ways to realise the SU(5)⊗U(1) model. The first is a trivial extension

of the Georgi-Glashow SU(5) model of section 2.2.1, by assigning U(1) charges to

its SU(5) fields, subject only to the condition of traceless generators. The second,
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more interesting option, is the flipped SU(5)⊗U(1) model [73–77], also denoted as

SU(5)′ ⊗ U(1), where SU(5)′ does not contain the Standard Model as a subgroup,

unlike the usual SU(5) case.

The key feature of the flipped SU(5) ⊗ U(1) is that the hypercharge of the

Standard Model comes from a linear combination of a diagonal generator of SU(5)

and the generator of U(1). If T24 is the generator of the abelian subgroup of SU(5)

(T24 ∝ diag(2, 2, 2,−3,−3)) and X is the generator of the external U(1), then

Y = aT24 + bX, (2.2.11)

which turns out to have two solutions to generate the SM hypercharges. The first

is a = 1, b = 0, which corresponds to the trivial extension of SU(5), and the second

turns out to be a = −1/5, b = 1/5, which is the flipped SU(5) ⊗ U(1). The first

consequence of this flipped version is a different embedding of the SM fermions in

the group representations,

5−3 ↔


uc1
uc2
uc3
e

−ν


L

, 101 ↔


0 dc3 −dc2 u1 d1

−dc3 0 dc1 u2 d2

dc2 −dc1 0 u3 d3

−u1 −u2 −u3 0 νc

−d1 −d2 −d3 −νc 0


L

, 15 ↔ (ec)L.

(2.2.12)

where nα represents the n-dimensional representation of SU(5) with α the external

U(1) charge. It can be noticed that the embedding of the up-type right-handed

quarks uc has been swapped with that of the down-type right-handed quarks dc,

and the right-handed neutrino νc with the right-handed charge lepton ec.

Symmetry breaking in this case, SU(5) ⊗ U(1) → SU(3) ⊗ SU(2) ⊗ U(1),

reduces the rank of the group, and thus it does not happen through the 24 repre-

sentation as before, but rather through the 101 representation of scalar fields. This

can easily be seen from (2.2.12) where the 101 representation includes the right-

handed neutrino, which is a SM singlet, and thus if the same component of a Higgs

field in that representation acquires a v.e.v., the symmetry would be broken to the

SM. In its supersymmetric version [76, 77], it also requires the representation 10−1

to avoid gauge and gravitational anomalies.

Other properties of the flipped SU(5)⊗ U(1) model mimic those of the stan-

dard SU(5) model. The gauge bosons fall into the same 240 representations, as in

equation (2.2.6), with trivial abelian charge. Similarly, the electroweak Higgs boson
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is in the 5−2 representation (and the 5̄2 in the supersymmetric case). Gauge cou-

pling unification, however, occurs rather differently because at the GUT scale only

α2 and α3 unify,

α2(MGUT ) = α3(MGUT ) = α5(MGUT ), (2.2.13)

whereas α1 is obtained as a combination of α5 and the gauge coupling of the external

abelian part αX ,

α−1
1 (MGUT ) = 25(α−1

5 (MGUT ) + α−1
X (MGUT )). (2.2.14)

This allows more freedom in the unification scenario since the value of αX at MGUT

is unconstrained. Given this fact, both the partial and total unification in figures

1.1 and 1.2 are allowed for this model, since the only requirement at this stage is the

unification of α2 and α3, which happens in both models for MGUT > 1016, thereby

potentially evading the experimental proton decay limit.

Furthermore, the supersymmetric version of this model does not suffer from

double-triplet splitting [115]. The couplings 1011015−2 and 10−110−15̄2 of Higgs

fields do not induce bilinear couplings of the electroweak Higgs, but it does so for the

coloured triplets. It is then enough to assume that the coupling 5−25̄2 has a coupling

of the order of the electroweak scale, to satisfy the splitting. This assumption can

also be realised by the vacuum expectation value of a singlet field 10, with a coupling

5−25̄210.

Regarding neutrino masses, the flipped SU(5) ⊗ U(1) model does also much

better than its standard counterpart. Adding three sterile neutrinos 1j0, the cou-

plings with the tenplet of SM fermions 10F and the conjugate tenplet of symmetry

breaking higgses 10H , are

λj10F10H1j0 (2.2.15)

These couplings give large Dirac-type masses to the right-handed neutrinos, of the

order of the GUT breaking v.e.v., which via a double see-saw mechanism produces

light neutrino masses [77].

Lastly, it is worth mentioning that the flipped SU(5)⊗ U(1) model has prop-

erties very attractive for superstring theory, because it does not require adjoint or

larger representations of the groups, so it can be obtained from a weakly-coupled

fermionic formulation of string theory [116–119].
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2.2.3 Pati-Salam Model

The Pati-Salam (PS) model [78], with group SU(4)C⊗SU(2)L⊗SU(2)R, is, together

with the Georgi-Glashow model, among the first attempts to build extensions of the

Standard Model through gauge symmetries. Though not really a GUT, it does

go halfway towards unification by extending the colour group to SU(4)C , thereby

considering leptons as a “fourth colour”. Thus, the quark doublet and the lepton

doublet of each generation are embedded into the same representation as

{4,2,1} ↔

(
u1 u2 u3 ν

d1 d2 d3 e

)
. (2.2.16)

where 4 is a representation of SU(4)C , 2 of SU(2)L and 1 of SU(2)R.

Moreover, the PS group includes another copy of SU(2)R acting on the right-

handed sector, analogous to the SU(2)L
11. Due to the presence of the SU(2)R factor,

the PS model includes automatically a right-handed neutrino νc which, together with

the right-handed charged lepton, forms a SU(2)R doublet. The right-handed up-

type and down-type quarks also become a doublet under SU(2)R, and under PS are

embedded as

{4,1,2∗} ↔

(
dc1 dc2 dc3 ec

−uc1 −uc2 −uc3 −νc

)
. (2.2.17)

The gauge sector of the Pati-Salam model will contain the adjoint representa-

tions of SU(4)C , SU(2)L and SU(2)R, which are {15,1,1}, {1,3,1} and {1,1,3},
respectively, and will decompose into the SM gauge bosons as

{15,1,1} → {8,1, 0} ⊕ {1,1, 0} ⊕ {3,1, 1
3
} ⊕ {3̄,1, -1

3
},

{1,3,1} → {1,3, 0},
{1,1,3} → {1,1, 1} ⊕ {1,1, 0} ⊕ {1,1, -1}, (2.2.18)

where the gauge bosons of SU(3)C and SU(2)L can be seen, and the gauge boson

of U(1)Y will be a linear combination of the {1,1, 0} in the first and third rows.

The Higgs sector of the PS model strongly depends on how the breaking of the

SU(4)C ⊗ SU(2)L ⊗ SU(2)R group happens. There are several breaking patterns,

depending on the intermediate steps involved.

As can be seen in figure 2.1, the options are [120]

11Typically an extra discrete Z2 symmetry (also called D-parity) is introduced as part of the

group, which makes the model symmetric under the exchange SU(2)L ↔ SU(2)R.
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SU(4)C ⊗ SU(2)L ⊗ SU(2)R

(a)

(b) (c)

(d)

SU(4)C ⊗ SU(2)L ⊗ U(1)R SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

(f) (h)

(e) (g)

SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L

(i)

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Figure 2.1: Breaking patterns of the Pati-Salam model

1. The “fourth colour” preserving path (a) can be triggered by a Higgs in the rep-

resentation {1,1,3} of the PS group. Only the SU(2)R group will break and

will leave the coloured and left-handed sector untouched. Further breaking to

GSM will happen through the path (e) or (f) followed by (i). The represen-

tations to satisfy this breaking are {10,1, α} (α 6= 0) of SU(4)C ⊗ SU(2)L ⊗
U(1)R, for the first case, and {15,1, 0} followed by {1,1, β, γ} (with at least

one of β, γ 6= 0) of SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L, for the second.

2. The simplest case is the direct breaking from the PS group to the SM group,

path (b). To trigger this breaking, one would need a scalar field in, for example,

the representation {10,1,3} of the Pati-Salam group, for it has a SU(3) ⊗
SU(2) ⊗ U(1) flat direction, but transforms non-trivially under any of the

possible intermediate subgroups.

3. A similar breaking to the previous case is the path (c), where also both the

“fourth colour” structure and the left-right symmetry are broken, but in this

case there is no loss of rank. Thus the representation that breaks the symmetry

is the {15,1,3} of the PS group, followed by {1,1, β, γ} of SU(3)C⊗SU(2)L⊗
U(1)R ⊗ U(1)B−L for path (i) (β and/or γ 6= 0), as before.

4. Lastly, the path (d) preserves the left-right symmetric structure. Symmetry

breaking from the Pati-Salam group to this subgroup happens through a rep-
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resentation {15,1,1} of PS. In order to break to the SM group, one then

needs to give a v.e.v. to the {1,1,3, α} representation of SU(3)C ⊗SU(2)L⊗
SU(2)R ⊗ U(1)B−L, where the breaking happens through path (h) if α = 0

or through path (g) otherwise. Same as before, breaking through path (i)

happens with {1,1, β, γ} (β, γ 6= 0) of SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L.

Additionally to the Higgs fields mentioned before, required to satisfy the par-

ticular breaking paths, one needs the electroweak Higgs field. There are a few ways

to embed the SM Higgs doublet into the Pati-Salam group, two candidate repre-

sentations used are {1,2,2} and {15,2,2}. Furthermore, these representations will

potentially provide a second Higgs doublet, as it is needed in supersymmetric models

and 2HDMs. At the Standard Model scale, these representations decompose as

{1,2,2} → {1,2, 1
2
} ⊕ {1,2, -1

2
},

{15,2,2} → {8,2, 1
2
} ⊕ {8,2, -1

2
} ⊕ {3,2, 7

6
} ⊕ {3,2, 1

6
}

⊕ {3̄,2, -1
6
} ⊕ {3̄,2, -7

6
} ⊕ {1,2, 1

2
} ⊕ {1,2, -1

2
}. (2.2.19)

Regardless of the symmetry breaking path, the hypercharge of the Standard

Model is derived from the breaking of the PS group to GSM , which provides an

explanation for the charge quantization in the Standard Model. In general it will

be a linear combination of the B −L generator, embedded in SU(4) in PS, and the

right-handed diagonal generator T 3
R. With the usual normalisation for B − L and

SU(2)R charges [88], we get

Y = T 3
R +

1

2
(B − L). (2.2.20)

Since the Pati-Salam model include automatically a right-handed neutrino, it

is possible to provide the neutrinos with small masses, as found in experiments [50].

In the Standard Model, as an effective field theory, one would expect to generate

those masses through a dimension 5 operator [121] of the type

1

Λν

C(LTφ)(φTL), (2.2.21)

where φ and L are the Higgs and lepton fields, C is the charge conjugation matrix

and Λν is the B − L breaking scale. This effective operator can be obtained as the

result of integrating out a heavy field from a renormalisable operator at the scale

Λν . If that heavy field is a right handed neutrino, νc, this procedure is known as

type-I see-saw mechanism [8,122,123], or if it comes from exotic triplet fields, scalar

or fermionic, we have type-II [124–126] and type-III [127], respectively.
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An interesting consequence of the Pati-Salam model, in contrast to SU(5),

is that the proton is often stable [88, 128]. Gauge bosons with both colour and

electroweak charge can, a priori, mediate transitions between quarks and leptons,

however, it has been proven that the Lagrangian of the PS gauge sector is invariant

under baryon number B and lepton number L individually, thus forbidding the

transition [88]. Furthermore, minimal PS models do not include scalars capable of

mediating proton decay transitions either. The effective dimension 6 operator that

could arise is
λ

Λ
εijklQ

iQjQkQl, (2.2.22)

with Q the fermion representation in (2.2.16) or (2.2.17). Therefore, only anti-

symmetric scalar fields could mediate this decay, but these states rarely appear in

PS models; most minimal models only include singlets or symmetric states under

SU(4), thus avoiding the issue of rapid proton decay.

2.2.4 Left-Right Symmetry

A submodel of Pati-Salam is the left-right symmetry model, which has the gauge

group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. As a subset of PS, it can be an

intermediate step on the breaking chain, path (d) in figure 2.1. Alternatively, since

the LR symmetry preserves some of the many advantages of the PS model, it can

be considered on its own, and that is often the approach taken [79–81].

The representations of the SM fermions in the left-right symmetric model are

those obtained from the decomposition of the PS model,

{4,2,1} → {3,2,1, 1
3
} ⊕ {1,2,1, -1},

{4̄,1,2} → {3̄,1,2, -1
3
} ⊕ {1,1,2, 1}. (2.2.23)

Symmetry breaking from the left-right symmetric model follows the directives

discussed for the Pati-Salam breaking path (d) in figure 2.1. One needs a Higgs

field in a representation {1,1,3, α}, where if α 6= 0 the final group is the SM group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , with the value of the hypercharge as in eq. (2.2.20).

If α = 0, there is an intermediate step with group SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗
U(1)B−L. Analogous to the PS model, the EW Higgs is embedded in {1,2,2, 0}
under SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L.

Unlike the Pati-Salam model, left-right symmetric models allow for the ex-

istence of baryon number violating operators, thus producing rapid proton decay.



2. Gauge Models in Particle Physics 44

Though it might not be the case in some specific field configurations, in the general

case one needs to consider the possible contribution of any coloured state to the

half-life of the proton [129].

Left-right symmetry models are very popular and have been extensively studied

in the literature, both as a subgroup of PS or on its own [79–82,130–134]. They are

very attractive in non-supersymmetric theories because they are consistent with the

running of the gauge couplings (c.f. figure 1.1) [129, 135–138], and also because it

has very high predicting power, specially in the neutrino sector [139–143]. Finally,

it can predict the existence of light states, light enough to be within the reach of

the upcoming experiments [144–148].

2.2.5 SO(10)

In 1975, Harald Fritzsch and Peter Minkowski [71] realised that, since the group

SU(4) ⊗ SU(2) ⊗ SU(2) is locally isomorphic to SO(6) ⊗ SO(4), and the latter is

naturally embedded in SO(10), one could have a fully unified theory with SO(10)

as the gauge group, and the PS group as an intermediate step. Furthermore, it also

contains SU(5) ⊗ U(1) as a maximal subgroup, hence it potentially benefits from

the properties of both the PS and the Georgi-Glashow (GG) scenario. Because of

this, SO(10) is considered as the minimal viable fully unified theory, with the PS

and GG models as possible subgroups.

In contrast to the unitary groups described before, SO(10) is an orthogonal

group 12. In the unitary case, the elements of the group are complex matrices, and

thus there are many complex representations satisfying the required chiral structure,

present in the Standard Model, c.f. eqs. (2.1.1), (2.2.1), (2.2.16) and (2.2.17). On

the other hand, elements of orthogonal groups are real matrices, so a priori one could

not construct complex representations out of them with the necessary properties,

e.g. the fundamental 10-plet representation of SO(10) is real.

However, the structure of orthogonal groups allows for an elegant solution to

this issue, by the way of spinor representations. In a general SO(N) group, one can

find a set of N matrices Γi, i = 1, . . . , N , of dimensions 2n × 2n, with N = 2n if

even or N = 2n+ 1 if odd, such that

{Γi,Γj} = 2δij, (2.2.24)

12Orthogonal groups O(N) are defined as the set of orthogonal N × N matrices O, satisfying

OTO = 1, and with dimension 1
2N(N−1). Special orthogonal groups SO(N) also satisfy detO = 1.



45 2.2. Grand Unified Theories

i.e. they satisfy the Grassmann algebra. These matrices can be used to construct

Σij =
i

8
√

2
[Γi,Γj], (2.2.25)

which satisfy the commutation relations of the generators of SO(N). Therefore,

the matrices Γi, through the generators Σij, span a 2n-dimensional representation

of the group, which is the spinor representation. For N even, SO(2n), this spinor

representation is reducible. This can be seen from the fact that for SO(2n), there is

another matrix Γ2n+1, that anticommutes with all other Γi, i = 1, . . . , 2n, that can

be obtained as

Γ2n+1 = (−i)n Γ1Γ2 . . .Γ2n−1Γ2n. (2.2.26)

From a spinor ψ transforming under the reducible 2n representation of SO(2n), we

can then define the spinors

ψ+ =
1

2
(1 + Γ2n+1)ψ,

ψ− =
1

2
(1− Γ2n+1)ψ, (2.2.27)

which transform under the irreducible 2n−1 and 2̄n−1 representations, respectively.

Furthermore, if n is even, the representations 2n−1 and 2̄n−1 are equivalent, and

thus real. On the other hand, if n is odd, they are complex, which is exactly what

we need to satisfy the chirality condition.

Therefore, in SO(10) we will have two representations, 16 and 16, that are

not equivalent, and complex conjugate to each other. Hence we can embed all the

SM fermions of one generation into a single representation of SO(10), including

right-handed neutrinos. The Γi matrices can be constructed in different bases [149],

one convenient choice renders the fermions to be embedded as

16 = {uc1, dc1, d1u1, ν
c, ec, d2, u2, u

c
2, d

c
2, d3, u3, u

c
3, d

c
3, e, ν}L, (2.2.28)

which, under the maximal subgroups, SU(5)⊗U(1) and SU(4)C⊗SU(2)L⊗SU(2)R

described above, decomposes as

16→ 101 ⊕ 5̄−1 ⊕ 15,

16→ {4,2,1} ⊕ {4̄,1,2∗}. (2.2.29)

The adjoint representation 45 of SO(10) contains the gauge bosons of SO(10),

including the SM gauge bosons: the 8-plet of gluons Ga
µ (a = 1, . . . , 8), the triplet

of electroweak bosons W i
µ (i = 1, . . . , 3), and the hypercharge field Bµ. In addition,
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there are 33 extra gauge bosons that will carry both colour and weak charge, which

mediate quark-lepton transitions, leading to proton decay, so they must be kept

heavy. The decomposition of 45 in the SM group is

45→ {8,1, 0} ⊕ {1,3, 0} ⊕ {1,1, 0} ← SM gauge bosons

⊕ {3,2, 1
6
} ⊕ {3,2, -1

6
} ⊕ {3,2, 1

6
}

⊕ {3,2, -1
6
} ⊕ {3,1, -2

3
} ⊕ {3,1, 2

3
}

⊕ {1,1, 1} ⊕ {1,1, -1} ⊕ {1,1, 0}.

 ← additional gauge bosons

where all the coloured additional gauge bosons mediate proton decay.

SO(10)

SU(5)⊗ U(1)

SU(5)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R

SU(4)C ⊗ SU(2)L ⊗ U(1)R

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2.2: Patterns of symmetry breaking from SO(10) to the SM group.

Symmetry breaking from SO(10) to GSM can happen in a number of ways,

determined by the vacuum expectation values of the scalar fields in the theory. The

Higgs sector of the SO(10) model must be complex enough to satisfy the require-

ments of the chosen breaking path, all the way to the SM. According to figure

2.2, there are seven paths to break SO(10) into one of its subgroups. The most

interesting of them are
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1. The path (a) first breaks into the maximal subgroup SU(5) ⊗ U(1). At this

stage there is no indication of whether we have the standard or the flipped

realisation of SU(5)⊗U(1); this would depend on the consistency with follow-

ing steps. This path of symmetry breaking can be realised with Higgs fields in

the 45 or 210 representations, acquiring a v.e.v. at a very high scale MGUT ,

along the singlet directions

45→ 240 ⊕ 101 ⊕ 10−1 ⊕ 10,

210→ 750 ⊕ 40−1 ⊕ 401 ⊕ 240 ⊕ 101 ⊕ 10−1 ⊕ 5−2 ⊕ 5̄2 ⊕ 10.

Further breaking to GSM , at an intermediate scale MI , requires other Higgs

fields, depending on whether it is the standard or flipped version of SU(5) ⊗
U(1). As described in section 2.2.2, to break the flipped SU(5)⊗U(1), Higgses

in the 101 and 10−1 representations are needed, which could originate from

many different representations of SO(10), e.g. 16. To break the standard

version of SU(5) ⊗ U(1) one would need either a two-step process, breaking

the SU(5) and U(1) independently, or a one-step process, with a 24α (α 6= 0)

representation, probably coming from an SO(10) 144.

2. Breaking to the subgroup SU(5) via path (b) reduces the rank by one and thus

requires a non-adjoint representation such as 16, 16, 126 or 126. Decompo-

sition of 16 follows equation (2.2.29), and

16→ 10⊕ 5⊕ 1,

126→ 50⊕ 45⊕ 15⊕ 10⊕ 5̄⊕ 1. (2.2.30)

An extra Higgs in the adjoint 24 of SU(5) is needed in order to break to the

SM at an intermediate scale MI , as described in section 2.2.1. This Higgs

field may come from the adjoint 45 of SO(10) or from a larger adjoint-like

representation like 54 or 210.

3. Direct breaking to GSM via path (c) is triggered by a Higgs in a representa-

tion that does not have singlets in the directions of any of the intermediate

subgroups. The minimal case is given by the 144 representation of SO(10),

which decomposes under the intermediate maximal subgroups as,

SU(5)⊗ U(1) :

144→ 45−3 ⊕ 401 ⊕ 245 ⊕ 151 ⊕ 101 ⊕ 5̄−7 ⊕ 5−7, (2.2.31)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R :

144→ {20,2,1} ⊕ {20,1,2} ⊕ {4,2,3} ⊕ {4̄,3,2} ⊕ {4,2,1} ⊕ {4̄,1,2},
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and similarly with other subgroups. It does have a SM singlet, coming from

the 245 or the 101 in the standard and flipped realization of SU(5) ⊗ U(1),

respectively; or from the {4̄,1,2} of SU(4)⊗ SU(2)⊗ SU(2).

4. The Pati-Salam group and its subgroups, paths (d) through (g), are among

the most popular breaking paths. Similarly to the SU(5)-type chains above,

it is also possible to have a two-step breaking chain, first breaking to a sub-

group of SO(10) at a high scale MGUT and then to the Standard Model at an

intermediate scale MI .

A very interesting option within the Pati-Salam subset is the direct breaking

from SO(10) to the left-right symmetric group, SU(3)C⊗SU(2)L⊗SU(2)R⊗
U(1)B−L. This breaking cannot happen with a 54 representation since it

already has a singlet direction along the PS little group, whereas the 210 has

another singlet direction that does not preserve Pati-Salam. Hence, one would

need either a 45 or a 210, similarly as the SU(5) ⊗ U(1) case, to realise the

breaking. The 45 representation decomposes as

45→ {8,1,1, 0} ⊕ {3,2,2, 1} ⊕ {3̄,2,2, -1} ⊕ {1,3,1, 0} ⊕ {1,1,3, 0}
⊕ {3,1,1, -2} ⊕ {3̄,1,1, 2} ⊕ {1,1,1, 0},

and the new singlet direction of 210 can be obtained from the {15,1,1}
representation in eq. (2.2.32).

However, the most interesting scenarios arise when the breaking happens in

multiple steps. Breaking to the PS group first at MGUT and then, following

the arguments in section 2.2.3, to the Standard Model in several steps at

intermediate scales MI1 , . . . ,MI3 . To satisfy this case, one would need a Higgs

field in a 54 or 210 representations of SO(10), because both of them have

singlets in the directions of the intermediate group. The decomposition of

these representations into PS is

54→ {20,1,1} ⊕ {1,3,1} ⊕ {1,1,3} ⊕ {6,2,2},
210→ {15,3,1} ⊕ {15,1,3} ⊕ {10,2,2} ⊕ {10,2,2}
⊕ {6,2,2} ⊕ {15,1,1} ⊕ {1,1,1}. (2.2.32)

The next step, the breaking of SU(4)C ⊗SU(2)L⊗SU(2)R, happening at MI ,

may occur in different ways, as it was covered in section 2.2.3. Typically one

would need to include representations such as 16, 16, 126 or 126, since they

produce the rank breaking required to reach the Standard Model group.
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Lastly, one needs to specify the mechanism of EWSB. The Higgs representation

is constricted by the fact that in order to provide masses to the SM particles, one

needs to construct Yukawa-type couplings between the matter fields and the Higgs.

Due to the spinorial character of the matter fields in the 16 representation, the most

general Yukawa term is of the form [88]

LY uk = Y · 16TCLC10Γi1...ik16Φi1...ik , (2.2.33)

where Y is a matrix in family space, CL and C10 are the charge conjugation matrices

in the Poincaré and SO(10) groups, Γi1...ik is a product of k gamma matrices Γi used

for the construction of the spinor representations, and Φi1...ik is a Higgs field. Luckily

there are severe constraints on the product of gamma matrices that will reduce the

number of possible representations for the Higgs field Φ. First, from the properties

of gamma matrices, the product must be antisymmetric in the indices i1 . . . ik which

allows us to introduce a εijklmnopqr symbol whenever k > 5 and then reduce to the

case with 10 − k indices. Moreover, due to the anticommutation properties of the

C10 matrix and the Γi matrices, the only way to obtain an SO(10) invariant product

is with an odd number of Γ matrices. Hence there are only 3 possible cases with

k = 1, 3, 5,

LY uk = Y · 16TCLC10(ΓiΦ
i + Γ[iΓjΓk]Φ

ijk + Γ[iΓjΓkΓlΓm]Φ
ijklm)16, (2.2.34)

which precisely corresponds to the scalar fields Φi, Φijk and Φijklm in the representa-

tions 10, 120 and 126, respectively. This may also be seen from the direct product

of two spinor representations,

16⊗ 16 = 10⊕ 120⊕ 126. (2.2.35)

These representations will decompose into the electroweak Higgs fields that

we have seen previously in section 2.2.1, 2.2.2 and 2.2.3, that is the two fiveplets of

SU(5), 5 and 5̄ (with the corresponding charges in SU(5)⊗U(1)), and the bidoublet

of SU(4) ⊗ SU(2) ⊗ SU(2), {1,2,2}. The full decomposition of 10, 120 and 126
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under the maximal subgroups of SO(10) is

SU(5)⊗ U(1) :

10 → 52 ⊕ 5−2,

120→ 45−1 ⊕ 451 ⊕ 10−3 ⊕ 103 ⊕ 51 ⊕ 5̄−1,

126→ 50−1 ⊕ 451 ⊕ 153 ⊕ 10−3 ⊕ 5̄−1 ⊕ 1−5.

SU(4)C ⊗ SU(2)L ⊗ SU(2)R :

10 → {6,1,1} ⊕ {1,2,2},
120→ {15,2,2} ⊕ {6,3,1} ⊕ {6,1,3} ⊕ {10,1,1} ⊕ {10,1,1} ⊕ {1,2,2},
126→ {15,2,2} ⊕ {10,1,3} ⊕ {10,1,3} ⊕ {6,1,1}.

(2.2.36)

Typically, one needs more than one of these representations at a time to be able

to fit fermion masses [88, 150]. As an example, working in the Pati-Salam scenario,

let the Yukawa matrices for 10, 120 and 126 be Y10, Y120 and Y126, and assume

that after electroweak symmetry breaking (EWSB) the {1,2,2} representations in

10 and 120, and the {15,2,2} representations in 120 and 126 acquire up and

down-type expectation values

vu,d = 〈10〉 = 〈{1,2,2}u,d〉,
σu,d = 〈126〉 = 〈{15,2,2}u,d〉,
ωαu,d = 〈120α〉 = 〈{1,2,2}u,d〉,
ωβu,d = 〈120β〉 = 〈{15,2,2}u,d〉, (2.2.37)

where α and β denote whether the v.e.v. comes from the {1,2,2} or {15,2,2} of

120, respectively.

The masses of the fermions are then obtained as [88]

mu = Y10 vu + Y126 σu + Y120 (ωαu + ωβu),

md = Y10 vd + Y126 σd + Y120 (ωαd + ωβd ),

me = Y10 vd − 3Y126 σd + Y120 (ωαd − 3 ωβd ),

mν = Y10 vu − 3Y126 σu + Y120 (ωαu − 3 ωβu) (2.2.38)

where mν is the Dirac mass of the neutrino. In order to fit the small neutrino masses,

one need a see-saw mechanism [8,122–127]. Majorana masses for the neutrinos mL
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and mR can be generated from the expectation values of the 126 representation

vL = 〈{10,3,1}〉, vR = 〈{10,1,3}〉,
mL = Y126vL,

mR = Y126vR, (2.2.39)

for the same Y126 as above.

Most of the appeal of SO(10) models comes from the plethora of different

breaking options it has. It feeds from the successes of its subgroups, through the

Pati-Salam breaking path [151, 152], the SU(5)-like path [153] or through direct

breaking [154].

2.3 Supersymmetry

As was mentioned in section 2.1, the Standard Model suffers from the so called

hierarchy problem [12,45,46]. Effectively this has the consequence that the mass of

the Higgs boson (or any scalar, for that matter) is unstable to radiative corrections

coming from new physics states. These corrections come from diagrams similar to

those in figure 2.3, where both scalars (left) and Weyl fermions (right) contribute

to the mass.

h

s h f

Figure 2.3: One-loop contributions to the Higgs mass.

The contributions from these diagrams can be sizeable and, they are, in general,

proportional to the mass scale Λ of the new physics states in the loop (ms ∼ mf ∼
Λ). They can be estimated as [155]

∆m2
h = −|λf |

2

16π2
Λ2 +

λs
16π2

Λ2 + . . . (2.3.1)

where λf and λs are the couplings of h to the fermions and scalars respectively.

Even if there are no such couplings in the Lagrangian, similar contributions can be

generated at the 2-loop level involving gauge bosons that couple to both sectors [155].

The ellipsis in the equation above refer to contributions from diagrams with higher

loops or which are logarithmic in Λ. The leading and most dangerous contribution,
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however, comes from the terms proportional to Λ2, which give large contributions

to the Higgs mass, since Λ can potentially be as large as the Planck scale MP .

This strong dependence on the mass of heavy states can be seen already in

the SM, where there are fermion loop contributions to the Higgs mass like those in

the right hand diagram of figure 2.3. The dominant contribution in that case comes

from top loops, with a mass of mt = 173.2 ± 1.2 [4], which drives the mass of the

Higgs to its current measured value of mh = 125.7± 0.4 [4].

In parallel to what we did in section 2.2, where we attempted to solve the

problems of the Standard Model by increasing its symmetries, we will try to cancel

this potentially fatal phenomenon by the use of symmetries. Imposing the symmetry

condition that for every fermionic degree of freedom there is a complex scalar degree

of freedom with coupling λs = |λf |2, we cancel exactly the dangerous contributions

to the Higgs mass in equation (2.3.1), thus allowing for a light Higgs. This symmetry

is known as supersymmetry [11, 156–160].

2.3.1 Introduction to Supersymmetry

From the theoretical point of view, supersymmetry (SUSY) is an extension of the

spacetime symmetry, described by the Poincaré group. The Haag-Lopuszanski-

Sohnius extension [161] of the Coleman-Mandula theorem [162] states that the

only possible way to extend the spacetime symmetry is with fermionic operators.

These operators Qα also known as supercharges, together with the generators of the

Poincaré group, form what is called the Super-Poincaré group [163]. Because of the

fermionic nature of the supercharges, they generate transformations that interchange

fermionic and bosonic degrees of freedom,

Qα|B〉 = |F 〉α, Qα|F 〉α = |B〉, (2.3.2)

where |B〉 is a bosonic state, |F 〉 a fermionic state and α labels the fermionic com-

ponents of |F 〉 and Q.

Therefore, supersymmetry collects fermionic and bosonic degrees of freedom

into a single multiplet, which in this context is called a superfield Φ. A priori, one

could have any number N ≥ 1 of supercharges, Qα
A with A = 1 . . .N , known as

“extended supersymmetry”. However, in reality there is no way to build a renor-

malisable supersymmetric field theory unless N ≤ 4 [164, 165]13. The superfield Φ

will contain N + 1 on-shell fields and a few examples of possible realisations are:

13Relaxing the renormalisability condition, the maximum number of supersymmetries is N = 8,
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• N = 1 (anti) chiral multiplet: includes a boson of spin s = 0 and a fermion of

spin s = 1
2

(s = −1
2
),

• N = 1 vector multiplet: a fermion of spin s = 1
2

and a boson with s = 1,

• N = 2 hypermultiplet: two fermions, spin s = ±1
2

and a two bosons s = 0,

• N = 4 vector multiplet: 8 bosons, s = ±1, 6 × s = 0, and 8 fermions,

4× s = ±1
2
.

However, despite the freedom of extended supersymmetry, only N = 1 is

phenomenologically viable [163]. All the multiplets for N > 1, except the hyper-

multiplet, necessarily include a s = 1 boson, which needs to be in the adjoint repre-

sentation of the gauge group in order to make a consistent gauge theory. However,

this would imply that all other components, bosons or fermions, of the multiplet

will also be in the same representation, contradicting the chirality condition of the

Standard Model. Not even the N = 2 hypermultiplet satisfies this condition for

it has s = 1
2

and s = −1
2

in the same gauge multiplet. In the following we will

concentrate on N = 1 supersymmetry, which is the dominant choice for low energy

SUSY phenomenology14.

In order to build an N = 1 supersymmetric theory out of chiral Φi, anti-chiral

Φ∗j and vector V a superfields, one needs to construct the Super-Poincaré invariant

action, or “Superaction” [155, 163]. Let θα and θ†α̇ be the anticommuting spinorial

coordinates in superspace upon which the generators Qα and Q†α̇ act15. One can then

expand the chiral, anti-chiral and vector superfields in powers of θ and θ† as [155]

Φi = φi +
√

2θψi + iθ†σ̄µθ∂µφi + θθFi −
i√
2
θθθ†σ̄µ∂µψi

+
1

4
θθθ†θ†∂µ∂µφi,

Φ∗j = φ∗j +
√

2θ†ψ†j − iθ†σ̄µθ∂µφ∗j + θ†θ†F ∗j − i√
2
θ†θ†θσµ∂µψ

†j

+
1

4
θθθ†θ†∂µ∂µφ

∗j,

V a
WZ = θ†σ̄µθAaµ + θ†θ†θλa + θθθ†λa +

1

2
θθθ†θ†Da, (2.3.3)

since there are no known particles with spin s > 2 and if there were, they would have no conserved

currents or couplings at low energies [164,165].
14N > 1 realisations of SUSY could exist at higher scales, broken into N = 1 SUSY at low

scales, thus circumventing these issues.
15For an extended review of calculus with θ and θ† and the Grassmann algebra, see [163].
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where φ is a complex scalar, ψ and λa are Weyl fermions, Aaµ is a vector field and

Fi and Da are auxiliary non-dynamical (off-shell) fields. V a
WZ is written in the

Wess-Zumino gauge, which eliminates several components by a supergauge trans-

formation [155].

It can be shown [155,163] that the supersymmetry transformation of the F and

D terms is a total derivative, so they can be used to write supersymmetry invariant

actions. Therefore the most general, not necessarily renormalisable, Superaction

can be written from F and D terms of chiral and vector superfields, respectively,

as [155]

S =

∫
d4x

∫
d2θd2θ†

{
K(Φi,Φ

∗j) +

(
δ(2)(θ†)[

1

4
fab(Φi)WaWb +W (Φ)] + c.c.

)}
,

(2.3.4)

where K, fab, W and W are functions of the superfields, defined as

• K, known as the Kähler potential [155,163], is a vector superfield, of dimension

(mass)2. In the renormalisable limit the Kähler potential takes the gauge

invariant form K = Φ∗j(e2TaV a)ijΦi, with T a the generators of the gauge group.

In non-renormalisable theories, however, it can take any form, as long as K

is kept real and gauge invariant. Integrating the Kähler potential with the

measure d2θd2θ† extracts its D-term, i.e., the term in K proportional to θ2θ†2,

which makes this term of the Superaction invariant under supersymmetry

transformations.

• W is a chiral superfield of dimension (mass)3 called the Superpotential. It is

holomorphic16 in Φ. The general form of this function is

W (Φ) =
∑
n

1

n!

yi1...in

Mn−3
Φi1 . . .Φin , (2.3.5)

with yi1...in dimensionless couplings and M has a mass scale. In the renormal-

isable limit n ≤ 3 and we can write it as

W (Φ) = liΦi +
1

2
µijΦiΦj +

1

6
yijkΦiΦjΦk. (2.3.6)

The superaction gets the F -terms of the superpotential, i.e., those proportional

to θ2, because of the integration measure d2θd2θ†δ(2)(θ†), plus the equivalent of

16A holomorphic function g(z) with z a complex variable, is a function that depends only on z,

but not on its complex onjugate, z∗.
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its complex conjugate, proportional to θ†2, both of which are invariant under

supersymmetry transformations.

• Finally, fab and W are the gauge kinetic function and gauge field strength,

respectively, which will produce the kinetic and self-interaction terms for the

gauge sector. The gauge field strength of the vector superfield V a is defined

as [155,163]

Wa
α = −ga

4
D†D†

(
e−2gaTaV aDαe

2gaTaV a
)
, (2.3.7)

where D and D† are the supersymmetric covariant derivatives on θ and θ†.

respectively. The kinetic function fab depends on Φ in the general case and

will produce coupling terms between the vector and chiral superfields. In the

renormalisable limit, however, it is independent of Φ and takes the form [155,

163]

fab = δab

(
1

g2
a

− i Θa

8π2

)
, (2.3.8)

where Θa is an arbitrary new parameter that introduces CP-violation in the

strong sector [61]. Similarly to the superpotential, only the θ2 and θ†2 com-

ponents of the kinetic term, the F -terms, will contribute to the superaction,

since they are invariant under supersymmetry transformations.

From the Superaction in eq. (2.3.4) one can extract the scalar potential of the

theory, obtained after eliminating the off-shell Fi and Da fields from the action and

can be written as [163].

V =
∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2
Φ=φ

+ g2
a(φ
∗iT aφi)

2, (2.3.9)

where the first term is obtained from the superpotential and the last one, known

as the D-term of the scalar potential, comes from the Kähler potential and gauge

kinetic term.

2.3.2 Supersymmetry Breaking

Since supersymmetry is a symmetry between fermions and bosons, it naturally pre-

dicts equal masses for all members of each supermultiplet. However, this is not

observed in nature. There is no evidence of scalar partners of the SM fermions with

the same mass, nor fermionic partners of the Higgs or gauge bosons17. Therefore,

17The vector or scalar bosons of the SM cannot be the superpartners of the SM fermions, since

they belong to different representations of the gauge group.
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supersymmetry must be broken at the SM scale and the supersymmetric partners

of the SM particles must have masses above the current experimental limits.

Unlike the usual mechanism for spontaneous symmetry breaking, as seen for

gauge symmetries in sections 2.1 and 2.2, the method of SUSY breaking must be such

that it preserves the solution to the hierarchy problem, described at the beginning

of the section. The most popular way for this to happen is to have SUSY be broken

in a hidden sector, a sector of the theory not accessible via SM interactions, and

then transported to the visible (SM) sector via non-SM interactions. The way the

symmetry breaking is transferred to the SM results in different mechanisms:

• Supergravity mediation (SUGRA): the breaking is mediated by gravitational

or other Planck scale interactions [166–172].

• Gauge mediation (GMSB): some new chiral supermultiplets acts as messengers

of the breaking through gauge interactions [173–178].

• Anomaly mediation (AMSB): the breaking is produced by the presence of

anomalies, where the violation of superconformal invariance generates the

breaking [179,180].

One can, however, ignore the actual mechanism of SUSY breaking and simply

parametrize the effects that it has on the visible sector. A typical way of doing

so is by adding to the SUSY Lagrangian the so called soft SUSY breaking terms,

which explicitly break supersymmetry. The soft SUSY breaking Lagrangian can be

written as [155]

Lsoft =−
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + ciφi

)
+ c.c.

− (m2)ijφ
∗jφi, (2.3.10)

where φi are the sfermions (scalar superpartners of the SM fermions) and Higgses,

and λa are the fermion superpartners of the gauge bosons (gauginos), and c.c. refers

to the complex conjugate of the terms in front. These terms explicitly break SUSY

as they provide masses and couplings for the supersymmetric partners, but not for

the SM fields. The mass terms in Lsoft, (m2)ij and Ma, spoil the exact cancellation of

the diagrams in figure 2.3, but for low masses, 1− 10 TeV, one can have a sufficient

cancellation to preserve the solution of the hierarchy problem.

A minimal form for these soft terms, known as mSUGRA [166] for gravity

mediated models, assumes that the masses of the scalar and fermionic superpartners
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are universal at some high scale, ΛUV ,

Ma(ΛUV ) = m1/2, (m2)ij(ΛUV ) = m2
0 δ

i
j, (2.3.11)

and, the trilinear terms aijk are assumed to be proportional to the corresponding

Yukawa term in the superpotential, aijk = A0y
ijk and similarly for the bilinear

terms, proportional to the µ term in the superpotential, bij = Bµij, with universal

couplings A0 and B.

2.3.3 The MSSM

The Minimal Supersymmetric Standard Model (MSSM) is, as the name suggests,

the most minimal extension of the SM including supersymmetry. According to

the definitions of chiral and vector superfields above, we start by considering all

SM fermions as the fermionic part of chiral superfields, the Higgs as the scalar

part of another chiral superfield and the gauge bosons as the vector part of vector

superfields. In the MSSM we need to have two chiral superfields for the Higgs, one

with hypercharge −1
2

and another with hypercharge 1
2
. This is due to two reasons:

first, since the superpotential is holomorphic in the superfields, we cannot use φ∗

for the Yukawa coupling to up-type quarks, as we did in the SM in section 2.1, and

second because one needs to introduce a chiral superfield with hypercharge 1
2

to

cancel triangle diagrams that can be source of gauge anomalies [86, 87]. Hence, the

MSSM field content discussed can be seen summarised in table 2.1, where i = 1, . . . , 3

is the flavour index, representing the three generations of quarks and leptons.

It can be noticed that for every Weyl fermion in the Standard Model, there is

a complex scalar, to match the number of components. A Dirac fermion, however,

has four components, so it corresponds to two complex scalars, e.g. if e is the

electron, a Dirac fermion, then it has two complex scalars ẽL ∈ L̃1 and ẽR ≡ (ẽc1)∗ as

superpartners. For the same reason, the superpartners of the Higgs and gauge bosons

are Majorana fermions, e.g. the hypercharge vector boson Bµ has two independent

components, same as the complex Majorana spinor B̃.

At first glance, this field content in the MSSM could lead to disastrous con-

sequences. There is nothing in the theory that forbids couplings of the type ucdcd̃c

or QLd̃c, which will induce rapid proton decay at tree level, since they violate both

baryon and lepton number [181]. A solution to this is to impose a Z2 symmetry

that does not allow for such terms. This discrete symmetry is typically known as
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Superfield s = 0 s = 1
2

s = 1 SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Q̂i Q̃i Qi - {3,2, 1
6
}

ûci ũci uci - {3̄,1, -2
3
}

d̂ci d̃ci dci - {3̄,1, 1
3
}

L̂i L̃i Li - {1,2, -1
2
}

êci ẽci eci - {1,1, 1}
Ĥu Hu H̃u - {1,2, 1

2
}

Ĥd Hd H̃d - {1,2, -1
2
}

Ĝ - G̃ Gµ {8,1, 0}
Ŵ - W̃ Wµ {1,3, 0}
B̂ - B̃ Bµ {1,1, 0}

Table 2.1: Superfield content in the MSSM. Only chiral superfields are depicted, corre-

sponding to left-handed fermionic components. An analogous table for anti-chiral super-

fields (right-handed fermions) is omitted.

R-parity and it is defined as

PR = (−1)3B+L+2s, (2.3.12)

with B, L and s the baryon and lepton numbers, and spin, respectively. Effectively,

this definition assigns a positive R-parity PR = 1 to the SM particles and PR = −1

to their superpartners which, besides solving the proton decay problem, has the

consequence of making the lightest supersymmetric particle (LSP) stable. Hence

supersymmetry has a candidate for dark matter, which is often a linear combination

of B̃, W̃ 3, H̃u and H̃d.

The R-parity conserving superpotential of the MSSM is

WMSSM = yuû
cQ̂Ĥu − ydd̂

cQ̂Ĥd − yeê
cL̂Ĥd + µĤuĤd, (2.3.13)

where yu, yd and ye are, 3× 3 Yukawa matrices in family space, and µ is a dimen-

sionful parameter which determines the Higgs self-coupling, as well as the mass of

the superpartners of the Higgs bosons (higgsinos).

The soft SUSY breaking terms for the MSSM, obtained from equation (2.3.10)
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with the content of table 2.1, are

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
Auũ

cyuQ̃Hu − Add̃cydQ̃Hd − AeẽcyeL̃Hd + c.c.
)

− Q̃∗m2
QQ̃− L̃∗m2

LL̃− ũc∗m2
uũ

c − d̃c∗m2
dd̃
c − ẽc∗m2

eẽ
c

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (B0µHuHd + c.c.) . (2.3.14)

Another advantage of the MSSM over the Standard Model is that it provides

a mechanism for electroweak symmetry breaking, in a dynamical way [170,171,182].

The scalar potential of the MSSM for the neutral components of the Higgs multiplets

can be obtained from the full scalar potential in eq. (2.3.9). The relevant part of

the Higgs scalar potential will then look like [155]

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (BµH0

uH
0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (2.3.15)

The conditions for this scalar potential to have a non-trivial minimum, consis-

tent with the SM minimum, are [155]

m2
Hu + |µ|2 −Bµ cot β − 1

2
M2

Z cos(2β) = 0,

m2
Hd

+ |µ|2 −Bµ tan β +
1

2
M2

Z cos(2β) = 0, (2.3.16)

where MZ is the mass of the Z boson, M2
Z = 1

2
v2(g2 + g′2), and β is defined through

the ratio of the vacuum expectation values of H0
u and H0

d

tan β =
vu
vd
, (2.3.17)

with vu = 〈H0
u〉 and vd = 〈H0

d〉.

Hence, the conditions in (2.3.16) imply that there is a minimum in the potential

that breaks the electroweak symmetry, and that minimum depends on the value of

the soft SUSY breaking parameters m2
Hu

and m2
Hd

. One or both of these parameters

can be driven to be negative around the EW scale [170], mainly due to the large

Yukawa coupling of the top quark during the evolution of the Renormalisation Group

Equations (RGEs), thus providing a dynamical mechanism of symmetry breaking.

After electroweak symmetry breaking, three out of the eight components of

the Higgs doublets will become Nambu-Goldstone bosons, acting as the longitudinal
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degrees of freedom of the gauge fields. The other five components will be massive

states, two CP -even, h and H, one CP -odd, A, and two charged Higgses, H±, which

will have the tree level masses [155]

m2
A = 2|µ|2 +m2

Hu +m2
Hd
,

m2
H± = m2

A +M2
W ,

m2
h,H =

1

2

(
m2
A +M2

Z ∓
√

(m2
A −M2

Z)2 + 4M2
Zm

2
A sin2(2β)

)
. (2.3.18)

The lightest higgs boson h will have SM-like properties, provided the mixing between

h and H is small.

Many of the other supersymmetric particles will also have mass eigenstates that

differ from the interacting states The sfermions mix due to the Yukawa couplings

of the superpotential, eq. (2.3.13) and the A-terms in the soft SUSY breaking

Lagrangian, eq. (2.3.14), whereas the gauginos mix due to the electroweak symmetry

breaking D-terms. Their mass terms in the lagrangian will look like

L ⊃ −1

2
(F̃ †)i

(
M2

f̃

)j
i
(F̃ )j −

1

2
(Ñ)T MÑ (Ñ)− 1

2
(C̃±)T MC̃ (C̃±), (2.3.19)

where F̃j = (f̃L, f̃R)Tj are the jth generation of sfermions, Ñ = (B̃, W̃ 3, H̃0
d , H̃

0
u)T are

the neutral gauginos and higgsinos, and C̃± = (W̃±, H̃±)T are the charged gauginos

and higgsinos. The mass matrix of the sfermions can be written as [183,184]

M2
f̃

=

(
m2

f̃L
+ m2

f +Df̃L
1 mf (Af − µ (tan β)ε)

mf (Af − µ (tan β)ε) m2
f̃R

+ m2
f +Df̃R

1

)
, (2.3.20)

where the quantities in bold face are 3 × 3 matrices in flavour space and 1 = δij;

m2
f̃L

and m2
f̃R

are the soft SUSY breaking masses for the left-handed (Q̃, L̃) and

right-handed (ũc, d̃c, ẽc) sfermions in equation (2.3.14); mf is the Yukawa-type mass

of the corresponding fermions; Af is the soft SUSY breaking trilinear coupling of the

sfermion f̃ ; the exponent ε is −1 for up-type (ũ) and +1 for down-type sfermions

(d̃, ẽ); and Df̃L
and Df̃R

are the electroweak D-terms, derived from eq. (2.3.9) after

electroweak symmetry breaking (EWSB), with values

Df̃L
= M2

Z cos(2β)(T 3
f −Qf sin2 θW ),

Df̃R
= M2

Z cos(2β)Qf sin2 θW , (2.3.21)

with T 3
f and Qf the third component of isospin and electric charge of the fermion

f . Diagonalisation of this mass matrix will result in the mass eigenstates f̃1 and f̃2

and the unitary diagonalisation matrix describes the mixing.
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The mass eigenstates of neutral gauginos and higgsinos are known as neutrali-

nos and are labelled as χ̃0
i with i = 1, . . . , 4, ordered from lightest to heaviest. They

are obtained through diagonalisation of the mass matrix

MÑ =


M1 0 −MZ sin θW cos β MZ sin θW sin β

0 M2 MZ cos θW cos β MZ cos θW sin β

−MZ sin θW cos β MZ cos θW cos β 0 −µ
MZ sin θW sin β MZ cos θW sin β −µ 0

 ,

(2.3.22)

where M1 and M2 are the soft masses of the U(1)Y and SU(2)L gauginos respectively,

c.f eq. (2.3.14), and µ is the coupling of the bilinear term in the superpotential, c.f.

eq. (2.3.13).

Similarly, the mass eigenstates of charged gauginos and higgsinos are called

charginos and are labelled as χ̃±i for i = 1, 2. Their mass matrix is given by

MC̃ =

(
M2

√
2MW sin β√

2MW cos β µ

)
. (2.3.23)

It was mentioned before, in section 2.3.2, that it is commonplace to have

universal soft SUSY breaking parameters at some high scale, typically around or at

the unification scale. Phenomenologically this corresponds to the scenario known as

“constrained” MSSM (CMSSM) and it is realised by applying the following boundary

conditions at the universality scale

M1 = M2 = M3 = m1/2,

m2
Q = m2

L = m2
u = m2

d = m2
e = m2

01,

m2
Hu = m2

Hd
= m2

0,

Au = Ad = Ae = A0. (2.3.24)

Their electroweak values will be obtained from the RGE running of the param-

eters to the electroweak scale. The full two-loop [185] set of RGEs for the MSSM

can be found in Appendix A. As highlighted before, a consequence of the MSSM

RGEs is that the gauge couplings unify at MGUT ' 2× 1016 GeV. The gauge RGEs

and their conditions for unification will be discussed in chapter 4.

Despite the many advantages of supersymmetry and the MSSM in particular,

no proof of its existence has been found so far. There are stringent constraints form

low energy and direct searches. In particular, the ATLAS and CMS experiments at

the LHC have found no signal for supersymmetry and the current exclusion limits
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are pushing the parameter space to the heavier regions [14, 15]. As can be seen

in figures 2.4 and 2.5, the limits for the masses for gluinos and first generation

squarks lie around the mg̃,mq̃ & 1 TeV, whereas the limit on stops and sbottoms is

around mt̃,mb̃ & 500 GeV. In the electroweak sector, the lower limit on the sleptons

is ml̃ & 325 GeV and a very broad limit for the heavy neutralinos and charginos

mχ̃0
2,χ̃

±
1
& 100− 700 GeV.

There have been several attempts to fit these results to the simplest ver-

sions of the MSSM, namely the CMSSM mentioned before, and non-universal Higgs

models, which extend the CMSSM by allowing the masses of the Higgs doublets

to be different than m0, either equal among themselves (NUMH1) or different

(NUHM2) [186–189].

Heavy masses for supersymmetric particles, in particular the stops, put pres-

sure on the hierarchy solution, because the partial cancellations of the diagrams in

figure 2.3 depend on the mass difference between the top quark and the lightest

stop [155]. The experimental exclusion limits are based on specific minimal mod-

els, like the CMSSM, but there are still non-minimal models that are consistent

with the searches, while still keeping a reasonably low particle spectrum, such as

“effective” supersymmetry [190], “focus point” supersymmetry [191], “compressed”

supersymmetry [192] or R-parity violating supersymmetry [193].
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Figure 2.4: Searches for supersymmetry and current limits from the ATLAS collaboratios,

taken from [194].
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Figure 2.5: Searches for supersymmetry and current limits from the CMS collaboration,

taken from [195].



3
Symmetries and Lie Groups

In every area of physics, symmetries play an essential role for they provide a useful

tool to solve complicated systems and classify elements of a theory. These symme-

tries are precisely the result of system’s invariance under certain transformations,

and the set of these transformations is a mathematical object called a Group. In

particular, in quantum mechanics, groups serve to classify the states, vectors in the

Hilbert space, according to objects called representations of the group. They also

provide conserved quantities that simplify the theory and, in most cases, can be

tested experimentally. Furthermore, a specific type of groups, called Lie Groups,

are particularly useful, because they are parametrized by a finite set of continuous

parameters and can thus describe continuous transformations to the quantum states.

Historically, the first Lie Group to become relevant in quantum theory was

the group of three-dimensional rotations, or SO(3), associated with the quantum

mechanical treatment of angular momentum, used to describe atomic energy lev-

els [196]; but a lot of effort has gone into applying the theory of Lie Groups to

internal symmetries of the fundamental particles, where groups such as SU(3) or

SU(2) provide a classification according to colour charges and weak isospins, respec-

tively [1–3].

Throughout this chapter we will provide the Definition of groups and Lie

groups, as well as their Lie algebras and Representations. We will describe

what is the Cartan Classification of Simple Lie Algebras which will motivate

the creation of a Group Theory Tool, whose features and algorithms will be

described in detail. Finally we will give an overview of the Implementation of the

group tool and conclude with an Example Run of the program for a sample group.

65
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3.1 Definition

A Group [197–199], G, is defined as the aggregate of a set of elements {gi}, finite

or infinite, and an operation, g1 · g2 = g1 g2, with g1, g2 ∈ G. The group operation

satisfies four fundamental properties, which are

• Closure: let g1 and g2 be two elements of G, then the element h = g1 g2 is also

an element of the group.

• Associativity: let g1, g2 and g3 be elements of the group, then (g1 g2) g3 =

g1 (g2 g3).

• Identity: there is an element in G, e, such that gi e = gi, for all gi in the group.

• Invertibility: for every gi in the group, there is an element hi in G, such that

gi hi = e.

A Lie Group [197–199] G is an infinite group (a group with an infinite number

of elements) that has the structure of a differentiable manifold1. The elements of

the group will depend on a set of continuous parameters α, where α ∈ MG, for

MG the n-dimensional (n a positive integer) differentiable manifold associated with

the Lie group. If ψ is a coordinate chart on MG then (α1, . . . , αn) ∈ Rn are local

coordinates of α defined as αj = ψ(α)j. Henceforth we will represent an element of

the Lie Group as g(α), defined as a map g :MG → G.

Since G is a group, it must satisfy the group properties described above, closure,

associativity, identity and invertibility. In a Lie group the group operation is

g(α) g(β) = g(γ)⇒ γj = φj(α, β), j = 1, . . . , n. (3.1.1)

where β and γ are different points on MG with coordinates βj = ψ(β)j and γj =

ψ(γ)j, and φj are local coordinates through the coordinate chart ψ of a smooth

map φ : MG ×MG → MG, as is required by the closure property of the group.

The identity e of the group can be chosen as the origin of the coordinate chart for

convenience, so that,

g(0) = e⇒ g(0) g(α) = g(α) g(0) = g(α) (3.1.2)

⇒ φj(0, α) = φj(α, 0) = αj.

1An n-dimensional manifold is a topological space that is locally homeomorphic to Rn. A

differentiable manifold is a manifold together with a collection of smooth maps or coordinate charts,

ψ, that cover all the manifold and are such that the change of coordinate charts in overlapping

regions is smooth.
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With this identity we can define the inverse g(α)−1 or g(ᾱ) of the element g(α) so

that

g(α)−1 g(α) = g(ᾱ) g(α) = g(α) g(α)−1 = g(α) g(ᾱ) = e (3.1.3)

⇒ φj(ᾱ, α) = φj(α, ᾱ) = 0.

The associativity of the group elements is realised as

(g(α) g(β)) g(γ) = g(α) (g(β) g(γ)) (3.1.4)

⇒ φj(φ(α, β), γ) = φj(α, φ(β, γ)).

Some groups also satisfy commutativity relations, these are called abelian Groups,

so that,

g(α) g(β) = g(β) g(α) ⇒ φ(α, β) = φ(β, α). (3.1.5)

A subset of elements of the Lie group G defines a subgroup if it is closed

under the operation of the group, i.e. if H is a subgroup of G and h(α) and h(β)

are elements of H, then the element h(γ) = h(α) h(β) is also an element of H.

Furthermore, a normal or invariant subgroup of a Lie group G refers to the subgroup

H, whose elements h(α) satisfy the property g(β) h(α) g(β)−1 ∈ H for all elements

g(β) ∈ G.

3.2 Lie algebras

If we consider an element close to the identity g(ε), so that when multiplied by an

arbitrary group element g(α),

g(α)g(ε) = g(α + δα) (3.2.1)

⇒ αj + δαj = φj(α, ε) = αj + εa
∂φj(α, ε)

∂εa

∣∣∣∣
ε=0

,

where repeated indices are summed over and a = 1, . . . , n labels a direction in

the tangent space of MG around the identity, Te(MG)
2. We can then define the

generators of the group G, using the basis induced by the coordinate system αi in

the tangent space, as

Ta =
∂φj(α, ε)

∂εa

∣∣∣∣
ε=0

∂

∂αj
. (3.2.2)

2The tangent space, Tp(MG) of a manifold MG around the point p is the vector space of all

possible directions tangent to p.
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where sum over the index j is assumed.

However, the coordinate basis ∂
∂αj

is chart-dependent, so it is not a good basis

for the tangent space. Fortunately, the generators Ta are independent of the chart,

as we will show next, so they will be a good basis for the tangent space. In order to

prove this, consider a different chart on α, ψ′(α)i = α′i, and expanding similarly we

obtain3,

δα′j = εa
∂φ′j(α, ε)

∂εa

∣∣∣∣
ε=0

, (3.2.4)

then, using that since φ(α, ε) is a smooth function its derivative is invertible, from

(3.2.1) we have that

δα′j = δαl
[
∂φl(α, ε)

∂εa

∣∣∣∣
ε=0

]−1
∂φ′j(α, ε)

∂εa

∣∣∣∣
ε=0

(3.2.5)

⇒ ∂α′j

∂αl
=

[
∂φl(α, ε)

∂εa

∣∣∣∣
ε=0

]−1
∂φ′j(α, ε)

∂εa

∣∣∣∣
ε=0

.

Then the definition of the generators,

Ta =
∂φk(α, ε)

∂εa

∣∣∣∣
ε=0

∂α′j

∂αk
∂

∂α′j
=
∂φ′k(α, ε)

∂εa

∣∣∣∣
ε=0

∂

∂α′k
, (3.2.6)

is the same in every coordinate chart, and is therefore a good basis for Te(MG).

We will now define the Lie algebra g of the Lie Group G as the vector tangent

space Te(MG), i.e. the vector space spanned by the generators Ta of the Lie group,

g = {εaTa}.

For any element εaTa ∈ g there is a one-parameter subgroup of the associated

Lie Group G corresponding to a path in MG whose tangent at the identity is εaTa

[197–199]. Using coordinates αj, the path can be defined as αj(s) with s ∈ R and

defining T ja as the components of Ta in the coordinate basis of Te(MG), we have

that
d

ds
αjs = εaT ja (αs), (3.2.7)

3The expression is independent of the chart used for the ε since the actual expression for δαj

should be

δαj = ε(φj(α, ε))
∣∣
ε=0

, (3.2.3)

where, in an abuse of notation, ε refers to a vector field tangent at the identity to the curve that

passes through ε (the point in MG). Hence, since the vector field ε is used without referring to a

particular basis, is chart-independent and then expression (3.2.4) is independent of the chart used

to define εa.
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or written in terms of the group elements g(αs):

d

ds
g(αs) = εaTa(αs)g(αs). (3.2.8)

It can be proven that one-parameter subgroups, as abelian subgroups, have

the properties [198]

g(αs)g(αt) = g(αs+t),

g(α0) = e,

g(αs)
−1 = g(α−s), (3.2.9)

with α0 = (0, . . . , 0). Solving (3.2.8) for the group element g(αs) together with the

identity condition in (3.2.9), we can define an exponential map, so that

exp : g → G,
εaTa → g(αs) = exp(sεaTa). (3.2.10)

where the exponential is defined in terms of its power series4

exp(sεaTa) =
∞∑
n=0

1

n!
(sεaTa)

n. (3.2.12)

From differential geometry we know that any tangent space of a manifold M
at a point x, Tx(M) is equipped with a Lie bracket or commutator that is closed

within the tangent space, i.e., for two vector fields X, Y ∈ Tx(M), the commutator

[X, Y ] ∈ Tx(M) defines a further vector field [197]. In our case, this means that

X, Y ∈ g⇒ [X, Y ] ∈ g that also follows from closure on G, or using the basis of the

Lie algebra g, i.e. the generators of G,

[Ta, Tb] = f cabTc, (3.2.13)

where f cab are constants known as structure constants and from the definition we

have that f cab = −f cba. These structure constants actually classify the Lie algebras,

as we will see later. Lie algebras with the same structure constants are isomorphic,

e.g. su(2) ∼= so(3).

4This exponential is not the same as the exponential of scalars, since etXetY 6= etX+tY , but

etXetY = etX+tY+
1
2 t

2[X,Y ]+
1
12 t

3([X,[X,Y ]]−[Y,[X,Y ]])+O(t4). (3.2.11)

This expression is known as the Baker-Campbell-Hausdorff formula (see [197] for further details).
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Since the commutators satisfy the Jacobi identity, [X, [Y, Z]] + [Y, [Z,X]] +

[Z, [X, Y ]] = 0, there is a analogous Jacobi identity for the structure constants that

reads:

f eadf
d
bc + f ebdf

d
ca + f ecdf

d
ab = 0. (3.2.14)

Through the exponential map, eq. (3.2.13) can be obtained simply by imposing

closure for the Lie Group G,

g(αs) = g(αt)g(αr),

exp(sεaTa) = exp(tεaTa) exp(rεaTa). (3.2.15)

Taking the logarithm on both sides and absorbing the parameters s, r and t into εa,

θa and ηa, we can express this as5:

εaTa = log [(exp(θaTa) exp(ηaTa)]

= log
[
1 + θaTa + ηaTa + θaηbTaTb + . . .

]
= θaTa + ηaTa + θaηbTaTb −

1

2
θaηbTaTb −

1

2
ηaθbTaTb + . . .

= θaTa + ηaTa + 1
2
θaηb[Ta, Tb] + . . . , (3.2.17)

where we have neglected terms of order θ2 and η2. Therefore, at that order, we have

θaηb[Ta, Tb] = 2(εc − θc − ηc)Tc, (3.2.18)

and since this is true for all values of θa and ηa, we can define the structure constants

as θaηbf cab = 2(εc − θc − ηc) so that

[Ta, Tb] = f cabTc. (3.2.19)

Moreover, the exponential map allows us to define some of the concepts for the

groups directly in the Lie algebra. For instance, we will define a Lie algebra as

abelian if all the commutators are zero, [X, Y ] = 0 for all X, Y ∈ g. Using the

Baker-Campbell-Hausdorff formula, for an abelian Lie algebra we have that etXetY =

etX+tY and then if g(αt) = etX , g(βt) = etY ,

g(αt)g(βt) = etXetY = etX+tY = etY etX = g(βt)g(αt). (3.2.20)

5Same as with the exponential, the logarithm here is defined by its power series

log(1 +X) =

∞∑
n=1

(−1)n+1

n
Xn. (3.2.16)
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Similarly as with groups we can define a subalgebra h ⊂ g as the subset of g

that is closed under conmutation. If H ⊂ G is a subgroup, then its Lie algebra h is a

subalgebra of g. A subalgebra h is an invariant subalgebra or ideal if H is a normal

subgroup of G and will satisfy,

[X, Y ] ∈ h for all Y ∈ h, X ∈ g. (3.2.21)

A Lie algebra is simple if it does not contain any invariant subalgebra. A

Lie algebra is semisimple if it does not contain any invariant abelian subalgebra.

Obviously if an algebra is simple it is also semisimple. Semisimple algebras are a

very powerful tool since they can be decomposed as the direct product of simple

subalgebras [198,199].

3.3 Representations

A representation R of a group is a map R : G → GL(n)6, that maps every element

of the group g(α), onto a square matrix D(g(α)) ≡ D(α). The dimension of the

representation is the dimension of the matrix D(α). A representation realises the

group multiplication law as a usual matrix multiplication,

D(g(α)g(β)) = D(g(α))D(g(β)) = D(α)D(β). (3.3.1)

For group elements close to the identity with infinitesimal parameters εa we can

write,

D(ε) = 1 + εata, (3.3.2)

where ta are a set of n matrices that form a basis of the representation. These

matrices are the generators of the group in the representation R. To verify this

consider an infinitesimal variation of the point α,

D(α + δα) = D(g(α + δα)) = D(g(α)g(ε)) = D(g(α))D(g(ε)) (3.3.3)

= D(α)D(ε) = D(α)(1 + εata) = D(α) +D(α)εata.

On the other hand, using (3.2.1) and (3.2.2),

D(α + δα) = D(α) + δαj
∂

∂αj
D(α) = D(α) + εaTaD(α). (3.3.4)

6The General Linear Group GL(n) is the group of n × n invertible matrices with the matrix

multiplication as its operation.
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So ta = D(α)−1TaD(α) and then the matrices ta obey the same commutation relation

as do Ta, the generators of the Lie Group and, therefore, are the generators of the

group in the representation R,

[ta, tb] = [D(α)−1TaD(α), D(α)−1TbD(α)] (3.3.5)

= D(α)−1[Ta, Tb]D(α)

= f cabD(α)−1TcD(α)

= f cabtc.

This shows that the representation R not only maps group elements to matrices,

but it also acts on the Lie algebra, R : g → GL(n), so that for an element X ∈ g,

the representation assigns a matrix D(X). In particular, we can write D(Ta) = ta

as a representation of the generators.

Let us consider the representation of an element of G close to the identity

D(g(ε)) = 1 + εata +O(ε2), D(g(ε))−1 = 1− εata +O(ε2). (3.3.6)

If the matrices of the representation, D(g), are unitary matrices, i.e. they obey

D(g)−1 = D(g)†, then the matrix generators are anti-hermitian,

t†a = −ta. (3.3.7)

Similarly if the D(g) are orthogonal, i.e. D(g)−1 = D(g)T , the generators are

antisymmetric

tTa = −ta. (3.3.8)

Further, if the matrices D(g) have unit determinant, det(D(g)) = 1, then we

may use the identity det(D(g)) = det(1 + εata + O(ε2)) = 1 + εatr(ta) + O(ε2), to

get that the generators are traceless

tr(ta) = 0. (3.3.9)

A representation D(g) is reducible if it has an invariant subspace, i.e. there

exists a set of vectors in the representation space that is closed under the action of

the elements on the representation. Conversely, a representation D(g) is irreducible,

usually called irrep, if it has no invariant subspaces.

The complex conjugate of a representation (complex conjugate of all the ma-

trix elements of the representation) is also a representation of the algebra, for its
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generators, often denoted as t∗a or t̄a, satisfy the commutation relations of the al-

gebra. In general a representation and its conjugate are not equivalent7, and the

representation ta is said to be a complex representation, but for some cases, e.g. for

SU(2), they are equivalent, i.e., for some C,

t∗a = −tTa = CtaC
−1. (3.3.10)

By the use of Schur’s lemma, it is possible to deduce that CT = ±C [198].

Whether the sign is plus or minus will classify the representations as real and pseudo-

real, respectively.

In matrix Lie Groups, if the generators in a representation ta are precisely the

generators Ta, then the representation is said to be the fundamental representation

of the algebra.

There is a representation of every Lie algebra that deserves special mention.

The adjoint representation of a Lie algebra g is the representation that spans over

the vector space of the Lie algebra. The generators of the adjoint representation

tad
a are defined in such a way that when they act on elements of the Lie algebra,

Y ∈ g, tad
a Y = [Ta, Y ]8. If we apply such generators of the adjoint representation to

the generators Ta, we get

tad
a Tb = [Ta, Tb] = f cabTc ⇒ (tad

a )cb = f cab. (3.3.11)

The generators of the adjoint representation are therefore given by the structure

constants. By virtue of the Jacobi identity for structure constants, eq. (3.2.14), we

get that the generators of the adjoint representation satisfy the Lie algebra,

[tad
a , t

ad
b ]ed = (tad

a t
ad
b )ed − (tad

b t
ad
a )ed (3.3.12)

= (tad
a )ec(t

ad
b )cd − (tad

b )ec(t
ad
a )cd

= f eacf
c
bd − f ebcf cad

= f edcf
c
ba = f cabf

e
cd

= f cab(t
ad
c )ed

⇒ [tad
a , t

ad
b ] = f cabt

ad
c .

7Two representations of a group element D(g) and D′(g) are equivalent if D′(g) = A−1D(g)A

for a similarity transformation A (linear and invertible) [199].
8As a matter of fact, the generators of the adjoint representations are defined by virtue of

the adjoint map, ad : g → g, that acts on every vector of the Lie algebra. For the generators

ad(Ta) = tada , and for any X ∈ g, ad(X) = Xad.



3. Symmetries and Lie Groups 74

The adjoint representation can be used to construct an invariant symmetric

bilinear form, characteristic of the Lie algebra, called the Killing form, which is

defined as

κ(X, Y ) = tr(XadY ad) for all X, Y ∈ g, (3.3.13)

where the trace is defined as the sum over the vector space of g. The Killing form

can be written using a basis as,

κab = κ(Ta, Tb), (3.3.14)

so that κ(X, Y ) = κabX
aY b. It is clearly symmetric, κab = κba, and obeys

κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0, (3.3.15)

which can be easily proven by the properties of the trace and the adjoint represen-

tation. This expression can be written in components as,

κdbf
d
ca + κadf

d
cb = 0, (3.3.16)

or, by defining fabc ≡ fdabκdc, as

fcab + fcba = 0, (3.3.17)

which makes fabc a completely antisymmetric tensor, since it was already antisym-

metric in the first two indices from the commutator properties.

It can be proven that the Killing form is non-degenerate if and only if the

algebra is semisimple [198], which makes the Killing form especially useful in physics,

because it can act as a metric for the manifold. This means that the Killing form

κ ≡ [κab] has an inverse κ−1 ≡ [κab], so that κabκbc = δac , and then κab and κab can

be used to raise and lower indices. With the inverse Killing form we can obtain an

expression similar to eq. (3.3.16)

f badκ
dc + f cadκ

bd = 0. (3.3.18)

We can now define the Casimir operator of a semisimple Lie algebra in the

representation spanned by {ta} as

C = κabtatb. (3.3.19)

This operator commutes with all the generators of the algebra,

[ta, C] = [ta, κ
bctbtc] = κbc([ta, tb]tc + tb[ta, tc])

= κbc(fdabtdtc + fdactbtd) = (κbcfdab + κdbf cab)tdtc = 0. (3.3.20)
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Some examples of Casimir operators for well known groups are the squared an-

gular momentum operator, J2 = J2
1 +J2

2 +J2
3 , that is the Casimir of the SO(3) group,

or for the Poincaré group, isomorphic to SU(2)⊗SU(2), the squared Pauli-Lubanski

vector W 2 = WµW
µ, W µ = 1

2
εµνσρPνMσρ, with Pν the generator of translations and

Mσρ the generator of the Lorentz transformations.

Lastly we define the symmetrized trace tensor dabc of the representation R,

with generators {ta}, as

dabc = tr[{ta, tb}tc]. (3.3.21)

3.4 Cartan Classification of Simple Lie Algebras

Simple algebras are a very special type of algebra since they do not have any in-

variant subalgebra other then the null algebra and itself. Furthermore, summing

simple algebras it is possible to construct semisimple algebras, which makes simple

algebras all the more useful, because semisimple algebras have non-trivial commu-

tation relations among all its generators and they are good candidates to represent

the symmetries of real physical systems. Over a 100 years ago, Élie Cartan clas-

sified all existing simple algebras into 4 series and 5 exceptional cases [200]. This

classification is made on the basis of two features of the algebras: the rank and the

simple roots.

The Cartan subalgebra h of a simple algebra g is the maximal set of commuting

generators of the algebra, i.e.,

Hi, Hj ∈ g such that [Hi, Hj] = 0 with Hi, Hj ∈ h and i = 1, . . . , r, (3.4.1)

where r is the dimension of the Cartan subalgebra (the number of commuting gen-

erators), called the rank of the algebra. Here we have labelled the generators of the

Cartan subalgebra with indices i, j, · · · = 1, . . . , r and the rest of the generators we

will label with indices a, b, · · · = r + 1, . . . , n. Since the Cartan subalgebra cannot

be an invariant subalgebra, as we are only working with simple algebras, then nec-

essarily for Hi ∈ h, Ta ∈ g, [Hi, Ta] 6∈ h. Since all Cartan generators commute they

can be simultanously diagonalised9 so that for all Ta ∈ g we have [Hi, Ta] = faiaTa

(no sum over a) for all i. Therefore, if we call E~α the generators of g that are not

in h, then we have

[Hi, E~α] = αiE~α, (3.4.2)

9That the generators can be simultaneously diagonalised means that in every representation of

the Cartan generatros D(Hi) there are eigenvectors v so that D(Hi)v = λiv, for all i.
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where αi are the components of the roots of the algebra. We will define the root or

root vector ~α as the vector of length r and components αi, i = 1, . . . , r that specifies

the generator E~α precisely, i.e. two generators cannot have the same root vector, a

statement that will be proven later.

For a specific representation of the generators D(Hi), D(E~α), we can define the

weights as the eigenvalues of the generators of the Cartan subalgebra when acting

on eigenvectors of the representation vector space. Since Hi can be simultaneously

diagonalised, if we called v an eigenvector of all Hi in that representation, then

D(Hi)v = ωiv, (3.4.3)

where ωi is the component of the weight of the representation under the generator

Hi. Similarly as with roots, we can define then the weight or weight vector ~ω, with

the components ωi.

If ~α is a root then −~α is also a root, because if we take the hermitian conjugate

of equation (3.4.2), we get

[Hi, E
†
~α] = −αiE†~α. (3.4.4)

So −~α is the root associated with the generator E†~α, and we define E−~α = E†~α. Using

the Jacobi identity we get

[Hi, [E~α, E~β]] = [E~α, [Hi, E~β]] + [[Hi, E~α], E~β] = (αi + βi)[E~α, E~β]. (3.4.5)

Since [E~α, E~β] cannot be zero for two different generators not belonging to the Cartan

subalgebra, it must be another generator with root ~α+ ~β. However, if ~β = −~α, the

right hand side is zero, so Hi and [E~α, E~β] commute. Hence [E~α, E−~α] must be in

the Cartan subalgebra, i.e., it must be a linear combination of the Hi

[E~α, E−~α] = α′iHi. (3.4.6)

We would like to prove that α′i = αi, so we will make use of the Killing form defined

in (3.3.13). The Killing form acts on generators, as they are elements of the algebra,

c.f. (3.3.14), so acting on two generators Hi and Hj

α′jκ(Hi, Hj) = κ(Hi, [E~α, E−~α])

= κ([Hi, E~α], E−~α)

= αiκ(E~α, E−~α), (3.4.7)

where we have used the symmetry property in equation (3.3.15). Since we can

always rescale E~α so that κ(E~α, E−~α) = 1 [201], we get

κ(Hi, Hj) = αiα
′
j. (3.4.8)
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But the quantity κ(Hi, Hj) cannot depend on the specific root, because the result

above could have been done for any root, i.e. κ(Hi, Hj) = αiα
′
j = βiβ

′
j. So the

only way to reconcile this with the independence of roots, is if αiα
′
j = kδij, for

some constant k that we can rescale to 1 by an arbitrary redefinition of Hi or Hj.

Therefore α′jδij = αi implies that α′i = αi and

[E~α, E−~α] = αiHi. (3.4.9)

We now prove that different root vectors belong to different generators. Let

F~α be a generator associated with the root ~α. Since the Killing form restricted to

the Cartan subalgebra is non-degenerate [201], we can define F~α as αi = κ(Hi, F~α),

which can be solved uniquely for F~α. On the other hand, we have

κ(Hi, [E~α, E−~α]) = αiκ(E~α, E−~α) (3.4.10)

= κ(Hi, F~α)κ(E~α, E−~α).

Hence κ(Hi, [E~α, E−~α] − κ(E~α, E−~α)F~α) = 0, for all i. But κ is non-degenerate,

so [E~α, E−~α] = κ(E~α, E−~α)F~α = F~α by rescaling. Therefore, since F~α is uniquely

defined for each ~α, so is E~α.

We can then summarise all the commutation relations obtained previously as

[Hi, Hj] = 0,

[Hi, E~α] = αiE~α,

[E~α, E−~α] = αiHi,

[E~α, E~β] = N~α+~βE~α+~β. (3.4.11)

where N~α+~β is a constant that will depend on the normalisation of E~α and E~β, and

it will be zero if ~α + ~β is not a root of the algebra.

Through eq. (3.4.11), we can find the structure constants, that uniquely define

the algebra. And we can easily notice that they only depend on the number of Cartan

generators (the rank of the algebra) and the roots (modulo some normalisation

constants). However, we will now see that we do not even need all the roots to

specify the algebra, for they are not all independent. From the known roots ~α and
~β, we define the ~α-string of roots through ~β as ~β + n~α for n ∈ Z, which can be

proven to be roots as long as ~α and ~β are roots and p ≤ n ≤ q for some p, q ∈ Z
with p ≤ 0 ≤ q [197,201]. Furthermore we have

p+ q = −2
~β · ~α
~α · ~α

, (3.4.12)
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where the scalar product is defined as

~α · ~β = κ(E~α, E~β). (3.4.13)

Conversely, we can define the ~β-string of roots through ~α as ~α+n~β in the same way,

with possible different values for p and q.

Hence with just a small number of roots, we can specify the algebra, since other

roots can be obtained through the strings. We will call simple roots those roots that

are positive and cannot be written as a sum of positive roots. This implies that if ~α

and ~β are different simple roots, then ~α− ~β is not a root10 and ~α · ~β ≤ 011. We find

that the set of simple roots of an algebra are linearly independent and, moreover,

there are precisely r simple roots, hence they form a basis of the root space. It

would therefore make sense, to classify the possible Lie algebras in terms of these

simple roots. As a matter of fact, it is enough to consider the number of them (the

rank of the algebra) and the angles between the roots which are defined as

cos θ =
~α · ~β
|~α||~β|

, (3.4.14)

which only allows for four possible values: π/2, 2π/3, 3π/4 and 5π/6 [199].

Then, it is possible to define, for ~αi the set of simple roots of an algebra, the

Cartan matrix K as a r × r matrix with components given by,

Kij =
2~αi · ~αj
~αj · ~αj

, (3.4.15)

that will uniquely classify the algebra.

A Cartan matrix describes the root system of an algebra and thus defines it

unambiguously. Their entries correspond to the angles among the simple roots of the

group, normalised by the length of the roots, |~α|, to integer numbers12. Following

the original classification and nomenclature of E. Cartan [200], the Cartan matrices,

and thus the algebras, are classified into six series: four regular series, Ar, Br, Cr

and Dr, for all values of the rank r > 1, and five exceptional algebras, Er with

6 ≤ r ≤ 8, F4 and G2.

10If ~β − ~α is a root, if ~β > ~α then ~β − ~α is positive and one can write ~β = (~β − ~α) + ~α which is

a sum of positive roots, which is a contradiction as ~β is simple. Similarly, if ~α > ~β we will reach

the same contradiction. Hence ~β − ~α is not a root.
11Since ~β − ~α is not a root, in the ~α string of roots through ~β, ~β + n~α, n must be positive or

zero. Hence p = 0, and then from (3.4.12), ~α · ~β = −q(~α · ~α) ≤ 0.
12Conventionally, longer roots are normalised so that |~α|2 = ~α · ~α = 2.
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The regular series of Cartan matrices will have a variable size depending on

the rank, but the shape is consistent regardless of the size, with the last 2 or 3 rows

and columns setting the differences among them. These matrices are

K(Ar) =



2 -1 0 . . . 0 0

-1 2 -1 . . . 0 0

0 -1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 2 -1 0

0 0 . . . -1 2 -1

0 0 . . . 0 -1 2


, K(Br) =



2 -1 0 . . . 0 0

-1 2 -1 . . . 0 0

0 -1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 2 -1 0

0 0 . . . -1 2 -2

0 0 . . . 0 -1 2


,

K(Cr) =



2 -1 0 . . . 0 0

-1 2 -1 . . . 0 0

0 -1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 2 -1 0

0 0 . . . -1 2 -1

0 0 . . . 0 -2 2


, K(Dr) =



2 -1 0 . . . 0 0

-1 2 -1 . . . 0 0

0 -1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 2 -1 -1

0 0 . . . -1 2 0

0 0 . . . -1 0 2


,

(3.4.16)

where the bold entries highlight the main differences of the series, while the other

entries are universal with 2 on the diagonal and −1 above and below the diagonal.

The exceptional algebras are a finite series, they do not appear for every value

of the rank. The Er series only allows for ranks 6, 7 and 8, whereas the Fr and Gr

series only have ranks 4 and 2, respectively. Their Cartan matrices, specific for each

algebra, are

K(E6) =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1
0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2


,
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K(E7) =



2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 −1 0 0 0 2


, K(F4) =


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

 ,

K(E8) =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 −1 0 0 0 0 2


,

K(G2) =

(
2 −3
−1 2

)
,

(3.4.17)

where, again, we have highlighted in bold face the unusual rows and columns that

do not follow the general cannon.

Therefore, it is enough to know the rank of an algebra and its series, since

that specifies the Cartan matrix. According to that, the simple algebras can be

classified as can be seen in table 3.1, where the rank r and dimension d of the

algebras are specified. Additionally, the classical notation of the regular algebras,

used extensively in physics, is provided.

Cartan’s notation Classical notation Rank r Dimension d

Ar su(r + 1) r ≥ 1 r(r + 2)

Br so(2r + 1) r ≥ 1 r(2r + 1)

Cr sp(2r) r ≥ 1 r(2r + 1)

Dr so(2r) r > 2 r(2r − 1)

E6 - 6 78

E7 - 7 133

E8 - 8 248

G2 - 2 14

F4 - 4 52

Table 3.1: Cartan classification of simple Lie algebras, with r the rank of group, i.e.

number of commuting generators, and d the dimension of the group, i.e. total number of

generators.
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An alternative way of representing the simple roots of a Lie algebra is through

the use of the Dynkin diagrams [202]. These are graphs where the nodes represent

simple roots and the links correspond to the angles among them, see eq. (3.4.14).

Nodes with no link between them have an angle of π/2, a single link corresponds

to an angle of 2π/3, two links to 3π/4 and three links (the maximum allowed) to

5π/6. The Dynkin diagrams of all the series of table 3.1, equivalent to the Cartan

matrices of (3.4.16) and (3.4.17), can be seen in figure 3.1. In those diagrams with

roots of different lengths, shorter roots are represented with black filled nodes13.

An

1 2 n− 1 n

Bn

1 2 3 n− 1 n

Cn

1 2 n− 1 n

Dn

1 2 3 n− 2
n− 1

n

E6

1 2 3 4 5

6

E7

1 2 3 4 4 6

7

E8

1 2 3 4 5 6 7

8

F4

1 2 3 4

G2

1 2

Figure 3.1: Dynkin diagrams of simple Lie algebras.

There are two different bases in which the simple roots of a Lie algebra can be

written. The Dynkin or fundamental basis can be read off the Cartan matrix, where

each row corresponds to a simple root and as such are always integer numbers. For

example, the simple roots ~αi of the algebra D4 (so(8)) have the following components

in the Dynkin basis

~α = {( 2, -1, 0, 0), (-1, 2, -1, -1), ( 0, -1, 2, 0), ( 0, -1, 0, 2)} . (3.4.18)

The other type of basis, known as the dual basis, is defined as the components

of any root ~β, when written as a linear combination of the simple roots. By conven-

tion, these components are normalised according to the length of the simple roots,

with a factor 2
~αi·~αi up front. This is

~β =
∑
i

λi
2

~αi · ~αi
~αi, (3.4.19)

13Roots of different lengths have larger angles between them, equation (3.4.14), and this has a

great impact in the construction of root and weight systems, as will be seen later.
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so by definition, the components λi of the simple roots in the dual basis are just non-

zero real numbers for the entries that correspond to themselves, one for long roots

and ~α·~α
2

for short roots, and zero everywhere else. Following the example before,

the simple roots ~αi of D4 in the dual basis (subindex ∗ to distinguish it from the

Dynkin basis) are

~α∗ = {( 1, 0, 0, 0), ( 0, 1, 0, 0), ( 0, 0, 1, 0), ( 0, 0, 0, 1)} , (3.4.20)

since all the simple roots of D4 are the same length.

Converting from one basis to another is done with the metric tensor of the Lie

algebra Gij [203], defined by

Gij = (Kij)
-1 ~αj · ~αj

2
. (3.4.21)

The metric tensor is the projection of the Killing form into root space, and as such

the scalar product of roots, defined in eq. (3.4.13), can be written as

~α · ~β =
∑
ij

aiGijbj =
∑
j

λjbj =
∑
i

aiτi, (3.4.22)

where ~α = (a1, . . . , ar), ~β = (b1, . . . , br) in Dynkin components, and ~α = (λ1, . . . , λr),
~β = (τ1, . . . , τr) in dual components.

Similar to the fact that roots describe simple algebras, weights describe ir-

reducible representations of the algebra. It can be easily proven [201] that every

representation R has a highest vector, vhw, defined so that

DR(E−~α)vhw = 0, (3.4.23)

for all ~αi, simple roots of the algebra. The weight associated to the highest vector

is known as the highest weight, defined as

DR( ~H)vhw = ~ωvhw. (3.4.24)

Such highest weight defines a representation of an algebra unambiguously. Because

of this, it is used to label and identify irreducible representations (irreps) in a simple

algebra. The dimension of a irrep, R, can be calculated easily from the highest

weight ~ω by using the Weyl formula [203]

dim(R) =
∏
~α>0

~α · (~ω + ~δ)

~α · ~δ
, (3.4.25)
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where ~δ = ( 1, . . . , 1) in the Dynkin basis and the product runs over the positive

roots ~α > 0.

Weights, as roots, can be written in both the Dynkin and dual bases, and their

relations mirror those of roots. As an example, the weights of the 5 dimensional

representation of A4 (su(5)), in Dynkin and dual bases respectively, are

~ω = {( 1, 0, 0, 0), (-1, 1, 0, 0), ( 0, -1, 1, 0), ( 0, 0, -1, 1), ( 0, 0, 0, -1)},
~ω∗ = {( 4

5
, 3

5
, 2

5
, 1

5
), (-1

5
, 3

5
, 2

5
, 1

5
), (-1

5
, -2

5
, 2

5
, 1

5
), (-1

5
, -2

5
, -3

5
, 1

5
), (-1

5
, -2

5
, -3

5
, -4

5
)}.

(3.4.26)

where the first weight, ω = (1, 0, 0, 0) in Dynkin basis, is the highest weight.

The last properties of Lie algebras and its representations that we must discuss

are the Casimir invariants and the Dynkin indices. The Casimir invariant was

defined in eq. (3.3.19) in terms of the generators of the algebra, and it can be easily

redefined in terms of the weights of irreducible representations. Let ω be the highest

weight of a representations R, then the Casimir invariant of that representation

is [203]

C(R) = ~ω · (~ω + 2~δ). (3.4.27)

The Casimir invariant of the algebra corresponds to that of the adjoint representa-

tion C(G) = C(RAdj).

The Dynkin index (or simply index) of an irreducible representation can be

calculated as

S(R) =
dim(R)

ord(G)
C(R), (3.4.28)

where ord(G) is the order of the group, which corresponds to ord(G) = dim(RAdj).

Finally, it is worth mentioning that abelian algebras are not part of this de-

scription of simple algebras, in terms of roots and weights, since all their generators

satisfy [Ta, Tb] = 0, hence they have no roots. In classical notation, a n dimensional

abelian group is known as U(1)n, with n commuting generators.

3.5 Group Theory Tool

The Cartan classification of simple algebras provides a description of Lie algebras

in terms of roots and weights, and this opens the field for computational treatment.

The development of an algorithmic implementation of the features of simple algebras
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allows for a universal way of handling them, thus simplifying the calculation of the

physical properties that would be needed in the model building phase.

Simple algebras, those that do not contain invariant subalgebras, are ever

present in the world of quantum mechanics. For example, the rotations in space

are described using the simple algebra SO(3). On the other hand, in the quantum

world one often finds that physical systems have disjoint sets of symmetries, and

these cannot be considered as simple algebras. In this case, semisimple algebras come

to the rescue. Semisimple algebras do contain, non-abelian, invariant subalgebras,

so they can be expressed as direct products of simple algebras [199]. As an example,

hadronic particles are often thought as states in representations of a SU(3)⊗SU(2)

group, where SU(3) is the Gell-Mann quark flavour symmetry and SU(2) the spin

group.

However, despite its usefulness, semisimple algebras cannot be used to describe

the symmetries of all physical systems. Some symmetric systems have an abelian

invariant subalgebra, e.g. the colour and electric charge symmetries of quarks at low

energies, SU(3)C ⊗ U(1)em. In those cases one needs non-semisimple algebras for

the description, which can be expressed as the direct product of semisimple algebras

and abelian U(1) factors.

Therefore, we will try to build a computational tool to handle the properties

of all Lie algebras (simple, semisimple or neither). This tool will be very useful from

the physics point of view, because it would simplify the group theoretical part of the

model building process, by bringing all the mathematical and analytical treatment of

groups and algebras to computational grounds, thus gaining in speed and versatility.

In order to do so, we will specify the algorithms and processes that are required

to obtain the main constituents of Lie algebras, Roots and Weights, which will

be necessary for every other process to follow. Additionally, there are three main

concepts that have a direct application to model building in Quantum Field Theory

and we will detail the algorithms to obtain them. These are the calculation of

the Subgroups and Breaking Chains of a Lie algebra, which will allow us to

know the symmetry breaking path a theory undergoes; the Decomposition of

Representations of a Lie algebra into representations of a subalgebra, which will

provide knowledge about the fields that live at every step of the symmetry breaking

chain; and the Construction of Group Invariants, required to build Lagrangians

of gauge theories. Henceforth, we will drop the distinction between the labels of a

group, e.g. SU(N), and its algebra, e.g., su(N), for simplicity, thus it will be implied

that we refer to the properties of the algebras unless explicitly stated otherwise.



85 3.5. Group Theory Tool

3.5.1 Roots and Weights

As mentioned before, in section 3.4, the minimum set of roots to unambiguously

define a simple algebra is the set of simple roots, from where all other roots can be

obtained. The way to do so is by following the argument above equation (3.4.12),

where one could construct roots simply through strings of roots. Due to the condition

in eq. (3.4.12), new roots can only be obtained from non-orthogonal roots, i.e.

~α · ~β 6= 0, and since the length of the chain of roots depends on the angle between

them, eq. (3.4.14), roots with wider angles will have longer strings. Then, using

the root chains we can derive an algorithm to calculate the whole set of roots of a

simple algebra [203].

Let {~αs} be the set of simple roots of the algebra, which are all positive, by

definition, and {~α} the full set of roots, currently containing only the simple roots.

When written in the Dynkin basis, a negative component of the root ~αi, aij < 0,

means that the simple root ~αsj is not orthogonal to ~αi. So, by the argument above,

there are aij new roots, calculated via the chain ~βij = ~αi + k~αsj with k = 1, . . . , aij,

which we add to the set of roots {~α}. We iterate this algorithm for all negative

components of the root ~αi, and for all roots {~α}, plus all other roots obtained

throughout this process, until there are no more roots with negative components.

In the end, we end up with the set of all positive roots, the last of which is known

as the highest or most positive root, whose components are all positive.

Since we know that if ~α is a root, so is−~α, the negative roots are easily obtained

from the positive roots. Finally, every simple algebra has r, rank of the algebra, null

roots, corresponding to the commutators of the generators of the Cartan subalgebra.

Therefore, following the algorithm, illustrated in figure 3.2, we obtain the full set

of roots {~α} of the algebra, including the positive, negative and null roots, whose

dimension corresponds to the dimension of the group.

To illustrate this process we describe here an example case, B3 (SO(7)), chosen

because it has roots with different lengths. The Cartan matrix of B3 can be found

in equation (3.4.16), so the simple roots are

~α = {( 2, -1, 0), (-1, 2, -2), ( 0, -1, 2)}. (3.5.1)

Following the algorithm above, if we start with ~α1 = ( 2, -1, 0) we can see that

the second component is negative, a12 = −1, thus ~α1 + ~α2 = ( 1, 1, -2) is a root.

The first component of ~α2 is also negative, a21 = −1, but that leads to the same

root as before, so we there are no new roots there. Next, we notice that the third
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Simple roots {~α}

Next root: ~αi

Next component: aij aij > 0

Calculate the

chain of roots ~βij

aij < 0

Add all new

roots {~β} to {~α}

Add negative {−~α}
and null roots

Figure 3.2: Algorithm for obtaining the roots of a simple algebra.

component of ~α2 is not only negative, but smaller than -1. This means that both

~α2 + ~α3 = (-1, 1, 0) and ~α2 + 2α3 = (-1, 0, 2) are roots. Adding all the obtained

roots to the set and iterating for all roots we find

~α =



( 0, 1, 0)

( 1, -1, 2)

( 1, 0, 0) (-1, 0, 2)

( 1, 1, -2) (-1, 1, 0)

( 2, -1, 0) (-1, 2, -2) ( 0, -1, 2)


, (3.5.2)

which are the full set of positive roots, laid out in levels corresponding to the overall

number of simple roots involved in the sum, e.g., the highest root is ~β = ~α1+2~α2+2~α3

and so it has level 5. Adding the negative and null roots, we find the full set of roots

of B3
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~α =



( 0, 1, 0)

( 1, -1, 2)

( 1, 0, 0) (-1, 0, 2)

( 1, 1, -2) (-1, 1, 0)

( 2, -1, 0) (-1, 2, -2) ( 0, -1, 2)

( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0)

(-1, -1, 2) ( 1, -1, 0)

(-1, 0, 0) ( 1, 0, -2)

(-1, 1, -2)

( 0, -1, 0)



, (3.5.3)

which is the root diagram of the simple algebra.

Extending of the computation of roots to semisimple algebras is straightfor-

ward, following their decomposition into direct products of simple algebras. The set

of roots of an algebra G1⊗· · ·⊗GN is taken as the disjoint set of roots {{~α}1, . . . , {~α}N},
where {~α}j are the roots of Gj. Since abelian algebras do not have roots, there is

no further extension for non-semisimple algebras.

A similar algorithm to the one above can be used to obtain the weights of a

representation of the algebra. Since irreducible representations (irreps) are defined

by their highest weight, we will build the weight diagram for the representation

from it. Then, unlike the construction of the root system, where we started from

the simple roots and built upwards by adding them together, we will now subtract

the simple roots from the weights, starting from the highest weight, and build the

diagram downwards [203].

Starting from the highest weight ~Ω, we obtain new weights by subtracting

the simple root ~αj from it, where now wj, the jth component of ~Ω is a positive

component, instead of negative. The new weights, ~ωj = ~Ω−k~αj, with k = 1, . . . , wj,

are then added to the list of weights, {~ω}, originally only populated by ~Ω, and iterate.

Unlike roots, weights can have different multiplicities, i.e. each weight can appear

more than once, which can be calculated for a weight ~ω as

M~ω = 2
∑

~α>0,k>0

M~ω+k~α
(~ω + k~α) · ~α

|~Ω + ~δ|2 − |~ω + ~δ|2
, (3.5.4)

where ~δ = ( 1, . . . , 1) in the Dynkin basis and the sum runs over all positive roots ~α

and all positive integers k, provided that ω+ kα is a weight, with given multiplicity

M~ω+k~α. Therefore the weight system of the representation defined by ~Ω, with a
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number of weights equal to the dimension of the representation, can be calculated

this way, as illustrated in figure 3.3.

Highest weight ~Ω ∈ {~ω}

Next weight in {~ω}

Next component: wj wj < 0

Calculate the

chain of weights ~ωj

wj > 0

Add ~ωj to {~ω}

Calculate the multiplic-

ities of all weights M~ω

Figure 3.3: Algorithm for calculating the weights of the representation defined by the

highest weight ~Ω.

As before, we give an example of a weight diagram for a representation. For

the purpose of illustration, we choose a non-trivial irrep, with weights of different

multiplicities. We take the representation with highest weight ( 1, 1, 0) of A3

(SU(4)), whose dimension is 20, calculated with equation (3.4.25). Following the

algorithm, we find two positive components of the highest weight, first and second,

so the next level of the diagram will have two weights ~ω1 = ~Ω− ~α1 = (-1, 2, 0) and

~ω2 = ~Ω−~α2 = ( 2, -1, 1). In the next level we find the first case of a weight with non-

trivial multiplicity, which is ~ω3 = ~ω1−~α2 = ( 0, 0, 1). If we compute its multiplicity,

using equation (3.5.4), we find that M~ω3 = 2, and we can see this is indeed true

since ω3 can be obtained in two different ways14, the previously mentioned ~ω1 − ~α2

14It is true that a weight with multiplicity M = n must be reached trough at least n different

paths. Conversely, a weight obtained through n different paths must have a multiplicity M≤ n.
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and ~ω2 − ~α1. Iterating the process for all weights we find the diagram

~ω =



( 1, 1, 0)

(-1, 2, 0) ( 2, -1, 1)

( 0, 0, 1) ( 0, 0, 1) ( 2, 0, -1)

( 1, -2, 2) (-2, 1, 1) ( 0, 1, -1) ( 0, 1, -1)

(-1, -1, 2) ( 1, -1, 0) ( 1, -1, 0) (-2, 2, -1)

( 1, 0, -2) (-1, 0, 0) (-1, 0, 0)

(-1, 1, -2) ( 0, -2, 1)

( 0, -1, -1)


, (3.5.5)

where it can be seen that there are four weights with multiplicity M = 2, which

are: ( 0, 0, 1), ( 0, 1, -1), ( 1, -1, 0) and (-1, 0, 0).

For semisimple algebras, the calculation of the weights needs an extra step.

The weights of a product representation R1⊗· · ·⊗RN are taken as combinations of

the weights from the simple reps. That is, if {~ωi}k are the weights of Ri and {~ωj}l
are the weights of Rj, with components wikr and wjls respectively, then the weights

of the product rep Ri ⊗ Rj, of dimension dim(Ri) × dim(Rj), have components

(wik1, . . . , w
i
kr, w

j
l1, . . . , w

j
ls) for k = 1, . . . , dim(Ri) and l = 1, . . . , dim(Rj). The

weights of the full product representation R1⊗· · ·⊗RN are obtained the same way,

and will result in a weight system of dimension dim(R1)× · · · × dim(RN).

An example case, for a semisimple A3⊗A1 algebra (SU(4)⊗SU(2)). The rank

4 weights of the 20⊗2 representation, typically labelled {20,2}, are a combination

of the weights of the 20, in (3.5.5) and the weights of the 2, {( 1), (-1)}. Effectively

this doubles the number weights by adding a last entry to the weights of 20 with

either a 1 or a -1. The first few weights will be ( 1, 1, 0, 1), ( 1, 1, 0, -1), (-1, 2, 0, 1),

( -1, 2, 0, -1) ( 2, -1, 1, 1), ( 2, -1, 0, -1) and so on.

In the non-semisimple case, because abelian algebras do not have roots or

weights, there is no need to combine the weights of the semisimple part with the

abelian one. However, since the vector space of an abelian U(1) algebra spans the set

of real numbers, the components of the weights corresponding to the abelian factors

will be filled with real numbers. For a non-semisimple algebra G⊗U(1)1⊗· · ·⊗U(1)k

this means that the highest weight will have the components (w1, . . . , wr, n1, . . . , nk)

where (w1, . . . , wr) is the highest weight of G and n1, . . . , nk are real numbers.
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3.5.2 Subgroups and Breaking Chains

Most physical systems undergo a phase transition at some point in their evolution, as

does, for example, the universe when the Higgs field condensates, during electroweak

symmetry breaking. When this happens, some of the symmetries of the system are

broken and the new system will keep only a subset of those. If this process were to

be repeated a number of times, the evolution of the system could be characterised

by the chain of broken symmetries, i.e. a chain of Lie algebras.

There are two main features to compute here. First, we will need to obtain the

set of subalgebras of a given algebra, which will give us the candidates for last step of

a symmetry breaking transition, and second we need to calculate the breaking chains

between a Lie algebra and one of its subalgebras, providing all possible symmetry

breaking paths.

An

1 2 n− 1 n

-γ
Bn

1

-γ

2 3 n− 1 n

Cn

-γ 1 2 n− 1 n

Dn

1

-γ

2 3 n− 2
n− 1

nE6

1 2 3 4 5

6

-γ
E7

-γ 1 2 3 4 5 6

7

E8

1 2 3 4 5 6 7 -γ

8

F4

-γ 1 2 3 4

G2

-γ 1 2

Figure 3.4: Extended or affine Dynkin diagrams of simple Lie algebras.

We start with the subalgebras. The first set of subalgebras that need to be

calculated are the maximal subalgebras, those that are not subalgebras of any of the

other maximal subalgebras. These can be obtained from the Dynkin diagrams (or

equivalently from the Cartan matrices) and from what is known as the extended or

affine Dynkin diagrams (or the extended or affine Cartan matrices). The extended

diagrams, that can be seen in figure 3.4, are obtained by adding the most negative

root in the root system, −γ, and its links to the simple roots will be given by its
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angles with respect to them, i.e,

cos θi = − αi · γ
|αi||γ|

, i ∈ {1, r}. (3.5.6)

Therefore, there are two ways to compute subalgebras, starting with the Dynkin

diagrams, which will give non-semisimple subalgebras, or starting with extended

Dynkin diagrams, which will result in semisimple subalgebras [203].

Starting with the Dynkin diagram of a Lie algebra, the way to obtain the non-

semisimple subalgebras is to remove one of its nodes. After removing a node from

the diagram, which corresponds to a simple root of the algebra, we end up with

one that is disconnected, with two or more subdiagrams. After this, the subalgebra

will then be identified as the direct product of the simple algebras that correspond

to each of the subdiagrams left, with an abelian factor, U(1), at the end. As an

example of this algorithm, we can see in figure 3.5 that if we eliminate the second

node of the diagram of SO(9) (B4), we get the subalgebra SO(5) ⊗ SU(2) ⊗ U(1)

(B2 × A1 × U1).

SO(9)

1 2 3 4

SU(2)

1

U(1) SO(5)

1 2

Figure 3.5: Eliminate the second node (crossed) from the Dynkin diagram of SO(9) to

obtain the subalgebra SO(5)× SU(2)× U(1).

Alternatively, one could start with the Cartan matrix and remove a row and a

column, corresponding to the eliminated node from the diagram, and then matching

the remaining block diagonal matrix with the Cartan matrices of simple algebras.

This way is actually easier from the computational point of view and therefore is

the path chosen in the implementation, with its algorithm shown in the left hand

diagram of figure 3.6, but it is harder to illustrate and thus, since it leads to the

same conclusions (it is the same process, after all) we have chosen to present the

examples in the former.

For semisimple maximal subalgebras, one must start with the extended Dynkin

diagram, and then drop one of the nodes (the corresponding row and column from

the extended Cartan matrix). The resulting disconnected diagram would be that of

the product subalgebra. The algorithm for this process is shown in the right hand

diagram of figure 3.6. It can be seen in figure 3.4, if one were to drop a node from

the diagram for a An algebra, the subalgebra will always be the same An algebra, so

unitary algebras do not have semisimple maximal subalgebras. As an example, we
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Cartan matrix Kij

Next row i

Delete row and column i

Identify submatrices K1

and K2 with G1 and G2

Add G1 ⊗ G2 ⊗ U(1)

to list of subgroups

Extended Cartan matrix K ′ij

Next row i

Delete row and column i

Identify submatrices K1

and K2 with G1 and G2

Add G1 ⊗ G2 to

list of subgroups

Figure 3.6: Algorithms for obtaining the maximal subalgebras of a Lie algebra, non-

semisimple (left) and semisimple (right).

show in figure 3.7 the case when the third root from the diagram of SO(10) (D5) is

removed, resulting in the subalgebra SU(4)× SU(2)× SU(2).

SO(10)

1

-γ

2 3
4

5

SU(4)

1 2 3

SU(2)

1

SU(2)

1

Figure 3.7: Eliminate the third node from the extended Dynkin diagram of SO(10) to

obtain the subalgebra SU(4)× SU(2)× SU(2).

By repeating the above procedure for all dots of the diagrams (or, equivalently,

for all rows of the Cartan matrix), one obtains the maximal subalgebras of a given

Lie algebra. There is, however, another set of maximal subalgebras that is not

obtained this way, but rather in a more heuristic fashion. These are known as

special maximal subalgebras, as opposed to the former ones, which are dubbed

regular maximal subalgebras. The unique property of these subalgebras is that the

generating representation of the superalgebra, from which all other representations
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can be obtained, decomposes into a single representation of the subalgebra, e.g.

SO(10)→ SO(9)

16→ 16 (3.5.7)

To my knowledge there is no algorithm to obtain these special maximal subalgebras.

They are unique pairings of algebra and subalgebra, but they do not present any spe-

cial attributes that might qualify them for an algorithmic approach. Therefore they

must be read out from existing tables in the literature, rather than calculated [203].

These two sets, regular {MG} and special {SG} subalgebras, constitute all

maximal subalgebras of a Lie algebra G. In order to obtain all subalgebras, one has

to iterate the above process for the maximal subalgebras, {MG} and {SG}, thereby

obtaining a list of subalgebras with the same rank as the superalgebra. Throughout

this process one expects to find cases with two or more occurrences of the same

subalgebras but very often they will have different embeddings into the superalgebra.

Whenever this happens, these differences are highlighted by appending labels to the

factors of the subalgebras to mark the simple algebra from which they originate.

As an example, there are two ways in which the subalgebra SU(3) × U(1) × U(1)

is embedded into SU(5), through its SU(4) × U(1) or its SU(3) × SU(2) × U(1)

subalgebras. The different labels in the SU(2) factors for both cases will then

indicate that they have different embeddings

SU(5)

↙ ↘
SU(4)A ⊗ U(1)B SU(3)A ⊗ SU(2)B ⊗ U(1)C (3.5.8)

↓ ↓
SU(3)AA ⊗ U(1)AB ⊗ U(1)B SU(3)A ⊗ U(1)B ⊗ U(1)C

Subalgebras with smaller rank than the superalgebra can be obtained by break-

ing one or more of the abelian subalgebras previously calculated [203]. This is how-

ever a non trivial matter, for the abelian component of the subalgebra that gets

broken, i.e. the generator of the Cartan subalgebra that breaks, may be any linear

combination of the diagonal generators of the given Lie algebra. If the whole abelian

sector of the Lie algebra is broken, then all combinations of generators are broken,

but otherwise the specific combination is determined by the abelian charges of the

order parameter of the phase transition. Deferring the actual combination of the

charges to the model building section, when we will know the order parameter of
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the transition, this apparently arbitrary combination will be represented using labels

in the abelian sector. The well known example of electroweak symmetry breaking,

where the actual combination of the diagonal charge of SU(2) and U(1) will be given

by the Higgs charges, is

SU(3)⊗ SU(2)⊗ U(1)⇒ SU(3)A ⊗ U(1)B+C (3.5.9)

Finally, once a full set of subalgebras of a given Lie algebra G is obtained, the

breaking chains from that algebra to one of its subalgebras F can be calculated,

i.e. G → · · · → F . The first step is to identify the subalgebras {Gi} of G such

that G ⊃ Gi ⊃ F . Now, for all Gi 6= F , in a recursive manner, we calculate all its

breaking chains to F , Gi → · · · → F , which we will then append to the original Lie

algebra, so G → Gi · · · → F . The breaking point of the recursive algorithm is when

an intermediate subalgebra Gj = F , in which case the chain is just Gi → F . This

algorithm can be seen in a flow chart in figure 3.8.

List of subalgebras {G}

Next subalgebra Gi

Calculate chains

Gi → · · · → F

Add G → Gi → · · · → F
to list of chains

Figure 3.8: Algorithm to obtain the breaking chains of a Lie algebra.

In figure 3.9 one can see an example of three out of the 38 possible breaking

chains from SO(10) to the Standard Model algebra SU(3)× SU(2)×U(1) through

different intermediate steps. The first case has SU(5) as an intermediate step,

the second has SU(5) × U(1) with non-trivial U(1) mixing when broken to the

SM algebra, and the last one has two intermediate steps, the Pati-Salam algebra

(see section 2.2) SU(4) × SU(2) × SU(2) and a step in which SU(4) is broken

into SU(3)× U(1), which requires mixing between this abelian subalgebra and the

diagonal generator embedded in the broken SU(2).
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Figure 3.9: Example of three breaking chains from SO(10) to SU(3) × SU(2) × U(1),

with different intermediate steps. Superscripts refer to the level in the chain.

The computation of subalgebras and breaking chains for product algebras,

semisimple or not, is rather straightforward from the discussion above. Let G =

G1⊗· · ·⊗GN be a product algebra, whose factors can be abelian or not, and assume

the subalgebras of Gi are {Fij}, calculated via the algorithms above. The subalgebras

of G will be the full combination of the lists of subalgebras, but including the simple

algebras Gi and the empty set element ∅ in those lists, i.e. {Gi,Fi1, . . . ,Fini ,∅}.
For the example case N = 2, the subalgebras of G1 ⊗ G2 are



G1⊗F21, . . . , G1⊗F2n2 ,

F11⊗ G2, . . . , F1n2 ⊗ G2,

F11⊗F21, . . . , F11⊗F2n2 ,

. . . ,

F1n1 ⊗F21, . . . , F1n1 ⊗F2n2 ,

F11, . . . ,F1n1 ,

F21, . . . ,F2n2 ,

G1, G2


, (3.5.10)

where ∅⊗Fk = Fk.

Let us give a simple example, we will calculate the subalgebras of SU(3) ⊗
SU(2). We start by assuming we already know the subalgebras of SU(3) and SU(2),

from the algorithms described above for simple algebras. These are

SU(3)→


SU(2)⊗ U(1),

SU(2),

U(1)⊗ U(1),

U(1)

 , (3.5.11)

SU(2)→ {U(1)} , (3.5.12)
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we can calculate the subalgebras of the semisimple algebra SU(3)⊗ SU(2) by com-

bining the lists, including SU(3) and SU(2) in their respective lists. The results will

be 

SU(3)⊗ U(1), SU(2)⊗ U(1)⊗ SU(2),

SU(2)⊗ SU(2), U(1)⊗ U(1)⊗ SU(2),

U(1)⊗ SU(2), SU(2)⊗ U(1)⊗ U(1),

SU(2)⊗ U(1), U(1)⊗ U(1)⊗ U(1),

U(1)⊗ U(1), SU(3)

SU(2), U(1)


. (3.5.13)

3.5.3 Decomposition of Representations

Along with its symmetries, a physical system can be characterised by a set of fields,

of classical or quantum nature, which transform according to representations of

the algebra. Hence, the fields form multiplets, of dimension the dimension of the

irrep, and the states of the multiplet are eigenstates of the Cartan generators of

the algebra with eigenvalues corresponding to the weights of the representation.

If at any point during the evolution of the system its symmetries are broken, the

representations will decompose into representations of the new Lie algebra, and thus

the fields will transform under the irreducible representations of the subalgebra. If

R is a representation of an algebra, there exists a decomposition such as

R →
∑
i

Ri (3.5.14)

where Ri are irreps of the subalgebra.

As explained in section 3.4, representations of a Lie algebra are unequivocally

defined by their sets of weights. Thus, in order to find the decomposition any R of

the algebra it is enough to project its weights into subweights of the subalgebra, and

by identifying those with the weights of the irreps Ri we are able to reconstruct the

decomposition in equation (3.5.14) [203]. If we take W to be the matrix of weights

of R, with the weights as columns, and V the subweights matrix, then there is a

matrix P known as the projection matrix, that satisfies the relation P ·W = V .

The projection matrix P is independent of the representation that it is acting on,

and it only depends on the embedding of the subalgebra into the original algebra.

For an arbitrary representation of the algebra, one could invert the relation

P · W = V to obtain the projection matrix [204]. Since W is, in general, not a

square matrix, it is not invertible in the usual sense, hence we would need to use the
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“Pseudoinverse” matrix or Moore-Penrose inverse matrix of W [205,206], defined as

W+ such that

W ·W+ ·W = W,

(W ·W+)† = W ·W+. (3.5.15)

It can be calculated from W as W+ = W † · (W ·W †)−1, which for a real matrix, as

W generally is, reduces to

W+ = W T · (W ·W T )−1, (3.5.16)

where W ·W T is guaranteed to be invertible, as long as W has full rank, which it

does for any case of interest. If we were to know both weight matrices W and V , for

given representations of the algebra and subalgebra respectively, we could calculate

the projection matrix as

P = V ·W+, (3.5.17)

which follows from equation (3.5.15).

For simplicity and since the calculation of P is independent of the representa-

tion taken, we choose R to be the generating representation of the algebra, which

gives us the matrix W . The matrix of subweights V can be calculated during the pro-

cess of obtaining the set of subalgebras of a Lie algebra, and it depends on whether

the subalgebra is semisimple or not. These two cases will be discussed below.

As was seen in section 3.5.2, the process of obtaining non-semisimple subal-

gebras involved eliminating a node from the Dynkin diagram (or row and column

entry of the Cartan matrix) and later adding an abelian factor to the product. As-

sume the matrix of weights W is already known, then the matrix of subweights V

can obtained by extracting the jth row of W , Wj, where jth is the node eliminated

from the diagram. Then we move the extracted row to the bottom of the matrix

and swap its entries for their values in the dual basis.

This algorithm, which is shown in the left hand diagram of figure 3.10, gives

us the matrix of subweights V which, together with the pseudoinverse of the already

known matrix of weights W (W+ from equation (3.5.16)), is used to obtain the

projection matrix via equation (3.5.17).

As an example we choose the same as in section 3.5.2, the breaking of SU(5)

to SU(3) × SU(2) × U(1). The generating irrep of SU(5) is the complex 5, so we
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Matrix of weights of R: W

Eliminated node j

Move Wj to the

bottom of W

Swap components

of Wj, wjk with its

duals (wij)∗ ⇒ V

Take pseudoin-

verse of W ⇒ W+

P = V · W+

Matrix of weights of R: W

Add row to build ex-

tended matrix W ′

Eliminated node j

Delete row W ′
j of W ′ ⇒ V

Take pseudoin-

verse of W ⇒ W+

P = V · W+

Figure 3.10: Algorithms for calculating the projection matrix for a pair algebra-

subalgebra, for the non-semisimple (left) and semisimple case (right).

calculate the subweights as

W5 =


1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

→


1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

→

→


1 −1 0 0 0

0 1 −1 0 0

0 0 0 1 −1

0 0 1 −1 0

→


1 −1 0 0 0

0 1 −1 0 0

0 0 0 1 −1
2
5

2
5

2
5
−3

5
−3

5

 = V, (3.5.18)

With both W5 and V we can now construct the projection matrix P , which will be

P =


1 0 0 0

0 1 0 0

0 0 0 −1
2
5

4
5

6
5

3
5

 . (3.5.19)
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In the case of semisimple subalgebras, we obtained the set of subalgebras

by removing a node from the extended Dynkin diagram (or the extended Cartan

matrix). Similarly as the previous case we will eliminate the row from the weight

matrix corresponding to the removed node from the diagram, but in this case we will

be using an extended weight matrix W ′. These extended weights are obtained by

adding an entry to the weight vector equal to the product with the extended root,

i.e. −γ · w, and position it in the weight vector in the same place it is according

to the extended diagram. Then, removing the jth row of W ′, W ′
j , corresponding to

the removed node from the diagram, will give the subweight matrix V . Lastly, as

before, with both V and W we can construct the projection matrix using (3.5.17).

The full algorithm can be seen in the right hand side of figure 3.10.

Again, we use the same example as in section 3.5.2, the embedding of SU(2)⊗
SU(2)⊗ SU(2) in SO(7). The generating irrep for SO(7) is 8 and we can calculate

the subweights as

W =

 0 0 1 -1 1 -1 0 0

0 1 -1 0 0 1 -1 0

1 -1 1 1 -1 -1 1 -1

→


0 0 1 -1 1 -1 0 0

-1 -1 0 0 0 0 1 1

0 1 -1 0 0 1 -1 0

1 -1 1 1 -1 -1 1 -1

 = W ′

→

 0 0 1 -1 1 -1 0 0

-1 -1 0 0 0 0 1 1

1 -1 1 1 -1 -1 1 -1

 = V. (3.5.20)

Then the projection matrix is

P =

 1 0 0

−1 −2 −1

0 0 1

 , (3.5.21)

After having calculated the projection matrix P , via either of the algorithms

described above, it can be used to obtain the decomposition of any representation

of the algebra. For any representation R, whose weight matrix W can be calculated

using the algorithms in section 3.5.1, one can calculate the matrix of subweights V

by P ·W = V . Lastly, the only step left is to identify V as the weights of the direct

sum of representations Ri, as in equation (3.5.14).

The algorithm to identify the representations, which can be seen in figure

3.11, goes as follows [203]. The first step is to identify the most positive weight

~ωi = (wi1, . . . , wir) in V , i.e. the positive weight, wij > 0, with larger sum of
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components
∑

j wij. The weight ~ωi will be the highest weight of a representation,

Ri. We then proceed to build the weight diagram for Ri, Wi, and then pick out

those weights from the matrix of subweights V . Next, find the new most positive

weight in V and iterate, until there are no more weights in V .

Matrix of subweights of V

Find most positve weight ~ωi

Identify ~ω as high-

est weight of Ri

Build weight sys-

tem of Ri: Wi

Delete weights Wi from V

R =
∑

iRi

Figure 3.11: Algorithm for identifying the representations from the subweights V .

Following the examples given above, for semisimple subalgebras, SU(5) →
SU(3)⊗SU(2)⊗U(1), and non-semisimple subalgebras, SO(7)→ SU(2)⊗SU(2)⊗
SU(2), with the projection matrices in (3.5.19) and (3.5.21), we can use this algo-

rithm to find that the subweights in (3.5.18) and (3.5.20) correspond to the decom-

positions

5→
∑
i

Ri = {3,1, 2
5
}+ {1,2,−3

5
},

8→
∑
i

Ri = {1,2,2}+ {2,1,2}, (3.5.22)

respectively. Moreover, as we mentioned before, we can use these projection matri-

ces to obtain the decomposition of every other representation of the algebra. For
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example

SU(5)


5̄ → {3̄,1,−2

5
}+ {1,2, 3

5
},

10 → {3,2,−1
5
}+ {3̄,1, 4

5
}+ {1,1,−6

5
},

24 → {8,1, 0}+ {1,3, 0}+ {3,2, 1}+ {3̄,2,−1}+ {1,1, 0},

SO(7)

{
7 → {2,2,1}+ {1,1,3},
21 → {3,1,1}+ {1,3,1}+ {1,1,3}+ {2,2,3}.

(3.5.23)

Finally, we need to specify how the reducible representations15 of product

algebras decompose into subalgebras. Since the weights of a product representation

are built by combining the weights of the simple factors, as we learnt in section

3.5.1, so will be the weight matrix W , because its columns are just the weights of

the product. Therefore, the projection matrix P can be built be stacking together

the projection matrices of the individual simple algebras as blocks in a block diagonal

matrix. Let G1⊗G1 be a product algebra, that decomposes into F1⊗F2, themselves

product algebras in general, and the projection matrices from G1 → F1 and G2 → F2

be P1 and P2. Then the projection matrix P from G1 ⊗ G2 → F1 ⊗F2 is

P =



P1

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

P2


. (3.5.24)

Occasionally, when the rank of the broken algebra is larger than that of the

subalgebra and the subalgebra has an abelian factor, there is mixing of the broken

diagonal generators, as in equation (3.5.9). In those cases the remaining abelian

charge will be a linear combination of the abelian charges of the broken generators.

This means that if the algebra GA ⊗ GB decomposes into FA ⊗ FB ⊗ U(1)A+B, the

projection matrix of this embedding can be calculated using the projection matrices

PA ↔ GA ⊗ GB → FA ⊗FB ⊗ U(1)A, (3.5.25)

PB ↔ GA ⊗ GB → FA ⊗FB ⊗ U(1)B, (3.5.26)

15In product algebras, the representations are reducible, because they decompose naturally into

the irreducible representations of the simple factors of the product.
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which will only differ on their last row, and a mixing vector M = (α, β), that

depends on the process of symmetry breaking, as

P =

(
(PA)i

α(PA)−1 + β(PB)−1

)
, (3.5.27)

where i labels the rows of PA from 1, . . . , rank(FA ⊗ FB) and the −1 index refers

to the last row of both PA and PB.

3.5.4 Constructing Invariants

In the context of Quantum Field Theories, the fundamental object from which ob-

servables and measurable quantities can be obtained is the action. Because of this,

the action must be invariant under the symmetry transformations of the Lie algebra

of the system. Given a set of fields, embedded in representations of the algebra, one

needs to find the combinations that will render the action invariant. The first step

towards that goal is to calculate the direct products of the representations of the

algebra, and from the outcome of that product, we will look for invariant or singlet

combinations.

Let R1 and R2 be representations of the algebra, then their direct product

would be a reducible representation, which can be decomposed as the direct sum of

irreducible representations, i.e. R1⊗R2 =
⊕

iRi. The weight system of the product

of representations W can be calculated as the sum of the weights of both Ri and R2,

that is Wij = ~ωi +~νj, where ~ωi and ~νj are weights of R1 and R respectively. Within

this weight system, the weights of the irreducible representations that it decomposes

into can be easily found. The algorithm starts by locating the most positive weight

in W , it then identifies the irrep it belongs to and constructs its weight system.

Extracting out those weights from W and starting over to look for the most positive

weight, iterating until there are no weights left in W , one finds the list of irreps Ri.

The diagram for this algorithm can be seen in fig. 3.12.

As an example, we will use representations of SU(3), and we will calculate the

direct product 3⊗ 3̄. The weight systems of 3 and 3̄ are,

3→

 1 0

−1 1

0 −1

 , 3̄→

 0 1

1 −1

−1 0

 , (3.5.28)
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Weight systems {~ωi} of R1 and {~νj} of R2

Build Wij = ~ωi + ~νj

Find most positive weight (~ω + ~ν)k

Identify (~ω + ~ν)k

with irrep Rk

Build weight sys-

tem of Rk: W
′

Delete weights

in W ′ from W

R1 ⊗ R2 =
⊕

iRi

Figure 3.12: Algorithm for calculating the direct product of representations of an algebra.

so the weights of the direct product are

3⊗ 3̄→



1 1

2 −1

−1 2

0 0

0 0

1 −2

−2 1

−1 −1

0 0




8

→ 1,

(3.5.29)

where the first eight rows correspond to the 8 representation of SU(3) and the last
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one to the singlet 1. Accordingly the decomposition would be

3⊗ 3̄ = 8⊕ 1. (3.5.30)

Incidentally, the product representations of equation (3.5.30) contain a singlet,

and thus the combination of 3 and 3̄ gives rise to a algebra invariant combination

and as such, a viable term in the action.

Therefore, in order to construct the invariant combinations of a given set of

representations, one needs to build the direct products of those representations that

generate a singlet representation. Singlet representations are defined for simple

algebras as those irreducible representations with dimension equal to the unity. This

can also be extended to all Lie algebras by requiring that a singlet representation

under a Lie algebra is a singlet under every embedded simple algebra, which for

abelian algebras corresponds to having a zero charge. Thus a singlet representation

of the Lie algebra SU(3)⊗ SU(2)⊗ U(1) would be the {1,1, 0}.

Given a set of n irreducible representations of a Lie algebra, {R1, . . . ,Rn},
we build all possible direct products of them Ri1 ⊗ · · · ⊗ Rik where i1, . . . , ik are

chosen from {1, . . . , n} with possible repeated indices, and k ranges from 1 until the

maximum number of representations allowed in a product. This number depends

on the dimension of the fields involved and whether the theory is supersymmetric

or not, e.g. if all fields are scalars in a non-supersymmetric theory and all couplings

are renormalisable, then k = 4.

Following up the example above, with the set of representations given by {3, 3̄},
in a all-scalar non-supersymmetric renormalisable theory, the possible combinations

are
3⊗ 3, 3⊗ 3⊗ 3, 3⊗ 3⊗ 3⊗ 3,

3⊗ 3̄, 3⊗ 3⊗ 3̄, 3⊗ 3⊗ 3⊗ 3̄,

3̄⊗ 3̄, 3⊗ 3̄⊗ 3̄, 3⊗ 3⊗ 3̄⊗ 3̄,

3̄⊗ 3̄⊗ 3̄, 3⊗ 3̄⊗ 3̄⊗ 3̄,

3̄⊗ 3̄⊗ 3̄⊗ 3̄,

(3.5.31)

and with the result we obtained in equation (3.5.30) and the fact that 3⊗3 = 6⊗ 3̄,

the only combinations that have a singlet in the product are

3⊗ 3̄, 3⊗ 3⊗ 3, 3̄⊗ 3̄⊗ 3̄, 3⊗ 3⊗ 3̄⊗ 3̄. (3.5.32)

Given this result one could build a Lagrangian from a pair of real fields φ and

φ̄ in the representations 3 and 3̄ respectively. Assuming they are scalars fields, the
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Lagrangian density is

L = µ2 φ̄φ+ λ φ3 + λ̄ φ̄3 + ρ φ̄2φ2. (3.5.33)

with arbitary real couplings µ, λ, λ̄ and ρ.

While building Lagrangians in Quantum Field Theory, one must always take

Poincaré invariance into account. This means that together with the internal gauge

symmetries G, such as SU(3) in the example above, one must add the global Lorentz

subgroup of symmetries. Luckily, in four dimensions the Lorentz algebra is iso-

morphic to SU(2) ⊗ SU(2), so it is enough to build invariant terms under the

G ⊗ SU(2)⊗ SU(2).

Carrying on with the example above, if ψ is a SU(3) singlet spin-1/2 field it

will be in the {2,1} representation of the Lorentz group, while the scalar field φ

from before is in the singlet {1,1}. Hence, we can add a ψψ term to the Lagrangian

above, while any other term will be forbidden by the Lorenz symmetry, ψ or ψ3, or

because of dimension counting (sticking to renormalisable Lagrangians), ψ4 or ψφ̄φ.

3.6 Implementation and Example Run

All the algorithms described in section 3.5 are implemented in the group theory

tool [207], using the object oriented programming language C++ and it can be run

through the command line. The details of which will be laid out in section 3.6.1.

In order to add usability and pulchritude to the tool, an interface in Mathematica

has been developed, which will call upon the C++ backend through the library

Mathlink [208], and its details are given in section 3.6.2. Finally, an example run

of the tool is shown, in section 3.6.3, with typical input and sample output. The

following description is intended as a brief overview of the practical implementation

and usage, but should not be seen as a technical manual.

Similar approaches to building a computational tool capable of calculating Lie

group properties have been done in the past, such as LieART [204] and Susyno [209].

Both of these tools use Mathematica as the main computational engine. However,

neither of them go as far as this tool in calculating group properties. For example,

LieART [204] does not calculate subgroups or breaking chains but rather depends

on tabulated values, whereas Susyno [209] focuses mostly on properties of represen-

tations and it does not tackle any of the symmetry breaking elements, subgroups,

chains or decomposition of representations.
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3.6.1 C++ Backend

Exploiting the object oriented paradigm of C++, all the main elements of the group

tool are implemented in classes, with its properties and characteristics as the at-

tributes and methods of such classes. The class diagram of the tool is depicted in

figure 3.13, where one can see the main classes used in the implementation and their

relations. The details of these classes are:

Simple GroupLie Group

Subgroup

Irrep

Rrep

Root

Weight

List

Array

**

*

1

*

1

*

1

*

1

*

1

*1

Figure 3.13: Class diagram of the group theory tool. Yellow bubbles represent classes in

the tool whereas orange bubbles are classes defined in C++ or other libraries. Triangle

arrows denote generalization relations, hollow diamond arrows denote aggregation and full

diamond arrows composition, whose multiplicities are indicated.

• Simple Group: refers to a simple group or algebra, as defined previously,

with attributes that span the properties of a simple algebra, such as type,

rank, dimension, order, label, Cartan matrix, metric matrix, Casimir and in-

formation about the roots and representations.

• Lie Group: is a subclass of a List class, since it is stored as a list of simple

groups. Its attributes mimic those of simple groups plus more specific ones

such as number of abelian subalgebras or whether is simple, semisimple or

neither.

• Subgroup: a subclass of the Lie group class, represents a subgroup and as
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such along with the Lie group properties stores information about the super-

group, the projection matrix and a list of labels for the factors of the subgroup.

• Irrep: represents an irreducible representation of a simple group, and its

attributes are the properties of a representation: dimension, highest weight,

Casimir, Dynkin index, along with information about the group it belongs to

and its weights.

• Rrep: represents a reducible representation of a Lie group and is a subclass

of the class List. It is constructed as a list of irreps. Along with the properties

of irreps, this class also stores the number of irreducible representations it

contains.

• Root: is defined as a subclass of the class Array, together with information

of the group it belongs to plus its length.

• Weight: similar to roots, is a subclass of Array and it also stores the multi-

plicity of the weight, its level and whether it is positive or not.

The methods of these classes will be those required to implement the algorithms

previously described in section 3.5. Both the Simple Group and Lie Group classes

will include methods to calculate their roots, where the Irrep and Rrep classes will

have functions to obtain the weights. Similarly, the calculation of subgroups and

breaking chains is implemented in methods of the Simple Group and Lie Group

classes, as well as the construction of invariants. On the other hand, decomposition

and direct product of representations are functions of Irrep and Rrep classes.

<Group>

reps subs<Group>.out

<Rep 1 >.out . . . <Rep n >.out <Sub 1 >.out . . . <Sub m >.out

Figure 3.14: File system for the group tool for a group of label <Group>. Yellow elements

represent folder whereas grey elements represent files on the storage system.
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It is worth mentioning that, to speed up the calculation process, the tool

stores information already calculated into files. The file system, shown in figure

3.14, will include information of the group in a file, encoded in JSON format [210],

together with a list of representations and a list of subgroups, each of which with

their properties in a file, also encoded in JSON format.

As an example, the file structure of the group A2 (SU(3)) will include the file

“A2.out”, that will have the content:

{
"id" : "A2",

"rank" : 2,

"type" : "A",

"dim" : 8,

"order" : 3,

"label" : "SU(3)",

"abelian" : false,

"Cartan" : [[2,-1],[-1,2]],

"G" : [[0.666667,0.333333],[0.333333,0.666667]],

"Casimir" : 3,

"Reps" : [

"(0,0)A2",

"(1,0)A2",

"(0,1)A2",

"(2,0)A2",

"(0,2)A2",

"(1,1)A2"

],

"Subgroups" : [

"A1(A)xU1(B)[A2]",

"U1(A)xU1(B)[A2]",

"A1(A)[A2]",

"U1(A)[A2]",

"U1(B)[A2]"

]

}

The representations folder, “reps” will have a file named “(1,0)A2.out”, which will

refer to the 3 representation and its contents:
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{
"id" : "(1,0)A2",

"Group" : "A2",

"HWeight" : [[1,0]],

"dim" : 3,

"real" : false,

"label" : "3",

"Casimir" : 1.333334,

"DynkinIndex" : 0.5,

"conjugate" : 0,

"congruency" : [[1]],

"Weights" : [

"(1,0)A2",

"(-1,1)A2",

"(0,-1)A2"

]

}

Finally, an example subgroup, in the subgroup folder “subs” there will be a file

“A1(A)xU1(B)[A2].out” with the information of the SU(2) ⊗ U(1) subgroup, with

contents:

{
"rank" : 2,

"dim" : 4,

"label" : "SU(2) x U(1)",

"simple" : false,

"semisimple" : false,

"ngroups" : 2,

"nabelians" : 1,

"Casimir" : [2,0],

"Reps" : [],

"Subgroups" : [],

"id" : "A1(A)xU1(B)[A2]",

"SuperGroups" : ["A2" : ["A1(A)" : [],"U1(B)" : []]],

"Projection" : [[0,-1],[-0.666667,-0.333333]],

"labels" : ["A","B"],

"maximal" : true,
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"regular" : true,

"special" : false

}

where the subgroups and representations have been omitted for convenience.

3.6.2 Mathematica Frontend

The Mathematica frontend extends and improves the usability of the group tool,

since it brings together the analytical and interpreted Mathematica interface with

the fast and powerful computation capabilities of C++. The connection between

Mathematica and the C++ backend is implemented via the use of the library Math-

link [208].

In order to build a Mathlink between a Mathematica notebook and a piece

of code in C++, one needs two basis ingredients: specific methods on the code

for the different intended uses and a template file to translate those routines to

Mathematica functions.

The methods required in the C++ code must be procedural, i.e. not object

oriented, functions. They need to be written using only C native types and they

can neither catch or handle exceptions. They are allowed to return a native type

value, although it is usually convenient to return a void value and use the built-

in Mathlink functions to return one or more values, e.g. MLPutString(stdlink,

const char *arg). This will be the approach taken here and all values returned

will be JSON strings, so as to allow an easy and universal way to transfer large

amounts of information in a format that Mathematica can easily decode.

As an example, we show a piece of code including a function that calculates

the properties of a simple group given its rank and type and returns it through the

Mathlink as a JSON string:

#include "liegroups.h"

#include "mathlink.h"

void getGroup(int rank, const char *type) {
SimpleGroup G(rank, type[0]);

G.Irreps();

G.Subgroups();

MLPutString(stdlink, G.json().write formatted().c str());
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return ;

}

Additionally the main function, that would be run through the MathLink (ML),

needs only to call the main ML function, i.e., MLMain(argc,argv)16.

The template file, required to translate the C++ methods as described above

into Mathematica functions, needs to be written in a ML specific format. The same

function as on the example above will need the following template

:Begin:

:Function: getGroup

:Pattern: GetGroup[rank Integer, type String]

:Arguments: rank, type

:ArgumentTypes: Integer, String

:ReturnType: Manual

:End:

:Evaluate: GetGroup::usage = "GetGroup[rank, type] gets the

information of the group defined by rank and type".

where the :Function: tag specifies the C++ method that is to be called, the

:Pattern: tag defines the Mathematica function, with the arguments in :Arguments:

and types in :ArgumentTypes:. As mentioned before, with a manual :ReturnType:

one needs the C++ method to return void but information can be passed via ML

functions such as MLPutString(stdlink, arg). Lastly the tag :Evaluate: is op-

tional and will contain a description of the function to the Mathematica frontend.

Therefore, once properly compiled and built, it is enough to install the pro-

gram, called “mathgroup” in our case, in the Mathematica frontend via

Link = Install["mathgroup"].

Then all the functions defined in the template file as above can be used, and a

list of those functions can be obtained by LinkPatterns[Link], which in our case

prompts the output:

Finally, in the Mathematica frontend we will make use of these functions to

obtain the information of the groups, irreps, etc. However, in order to maintain a

similar level of object orientation as we had in the C++ backend, we define functions

that will implement a “pseudo” object oriented paradigm. These functions will

16In Windows systems, the call to the Mathlink main function is a bit more involved, but since

we expect to run this only on Unix systems, we will not expand into this.
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GetGroup[rank Integer,type String]

GetGroup[id String]

GetReps[id String,maxdim Integer]

GetSubgroups[id String]

GetRep[id String]

GetRep[dimId String,groupId String]

GetSubgroup[id String]

GetSubgroup[id String,MixingId String]

GetBreakingChains[SuperId String,SubId String]

GetDecomposeRep[RepId String,SubgroupId String,MixingId String]

GetWeights[RepId String]

GetDirectProduct[RepId1 String,RepId2 String]

GetInvariants[RepsId String,dim Integer]

gather the information from the particular object, store it in an internal variable in

the Mathematica Kernel, under a unique identifier, DBData[id], typically the label

of the group, irrep, etc., and return that identifier as if it were a handle of an object.

Along with the advantage of a modular and object oriented way of treating objects

in Mathematica, one also benefits from faster access to the information, since all

the data stored in the internal variable DBData will be reused when needed, without

having to recalculate it through the MathLink.

3.6.3 Sample Session

To illustrate the practical use of our tool, a sample case for the semisimple algebra

A3⊗A1⊗A1 (SU(4)⊗SU(2)⊗SU(2)) will be provided. Though it is possible to get

the same information through the command line, running directly the executable

program obtained from the C++ code, the output is in a dense format and it is hard

to identify the properties. Hence, we will give the example using the Mathematica

frontend, since it is more suitable for illustration.

The first step is to install the program using the MathLink library. Provided

the Mathematica notebook and the executable file are in the same directory, this

can be done by

In[1]:= Link = Install["./mathgroup"];

Next we create the “object” for the group, which we will use for the rest of the

program, so we store the identifier, the label, in a variable G for later use.
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In[2]:= G = NewGroup["A3xA1xA1"]

Out[2]:= A3xA1xA1

In order to access the properties of the group, stored in the internal variables, we

use the function Attribute, e.g. to get the rank, dimension and Casimir of G we

use

In[3] := Attribute[G]["rank"]

Attribute[G]["dim"]

Attribute[G]["Casimir"]

Out[3]:= 5

Out[4]:= 21

Out[5]:= {4, 2, 2}

or we can use the reserved word All to get all the properties

In[6]:= Attribute[G][All] // TableForm

Out[6]//TableForm:=

rank → 5

dim → 21

id → A3xA1xA1

nabelians → 0

label → SU(4) x SU(2) x SU(2)

simple → False

ngroups → 3

semisimple → True

Casimir → {4, 2, 2}
Reps → {(0,0,0,0,0)A3xA1xA1,(0,0,0,0,1)A3xA1xA1,...}
Subgroups → {A3(A)xA1(B)xU1(C)[A3xA1xA1],...}

where we have omitted the extensive list of representations and subgroups for illus-

trative purposes.

To calculate the breaking chains for this group G to another one, say the Stan-

dard Model group, A2⊗A1⊗U1 (SU(3)⊗SU(2)⊗U(1)), we need first to create such

a group, and then call a function BreakingChains, which uses GetBreakingChains

to get the list through the MathLink connection and formats the output, as well as

printing trees for every breaking chain:

In[7] := SM = NewGroup["A2xA1xU1"]

Out[7]:= A2xA1xU1

In[8] := BreakingChains[G,SM];
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The next interesting algorithm to test is the decomposition of representa-

tions of G to representations of a subgroup. The representations can be taken from

Attribute[G]["Reps"] and the subgroups from Attribute[G]["Subgroups"]. For

simplicity we choose the representation {4,2,2} which corresponds to the identi-

fier (1,0,0,1,1)A3xA1xA1 and the Standard Model subgroup, which corresponds

to A2(AA)xA1(B)xU1(C+AB)[A3xA1xA1]. Since the abelian factor of the SM group

is a mix of the broken generators coming from the A3 and the second A1 factor (de-

noted by the C+AB label) the decomposition needs a mixing vector (see section 3.5.3),

which for convenience we choose as M = (1
2
, 1

2
). Hence, defining the representation,

mixing vector and subgroup as

In[9] := R = NewRep["(1,0,0,1,1)A3xA1xA1"]

M = {{0.5,0.5}}
F = NewSubgroup["A2(AA)xA1(B)xU1(C+AB)[A3xA1xA1]",M]

Out[9] := {4, 2, 2}
Out[10]:= ( 0.5 0.5 )

Out[11]:= A2(AA)xA1(B)xU1(C+AB)[A3xA1xA1]

the decomposition will be

In[12] := DecomposeReps[R, F, M]

Out[12]:= {{3, 2, 0.125},{3, 2, -0.375},{1, 2, 0.625},{1, 2, 0.125}}

To conclude, we demonstrate how to obtain the invariants, for the products of

representations of SU(4)⊗SU(2)⊗SU(2). For simplicity we choose the representa-

tions {4,2,2} and {4̄,2,2}, because they are conjugate of each other, and we choose

to limit the calculation to dimension 4, as if we wanted to build a renormalisable

Lagrangian. Thus we get

In[13] := R1 = NewRep["(1,0,0,1,1)A3xA1xA1"]

R2 = NewRep["(0,0,1,1,1)A3xA1xA1"]

Out[13]:= {4, 2, 2}



115 3.6. Implementation and Example Run

Out[14]:= {4*, 2, 2}
In[15] := Invariants[{R1,R2},4] // TableForm

Out[15]//TableForm:=

{4, 2, 2} {4*, 2, 2}
{4*, 2, 2} {4, 2, 2}
{4, 2, 2} {4, 2, 2} {4, 2, 2} {4, 2, 2}
{4, 2, 2} {4, 2, 2} {4*, 2, 2} {4*, 2, 2}
{4, 2, 2} {4*, 2, 2} {4, 2, 2} {4*, 2, 2}
{4, 2, 2} {4*, 2, 2} {4*, 2, 2} {4, 2, 2}
{4*, 2, 2} {4, 2, 2} {4, 2, 2} {4*, 2, 2}
{4*, 2, 2} {4, 2, 2} {4*, 2, 2} {4, 2, 2}
{4*, 2, 2} {4*, 2, 2} {4, 2, 2} {4, 2, 2}
{4*, 2, 2} {4*, 2, 2} {4*, 2, 2} {4*, 2, 2}

As an illustrative summary of the computation capabilities of the tool, we

collect the properties of the group SU(4)⊗SU(2)⊗SU(2) in figure 3.15, and those

of its representations in figure 3.16.

Figure 3.15: Properties of the group SU(4) ⊗ SU(2) ⊗ SU(2), calculated with the com-

putational tool.



3. Symmetries and Lie Groups 116

Figure 3.16: Properties of some of the representations of the SU(4) ⊗ SU(2) ⊗ SU(2)

group, up to dimension 10, calculated with the computational tool.



4
Automated GUT Model Building

The description of Lie groups and algebras and the implementation of the group tool

in section 3, has a direct application to model building in Grand Unified models.

From the simple GUTs that were introduced in section 2.2 to more complicated

models, the process of model building at the basic level boils down to choosing a

set of symmetries, a set of representations of the groups realising those symmetries,

and the symmetry breaking mechanism to the Standard Model group, SU(3)C ⊗
SU(2)L ⊗ U(1)Y .

Out of the many possible choices for a unified theory, we choose SO(10) as

our symmetry group in the ultraviolet, because of its many interesting features,

described in section 2.2.5, and the multiple possible breaking patterns and repre-

sentations to choose from. SO(10) models have been studied thoroughly for years,

such as models with the Pati-Salam or left-right symmetry groups as intermedi-

ate steps [151, 152], models with intermediate SU(5) ⊗ U(1) groups, standard or

flipped, [153], or even direct breaking from SO(10) to the SM [154].

However, most of these attempts only deal with minimal models and to our best

knowledge there has been no attempt to extend the analysis to more general cases.

Therefore, our main goal in model building will be to develop a framework capable of

analysing general non-minimal models that go beyond the previous approaches [211].

In order to make the analysis as general as possible we will not strive to examine the

models in full detail, but we will focus on their general properties, derived from the

structure of the symmetries, and on some phenomenological conditions that may

constrain the scope of the models.

As a consequence of this general approach, the models obtained through this

framework will not be fully determined. The focal point of the analysis will lie on the

group structure, aiming to satisfy the conditions of symmetry breaking strictly from

117
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the group properties, without realising the full scalar potential. The basic paradigm

in our approach is gauge coupling unification at the SO(10) breaking scale. On the

other hand, we a priori allow the SUSY scale to appear at any scale between MEW

and MGUT . This crucially departs from other analyses which usually consider SUSY

scales around the TeV range. Additionally, we do not consider discrete symmetries as

part of the group structure, nor do we attempt to fit the charged fermion or neutrino

masses and mixing. Our analysis should therefore be considered as a starting point

to demonstrate the benefits of an automated approach. It can be supplemented later

with additional theoretical considerations and constraints.

Throughout this section we will describe the development of such a framework,

starting with the process of generating the different models with a breaking path

from SO(10) and a set of representations, in section 4.1, followed by the constraints

that are to imposed on those models, section 4.2. Next, we will analyse the unifica-

tion of gauge couplings of the obtained models in section 4.3, including the scale of

supersymmetric breaking and mixing in the abelian sector. Finally, we will conclude

with a demonstration for a particular breaking chain, with the left-right symmetry

group as intermediate step, where we will show the distribution of models given the

theoretical and phenomenological constraints, in section 4.4.

4.1 Generating Models

The first step of model building is the identification of the symmetries. Aside from

the (Super-)Poincaré group of spacetime symmetry, in this work we will focus on

gauge symmetries realised by Lie Groups. Other cases, such as discrete or non-

compact groups might be useful to obtain precise gauge coupling unification [146]

or to provide a proper flavour structure [212], among other applications, but their

inclusion goes beyond the scope of this work.

As mentioned before, our starting point will be an SO(10) unified theory at

high energies, which will then break down in one or more steps to the SM gauge group

GSM = SU(3)C×SU(2)L×U(1)Y . Out of all the maximal subgroups of SO(10), only

two of them contain GSM as a subgroup, SU(5)×U(1) and SU(4)×SU(2)×SU(2),

hence there will be two main branches of symmetry breaking. However, as can be

seen in figure 2.2, any subgroup of the maximal subgroups can be an intermediate

step of the breaking chain, provided the conditions for the symmetry breaking are

satisfied. There are in total 15 different possibilities, ranging from one-step breaking,

path (c) in figure 2.2, to four-step breaking, taking every intermediate subgroup of
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SU(4)×SU(2)×SU(2). The possible breaking paths and the conditions they require

were explained in section 2.2.5.

Given a specific breaking chain, the only remaining input needed for model

building at this stage is the set of fields at every step of the chain. Starting with

the fields at the highest scale MGUT , the scale of SO(10) symmetry breaking, one

can obtain the fields at the consecutive steps by decomposing the representations

of those fields, until the SM scale. As was discussed in section 2.2, the SM content

can be minimally embedded into three generations of 16-plet representations, e.g.

16 = {uc1, dc1, d1u1, ν
c, ec, d2, u2, u

c
2, d

c
2, d3, u3, u

c
3, d

c
3, e, ν}L. (4.1.1)

We will make the simplifying assumption that no additional fermions are present in

the model, within a non-SUSY framework. Instead, we assume that all other SO(10)

representations present in the theory are Lorentz scalars, and in supersymmetric

models the fermionic superpartners of those scalars survive only until the SUSY

scale.

According to the Extended Survival Hypothesis (ESH) [213, 214], the Higgs

scalars acquire a mass compatible with the pattern of symmetry breaking. This

means that at every scale the only surviving scalars are those required to satisfy the

remaining symmetry breaking steps, whereas the rest of scalars will be integrated

out at the GUT scale or at one of the intermediate scales. However, in general,

these scalar fields are allowed to live at any scale, with masses that will be obtained

dynamically from the configuration of the Lagrangian and the couplings involved.

Nevertheless, at this stage of model building we do not know the configuration

of the Lagrangian or its couplings, thus we will assume, a priori, that all fields have

the potential to survive or be integrated out at any of the scales. This allows for

a very large set of models, particularly when there are high dimensional SO(10)

representations present, for there are 2n possible combinations of fields out of the n

fields obtained from the decomposition of SO(10) representations. In order to make

the analysis more manageable, and inspired by the ESH, we will only take a small

number of fields out of the large set of possible fields, at every scale.

As an example, when large representations such as 126 or 120 are involved,
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which decompose into the SM subgroup as

126→ {6,3, -1
4
} ⊕ {8,2, -1

4
} ⊕ {8,2, 1

4
} ⊕ {3,3, 1

4
} ⊕ {6̄,1, -1

4
} ⊕ {3̄,2, 1

4
}

⊕ {3,2, -3
4
} ⊕ {6̄,1, 1

4
} ⊕ {3̄,2, 3

4
} ⊕ {6̄,1, 3

4
} ⊕ {3,2, -1

4
} ⊕ {3̄,1, -3

4
}

⊕ {1,3, 3
4
} ⊕ {3,1, 1

4
} ⊕ {3̄,1, -1

4
} ⊕ {3̄,1, -1

4
} ⊕ {3̄,1, 1

4
} ⊕ {1,2, -1

4
}

⊕ {1,2, 1
4
} ⊕ {1,1, -5

4
} ⊕ {1,1, -3

4
} ⊕ {1,1, -1

4
},

120→ {8,2, -1
4
} ⊕ {8,2, 1

4
} ⊕ {3,3, 1

4
} ⊕ {3̄,3, -1

4
} ⊕ {3̄,2, 1

4
} ⊕ {3,2, -3

4
}

⊕ {6̄,1, 1
4
} ⊕ {6,1, -1

4
} ⊕ {3̄,2, 3

4
} ⊕ {3,2, -1

4
} ⊕ {3,1, -1

4
} ⊕ {3̄,1, -3

4
}

⊕ {3,1, 1
4
} ⊕ {3,1, 1

4
} ⊕ {3̄,1, -1

4
} ⊕ {3̄,1, -1

4
} ⊕ {3,1, 3

4
} ⊕ {3̄,1, 1

4
}

⊕ {1,2, -1
4
} ⊕ {1,2, -1

4
} ⊕ {1,2, 1

4
} ⊕ {1,2, 1

4
} ⊕ {1,1, 3

4
} ⊕ {1,1, -3

4
},

(4.1.2)

the number of fields is very high, n = 50, which will prompt N = 250 ∼ 1015

possibilities. Therefore, whenever there is a large number of representations at a

scale (n > 10), we will restrict to having only up to k = 5 representations out of

the whole set, at that scale, making the process more computational accessible and

including in the set the simplest models, which is what we are interested in at first.

The number of possible cases is then reduced significantly, and is given by

N =
5∑

k=0

(
n

k

)
∼ 2.5× 106, for n = 50. (4.1.3)

Therefore, the algorithm for generating models, shown in figure 4.1, given a set

of representations at the SO(10) scale and a symmetry breaking chain, consists of

decomposing the fields into the subsequent group in the chain and, after applying the

constraints (see section 4.2 below), obtaining all possible combinations, as discussed

above. Repeating this process for all scales, the outcome will be a landscape of

models, where each model will be defined by the sets of representations at the

different scales. For a chain G → F1 → · · · → Fm−1 → GSM , with m the number of

breaking steps, the set of models will be a list of the type

{M} =




Group→ G, Chain→ {G → · · · → GSM}, Reps→ {R(0)
i },

Group→ F1, Chain→ {F1 → · · · → GSM}, Reps→ {R(1)
i },

. . . . . . . . .

Group→ GSM , Chain→ {GSM}, Reps→ {R(m)
i }


 ,

(4.1.4)

where {Ri} are the representations at the SO(10) scale and {R(j)
i } a combination

of their decompositions at the jth step.
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Group G, chain, {G → · · · → Fi → · · · → GSM} and reps {R} at GUT scale

Next step in the chain, Fi

Next model, Mj

Check constraints on Mj
fail

Generate all possible

set of subreps {R(i)}j

Add to list of sub-

models {SM}

Set of models

{M} = {SM}

Figure 4.1: Algorithm for generating models.

4.2 Model Constraints

Despite the large number of models obtained via the process described above, not

all of them will be valid candidates for a GUT. Each of the models, i.e. each of the

combinations of fields, must satisfy a set of constraints at every step of the breaking

chain, in order to be considered a successful model. We would like to stress again

that we only include a basic set of constraints based on the group breaking structure

and the set of representations.
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4.2.1 Chirality

The first and most simple of these constraints is the condition of chirality. The gauge

group of the theory, at every scale, must allow for its representations to respect the

chiral structure of the SM, that left and right-handed fields transform under conju-

gate representations of the group1. As it was outlined in section 2.2, the chirality

condition reduces the set of possible Lie groups that the SM can be embedded in.

For simple groups this means that the group must allow complex representations

which, as seen before, is satisfied by unitary groups SU(n), orthogonal groups of

the type SO(2n) with n an odd number, and the exceptional algebra E6.

The SO(10) group is precisely one of the allowed cases for orthogonal groups,

and as such it satisfies the condition as long as the SM fermions are embedded

in the 16 dimensional representation. If that is the case then the chirality condi-

tion is satisfied automatically for all steps of the breaking chain, for each of the

breaking patterns in figure 2.2, because they always involve unitary and semisimple

subalgebras.

4.2.2 Cancellation of Anomalies

The second condition that a candidate model must meet is the cancellation of anoma-

lies. There are several anomalies than can arise in a gauge theory, the most impor-

tant of which are the Adler-Bell-Jackiw gauge anomaly [86, 87], the gravitational

anomaly [215] and the Witten anomaly [216].

Figure 4.2: Triangle diagram for Adler-Bell-Jackiw anomalies in gauge theories, with

gauge bosons in the external legs and fermions in the loop.

Gauge anomalies [86, 87] occur in theories with massive vector bosons, where

1See section 3.3 for a definition of conjugate representations.
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triangle diagrams such as the one in figure 4.2 do not cancel. In such cases, the sym-

metry is broken at the quantum level and the theory becomes non-renormalizable [217].

The contribution of these diagrams to the anomaly is proportional to [89]

Aiabc = Tr({T ia, T ib}T ic), (4.2.1)

where T ia are the generators of the group or groups associated with the gauge bosons

on the external legs, written in the representation of the fermion fi running inside

the loop.

Most simple Lie algebras are automatically free of this type of anomaly and

they are known as safe algebras [89], with the notable exception2 of unitary algebras

SU(n) for n ≥ 3 and the exceptional algebra E6. In those cases, one must compute

the contribution to the anomaly from all the fermions in the theory and require that

their sum cancels,
∑

iAiabc = 0.

For non-semisimple algebras, the gauge bosons in the external legs of figure

4.2 could belong to different factors of the product group. However, the properties

of the generators Ta

Tr(Ta) = 0, {Ta, Tb} = 1
2
δab1, (4.2.2)

with δab and 1 the identities in algebra and representation space respectively, ensure

that any diagram with different non abelian gauge bosons on the external legs cancel

automatically [20].

Non-supersymmetric theories without exotic fermions in non-trivial represen-

tations of the algebra are automatically anomaly free, because the fermionic matter

sector, embedded in the anomaly-free 16 representation, is. However, in supersym-

metric theories anomalies can easily arise from triangle diagrams with the super-

partners of the various Higgs fields in the loop, so in these cases one must make

sure that the contributions to the anomaly of all the representations in the theory

cancel.

In the SO(10) symmetric phase, all models are automatically free of gauge

anomalies because SO(10) is a safe algebra. For any intermediate step of the break-

ing chain the contribution of the gauge anomaly for every simple group factor of

the gauge group at that scale, must be calculated as the sum of the contributions

of each of the representations at that step. In order to calculate the contribution of

each representation, we notice that the anomaly Aabc of the representation R can

2The orthogonal algebra SO(6) is not safe either, since it is isomorphic to SU(4), which is

unitary and thus not safe.
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be computed as [199]

Aabc(R) = Tr({Ta, Tb}Tc) = A(R)dabc, (4.2.3)

where dabc is the symmetrized trace of the group, defined in (3.3.21). Since dabc is

the same for all representations of the group G, the value of the anomaly for a repre-

sentation R depends only on A(R), which is obtained by using the properties [199]

A(R) = −A(R),

A(R1 ⊕R2) = A(R1) +A(R2),

A(R1 ⊗R2) = dim(R1)A(R2) + dim(R2)A(R1). (4.2.4)

The gravitational anomaly, which appears in theories with non-semisimple

groups [215] at a scale close to the Planck scale, corresponds to triangle diagrams

with two gravitons and an abelian gauge boson on the external legs, and fermions

running through the loop. In this case eq. (4.2.1) boils down to A =
∑

iQi, where

Qi are the abelian charges of the fermionic representations (c.f. hypercharge in the

SM). For a given set of representations, the gravitational anomaly is calculated as

the sum of charges for every U(1), and it must cancel for each of them independently.

Lastly, the Witten anomaly has to do with the global topology of the SU(2)

group [216], and it requires an even number of flavours of SU(2)-charged fermions.

Again, this condition only applies to the supersymmetric case, since the SM matter

fields satisfy the constraint. If the gauge group at some scale contains one or more

SU(2) factors, the contribution to this anomaly from each of them is computed

by counting the number of non-singlet representations of that SU(2) factor, and

requiring that it is even.

Those models for which the gauge, gravitational and the Witten anomaly

cancel are anomaly free are considered valid in this respect. Since throughout our

analysis we consider both supersymmetric and non-supersymmetric models, and the

SUSY scale is allowed to slide through the scales, we will not rule out models on

the basis of not being anomaly free, but rather we will tag them as such to be

kept or discarded in a later stage once we have knowledge of the value of the SUSY

scale. Therefore, we will extend the model in equation (4.1.4), to include the SUSY

anomaly condition at every step,
Group→ G,
Chain→ {G → · · · → Fm},
Reps→ {R1, . . . },
Anomaly Free→ true/false

 . (4.2.5)
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4.2.3 Symmetry Breaking

The next constraint to impose on the models is that it allows for successful symmetry

breaking. Since there are one or more symmetry breaking steps throughout the

chain, one needs to make sure that these can be realised by the scalar representations

present in the theory. Thus, for every step, we will impose as a requirement that

there is at least one field in the theory that can break the symmetry to the next

step of the chain. This means that the set of representations of a step must contain

a non-singlet representation that is a singlet under the subgroup, the group in the

next step of the chain, but it is not a singlet under possible intermediate groups.

Of course, the existence of such a representation is not enough to trigger the

breaking of the symmetry; formally one needs to make sure that there is a transition

between the symmetry preserving and symmetry breaking vacua. However, this

would require knowledge of the scalar potential of the theory and the parameters

within, which falls out of the scope of this analysis. Therefore, we will consider

as a necessary and sufficient condition for symmetry breaking that there exists a

representation capable of doing so.

As a general procedure, we assume that the representation that causes the

breaking acquires a mass of the order of the scale of the breaking, that is the whole

multiplet, not just the singlet component that gets a vacuum expectation value, and

thus we integrate it out from the possible representations at the next scale.

To give an example, we will use the breaking chain SO(10) → SU(5) →
SU(3)⊗SU(2)⊗U(1). In this case, the first step is satisfied if there is a scalar field

in the 16 or 126 representation of SO(10), because they decompose as

16→ 10⊕ 5̄⊕ 1,

126→ 50⊕ 45⊕ 15⊕ 10⊕ 5̄⊕ 1, (4.2.6)

and both contain a singlet under SU(5). The last step will then be satisfied if at

the intermediate step there is a surviving field in the 24 representation, because it

decomposes to GSM as

24→ {8,1, 0} ⊕ {3,2, 1} ⊕ {3̄,2, -1} ⊕ {1,3, 0} ⊕ {1,1, 0}, (4.2.7)

which does have a singlet under SU(3) ⊗ SU(2) ⊗ U(1). This 24 representation

comes, for example, from a 45 representation of SO(10), which means that the

minimum content at the SO(10) scale that is able to realise this symmetry breaking

pattern will be either 16⊕ 45 or 126⊕ 45.
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4.2.4 Standard Model

Finally, the last (obvious) requirement that we impose on a model is that it repro-

duces the SM group and its particle content. The last step of the breaking chain

in any realistic GUT is the SM gauge group, SU(3)C ⊗ SU(2)L ⊗ U(1)Y , so one

needs to ensure that at least the SM matter content is reproduced here, including

the precise hypercharge assignments (modulo some overall normalisation factor).

This condition must also require the existence of a Higgs doublet, so as to satisfy

electroweak symmetry breaking. The minimal SM content required is

3×
(
{3,2, 1

6
} ⊕ {3̄,1, -2

3
} ⊕ {3̄,1, 1

3
} ⊕ {1,2, -1

2
} ⊕ {1,1, 1}

)
⊕ {1,2, -1

2
},

(4.2.8)

which includes three generations of SM fermions plus a Higgs scalar.

The fermionic content of the SM is obtained automatically, given the appro-

priate embedding in the 16-dimensional representation of SO(10). In addition we

will allow the presence of SM fermion singlets, to represent the right-handed neu-

trino and/or any sterile neutrino that might appear in the theory. Therefore this

constraint will only affect the scalar sector, which must have a scalar field in the

representation {1,2, -1
2
} (in addition to the three generations of lepton doublets).

Throughout this analysis we assume that the scalar fields that are integrated

out at some scale, all have masses very close to that scale. Therefore, given the lack

of evidence for exotic coloured states at the SM scale, we will reject models that

include those states. However, since the Higgs sector of the SM is still to be fully

explored and pinned down, we will allow for extra scalar fields charged under the

weak and hypercharge groups, and that the known Higgs boson is just the lowest

mass eigenstate of all the scalar fields in the sector. As a matter of fact this comes as

a requirement for supersymmetric models, which need two Higgs doublets to cancel

their gauge anomaly, and where the SM Higgs is just the lightest of all five Higgs

mass eigenstates.

4.3 Unification of Gauge Couplings

Once obtained the set of valid models, with the algorithm shown in figure 4.1 and

applying the constraints above, the next step is to ensure that the breaking chain is

consistent with the unification of the gauge couplings for every model. The running



127 4.3. Unification of Gauge Couplings

of the gauge couplings is given by the Renormalisation Group Equations (RGEs),

which for each model depend on the representations at every scale.

The set of RGEs together with the initial condition imposed by SM couplings

at the electroweak scale and by the unification condition at MGUT form a strin-

gent constraint on any GUT symmetry breaking scenario. The values of the gauge

couplings at the SM scale are [4]

g1(MZ) = 0.46235± 0.00010,

g2(MZ) = 0.65295± 0.00012,

g3(MZ) = 1.220± 0.003, (4.3.1)

where 1, 2 and 3 refer to the U(1), SU(2) and SU(3) groups, respectively.

Solving the RGEs is in general a difficult endeavour because they usually de-

pend on the other parameters in the theory and form a system of strongly coupled

differential equations. We will restrict our analysis to the one-loop level for which

the gauge coupling RGEs are uncoupled and can be easily solved analytically. The

one-loop RGE for the gauge coupling g of a group G is

µ
dg

dµ
=

1

16π2
bg3, (4.3.2)

where µ is an energy scale and the slope b is calculated as [185]

b =
2

3

∑
Fermions

S(Rf ) +
1

3

∑
Scalars

S(Rs)−
11

3
C2(G). (4.3.3)

Here, C2(G) is the Casimir of the group G and S(Rs,f ) is the Dynkin index of the

scalar Rs or fermionic Rf representation under the group G. For abelian groups,

such as the hypercharge factor in the SM, the Casimir cancels, C2(U(1)) = 0, and

the Dynkin index of an irrep with U(1) charge Q is given by S(Q) = Q2.

When a group has more than one abelian factor, there is kinetic mixing among

the slopes b of both [218]. This contribution, however, is usually quite small, of the

order of the two-loop correction of the RGEs [218]. Since we already neglect the

two-loop correction in the analysis, we will also neglect this contribution. Another

type of abelian mixing happens when the symmetry breaking reduces the rank of the

group and the subgroup has an U(1) factor. Though this mixing does not affect the

calculation of the slopes, it affects the matching conditions at the different scales,

so it will be discussed later in section 4.3.2.
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Field R Spin nf SU(3)C SU(2)L U(1)Y

Q {3,2, 1
6
} 1

2
3 1

2
· 2 3 · 1

2
3 · 2 · 1

36

uc {3̄,1, -2
3
} 1

2
3 1

2
0 3 · 4

9

dc {3̄,1, 1
3
} 1

2
3 1

2
0 3 · 1

9

L {1,2, -1
2
} 1

2
3 0 1

2
1
4

ec {1,1, 1} 1
2

3 0 0 1

H {1,2, -1
2
} 0 1 0 1

2
1
4

Table 4.1: Standard Model particle content and associated properties: spin, number of

families nf and Dynkin index (times the number of degrees of freedom) under the groups

SU(3)C , SU(2)L and U(1)Y .

As an example, for the SM particle content in table 4.1, which shows the Dynkin

indices of the representations, and with Casimirs C2(SU(3)) = 3, C2(SU(2)) = 2

and C2(U(1)) = 0, one obtains the slopes3

{b1, b2, b3} =
{

41
10
,−19

6
,−7

}
, (4.3.4)

for the three SM gauge groups.

The gauge coupling running in supersymmetric theories is described by a spe-

cial case of eq. (4.3.3), where for every fermionic Weyl degree of freedom (d.o.f)

there is a complex scalar, and for every gauge boson there is a new fermion d.o.f.

In this case the slope b take the form

b =
∑

Superfields

S(R)− 3C2(G), (4.3.5)

where the sum runs for all chiral superfields in the theory. For the MSSM content,

as shown in table 2.1 in section 2.3, the slopes are

{b1, b2, b3} =
{

33
5
, 1,−3

}
. (4.3.6)

The RGE in eq. (4.3.2) can be conveniently rewritten in terms of the parameter

α = g2/4π, also known as a fine structure constant, as

µ
d

dµ
α−1 = − b

2π
. (4.3.7)

3This values of the slopes are calculated including the contribution from the top quark, which

we will take to be approximately at the electroweak scale MZ .
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Changing the variable to t = 1/2π log(µ/MZ) and given the boundary condition

α−1(t0) at scale t0, it can be solved analytically as

α−1 (t)− α−1 (t0) = −b (t− t0) . (4.3.8)

For a breaking chain from SO(10) to the SM with m steps, there are m − 1 inter-

mediate scales µi, with ti = 1/2π log(µi/MZ). Starting with the unification of gauge

couplings at the scale tm = tGUT ↔ µm = MGUT , the RGEs can be solved at the

following scale µm−1. The new boundary conditions α(tm−1) are used to solve for

subsequent scales, iterating until the SM scale, t0 = 0↔ µ0 = MZ .

In such a scenario, there are m + 1 free parameters, the m − 1 intermediate

scales, the GUT scale MGUT and the coupling at the unification scale αGUT . On the

other hand, the running couplings must match their values at the SM scale, in eq.

(4.3.1), which leaves at least m− 2 degrees of freedom for any GUT scenario. If fur-

ther constraints are applied, e.g. if the right-handed current in left-right symmetric

models would be observed, there will be fewer degrees of freedom.

Since equation (4.3.8) is linear, one can write equations for the SM couplings

α−1
i , with i = 1, 2, 3, that implement the constraint of unification at α−1

GUT as

α−1
i = α−1

GUT +
m∑
j=1

bij∆tj, (4.3.9)

where we have defined the splitting between two consecutive scales as ∆tj = tj−tj−1

with j = 1, . . . ,m, and bij are the slopes corresponding to particular segments ∆tj

of the path connecting α−1
GUT with α−1

i . One can summarize these three conditions

in a matrix form as

 α−1
3

α−1
2

α−1
1

 =

1 b3
1 b3

2 · · · b3
m

1 b2
1 b2

2 · · · b2
m

1 b1
1 b1

2 · · · b1
m




αGUT

∆t1

∆t2
...

∆tm

 ≡ B0 ·∆t. (4.3.10)

4.3.1 Supersymmetry

In models with supersymmetry, there is an additional scale, the mass scale of the

supersymmetric particles. We will assume that the SUSY spectrum can a priori

appear at any point between MSM and MGUT . Below the SUSY scale tSUSY , scalar
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superpartners of the SM fermions and fermionic superpartners of any other scalar

or vector boson are integrated out.

Therefore, since the spectrum changes, the slopes bi before and after SUSY will

be different. The former will use equation (4.3.5) to calculate the slopes, using the

full supersymmetric spectrum, whereas the latter will use (4.3.3), using only the SM

content plus scalars. Let BSUSY be a matrix of slopes, analogous to B0, but using the

supersymmetric spectrum, then we can construct a matrix B, which enters equation

(4.3.10) in place of B0, that can be formed by joining the first k + 1 columns of B0

and the last m−k columns of BSUSY . To get all the possible scenarios, one naturally

has to repeat this procedure over all the possible positions of the SUSY-breaking

scale, i.e. over all possible values of k.

Additionally, the position of the SUSY scale helps to discard some of the many

models obtained before. As was discussed in section 4.2, supersymmetric models

may suffer from anomalies if the sum of the contributions of their representations

do not cancel. Hence, if any of the steps with scales above the SUSY scale, t ≥ tk,

have a non-zero anomaly, as was tagged as such in the model algorithm, eq. (4.2.5),

then that model is not valid and is excluded.

4.3.2 Abelian Breaking

In a number of breaking scenarios, those where there is a rank-reducing breaking

and the subgroup contains an abelian factor, the generator of the remaining U(1)

factor is a linear combination of the diagonal generators of the supergroup. For the

simple case U(1)A × U(1)B → U(1)C , the charges of a field φj under U(1)C and its

gauge coupling can be calculated as

gC Qj
C = gAgB

Qj
AQ

v
B −Q

j
BQ

v
A√

g2
A(Qv

A)2 + g2
B(Qv

B)2
, (4.3.11)

where gA and gB are the couplings of U(1)A and U(1)B, respectively, Qj
A and Qj

B

are the charges of the field φj and Qv
A and Qv

B are the charges of the breaking Higgs.

If any or both of the supergroups are not abelian, then the charges correspond to

the eigenvalues of the diagonal generators that survive the breaking.

Though they are not defined independently, we need to use both gC and Qj
C

separately, the former when solving the RGEs to obtain limits on the scales and the

latter to obtain the slopes of the RGEs. We will then choose to define

gC = gAgB

√
(Qv

A)2 + (Qv
B)2√

g2
A(Qv

A)2 + g2
B(Qv

B)2
=

gAgB√
r2
Ag

2
A + r2

Bg
2
B

, (4.3.12)
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and

Qj
C =

Qj
AQ

v
B −Q

j
BQ

v
A√

(Qv
A)2 + (Qv

B)2
= rBQ

j
A − rAQ

j
B, (4.3.13)

with rA,B = Qv
A,B/

√
(Qv

A)2 + (Qv
B)2 such that r2

A + r2
B = 1.

In SO(10) unified models this 2 → 1 abelian breaking is the only type that

will appear, hence the simple analysis above is sufficient.

The U(1) breaking happens at some breaking scale tmix, so the model at that

scale requires an extra parameter, thus extending equation (4.2.5) to
Group→ Fmix,
Chain→ {Fmix → · · · → Fm},
Reps→ {R1, . . . },
Anomaly Free→ true/false,

Mixing→ {rA, rB}

 . (4.3.14)

At the scale tmix the boundary conditions for the gauge coupling in the broken

phase α−1
C is given by

α−1
C (tmix) = r2

Aα
−1
A (tmix) + r2

Bα
−1
B (tmix). (4.3.15)

which allows us to write α−1
C at the EW scale as

α−1
1 = α−1

C (t0) = α−1
GUT + r2

A

m∑
j=mix+1

b1A
j ∆tj + r2

B

m∑
j=mix+1

b1B
j ∆tj +

mix∑
j=1

bCj ∆tj,

(4.3.16)

where the slopes b1A
j and b1B

j correspond to the slopes of the gauge couplings before

tmix and bCj = b1
j the slope of the remaining coupling after tmix.

In terms of the matrices in equation (4.3.10), one would need three independent

matrices of slopes, BA, BB and BC . The first two have zeroes in every baj entry for

j = 1, . . . ,mix and the slopes b1A
j and b1B

j for j = mix + 1, . . . ,m. Conversely, the

matrix BC has zero entries on the right side of the mixing scale, j > mix and b1
j on

the left side, j < mix. Therefore, the matrix equation takes the form

α = (r2
ABA + r2

BBB +BC) ·∆t. (4.3.17)

4.3.3 Solving the RGEs

After including supersymmetry and abelian breaking, the matrix system in eq.

(4.3.10) is

α = B ·∆t, (4.3.18)
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where ∆t includes the SUSY scale and the matrix of slopes B is calculated by adding

the supersymmetric slopes above tSUSY and, in case of abelian mixing, the structure

given in equation (4.3.17).

This system of linear equations is solvable for ∆t when the number of scales

m, including MSUSY , is m = 2, which gives solutions for the intermediate and

unification scales and αGUT . In the case m > 2 the above system is underdetermined.

The general solution can then be written in terms of m− 2 free parameters, which

can be chosen to coincide with m− 2 of the breaking scales.

In order to maintain the order of the steps in the breaking chain, one needs

to apply the constraint on the scales ∆ti > 0, for all i = 1, . . . ,m. This condition

reduces the range of allowed values for the independent scales, which result in a set

of limits on those scales. These limits then can be used to obtain equivalent limits

on the dependent scales.

Therefore, for all the models obtained in section 4.1 we obtain a set of limits (or

exact solution) for all scales, consistent with the unification of gauge couplings. It is

worth mentioning again that we have neglected two-loop contributions to the RGEs,

as well as threshold corrections and U(1) mixing effects, which are all roughly of the

same order. As we perform a rough scan over a large model landscape where we ne-

glect model details (e. g. heavy states are integrated out at the exact same scale but

there could be a sizeable hierarchy between different masses), these approximations

are well justified for our analysis.

4.4 Results for Intermediate Left-Right Symme-

try

There are many possible breaking chains form SO(10), as can be seen in figure 2.2,

each of which will have different properties and produce a different set of models. As

a first approach to this process of model building, we will take the two-step breaking

from SO(10) with the left-right symmetry group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗
U(1)B−L at an intermediate scale, because some of its minimal realisations have

been analysed extensively in the literature [79–82,129–143,145–147].

As mentioned before, the main ingredients for the start of the model building

process are the gauge group, the breaking chain and the set of representations. We

have already chosen our GUT gauge group to be SO(10), and the gauge symmetry
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breaking chain of this scenario reads

SO(10)→ SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L → SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

(4.4.1)

Lastly, the set of SO(10) representations need to be specified. In general

most sets of representations will not produce successful models, since some of the

symmetry breaking conditions require very specific representations. We therefore

choose quite a large set of initial representations, partially inspired by previous

works on this type of symmetry breaking [129]. The set chosen is

{163
F ,10,452,126,126}, (4.4.2)

where there are three generations of 16F , which contain the SM fermions; a scalar

10 which will contain part of the SM Higgs boson; two 45 adjoint scalars, one

required for the first step of symmetry breaking and integrated out at the SO(10)

scale, and the other one allowed to leak through the lower scales; and two 126-

dimensional representations that will contain fields responsible for further symmetry

breaking steps and other fields that can contribute to the SM Higgs boson. The right-

handed neutrinos in the SO(10) 16-plets will be part of SU(2)R doublets in the LR

symmetric phase and thereby contribute to the RGE running. We will assume that

they acquire heavy Majorana masses of the order of the LR symmetry breaking scale

to potentially generate light left-handed neutrino masses of order 0.1 eV in a seesaw

mechanism.

Given the large representations used, their decomposition into representations

of the intermediate group SU(3)C ⊗ SU(2)L⊗ SU(2)R ⊗U(1)BL has a lot of terms.

This can be seen from the decomposition of the scalar irreps

10→ {3,1,1, 1
2
} ⊕ {3̄,1,1, -1

2
} ⊕ {1,2,2, 0},

45→ {3,2,2, 1
2
} ⊕ {3̄,2,2, -1

2
} ⊕ {8,1,1, 0} ⊕ {3̄,1,1, 1} ⊕ {1,3,1, 0}

⊕ {3,1,1, -1} ⊕ {1,1,3, 0} ⊕ {1,1,1, 0},
126→ {8,2,2, 0} ⊕ {6,3,1, -1

2
} ⊕ {6̄,1,3, 1

2
} ⊕ {3̄,2,2, 1} ⊕ {3,2,2, -1}

⊕ {3,3,1, 1
2
} ⊕ {3̄,1,3, -1

2
} ⊕ {1,2,2, 0} ⊕ {3,1,1, 1

2
} ⊕ {3̄,1,1, -1

2
}

⊕ {1,3,1, 3
2
} ⊕ {1,1,3, -3

2
},

126→ {8,2,2, 0} ⊕ {6̄,3,1, 1
2
} ⊕ {6,1,3, -1

2
} ⊕ {3,2,2, -1} ⊕ {3̄,2,2, 1}

⊕ {3̄,3,1, -1
2
} ⊕ {3,1,3, 1

2
} ⊕ {1,2,2, 0} ⊕ {3̄,1,1, -1

2
} ⊕ {3,1,1, 1

2
}

⊕ {1,3,1, -3
2
} ⊕ {1,1,3, 3

2
}. (4.4.3)
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There are 35 scalar representations so there will be N = 235 ∼ 1010 possible com-

binations. As was mentioned before, in order to be able to perform a reasonable

quantitative analysis, we will restrict to having up to 5 representations above the

left-right (LR) scale. The number of combinations of representations is now close

to 4 × 105, a more manageable amount, of which only about 2.5 × 105 models will

satisfy the theoretical constraints laid out in section 4.2.

Given the large number of models that we have, even after the application

of constraints, we will attempt to exclude some of them by considering their phe-

nomenological consequences. The only information we have about the models is the

set of representations and the limits on the energy scales, so there are only a few

phenomenological constraints that we can apply, which will be outlined below.

4.4.1 Proton Decay

Because of the nature of GUTs, there are always exotic particles that couple to both

quarks and leptons and could potentially lead to rapid proton decay through baryon

and lepton number violating interactions [9]. As we briefly mentioned in section 2.2

every fully unified theory necessarily predicts proton decay.

p

π0

u

u
d

d̄

e+

X

Figure 4.3: Feynman diagram for the main decay modes of protons through a dimension

6 operator (ēd̄uu), with a mediator of mass MX .

The main decay mode of protons is p → e+π0 which could be mediated

by gauge or scalar bosons, as can be seen in figure 4.3, coming from dimension 6

operators, suppressed by M−2
X , the mass of the mediator. In the case of GUT scale

gauge bosons the decay half-life can be calculated as [4]

τp ∼ α−2
GUT

M4
GUT

m5
p

, (4.4.4)

with mp the mass of the proton. The current experimental limit is τ > 1.29× 1034

years, set by Super-Kamiokande [105] which, for typical values of the gauge coupling
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αGUT , requires a GUT scale of MGUT ∼ 1016. This limit excludes minimal non-

supersymmetric GUTs, which typically predict a lower unification scale.

Scalar mediated proton decay is also possible via dimension 6 operators, but

it depends heavily on the representation that the scalars are in [4]. For scalars in

representations equivalent to those of the gauge bosons the contribution is the same

and can be calculated equally with equation (4.4.4), but with the mass scale of those

scalars MX rather than the GUT scale, and their coupling to the quarks and leptons

λX , rather than αGUT . Other representations may have different contributions to

the rate of decay of proton, so they need to be calculated independently.

In supersymmetric models, one expects other contributions to the decay width

of the proton, coming from both dimension 4 and 5 operators. In R-parity preserving

supersymmetry, however, dimension 4 operators are forbidden [181], and thus we

avoid that potential source of rapid proton decay. On the other hand, dimension 5

operators are present in supersymmetric GUTs and they generate decays typically

mediated by a very heavy coloured Higgsino X̃ [109], of the type p → K+ν̄ as can

be seen in figure 4.4.

p K+

u

u
d

s̄

ν̄

X̃

W̃

d̃ ν̃

Figure 4.4: Feynman diagram for the main decay modes of protons through dimension 5

operators (s̄uν̃∗d̃ and ν̄dd̃∗ν̃) in a SUSY GUT, with a Higgsino mediator X̃.

We assume these dimension 5 contributions with heavy Higgsinos are equiva-

lent to those of dimension 6 with scalars. Both coloured scalars and fermions can

potentially mediate proton decay and, if supersymmetry is preserved, they have the

same mass, so their contribution would be the same [219]. After the SUSY scale,

the fermionic components will be integrated out, thus acquiring larger masses than

their scalar partners. Hence, the contribution of dimension 5 operators after the

SUSY scale is neglected with respect to dimension 6 operators.

Therefore, we will use the proton decay constraint for the left-right model,

as calculated in equation (4.4.4) coming from gauge dimension 6 operators, to rule

some of the models. We do not consider scalar mediated proton decay in this case,
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because the computation of the amplitudes of the process in figure 4.3 lies beyond

the scope of this work.

Additionally, in order to see the effect that future searches would have on the

viability of models, we will use the projected bound on the proton half-life that

the next generation of experiments, such as Hyper-Kamiokande, expects to reach,

τ & 1.3× 1035 y for the p→ e+π0 [220].

4.4.2 Direct and Indirect Detection Constraints

At the time of writing, the second run of the LHC has started and many analyses

of the new data are being carried out and will soon reach public domain. One

could then potentially expect the appearance of some new particle X which might

be produced through resonant production. In the context of low scale left-right

symmetric models, one of the most promising scenarios would be the production of a

heavy right-handed gauge bosonWR, associated with the right-handed SU(2)R of the

left-right symmetric gauge group. Its discovery through a charged current process

would not only determine the scale of LR symmetry breaking but also the value of

the corresponding gauge coupling gR. This would provide a further constraint on

GUT models in the approach considered here.

The parton level cross section for the resonant production of a heavy boson X

can be approximated by a Breit-Wigner resonance

σ(Q2) =
4π

9
(2JX + 1)

Γ(X → q1q2)

(Q2 −M2
X)2 +M2

XΓ2
X

, (4.4.5)

with JX being the spin of the produced boson and qi indicating the initial par-

tons. Integrating over the parton distribution functions (PDFs) in narrow-width

approximation of the resonance (4.4.5) yields the total LHC cross section [221]

σLHC =
4π2

9s
(2JX + 1)

Γ(X → q1q2)

MX

fq1q2

(
MX√
s
,M2

X

)
, (4.4.6)

with the LHC center of mass energy
√
s = 8, 13 TeV and

fq1q2
(
r,M2

)
=

∫ 1

r2

dx

x
(q1(x,M2)q2(r2/x,M2) + q2(x,M2)q1(r2/x,M2)). (4.4.7)

Here, qi(x,Q
2) is the PDF of parton qi at momentum fraction x and momentum

transfer Q2. For masses M ≈ 1− 5 TeV (M ≈ 3− 9 TeV for LHC13), this integral

can be well approximated as exponential decreasing with M/
√
s [221],

fq1q2

(
M√
s

)
≈ Aq1q2 × exp

(
−Cq1q2

M√
s

)
, (4.4.8)
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where the coefficients Aqq and Cqq depend on the combination of the relevant partons

q1, q2, ranging betweenAūū ≈ 200 toAuu ≈ 4400 and Cuu ≈ 26 to Cd̄d̄ ≈ 51 [222,223].

Interestingly, even with the data collected from run I, there are excesses in

various searches at the LHC with
√
s = 8 TeV [144,148], which could be interpreted

through the production of a right-handed WR boson with a mass of mWR
≈ 1.8 −

2.1 TeV and a right-handed gauge coupling gR/gL ≈ 0.6 ± 0.1 [145, 224]. Using

(4.4.6) the total W+
R and W−

R cross section can be expressed as

σLHC =
π

12

g2
R

s

[
fud̄

(
MWR√
s

)
+ fdū

(
MWR√
s

)]
, (4.4.9)

where we used the partial decay width Γ(W+
R → ud̄) = 1/(16π)g2

RmWR
. The fitting

parameters for the function (4.4.8) in this case are given by Aud̄ = 2750, Cud̄ = 37

and Adū = 1065, Cdū = 36 [222,223].

Applying such a direct collider search as a constraint or evidence in our ap-

proach would depend delicately on the process and collider details. Instead we

will use the indirect bound from the measurement of the KL − KS mass differ-

ence [134,225–227],

hK ≈
(
gR
gL

)2(
2.4 TeV

MWR

)2

. 1. (4.4.10)

For gR = gL this leads to the bound MWR
& 2.4 TeV, whereas for gR

gL
= 0.6 the limit

weakens to MWR
& 1.5 TeV, compatible with the potential signal at MWR

≈ 1.9 TeV.

We will exclude all models with hK > 1. Additionally, anticipating new experimental

results, either by direct detection at the LHC or indirectly via the KL −KS mass

difference, we will alternatively impose a more stringent constraint hK < 0.06, which

corresponds to a mass ofMW = 10 TeV. This will highlight those models that survive

if no sign of WR is found.

Direct detection of supersymmetric particles is hoped to occur in the next run

of the LHC. After the first run, no solid evidence of new physics was seen, and the

limits on some of the most popular models are quite severe [14,15]. Figures 2.4 and

2.5 show the limits for all the searches for supersymmetry done with
√
s = 8 TeV,

where it can be seen that most of the limits lie around or below 1 TeV. So in order

to represent the lack of signals for SUSY, we will impose the constraint MSUSY > 1

TeV on the set of models. Similarly to the case of the detection of WR, we will

alternatively take the potential future limits on supersymmetry as a constraint. As

with the above case we will use MSUSY > 10 TeV as the limit for a lack of SUSY

signals after Run II.
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4.4.3 Model Analysis

Among the many models obtained through the procedure described above, we use

one example scenario to illustrate our approach. The scalar representations of this

model at MLR and MSM scales are

{R}LR =
{
{1,3,1, 0} ⊕ {1,1,3, 49

40
} ⊕ {1,2,2, 0} ⊕ {1,1,3, -49

40
}
}
,

{R}SM =
{
{1,2, 1

2
} ⊕ {1,2, -1

2
}
}
, (4.4.11)

where it can be see that this model has four representations at the LR scale and two

Higgses at the SM scale, so it is a type of two Higgs doublet model (2HDM). With

these representations one can calculate the gauge couplings running, as described

above. The RGE running is shown in figure 4.5 for MSUSY ≈ 104 GeV, MLR ≈ 1015

GeV and MGUT ≈ 1016 GeV. As can be seen, this choice corresponds to exact

gauge unification. It can be noticed also that at the LR scale the SU(2)R and

U(1)B−L couplings (red and blue, respectively) mix to give the hypercharge α−1
1

coupling (purple). The slope of the SU(2)L coupling (orange) changes slightly at

MLR, because the representation {1,3,1, 0} is integrated out, whereas the SU(3)C

coupling (black) remains unaffected, since there are no coloured representations at

either side of MLR. At the SUSY scale the slopes of the three SM gauge couplings

change as a consequence of integrating out the supersymmetric degrees of freedom.

As we discussed before, for any model we can calculate the limits on the

scales by imposing the unification condition, of which figure 4.5 is an example. In

the supersymmetric left-right model there is one free degree of freedom, which we

choose to be the SUSY scale MSUSY . The limits of MSUSY , MLR and MGUT will be

affected by the phenomenological constraints that we described above, summarized

in table 4.2, thereby excluding some ranges of values.

τp(p→ e+π0) MSUSY hK (MLR)

Current 1.29× 1034 y 1 TeV 1 (1 TeV)

Future 1.3× 1035 y 10 TeV 0.06 (10 TeV)

Table 4.2: Phenomenological constraints from current and projected future experimental

limits, as described in sections 4.4.1 and 4.4.2.

Figure 4.6 shows the dependence of the scales MLR (black), MSUSY (blue) and

MGUT (red) with respect to MSUSY . The dashed lines correspond to the excluded

ranges by the current phenomenological constraints in table 4.2, and the solid lines

the allowed values. We can notice straight away that values of MGUT lower than
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Figure 4.5: Running of the gauge couplings in the sample model with representation

content in eq. (4.4.11). The scales are chosen to be MSUSY ≈ 104 GeV, MLR ≈ 1015 GeV

and MGUT ≈ 1016 GeV. The black line corresponds to the SU(3)C gauge couplings, the

orange line to the SU(2)L coupling, purple to U(1)Y , red to SU(2)R and blue to U(1)B−L.

∼ 1016 GeV are excluded, due to the proton decay constraint. Similarly, MSUSY is

excluded below 1 TeV, as can be seen in the bottom left corner of the figure. Lastly

we notice that the LR scale decreases with the SUSY scale for MLR < MSUSY , and

increases slowly for MLR > MSUSY . As a consequence this model does not allow for

values of the left-right scale below ≈ 109 GeV, thereby ignoring the constraint on

MWR
, with the minimum at MLR = MSUSY . Each constraint will correspondingly

have an impact on all of the scales, in order to produce a consistently viable scenario.

In the case shown in figure 4.6, the three scales would be constrained to the ranges

MSUSY ∈ {1.0 × 103 , 3.48× 104 } ∪ {2.29× 1015, 3.27× 1015},
MLR ∈ {8.03× 1013, 2.79× 1015} ∪ {1.26× 1010, 1.32× 1010},
MGUT ∈ {3.78× 1015, 1.24× 1016} ∪ {3.01× 1015, 3.28× 1015},

where the two disjoint sets correspond to when MSUSY < MLR and MSUSY > MLR,

respectively.

After having analysed a sample model, we will now attempt to study the

distribution of the full set of models, trying to extract some patterns of behaviour

from it and assess the consequences that the phenomenological constraints might

have.

This symmetry breaking scenario has one degree of freedom, which we arbitrar-
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Figure 4.6: Dependence of the scales MLR (black) and MGUT (red) on MSUSY (blue)

for a sample scenario with representation content in equation (4.4.11). Dashed line refer

to excluded ranges for the scale according to the current phenomenological constraints in

table 4.2, and solid line to the allowed values.

ily choose as the SUSY scale MSUSY . This makes the system of equations (4.3.10)

underdetermined resulting in a set of limits for the three scales rather than fixed

values. This was illustrated in the example scenario discussed above. The calculated

limits can be processed into histograms describing the distribution of left-right GUT

models depending on the symmetry breaking scales. In other words, the height of

each bin in such a histogram represents the number of models whose scale limits

overlap with the bin. In figure 4.7 we can see the histograms of the distribution of

models with respect to scales MLR, MGUT and MSUSY , when no phenomenological

constraints are applied 4. The grey bars in all plots count the models with up to 3

representations at the intermediate left-right scale, the blue bars those with up to

4 representations and the red bars those with up to 5. We can notice that there

is a slight preference for low values of MLR and large values of MSUSY , which gets

more pronounced with a fewer number of representations. The GUT scale has a

4For convenience, we have applied the constraint MGUT > 2MLR, otherwise the two scales

would be too close to each other, simulating a one-step breaking scenario, which is not our case of

interest.
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Figure 4.7: Histograms of the distribution of SUSY models with respect to the left-

right scale MLR (top), unification scale MSUSY (middle) and SUSY scale MGUT (bottom)

for the models, when no constraints are applied. Grey bars count model with up to 3

representations at the LR scale, blue bars up to 4 representations and red bars up to 5.
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preferred value between 1014 and 1016 GeV, and it shows a moderate peak slightly

above 1016 GeV. It can be seen in the plots with MGUT and MSUSY that we have

cut the scale at 1018, roughly the Planck scale. Though there are models that have

Trans-Planckian unification scales [228], we assume that non-renormalisable gravi-

tational contributions to the gauge RGEs could potentially spoil the unification, so

we eliminate those cases from our analysis.

Next we will apply the phenomenological constraints, described above in table

4.2. Figures 4.8, 4.9 and 4.10 show the histograms of models in the case of no

constraints (top), current phenomenological constraints (middle), and the future

phenomenological constraints (bottom), with respect to MLR, MGUT and MSUSY ,

respectively. As before, grey bars count models with up to 3 reps, blue bars up to

4 and red bars up to 5. In comparison with the histograms with no constraints, we

can see that the phenomenological constraints reduce severely the number of model

for certain scales. The proton decay constraint has a big impact on MGUT effectively

excluding all models with MGUT . 1015−16. The effect of these constraints on the

other two scales MLR and MSUSY has the consequence of reducing the number of

models for intermediate values, effectively excluding the ranges 1012 < MLR < 1014

GeV and 105 < MSUSY < 1013 GeV for a small number of representations.

The next generation of experiments are expected to push the limits even fur-

ther, potentially excluding more models in the process. In the bottom plots of figures

4.8, 4.9 and 4.10 we show the distribution of models when a set of more stringent

constraints are applied, with respect to MLR, MGUT and MSUSY , respectively. We

can easily notice that the number of models is severely reduced after the application

of these constraints, the value of MGUT is almost strictly above MGUT & 1016 GeV,

whereas the intermediate gap that we saw for MLR and MSUSY increases signifi-

cantly, excluding the ranges 1014 < MLR < 1015 GeV and 108 < MSUSY < 1011 GeV

even for the larger number of representations.

The exclusion of models for intermediate values of MLR and MSUSY is quite an

interesting result, and shows a correlation between the scales. In figure 4.11 we show

the 2D histogram of models in the (MSUSY ,MLR) plane with the current (left) and

future (right) experimental constraints, for up to 3 (top), 4 (middle) and 5 (bottom)

representations above MLR. As expected from figures 4.8 and 4.9 the correlation is

more evident for smaller the number representations. There is an obvious correlation

between the scales, with models preferring low MLR and high MSUSY , or vice versa,

with much lower density of models.
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Figure 4.8: Histograms of the distribution of SUSY models with respect to the left-

right scale MLR, with no constrains (top), with the current constraints τp > 1034 years,

MSUSY > 1 TeV and hK < 1 (middle), and with future experimental constraints τ > 1035

years, MSUSY > 10 TeV and hK < 0.06 (bottom). Grey bars count model with up to 3

representations at the LR scale, blue bars 4 representations and red bars 5.
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Figure 4.9: As in figure 4.8 but with respect to MSUSY .
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Figure 4.10: As in figure 4.8 but with respect to MGUT .
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Figure 4.11: Density histogram of the number of models in the (MSUSY ,MLR) plane,

where darker colours refer to higher density of models, for up to 3 (top), 4 (middle) and 5

(bottom) number of representations at MLR. Current experimental constraints are applied

on the left hand plot, τp > 1034 years, MSUSY > 1 TeV and hK < 1, and future constraints

on the right hand plot, τ > 1035 years, MSUSY > 10 TeV and hK < 0.06, summarized in

table 4.2.



5
Aspects of GUT Phenomenology

In the previous chapter we have focused on the theoretical analysis of a great num-

ber of GUT models at the same time, focusing on the search for constraints or

conditions that reduce the number and variation of the models. However, many of

the interesting features and predictions of GUTs require a deeper analysis into the

specific details of the models, which is beyond the scope or the power of that broad

study.

This is a time during which some of the most challenging and groundbreaking

experiments are being carried out. Starting with the LHC, which has surpassed all

its predecessors in collision energy, reaching 8 TeV of centre of mass energy at the end

of Run I and, at the time of writing, the first collisions at 13 TeV of Run II are being

recorded. A lot of models and hypotheses will be put to the test in the coming years

with the new data that is being collected by the ATLAS and CMS experiments

at the LHC. In addition, other particle physics experiments are also pushing the

boundaries of our current understanding of the field, such are neutrino oscillation

experiments, e.g. Daya Bay [229], dark matter direct detection experiments, e.g.

LUX [55], B-physics experiments, e.g. LHCb [53], and many more.

In particular, supersymmetric models are expected to take the first hit. The

data analysed during the first run of the LHC already excluded a huge amount of

the parameter space for the simplest supersymmetric models, e.g the constrained

MSSM (CMSSM), as can be seen in figures 2.4 and 2.5, where they found a bound

on the mass of the gluino and first and second generation squarks, mg̃,mq̃ & 1 TeV,

third generation squarks mt̃,mb̃ & 500 GeV, sleptons ml̃ & 300 GeV and gauginos

mχ̃ & 250 − 500 GeV. In spite of these constraints, less minimal models are still

very much alive and await the analysis of the new data. Thus, the coming run of

the LHC may lay a final blow on low energy supersymmetry, or it may find some

evidence of supersymmetric particles and revitalise the field to accommodate the

147
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findings.

On the cosmological frontier, the Planck satellite takes the vanguard having

produced the best maps of the cosmic microwave background radiation to date. The

intensity and polarisation of its anisotropies have been measured with such precision,

that it has revolutionised the field of observational cosmology. Among the numerous

consequences of the Planck data analysis is the ability to probe a large number of

models of inflation. The measurements of the spectral index of density perturbations

ns and ratio of tensor to scalar perturbations r, serve as a strong constraint on

inflationary models and have managed to rule out several of them, as seen in figure

5.1, taken from [16], while the results of the BICEP2 experiment [230], may point

towards a large value of r, possibly in favour of inflation. Further analysis of the

Planck data, along with other forthcoming experiments such as the new phase of

BICEP2, known as the Keck Array [231], is expected to set even stronger constraints

on inflationary models, or could potentially confirm BICEP2’s claim on the discovery

of tensor modes, serving as the smoking gun of inflation.

Figure 5.1: Exclusion limits for the spectral index nS and tensor-to-scalar ratio r from

Planck, compared with predictions from some inflationary models, taken from [16]. Shaded

regions indicate the 1σ (darker) and 2σ (lighter) contours using the Planck results in

combination with other datasets (WMAP, high-` Planck likelihood, and Baryon Acoustic

Oscillation (BAO) measurements). The predictions from different inflationary models are

shown for the range between 50 (small dot) and 60 (large dot) e-foldings.

In the following, we will use an example GUT model, a supersymmetric SO(10)

model, in section 5.1, for which we will calculate the SUSY spectrum in detail and

the phenomenological consequences at low energy for current or future colliders.

This will serve as an example of the richness of GUT inspired SUSY models. We

will focus on specific low energy consequences of the GUT origin beyond the broad
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features covered in section 4. On the other side of the energy spectrum, in section

5.2, we will describe a flipped SU(5) ⊗ U(1) model, used as a basis for a scenario

of hybrid inflation, which will be contrasted against the cosmological observables

measured in the cosmic microwave background.

5.1 Minimal SUSY SO(10)

Given the lack of signals for supersymmetry in the last run of the LHC, and the

severe constraints on the parameter space that the SUSY searches by ATLAS [194]

and CMS [195] imposed, minimal models of low energy supersymmetry, such as the

CMSSM, are in serious trouble and it is hard to reconcile their predictions with

the experimental lack of evidence. Therefore, a lot of effort is going into the de-

velopment and study of non-minimal models of supersymmetry, which could evade

the constraints imposed by the experiments, while still making testable predictions

for future searches. Such models extend the parameter space of the CMSSM in or-

der to avoid the experimental limits, like the non-universal Higgs models (NUHM1

and NUMH2) where the soft masses of the Higgses differ from the other scalars

(and among themselves in NUHM2) [186–188], or the phenomenological MSSM

(pMSSM) where most of the parameters of the MSSM are a priori not related to

each other [189].

Supersymmetric GUTs present a consistent and formal way to build non-

minimal supersymmetric models, while still keeping a relatively low number of free

parameters, unlike other phenomenological approaches like the pMSSM, because of

the relations of the parameters and sparticle species at the GUT scale.

One such model is described here, a SUSY SO(10) model [18] incorporating

one-step breaking from SO(10) down to the Standard Model gauge group at the

unification scale MGUT ∼ 1016 GeV, consistent with the unification of gauge cou-

plings predicted by the MSSM. In contrast to minimal models such as the CMSSM,

the scalar masses in the SO(10) model are shifted by the D-terms, associated with

the GUT symmetry breaking, allowing for non-universal boundary conditions and

thus more degrees of freedom at the unification scale.

The description of the minimal SO(10) model is laid out in section 5.1.1, with

focus on an analysis of the effect that non-universality of the soft SUSY breaking

(SSB) masses has on the particle spectrum, determined for the sfermion masses

by the D-term splitting among the representations at the GUT scale, and for the
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gaugino masses by the representation of the SUSY breaking messenger field, both

cases discussed in section 5.1.2. A summary of the current state of SUSY searches

and a reinterpretation of the limits given by the ATLAS collaboration is performed

in section 5.1.3. Finally in section 5.1.4 the analysis of two specific scenarios with

large D-terms contributions takes place, concluding with a short study of the effect

of non-universal gaugino masses on the particle spectrum.

5.1.1 The Model

The field content of the minimal SUSY SO(10) is set almost uniquely set by the

gauge group structure. In section 2.2.5 we saw that in SO(10) a generation of SM

fermions, and their superpartners, is contained in a irreducible 16 representation.

Also, the gauge sector is fixed, since gauge bosons need to belong to the adjoint

representation of SO(10), that is the 45 [18].

The Higgs sector, however, is not completely fixed and there is some freedom

to choose the precise representations used in the model, according to the recipes

outlined in section 2.2.5. The SO(10) breaking Higgs, in particular, must be such

that it satisfies the symmetry breaking requirements (c.f. figure 2.2). However, at

this stage we do not concern ourselves with the particular representation it is in and

we simply assume that the SO(10) group is broken directly to the SM, or to any

number of intermediate steps as long as they all have scales close to the unification

scale. We will then neglect any further contribution of this SO(10) breaking field

Σ, for its effect will decouple from the theory at the GUT scale.

The embedding of the electroweak Higgs into representations of SO(10) is

largely fixed by the requirement that it must have Yukawa-type interactions with

the SM fermions. As was discussed in section 2.2.5, the only allowed representations

for this field are 10, 120 and 126, ignoring non-renormalisable operators. Out of the

three possible options we choose the simplest of them, 10, to contain the electroweak

Higgs. This choice has the disadvantage of failing to predict the masses of all

fermions, which will require several or all of the aforementioned representations to

appear at the same time, as was discussed in section 2.2.5. For the sake of simplicity,

and since this analysis will be focused mostly on scalar masses, rather than fermion

masses, we stick to the simple 10 representation and neglect contributions from

others.

With these choices, the superpotential of this minimal SUSY SO(10) model
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can be written as

WSO(10) = Y16F10H16F + µH10H10H +W (Σ), (5.1.1)

where Y is a symmetric 3× 3 matrix in generation space, the µH generalises the µ

term in the MSSM (c.f. eq. (2.3.13)) for SO(10), and the last term W (Σ) includes all

the terms that involve the Higgs field Σ responsible for SO(10) symmetry breaking.

Henceforth, we will neglect this term in our low energy analysis.

In this minimal SO(10) model, the soft SUSY breaking sector is based on the

mSUGRA scenario, defined in section 2.3.2. The unification of the MSSM fields into

a matter and a Higgs multiplet, 16F and 10H respectively, implies that there are

two universal scalar masses, m2
16F

and m2
10H

. At some energy scale supersymmetry

is broken, producing a set of soft SUSY breaking terms, similar to those of (2.3.14),

which are

Lsoft =−m2
16F

1̃6
∗
F 1̃6F −m2

10H
10∗H10H

− 1

2
m1/2X̃X̃ − A0Y1̃6F 1̃6F10H −B0µH10H10H + c.c.

+ LΣ, (5.1.2)

where 1̃6F and 10H refer to the scalar components of 16F and 10H superfields

respectively, X̃ represents the gaugino field, and LΣ refers to the soft terms for the

Σ field, which we do not specify, for they are irrelevant at this stage. The trilinear A0

and bilinear B0 terms are the supersymmetric equivalent to the Yukawa couplings

and Higgs µ-term, respectively, with the boundary conditions at the GUT scale

At = Ab = Aτ = A0, (5.1.3)

where At, Ab and Aτ are the trilinear couplings for the third generation sfermions

in the MSSM.

The boundary conditions for the scalar masses m16F and m10H include an ad-

ditional contribution, which does not originate from the soft-SUSY breaking sector.

These so called D-terms are generated from the Kähler potential during a symmetry

breaking transition that reduces the rank of the original group. A very typical ex-

ample of these terms is the electroweak D-term generated in the MSSM after the SM

group is broken. These introduce an extra contribution to the mass of the sfermions

f̃L and f̃R, as seen in equations (2.3.20) and (2.3.21), which has the form

∆mf̃L
= M2

Z cos(2β)(T 3
f −Qf sin2 θW ),

∆mf̃R
= M2

Z cos(2β)Qf sin2 θW . (5.1.4)
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In the general case, a rank reducing symmetry breaking means that one or more

of the abelian U(1) factors of the group is broken. Therefore, for the case of the

breaking of a single U(1) group, a scalar field Φ acquires a vacuum expectation value,

and right after symmetry breaking, the scalar particles φi will receive contributions

to their masses [232]

∆m2
i = Qim

2
D, with m2

D =
1

2

m2
Φ

QΦ

, (5.1.5)

with Qi and QΦ the U(1) charge of the scalar fields φi and Φ respectively, and m

the soft mass of Φ. Interestingly, we see that the D-term mass m2
D is of the order

of the soft masses mΦ, rather than the GUT scale, at which the symmetry breaking

occurs. For the SO(10) case this means that the corresponding D-term would be

proportional to the soft mass of the Σ field, responsible of symmetry breaking,

m2
D ∝ m2

Σ, which is included in the last term of equation (5.1.2).

This contribution to the soft masses, plus the fact that there are two universal

scalar masses, m16F , m10H , will change the boundary conditions at the GUT scale

with respect to (2.3.24). Taking the soft masses from equation (5.1.2) to be the

same for all three generations and thus proportional to the identity 1, the boundary

conditions for the MSSM soft from section 2.3.3 read [18]

m2
Q = m2

u = m2
e = m2

16F
1 +m2

D1,

m2
L = m2

d = m2
16F

1− 3m2
D1,

m2
ν = m2

16F
1 + 5m2

D1, (5.1.6)

m2
Hd

= m2
10H

+ 2m2
D,

m2
Hu = m2

10H
− 2m2

D,

where mν is the soft mass of the right-handed sneutrinos. If the right-handed

neutrinos acquire a large mass through some type of see-saw mechanism (see section

2.2.3), typically of the order of 1014 GeV in SO(10)-inspired scenarios [143], so

will the right-handed sneutrinos, thereby decoupling them from the low energy,

TeV-scale, supersymmetric spectrum. Therefore, we will henceforth neglect the

contributions of right-handed sneutrinos to the RGEs.

These set of boundary conditions exemplify the importance of the D-terms,

since it induces a splitting between the particle species Q̃, ũ, ẽ and L̃, d̃ already at

the GUT scale, which will potentially be increased through RGE running to the low

scales. This D-term depends strongly on the scalar potential of the SO(10) breaking

sector so, in order to keep our description independent from the GUT scale physics,
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we take m2
D to be a free parameter. The free parameters in the model are

{m2
16F
,m2

10H
,m2

D,m1/2, A0, tan β, sign(µH)} (5.1.7)

where tan β = vu/vd, the ratio of the vevs of Hu and Hd. The value of |µH |, as

well as B0, is fixed by imposing electroweak vacuum stability conditions. Figure 5.2

shows how the masses of the first generation of sfermions are split because of the

effect of the D-terms, with the convenient definition

σ(m2
D) = sign(m2

D)
√
|m2

D|, (5.1.8)

to account for the possibility that m2
D can be negative. The rest of the free pa-

rameters, m2
16F

, m2
10H

, m1/2, A0 and tan β, are taken from the benchmark scenario

provided in table 1 of [187],

m16F = 1380 GeV, m10H = 3647i GeV, m1/2 = 3420 GeV,

A0 = −3140 GeV, tan β = 39, sign(µH) = 1, (5.1.9)

Figure 5.2: First generation sfermion masses as a function of the SO(10) D-term σ(m2
D)

defined in the text and the rest of the parameters are fixed as in eq. (5.1.9). Solid red lines

refer to those sfermion masses that grow with m2
D < 0 and dashed blue lines to those

masses that grow with m2
D > 0.

Lastly the boundary conditions for the masses of the gauginos may also differ

from those of the CMSSM in (2.3.24), where they unified to a universal gaugino mass

m1/2 at the GUT scale. In general SUSY breaking mechanisms, the representation



5. Aspects of GUT Phenomenology 154

MGUT MEW

SO(10) SU(5) M1

M3

M2

M3

M1

M3

M2

M3

1,54,210,770 1 1 1 1
6

1
3

54,210,770 24 -1
2

-3
2

- 1
12

-1
2

210,770 75 -5 3 -5
6

1

770 200 10 2 5
3

2
3

Table 5.1: Ratios of gaugino masses for a SUSY breaking messenger field in different

representations of SU(5) ⊂ SO(10) [234] at the GUT and the EW scale. The EW ratios

take into account the approximate effect of the RGE running on the gaugino masses.

of the mediator field determines the matching conditions at the GUT scale. This

field is required to be a SM singlet in order to preserve the SM symmetry but the

same is not necessary for the GUT symmetry, SO(10). The ratios of the values of

M1, M2 and M3, the MSSM gaugino masses, can be seen in table 5.1 for different

representations of SO(10) of the mediator field [233,234].

The most common case is when the mediator field is in a singlet representation

of SO(10), in which case the boundary conditions are the same as in the CMSSM

in equation (2.3.24)

M1 = M2 = M3 = m1/2, (5.1.10)

but other configurations have some advantages, such as a better Yukawa coupling

unification or better compatibility with the value of the anomalous magnetic moment

of the muon aµ [235].

5.1.2 Renormalisation Group Equations

As was mentioned before, the particle content of this minimal SUSY SO(10) model

is that of the MSSM in section 2.3.3, since all the additional gauge and scalar boson

are integrated out at the GUT scale, along with the right-handed neutrinos. Thus,

given the boundary conditions defined above for the soft SUSY breaking parameters,

one can obtain the values at low scales by the use of the Renormalisation Group

Equations of the MSSM, which are listed and solved approximately in Appendix A.

In particular, the RGEs of the first and second generation of sfermions masses can

be exactly solved at one loop, because the Yukawa couplings, proportional to their
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fermionic masses, are negligible. These equations are given by

16π2 d

dt
m2
Q1,2

= −32

3
g2

3M
2
3 − 6g2

2M
2
2 −

2

15
g2

1M
2
1 +

1

5
g2

1S,

16π2 d

dt
m2
u1,2

= −32

3
g2

3M
2
3 −

32

15
g2

1M
2
1 −

4

5
g2

1S,

16π2 d

dt
m2
d1,2

= −32

3
g2

3M
2
3 −

8

15
g2

1M
2
1 +

2

3
g2

1S,

16π2 d

dt
m2
L1,2

= −6g2
2M

2
2 −

6

5
g2

1M
2
1 −

3

5
g2

1S,

16π2 d

dt
m2
e1,2

= −24

5
g2

1M
2
1 +

6

5
g1S, (5.1.11)

where the term S is defined as

S = m2
Hu −m

2
Hd

+ Tr
(
m2
Q − 2m2

u +m2
d −m2

L +m2
e

)
, (5.1.12)

which, despite depending on all the scalar masses, turns out to be solvable, with

a solution that depends only on the gauge couplings and the splitting of the soft

masses at the GUT scale, i.e. the D-term m2
D. With this, the solutions for the

masses of the squarks and sleptons can be written as [236]

m2
ũL

= m2
16F

+m2
D

(
1 + 2C

(1)
1

)
+m2

1/2

(
C

(2)
3 + C

(2)
2 +

1

6
C

(2)
1

)
+DuL ,

m2
ũR

= m2
16F

+m2
D

(
1− 8C

(1)
1

)
+m2

1/2

(
C

(2)
3 +

8

3
C

(2)
1

)
+DuR ,

m2
d̃L

= m2
16F

+m2
D

(
1 + 2C

(1)
1

)
+m2

1/2

(
C

(2)
3 + C

(2)
2 +

1

6
C

(2)
1

)
+DdL ,

m2
d̃R

= m2
16F
−m2

D

(
3− 4C

(1)
1

)
+m2

1/2

(
C

(2)
3 +

2

3
C

(2)
1

)
+DdR ,

m2
ẽL

= m2
16F
−m2

D

(
3 + 6C

(1)
1

)
+m2

1/2

(
C

(2)
2 +

3

2
C

(2)
1

)
+DeL ,

m2
ẽR

= m2
16F

+m2
D

(
1 + 12C

(1)
1

)
+m2

1/2

(
6C

(2)
1

)
+DeR ,

m2
ν̃L

= m2
16F
−m2

D

(
3 + 6C

(1)
1

)
+m2

1/2

(
C

(2)
2 +

3

2
C

(2)
1

)
+DνL , (5.1.13)

where the C
(n)
a are constants, defined as

C(n)
a =

ca
ba

(
1− g2n

a (MSUSY)

g2n
a (MGUT)

)
, (c1, c2, c3) =

(
1

5
,
3

2
,
8

3

)
, (b1, b2, b3) =

(
33

5
, 1,−3

)
,

(5.1.14)

and the electroweak D-terms Di were defined in (2.3.21).

The masses in equation (5.1.13) depend only on the gauge couplings through

the constants C
(n)
A , the soft SUSY masses m2

16F
and m1/2, and the SO(10) D-term
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mass splitting, m2
D. There is negligible dependence on tan β coming from the Di

which we ignore. One can write these masses as

m2
ũL

= m2
16F

+ 1.0m2
D + 5.3m2

1/2 − (53.6 GeV)2,

m2
ũR

= m2
16F

+ 0.9m2
D + 4.9m2

1/2 − (35.8 GeV)2,

m2
d̃L

= m2
16F

+ 1.0m2
D + 5.3m2

1/2 + (59.3 GeV)2,

m2
d̃R

= m2
16F
− 2.9m2

D + 4.9m2
1/2 + (25.3 GeV)2,

m2
ẽL

= m2
16F
− 3.1m2

D + 0.5m2
1/2 + (47.3 GeV)2,

m2
ẽR

= m2
16F

+ 1.2m2
D + 0.2m2

1/2 + (43.9 GeV)2,

m2
ν̃L

= m2
16F
− 3.1m2

D + 0.5m2
1/2 − (64.5 GeV)2. (5.1.15)

In figure 5.3 one can see the running of the first and second generation scalar masses,

with the soft SUSY breaking parameters fixed to those of the benchmark point in

eq. (5.1.9) with m2
D = (0.7 TeV)2 and m2

10H
= (2 TeV)2. As expected, the running

of the masses is mainly driven by the gaugino mass m1/2, so in order to have a

sizeable effect on the spectrum from the D-terms, one should have m2
D/m1/2 & 1.

Figure 5.3: Running of the scalar masses of the 1st generation, the gaugino masses and

the Higgs doublet masses, with the soft parameters fixed as specified in the text. Solid red

lines are sfermion masses, dashed blue lines gaugino masses and dash-dotted black lines

are the absolute values of the Higgs mass parameters.

It can be seen in equation (5.1.15) that the dependence on the model parame-

ters m16F , m2
D and m1/2 is quite similar for some of the scalar masses. This allows us

to build linear combinations of these masses that will depend on fewer parameters.
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First, for those particles with a different dependence on m2
D, i.e. those belonging

to different multiplets in the SU(5) subgroup of SO(10), one can eliminate the

dependence on m16F and induce a large splitting between them, driven mostly by

m2
D,

m2
d̃L
−m2

d̃R
= 3.9m2

D + 0.4m2
1/2 +O(M2

Z),

m2
ẽL
−m2

ẽR
= −4.3m2

D + 0.3m2
1/2 +O(M2

Z). (5.1.16)

Sparticles within the same multiplet of the SU(5) subgroup of SO(10) have a very

similar dependence on m2
D, the only small difference coming from the S term in

equation (5.1.11), and then their splitting is basically driven by m1/2, as it is in the

CMSSM,

m2
d̃R
−m2

ẽL
= 0.2m2

D + 4.4m2
1/2 +O(M2

Z),

m2
ũL
−m2

ẽR
= −0.2m2

D + 5.1m2
1/2 +O(M2

Z),

m2
ũR
−m2

ẽR
= −0.3m2

D + 4.7m2
1/2 +O(M2

Z). (5.1.17)

Lastly, left-handed squarks and sleptons belong to the same SU(2) multiplets, and

thus their only splitting comes from the contribution of the electroweak D-terms,

proportional to M2
Z ,

m2
d̃L
−m2

ũL
= O(M2

Z),

m2
ẽL
−m2

ν̃L
= O(M2

Z). (5.1.18)

It is worth mentioning that the analytical solution found for the RGEs in equation

(5.1.11) is only at one-loop. The second loop contribution can be approximated,

from the RGEs in Appendix A, to be of the order

(δm2
2-loop)1,2 < O(10−2)(−m2

16F
−m2

1/2) +O(10−3)(−m2
10H
−m2

D), (5.1.19)

which shows that for large values of the parameters, mi � 103 GeV, their absolute

contribution can be significant. Although their relative size is not that large, we

will nevertheless include these approximated 2-loop contributions in the subsequent

analysis.

5.1.3 Direct SUSY Searches at the LHC

At the time of writing Run II of the LHC has started but the experiments have

not yet released relevant results from the newly collected data. Hence, the analyses
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done during and after the first run, with ≈ 20 fb−1 of integrated luminosity recorded,

hold the most stringent direct limits on the masses of supersymmetric particles to

date. The experiments ATLAS and CMS have carried out comprehensive searches

for supersymmetric signals and have analysed a great amount of data in a large

number of channels and under a large number of model-agnostic approaches, aiming

to exclude as much of the parameter space for supersymmetry as possible. The status

of these searches at the end of Run I, in figures 2.4 and 2.5, can be summarised as

follows.

The most stringent of exclusions from LHC searches are of squark and gluino

masses. Searches based on multiple jets and missing energy (MET), for the decays

q̃ → qχ̃0
1 or q̃ → q(ll/lν/νν)χ̃0

1, rule out squarks masses of the order of 2 TeV, and

for gluino decays of g̃ → qq̄χ̃0
1 or g̃ → qq(W/ll/lν/νν)χ̃0

1, the limit is of the order

of 1 TeV [237,238], the precise values depending on the model that the searches are

based on. These models tend to oversimplify supersymmetric spectra, for example

they assume that all first and second generation squarks are degenerate in mass.

This is in general not the case, and in particular for the minimal SUSY SO(10)

model, the splitting of the masses can be substantially large for large values of m2
D,

as can be seen from equation (5.1.16).

Stop pairs are produced at the LHC mostly through the s-channel, and the

primary decay modes are t̃ → tχ̃0 and t̃ → bχ̃±. The final states studied have

the signature 4j + l + MET. The current lower limit on the stop mass is around

mt̃ & 650 GeV [239,240]. However, if the stop is not allowed to decay to an on-shell

top, mt̃ < mt +mχ̃0 , the decay phase space is reduced and the process is suppressed

which weakens the limit tomt̃ & 250 GeV. Searches for sbottoms are similar to those

for stops, with comparable production rates and complementary decays, b̃ → bχ̃0

and b̃→ tχ̃±. Consequently, the mass limits are similar, mb̃ & 650 GeV [241–243].

Although electroweak processes at the LHC are several orders of magnitude

smaller than strong processes, the precision of the measurements done by ATLAS

and CMS is good enough to provide a limit of ml̃ & 300 GeV, form the decay

l̃→ lχ̃0
1 [244,245]. Similar to the sleptons, the limits on the neutralinos and charginos

are considerably weaker than those of gluinos and squarks. Using purely electroweak

processes such as pp → χ̃0
2χ̃
± → Zχ̃0W±χ̃0 or pp → χ̃0

2χ̃
± → lν̃ l̃l(νν̃), both LHC

experiments have currently excluded masses up to mχ̃ & 300 GeV [246–249]. Fi-

nally, the extra Higgs states predicted by supersymmetry have also been subject to

scrutiny. However, due to the strong dependence on the parameters in the MSSM

(particularly tan β), the limits are not very strong. As of today, the limits seem to
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Figure 5.4: Comparison of exclusion limits for CMSSM (green), m2
D > 0 (blue), and

m2
D < 0 (red) simplified models with the ATLAS limit (dashed black).

favour tan β & 18 and Higgs masses around or above that of the found Higgs state,

mH,A,H± & 100 GeV [250–253].

Because the limits discussed above on squark and gluino masses imply a series

of assumptions on the SUSY spectrum, we aim to reinterpret them as a way to find

a most accurate exclusion bound for models such as the minimal SUSY SO(10) with

non-degenerate squark masses. We start by factorizing the problem of estimating

the final cross section after the cuts into two steps. First, we analytically calculate

the production cross section and the branching fractions of the relevant processes for

the searches. Secondly, we estimate the efficiencies of the cuts in each production

mode for the jets+MET search channels reported by ATLAS using Monte Carlo

simulation.

The efficiency of the cuts is calculated using a simplified model with two pa-

rameters mg̃ and mq̃. There are four production modes that result in jets+MET

final states viz. g̃g̃, q̃q̃, q̃q̃∗ and q̃g̃. We assume each squark decays as q̃ → qχ̃0
1 and

the gluino decays via either g̃ → qq̃ if mg̃ > mq̃ or via g̃ → qq̄χ̃0
1 otherwise. As a con-

sistency check, we reproduce the ATLAS limits based on [237] for a simplified model

where all squarks are degenerate and the lightest (bino-dominated) neutralino is the

LSP with a mass a sixth of the gluino mass (we assume the typical CMSSM gaugino

mass ratios M1 : M2 : M3 = 1 : 2 : 6 at the electroweak scale). The comparison

is shown in figure 5.4, where the CMSSM model with all squarks being degenerate
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(ũL, d̃L, ũR, d̃R) is plotted in green and the observed ATLAS limit in dashed black.

The Monte-Carlo simulation was performed using Pythia 8 [254–256] with Gaussian

smearing of the momenta of the jets and leptons as a theorist’s detector simula-

tion. Figure 5.4 demonstrates that we approximately reproduce the exclusion limit

reported by ATLAS in our simulation.

The discrepancies with respect to the ATLAS limits for non-degenerate spec-

trum are studied in two scenarios. For m2
D � 0, the lightest of the squarks are

the right-handed down-type squarks, so we take the approximation md̃R
= ms̃R =

mb̃1
= mq̃, and all other squark masses are set to 10 TeV. On the other hand, for

m2
D � 0, all the left-handed squarks and right-handed up-type quarks are light,

which motivates the approximation where mq̃ corresponds to the degenerate mass

of all squarks except the right-handed down-type species. For both of these scenar-

ios, the exclusion limits are shown in figure 5.4, where the case m2
D � 0 (d̃R light)

is plotted in blue, and m2
D � 0 (ũL, d̃L and ũR light) in red. As expected, the ex-

clusion limit for the latter case, m2
D � 0, is almost identical to the fully degenerate

CMSSM case, because most of the species are degenerate, whereas the former case,

m2
D � 0, leads to a considerably weaker limit on the squark mass, mq̃ & 1 TeV. In

both cases the gluino mass limit remains unaltered at mg̃ & 1 TeV.

In a few months, we expect new data coming from the second run of the LHC to

start pushing the limits on the squark and gluino masses. Since the target integrated

luminosity is about 300 fb−1 at 13 TeV, we expect to rule out up to mq̃ ∼ 3.2 TeV

for the m2
D � 0 case and mq̃ ∼ 2.8 TeV for the m2

D � 0 case. The reach in gluino

mass for both cases is about mg̃ ∼ 3.6 TeV. Consequently, a 3-sigma discovery can

be made for mq̃ ∼ 2.5 TeV for the case m2
D � 0 and mq̃ ∼ 1.8 TeV for m2

D � 0.

5.1.4 Phenomenological Analysis

The experimental limits discussed in section 5.1.3 constrain severely the parameter

space of the minimal SUSY SO(10) model. Starting with the set of free parameters,

m2
16F

, m2
10H

, m1/2, m2
D, A0, tan β, sign(µH), we will look to fix or constrain some

of them, focusing particularly on interesting deviations from the standard CMSSM

scenario.

In the CMSSM, with a degenerate spectrum of scalar masses, the strong lim-

its on the lightest squark mq̃ & 2 TeV, forces the slepton masses to be heavy as

well, evading experimental detection. As was seen in equation (5.1.17), one can in-

crease the splitting between the squark and slepton masses with large m1/2 and m2
D.
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However, very large m1/2 values have the disadvantage of also raising the lightest

neutralino, which is the preferred candidate for dark matter. Therefore, we shall

fix the value of m1/2 so as to produce a gluino with a mass around the current

experimental limit, mg̃ ≈ 1 TeV.

Therefore, we will seek to increase the value of m2
D to achieve a large splitting

between squarks and sleptons. In the case that m2
D � 0, the lighter states that

we will consider are ẽL and d̃R, whereas if m2
D � 0, it will be ẽR and ũL. Since

the value of m1/2 is fixed to obtained the lightest possible gluino mass, and aiming

to keep the mass of the lightest first generation squark (mq̃) at the lowest allowed

value, we express m2
16F

as a function of the other model parameters and the desired

squark mass mq̃ as

m2
16F

= m2
q̃ − c1m

2
D − c2m

2
1/2 − c3 + δ2, (5.1.20)

where the constants ci are taken from (5.1.15) for the corresponding squark species

and δ2 is the 2-loop correction to the mass of the lightest squark, which can be

significant for large |m2
D| and m2

16F
, as discussed at the end of section 5.1.2.

Light Third Generation

The RGEs of the third generation squarks are mostly driven by the Yukawa cou-

plings, with contributions that looks like

∆i ≈
1

8π2
y2
i (m

2
10H

+ 2m2
16F

+ A2
0), (5.1.21)

for i = t, b, τ . These terms are dominant in the third generation with respect to the

gauge terms, which are the leading contribution for the first and second generation.

This means that, in general, the third generation, particularly the stop squark, is

lighter than the first two. Therefore, increasing the value of m2
D in either direction

will make the stops and sbottoms very light, becoming tachyonic eventually, which

enforces a maximum and minimum cut on the value of m2
D.

Applying the conditions described above, mg̃ ∼ 1 TeV, mq̃ ∼ 2 TeV and

equation (5.1.20), we perform a scan over m2
D to analyse the behaviour of the masses

of the different particle species. The rest of the parameters we fix according to the

benchmark scenario in eq. (5.1.9), so the full set of parameters will be

m2
10H

= −(3647 GeV)2, m1/2 = 389 GeV,

A0 = −3140 GeV, tan β = 39, sign(µH) = 1,

m2
16F

such that min(mq̃) = 2 TeV. (5.1.22)



5. Aspects of GUT Phenomenology 162

Figure 5.5: Sparticle masses as a function of σ(m2
D) = sign(m2

D)
√
|m2

D|. The remaining

model parameters are fixed as described in eq. (5.1.22). As in figure 5.2, solid red lines

refer to sfermion masses that grow with m2
D < 0 and dashed blue lines those that grow

with m2
D > 0. Additionally, solid green lines refer to additional parameters, m16F and µH .

In figure 5.5 we can see the dependence of the masses of all sfermions with

respect to m2
D for both scenarios, positive and negative m2

D, using the 2-loop RGEs

described in Appendix A. In solid red we can see the particles that belong to the

5̄ representation of the SU(5) subgroup of SO(10) and in dashed blue the ones

that belong to the 10. As expected, the splitting among these classes of sparticles

increases with larger values of |m2
D|, which agrees with equation (5.1.17). However,

the splitting that we were aiming for, between the first generation squarks and

sleptons does not get big enough for the sleptons to become appreciably lighter

before the third generation stops and sbottoms become tachyonic. Therefore, the

regions beyond the point at which mb̃1
, the lightest sparticle, becomes tachyonic,

which happens roughly for m2
D & (1.1 TeV)2 in one side and m2

D . −(1.8 TeV)2 in

the other, are non physical.

In order to have a better understanding why the third generation squarks

are so light compared to their first and second generation counterparts, figure 5.6

displays the corresponding properties in the (m2
D,m1/2) (left) and (m2

D, A0) (right)

parameter planes. In the plot on the left we can see that increasing m1/2 has the

effect of lowering the mass of the sleptons, as expected from eq. (5.1.17). However,

the mass of the lightest neutralino increases with m1/2, so for m1/2 close to the upper
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Figure 5.6: Mass of the lightest stau τ̃1 (solid green), sbottom b̃1 (dashed grey) and

selectron ẽ (dash-dotted red) as a function of of m2
D and m1/2 (left) and of m2

D and A0

(right). The remaining parameters are fixed as described in eq. (5.1.22). The coloured

areas are excluded or disfavoured because there is at least one tachyonic state (brown), the

neutralino is not the LSP (orange), the gluino mass is below the experimental limit (blue).

limit, m1/2 ≈ 0.9 TeV, either the lightest stau or selectron is the NLSP. In the plot

of the right, we notice that for the sbottom and the stau, the effects of large m2
D

and large A0 are similar, i.e. they both push the masses down. As a matter of fact,

we can actually see that the sbottom is only the lightest for large A0 (as was the

case in figure 5.5), but is heavier than the stau for small A0, and can even be rather

heavy (mb̃1
≈ 2.4 TeV).

The spectrum obtained in this model, shown in figure 5.7 form2
D = −(1.83 TeV)2,

belongs to a class of Split-SUSY scenarios with a compressed spectrum [257–259],

with the lightest stop too light to decay into a top and the lightest neutralino.

The LHC limit on the stop mass for this case is much more relaxed than in other

scenarios [239, 242]. With a light stop mass just above the LHC limit for a com-

pressed spectrum, mt̃1 & 250 GeV, a rough estimate of the fine tuning would be

M2
SUSY/m

2
t ≈ mt̃1mt̃2/m

2
t ≈ 5, which can potentially be consistent with naturalness

and solving the hierarchy problem.
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Figure 5.7: Supersymmetric particle spectrum in the example scenario with large SO(10)

D-terms based on eq. (5.1.22) with m2
D = −(1.83 TeV)2 (light third generation).

Light First Generation

It was mentioned before that the Yukawa couplings drive the third generation

squarks to be lighter than those of the first and second generations. Then, in order

to minimize the contribution of the terms proportional to the Yukawa couplings we

will look into cancelling those out in the RGEs, as in eq. (5.1.21), which have the

form

∆τ,b,t ∝ m2
10H

+ 2m2
16F

+ A2
0. (5.1.23)

Hence, we need to compensate the increasingly large values of m2
16F

with equally

large and opposite sign values of m2
10H

+ A2
0. A safe choice, keeping the trilinear

couplings real, is A0 = 0 and m2
10H

= −2.1m2
16F

, which also includes a correction

for the two-loop contribution. This fine-tuned choice represents an extreme case of

the more generic scenario described in the previous section. The parameters in this
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model can be summarised as

m1/2 = 389 GeV,

A0 = 0, tan β = 39, sign(µH) = 1,

m2
16F
,m2

10H
= −2.1m2

16F
such that min(mq̃) = 2 TeV, (5.1.24)

In figure 5.8 we can see how the third generation sparticles are now made heavier

Figure 5.8: As figure 5.5, but with the remaining model parameters fixed as described in

eq. (5.1.24). Colour and texture of lines are as in figure 5.5.

than their first generation counterparts. A larger splitting between the lightest

squark and slepton can be achieved here, as opposed to figure 5.5. However, in

the process we have generated very heavy masses for the rest of the squarks and

sleptons, which are here split off considerably, with masses up to 10 TeV.

As we did before, we display in figure 5.9 the combined dependencies of m2
D

and either m1/2 and A0. We can easily notice a major difference with respect to the

third generation case in the left hand side plot of figure 5.6, because now the first

generation sleptons are mostly lighter than the light stau, except for small values of

|m2
D|. The plot on the right hand side, dependence on A0, is rather different from

the case before, since now the sbotton mass gets heavier with increasing |m2
D|, but

lighter with increasing A0. This is expected as we do not compensate the effect of A0

on the Yukawa-driven RGE contributions. As a consequence, the lightest sbottom

will become the lightest sfermion for large A0 & 3 TeV.

This model presents a rather extreme scenario which is fine-tuned to cancel the

Yukawa contribution of the third generation states. Nevertheless, it demonstrates
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Figure 5.9: As figure 5.6, but with the remaining model parameters fixed as described in

eq. (5.1.24).

the potential to deviate from the usual light stop/sbottom/stau case. The direct

LHC limits on first and second generation slepton masses are still comparatively

weak and can accommodate light sleptons ml̃ & 300 GeV. An example spectrum

for this case is shown in figure 5.10 for m2
D = +(4.87 TeV)2, resulting in a severely

split scenario, which is similar to cases of Split-SUSY [260–263], but exhibiting a

three-fold splitting: Very light sleptons ≈ 0.1 − 0.2 TeV, lightest squarks around

2 − 4 TeV and very heavy squarks and sleptons at 9 − 10 TeV. Consequently,

there is severe fine-tuning in the model, not only by manually engineering the light

selectrons, but also due to the necessary cancellations of the large contributions to

the Higgs mass from the heavy stops, M2
SUSY/m

2
t ≈ mt̃1mt̃2/m

2
t ≈ 3× 103.

Non-Universal Gauginos

Finally, we conclude the analysis of the minimal SO(10) model with some remarks

about the impact of non-universal gauginos at the GUT scale. We saw in section

5.1.1 that in supergravity mediated scenarios the SO(10) representation of the mes-

senger field prescribe the boundary conditions for the gaugino masses at the GUT

scale. In table 5.1 we can identify three cases, corresponding to the representations

1, 24 and 200 of the SU(5) subgroup of SO(10).

The simplest case is when the messenger field is a singlet, which corresponds

to the approximated gaugino hierarchy |M1| : |M2| : |M3| = 1/6 : 1/3 : 1 near the
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Figure 5.10: Supersymmetric particle spectra in the example scenario with large SO(10)

D-terms based on eq. (5.1.24) with m2
D = +(4.87 TeV)2 (light first generation).

electroweak scale. This was the case used in the above analysis and is the general

prescription of the CMSSM.

If the messenger field is in the 24-dimensional representation, the hierarchy

becomes |M1| : |M2| : |M3| = 1/12 : 1/2 : 1, which makes the bino compara-

tively lighter than in the CMSSM case. This modification could be phenomenolog-

ically interesting because it creates a larger splitting between the neutralino and

gluino, thereby allowing for larger values of m1/2. For example, for a gluino mass

at the current limit, mg̃ ≈ 1.1 TeV, the lightest neutralino could be lighter than

mχ̃0
1
≈ 100 GeV, subject to direct search limits. On the other hand, the ratio

between M2 and M3 is smaller than that of normal CMSSM, making the second

neutralino and lightest chargino slightly heavier. Such a change will for instance

suppress the SUSY contribution to the anomalous magnetic moment of the muon,

because the largest contribution comes from a sneutrino-chargino loop [264], and

the experimental situation would prefer both the SU(2) gaugino and the sleptons

to be light.
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Lastly, for a messenger in the 200-dimensional representation, we have a low

energy hierarchy |M1| : |M2| : |M3| = 5/3 : 2/3 : 1. The spectrum is rather different

here, with the bino being the heaviest gaugino, heavier even than the gluino, while

the mass of the wino is approximately 2/3 of the gluino mass. Hence, the lightest

neutralino would be mostly wino and would have a relatively large mass compared

to the previous case.

Figure 5.11: Sparticle masses as a function of σ(m2
D) = sign(m2

D)
√
|m2

D|. The re-

maining model parameters are fixed as described in eq. (5.1.22) for three different gaug-

ino hierarchies at the GUT scale: (a) M1 = M2 = M3 = m1/2 (universality, solid); (b)

−2M1 = −3/2M2 = M3 = m1/2 (light bino, short dashed); (c) 10M1 = 2M2 = M3 = m1/2

(light wino, long dashed).

Additionally, non-universal gaugino masses have an effect on the masses of the

SUSY particles through RGE running. The term proportional to m1/2 in equation

(5.1.17) assumed universal masses, but if written in terms of M1, M2 and M3 the

RGEs generalise to

m2
d̃R
−m2

ẽL
= 0.2m2

D − 0.02M2
1 − 0.5M2

2 + 4.9M2
3 +O(M2

Z),

m2
ũL
−m2

ẽR
= −0.2m2

D − 0.15M2
1 + 0.5M2

2 + 4.9M2
3 +O(M2

Z),

m2
ũR
−m2

ẽR
= −0.3m2

D − 0.08M2
1 + 4.8M2

3 +O(M2
Z), (5.1.25)

where we can see that the mass of the gluino has the strongest effect. Setting

the gluino masses to mg̃ ≈ 1.1 TeV, as we did before, we can find that gaugino

non-universality induces an additional splitting between the squarks and sleptons,

dominantly driven by the wino mass M2. Figure 5.11 shows a comparison of the

three cases mentioned above: universal gauginos (solid), light bino case (short dased)
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and light wino case (long dashed). As expected from (5.1.25), the difference in the

second case is negligible compared to the first, whereas the third scenario can have a

sizeable impact on the slepton masses, especially for m2
D < 0. The negative signs in

front of M2
1 in (5.1.25) explain the larger splitting among slepton masses compared

to the universal gaugino case.
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5.2 Flipped GUT Inflation

For a number of years, cosmological inflation [265–268] has been thought as the

solution to many of the problems in the current cosmological model of the universe,

the ΛCDM model [269], such as the horizon and flatness problems [70]. The horizon

problem refers to the observed homogeneity among causally disconnected regions of

the universe, and the flatness problem concerns the very fine tuning of the initial

conditions of the universe needed to account for the observed null curvature of

spacetime. Countless numbers of models of inflation have been proposed (see [270]

for a review of models) and it is currently one of the most prolific research topics in

both astroparticle physics and cosmology.

Very recently, new results have been published that have shed some light into

the inner workings of the universe at the very beginning. The Planck collaboration

has measured the properties of the Cosmic Microwave Background (CMB) with as-

tonishing accuracy and provided for the first time a phenomenological frontier for

inflationary models [16, 17]. The measurement of the amplitude of scalar perturba-

tions in the CMB radiation, As = (2.19 ± 0.11) × 10−9, predicts an energy density

during inflation

V = (2× 1016 GeV)4
( r

0.15

)
, (5.2.1)

where r is the ratio of tensor to scalar perturbations, which, for a value of r ∼ 0.1

compatible with Planck’s measurement, shows a remarkable coincidence between the

values of V 1/4 and the value of MGUT predicted by SUSY GUTs, MGUT ∼ 2× 1016

GeV (c.f. section 2.3). Therefore, one can speculate that there might be a connection

between the ideas of cosmological inflation and supersymmetric grand unification.

This intriguing connection between the scale of unification in supersymmetric

theories and inflation was stimulated by the observation of the BICEP2 experiment

of substantial B-mode1 polarisation in the CMB [230]. Large B-mode polarisation

can originate from gravitational waves during inflation, i.e. tensor density pertur-

bations, which predicts a large value for the tensor-to-scalar ratio r, near the upper

limit measured by Planck, motivating even further the link between the scales of

unification and inflation. A follow-up analysis by the Planck collaboration [271]

claims that the B-mode signal measured by BICEP2 is seriously contaminated by

foreground dust pollution, thereby questioning the validity of the BICEP2 interpre-

1The polarisation of the CMB has two components: E-modes, for polarisation parallel or per-

pendicular to its direction and B-mode, for polarisation tilted 45 degrees with respect to its direc-

tion [70].
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tation. Future experiments and observations, such as the Keck Array [231], may

settle this issue with a very high projected sensitivity, required to measure the B-

mode polarisation and thus potentially constraining GUT models of inflation.

To elucidate the potential connection between SUSY GUT models and infla-

tionary physics we will attempt to build a supersymmetric GUT model, based on

the flipped SU(5)⊗U(1) group, together with a hybrid inflation model, responsible

for the GUT symmetry breaking. First, we will summarise the theory of inflation,

focusing on those concepts and quantities that will be relevant for the rest of the

analysis, in section 5.2.1. We will then describe the hybrid GUT inflation model,

in section 5.2.2, where we find that the inflaton can be identified with the right-

handed sneutrino of the flipped SU(5) × U(1) model, or with a GUT singlet, and

we will analyse both cases and their consequences with respect to the cosmological

observables. Finally, we will discuss in section 5.2.3 how both of these models may

be embedded within the larger symmetry group SO(10) and the consequences that

the embedding might entail.

5.2.1 Inflation

Cosmological inflation was postulated originally to solve the flatness and horizon

problems of the early universe, which were addressed by a rapid expansion of the

universe, consequence of the universe decaying from a false vacuum into the current

stable vacuum [265]. Though successful in its goal and in diluting away all topologi-

cal defects, including domain walls and magnetic monopoles, this model was unable

to reheat the universe, there was no radiation emitted to explain the initial abun-

dance of particles in the universe. This issue was later solved by postulating the

existence of a scalar field, that will cause the inflationary expansion while rolling

down a potential energy hill [267, 268]. This model, known as slow-roll inflation2,

allows for a reheating phase at the end of inflation, when the scalar field, known as

the inflaton, can decay into radiation [267,268].

Slow-roll inflation

Let φ be a single scalar field, the inflaton. The Einstein-Hilbert action for this field

can be written as [70]

S =

∫
d4x
√
−g
(

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
, (5.2.2)

2For recent encyclopedic reviews see Refs. [70, 272].
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where gµν is the spacetime metric, g its determinant, R the scalar curvature and

V (φ) the scalar potential in φ. Using the Friedmann-Robertson-Walker (FRW)

metric gµν [273–276]

ds2 = gµνdxµdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (5.2.3)

where r, θ and ϕ are spherical coordinates, k = (−1, 0,+1) represents the curvature

of space and a(t) is the scale factor of the universe. The expression of the energy-

momentum tensor for a perfect fluid is

Tµν =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 , (5.2.4)

with ρ and p the density and pressure of the universe. One can then find the

equations of motion for the scalar field φ and the FRW geometry as

φ̈+ 3Hφ̇+ V ′ = 0, H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (5.2.5)

with H the Hubble parameter, φ̇ = dφ/dt, V ′ = ∂V/∂φ, and the equation of state

of the universe in the presence of a scalar field [70]

ρ = wp, with w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (5.2.6)

If V dominates the kinetic term, then w < 0, the pressure is negative, from eq.

(5.2.6), and the universe undergoes an accelerated expansion. The condition φ̇2 � V

is known as the slow-roll limit [277].

In this limit, we can define the slow-roll parameters

ε(φ) =
M2

P

2

(
V ′(φ)

V (φ)

)2

,

η(φ) = M2
P

(
V ′′(φ)

V (φ)

)
. (5.2.7)

where MP is the Planck mass. The slow-roll condition is satisfied if ε(φ), η(φ)� 1,

and in that case the equations of motion reduce to

φ̇ ≈ − V ′

3H
, H2 ≈ 1

3
V (φ). (5.2.8)
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With this we can define the number of e-folding from a time where the value of the

field is φ until the end of inflation as

Ntot =

∫ tend

t

Hdt =

∫ φend

φ

H

φ̇
dφ ≈

∫ φ

φend

V

V ′
dφ

≈ 1

MP

∫ φ

φend

dφ√
2ε(φ)

, (5.2.9)

where φend is the value of φ when the slow-roll limit becomes invalid, corresponding

to the end of inflation. Typically, one needs a long period of inflation, over 60

e-foldings of inflation, in order to solve the flatness and horizon problems [70].

The density fluctuations observed in the CMB occur between 40 - 60 e-folds

before the end of inflation [70]. We can then find the value of the field φ∗ when the

CMB modes leave the event horizon during inflation as

Ne ≈
1

MP

∫ φ∗

φend

dφ√
2ε(φ)

≈ 40− 60. (5.2.10)

As we have mentioned, the earliest information we have of the universe comes

from the recombination era, when the CMB is produced. Fortunately, quantum

fluctuations over the scalar field or the metric at the time of inflation are imprinted as

anisotropies in the CMB [70]. The power spectrum of scalar and tensor perturbations

can be parametrised as [16, 70]

Ps = As

(
k

k∗

)ns−1+
1
2
αs(k∗) ln(k/k∗)

, (5.2.11)

Pt = At

(
k

k∗

)nt
, (5.2.12)

where As(At) is the scalar (tensor) amplitude, ns(nt) are the scalar (tensor) spectral

index, αs the running of the scalar spectral index and k∗ is a reference pivot scale.

The scalar amplitude As and the scalar spectral index ns, together with the ratio

of tensor perturbations to scalar perturbations, r = Pt/Ps, are among the most im-

portant cosmological observables, since they have an big significance in inflationary

models.

In the context of the slow-roll approximation, for a singlet field inflation, the

scalar and tensor power spectrum can be calculated as [70]

Ps =
H2
?

(2π)2

H2
?

(φ̇?)2
, (5.2.13)

Pt =
2

π2

H2
?

M2
p

, (5.2.14)
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which, using equations (5.2.5) and (5.2.7), give equations for the observables As, ns

and r in terms of the energy density and slow-roll parameters as

As =
V (φ∗)

24π2M4
Pε(φ

∗)
,

ns = 1− 6ε(φ∗) + 2η(φ∗),

r = 16ε(φ∗), (5.2.15)

and their experimental values, recently measured by the Planck collaboration, can

be seen in table 5.2.

As ns r

(2.19± 0.11)× 10−9 0.9603± 0.0073 < 0.16

Table 5.2: Experimental constraints for the amplitude of scalar perturbations As, the

spectral index ns and tensor-to-scalar ratio r, from [16, 17].

The apparent observation of B-mode polarisation of the CMB at BICEP2 [230]

would suggest a relatively larger value r = 0.20+0.07
−0.05 in the absence of dust, with

respect to the one used in table 5.2. The BICEP2 collaboration estimated the pos-

sible reduction in r implied by dust contamination, but a recent Planck study of

the galactic dust emission [271] suggests that this may be more important than esti-

mated by BICEP2. It could be that the polarized galactic dust emission accounts for

most of the BICEP2 signal, although further study is needed to settle this issue. To

be conservative, the value shown in table 5.2 is a compromise between the BICEP2

results and the limit set by Planck r < 0.16 at the 95% CL [16].

Hybrid Inflation

Among the many models of inflation in the literature, hybrid inflation is one of the

most popular, for it provides a natural setup for the end of inflation as a second

order phase transition of another scalar field [278–287].

Let φ be the scalar inflaton field and h another scalar field, responsible for the

breaking of some symmetry, with a scalar potential

V (φ, h) =
m2

2
φ2 +

g2

2
φ2h2 +

1

4λ
(M2 − λh2)2, (5.2.16)

where m2, g2, λ and M2 are real parameters. As can be seen in figure 5.12, this

potential has a minimum at h = 0 for a large value of the field φ > φc = M/g,
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so it can be assumed that the universe was stable at this minimum at the start of

inflation. The potential during this era is just

V (φ, h = 0) =
m2

2
φ2, (5.2.17)

and thus it can be expected that the field φ will slow-roll down its potential, inflating

the universe.

Figure 5.12: Scalar potential for the hybrid inflation model.

After a number of e-foldings of inflation, the value of the field will drop below

φc = M/g. This makes the potential in h unstable at h = 0, because the curvature

of the potential at that point is given by

∂2V

∂h2

∣∣∣∣
h=0

= g2φ2 −M2, (5.2.18)

which becomes negative for φ < φc. The system will then suffer a second-order

phase transition, with h moving to the new minimum h 6= 0, as can be seen in figure

5.12, breaking the symmetry.

In the process of decaying to its new vacuum, the field h drags the inflaton

φ with it. The slow-roll approximation is no longer valid after φc because of the

non-vanishing vacuum expectation value of h, and inflation ends.
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Therefore, as soon as the field φ < φc, the end of inflation and breaking of

the symmetry happen simultaneously, and both fields will roll, “waterfall”, quickly

down the slope of their potential to their true minimum, which corresponds to φ = 0,

h = M/
√
λ.

The measurement of the scalar amplitude As and tensor-to-scalar ration r

in table 5.2, predict the energy density to be at the unification scale. From the

expressions for As and r in the slow-roll approximation, eq. (5.2.15), we have that

the energy density can be written as

V =
3

2
M4

Pπ
2rAs ≈ (2× 1016 GeV)4

( r

0.15

)
, (5.2.19)

as in eq. (5.2.1). Thus, hybrid inflation models have become quite popular because

they provide a mechanism to link the end of the inflationary era with the symmetry

breaking required to happen at the unification scale [19, 288].

5.2.2 Minimal GUT Inflation

A common prediction of GUTs is the emergence of magnetic monopoles at an early

stage of the universe [10, 289], which can overclose the universe if their density is

too large [265]. As mentioned before, inflation has a way of avoiding the monopole

problem. If any monopoles are present before the inflationary epoch, their density

will be diluted away after the expansion, thus avoiding detection and not contribut-

ing to the overall energy density of the universe. Therefore, to develop a monopole

free GUT model, one must impose that the GUT symmetry breaking happens prior

to inflation, thus washing away any monopoles that emerged before.

In the context of hybrid inflation, as was described above, the symmetry break-

ing happens right at the end of the inflationary era and so it cannot benefit from

the rapid expansion to dilute the density of monopoles. An interesting way to cir-

cumvent this problem is to have the unified group to be non-semisimple, for which

the magnetic monopole flux cancels, provided that the abelian electromagnetic U(1)

factor is not entirely contained in the semisimple subalgebra [10]. One such model is

the flipped SU(5)⊗ U(1) model, which was described in section 2.2.2 as it satisfies

all the above requirements: it is consistent with the unification of gauge couplings

at MGUT ∼ 1016 and the SM hypercharge is a linear combination of the abelian

generator T24 in the SU(5) simple group and the charge X of the external U(1)

Y = −1

5
T24 +

1

5
X, (5.2.20)
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thus cancelling the flux of magnetic monopoles [10].

With the field content of the flipped SU(5)⊗U(1) model, described in section

2.2.2, we can construct the most general superpotential as

W = yu1̂0F 1̂0F 5̂Hu + yd1̂0F ˆ̄5F ˆ̄5Hd + yeˆ̄5F 1̂F 5̂Hu

+ λu1̂0H 1̂0H 5̂Hu + λ′u1̂0F 1̂0H 5̂Hu + λd ˆ̄10H ˆ̄10H ˆ̄5Hd + λ′d1̂0H ˆ̄5F ˆ̄5Hd

+ λF 1̂0F ˆ̄10H 1̂S + λ55̂Hu
ˆ̄5Hd 1̂S + λ101̂0H ˆ̄10H 1̂S + λS 1̂S 1̂S 1̂S

+ µF 1̂0F ˆ̄10H + µ55̂Hu
ˆ̄5Hd + µ101̂0H ˆ̄10H + µS 1̂S 1̂S +M2

S 1̂S , (5.2.21)

where 1̂0F and ˆ̄5F contains the SM fermions, 1̂F the right-handed neutrino, 5̂Hu and
ˆ̄5Hd the MSSM Higgses, ˆ̄10H and 1̂0H the unification group breaking Higgses, and

1̂S is a group singlet. The couplings yi, λi and λ′i are dimensionless Yukawa-like

couplings, whereas the couplings µi have dimension one and are equivalent to the µ

terms in the MSSM. The linear coupling M2
S has also dimension one and it sets the

energy scale of the potential, since V ∼M4
S.

Additionally, soft SUSY breaking terms for the scalar fields need to be added

to the model. Provided supersymmetry is broken above the GUT scale as in super-

gravity models [172, 290], we obtain soft SUSY breaking terms, c.f. eq. (2.3.10),

such as

VSSB = (Aijkyijkφ
iφjφk +Bijµijφ

iφj + c.c.) +m2
i |φi|2 (5.2.22)

at some high renormalisation scale µ > MGUT . Through RGE evolution, the

soft masses for the SU(5) ⊗ U(1) breaking Higgses, m2
10H

and m2
10H

, may be-

come tachyonic at some µ ∼ MGUT , and thus trigger the symmetry breaking

SU(5)⊗ U(1)→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y [76, 77].

There are two fields in the superpotential above that can act as the inflaton,

the right-handed sneutrino ν̃c embedded in 1̂0F , or the singlet S in 1̂S. Although

sneutrino inflation has been studied extensively [291–299], to the best of our knowl-

edge no study of sneutrino-driven inflation in a flipped SU(5)⊗U(1) model has been

performed, though it was suggested in [300].

Sneutrino Inflation

From the superpotential 5.2.21, the only relevant terms for this model of sneutrino

inflation are

W ⊃ λF 1̂0F ˆ̄10H 1̂S + µF 1̂0F ˆ̄10H + µ101̂0H ˆ̄10H + λ101̂0H ˆ̄10H 1̂S , (5.2.23)
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whereas the rest of the terms in (5.2.21) include other superfields that we do not

consider for inflation, such as the antisymmetric coupling 1̂0F 1̂0H 5̂Hu , which includes

components of fields other than νc, νcH and ν̄cH .

It was discussed in [301], in the context of a Wess-Zumino model, that in

order to realise a model of inflation with a cubic or quartic scalar potential, one

needs couplings of the order λ ∼ 10−7 − 10−8. The main sources of high powers

of the inflaton in our model are the D-terms, but their couplings are of the order

of the gauge couplings, i.e. g ∼ 0.1 − 1, which will not be able to reproduce the

cosmological observables [288]. Therefore, in order to cancel the contributions from

the D-terms, we introduce another field ˆ̄10F , with the couplings

W ⊃ λ̄F ˆ̄10F 1̂0H 1̂S + µ̄F ˆ̄10F 1̂0H , (5.2.24)

and for the same reason, to avoid quartic couplings, we do not consider terms like
ˆ̄10F 1̂0F or ˆ̄10F 1̂0F 1̂S.

With the redefinitions h = νcH , h̄ = ν̄cH , φ = νc and φ̄ = ν̄c, then one can

calculate the F -term scalar potential, defined in chapter 2.3, as

VF = 4(µ2
10 + µ̄2

F )h2 + 4(µ2
10 + µ2

F )h̄2 + 4λ2
10h

2h̄2

+ 4(2λ10hh̄)(λF h̄φ+ λ̄Fhφ̄) + 8µ10(µFhφ+ µ̄F h̄φ̄)

+ 4(λ̄Fhφ̄+ λF h̄φ)2 + 4µ2
Fφ

2 + 4µ̄2
F φ̄

2, (5.2.25)

and the D-term scalar potential has the form

VD ∝ (φ2 − φ̄2 + h2 − h̄2)2, (5.2.26)

whose contribution proportional to φ and φ̄ cancels during inflation if φ = φ̄. In order

to achieve this, it is enough to consider that φ∗ = φ̄∗ at the start of the inflationary

phase 3 and that their evolution is the same, which is obtained by imposing the

constraint µF = µ̄F .

We will assume that all soft SUSY breaking parameters are of the order of the

SUSY scale, typically at the TeV scale. We will neglect these, except those for h

and h̄, because they are needed to trigger SU(5) ⊗ U(1) symmetry breaking, and

they will have the form

VSSB = −m2
h|h|2 −m2

h̄|h̄|
2 , (5.2.27)

where m2
h,m

2
h̄
> 0.

3The superscript ∗ refers to the time of horizon crossing.
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Before the inflationary epoch, the symmetry SU(5) ⊗ U(1) is unbroken, and

so we would expect the fields h and h̄ to be stable at zero. However, that is not the

case for the general potential V = VF +VD +VSSB, which does not have a minimum

at the origin, unless µ10 = 0. In that case, the scalar potential during inflation,

while the symmetry is preserved, reads

Vφ = 4µ2
Fφ

2 + 4µ̄2
F φ̄

2. (5.2.28)

As mentioned before, cancellation of φ4 contribution from theD-terms happens

if φ = φ̄ and µF = µ̄F during inflation. Hence, this inflationary potential is quadratic

in φ, and all isocurvature perturbations cancel.

Therefore, the only free parameter is µF , so we will attempt to constrain it

using the cosmological observables, As, ns and r, whose experimental values can be

seen in table 5.2, and the expressions in terms of the parameters in the potential

can be seen in (5.2.15).

Figure 5.13 shows the allowed parameter space in the plane (µF , Ne), with Ne

the number of e-foldings, in accordance with the cosmological observables. It can

be easily noticed that the strongest constraint comes from the scalar amplitude As

(blue), whereas the spectral index ns (pink) and tensor-to-scalar ration r (green) set

a upper and lower bound, respectively, on the number of e-foldings.

From figure 5.13 we pick out an example scenario, shown in table 5.3, that is

consistent with all three observables and which we will use for the the rest of the

analysis.

Ne µF (GeV) φ∗ (GeV) As ns r

55 5.75× 1012 2.55× 1019 2.28× 10−9 0.9636 0.145

Table 5.3: Sample scenario taken from the allowed region in figure 5.13.

At some point close to the end of inflation, the fields h and/or h̄ become

unstable at the origin, thus triggering the symmetry breaking of SU(5)⊗U(1). All

four fields, φ, φ̄, h and h̄ will fall to the true minimum of the potential. For this to

happen, the fields φ and φ̄ must have reached the critical values

φ2
c =

1
2
m2
h − µ2

F

λ̄2
F

, φ̄2
c =

1
2
m2
h̄
− µ2

F

λ2
F

, (5.2.29)

for which the origin h = h̄ = 0 becomes a local maximum, which is satisfied by the

conditions m2
h � 2µ2

F and m2
h̄
� 2µ2

F .
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Figure 5.13: Region plot in the (µF = µ̄F , Ne) plane, with the allowed regions by the

cosmological observables As (blue curve), spectral tilt ns (pink region), and tensor-to-scalar

ratio, r (green hatched region).

Further, we need to ensure that the inflaton φ does not acquire a vacuum

expectation value at the end of inflation, i.e. we need that 〈φ〉 = 0. Otherwise, since

it is a sneutrino, it would generate a large mass term for the corresponding lepton

and Higgsino, which would make them near-degenerate, and would also violate R-

parity, losing the supersymmetric dark matter candidate.

Unfortunately, there are no solutions that allow 〈φ〉 = 0 while at the same

time 〈h〉 = 〈h̄〉 6= 0, required so as to break the SU(5)⊗ U(1) symmetry. However,

there are four solutions with 〈φ〉 = 〈φ̄〉 = 0 and either h or h̄ acquiring a vacuum

expectation value,

〈h〉 = ±
√

5

6

√
m2
h − 2µ2

F

g
, 〈h̄〉 = 0, 〈φ〉 = 0, 〈φ̄〉 = 0

〈h̄〉 = ±
√

5

6

√
m2
h − 2µ2

F

g
, 〈h〉 = 0, 〈φ〉 = 0, 〈φ̄〉 = 0, (5.2.30)

so if we choose one of them, 〈h̄〉 = 0 for example, the inflation field will not acquire
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a v.e.v. and the GUT symmetry will be broken. In this case h̄ must be stable at its

minimum h̄ = 0 for all values of φ and φ̄, which will happen if 2µ2
F � m2

h̄
. Without

loss of generality and knowing the value of µF from table 5.3, we can choose a value

for mh̄ compatible with this constraint, mh̄ ∼ 1012.

Figure 5.14: Allowed region in the mh, λ̄F and λ10 parameter space for which 〈h〉 ∼ 1016

GeV and the system is in its true minimum. We have 3.89×1015 ≤ mh ≤ 3.89×1016 GeV,

0.56 ≤ λ̄F , λ10 ≤ 4π, where the upper bound on λ̄F and λ10 results from the perturbativity

limit.

The remaining parameters of the model are mh, λ̄F and λ10, since the coupling

λF drops out from all equations because of the minimum condition h̄ = 0. Imposing

that the system falls to its true minimum, with 〈h〉 ∼ 1016, required by unification,

we can find constraints on these parameters, whose allowed region of parameter

space is shown in figure 5.14. We can see that only high values of mh, close to the

GUT scale, are allowed, as was expected. Further, values of the couplings λ̄F and

λ10 must be large, λ̄F , λ10 ∈ (0.5, 4π), but obviously below the perturbativity limit.
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Singlet Inflation

The other candidate that we will consider as inflaton in the superpotential in (5.2.21)

is the singlet 1̂S. The relevant terms for this case, with the redefinition ϕ = 1̂S, are

W (ϕ, h, h̄) = M2
S ϕ− µS ϕ2 + λS ϕ

3 − 2λ10 hh̄ϕ+ 2µ10 hh̄ . (5.2.31)

Along the lines of the analysis in the previous case, we focus here on quadratic

inflation only, thus we set λS = 0, cancelling the cubic term in ϕ. Hence the F -term

scalar potential is

VF = M4
S + 4µ2

10(h2 + h̄2)− 4λ2
10h

2h̄2 − 4λ10M
2
Shh̄

− 8λ10µ10(h2 + h̄2)ϕ+ 8λ10µShh̄ϕ+ 4λ2
10(h2 + h̄2)ϕ

− 4µSM
2
Sϕ+ 4µ2

Sϕ
2 . (5.2.32)

The only other contributions to the scalar potential in this scenario come from the

symmetry breaking Higgses, h and h̄, from their SSB masses, the same as for the

sneutrino case in eq. (5.2.27), and their D-terms. The contribution from the D-

terms cancels for ϕ, because it is a singlet. As before, we assume the SSB mass of

the inflaton to be negligible compare to those of h and h̄.

It is straightforward to see that the potential in equation (5.2.32) has a stable

minimum for h = h̄ = 0, so during inflation it reduces to

Vϕ =
(
M2

S + 2µSϕ
)2
. (5.2.33)

Once again, using the cosmological parameters in (5.2.15) - (5.2.10), we perform an

analysis to constrain the couplings in (5.2.33). Since there are now two parameters

MS and µS, we present corresponding results for different numbers of e-foldings

Ne = 40, 50, 60 in figure 5.15.

Similar to the sneutrino case explored in section 5.2.2, the strongest constraint

in figure 5.15, as expected, comes from the scalar amplitude As. It can be seen

that for Ne = 40, only a small region of parameter space is compatible with the

observables, and this could disappear entirely with a stronger upper limit on r. For

Ne = 50 − 60, however, the parameter space becomes less constrained since the

bounds on ns and r are less restrictive for a larger number of e-foldings. However,

when Ne = 60, the upper limit on MS drops slightly. Curiously, we do not find a

lower bound on MS, so a value of MS = 0 would be perfectly valid without disturbing

the observables. If that were the case, then we recover from figure 5.13, since the

inflationary potential in (5.2.33) is the same as in (5.2.28) with ϕ2 = φ2 + φ̄2.
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Figure 5.15: Allowed regions of the (µS ,MS) parameter space according to the scalar

amplitude As (blue curved), the tensor-to-scalar ratio r (green hatched region) and the

spectral tilt ns (pink region), for Ne = 40 e-foldings (left), Ne = 50 (centre) and Ne = 60

(right).

A example scenario is shown in table 5.4, with Ne = 50 and MS = 6.03 ×
1015 GeV, close to the GUT scale.

Ne µS (GeV) MS (GeV) ϕ∗ (GeV) As ns r

50 6.17× 1012 6.03× 1015 3.16× 1019 2.20× 10−9 0.9603 0.159

Table 5.4: Sample scenario taken from the allowed region in figure 5.15 for Ne = 50.

The waterfall fields, h and h̄, become unstable at h = h̄ = 0 near to the end

of the inflationary era, for the values of the inflaton

ϕc =
1
2
mh − µ10

2λ10

, ϕc =
1
2
mh̄ − µ10

2λ10

, (5.2.34)

which we will assume to be equal, thus mh̄ = mh, so that h and h̄ move simul-

taneously away from the origin and to the true minimum. The SU(5) ⊗ U(1) is

broken at this stage, since h and h̄ acquire a non zero v.e.v. at the true minimum

〈h〉 = 〈h̄〉 6= 0.

Since ϕ is a singlet, it is free to acquire an expectation value, so there is no

problem finding a solution for which both 〈h〉 = 〈h̄〉 6= 0, regardless of the value of

〈ϕ〉. The remaining parameters of the model, mh, µ10 and λ10 can be constrained by

requiring that 〈h〉 ∼ 〈h̄〉 ∼ 1016 GeV and that the system falls to the true minimum,

as can be seen in figure 5.16. In comparison to figure 5.14, we find that the allowed

region of parameter space is much larger. The value of µ10 is roughly unconstrained,

whereas the lower limit of the value of λ10 depends on mh, with λ10 & 0.1 for

mh & 1016.
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Figure 5.16: Region of the (µ10, λ10,mh) parameter space that allows vevs for h and h̄:

〈h〉 = 〈h̄〉 ∼ 1016 GeV.

5.2.3 Embedding in SO(10)

The superpotentials for both the above inflation scenarios, with a sneutrino inflaton

and a singlet inflaton, are

Wφ∈1̂0F
= µF (1̂0F ˆ̄10H + ˆ̄10F 1̂0H) + λ̄F ˆ̄10F 1̂0H 1̂S + λ101̂0H ˆ̄10H 1̂S,

Wϕ∈1̂S
= M2

S 1̂S + µS 1̂S 1̂S + µ101̂0H ˆ̄10H + λ101̂0H ˆ̄10H 1̂S , (5.2.35)

respectively. They contain one or more dimensionful parameters, namely µF in the

scenario of sneutrino inflation and µS and µ10 for the singlet case. However, above

the SU(5)⊗U(1) breaking scale, the only real scale in the model is the Planck scale,

but according to the constraints found for these parameters, c.f. figures 5.13, 5.15

and 5.16, their values are considerably lower than the Planck scale.

Therefore, we could postulate a pre-inflationary era during which there is a

prior phase transition when some larger group breaks down to SU(5) ⊗ U(1). The

dimensionful parameters at the intermediate scale may then be obtained via the

expectation values of the scalar field(s) breaking the larger symmetry.
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The simplest and most straightforward candidate would be the group SO(10).

The 10-dimensional SU(5) representations can be embedded into 16-dimensional

representations of SO(10), and the singlet can be taken either as a singlet of SO(10)

or as a component of the adjoint 45-dimensional representation of SO(10). Here we

choose it to be in the adjoint representation, 4̂5H , which is also needed to break

SO(10) into SU(5)⊗ U(1). In the unbroken SO(10) phase, the superpotentials are

given by

Wφ∈1̂6F
= λ45(1̂6F ˆ̄16H + ˆ̄16F 1̂6H)4̂5H + λ̄F ˆ̄16F 1̂6H 4̂5H + λ101̂6H ˆ̄16H 4̂5H ,

Wϕ∈1̂S
= λ454̂5H 4̂5H 4̂5H + λ′451̂6H ˆ̄16H 4̂5H + λ101̂6H ˆ̄16H 4̂5H . (5.2.36)

When the SO(10) group is broken, the 4̂5H acquires a v.e.v. with the little group

SU(5)⊗U(1), 〈4̂5H〉 = v. The SO(10) representations are then broken, and give rise

to (among others) the terms in (5.2.35), which allows for the following identifications

of the couplings

µF = vλ45,

M2
S = v2λ45, µS = vλ45, µ10 = vλ′45. (5.2.37)

Since the SO(10) breaking happens above the GUT scale, v & 1016 GeV, we can

see that for the reference scenarios in tables 5.3 and 5.4, for which µF ∼ µS . 1013

GeV, we find that λ45 . 10−3. This is consistent with the fact that we have taken

MS 6= 0 in section 5.2.2, as we find now that MS = v
√
λ45 ∼ 1015 GeV, which

roughly matches and motivates our choice in table 5.4.

Although this embedding into SO(10) seems reasonable and provides a suitable

superpotential prior to inflation, it looses the ultraviolet connection with weakly-

coupled string theory. This is because it is, in general, not possible to obtain such

large representations as 4̂5H from a manifold compactification of string theory [172,

290]. One possible alternative would be to consider flipped SO(10) ⊗ U(1) as the

pre-inflationary GUT symmetry group. This differs from the usual SO(10) in that

the SM matter content is not fully embedded in a 16-dimensional representation, but

in the direct sum 161 ⊕ 10−2 ⊕ 14. This kind of model could in principle be derived

from string compactification, since it no longer requires large field representations:

the symmetry breaking SO(10)⊗U(1)→ SU(5)⊗U(1) can be realised by a pair of

representations 161 ⊕ 16−1. However, the only way to obtain superpotentials such

as (5.2.35) would be with non-renormalisable terms involving four 16-dimensional

representations.
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6
Conclusions and Outlook

The discovery of the Higgs boson by the ATLAS and CMS collaborations agrees

with the predictions of the Standard Model, thereby confirming the success of gauge

theories. The mechanism of spontaneous symmetry breaking has been verified by

the presence of the Higgs boson, responsible for triggering the phase transition. This

fact, along with the known issues of the SM, such as charge quantisation or neutrino

masses, among others, strongly motivates the extension to GUTs.

GUTs are very powerful theories, with many of their properties dictated by

the mathematical group structure. They reproduce the successes of the SM, and

provide a solution to many of its problems. Arguably the most popular of them are

supersymmetric GUTs, which bring together the unified picture of GUTs with the

predictive power of SUSY.

However, the lack of signs for SUSY in current experiments puts many of the

minimal SUSY GUT models under pressure. Therefore, it is of paramount impor-

tance to extend the study beyond minimal GUT models, in a systematic fashion, in

order to satisfy the current experimental constraints and prepare for the upcoming

results from current or future experiments.

Throughout this thesis we have discussed the development of a framework

capable of performing a systematic and general study of unified theories, and we

have given some examples of its use. The first piece of this framework is the group

theory tool, whose algorithms and implementation are detailed in chapter 3. This

tool deals with the mathematical properties of Lie algebras and their representations,

in terms of their roots and weights, and through its interface allows the calculation

of properties needed for the model building phase, such as the breaking chains,

decomposition of representations and calculation of invariants.

The second stage of the tool is the model building itself, described in chapter

187
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4, which, by using the group theory tool is able to obtain a large collection of GUT

models. Given the input: a gauge group, a breaking chain and a set of represen-

tations at the unification scale, this framework calculates all the possible models

consistent with theoretical constraints: chirality, anomaly cancellation, successful

symmetry breaking and reproduction of the SM representations. For each of these

models, we then solve the unification conditions, to obtain the allowed values for

the energy scales.

There exists a very pronounced connection between GUTs and supersymmetry,

motivated partially by of the unification of gauge couplings in the MSSM, as in figure

1.2. Although SUSY is preferred at low energies, recent searches have set stringent

constraints on SUSY light states, thereby encouraging the analysis of models where

supersymmetry lives at higher scales. Therefore, the GUT models calculated using

the model building framework allow for a sliding SUSY scale, i.e. the value or limits

of the SUSY breaking scale would only be constrained by the unification of gauge

couplings, not by the need to have a low supersymmetric spectrum. We thereby

implicitly disregard the hierarchy problem as a theoretical issue and assume that it

is solved in a different fashion or that it is irrelevant.

As an example we applied the tool to the case of a SO(10) GUT with a specific

set of representations and a symmetry breaking chain with the left-right symmetry

group SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L at an intermediate step. We find that,

for up to five exotic scalar states above the left-right symmetric scale, there are over

250,000 models allowed by the theoretical constraints. We noticed that there is an

overall preference for low values of the left-right scale and high values of the SUSY

breaking scale, which is more pronounced for minimal cases, with fewer number of

representations.

GUT models with intermediate left-right symmetric make additional predic-

tions that can be compared with experimental observations. We imposed phe-

nomenological constraints on the set of models, such as consistency with the current

SUSY searches, discarding models with MSUSY < 1 TeV, stability of the proton

longer than the measured half-life τp > 1034 years, and agreement with the bound

on the mass of the WR, coming from the mass difference of the KS − KL system.

Alternatively, we imposed more stringent constraints, according to the projected

limits of future experiments.

These constraints reduced the number of models significantly and they en-

hanced the preference for low MLR and high MSUSY , showing a correlation between

the left-right and SUSY scales, where if either one of them has a value close the
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the electroweak scale, the other one must be close to the GUT scale. The GUT

scale MGUT is required to be larger than 1016 in order to satisfy the proton decay

constraint.

The current limits on the masses of supersymmetric particles impose very

strong constraints on SUSY and GUT models. In section 5.1 we analysed a SUSY

SO(10) model, which deviates from the usual mSUGRA scenario by assuming dif-

ferent boundary conditions at the GUT scale for the soft SUSY breaking masses.

These deviations were due to the contribution of SO(10) D-terms to scalar masses

and the effect of the SO(10) representation of the SUSY breaking messenger on

the gaugino masses. We calculated the spectrum of supersymmetric particles and

we found two interesting cases. One of them has light third generation squarks, so

light in fact that they are nearly degenerate with the LSP. This scenario falls into

the category of “compressed” SUSY, evading the current LHC constraints on stop

searches. The other scenario has a lighter first and second generation of sfermions

and predicts light sleptons, close to the current limit.

On the other side of the energy spectrum, the measurements of the amplitude

of scalar and tensor perturbations in the CMB by the Planck and BICEP2 collabora-

tions has shown hints of a correlation between the scales of inflation and unification.

We have therefore built, in section 5.2, a flipped SU(5) ⊗ U(1) model in which in-

flation and GUT symmetry breaking happen around the same energy scale. The

scenario offers two possible candidates for the inflaton: the sneutrino, embedded in

the 1̂0F representation of the unified group along with the other sfermions; and the

singlet, in a 1̂S representation. For both cases we find the limits on the parameters

of the model, by reproducing the measurements of the scalar amplitude As, spectral

index ns and tensor-to-scalar ratio r measured by the Planck collaboration.

Throughout this thesis we have asserted that GUTs are very powerful and

promising extensions of the SM, either by generating a multitude of models, showing

the flexibility of GUTs, or by performing analyses of GUT models on the two sides

of the energy spectrum: SUSY phenomenology and cosmological inflation. This

work is, however, not complete, for there are many versions or variations of GUT

models that we have not yet considered and that are equally likely candidates for

BSM theories, given the status of experimental observations to date.

Therefore, one could speculate on the directions to extend the above work. A

rather obvious one is to implement an extension of the group theory tool, able to deal

with groups of symmetries other than Lie groups, such as discrete groups, which are

often present in the literature, e.g. Z2 left-right symmetry or S4 flavour symmetry.
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In the model building phase there are many roads for improvement: starting from a

more specific analysis of the symmetry breaking mechanism, by studying the scalar

potential of the theory, rather than simply requiring the right representation content;

or by performing a similar analysis for other initial conditions, increasing the set

of representations at the GUT scale, choosing different breaking paths or starting

with another gauge group e.g. E6, SO(12) or E8, which have been considered in the

literature due to their relation to superstring models.

Phenomenological analyses of the obtained models could also be a potential

way forward. There is a plethora of computational tools available dedicated to cal-

culating observable quantities, aimed to either reproduce or predict experimental

observables. One could, therefore, build a link between this model building frame-

work and some of those tools, allowing a direct connection between high energy

GUT models and direct low energy predictions.

Finally, it is worth mentioning that the rapid advances on the experimental

frontier might bring GUTs into the spotlight very soon. At the moment of writing

the experiments of the LHC are collecting data during Run II, many analyses are on

their way which could potentially find hints of unified theories, for example, a right-

handed gauge boson at 2 TeV. Many other experiments could also have important

relevance for GUTs in many different fronts: cosmological observation, dark matter

detection, proton decay measurements, neutrino experiments, g−2 experiments and

many more. It is a very exciting time for BSM theories, in particular for GUTs,

since in the coming few years we could start detecting signs of new physics, which

could prove or falsify many of the models in the literature. Perhaps more interesting,

we could find something totally unexpected and new, thereby opening the field of

theoretical particle physics to new ideas.
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MSSM RGEs

We here list the RGEs for the MSSM at one and two loop level [185]. In cases where

the equations are analytically solvable, we provide the exact solution. Otherwise, we

provide an analytical approximation. The scale parameter t is defined as t = log µ

for an energy scale µ.

A.1 Gauge Couplings

The β-functions for the gauge couplings at 1-loop are:

1

16π2
βga =

dga
dt

=
ba

16π2
g3
a, (b1, b2, b3) = (33

5
, 1,−3), (A.1.1)

They are exactly solvable at 1-loop with solution (αa = g2
a/4π):

αa(µ) =
α(MGUT)

1− ba
2π
α(MGUT) log µ

MGUT

. (A.1.2)

A.2 Yukawa Couplings

Neglecting the Yukawa couplings of the first two generations, the β-functions for the

3rd generation Yukawa couplings are at 1-loop level:
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dyt
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)
. (A.2.1)
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These equations are not analytically solvable, so we will make the approximation

that the γi’s are constant and equal to their value at the electroweak scale. The

approximate solutions are therefore

yt(µ) =
√

2
mt

vu

(
µ

MZ

)γt
,

yb(µ) =
√

2
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vd
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µ
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,

yτ (µ) =
√

2
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)γτ
, (A.2.2)

with
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A.3 Gaugino Masses

The RGEs for the gauginos are very similar to the gauge couplings, and can therefore

be solved analytically at 1-loop. The β-functions are

βMa = 16π2dMa

dt
= 2bag

2
aMa, (A.3.1)

and the solution can be expressed in terms of the gauge couplings as

Ma(µ)

Ma(MGUT)
=

g2
a(µ)

g2
a(MGUT)

. (A.3.2)

A.4 Trilinear Couplings

As for the Yukawa couplings, we only consider the 3rd generation trilinear couplings.

Their RGEs are:
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The terms proportional to the Yukawa and trilinear couplings are not exactly solv-

able, thus we will make the approximation that Ai is roughly constant and equal

to its value at the GUT scale, A0, and we solve for the Yukawa part using the

approximated solution obtained above. This gives
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where δi = 1
2γi

(y2
i (MGUT)− y2

i (µ)) and
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. (A.4.3)

A.5 Scalar Masses

The β-functions for the matter sfermion masses are
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where Xi are 3× 3 matrices proportional to the 3× 3 Yukawa matrices and

S = m2
Hu −m

2
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)
. (A.5.2)

Neglecting the Yukawa couplings for the first and second generations, the (3,3)

components of the Xi can be written as
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t
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)
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The gauge components are exactly solvable, as is the dependence on S. Hence, for

the first two generations it is possible to arrive at an exact analytical solution at

1-loop:

m2
Q1,2

= m2
16F

+

(
1 +

2

5
C

(1)
1

)
m2
D +

(
8

3
C

(2)
3 +

3

2
C

(2)
2 +

1

30
C

(2)
1

)
m2

1/2,

m2
u1,2

= m2
16F

+

(
1− 8

5
C

(1)
1

)
m2
D +

(
8

3
C

(2)
3 +

8

15
C

(2)
1

)
m2

1/2,

m2
d1,2

= m2
16F

+

(
−3 +

4

5
C

(1)
1

)
m2
D +

(
8

3
C

(2)
3 +

2

15
C

(2)
1

)
m2

1/2,

m2
L1,2

= m2
16F

+

(
−3− 6

5
C

(1)
1

)
m2
D +

(
3

2
C

(2)
2 +

3

10
C

(2)
1

)
m2

1/2,

m2
e1,2

= m2
16F

+

(
1 +

12

5
C

(1)
1

)
m2
D +

6

5
C

(2)
1 m2

1/2, (A.5.4)

where the dependence on µ is implied. The third sfermion generations have an extra

dependence on the Yukawa and trilinear couplings via the terms Xt, Xb, Xτ . Their

RGEs cannot be solved analytically. We approximate the dependence on the scalar

masses and trilinear couplings by taking them constant with values given by the

geometrical average of their values at the GUT scale and the SUSY scale. Using the

approximate solution for the Yukawa couplings, this gives
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Finally, the Higgs doublet soft masses have similar RGEs to the other scalars,
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and can be solved using the same approximation yielding
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A.6 µH and B Terms

Both µH and B can be fixed at the electroweak scale by requiring successful elec-

troweak symmetry breaking. Therefore we will use the electroweak scale (MZ) as

the reference point to solve the RGEs. The RGEs are
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The solution is calculated using the analogous approximations we used for the

Yukawa couplings and the trilinear terms, respectively,
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The values of µH and B at the EW scale are given at 1-loop by (tβ ≡ tan β) [184]
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with the stop mass eigenvalues mt̃1,2 and the function

f(x) = 2x

(
log

x
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SUSY
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)
. (A.6.5)

A.7 Two-Loop Corrections

We employ two loop corrections only for the scalar masses, because for large m2
D and

consequently large m16F their contribution can be sizable. The relevant 2-loop beta

functions, in which we neglect the Yukawa couplings of the first two generations, are

given by [185]
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In the above equations, the following definitions apply:
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,
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3Tr(2m2

Q +m2
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d). (A.7.8)

The approximate solutions of this second loop correction are obtained by taking the

value of the beta functions as constant and equal to the values at the GUT scale,

using the 1-loop solutions, and integrating over scales,

m2
i,2-loop = m2

i,1-loop −
1

(16π2)2
β

(2)

m2
i,1-loop

(MGUT) log
MGUT

MSUSY

. (A.7.9)
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